Merge branch 'stable/vmalloc-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 int tty_alloc_file(struct file *file)
198 {
199         struct tty_file_private *priv;
200
201         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
202         if (!priv)
203                 return -ENOMEM;
204
205         file->private_data = priv;
206
207         return 0;
208 }
209
210 /* Associate a new file with the tty structure */
211 void tty_add_file(struct tty_struct *tty, struct file *file)
212 {
213         struct tty_file_private *priv = file->private_data;
214
215         priv->tty = tty;
216         priv->file = file;
217
218         spin_lock(&tty_files_lock);
219         list_add(&priv->list, &tty->tty_files);
220         spin_unlock(&tty_files_lock);
221 }
222
223 /**
224  * tty_free_file - free file->private_data
225  *
226  * This shall be used only for fail path handling when tty_add_file was not
227  * called yet.
228  */
229 void tty_free_file(struct file *file)
230 {
231         struct tty_file_private *priv = file->private_data;
232
233         file->private_data = NULL;
234         kfree(priv);
235 }
236
237 /* Delete file from its tty */
238 void tty_del_file(struct file *file)
239 {
240         struct tty_file_private *priv = file->private_data;
241
242         spin_lock(&tty_files_lock);
243         list_del(&priv->list);
244         spin_unlock(&tty_files_lock);
245         tty_free_file(file);
246 }
247
248
249 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
250
251 /**
252  *      tty_name        -       return tty naming
253  *      @tty: tty structure
254  *      @buf: buffer for output
255  *
256  *      Convert a tty structure into a name. The name reflects the kernel
257  *      naming policy and if udev is in use may not reflect user space
258  *
259  *      Locking: none
260  */
261
262 char *tty_name(struct tty_struct *tty, char *buf)
263 {
264         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
265                 strcpy(buf, "NULL tty");
266         else
267                 strcpy(buf, tty->name);
268         return buf;
269 }
270
271 EXPORT_SYMBOL(tty_name);
272
273 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
274                               const char *routine)
275 {
276 #ifdef TTY_PARANOIA_CHECK
277         if (!tty) {
278                 printk(KERN_WARNING
279                         "null TTY for (%d:%d) in %s\n",
280                         imajor(inode), iminor(inode), routine);
281                 return 1;
282         }
283         if (tty->magic != TTY_MAGIC) {
284                 printk(KERN_WARNING
285                         "bad magic number for tty struct (%d:%d) in %s\n",
286                         imajor(inode), iminor(inode), routine);
287                 return 1;
288         }
289 #endif
290         return 0;
291 }
292
293 static int check_tty_count(struct tty_struct *tty, const char *routine)
294 {
295 #ifdef CHECK_TTY_COUNT
296         struct list_head *p;
297         int count = 0;
298
299         spin_lock(&tty_files_lock);
300         list_for_each(p, &tty->tty_files) {
301                 count++;
302         }
303         spin_unlock(&tty_files_lock);
304         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
305             tty->driver->subtype == PTY_TYPE_SLAVE &&
306             tty->link && tty->link->count)
307                 count++;
308         if (tty->count != count) {
309                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
310                                     "!= #fd's(%d) in %s\n",
311                        tty->name, tty->count, count, routine);
312                 return count;
313         }
314 #endif
315         return 0;
316 }
317
318 /**
319  *      get_tty_driver          -       find device of a tty
320  *      @dev_t: device identifier
321  *      @index: returns the index of the tty
322  *
323  *      This routine returns a tty driver structure, given a device number
324  *      and also passes back the index number.
325  *
326  *      Locking: caller must hold tty_mutex
327  */
328
329 static struct tty_driver *get_tty_driver(dev_t device, int *index)
330 {
331         struct tty_driver *p;
332
333         list_for_each_entry(p, &tty_drivers, tty_drivers) {
334                 dev_t base = MKDEV(p->major, p->minor_start);
335                 if (device < base || device >= base + p->num)
336                         continue;
337                 *index = device - base;
338                 return tty_driver_kref_get(p);
339         }
340         return NULL;
341 }
342
343 #ifdef CONFIG_CONSOLE_POLL
344
345 /**
346  *      tty_find_polling_driver -       find device of a polled tty
347  *      @name: name string to match
348  *      @line: pointer to resulting tty line nr
349  *
350  *      This routine returns a tty driver structure, given a name
351  *      and the condition that the tty driver is capable of polled
352  *      operation.
353  */
354 struct tty_driver *tty_find_polling_driver(char *name, int *line)
355 {
356         struct tty_driver *p, *res = NULL;
357         int tty_line = 0;
358         int len;
359         char *str, *stp;
360
361         for (str = name; *str; str++)
362                 if ((*str >= '0' && *str <= '9') || *str == ',')
363                         break;
364         if (!*str)
365                 return NULL;
366
367         len = str - name;
368         tty_line = simple_strtoul(str, &str, 10);
369
370         mutex_lock(&tty_mutex);
371         /* Search through the tty devices to look for a match */
372         list_for_each_entry(p, &tty_drivers, tty_drivers) {
373                 if (strncmp(name, p->name, len) != 0)
374                         continue;
375                 stp = str;
376                 if (*stp == ',')
377                         stp++;
378                 if (*stp == '\0')
379                         stp = NULL;
380
381                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
382                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
383                         res = tty_driver_kref_get(p);
384                         *line = tty_line;
385                         break;
386                 }
387         }
388         mutex_unlock(&tty_mutex);
389
390         return res;
391 }
392 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
393 #endif
394
395 /**
396  *      tty_check_change        -       check for POSIX terminal changes
397  *      @tty: tty to check
398  *
399  *      If we try to write to, or set the state of, a terminal and we're
400  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
401  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
402  *
403  *      Locking: ctrl_lock
404  */
405
406 int tty_check_change(struct tty_struct *tty)
407 {
408         unsigned long flags;
409         int ret = 0;
410
411         if (current->signal->tty != tty)
412                 return 0;
413
414         spin_lock_irqsave(&tty->ctrl_lock, flags);
415
416         if (!tty->pgrp) {
417                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
418                 goto out_unlock;
419         }
420         if (task_pgrp(current) == tty->pgrp)
421                 goto out_unlock;
422         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423         if (is_ignored(SIGTTOU))
424                 goto out;
425         if (is_current_pgrp_orphaned()) {
426                 ret = -EIO;
427                 goto out;
428         }
429         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
430         set_thread_flag(TIF_SIGPENDING);
431         ret = -ERESTARTSYS;
432 out:
433         return ret;
434 out_unlock:
435         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
436         return ret;
437 }
438
439 EXPORT_SYMBOL(tty_check_change);
440
441 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442                                 size_t count, loff_t *ppos)
443 {
444         return 0;
445 }
446
447 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448                                  size_t count, loff_t *ppos)
449 {
450         return -EIO;
451 }
452
453 /* No kernel lock held - none needed ;) */
454 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455 {
456         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457 }
458
459 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460                 unsigned long arg)
461 {
462         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463 }
464
465 static long hung_up_tty_compat_ioctl(struct file *file,
466                                      unsigned int cmd, unsigned long arg)
467 {
468         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469 }
470
471 static const struct file_operations tty_fops = {
472         .llseek         = no_llseek,
473         .read           = tty_read,
474         .write          = tty_write,
475         .poll           = tty_poll,
476         .unlocked_ioctl = tty_ioctl,
477         .compat_ioctl   = tty_compat_ioctl,
478         .open           = tty_open,
479         .release        = tty_release,
480         .fasync         = tty_fasync,
481 };
482
483 static const struct file_operations console_fops = {
484         .llseek         = no_llseek,
485         .read           = tty_read,
486         .write          = redirected_tty_write,
487         .poll           = tty_poll,
488         .unlocked_ioctl = tty_ioctl,
489         .compat_ioctl   = tty_compat_ioctl,
490         .open           = tty_open,
491         .release        = tty_release,
492         .fasync         = tty_fasync,
493 };
494
495 static const struct file_operations hung_up_tty_fops = {
496         .llseek         = no_llseek,
497         .read           = hung_up_tty_read,
498         .write          = hung_up_tty_write,
499         .poll           = hung_up_tty_poll,
500         .unlocked_ioctl = hung_up_tty_ioctl,
501         .compat_ioctl   = hung_up_tty_compat_ioctl,
502         .release        = tty_release,
503 };
504
505 static DEFINE_SPINLOCK(redirect_lock);
506 static struct file *redirect;
507
508 /**
509  *      tty_wakeup      -       request more data
510  *      @tty: terminal
511  *
512  *      Internal and external helper for wakeups of tty. This function
513  *      informs the line discipline if present that the driver is ready
514  *      to receive more output data.
515  */
516
517 void tty_wakeup(struct tty_struct *tty)
518 {
519         struct tty_ldisc *ld;
520
521         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
522                 ld = tty_ldisc_ref(tty);
523                 if (ld) {
524                         if (ld->ops->write_wakeup)
525                                 ld->ops->write_wakeup(tty);
526                         tty_ldisc_deref(ld);
527                 }
528         }
529         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
530 }
531
532 EXPORT_SYMBOL_GPL(tty_wakeup);
533
534 /**
535  *      __tty_hangup            -       actual handler for hangup events
536  *      @work: tty device
537  *
538  *      This can be called by the "eventd" kernel thread.  That is process
539  *      synchronous but doesn't hold any locks, so we need to make sure we
540  *      have the appropriate locks for what we're doing.
541  *
542  *      The hangup event clears any pending redirections onto the hung up
543  *      device. It ensures future writes will error and it does the needed
544  *      line discipline hangup and signal delivery. The tty object itself
545  *      remains intact.
546  *
547  *      Locking:
548  *              BTM
549  *                redirect lock for undoing redirection
550  *                file list lock for manipulating list of ttys
551  *                tty_ldisc_lock from called functions
552  *                termios_mutex resetting termios data
553  *                tasklist_lock to walk task list for hangup event
554  *                  ->siglock to protect ->signal/->sighand
555  */
556 void __tty_hangup(struct tty_struct *tty)
557 {
558         struct file *cons_filp = NULL;
559         struct file *filp, *f = NULL;
560         struct task_struct *p;
561         struct tty_file_private *priv;
562         int    closecount = 0, n;
563         unsigned long flags;
564         int refs = 0;
565
566         if (!tty)
567                 return;
568
569
570         spin_lock(&redirect_lock);
571         if (redirect && file_tty(redirect) == tty) {
572                 f = redirect;
573                 redirect = NULL;
574         }
575         spin_unlock(&redirect_lock);
576
577         tty_lock();
578
579         /* some functions below drop BTM, so we need this bit */
580         set_bit(TTY_HUPPING, &tty->flags);
581
582         /* inuse_filps is protected by the single tty lock,
583            this really needs to change if we want to flush the
584            workqueue with the lock held */
585         check_tty_count(tty, "tty_hangup");
586
587         spin_lock(&tty_files_lock);
588         /* This breaks for file handles being sent over AF_UNIX sockets ? */
589         list_for_each_entry(priv, &tty->tty_files, list) {
590                 filp = priv->file;
591                 if (filp->f_op->write == redirected_tty_write)
592                         cons_filp = filp;
593                 if (filp->f_op->write != tty_write)
594                         continue;
595                 closecount++;
596                 __tty_fasync(-1, filp, 0);      /* can't block */
597                 filp->f_op = &hung_up_tty_fops;
598         }
599         spin_unlock(&tty_files_lock);
600
601         /*
602          * it drops BTM and thus races with reopen
603          * we protect the race by TTY_HUPPING
604          */
605         tty_ldisc_hangup(tty);
606
607         read_lock(&tasklist_lock);
608         if (tty->session) {
609                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
610                         spin_lock_irq(&p->sighand->siglock);
611                         if (p->signal->tty == tty) {
612                                 p->signal->tty = NULL;
613                                 /* We defer the dereferences outside fo
614                                    the tasklist lock */
615                                 refs++;
616                         }
617                         if (!p->signal->leader) {
618                                 spin_unlock_irq(&p->sighand->siglock);
619                                 continue;
620                         }
621                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
622                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
623                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
624                         spin_lock_irqsave(&tty->ctrl_lock, flags);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         spin_lock_irqsave(&tty->ctrl_lock, flags);
634         clear_bit(TTY_THROTTLED, &tty->flags);
635         clear_bit(TTY_PUSH, &tty->flags);
636         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
637         put_pid(tty->session);
638         put_pid(tty->pgrp);
639         tty->session = NULL;
640         tty->pgrp = NULL;
641         tty->ctrl_status = 0;
642         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
643
644         /* Account for the p->signal references we killed */
645         while (refs--)
646                 tty_kref_put(tty);
647
648         /*
649          * If one of the devices matches a console pointer, we
650          * cannot just call hangup() because that will cause
651          * tty->count and state->count to go out of sync.
652          * So we just call close() the right number of times.
653          */
654         if (cons_filp) {
655                 if (tty->ops->close)
656                         for (n = 0; n < closecount; n++)
657                                 tty->ops->close(tty, cons_filp);
658         } else if (tty->ops->hangup)
659                 (tty->ops->hangup)(tty);
660         /*
661          * We don't want to have driver/ldisc interactions beyond
662          * the ones we did here. The driver layer expects no
663          * calls after ->hangup() from the ldisc side. However we
664          * can't yet guarantee all that.
665          */
666         set_bit(TTY_HUPPED, &tty->flags);
667         clear_bit(TTY_HUPPING, &tty->flags);
668         tty_ldisc_enable(tty);
669
670         tty_unlock();
671
672         if (f)
673                 fput(f);
674 }
675
676 static void do_tty_hangup(struct work_struct *work)
677 {
678         struct tty_struct *tty =
679                 container_of(work, struct tty_struct, hangup_work);
680
681         __tty_hangup(tty);
682 }
683
684 /**
685  *      tty_hangup              -       trigger a hangup event
686  *      @tty: tty to hangup
687  *
688  *      A carrier loss (virtual or otherwise) has occurred on this like
689  *      schedule a hangup sequence to run after this event.
690  */
691
692 void tty_hangup(struct tty_struct *tty)
693 {
694 #ifdef TTY_DEBUG_HANGUP
695         char    buf[64];
696         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
697 #endif
698         schedule_work(&tty->hangup_work);
699 }
700
701 EXPORT_SYMBOL(tty_hangup);
702
703 /**
704  *      tty_vhangup             -       process vhangup
705  *      @tty: tty to hangup
706  *
707  *      The user has asked via system call for the terminal to be hung up.
708  *      We do this synchronously so that when the syscall returns the process
709  *      is complete. That guarantee is necessary for security reasons.
710  */
711
712 void tty_vhangup(struct tty_struct *tty)
713 {
714 #ifdef TTY_DEBUG_HANGUP
715         char    buf[64];
716
717         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
718 #endif
719         __tty_hangup(tty);
720 }
721
722 EXPORT_SYMBOL(tty_vhangup);
723
724
725 /**
726  *      tty_vhangup_self        -       process vhangup for own ctty
727  *
728  *      Perform a vhangup on the current controlling tty
729  */
730
731 void tty_vhangup_self(void)
732 {
733         struct tty_struct *tty;
734
735         tty = get_current_tty();
736         if (tty) {
737                 tty_vhangup(tty);
738                 tty_kref_put(tty);
739         }
740 }
741
742 /**
743  *      tty_hung_up_p           -       was tty hung up
744  *      @filp: file pointer of tty
745  *
746  *      Return true if the tty has been subject to a vhangup or a carrier
747  *      loss
748  */
749
750 int tty_hung_up_p(struct file *filp)
751 {
752         return (filp->f_op == &hung_up_tty_fops);
753 }
754
755 EXPORT_SYMBOL(tty_hung_up_p);
756
757 static void session_clear_tty(struct pid *session)
758 {
759         struct task_struct *p;
760         do_each_pid_task(session, PIDTYPE_SID, p) {
761                 proc_clear_tty(p);
762         } while_each_pid_task(session, PIDTYPE_SID, p);
763 }
764
765 /**
766  *      disassociate_ctty       -       disconnect controlling tty
767  *      @on_exit: true if exiting so need to "hang up" the session
768  *
769  *      This function is typically called only by the session leader, when
770  *      it wants to disassociate itself from its controlling tty.
771  *
772  *      It performs the following functions:
773  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
774  *      (2)  Clears the tty from being controlling the session
775  *      (3)  Clears the controlling tty for all processes in the
776  *              session group.
777  *
778  *      The argument on_exit is set to 1 if called when a process is
779  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
780  *
781  *      Locking:
782  *              BTM is taken for hysterical raisins, and held when
783  *                called from no_tty().
784  *                tty_mutex is taken to protect tty
785  *                ->siglock is taken to protect ->signal/->sighand
786  *                tasklist_lock is taken to walk process list for sessions
787  *                  ->siglock is taken to protect ->signal/->sighand
788  */
789
790 void disassociate_ctty(int on_exit)
791 {
792         struct tty_struct *tty;
793         struct pid *tty_pgrp = NULL;
794
795         if (!current->signal->leader)
796                 return;
797
798         tty = get_current_tty();
799         if (tty) {
800                 tty_pgrp = get_pid(tty->pgrp);
801                 if (on_exit) {
802                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
803                                 tty_vhangup(tty);
804                 }
805                 tty_kref_put(tty);
806         } else if (on_exit) {
807                 struct pid *old_pgrp;
808                 spin_lock_irq(&current->sighand->siglock);
809                 old_pgrp = current->signal->tty_old_pgrp;
810                 current->signal->tty_old_pgrp = NULL;
811                 spin_unlock_irq(&current->sighand->siglock);
812                 if (old_pgrp) {
813                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
814                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
815                         put_pid(old_pgrp);
816                 }
817                 return;
818         }
819         if (tty_pgrp) {
820                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
821                 if (!on_exit)
822                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
823                 put_pid(tty_pgrp);
824         }
825
826         spin_lock_irq(&current->sighand->siglock);
827         put_pid(current->signal->tty_old_pgrp);
828         current->signal->tty_old_pgrp = NULL;
829         spin_unlock_irq(&current->sighand->siglock);
830
831         tty = get_current_tty();
832         if (tty) {
833                 unsigned long flags;
834                 spin_lock_irqsave(&tty->ctrl_lock, flags);
835                 put_pid(tty->session);
836                 put_pid(tty->pgrp);
837                 tty->session = NULL;
838                 tty->pgrp = NULL;
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 tty_kref_put(tty);
841         } else {
842 #ifdef TTY_DEBUG_HANGUP
843                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
844                        " = NULL", tty);
845 #endif
846         }
847
848         /* Now clear signal->tty under the lock */
849         read_lock(&tasklist_lock);
850         session_clear_tty(task_session(current));
851         read_unlock(&tasklist_lock);
852 }
853
854 /**
855  *
856  *      no_tty  - Ensure the current process does not have a controlling tty
857  */
858 void no_tty(void)
859 {
860         struct task_struct *tsk = current;
861         tty_lock();
862         disassociate_ctty(0);
863         tty_unlock();
864         proc_clear_tty(tsk);
865 }
866
867
868 /**
869  *      stop_tty        -       propagate flow control
870  *      @tty: tty to stop
871  *
872  *      Perform flow control to the driver. For PTY/TTY pairs we
873  *      must also propagate the TIOCKPKT status. May be called
874  *      on an already stopped device and will not re-call the driver
875  *      method.
876  *
877  *      This functionality is used by both the line disciplines for
878  *      halting incoming flow and by the driver. It may therefore be
879  *      called from any context, may be under the tty atomic_write_lock
880  *      but not always.
881  *
882  *      Locking:
883  *              Uses the tty control lock internally
884  */
885
886 void stop_tty(struct tty_struct *tty)
887 {
888         unsigned long flags;
889         spin_lock_irqsave(&tty->ctrl_lock, flags);
890         if (tty->stopped) {
891                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892                 return;
893         }
894         tty->stopped = 1;
895         if (tty->link && tty->link->packet) {
896                 tty->ctrl_status &= ~TIOCPKT_START;
897                 tty->ctrl_status |= TIOCPKT_STOP;
898                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
899         }
900         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
901         if (tty->ops->stop)
902                 (tty->ops->stop)(tty);
903 }
904
905 EXPORT_SYMBOL(stop_tty);
906
907 /**
908  *      start_tty       -       propagate flow control
909  *      @tty: tty to start
910  *
911  *      Start a tty that has been stopped if at all possible. Perform
912  *      any necessary wakeups and propagate the TIOCPKT status. If this
913  *      is the tty was previous stopped and is being started then the
914  *      driver start method is invoked and the line discipline woken.
915  *
916  *      Locking:
917  *              ctrl_lock
918  */
919
920 void start_tty(struct tty_struct *tty)
921 {
922         unsigned long flags;
923         spin_lock_irqsave(&tty->ctrl_lock, flags);
924         if (!tty->stopped || tty->flow_stopped) {
925                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
926                 return;
927         }
928         tty->stopped = 0;
929         if (tty->link && tty->link->packet) {
930                 tty->ctrl_status &= ~TIOCPKT_STOP;
931                 tty->ctrl_status |= TIOCPKT_START;
932                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
933         }
934         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
935         if (tty->ops->start)
936                 (tty->ops->start)(tty);
937         /* If we have a running line discipline it may need kicking */
938         tty_wakeup(tty);
939 }
940
941 EXPORT_SYMBOL(start_tty);
942
943 /**
944  *      tty_read        -       read method for tty device files
945  *      @file: pointer to tty file
946  *      @buf: user buffer
947  *      @count: size of user buffer
948  *      @ppos: unused
949  *
950  *      Perform the read system call function on this terminal device. Checks
951  *      for hung up devices before calling the line discipline method.
952  *
953  *      Locking:
954  *              Locks the line discipline internally while needed. Multiple
955  *      read calls may be outstanding in parallel.
956  */
957
958 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
959                         loff_t *ppos)
960 {
961         int i;
962         struct inode *inode = file->f_path.dentry->d_inode;
963         struct tty_struct *tty = file_tty(file);
964         struct tty_ldisc *ld;
965
966         if (tty_paranoia_check(tty, inode, "tty_read"))
967                 return -EIO;
968         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
969                 return -EIO;
970
971         /* We want to wait for the line discipline to sort out in this
972            situation */
973         ld = tty_ldisc_ref_wait(tty);
974         if (ld->ops->read)
975                 i = (ld->ops->read)(tty, file, buf, count);
976         else
977                 i = -EIO;
978         tty_ldisc_deref(ld);
979         if (i > 0)
980                 inode->i_atime = current_fs_time(inode->i_sb);
981         return i;
982 }
983
984 void tty_write_unlock(struct tty_struct *tty)
985         __releases(&tty->atomic_write_lock)
986 {
987         mutex_unlock(&tty->atomic_write_lock);
988         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
989 }
990
991 int tty_write_lock(struct tty_struct *tty, int ndelay)
992         __acquires(&tty->atomic_write_lock)
993 {
994         if (!mutex_trylock(&tty->atomic_write_lock)) {
995                 if (ndelay)
996                         return -EAGAIN;
997                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
998                         return -ERESTARTSYS;
999         }
1000         return 0;
1001 }
1002
1003 /*
1004  * Split writes up in sane blocksizes to avoid
1005  * denial-of-service type attacks
1006  */
1007 static inline ssize_t do_tty_write(
1008         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1009         struct tty_struct *tty,
1010         struct file *file,
1011         const char __user *buf,
1012         size_t count)
1013 {
1014         ssize_t ret, written = 0;
1015         unsigned int chunk;
1016
1017         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1018         if (ret < 0)
1019                 return ret;
1020
1021         /*
1022          * We chunk up writes into a temporary buffer. This
1023          * simplifies low-level drivers immensely, since they
1024          * don't have locking issues and user mode accesses.
1025          *
1026          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1027          * big chunk-size..
1028          *
1029          * The default chunk-size is 2kB, because the NTTY
1030          * layer has problems with bigger chunks. It will
1031          * claim to be able to handle more characters than
1032          * it actually does.
1033          *
1034          * FIXME: This can probably go away now except that 64K chunks
1035          * are too likely to fail unless switched to vmalloc...
1036          */
1037         chunk = 2048;
1038         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1039                 chunk = 65536;
1040         if (count < chunk)
1041                 chunk = count;
1042
1043         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1044         if (tty->write_cnt < chunk) {
1045                 unsigned char *buf_chunk;
1046
1047                 if (chunk < 1024)
1048                         chunk = 1024;
1049
1050                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1051                 if (!buf_chunk) {
1052                         ret = -ENOMEM;
1053                         goto out;
1054                 }
1055                 kfree(tty->write_buf);
1056                 tty->write_cnt = chunk;
1057                 tty->write_buf = buf_chunk;
1058         }
1059
1060         /* Do the write .. */
1061         for (;;) {
1062                 size_t size = count;
1063                 if (size > chunk)
1064                         size = chunk;
1065                 ret = -EFAULT;
1066                 if (copy_from_user(tty->write_buf, buf, size))
1067                         break;
1068                 ret = write(tty, file, tty->write_buf, size);
1069                 if (ret <= 0)
1070                         break;
1071                 written += ret;
1072                 buf += ret;
1073                 count -= ret;
1074                 if (!count)
1075                         break;
1076                 ret = -ERESTARTSYS;
1077                 if (signal_pending(current))
1078                         break;
1079                 cond_resched();
1080         }
1081         if (written) {
1082                 struct inode *inode = file->f_path.dentry->d_inode;
1083                 inode->i_mtime = current_fs_time(inode->i_sb);
1084                 ret = written;
1085         }
1086 out:
1087         tty_write_unlock(tty);
1088         return ret;
1089 }
1090
1091 /**
1092  * tty_write_message - write a message to a certain tty, not just the console.
1093  * @tty: the destination tty_struct
1094  * @msg: the message to write
1095  *
1096  * This is used for messages that need to be redirected to a specific tty.
1097  * We don't put it into the syslog queue right now maybe in the future if
1098  * really needed.
1099  *
1100  * We must still hold the BTM and test the CLOSING flag for the moment.
1101  */
1102
1103 void tty_write_message(struct tty_struct *tty, char *msg)
1104 {
1105         if (tty) {
1106                 mutex_lock(&tty->atomic_write_lock);
1107                 tty_lock();
1108                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1109                         tty_unlock();
1110                         tty->ops->write(tty, msg, strlen(msg));
1111                 } else
1112                         tty_unlock();
1113                 tty_write_unlock(tty);
1114         }
1115         return;
1116 }
1117
1118
1119 /**
1120  *      tty_write               -       write method for tty device file
1121  *      @file: tty file pointer
1122  *      @buf: user data to write
1123  *      @count: bytes to write
1124  *      @ppos: unused
1125  *
1126  *      Write data to a tty device via the line discipline.
1127  *
1128  *      Locking:
1129  *              Locks the line discipline as required
1130  *              Writes to the tty driver are serialized by the atomic_write_lock
1131  *      and are then processed in chunks to the device. The line discipline
1132  *      write method will not be invoked in parallel for each device.
1133  */
1134
1135 static ssize_t tty_write(struct file *file, const char __user *buf,
1136                                                 size_t count, loff_t *ppos)
1137 {
1138         struct inode *inode = file->f_path.dentry->d_inode;
1139         struct tty_struct *tty = file_tty(file);
1140         struct tty_ldisc *ld;
1141         ssize_t ret;
1142
1143         if (tty_paranoia_check(tty, inode, "tty_write"))
1144                 return -EIO;
1145         if (!tty || !tty->ops->write ||
1146                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1147                         return -EIO;
1148         /* Short term debug to catch buggy drivers */
1149         if (tty->ops->write_room == NULL)
1150                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1151                         tty->driver->name);
1152         ld = tty_ldisc_ref_wait(tty);
1153         if (!ld->ops->write)
1154                 ret = -EIO;
1155         else
1156                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1157         tty_ldisc_deref(ld);
1158         return ret;
1159 }
1160
1161 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1162                                                 size_t count, loff_t *ppos)
1163 {
1164         struct file *p = NULL;
1165
1166         spin_lock(&redirect_lock);
1167         if (redirect) {
1168                 get_file(redirect);
1169                 p = redirect;
1170         }
1171         spin_unlock(&redirect_lock);
1172
1173         if (p) {
1174                 ssize_t res;
1175                 res = vfs_write(p, buf, count, &p->f_pos);
1176                 fput(p);
1177                 return res;
1178         }
1179         return tty_write(file, buf, count, ppos);
1180 }
1181
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184 /**
1185  *      pty_line_name   -       generate name for a pty
1186  *      @driver: the tty driver in use
1187  *      @index: the minor number
1188  *      @p: output buffer of at least 6 bytes
1189  *
1190  *      Generate a name from a driver reference and write it to the output
1191  *      buffer.
1192  *
1193  *      Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197         int i = index + driver->name_base;
1198         /* ->name is initialized to "ttyp", but "tty" is expected */
1199         sprintf(p, "%s%c%x",
1200                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201                 ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203
1204 /**
1205  *      tty_line_name   -       generate name for a tty
1206  *      @driver: the tty driver in use
1207  *      @index: the minor number
1208  *      @p: output buffer of at least 7 bytes
1209  *
1210  *      Generate a name from a driver reference and write it to the output
1211  *      buffer.
1212  *
1213  *      Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1218 }
1219
1220 /**
1221  *      tty_driver_lookup_tty() - find an existing tty, if any
1222  *      @driver: the driver for the tty
1223  *      @idx:    the minor number
1224  *
1225  *      Return the tty, if found or ERR_PTR() otherwise.
1226  *
1227  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1228  *      be held until the 'fast-open' is also done. Will change once we
1229  *      have refcounting in the driver and per driver locking
1230  */
1231 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1232                 struct inode *inode, int idx)
1233 {
1234         struct tty_struct *tty;
1235
1236         if (driver->ops->lookup)
1237                 return driver->ops->lookup(driver, inode, idx);
1238
1239         tty = driver->ttys[idx];
1240         return tty;
1241 }
1242
1243 /**
1244  *      tty_init_termios        -  helper for termios setup
1245  *      @tty: the tty to set up
1246  *
1247  *      Initialise the termios structures for this tty. Thus runs under
1248  *      the tty_mutex currently so we can be relaxed about ordering.
1249  */
1250
1251 int tty_init_termios(struct tty_struct *tty)
1252 {
1253         struct ktermios *tp;
1254         int idx = tty->index;
1255
1256         tp = tty->driver->termios[idx];
1257         if (tp == NULL) {
1258                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1259                 if (tp == NULL)
1260                         return -ENOMEM;
1261                 memcpy(tp, &tty->driver->init_termios,
1262                                                 sizeof(struct ktermios));
1263                 tty->driver->termios[idx] = tp;
1264         }
1265         tty->termios = tp;
1266         tty->termios_locked = tp + 1;
1267
1268         /* Compatibility until drivers always set this */
1269         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1270         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1271         return 0;
1272 }
1273 EXPORT_SYMBOL_GPL(tty_init_termios);
1274
1275 /**
1276  *      tty_driver_install_tty() - install a tty entry in the driver
1277  *      @driver: the driver for the tty
1278  *      @tty: the tty
1279  *
1280  *      Install a tty object into the driver tables. The tty->index field
1281  *      will be set by the time this is called. This method is responsible
1282  *      for ensuring any need additional structures are allocated and
1283  *      configured.
1284  *
1285  *      Locking: tty_mutex for now
1286  */
1287 static int tty_driver_install_tty(struct tty_driver *driver,
1288                                                 struct tty_struct *tty)
1289 {
1290         int idx = tty->index;
1291         int ret;
1292
1293         if (driver->ops->install) {
1294                 ret = driver->ops->install(driver, tty);
1295                 return ret;
1296         }
1297
1298         if (tty_init_termios(tty) == 0) {
1299                 tty_driver_kref_get(driver);
1300                 tty->count++;
1301                 driver->ttys[idx] = tty;
1302                 return 0;
1303         }
1304         return -ENOMEM;
1305 }
1306
1307 /**
1308  *      tty_driver_remove_tty() - remove a tty from the driver tables
1309  *      @driver: the driver for the tty
1310  *      @idx:    the minor number
1311  *
1312  *      Remvoe a tty object from the driver tables. The tty->index field
1313  *      will be set by the time this is called.
1314  *
1315  *      Locking: tty_mutex for now
1316  */
1317 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1318 {
1319         if (driver->ops->remove)
1320                 driver->ops->remove(driver, tty);
1321         else
1322                 driver->ttys[tty->index] = NULL;
1323 }
1324
1325 /*
1326  *      tty_reopen()    - fast re-open of an open tty
1327  *      @tty    - the tty to open
1328  *
1329  *      Return 0 on success, -errno on error.
1330  *
1331  *      Locking: tty_mutex must be held from the time the tty was found
1332  *               till this open completes.
1333  */
1334 static int tty_reopen(struct tty_struct *tty)
1335 {
1336         struct tty_driver *driver = tty->driver;
1337
1338         if (test_bit(TTY_CLOSING, &tty->flags) ||
1339                         test_bit(TTY_HUPPING, &tty->flags) ||
1340                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1341                 return -EIO;
1342
1343         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1344             driver->subtype == PTY_TYPE_MASTER) {
1345                 /*
1346                  * special case for PTY masters: only one open permitted,
1347                  * and the slave side open count is incremented as well.
1348                  */
1349                 if (tty->count)
1350                         return -EIO;
1351
1352                 tty->link->count++;
1353         }
1354         tty->count++;
1355         tty->driver = driver; /* N.B. why do this every time?? */
1356
1357         mutex_lock(&tty->ldisc_mutex);
1358         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1359         mutex_unlock(&tty->ldisc_mutex);
1360
1361         return 0;
1362 }
1363
1364 /**
1365  *      tty_init_dev            -       initialise a tty device
1366  *      @driver: tty driver we are opening a device on
1367  *      @idx: device index
1368  *      @ret_tty: returned tty structure
1369  *      @first_ok: ok to open a new device (used by ptmx)
1370  *
1371  *      Prepare a tty device. This may not be a "new" clean device but
1372  *      could also be an active device. The pty drivers require special
1373  *      handling because of this.
1374  *
1375  *      Locking:
1376  *              The function is called under the tty_mutex, which
1377  *      protects us from the tty struct or driver itself going away.
1378  *
1379  *      On exit the tty device has the line discipline attached and
1380  *      a reference count of 1. If a pair was created for pty/tty use
1381  *      and the other was a pty master then it too has a reference count of 1.
1382  *
1383  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1384  * failed open.  The new code protects the open with a mutex, so it's
1385  * really quite straightforward.  The mutex locking can probably be
1386  * relaxed for the (most common) case of reopening a tty.
1387  */
1388
1389 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1390                                                                 int first_ok)
1391 {
1392         struct tty_struct *tty;
1393         int retval;
1394
1395         /* Check if pty master is being opened multiple times */
1396         if (driver->subtype == PTY_TYPE_MASTER &&
1397                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1398                 return ERR_PTR(-EIO);
1399         }
1400
1401         /*
1402          * First time open is complex, especially for PTY devices.
1403          * This code guarantees that either everything succeeds and the
1404          * TTY is ready for operation, or else the table slots are vacated
1405          * and the allocated memory released.  (Except that the termios
1406          * and locked termios may be retained.)
1407          */
1408
1409         if (!try_module_get(driver->owner))
1410                 return ERR_PTR(-ENODEV);
1411
1412         tty = alloc_tty_struct();
1413         if (!tty) {
1414                 retval = -ENOMEM;
1415                 goto err_module_put;
1416         }
1417         initialize_tty_struct(tty, driver, idx);
1418
1419         retval = tty_driver_install_tty(driver, tty);
1420         if (retval < 0)
1421                 goto err_deinit_tty;
1422
1423         /*
1424          * Structures all installed ... call the ldisc open routines.
1425          * If we fail here just call release_tty to clean up.  No need
1426          * to decrement the use counts, as release_tty doesn't care.
1427          */
1428         retval = tty_ldisc_setup(tty, tty->link);
1429         if (retval)
1430                 goto err_release_tty;
1431         return tty;
1432
1433 err_deinit_tty:
1434         deinitialize_tty_struct(tty);
1435         free_tty_struct(tty);
1436 err_module_put:
1437         module_put(driver->owner);
1438         return ERR_PTR(retval);
1439
1440         /* call the tty release_tty routine to clean out this slot */
1441 err_release_tty:
1442         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1443                                  "clearing slot %d\n", idx);
1444         release_tty(tty, idx);
1445         return ERR_PTR(retval);
1446 }
1447
1448 void tty_free_termios(struct tty_struct *tty)
1449 {
1450         struct ktermios *tp;
1451         int idx = tty->index;
1452         /* Kill this flag and push into drivers for locking etc */
1453         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1454                 /* FIXME: Locking on ->termios array */
1455                 tp = tty->termios;
1456                 tty->driver->termios[idx] = NULL;
1457                 kfree(tp);
1458         }
1459 }
1460 EXPORT_SYMBOL(tty_free_termios);
1461
1462 void tty_shutdown(struct tty_struct *tty)
1463 {
1464         tty_driver_remove_tty(tty->driver, tty);
1465         tty_free_termios(tty);
1466 }
1467 EXPORT_SYMBOL(tty_shutdown);
1468
1469 /**
1470  *      release_one_tty         -       release tty structure memory
1471  *      @kref: kref of tty we are obliterating
1472  *
1473  *      Releases memory associated with a tty structure, and clears out the
1474  *      driver table slots. This function is called when a device is no longer
1475  *      in use. It also gets called when setup of a device fails.
1476  *
1477  *      Locking:
1478  *              tty_mutex - sometimes only
1479  *              takes the file list lock internally when working on the list
1480  *      of ttys that the driver keeps.
1481  *
1482  *      This method gets called from a work queue so that the driver private
1483  *      cleanup ops can sleep (needed for USB at least)
1484  */
1485 static void release_one_tty(struct work_struct *work)
1486 {
1487         struct tty_struct *tty =
1488                 container_of(work, struct tty_struct, hangup_work);
1489         struct tty_driver *driver = tty->driver;
1490
1491         if (tty->ops->cleanup)
1492                 tty->ops->cleanup(tty);
1493
1494         tty->magic = 0;
1495         tty_driver_kref_put(driver);
1496         module_put(driver->owner);
1497
1498         spin_lock(&tty_files_lock);
1499         list_del_init(&tty->tty_files);
1500         spin_unlock(&tty_files_lock);
1501
1502         put_pid(tty->pgrp);
1503         put_pid(tty->session);
1504         free_tty_struct(tty);
1505 }
1506
1507 static void queue_release_one_tty(struct kref *kref)
1508 {
1509         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1510
1511         if (tty->ops->shutdown)
1512                 tty->ops->shutdown(tty);
1513         else
1514                 tty_shutdown(tty);
1515
1516         /* The hangup queue is now free so we can reuse it rather than
1517            waste a chunk of memory for each port */
1518         INIT_WORK(&tty->hangup_work, release_one_tty);
1519         schedule_work(&tty->hangup_work);
1520 }
1521
1522 /**
1523  *      tty_kref_put            -       release a tty kref
1524  *      @tty: tty device
1525  *
1526  *      Release a reference to a tty device and if need be let the kref
1527  *      layer destruct the object for us
1528  */
1529
1530 void tty_kref_put(struct tty_struct *tty)
1531 {
1532         if (tty)
1533                 kref_put(&tty->kref, queue_release_one_tty);
1534 }
1535 EXPORT_SYMBOL(tty_kref_put);
1536
1537 /**
1538  *      release_tty             -       release tty structure memory
1539  *
1540  *      Release both @tty and a possible linked partner (think pty pair),
1541  *      and decrement the refcount of the backing module.
1542  *
1543  *      Locking:
1544  *              tty_mutex - sometimes only
1545  *              takes the file list lock internally when working on the list
1546  *      of ttys that the driver keeps.
1547  *              FIXME: should we require tty_mutex is held here ??
1548  *
1549  */
1550 static void release_tty(struct tty_struct *tty, int idx)
1551 {
1552         /* This should always be true but check for the moment */
1553         WARN_ON(tty->index != idx);
1554
1555         if (tty->link)
1556                 tty_kref_put(tty->link);
1557         tty_kref_put(tty);
1558 }
1559
1560 /**
1561  *      tty_release             -       vfs callback for close
1562  *      @inode: inode of tty
1563  *      @filp: file pointer for handle to tty
1564  *
1565  *      Called the last time each file handle is closed that references
1566  *      this tty. There may however be several such references.
1567  *
1568  *      Locking:
1569  *              Takes bkl. See tty_release_dev
1570  *
1571  * Even releasing the tty structures is a tricky business.. We have
1572  * to be very careful that the structures are all released at the
1573  * same time, as interrupts might otherwise get the wrong pointers.
1574  *
1575  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1576  * lead to double frees or releasing memory still in use.
1577  */
1578
1579 int tty_release(struct inode *inode, struct file *filp)
1580 {
1581         struct tty_struct *tty = file_tty(filp);
1582         struct tty_struct *o_tty;
1583         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1584         int     devpts;
1585         int     idx;
1586         char    buf[64];
1587
1588         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1589                 return 0;
1590
1591         tty_lock();
1592         check_tty_count(tty, "tty_release_dev");
1593
1594         __tty_fasync(-1, filp, 0);
1595
1596         idx = tty->index;
1597         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1598                       tty->driver->subtype == PTY_TYPE_MASTER);
1599         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1600         o_tty = tty->link;
1601
1602 #ifdef TTY_PARANOIA_CHECK
1603         if (idx < 0 || idx >= tty->driver->num) {
1604                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1605                                   "free (%s)\n", tty->name);
1606                 tty_unlock();
1607                 return 0;
1608         }
1609         if (!devpts) {
1610                 if (tty != tty->driver->ttys[idx]) {
1611                         tty_unlock();
1612                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1613                                "for (%s)\n", idx, tty->name);
1614                         return 0;
1615                 }
1616                 if (tty->termios != tty->driver->termios[idx]) {
1617                         tty_unlock();
1618                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1619                                "for (%s)\n",
1620                                idx, tty->name);
1621                         return 0;
1622                 }
1623         }
1624 #endif
1625
1626 #ifdef TTY_DEBUG_HANGUP
1627         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1628                tty_name(tty, buf), tty->count);
1629 #endif
1630
1631 #ifdef TTY_PARANOIA_CHECK
1632         if (tty->driver->other &&
1633              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1634                 if (o_tty != tty->driver->other->ttys[idx]) {
1635                         tty_unlock();
1636                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1637                                           "not o_tty for (%s)\n",
1638                                idx, tty->name);
1639                         return 0 ;
1640                 }
1641                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1642                         tty_unlock();
1643                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1644                                           "not o_termios for (%s)\n",
1645                                idx, tty->name);
1646                         return 0;
1647                 }
1648                 if (o_tty->link != tty) {
1649                         tty_unlock();
1650                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1651                         return 0;
1652                 }
1653         }
1654 #endif
1655         if (tty->ops->close)
1656                 tty->ops->close(tty, filp);
1657
1658         tty_unlock();
1659         /*
1660          * Sanity check: if tty->count is going to zero, there shouldn't be
1661          * any waiters on tty->read_wait or tty->write_wait.  We test the
1662          * wait queues and kick everyone out _before_ actually starting to
1663          * close.  This ensures that we won't block while releasing the tty
1664          * structure.
1665          *
1666          * The test for the o_tty closing is necessary, since the master and
1667          * slave sides may close in any order.  If the slave side closes out
1668          * first, its count will be one, since the master side holds an open.
1669          * Thus this test wouldn't be triggered at the time the slave closes,
1670          * so we do it now.
1671          *
1672          * Note that it's possible for the tty to be opened again while we're
1673          * flushing out waiters.  By recalculating the closing flags before
1674          * each iteration we avoid any problems.
1675          */
1676         while (1) {
1677                 /* Guard against races with tty->count changes elsewhere and
1678                    opens on /dev/tty */
1679
1680                 mutex_lock(&tty_mutex);
1681                 tty_lock();
1682                 tty_closing = tty->count <= 1;
1683                 o_tty_closing = o_tty &&
1684                         (o_tty->count <= (pty_master ? 1 : 0));
1685                 do_sleep = 0;
1686
1687                 if (tty_closing) {
1688                         if (waitqueue_active(&tty->read_wait)) {
1689                                 wake_up_poll(&tty->read_wait, POLLIN);
1690                                 do_sleep++;
1691                         }
1692                         if (waitqueue_active(&tty->write_wait)) {
1693                                 wake_up_poll(&tty->write_wait, POLLOUT);
1694                                 do_sleep++;
1695                         }
1696                 }
1697                 if (o_tty_closing) {
1698                         if (waitqueue_active(&o_tty->read_wait)) {
1699                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1700                                 do_sleep++;
1701                         }
1702                         if (waitqueue_active(&o_tty->write_wait)) {
1703                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1704                                 do_sleep++;
1705                         }
1706                 }
1707                 if (!do_sleep)
1708                         break;
1709
1710                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1711                                     "active!\n", tty_name(tty, buf));
1712                 tty_unlock();
1713                 mutex_unlock(&tty_mutex);
1714                 schedule();
1715         }
1716
1717         /*
1718          * The closing flags are now consistent with the open counts on
1719          * both sides, and we've completed the last operation that could
1720          * block, so it's safe to proceed with closing.
1721          */
1722         if (pty_master) {
1723                 if (--o_tty->count < 0) {
1724                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1725                                             "(%d) for %s\n",
1726                                o_tty->count, tty_name(o_tty, buf));
1727                         o_tty->count = 0;
1728                 }
1729         }
1730         if (--tty->count < 0) {
1731                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1732                        tty->count, tty_name(tty, buf));
1733                 tty->count = 0;
1734         }
1735
1736         /*
1737          * We've decremented tty->count, so we need to remove this file
1738          * descriptor off the tty->tty_files list; this serves two
1739          * purposes:
1740          *  - check_tty_count sees the correct number of file descriptors
1741          *    associated with this tty.
1742          *  - do_tty_hangup no longer sees this file descriptor as
1743          *    something that needs to be handled for hangups.
1744          */
1745         tty_del_file(filp);
1746
1747         /*
1748          * Perform some housekeeping before deciding whether to return.
1749          *
1750          * Set the TTY_CLOSING flag if this was the last open.  In the
1751          * case of a pty we may have to wait around for the other side
1752          * to close, and TTY_CLOSING makes sure we can't be reopened.
1753          */
1754         if (tty_closing)
1755                 set_bit(TTY_CLOSING, &tty->flags);
1756         if (o_tty_closing)
1757                 set_bit(TTY_CLOSING, &o_tty->flags);
1758
1759         /*
1760          * If _either_ side is closing, make sure there aren't any
1761          * processes that still think tty or o_tty is their controlling
1762          * tty.
1763          */
1764         if (tty_closing || o_tty_closing) {
1765                 read_lock(&tasklist_lock);
1766                 session_clear_tty(tty->session);
1767                 if (o_tty)
1768                         session_clear_tty(o_tty->session);
1769                 read_unlock(&tasklist_lock);
1770         }
1771
1772         mutex_unlock(&tty_mutex);
1773
1774         /* check whether both sides are closing ... */
1775         if (!tty_closing || (o_tty && !o_tty_closing)) {
1776                 tty_unlock();
1777                 return 0;
1778         }
1779
1780 #ifdef TTY_DEBUG_HANGUP
1781         printk(KERN_DEBUG "freeing tty structure...");
1782 #endif
1783         /*
1784          * Ask the line discipline code to release its structures
1785          */
1786         tty_ldisc_release(tty, o_tty);
1787         /*
1788          * The release_tty function takes care of the details of clearing
1789          * the slots and preserving the termios structure.
1790          */
1791         release_tty(tty, idx);
1792
1793         /* Make this pty number available for reallocation */
1794         if (devpts)
1795                 devpts_kill_index(inode, idx);
1796         tty_unlock();
1797         return 0;
1798 }
1799
1800 /**
1801  *      tty_open                -       open a tty device
1802  *      @inode: inode of device file
1803  *      @filp: file pointer to tty
1804  *
1805  *      tty_open and tty_release keep up the tty count that contains the
1806  *      number of opens done on a tty. We cannot use the inode-count, as
1807  *      different inodes might point to the same tty.
1808  *
1809  *      Open-counting is needed for pty masters, as well as for keeping
1810  *      track of serial lines: DTR is dropped when the last close happens.
1811  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1812  *
1813  *      The termios state of a pty is reset on first open so that
1814  *      settings don't persist across reuse.
1815  *
1816  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1817  *               tty->count should protect the rest.
1818  *               ->siglock protects ->signal/->sighand
1819  */
1820
1821 static int tty_open(struct inode *inode, struct file *filp)
1822 {
1823         struct tty_struct *tty = NULL;
1824         int noctty, retval;
1825         struct tty_driver *driver;
1826         int index;
1827         dev_t device = inode->i_rdev;
1828         unsigned saved_flags = filp->f_flags;
1829
1830         nonseekable_open(inode, filp);
1831
1832 retry_open:
1833         retval = tty_alloc_file(filp);
1834         if (retval)
1835                 return -ENOMEM;
1836
1837         noctty = filp->f_flags & O_NOCTTY;
1838         index  = -1;
1839         retval = 0;
1840
1841         mutex_lock(&tty_mutex);
1842         tty_lock();
1843
1844         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1845                 tty = get_current_tty();
1846                 if (!tty) {
1847                         tty_unlock();
1848                         mutex_unlock(&tty_mutex);
1849                         tty_free_file(filp);
1850                         return -ENXIO;
1851                 }
1852                 driver = tty_driver_kref_get(tty->driver);
1853                 index = tty->index;
1854                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1855                 /* noctty = 1; */
1856                 /* FIXME: Should we take a driver reference ? */
1857                 tty_kref_put(tty);
1858                 goto got_driver;
1859         }
1860 #ifdef CONFIG_VT
1861         if (device == MKDEV(TTY_MAJOR, 0)) {
1862                 extern struct tty_driver *console_driver;
1863                 driver = tty_driver_kref_get(console_driver);
1864                 index = fg_console;
1865                 noctty = 1;
1866                 goto got_driver;
1867         }
1868 #endif
1869         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1870                 struct tty_driver *console_driver = console_device(&index);
1871                 if (console_driver) {
1872                         driver = tty_driver_kref_get(console_driver);
1873                         if (driver) {
1874                                 /* Don't let /dev/console block */
1875                                 filp->f_flags |= O_NONBLOCK;
1876                                 noctty = 1;
1877                                 goto got_driver;
1878                         }
1879                 }
1880                 tty_unlock();
1881                 mutex_unlock(&tty_mutex);
1882                 tty_free_file(filp);
1883                 return -ENODEV;
1884         }
1885
1886         driver = get_tty_driver(device, &index);
1887         if (!driver) {
1888                 tty_unlock();
1889                 mutex_unlock(&tty_mutex);
1890                 tty_free_file(filp);
1891                 return -ENODEV;
1892         }
1893 got_driver:
1894         if (!tty) {
1895                 /* check whether we're reopening an existing tty */
1896                 tty = tty_driver_lookup_tty(driver, inode, index);
1897
1898                 if (IS_ERR(tty)) {
1899                         tty_unlock();
1900                         mutex_unlock(&tty_mutex);
1901                         tty_driver_kref_put(driver);
1902                         tty_free_file(filp);
1903                         return PTR_ERR(tty);
1904                 }
1905         }
1906
1907         if (tty) {
1908                 retval = tty_reopen(tty);
1909                 if (retval)
1910                         tty = ERR_PTR(retval);
1911         } else
1912                 tty = tty_init_dev(driver, index, 0);
1913
1914         mutex_unlock(&tty_mutex);
1915         tty_driver_kref_put(driver);
1916         if (IS_ERR(tty)) {
1917                 tty_unlock();
1918                 tty_free_file(filp);
1919                 return PTR_ERR(tty);
1920         }
1921
1922         tty_add_file(tty, filp);
1923
1924         check_tty_count(tty, "tty_open");
1925         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1926             tty->driver->subtype == PTY_TYPE_MASTER)
1927                 noctty = 1;
1928 #ifdef TTY_DEBUG_HANGUP
1929         printk(KERN_DEBUG "opening %s...", tty->name);
1930 #endif
1931         if (tty->ops->open)
1932                 retval = tty->ops->open(tty, filp);
1933         else
1934                 retval = -ENODEV;
1935         filp->f_flags = saved_flags;
1936
1937         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1938                                                 !capable(CAP_SYS_ADMIN))
1939                 retval = -EBUSY;
1940
1941         if (retval) {
1942 #ifdef TTY_DEBUG_HANGUP
1943                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1944                        tty->name);
1945 #endif
1946                 tty_unlock(); /* need to call tty_release without BTM */
1947                 tty_release(inode, filp);
1948                 if (retval != -ERESTARTSYS)
1949                         return retval;
1950
1951                 if (signal_pending(current))
1952                         return retval;
1953
1954                 schedule();
1955                 /*
1956                  * Need to reset f_op in case a hangup happened.
1957                  */
1958                 tty_lock();
1959                 if (filp->f_op == &hung_up_tty_fops)
1960                         filp->f_op = &tty_fops;
1961                 tty_unlock();
1962                 goto retry_open;
1963         }
1964         tty_unlock();
1965
1966
1967         mutex_lock(&tty_mutex);
1968         tty_lock();
1969         spin_lock_irq(&current->sighand->siglock);
1970         if (!noctty &&
1971             current->signal->leader &&
1972             !current->signal->tty &&
1973             tty->session == NULL)
1974                 __proc_set_tty(current, tty);
1975         spin_unlock_irq(&current->sighand->siglock);
1976         tty_unlock();
1977         mutex_unlock(&tty_mutex);
1978         return 0;
1979 }
1980
1981
1982
1983 /**
1984  *      tty_poll        -       check tty status
1985  *      @filp: file being polled
1986  *      @wait: poll wait structures to update
1987  *
1988  *      Call the line discipline polling method to obtain the poll
1989  *      status of the device.
1990  *
1991  *      Locking: locks called line discipline but ldisc poll method
1992  *      may be re-entered freely by other callers.
1993  */
1994
1995 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1996 {
1997         struct tty_struct *tty = file_tty(filp);
1998         struct tty_ldisc *ld;
1999         int ret = 0;
2000
2001         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2002                 return 0;
2003
2004         ld = tty_ldisc_ref_wait(tty);
2005         if (ld->ops->poll)
2006                 ret = (ld->ops->poll)(tty, filp, wait);
2007         tty_ldisc_deref(ld);
2008         return ret;
2009 }
2010
2011 static int __tty_fasync(int fd, struct file *filp, int on)
2012 {
2013         struct tty_struct *tty = file_tty(filp);
2014         unsigned long flags;
2015         int retval = 0;
2016
2017         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2018                 goto out;
2019
2020         retval = fasync_helper(fd, filp, on, &tty->fasync);
2021         if (retval <= 0)
2022                 goto out;
2023
2024         if (on) {
2025                 enum pid_type type;
2026                 struct pid *pid;
2027                 if (!waitqueue_active(&tty->read_wait))
2028                         tty->minimum_to_wake = 1;
2029                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2030                 if (tty->pgrp) {
2031                         pid = tty->pgrp;
2032                         type = PIDTYPE_PGID;
2033                 } else {
2034                         pid = task_pid(current);
2035                         type = PIDTYPE_PID;
2036                 }
2037                 get_pid(pid);
2038                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2039                 retval = __f_setown(filp, pid, type, 0);
2040                 put_pid(pid);
2041                 if (retval)
2042                         goto out;
2043         } else {
2044                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2045                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2046         }
2047         retval = 0;
2048 out:
2049         return retval;
2050 }
2051
2052 static int tty_fasync(int fd, struct file *filp, int on)
2053 {
2054         int retval;
2055         tty_lock();
2056         retval = __tty_fasync(fd, filp, on);
2057         tty_unlock();
2058         return retval;
2059 }
2060
2061 /**
2062  *      tiocsti                 -       fake input character
2063  *      @tty: tty to fake input into
2064  *      @p: pointer to character
2065  *
2066  *      Fake input to a tty device. Does the necessary locking and
2067  *      input management.
2068  *
2069  *      FIXME: does not honour flow control ??
2070  *
2071  *      Locking:
2072  *              Called functions take tty_ldisc_lock
2073  *              current->signal->tty check is safe without locks
2074  *
2075  *      FIXME: may race normal receive processing
2076  */
2077
2078 static int tiocsti(struct tty_struct *tty, char __user *p)
2079 {
2080         char ch, mbz = 0;
2081         struct tty_ldisc *ld;
2082
2083         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2084                 return -EPERM;
2085         if (get_user(ch, p))
2086                 return -EFAULT;
2087         tty_audit_tiocsti(tty, ch);
2088         ld = tty_ldisc_ref_wait(tty);
2089         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2090         tty_ldisc_deref(ld);
2091         return 0;
2092 }
2093
2094 /**
2095  *      tiocgwinsz              -       implement window query ioctl
2096  *      @tty; tty
2097  *      @arg: user buffer for result
2098  *
2099  *      Copies the kernel idea of the window size into the user buffer.
2100  *
2101  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2102  *              is consistent.
2103  */
2104
2105 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2106 {
2107         int err;
2108
2109         mutex_lock(&tty->termios_mutex);
2110         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2111         mutex_unlock(&tty->termios_mutex);
2112
2113         return err ? -EFAULT: 0;
2114 }
2115
2116 /**
2117  *      tty_do_resize           -       resize event
2118  *      @tty: tty being resized
2119  *      @rows: rows (character)
2120  *      @cols: cols (character)
2121  *
2122  *      Update the termios variables and send the necessary signals to
2123  *      peform a terminal resize correctly
2124  */
2125
2126 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2127 {
2128         struct pid *pgrp;
2129         unsigned long flags;
2130
2131         /* Lock the tty */
2132         mutex_lock(&tty->termios_mutex);
2133         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2134                 goto done;
2135         /* Get the PID values and reference them so we can
2136            avoid holding the tty ctrl lock while sending signals */
2137         spin_lock_irqsave(&tty->ctrl_lock, flags);
2138         pgrp = get_pid(tty->pgrp);
2139         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2140
2141         if (pgrp)
2142                 kill_pgrp(pgrp, SIGWINCH, 1);
2143         put_pid(pgrp);
2144
2145         tty->winsize = *ws;
2146 done:
2147         mutex_unlock(&tty->termios_mutex);
2148         return 0;
2149 }
2150
2151 /**
2152  *      tiocswinsz              -       implement window size set ioctl
2153  *      @tty; tty side of tty
2154  *      @arg: user buffer for result
2155  *
2156  *      Copies the user idea of the window size to the kernel. Traditionally
2157  *      this is just advisory information but for the Linux console it
2158  *      actually has driver level meaning and triggers a VC resize.
2159  *
2160  *      Locking:
2161  *              Driver dependent. The default do_resize method takes the
2162  *      tty termios mutex and ctrl_lock. The console takes its own lock
2163  *      then calls into the default method.
2164  */
2165
2166 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2167 {
2168         struct winsize tmp_ws;
2169         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2170                 return -EFAULT;
2171
2172         if (tty->ops->resize)
2173                 return tty->ops->resize(tty, &tmp_ws);
2174         else
2175                 return tty_do_resize(tty, &tmp_ws);
2176 }
2177
2178 /**
2179  *      tioccons        -       allow admin to move logical console
2180  *      @file: the file to become console
2181  *
2182  *      Allow the administrator to move the redirected console device
2183  *
2184  *      Locking: uses redirect_lock to guard the redirect information
2185  */
2186
2187 static int tioccons(struct file *file)
2188 {
2189         if (!capable(CAP_SYS_ADMIN))
2190                 return -EPERM;
2191         if (file->f_op->write == redirected_tty_write) {
2192                 struct file *f;
2193                 spin_lock(&redirect_lock);
2194                 f = redirect;
2195                 redirect = NULL;
2196                 spin_unlock(&redirect_lock);
2197                 if (f)
2198                         fput(f);
2199                 return 0;
2200         }
2201         spin_lock(&redirect_lock);
2202         if (redirect) {
2203                 spin_unlock(&redirect_lock);
2204                 return -EBUSY;
2205         }
2206         get_file(file);
2207         redirect = file;
2208         spin_unlock(&redirect_lock);
2209         return 0;
2210 }
2211
2212 /**
2213  *      fionbio         -       non blocking ioctl
2214  *      @file: file to set blocking value
2215  *      @p: user parameter
2216  *
2217  *      Historical tty interfaces had a blocking control ioctl before
2218  *      the generic functionality existed. This piece of history is preserved
2219  *      in the expected tty API of posix OS's.
2220  *
2221  *      Locking: none, the open file handle ensures it won't go away.
2222  */
2223
2224 static int fionbio(struct file *file, int __user *p)
2225 {
2226         int nonblock;
2227
2228         if (get_user(nonblock, p))
2229                 return -EFAULT;
2230
2231         spin_lock(&file->f_lock);
2232         if (nonblock)
2233                 file->f_flags |= O_NONBLOCK;
2234         else
2235                 file->f_flags &= ~O_NONBLOCK;
2236         spin_unlock(&file->f_lock);
2237         return 0;
2238 }
2239
2240 /**
2241  *      tiocsctty       -       set controlling tty
2242  *      @tty: tty structure
2243  *      @arg: user argument
2244  *
2245  *      This ioctl is used to manage job control. It permits a session
2246  *      leader to set this tty as the controlling tty for the session.
2247  *
2248  *      Locking:
2249  *              Takes tty_mutex() to protect tty instance
2250  *              Takes tasklist_lock internally to walk sessions
2251  *              Takes ->siglock() when updating signal->tty
2252  */
2253
2254 static int tiocsctty(struct tty_struct *tty, int arg)
2255 {
2256         int ret = 0;
2257         if (current->signal->leader && (task_session(current) == tty->session))
2258                 return ret;
2259
2260         mutex_lock(&tty_mutex);
2261         /*
2262          * The process must be a session leader and
2263          * not have a controlling tty already.
2264          */
2265         if (!current->signal->leader || current->signal->tty) {
2266                 ret = -EPERM;
2267                 goto unlock;
2268         }
2269
2270         if (tty->session) {
2271                 /*
2272                  * This tty is already the controlling
2273                  * tty for another session group!
2274                  */
2275                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2276                         /*
2277                          * Steal it away
2278                          */
2279                         read_lock(&tasklist_lock);
2280                         session_clear_tty(tty->session);
2281                         read_unlock(&tasklist_lock);
2282                 } else {
2283                         ret = -EPERM;
2284                         goto unlock;
2285                 }
2286         }
2287         proc_set_tty(current, tty);
2288 unlock:
2289         mutex_unlock(&tty_mutex);
2290         return ret;
2291 }
2292
2293 /**
2294  *      tty_get_pgrp    -       return a ref counted pgrp pid
2295  *      @tty: tty to read
2296  *
2297  *      Returns a refcounted instance of the pid struct for the process
2298  *      group controlling the tty.
2299  */
2300
2301 struct pid *tty_get_pgrp(struct tty_struct *tty)
2302 {
2303         unsigned long flags;
2304         struct pid *pgrp;
2305
2306         spin_lock_irqsave(&tty->ctrl_lock, flags);
2307         pgrp = get_pid(tty->pgrp);
2308         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2309
2310         return pgrp;
2311 }
2312 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2313
2314 /**
2315  *      tiocgpgrp               -       get process group
2316  *      @tty: tty passed by user
2317  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2318  *      @p: returned pid
2319  *
2320  *      Obtain the process group of the tty. If there is no process group
2321  *      return an error.
2322  *
2323  *      Locking: none. Reference to current->signal->tty is safe.
2324  */
2325
2326 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2327 {
2328         struct pid *pid;
2329         int ret;
2330         /*
2331          * (tty == real_tty) is a cheap way of
2332          * testing if the tty is NOT a master pty.
2333          */
2334         if (tty == real_tty && current->signal->tty != real_tty)
2335                 return -ENOTTY;
2336         pid = tty_get_pgrp(real_tty);
2337         ret =  put_user(pid_vnr(pid), p);
2338         put_pid(pid);
2339         return ret;
2340 }
2341
2342 /**
2343  *      tiocspgrp               -       attempt to set process group
2344  *      @tty: tty passed by user
2345  *      @real_tty: tty side device matching tty passed by user
2346  *      @p: pid pointer
2347  *
2348  *      Set the process group of the tty to the session passed. Only
2349  *      permitted where the tty session is our session.
2350  *
2351  *      Locking: RCU, ctrl lock
2352  */
2353
2354 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2355 {
2356         struct pid *pgrp;
2357         pid_t pgrp_nr;
2358         int retval = tty_check_change(real_tty);
2359         unsigned long flags;
2360
2361         if (retval == -EIO)
2362                 return -ENOTTY;
2363         if (retval)
2364                 return retval;
2365         if (!current->signal->tty ||
2366             (current->signal->tty != real_tty) ||
2367             (real_tty->session != task_session(current)))
2368                 return -ENOTTY;
2369         if (get_user(pgrp_nr, p))
2370                 return -EFAULT;
2371         if (pgrp_nr < 0)
2372                 return -EINVAL;
2373         rcu_read_lock();
2374         pgrp = find_vpid(pgrp_nr);
2375         retval = -ESRCH;
2376         if (!pgrp)
2377                 goto out_unlock;
2378         retval = -EPERM;
2379         if (session_of_pgrp(pgrp) != task_session(current))
2380                 goto out_unlock;
2381         retval = 0;
2382         spin_lock_irqsave(&tty->ctrl_lock, flags);
2383         put_pid(real_tty->pgrp);
2384         real_tty->pgrp = get_pid(pgrp);
2385         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2386 out_unlock:
2387         rcu_read_unlock();
2388         return retval;
2389 }
2390
2391 /**
2392  *      tiocgsid                -       get session id
2393  *      @tty: tty passed by user
2394  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2395  *      @p: pointer to returned session id
2396  *
2397  *      Obtain the session id of the tty. If there is no session
2398  *      return an error.
2399  *
2400  *      Locking: none. Reference to current->signal->tty is safe.
2401  */
2402
2403 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2404 {
2405         /*
2406          * (tty == real_tty) is a cheap way of
2407          * testing if the tty is NOT a master pty.
2408         */
2409         if (tty == real_tty && current->signal->tty != real_tty)
2410                 return -ENOTTY;
2411         if (!real_tty->session)
2412                 return -ENOTTY;
2413         return put_user(pid_vnr(real_tty->session), p);
2414 }
2415
2416 /**
2417  *      tiocsetd        -       set line discipline
2418  *      @tty: tty device
2419  *      @p: pointer to user data
2420  *
2421  *      Set the line discipline according to user request.
2422  *
2423  *      Locking: see tty_set_ldisc, this function is just a helper
2424  */
2425
2426 static int tiocsetd(struct tty_struct *tty, int __user *p)
2427 {
2428         int ldisc;
2429         int ret;
2430
2431         if (get_user(ldisc, p))
2432                 return -EFAULT;
2433
2434         ret = tty_set_ldisc(tty, ldisc);
2435
2436         return ret;
2437 }
2438
2439 /**
2440  *      send_break      -       performed time break
2441  *      @tty: device to break on
2442  *      @duration: timeout in mS
2443  *
2444  *      Perform a timed break on hardware that lacks its own driver level
2445  *      timed break functionality.
2446  *
2447  *      Locking:
2448  *              atomic_write_lock serializes
2449  *
2450  */
2451
2452 static int send_break(struct tty_struct *tty, unsigned int duration)
2453 {
2454         int retval;
2455
2456         if (tty->ops->break_ctl == NULL)
2457                 return 0;
2458
2459         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2460                 retval = tty->ops->break_ctl(tty, duration);
2461         else {
2462                 /* Do the work ourselves */
2463                 if (tty_write_lock(tty, 0) < 0)
2464                         return -EINTR;
2465                 retval = tty->ops->break_ctl(tty, -1);
2466                 if (retval)
2467                         goto out;
2468                 if (!signal_pending(current))
2469                         msleep_interruptible(duration);
2470                 retval = tty->ops->break_ctl(tty, 0);
2471 out:
2472                 tty_write_unlock(tty);
2473                 if (signal_pending(current))
2474                         retval = -EINTR;
2475         }
2476         return retval;
2477 }
2478
2479 /**
2480  *      tty_tiocmget            -       get modem status
2481  *      @tty: tty device
2482  *      @file: user file pointer
2483  *      @p: pointer to result
2484  *
2485  *      Obtain the modem status bits from the tty driver if the feature
2486  *      is supported. Return -EINVAL if it is not available.
2487  *
2488  *      Locking: none (up to the driver)
2489  */
2490
2491 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2492 {
2493         int retval = -EINVAL;
2494
2495         if (tty->ops->tiocmget) {
2496                 retval = tty->ops->tiocmget(tty);
2497
2498                 if (retval >= 0)
2499                         retval = put_user(retval, p);
2500         }
2501         return retval;
2502 }
2503
2504 /**
2505  *      tty_tiocmset            -       set modem status
2506  *      @tty: tty device
2507  *      @cmd: command - clear bits, set bits or set all
2508  *      @p: pointer to desired bits
2509  *
2510  *      Set the modem status bits from the tty driver if the feature
2511  *      is supported. Return -EINVAL if it is not available.
2512  *
2513  *      Locking: none (up to the driver)
2514  */
2515
2516 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2517              unsigned __user *p)
2518 {
2519         int retval;
2520         unsigned int set, clear, val;
2521
2522         if (tty->ops->tiocmset == NULL)
2523                 return -EINVAL;
2524
2525         retval = get_user(val, p);
2526         if (retval)
2527                 return retval;
2528         set = clear = 0;
2529         switch (cmd) {
2530         case TIOCMBIS:
2531                 set = val;
2532                 break;
2533         case TIOCMBIC:
2534                 clear = val;
2535                 break;
2536         case TIOCMSET:
2537                 set = val;
2538                 clear = ~val;
2539                 break;
2540         }
2541         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2542         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2543         return tty->ops->tiocmset(tty, set, clear);
2544 }
2545
2546 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2547 {
2548         int retval = -EINVAL;
2549         struct serial_icounter_struct icount;
2550         memset(&icount, 0, sizeof(icount));
2551         if (tty->ops->get_icount)
2552                 retval = tty->ops->get_icount(tty, &icount);
2553         if (retval != 0)
2554                 return retval;
2555         if (copy_to_user(arg, &icount, sizeof(icount)))
2556                 return -EFAULT;
2557         return 0;
2558 }
2559
2560 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2561 {
2562         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2563             tty->driver->subtype == PTY_TYPE_MASTER)
2564                 tty = tty->link;
2565         return tty;
2566 }
2567 EXPORT_SYMBOL(tty_pair_get_tty);
2568
2569 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2570 {
2571         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2572             tty->driver->subtype == PTY_TYPE_MASTER)
2573             return tty;
2574         return tty->link;
2575 }
2576 EXPORT_SYMBOL(tty_pair_get_pty);
2577
2578 /*
2579  * Split this up, as gcc can choke on it otherwise..
2580  */
2581 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2582 {
2583         struct tty_struct *tty = file_tty(file);
2584         struct tty_struct *real_tty;
2585         void __user *p = (void __user *)arg;
2586         int retval;
2587         struct tty_ldisc *ld;
2588         struct inode *inode = file->f_dentry->d_inode;
2589
2590         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2591                 return -EINVAL;
2592
2593         real_tty = tty_pair_get_tty(tty);
2594
2595         /*
2596          * Factor out some common prep work
2597          */
2598         switch (cmd) {
2599         case TIOCSETD:
2600         case TIOCSBRK:
2601         case TIOCCBRK:
2602         case TCSBRK:
2603         case TCSBRKP:
2604                 retval = tty_check_change(tty);
2605                 if (retval)
2606                         return retval;
2607                 if (cmd != TIOCCBRK) {
2608                         tty_wait_until_sent(tty, 0);
2609                         if (signal_pending(current))
2610                                 return -EINTR;
2611                 }
2612                 break;
2613         }
2614
2615         /*
2616          *      Now do the stuff.
2617          */
2618         switch (cmd) {
2619         case TIOCSTI:
2620                 return tiocsti(tty, p);
2621         case TIOCGWINSZ:
2622                 return tiocgwinsz(real_tty, p);
2623         case TIOCSWINSZ:
2624                 return tiocswinsz(real_tty, p);
2625         case TIOCCONS:
2626                 return real_tty != tty ? -EINVAL : tioccons(file);
2627         case FIONBIO:
2628                 return fionbio(file, p);
2629         case TIOCEXCL:
2630                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2631                 return 0;
2632         case TIOCNXCL:
2633                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2634                 return 0;
2635         case TIOCNOTTY:
2636                 if (current->signal->tty != tty)
2637                         return -ENOTTY;
2638                 no_tty();
2639                 return 0;
2640         case TIOCSCTTY:
2641                 return tiocsctty(tty, arg);
2642         case TIOCGPGRP:
2643                 return tiocgpgrp(tty, real_tty, p);
2644         case TIOCSPGRP:
2645                 return tiocspgrp(tty, real_tty, p);
2646         case TIOCGSID:
2647                 return tiocgsid(tty, real_tty, p);
2648         case TIOCGETD:
2649                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2650         case TIOCSETD:
2651                 return tiocsetd(tty, p);
2652         case TIOCVHANGUP:
2653                 if (!capable(CAP_SYS_ADMIN))
2654                         return -EPERM;
2655                 tty_vhangup(tty);
2656                 return 0;
2657         case TIOCGDEV:
2658         {
2659                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2660                 return put_user(ret, (unsigned int __user *)p);
2661         }
2662         /*
2663          * Break handling
2664          */
2665         case TIOCSBRK:  /* Turn break on, unconditionally */
2666                 if (tty->ops->break_ctl)
2667                         return tty->ops->break_ctl(tty, -1);
2668                 return 0;
2669         case TIOCCBRK:  /* Turn break off, unconditionally */
2670                 if (tty->ops->break_ctl)
2671                         return tty->ops->break_ctl(tty, 0);
2672                 return 0;
2673         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2674                 /* non-zero arg means wait for all output data
2675                  * to be sent (performed above) but don't send break.
2676                  * This is used by the tcdrain() termios function.
2677                  */
2678                 if (!arg)
2679                         return send_break(tty, 250);
2680                 return 0;
2681         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2682                 return send_break(tty, arg ? arg*100 : 250);
2683
2684         case TIOCMGET:
2685                 return tty_tiocmget(tty, p);
2686         case TIOCMSET:
2687         case TIOCMBIC:
2688         case TIOCMBIS:
2689                 return tty_tiocmset(tty, cmd, p);
2690         case TIOCGICOUNT:
2691                 retval = tty_tiocgicount(tty, p);
2692                 /* For the moment allow fall through to the old method */
2693                 if (retval != -EINVAL)
2694                         return retval;
2695                 break;
2696         case TCFLSH:
2697                 switch (arg) {
2698                 case TCIFLUSH:
2699                 case TCIOFLUSH:
2700                 /* flush tty buffer and allow ldisc to process ioctl */
2701                         tty_buffer_flush(tty);
2702                         break;
2703                 }
2704                 break;
2705         }
2706         if (tty->ops->ioctl) {
2707                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2708                 if (retval != -ENOIOCTLCMD)
2709                         return retval;
2710         }
2711         ld = tty_ldisc_ref_wait(tty);
2712         retval = -EINVAL;
2713         if (ld->ops->ioctl) {
2714                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2715                 if (retval == -ENOIOCTLCMD)
2716                         retval = -EINVAL;
2717         }
2718         tty_ldisc_deref(ld);
2719         return retval;
2720 }
2721
2722 #ifdef CONFIG_COMPAT
2723 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2724                                 unsigned long arg)
2725 {
2726         struct inode *inode = file->f_dentry->d_inode;
2727         struct tty_struct *tty = file_tty(file);
2728         struct tty_ldisc *ld;
2729         int retval = -ENOIOCTLCMD;
2730
2731         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2732                 return -EINVAL;
2733
2734         if (tty->ops->compat_ioctl) {
2735                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2736                 if (retval != -ENOIOCTLCMD)
2737                         return retval;
2738         }
2739
2740         ld = tty_ldisc_ref_wait(tty);
2741         if (ld->ops->compat_ioctl)
2742                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2743         else
2744                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2745         tty_ldisc_deref(ld);
2746
2747         return retval;
2748 }
2749 #endif
2750
2751 /*
2752  * This implements the "Secure Attention Key" ---  the idea is to
2753  * prevent trojan horses by killing all processes associated with this
2754  * tty when the user hits the "Secure Attention Key".  Required for
2755  * super-paranoid applications --- see the Orange Book for more details.
2756  *
2757  * This code could be nicer; ideally it should send a HUP, wait a few
2758  * seconds, then send a INT, and then a KILL signal.  But you then
2759  * have to coordinate with the init process, since all processes associated
2760  * with the current tty must be dead before the new getty is allowed
2761  * to spawn.
2762  *
2763  * Now, if it would be correct ;-/ The current code has a nasty hole -
2764  * it doesn't catch files in flight. We may send the descriptor to ourselves
2765  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2766  *
2767  * Nasty bug: do_SAK is being called in interrupt context.  This can
2768  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2769  */
2770 void __do_SAK(struct tty_struct *tty)
2771 {
2772 #ifdef TTY_SOFT_SAK
2773         tty_hangup(tty);
2774 #else
2775         struct task_struct *g, *p;
2776         struct pid *session;
2777         int             i;
2778         struct file     *filp;
2779         struct fdtable *fdt;
2780
2781         if (!tty)
2782                 return;
2783         session = tty->session;
2784
2785         tty_ldisc_flush(tty);
2786
2787         tty_driver_flush_buffer(tty);
2788
2789         read_lock(&tasklist_lock);
2790         /* Kill the entire session */
2791         do_each_pid_task(session, PIDTYPE_SID, p) {
2792                 printk(KERN_NOTICE "SAK: killed process %d"
2793                         " (%s): task_session(p)==tty->session\n",
2794                         task_pid_nr(p), p->comm);
2795                 send_sig(SIGKILL, p, 1);
2796         } while_each_pid_task(session, PIDTYPE_SID, p);
2797         /* Now kill any processes that happen to have the
2798          * tty open.
2799          */
2800         do_each_thread(g, p) {
2801                 if (p->signal->tty == tty) {
2802                         printk(KERN_NOTICE "SAK: killed process %d"
2803                             " (%s): task_session(p)==tty->session\n",
2804                             task_pid_nr(p), p->comm);
2805                         send_sig(SIGKILL, p, 1);
2806                         continue;
2807                 }
2808                 task_lock(p);
2809                 if (p->files) {
2810                         /*
2811                          * We don't take a ref to the file, so we must
2812                          * hold ->file_lock instead.
2813                          */
2814                         spin_lock(&p->files->file_lock);
2815                         fdt = files_fdtable(p->files);
2816                         for (i = 0; i < fdt->max_fds; i++) {
2817                                 filp = fcheck_files(p->files, i);
2818                                 if (!filp)
2819                                         continue;
2820                                 if (filp->f_op->read == tty_read &&
2821                                     file_tty(filp) == tty) {
2822                                         printk(KERN_NOTICE "SAK: killed process %d"
2823                                             " (%s): fd#%d opened to the tty\n",
2824                                             task_pid_nr(p), p->comm, i);
2825                                         force_sig(SIGKILL, p);
2826                                         break;
2827                                 }
2828                         }
2829                         spin_unlock(&p->files->file_lock);
2830                 }
2831                 task_unlock(p);
2832         } while_each_thread(g, p);
2833         read_unlock(&tasklist_lock);
2834 #endif
2835 }
2836
2837 static void do_SAK_work(struct work_struct *work)
2838 {
2839         struct tty_struct *tty =
2840                 container_of(work, struct tty_struct, SAK_work);
2841         __do_SAK(tty);
2842 }
2843
2844 /*
2845  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2846  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2847  * the values which we write to it will be identical to the values which it
2848  * already has. --akpm
2849  */
2850 void do_SAK(struct tty_struct *tty)
2851 {
2852         if (!tty)
2853                 return;
2854         schedule_work(&tty->SAK_work);
2855 }
2856
2857 EXPORT_SYMBOL(do_SAK);
2858
2859 static int dev_match_devt(struct device *dev, void *data)
2860 {
2861         dev_t *devt = data;
2862         return dev->devt == *devt;
2863 }
2864
2865 /* Must put_device() after it's unused! */
2866 static struct device *tty_get_device(struct tty_struct *tty)
2867 {
2868         dev_t devt = tty_devnum(tty);
2869         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2870 }
2871
2872
2873 /**
2874  *      initialize_tty_struct
2875  *      @tty: tty to initialize
2876  *
2877  *      This subroutine initializes a tty structure that has been newly
2878  *      allocated.
2879  *
2880  *      Locking: none - tty in question must not be exposed at this point
2881  */
2882
2883 void initialize_tty_struct(struct tty_struct *tty,
2884                 struct tty_driver *driver, int idx)
2885 {
2886         memset(tty, 0, sizeof(struct tty_struct));
2887         kref_init(&tty->kref);
2888         tty->magic = TTY_MAGIC;
2889         tty_ldisc_init(tty);
2890         tty->session = NULL;
2891         tty->pgrp = NULL;
2892         tty->overrun_time = jiffies;
2893         tty->buf.head = tty->buf.tail = NULL;
2894         tty_buffer_init(tty);
2895         mutex_init(&tty->termios_mutex);
2896         mutex_init(&tty->ldisc_mutex);
2897         init_waitqueue_head(&tty->write_wait);
2898         init_waitqueue_head(&tty->read_wait);
2899         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2900         mutex_init(&tty->atomic_read_lock);
2901         mutex_init(&tty->atomic_write_lock);
2902         mutex_init(&tty->output_lock);
2903         mutex_init(&tty->echo_lock);
2904         spin_lock_init(&tty->read_lock);
2905         spin_lock_init(&tty->ctrl_lock);
2906         INIT_LIST_HEAD(&tty->tty_files);
2907         INIT_WORK(&tty->SAK_work, do_SAK_work);
2908
2909         tty->driver = driver;
2910         tty->ops = driver->ops;
2911         tty->index = idx;
2912         tty_line_name(driver, idx, tty->name);
2913         tty->dev = tty_get_device(tty);
2914 }
2915
2916 /**
2917  *      deinitialize_tty_struct
2918  *      @tty: tty to deinitialize
2919  *
2920  *      This subroutine deinitializes a tty structure that has been newly
2921  *      allocated but tty_release cannot be called on that yet.
2922  *
2923  *      Locking: none - tty in question must not be exposed at this point
2924  */
2925 void deinitialize_tty_struct(struct tty_struct *tty)
2926 {
2927         tty_ldisc_deinit(tty);
2928 }
2929
2930 /**
2931  *      tty_put_char    -       write one character to a tty
2932  *      @tty: tty
2933  *      @ch: character
2934  *
2935  *      Write one byte to the tty using the provided put_char method
2936  *      if present. Returns the number of characters successfully output.
2937  *
2938  *      Note: the specific put_char operation in the driver layer may go
2939  *      away soon. Don't call it directly, use this method
2940  */
2941
2942 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2943 {
2944         if (tty->ops->put_char)
2945                 return tty->ops->put_char(tty, ch);
2946         return tty->ops->write(tty, &ch, 1);
2947 }
2948 EXPORT_SYMBOL_GPL(tty_put_char);
2949
2950 struct class *tty_class;
2951
2952 /**
2953  *      tty_register_device - register a tty device
2954  *      @driver: the tty driver that describes the tty device
2955  *      @index: the index in the tty driver for this tty device
2956  *      @device: a struct device that is associated with this tty device.
2957  *              This field is optional, if there is no known struct device
2958  *              for this tty device it can be set to NULL safely.
2959  *
2960  *      Returns a pointer to the struct device for this tty device
2961  *      (or ERR_PTR(-EFOO) on error).
2962  *
2963  *      This call is required to be made to register an individual tty device
2964  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2965  *      that bit is not set, this function should not be called by a tty
2966  *      driver.
2967  *
2968  *      Locking: ??
2969  */
2970
2971 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2972                                    struct device *device)
2973 {
2974         char name[64];
2975         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2976
2977         if (index >= driver->num) {
2978                 printk(KERN_ERR "Attempt to register invalid tty line number "
2979                        " (%d).\n", index);
2980                 return ERR_PTR(-EINVAL);
2981         }
2982
2983         if (driver->type == TTY_DRIVER_TYPE_PTY)
2984                 pty_line_name(driver, index, name);
2985         else
2986                 tty_line_name(driver, index, name);
2987
2988         return device_create(tty_class, device, dev, NULL, name);
2989 }
2990 EXPORT_SYMBOL(tty_register_device);
2991
2992 /**
2993  *      tty_unregister_device - unregister a tty device
2994  *      @driver: the tty driver that describes the tty device
2995  *      @index: the index in the tty driver for this tty device
2996  *
2997  *      If a tty device is registered with a call to tty_register_device() then
2998  *      this function must be called when the tty device is gone.
2999  *
3000  *      Locking: ??
3001  */
3002
3003 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3004 {
3005         device_destroy(tty_class,
3006                 MKDEV(driver->major, driver->minor_start) + index);
3007 }
3008 EXPORT_SYMBOL(tty_unregister_device);
3009
3010 struct tty_driver *alloc_tty_driver(int lines)
3011 {
3012         struct tty_driver *driver;
3013
3014         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3015         if (driver) {
3016                 kref_init(&driver->kref);
3017                 driver->magic = TTY_DRIVER_MAGIC;
3018                 driver->num = lines;
3019                 /* later we'll move allocation of tables here */
3020         }
3021         return driver;
3022 }
3023 EXPORT_SYMBOL(alloc_tty_driver);
3024
3025 static void destruct_tty_driver(struct kref *kref)
3026 {
3027         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3028         int i;
3029         struct ktermios *tp;
3030         void *p;
3031
3032         if (driver->flags & TTY_DRIVER_INSTALLED) {
3033                 /*
3034                  * Free the termios and termios_locked structures because
3035                  * we don't want to get memory leaks when modular tty
3036                  * drivers are removed from the kernel.
3037                  */
3038                 for (i = 0; i < driver->num; i++) {
3039                         tp = driver->termios[i];
3040                         if (tp) {
3041                                 driver->termios[i] = NULL;
3042                                 kfree(tp);
3043                         }
3044                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3045                                 tty_unregister_device(driver, i);
3046                 }
3047                 p = driver->ttys;
3048                 proc_tty_unregister_driver(driver);
3049                 driver->ttys = NULL;
3050                 driver->termios = NULL;
3051                 kfree(p);
3052                 cdev_del(&driver->cdev);
3053         }
3054         kfree(driver);
3055 }
3056
3057 void tty_driver_kref_put(struct tty_driver *driver)
3058 {
3059         kref_put(&driver->kref, destruct_tty_driver);
3060 }
3061 EXPORT_SYMBOL(tty_driver_kref_put);
3062
3063 void tty_set_operations(struct tty_driver *driver,
3064                         const struct tty_operations *op)
3065 {
3066         driver->ops = op;
3067 };
3068 EXPORT_SYMBOL(tty_set_operations);
3069
3070 void put_tty_driver(struct tty_driver *d)
3071 {
3072         tty_driver_kref_put(d);
3073 }
3074 EXPORT_SYMBOL(put_tty_driver);
3075
3076 /*
3077  * Called by a tty driver to register itself.
3078  */
3079 int tty_register_driver(struct tty_driver *driver)
3080 {
3081         int error;
3082         int i;
3083         dev_t dev;
3084         void **p = NULL;
3085         struct device *d;
3086
3087         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3088                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3089                 if (!p)
3090                         return -ENOMEM;
3091         }
3092
3093         if (!driver->major) {
3094                 error = alloc_chrdev_region(&dev, driver->minor_start,
3095                                                 driver->num, driver->name);
3096                 if (!error) {
3097                         driver->major = MAJOR(dev);
3098                         driver->minor_start = MINOR(dev);
3099                 }
3100         } else {
3101                 dev = MKDEV(driver->major, driver->minor_start);
3102                 error = register_chrdev_region(dev, driver->num, driver->name);
3103         }
3104         if (error < 0) {
3105                 kfree(p);
3106                 return error;
3107         }
3108
3109         if (p) {
3110                 driver->ttys = (struct tty_struct **)p;
3111                 driver->termios = (struct ktermios **)(p + driver->num);
3112         } else {
3113                 driver->ttys = NULL;
3114                 driver->termios = NULL;
3115         }
3116
3117         cdev_init(&driver->cdev, &tty_fops);
3118         driver->cdev.owner = driver->owner;
3119         error = cdev_add(&driver->cdev, dev, driver->num);
3120         if (error) {
3121                 unregister_chrdev_region(dev, driver->num);
3122                 driver->ttys = NULL;
3123                 driver->termios = NULL;
3124                 kfree(p);
3125                 return error;
3126         }
3127
3128         mutex_lock(&tty_mutex);
3129         list_add(&driver->tty_drivers, &tty_drivers);
3130         mutex_unlock(&tty_mutex);
3131
3132         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3133                 for (i = 0; i < driver->num; i++) {
3134                         d = tty_register_device(driver, i, NULL);
3135                         if (IS_ERR(d)) {
3136                                 error = PTR_ERR(d);
3137                                 goto err;
3138                         }
3139                 }
3140         }
3141         proc_tty_register_driver(driver);
3142         driver->flags |= TTY_DRIVER_INSTALLED;
3143         return 0;
3144
3145 err:
3146         for (i--; i >= 0; i--)
3147                 tty_unregister_device(driver, i);
3148
3149         mutex_lock(&tty_mutex);
3150         list_del(&driver->tty_drivers);
3151         mutex_unlock(&tty_mutex);
3152
3153         unregister_chrdev_region(dev, driver->num);
3154         driver->ttys = NULL;
3155         driver->termios = NULL;
3156         kfree(p);
3157         return error;
3158 }
3159
3160 EXPORT_SYMBOL(tty_register_driver);
3161
3162 /*
3163  * Called by a tty driver to unregister itself.
3164  */
3165 int tty_unregister_driver(struct tty_driver *driver)
3166 {
3167 #if 0
3168         /* FIXME */
3169         if (driver->refcount)
3170                 return -EBUSY;
3171 #endif
3172         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3173                                 driver->num);
3174         mutex_lock(&tty_mutex);
3175         list_del(&driver->tty_drivers);
3176         mutex_unlock(&tty_mutex);
3177         return 0;
3178 }
3179
3180 EXPORT_SYMBOL(tty_unregister_driver);
3181
3182 dev_t tty_devnum(struct tty_struct *tty)
3183 {
3184         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3185 }
3186 EXPORT_SYMBOL(tty_devnum);
3187
3188 void proc_clear_tty(struct task_struct *p)
3189 {
3190         unsigned long flags;
3191         struct tty_struct *tty;
3192         spin_lock_irqsave(&p->sighand->siglock, flags);
3193         tty = p->signal->tty;
3194         p->signal->tty = NULL;
3195         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3196         tty_kref_put(tty);
3197 }
3198
3199 /* Called under the sighand lock */
3200
3201 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3202 {
3203         if (tty) {
3204                 unsigned long flags;
3205                 /* We should not have a session or pgrp to put here but.... */
3206                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3207                 put_pid(tty->session);
3208                 put_pid(tty->pgrp);
3209                 tty->pgrp = get_pid(task_pgrp(tsk));
3210                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3211                 tty->session = get_pid(task_session(tsk));
3212                 if (tsk->signal->tty) {
3213                         printk(KERN_DEBUG "tty not NULL!!\n");
3214                         tty_kref_put(tsk->signal->tty);
3215                 }
3216         }
3217         put_pid(tsk->signal->tty_old_pgrp);
3218         tsk->signal->tty = tty_kref_get(tty);
3219         tsk->signal->tty_old_pgrp = NULL;
3220 }
3221
3222 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3223 {
3224         spin_lock_irq(&tsk->sighand->siglock);
3225         __proc_set_tty(tsk, tty);
3226         spin_unlock_irq(&tsk->sighand->siglock);
3227 }
3228
3229 struct tty_struct *get_current_tty(void)
3230 {
3231         struct tty_struct *tty;
3232         unsigned long flags;
3233
3234         spin_lock_irqsave(&current->sighand->siglock, flags);
3235         tty = tty_kref_get(current->signal->tty);
3236         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3237         return tty;
3238 }
3239 EXPORT_SYMBOL_GPL(get_current_tty);
3240
3241 void tty_default_fops(struct file_operations *fops)
3242 {
3243         *fops = tty_fops;
3244 }
3245
3246 /*
3247  * Initialize the console device. This is called *early*, so
3248  * we can't necessarily depend on lots of kernel help here.
3249  * Just do some early initializations, and do the complex setup
3250  * later.
3251  */
3252 void __init console_init(void)
3253 {
3254         initcall_t *call;
3255
3256         /* Setup the default TTY line discipline. */
3257         tty_ldisc_begin();
3258
3259         /*
3260          * set up the console device so that later boot sequences can
3261          * inform about problems etc..
3262          */
3263         call = __con_initcall_start;
3264         while (call < __con_initcall_end) {
3265                 (*call)();
3266                 call++;
3267         }
3268 }
3269
3270 static char *tty_devnode(struct device *dev, mode_t *mode)
3271 {
3272         if (!mode)
3273                 return NULL;
3274         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3275             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3276                 *mode = 0666;
3277         return NULL;
3278 }
3279
3280 static int __init tty_class_init(void)
3281 {
3282         tty_class = class_create(THIS_MODULE, "tty");
3283         if (IS_ERR(tty_class))
3284                 return PTR_ERR(tty_class);
3285         tty_class->devnode = tty_devnode;
3286         return 0;
3287 }
3288
3289 postcore_initcall(tty_class_init);
3290
3291 /* 3/2004 jmc: why do these devices exist? */
3292 static struct cdev tty_cdev, console_cdev;
3293
3294 static ssize_t show_cons_active(struct device *dev,
3295                                 struct device_attribute *attr, char *buf)
3296 {
3297         struct console *cs[16];
3298         int i = 0;
3299         struct console *c;
3300         ssize_t count = 0;
3301
3302         console_lock();
3303         for_each_console(c) {
3304                 if (!c->device)
3305                         continue;
3306                 if (!c->write)
3307                         continue;
3308                 if ((c->flags & CON_ENABLED) == 0)
3309                         continue;
3310                 cs[i++] = c;
3311                 if (i >= ARRAY_SIZE(cs))
3312                         break;
3313         }
3314         while (i--)
3315                 count += sprintf(buf + count, "%s%d%c",
3316                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3317         console_unlock();
3318
3319         return count;
3320 }
3321 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3322
3323 static struct device *consdev;
3324
3325 void console_sysfs_notify(void)
3326 {
3327         if (consdev)
3328                 sysfs_notify(&consdev->kobj, NULL, "active");
3329 }
3330
3331 /*
3332  * Ok, now we can initialize the rest of the tty devices and can count
3333  * on memory allocations, interrupts etc..
3334  */
3335 int __init tty_init(void)
3336 {
3337         cdev_init(&tty_cdev, &tty_fops);
3338         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3339             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3340                 panic("Couldn't register /dev/tty driver\n");
3341         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3342
3343         cdev_init(&console_cdev, &console_fops);
3344         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3345             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3346                 panic("Couldn't register /dev/console driver\n");
3347         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3348                               "console");
3349         if (IS_ERR(consdev))
3350                 consdev = NULL;
3351         else
3352                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3353
3354 #ifdef CONFIG_VT
3355         vty_init(&console_fops);
3356 #endif
3357         return 0;
3358 }
3359