Merge branches 'upstream-fixes' and 'magicmouse' into for-linus
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100 #include <asm/system.h>
101
102 #include <linux/kbd_kern.h>
103 #include <linux/vt_kern.h>
104 #include <linux/selection.h>
105
106 #include <linux/kmod.h>
107 #include <linux/nsproxy.h>
108
109 #undef TTY_DEBUG_HANGUP
110
111 #define TTY_PARANOIA_CHECK 1
112 #define CHECK_TTY_COUNT 1
113
114 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
115         .c_iflag = ICRNL | IXON,
116         .c_oflag = OPOST | ONLCR,
117         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
118         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
119                    ECHOCTL | ECHOKE | IEXTEN,
120         .c_cc = INIT_C_CC,
121         .c_ispeed = 38400,
122         .c_ospeed = 38400
123 };
124
125 EXPORT_SYMBOL(tty_std_termios);
126
127 /* This list gets poked at by procfs and various bits of boot up code. This
128    could do with some rationalisation such as pulling the tty proc function
129    into this file */
130
131 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
132
133 /* Mutex to protect creating and releasing a tty. This is shared with
134    vt.c for deeply disgusting hack reasons */
135 DEFINE_MUTEX(tty_mutex);
136 EXPORT_SYMBOL(tty_mutex);
137
138 /* Spinlock to protect the tty->tty_files list */
139 DEFINE_SPINLOCK(tty_files_lock);
140
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144                                                         size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150                                 unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159
160 /**
161  *      alloc_tty_struct        -       allocate a tty object
162  *
163  *      Return a new empty tty structure. The data fields have not
164  *      been initialized in any way but has been zeroed
165  *
166  *      Locking: none
167  */
168
169 struct tty_struct *alloc_tty_struct(void)
170 {
171         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 }
173
174 /**
175  *      free_tty_struct         -       free a disused tty
176  *      @tty: tty struct to free
177  *
178  *      Free the write buffers, tty queue and tty memory itself.
179  *
180  *      Locking: none. Must be called after tty is definitely unused
181  */
182
183 void free_tty_struct(struct tty_struct *tty)
184 {
185         if (tty->dev)
186                 put_device(tty->dev);
187         kfree(tty->write_buf);
188         tty_buffer_free_all(tty);
189         kfree(tty);
190 }
191
192 static inline struct tty_struct *file_tty(struct file *file)
193 {
194         return ((struct tty_file_private *)file->private_data)->tty;
195 }
196
197 /* Associate a new file with the tty structure */
198 int tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         priv->tty = tty;
207         priv->file = file;
208         file->private_data = priv;
209
210         spin_lock(&tty_files_lock);
211         list_add(&priv->list, &tty->tty_files);
212         spin_unlock(&tty_files_lock);
213
214         return 0;
215 }
216
217 /* Delete file from its tty */
218 void tty_del_file(struct file *file)
219 {
220         struct tty_file_private *priv = file->private_data;
221
222         spin_lock(&tty_files_lock);
223         list_del(&priv->list);
224         spin_unlock(&tty_files_lock);
225         file->private_data = NULL;
226         kfree(priv);
227 }
228
229
230 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
231
232 /**
233  *      tty_name        -       return tty naming
234  *      @tty: tty structure
235  *      @buf: buffer for output
236  *
237  *      Convert a tty structure into a name. The name reflects the kernel
238  *      naming policy and if udev is in use may not reflect user space
239  *
240  *      Locking: none
241  */
242
243 char *tty_name(struct tty_struct *tty, char *buf)
244 {
245         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246                 strcpy(buf, "NULL tty");
247         else
248                 strcpy(buf, tty->name);
249         return buf;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255                               const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258         if (!tty) {
259                 printk(KERN_WARNING
260                         "null TTY for (%d:%d) in %s\n",
261                         imajor(inode), iminor(inode), routine);
262                 return 1;
263         }
264         if (tty->magic != TTY_MAGIC) {
265                 printk(KERN_WARNING
266                         "bad magic number for tty struct (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270 #endif
271         return 0;
272 }
273
274 static int check_tty_count(struct tty_struct *tty, const char *routine)
275 {
276 #ifdef CHECK_TTY_COUNT
277         struct list_head *p;
278         int count = 0;
279
280         spin_lock(&tty_files_lock);
281         list_for_each(p, &tty->tty_files) {
282                 count++;
283         }
284         spin_unlock(&tty_files_lock);
285         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
286             tty->driver->subtype == PTY_TYPE_SLAVE &&
287             tty->link && tty->link->count)
288                 count++;
289         if (tty->count != count) {
290                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
291                                     "!= #fd's(%d) in %s\n",
292                        tty->name, tty->count, count, routine);
293                 return count;
294         }
295 #endif
296         return 0;
297 }
298
299 /**
300  *      get_tty_driver          -       find device of a tty
301  *      @dev_t: device identifier
302  *      @index: returns the index of the tty
303  *
304  *      This routine returns a tty driver structure, given a device number
305  *      and also passes back the index number.
306  *
307  *      Locking: caller must hold tty_mutex
308  */
309
310 static struct tty_driver *get_tty_driver(dev_t device, int *index)
311 {
312         struct tty_driver *p;
313
314         list_for_each_entry(p, &tty_drivers, tty_drivers) {
315                 dev_t base = MKDEV(p->major, p->minor_start);
316                 if (device < base || device >= base + p->num)
317                         continue;
318                 *index = device - base;
319                 return tty_driver_kref_get(p);
320         }
321         return NULL;
322 }
323
324 #ifdef CONFIG_CONSOLE_POLL
325
326 /**
327  *      tty_find_polling_driver -       find device of a polled tty
328  *      @name: name string to match
329  *      @line: pointer to resulting tty line nr
330  *
331  *      This routine returns a tty driver structure, given a name
332  *      and the condition that the tty driver is capable of polled
333  *      operation.
334  */
335 struct tty_driver *tty_find_polling_driver(char *name, int *line)
336 {
337         struct tty_driver *p, *res = NULL;
338         int tty_line = 0;
339         int len;
340         char *str, *stp;
341
342         for (str = name; *str; str++)
343                 if ((*str >= '0' && *str <= '9') || *str == ',')
344                         break;
345         if (!*str)
346                 return NULL;
347
348         len = str - name;
349         tty_line = simple_strtoul(str, &str, 10);
350
351         mutex_lock(&tty_mutex);
352         /* Search through the tty devices to look for a match */
353         list_for_each_entry(p, &tty_drivers, tty_drivers) {
354                 if (strncmp(name, p->name, len) != 0)
355                         continue;
356                 stp = str;
357                 if (*stp == ',')
358                         stp++;
359                 if (*stp == '\0')
360                         stp = NULL;
361
362                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
363                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
364                         res = tty_driver_kref_get(p);
365                         *line = tty_line;
366                         break;
367                 }
368         }
369         mutex_unlock(&tty_mutex);
370
371         return res;
372 }
373 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
374 #endif
375
376 /**
377  *      tty_check_change        -       check for POSIX terminal changes
378  *      @tty: tty to check
379  *
380  *      If we try to write to, or set the state of, a terminal and we're
381  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
382  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
383  *
384  *      Locking: ctrl_lock
385  */
386
387 int tty_check_change(struct tty_struct *tty)
388 {
389         unsigned long flags;
390         int ret = 0;
391
392         if (current->signal->tty != tty)
393                 return 0;
394
395         spin_lock_irqsave(&tty->ctrl_lock, flags);
396
397         if (!tty->pgrp) {
398                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
399                 goto out_unlock;
400         }
401         if (task_pgrp(current) == tty->pgrp)
402                 goto out_unlock;
403         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
404         if (is_ignored(SIGTTOU))
405                 goto out;
406         if (is_current_pgrp_orphaned()) {
407                 ret = -EIO;
408                 goto out;
409         }
410         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
411         set_thread_flag(TIF_SIGPENDING);
412         ret = -ERESTARTSYS;
413 out:
414         return ret;
415 out_unlock:
416         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
417         return ret;
418 }
419
420 EXPORT_SYMBOL(tty_check_change);
421
422 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
423                                 size_t count, loff_t *ppos)
424 {
425         return 0;
426 }
427
428 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
429                                  size_t count, loff_t *ppos)
430 {
431         return -EIO;
432 }
433
434 /* No kernel lock held - none needed ;) */
435 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
436 {
437         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
438 }
439
440 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441                 unsigned long arg)
442 {
443         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444 }
445
446 static long hung_up_tty_compat_ioctl(struct file *file,
447                                      unsigned int cmd, unsigned long arg)
448 {
449         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
452 static const struct file_operations tty_fops = {
453         .llseek         = no_llseek,
454         .read           = tty_read,
455         .write          = tty_write,
456         .poll           = tty_poll,
457         .unlocked_ioctl = tty_ioctl,
458         .compat_ioctl   = tty_compat_ioctl,
459         .open           = tty_open,
460         .release        = tty_release,
461         .fasync         = tty_fasync,
462 };
463
464 static const struct file_operations console_fops = {
465         .llseek         = no_llseek,
466         .read           = tty_read,
467         .write          = redirected_tty_write,
468         .poll           = tty_poll,
469         .unlocked_ioctl = tty_ioctl,
470         .compat_ioctl   = tty_compat_ioctl,
471         .open           = tty_open,
472         .release        = tty_release,
473         .fasync         = tty_fasync,
474 };
475
476 static const struct file_operations hung_up_tty_fops = {
477         .llseek         = no_llseek,
478         .read           = hung_up_tty_read,
479         .write          = hung_up_tty_write,
480         .poll           = hung_up_tty_poll,
481         .unlocked_ioctl = hung_up_tty_ioctl,
482         .compat_ioctl   = hung_up_tty_compat_ioctl,
483         .release        = tty_release,
484 };
485
486 static DEFINE_SPINLOCK(redirect_lock);
487 static struct file *redirect;
488
489 /**
490  *      tty_wakeup      -       request more data
491  *      @tty: terminal
492  *
493  *      Internal and external helper for wakeups of tty. This function
494  *      informs the line discipline if present that the driver is ready
495  *      to receive more output data.
496  */
497
498 void tty_wakeup(struct tty_struct *tty)
499 {
500         struct tty_ldisc *ld;
501
502         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
503                 ld = tty_ldisc_ref(tty);
504                 if (ld) {
505                         if (ld->ops->write_wakeup)
506                                 ld->ops->write_wakeup(tty);
507                         tty_ldisc_deref(ld);
508                 }
509         }
510         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
511 }
512
513 EXPORT_SYMBOL_GPL(tty_wakeup);
514
515 /**
516  *      __tty_hangup            -       actual handler for hangup events
517  *      @work: tty device
518  *
519  *      This can be called by the "eventd" kernel thread.  That is process
520  *      synchronous but doesn't hold any locks, so we need to make sure we
521  *      have the appropriate locks for what we're doing.
522  *
523  *      The hangup event clears any pending redirections onto the hung up
524  *      device. It ensures future writes will error and it does the needed
525  *      line discipline hangup and signal delivery. The tty object itself
526  *      remains intact.
527  *
528  *      Locking:
529  *              BTM
530  *                redirect lock for undoing redirection
531  *                file list lock for manipulating list of ttys
532  *                tty_ldisc_lock from called functions
533  *                termios_mutex resetting termios data
534  *                tasklist_lock to walk task list for hangup event
535  *                  ->siglock to protect ->signal/->sighand
536  */
537 void __tty_hangup(struct tty_struct *tty)
538 {
539         struct file *cons_filp = NULL;
540         struct file *filp, *f = NULL;
541         struct task_struct *p;
542         struct tty_file_private *priv;
543         int    closecount = 0, n;
544         unsigned long flags;
545         int refs = 0;
546
547         if (!tty)
548                 return;
549
550
551         spin_lock(&redirect_lock);
552         if (redirect && file_tty(redirect) == tty) {
553                 f = redirect;
554                 redirect = NULL;
555         }
556         spin_unlock(&redirect_lock);
557
558         tty_lock();
559
560         /* some functions below drop BTM, so we need this bit */
561         set_bit(TTY_HUPPING, &tty->flags);
562
563         /* inuse_filps is protected by the single tty lock,
564            this really needs to change if we want to flush the
565            workqueue with the lock held */
566         check_tty_count(tty, "tty_hangup");
567
568         spin_lock(&tty_files_lock);
569         /* This breaks for file handles being sent over AF_UNIX sockets ? */
570         list_for_each_entry(priv, &tty->tty_files, list) {
571                 filp = priv->file;
572                 if (filp->f_op->write == redirected_tty_write)
573                         cons_filp = filp;
574                 if (filp->f_op->write != tty_write)
575                         continue;
576                 closecount++;
577                 __tty_fasync(-1, filp, 0);      /* can't block */
578                 filp->f_op = &hung_up_tty_fops;
579         }
580         spin_unlock(&tty_files_lock);
581
582         /*
583          * it drops BTM and thus races with reopen
584          * we protect the race by TTY_HUPPING
585          */
586         tty_ldisc_hangup(tty);
587
588         read_lock(&tasklist_lock);
589         if (tty->session) {
590                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
591                         spin_lock_irq(&p->sighand->siglock);
592                         if (p->signal->tty == tty) {
593                                 p->signal->tty = NULL;
594                                 /* We defer the dereferences outside fo
595                                    the tasklist lock */
596                                 refs++;
597                         }
598                         if (!p->signal->leader) {
599                                 spin_unlock_irq(&p->sighand->siglock);
600                                 continue;
601                         }
602                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
603                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
604                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
605                         spin_lock_irqsave(&tty->ctrl_lock, flags);
606                         if (tty->pgrp)
607                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
608                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
609                         spin_unlock_irq(&p->sighand->siglock);
610                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
611         }
612         read_unlock(&tasklist_lock);
613
614         spin_lock_irqsave(&tty->ctrl_lock, flags);
615         clear_bit(TTY_THROTTLED, &tty->flags);
616         clear_bit(TTY_PUSH, &tty->flags);
617         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
618         put_pid(tty->session);
619         put_pid(tty->pgrp);
620         tty->session = NULL;
621         tty->pgrp = NULL;
622         tty->ctrl_status = 0;
623         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
624
625         /* Account for the p->signal references we killed */
626         while (refs--)
627                 tty_kref_put(tty);
628
629         /*
630          * If one of the devices matches a console pointer, we
631          * cannot just call hangup() because that will cause
632          * tty->count and state->count to go out of sync.
633          * So we just call close() the right number of times.
634          */
635         if (cons_filp) {
636                 if (tty->ops->close)
637                         for (n = 0; n < closecount; n++)
638                                 tty->ops->close(tty, cons_filp);
639         } else if (tty->ops->hangup)
640                 (tty->ops->hangup)(tty);
641         /*
642          * We don't want to have driver/ldisc interactions beyond
643          * the ones we did here. The driver layer expects no
644          * calls after ->hangup() from the ldisc side. However we
645          * can't yet guarantee all that.
646          */
647         set_bit(TTY_HUPPED, &tty->flags);
648         clear_bit(TTY_HUPPING, &tty->flags);
649         tty_ldisc_enable(tty);
650
651         tty_unlock();
652
653         if (f)
654                 fput(f);
655 }
656
657 static void do_tty_hangup(struct work_struct *work)
658 {
659         struct tty_struct *tty =
660                 container_of(work, struct tty_struct, hangup_work);
661
662         __tty_hangup(tty);
663 }
664
665 /**
666  *      tty_hangup              -       trigger a hangup event
667  *      @tty: tty to hangup
668  *
669  *      A carrier loss (virtual or otherwise) has occurred on this like
670  *      schedule a hangup sequence to run after this event.
671  */
672
673 void tty_hangup(struct tty_struct *tty)
674 {
675 #ifdef TTY_DEBUG_HANGUP
676         char    buf[64];
677         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
678 #endif
679         schedule_work(&tty->hangup_work);
680 }
681
682 EXPORT_SYMBOL(tty_hangup);
683
684 /**
685  *      tty_vhangup             -       process vhangup
686  *      @tty: tty to hangup
687  *
688  *      The user has asked via system call for the terminal to be hung up.
689  *      We do this synchronously so that when the syscall returns the process
690  *      is complete. That guarantee is necessary for security reasons.
691  */
692
693 void tty_vhangup(struct tty_struct *tty)
694 {
695 #ifdef TTY_DEBUG_HANGUP
696         char    buf[64];
697
698         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
699 #endif
700         __tty_hangup(tty);
701 }
702
703 EXPORT_SYMBOL(tty_vhangup);
704
705
706 /**
707  *      tty_vhangup_self        -       process vhangup for own ctty
708  *
709  *      Perform a vhangup on the current controlling tty
710  */
711
712 void tty_vhangup_self(void)
713 {
714         struct tty_struct *tty;
715
716         tty = get_current_tty();
717         if (tty) {
718                 tty_vhangup(tty);
719                 tty_kref_put(tty);
720         }
721 }
722
723 /**
724  *      tty_hung_up_p           -       was tty hung up
725  *      @filp: file pointer of tty
726  *
727  *      Return true if the tty has been subject to a vhangup or a carrier
728  *      loss
729  */
730
731 int tty_hung_up_p(struct file *filp)
732 {
733         return (filp->f_op == &hung_up_tty_fops);
734 }
735
736 EXPORT_SYMBOL(tty_hung_up_p);
737
738 static void session_clear_tty(struct pid *session)
739 {
740         struct task_struct *p;
741         do_each_pid_task(session, PIDTYPE_SID, p) {
742                 proc_clear_tty(p);
743         } while_each_pid_task(session, PIDTYPE_SID, p);
744 }
745
746 /**
747  *      disassociate_ctty       -       disconnect controlling tty
748  *      @on_exit: true if exiting so need to "hang up" the session
749  *
750  *      This function is typically called only by the session leader, when
751  *      it wants to disassociate itself from its controlling tty.
752  *
753  *      It performs the following functions:
754  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
755  *      (2)  Clears the tty from being controlling the session
756  *      (3)  Clears the controlling tty for all processes in the
757  *              session group.
758  *
759  *      The argument on_exit is set to 1 if called when a process is
760  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
761  *
762  *      Locking:
763  *              BTM is taken for hysterical raisins, and held when
764  *                called from no_tty().
765  *                tty_mutex is taken to protect tty
766  *                ->siglock is taken to protect ->signal/->sighand
767  *                tasklist_lock is taken to walk process list for sessions
768  *                  ->siglock is taken to protect ->signal/->sighand
769  */
770
771 void disassociate_ctty(int on_exit)
772 {
773         struct tty_struct *tty;
774         struct pid *tty_pgrp = NULL;
775
776         if (!current->signal->leader)
777                 return;
778
779         tty = get_current_tty();
780         if (tty) {
781                 tty_pgrp = get_pid(tty->pgrp);
782                 if (on_exit) {
783                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
784                                 tty_vhangup(tty);
785                 }
786                 tty_kref_put(tty);
787         } else if (on_exit) {
788                 struct pid *old_pgrp;
789                 spin_lock_irq(&current->sighand->siglock);
790                 old_pgrp = current->signal->tty_old_pgrp;
791                 current->signal->tty_old_pgrp = NULL;
792                 spin_unlock_irq(&current->sighand->siglock);
793                 if (old_pgrp) {
794                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
795                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
796                         put_pid(old_pgrp);
797                 }
798                 return;
799         }
800         if (tty_pgrp) {
801                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
802                 if (!on_exit)
803                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
804                 put_pid(tty_pgrp);
805         }
806
807         spin_lock_irq(&current->sighand->siglock);
808         put_pid(current->signal->tty_old_pgrp);
809         current->signal->tty_old_pgrp = NULL;
810         spin_unlock_irq(&current->sighand->siglock);
811
812         tty = get_current_tty();
813         if (tty) {
814                 unsigned long flags;
815                 spin_lock_irqsave(&tty->ctrl_lock, flags);
816                 put_pid(tty->session);
817                 put_pid(tty->pgrp);
818                 tty->session = NULL;
819                 tty->pgrp = NULL;
820                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
821                 tty_kref_put(tty);
822         } else {
823 #ifdef TTY_DEBUG_HANGUP
824                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
825                        " = NULL", tty);
826 #endif
827         }
828
829         /* Now clear signal->tty under the lock */
830         read_lock(&tasklist_lock);
831         session_clear_tty(task_session(current));
832         read_unlock(&tasklist_lock);
833 }
834
835 /**
836  *
837  *      no_tty  - Ensure the current process does not have a controlling tty
838  */
839 void no_tty(void)
840 {
841         struct task_struct *tsk = current;
842         tty_lock();
843         disassociate_ctty(0);
844         tty_unlock();
845         proc_clear_tty(tsk);
846 }
847
848
849 /**
850  *      stop_tty        -       propagate flow control
851  *      @tty: tty to stop
852  *
853  *      Perform flow control to the driver. For PTY/TTY pairs we
854  *      must also propagate the TIOCKPKT status. May be called
855  *      on an already stopped device and will not re-call the driver
856  *      method.
857  *
858  *      This functionality is used by both the line disciplines for
859  *      halting incoming flow and by the driver. It may therefore be
860  *      called from any context, may be under the tty atomic_write_lock
861  *      but not always.
862  *
863  *      Locking:
864  *              Uses the tty control lock internally
865  */
866
867 void stop_tty(struct tty_struct *tty)
868 {
869         unsigned long flags;
870         spin_lock_irqsave(&tty->ctrl_lock, flags);
871         if (tty->stopped) {
872                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
873                 return;
874         }
875         tty->stopped = 1;
876         if (tty->link && tty->link->packet) {
877                 tty->ctrl_status &= ~TIOCPKT_START;
878                 tty->ctrl_status |= TIOCPKT_STOP;
879                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
880         }
881         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
882         if (tty->ops->stop)
883                 (tty->ops->stop)(tty);
884 }
885
886 EXPORT_SYMBOL(stop_tty);
887
888 /**
889  *      start_tty       -       propagate flow control
890  *      @tty: tty to start
891  *
892  *      Start a tty that has been stopped if at all possible. Perform
893  *      any necessary wakeups and propagate the TIOCPKT status. If this
894  *      is the tty was previous stopped and is being started then the
895  *      driver start method is invoked and the line discipline woken.
896  *
897  *      Locking:
898  *              ctrl_lock
899  */
900
901 void start_tty(struct tty_struct *tty)
902 {
903         unsigned long flags;
904         spin_lock_irqsave(&tty->ctrl_lock, flags);
905         if (!tty->stopped || tty->flow_stopped) {
906                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
907                 return;
908         }
909         tty->stopped = 0;
910         if (tty->link && tty->link->packet) {
911                 tty->ctrl_status &= ~TIOCPKT_STOP;
912                 tty->ctrl_status |= TIOCPKT_START;
913                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
914         }
915         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
916         if (tty->ops->start)
917                 (tty->ops->start)(tty);
918         /* If we have a running line discipline it may need kicking */
919         tty_wakeup(tty);
920 }
921
922 EXPORT_SYMBOL(start_tty);
923
924 /**
925  *      tty_read        -       read method for tty device files
926  *      @file: pointer to tty file
927  *      @buf: user buffer
928  *      @count: size of user buffer
929  *      @ppos: unused
930  *
931  *      Perform the read system call function on this terminal device. Checks
932  *      for hung up devices before calling the line discipline method.
933  *
934  *      Locking:
935  *              Locks the line discipline internally while needed. Multiple
936  *      read calls may be outstanding in parallel.
937  */
938
939 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
940                         loff_t *ppos)
941 {
942         int i;
943         struct inode *inode = file->f_path.dentry->d_inode;
944         struct tty_struct *tty = file_tty(file);
945         struct tty_ldisc *ld;
946
947         if (tty_paranoia_check(tty, inode, "tty_read"))
948                 return -EIO;
949         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
950                 return -EIO;
951
952         /* We want to wait for the line discipline to sort out in this
953            situation */
954         ld = tty_ldisc_ref_wait(tty);
955         if (ld->ops->read)
956                 i = (ld->ops->read)(tty, file, buf, count);
957         else
958                 i = -EIO;
959         tty_ldisc_deref(ld);
960         if (i > 0)
961                 inode->i_atime = current_fs_time(inode->i_sb);
962         return i;
963 }
964
965 void tty_write_unlock(struct tty_struct *tty)
966         __releases(&tty->atomic_write_lock)
967 {
968         mutex_unlock(&tty->atomic_write_lock);
969         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
970 }
971
972 int tty_write_lock(struct tty_struct *tty, int ndelay)
973         __acquires(&tty->atomic_write_lock)
974 {
975         if (!mutex_trylock(&tty->atomic_write_lock)) {
976                 if (ndelay)
977                         return -EAGAIN;
978                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
979                         return -ERESTARTSYS;
980         }
981         return 0;
982 }
983
984 /*
985  * Split writes up in sane blocksizes to avoid
986  * denial-of-service type attacks
987  */
988 static inline ssize_t do_tty_write(
989         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
990         struct tty_struct *tty,
991         struct file *file,
992         const char __user *buf,
993         size_t count)
994 {
995         ssize_t ret, written = 0;
996         unsigned int chunk;
997
998         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
999         if (ret < 0)
1000                 return ret;
1001
1002         /*
1003          * We chunk up writes into a temporary buffer. This
1004          * simplifies low-level drivers immensely, since they
1005          * don't have locking issues and user mode accesses.
1006          *
1007          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008          * big chunk-size..
1009          *
1010          * The default chunk-size is 2kB, because the NTTY
1011          * layer has problems with bigger chunks. It will
1012          * claim to be able to handle more characters than
1013          * it actually does.
1014          *
1015          * FIXME: This can probably go away now except that 64K chunks
1016          * are too likely to fail unless switched to vmalloc...
1017          */
1018         chunk = 2048;
1019         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020                 chunk = 65536;
1021         if (count < chunk)
1022                 chunk = count;
1023
1024         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025         if (tty->write_cnt < chunk) {
1026                 unsigned char *buf_chunk;
1027
1028                 if (chunk < 1024)
1029                         chunk = 1024;
1030
1031                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032                 if (!buf_chunk) {
1033                         ret = -ENOMEM;
1034                         goto out;
1035                 }
1036                 kfree(tty->write_buf);
1037                 tty->write_cnt = chunk;
1038                 tty->write_buf = buf_chunk;
1039         }
1040
1041         /* Do the write .. */
1042         for (;;) {
1043                 size_t size = count;
1044                 if (size > chunk)
1045                         size = chunk;
1046                 ret = -EFAULT;
1047                 if (copy_from_user(tty->write_buf, buf, size))
1048                         break;
1049                 ret = write(tty, file, tty->write_buf, size);
1050                 if (ret <= 0)
1051                         break;
1052                 written += ret;
1053                 buf += ret;
1054                 count -= ret;
1055                 if (!count)
1056                         break;
1057                 ret = -ERESTARTSYS;
1058                 if (signal_pending(current))
1059                         break;
1060                 cond_resched();
1061         }
1062         if (written) {
1063                 struct inode *inode = file->f_path.dentry->d_inode;
1064                 inode->i_mtime = current_fs_time(inode->i_sb);
1065                 ret = written;
1066         }
1067 out:
1068         tty_write_unlock(tty);
1069         return ret;
1070 }
1071
1072 /**
1073  * tty_write_message - write a message to a certain tty, not just the console.
1074  * @tty: the destination tty_struct
1075  * @msg: the message to write
1076  *
1077  * This is used for messages that need to be redirected to a specific tty.
1078  * We don't put it into the syslog queue right now maybe in the future if
1079  * really needed.
1080  *
1081  * We must still hold the BTM and test the CLOSING flag for the moment.
1082  */
1083
1084 void tty_write_message(struct tty_struct *tty, char *msg)
1085 {
1086         if (tty) {
1087                 mutex_lock(&tty->atomic_write_lock);
1088                 tty_lock();
1089                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090                         tty_unlock();
1091                         tty->ops->write(tty, msg, strlen(msg));
1092                 } else
1093                         tty_unlock();
1094                 tty_write_unlock(tty);
1095         }
1096         return;
1097 }
1098
1099
1100 /**
1101  *      tty_write               -       write method for tty device file
1102  *      @file: tty file pointer
1103  *      @buf: user data to write
1104  *      @count: bytes to write
1105  *      @ppos: unused
1106  *
1107  *      Write data to a tty device via the line discipline.
1108  *
1109  *      Locking:
1110  *              Locks the line discipline as required
1111  *              Writes to the tty driver are serialized by the atomic_write_lock
1112  *      and are then processed in chunks to the device. The line discipline
1113  *      write method will not be invoked in parallel for each device.
1114  */
1115
1116 static ssize_t tty_write(struct file *file, const char __user *buf,
1117                                                 size_t count, loff_t *ppos)
1118 {
1119         struct inode *inode = file->f_path.dentry->d_inode;
1120         struct tty_struct *tty = file_tty(file);
1121         struct tty_ldisc *ld;
1122         ssize_t ret;
1123
1124         if (tty_paranoia_check(tty, inode, "tty_write"))
1125                 return -EIO;
1126         if (!tty || !tty->ops->write ||
1127                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1128                         return -EIO;
1129         /* Short term debug to catch buggy drivers */
1130         if (tty->ops->write_room == NULL)
1131                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132                         tty->driver->name);
1133         ld = tty_ldisc_ref_wait(tty);
1134         if (!ld->ops->write)
1135                 ret = -EIO;
1136         else
1137                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138         tty_ldisc_deref(ld);
1139         return ret;
1140 }
1141
1142 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143                                                 size_t count, loff_t *ppos)
1144 {
1145         struct file *p = NULL;
1146
1147         spin_lock(&redirect_lock);
1148         if (redirect) {
1149                 get_file(redirect);
1150                 p = redirect;
1151         }
1152         spin_unlock(&redirect_lock);
1153
1154         if (p) {
1155                 ssize_t res;
1156                 res = vfs_write(p, buf, count, &p->f_pos);
1157                 fput(p);
1158                 return res;
1159         }
1160         return tty_write(file, buf, count, ppos);
1161 }
1162
1163 static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165 /**
1166  *      pty_line_name   -       generate name for a pty
1167  *      @driver: the tty driver in use
1168  *      @index: the minor number
1169  *      @p: output buffer of at least 6 bytes
1170  *
1171  *      Generate a name from a driver reference and write it to the output
1172  *      buffer.
1173  *
1174  *      Locking: None
1175  */
1176 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177 {
1178         int i = index + driver->name_base;
1179         /* ->name is initialized to "ttyp", but "tty" is expected */
1180         sprintf(p, "%s%c%x",
1181                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182                 ptychar[i >> 4 & 0xf], i & 0xf);
1183 }
1184
1185 /**
1186  *      tty_line_name   -       generate name for a tty
1187  *      @driver: the tty driver in use
1188  *      @index: the minor number
1189  *      @p: output buffer of at least 7 bytes
1190  *
1191  *      Generate a name from a driver reference and write it to the output
1192  *      buffer.
1193  *
1194  *      Locking: None
1195  */
1196 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197 {
1198         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199 }
1200
1201 /**
1202  *      tty_driver_lookup_tty() - find an existing tty, if any
1203  *      @driver: the driver for the tty
1204  *      @idx:    the minor number
1205  *
1206  *      Return the tty, if found or ERR_PTR() otherwise.
1207  *
1208  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1209  *      be held until the 'fast-open' is also done. Will change once we
1210  *      have refcounting in the driver and per driver locking
1211  */
1212 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213                 struct inode *inode, int idx)
1214 {
1215         struct tty_struct *tty;
1216
1217         if (driver->ops->lookup)
1218                 return driver->ops->lookup(driver, inode, idx);
1219
1220         tty = driver->ttys[idx];
1221         return tty;
1222 }
1223
1224 /**
1225  *      tty_init_termios        -  helper for termios setup
1226  *      @tty: the tty to set up
1227  *
1228  *      Initialise the termios structures for this tty. Thus runs under
1229  *      the tty_mutex currently so we can be relaxed about ordering.
1230  */
1231
1232 int tty_init_termios(struct tty_struct *tty)
1233 {
1234         struct ktermios *tp;
1235         int idx = tty->index;
1236
1237         tp = tty->driver->termios[idx];
1238         if (tp == NULL) {
1239                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240                 if (tp == NULL)
1241                         return -ENOMEM;
1242                 memcpy(tp, &tty->driver->init_termios,
1243                                                 sizeof(struct ktermios));
1244                 tty->driver->termios[idx] = tp;
1245         }
1246         tty->termios = tp;
1247         tty->termios_locked = tp + 1;
1248
1249         /* Compatibility until drivers always set this */
1250         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252         return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256 /**
1257  *      tty_driver_install_tty() - install a tty entry in the driver
1258  *      @driver: the driver for the tty
1259  *      @tty: the tty
1260  *
1261  *      Install a tty object into the driver tables. The tty->index field
1262  *      will be set by the time this is called. This method is responsible
1263  *      for ensuring any need additional structures are allocated and
1264  *      configured.
1265  *
1266  *      Locking: tty_mutex for now
1267  */
1268 static int tty_driver_install_tty(struct tty_driver *driver,
1269                                                 struct tty_struct *tty)
1270 {
1271         int idx = tty->index;
1272         int ret;
1273
1274         if (driver->ops->install) {
1275                 ret = driver->ops->install(driver, tty);
1276                 return ret;
1277         }
1278
1279         if (tty_init_termios(tty) == 0) {
1280                 tty_driver_kref_get(driver);
1281                 tty->count++;
1282                 driver->ttys[idx] = tty;
1283                 return 0;
1284         }
1285         return -ENOMEM;
1286 }
1287
1288 /**
1289  *      tty_driver_remove_tty() - remove a tty from the driver tables
1290  *      @driver: the driver for the tty
1291  *      @idx:    the minor number
1292  *
1293  *      Remvoe a tty object from the driver tables. The tty->index field
1294  *      will be set by the time this is called.
1295  *
1296  *      Locking: tty_mutex for now
1297  */
1298 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299 {
1300         if (driver->ops->remove)
1301                 driver->ops->remove(driver, tty);
1302         else
1303                 driver->ttys[tty->index] = NULL;
1304 }
1305
1306 /*
1307  *      tty_reopen()    - fast re-open of an open tty
1308  *      @tty    - the tty to open
1309  *
1310  *      Return 0 on success, -errno on error.
1311  *
1312  *      Locking: tty_mutex must be held from the time the tty was found
1313  *               till this open completes.
1314  */
1315 static int tty_reopen(struct tty_struct *tty)
1316 {
1317         struct tty_driver *driver = tty->driver;
1318
1319         if (test_bit(TTY_CLOSING, &tty->flags) ||
1320                         test_bit(TTY_HUPPING, &tty->flags) ||
1321                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322                 return -EIO;
1323
1324         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325             driver->subtype == PTY_TYPE_MASTER) {
1326                 /*
1327                  * special case for PTY masters: only one open permitted,
1328                  * and the slave side open count is incremented as well.
1329                  */
1330                 if (tty->count)
1331                         return -EIO;
1332
1333                 tty->link->count++;
1334         }
1335         tty->count++;
1336         tty->driver = driver; /* N.B. why do this every time?? */
1337
1338         mutex_lock(&tty->ldisc_mutex);
1339         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340         mutex_unlock(&tty->ldisc_mutex);
1341
1342         return 0;
1343 }
1344
1345 /**
1346  *      tty_init_dev            -       initialise a tty device
1347  *      @driver: tty driver we are opening a device on
1348  *      @idx: device index
1349  *      @ret_tty: returned tty structure
1350  *      @first_ok: ok to open a new device (used by ptmx)
1351  *
1352  *      Prepare a tty device. This may not be a "new" clean device but
1353  *      could also be an active device. The pty drivers require special
1354  *      handling because of this.
1355  *
1356  *      Locking:
1357  *              The function is called under the tty_mutex, which
1358  *      protects us from the tty struct or driver itself going away.
1359  *
1360  *      On exit the tty device has the line discipline attached and
1361  *      a reference count of 1. If a pair was created for pty/tty use
1362  *      and the other was a pty master then it too has a reference count of 1.
1363  *
1364  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365  * failed open.  The new code protects the open with a mutex, so it's
1366  * really quite straightforward.  The mutex locking can probably be
1367  * relaxed for the (most common) case of reopening a tty.
1368  */
1369
1370 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371                                                                 int first_ok)
1372 {
1373         struct tty_struct *tty;
1374         int retval;
1375
1376         /* Check if pty master is being opened multiple times */
1377         if (driver->subtype == PTY_TYPE_MASTER &&
1378                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379                 return ERR_PTR(-EIO);
1380         }
1381
1382         /*
1383          * First time open is complex, especially for PTY devices.
1384          * This code guarantees that either everything succeeds and the
1385          * TTY is ready for operation, or else the table slots are vacated
1386          * and the allocated memory released.  (Except that the termios
1387          * and locked termios may be retained.)
1388          */
1389
1390         if (!try_module_get(driver->owner))
1391                 return ERR_PTR(-ENODEV);
1392
1393         tty = alloc_tty_struct();
1394         if (!tty) {
1395                 retval = -ENOMEM;
1396                 goto err_module_put;
1397         }
1398         initialize_tty_struct(tty, driver, idx);
1399
1400         retval = tty_driver_install_tty(driver, tty);
1401         if (retval < 0)
1402                 goto err_deinit_tty;
1403
1404         /*
1405          * Structures all installed ... call the ldisc open routines.
1406          * If we fail here just call release_tty to clean up.  No need
1407          * to decrement the use counts, as release_tty doesn't care.
1408          */
1409         retval = tty_ldisc_setup(tty, tty->link);
1410         if (retval)
1411                 goto err_release_tty;
1412         return tty;
1413
1414 err_deinit_tty:
1415         deinitialize_tty_struct(tty);
1416         free_tty_struct(tty);
1417 err_module_put:
1418         module_put(driver->owner);
1419         return ERR_PTR(retval);
1420
1421         /* call the tty release_tty routine to clean out this slot */
1422 err_release_tty:
1423         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424                                  "clearing slot %d\n", idx);
1425         release_tty(tty, idx);
1426         return ERR_PTR(retval);
1427 }
1428
1429 void tty_free_termios(struct tty_struct *tty)
1430 {
1431         struct ktermios *tp;
1432         int idx = tty->index;
1433         /* Kill this flag and push into drivers for locking etc */
1434         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435                 /* FIXME: Locking on ->termios array */
1436                 tp = tty->termios;
1437                 tty->driver->termios[idx] = NULL;
1438                 kfree(tp);
1439         }
1440 }
1441 EXPORT_SYMBOL(tty_free_termios);
1442
1443 void tty_shutdown(struct tty_struct *tty)
1444 {
1445         tty_driver_remove_tty(tty->driver, tty);
1446         tty_free_termios(tty);
1447 }
1448 EXPORT_SYMBOL(tty_shutdown);
1449
1450 /**
1451  *      release_one_tty         -       release tty structure memory
1452  *      @kref: kref of tty we are obliterating
1453  *
1454  *      Releases memory associated with a tty structure, and clears out the
1455  *      driver table slots. This function is called when a device is no longer
1456  *      in use. It also gets called when setup of a device fails.
1457  *
1458  *      Locking:
1459  *              tty_mutex - sometimes only
1460  *              takes the file list lock internally when working on the list
1461  *      of ttys that the driver keeps.
1462  *
1463  *      This method gets called from a work queue so that the driver private
1464  *      cleanup ops can sleep (needed for USB at least)
1465  */
1466 static void release_one_tty(struct work_struct *work)
1467 {
1468         struct tty_struct *tty =
1469                 container_of(work, struct tty_struct, hangup_work);
1470         struct tty_driver *driver = tty->driver;
1471
1472         if (tty->ops->cleanup)
1473                 tty->ops->cleanup(tty);
1474
1475         tty->magic = 0;
1476         tty_driver_kref_put(driver);
1477         module_put(driver->owner);
1478
1479         spin_lock(&tty_files_lock);
1480         list_del_init(&tty->tty_files);
1481         spin_unlock(&tty_files_lock);
1482
1483         put_pid(tty->pgrp);
1484         put_pid(tty->session);
1485         free_tty_struct(tty);
1486 }
1487
1488 static void queue_release_one_tty(struct kref *kref)
1489 {
1490         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492         if (tty->ops->shutdown)
1493                 tty->ops->shutdown(tty);
1494         else
1495                 tty_shutdown(tty);
1496
1497         /* The hangup queue is now free so we can reuse it rather than
1498            waste a chunk of memory for each port */
1499         INIT_WORK(&tty->hangup_work, release_one_tty);
1500         schedule_work(&tty->hangup_work);
1501 }
1502
1503 /**
1504  *      tty_kref_put            -       release a tty kref
1505  *      @tty: tty device
1506  *
1507  *      Release a reference to a tty device and if need be let the kref
1508  *      layer destruct the object for us
1509  */
1510
1511 void tty_kref_put(struct tty_struct *tty)
1512 {
1513         if (tty)
1514                 kref_put(&tty->kref, queue_release_one_tty);
1515 }
1516 EXPORT_SYMBOL(tty_kref_put);
1517
1518 /**
1519  *      release_tty             -       release tty structure memory
1520  *
1521  *      Release both @tty and a possible linked partner (think pty pair),
1522  *      and decrement the refcount of the backing module.
1523  *
1524  *      Locking:
1525  *              tty_mutex - sometimes only
1526  *              takes the file list lock internally when working on the list
1527  *      of ttys that the driver keeps.
1528  *              FIXME: should we require tty_mutex is held here ??
1529  *
1530  */
1531 static void release_tty(struct tty_struct *tty, int idx)
1532 {
1533         /* This should always be true but check for the moment */
1534         WARN_ON(tty->index != idx);
1535
1536         if (tty->link)
1537                 tty_kref_put(tty->link);
1538         tty_kref_put(tty);
1539 }
1540
1541 /**
1542  *      tty_release             -       vfs callback for close
1543  *      @inode: inode of tty
1544  *      @filp: file pointer for handle to tty
1545  *
1546  *      Called the last time each file handle is closed that references
1547  *      this tty. There may however be several such references.
1548  *
1549  *      Locking:
1550  *              Takes bkl. See tty_release_dev
1551  *
1552  * Even releasing the tty structures is a tricky business.. We have
1553  * to be very careful that the structures are all released at the
1554  * same time, as interrupts might otherwise get the wrong pointers.
1555  *
1556  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557  * lead to double frees or releasing memory still in use.
1558  */
1559
1560 int tty_release(struct inode *inode, struct file *filp)
1561 {
1562         struct tty_struct *tty = file_tty(filp);
1563         struct tty_struct *o_tty;
1564         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1565         int     devpts;
1566         int     idx;
1567         char    buf[64];
1568
1569         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570                 return 0;
1571
1572         tty_lock();
1573         check_tty_count(tty, "tty_release_dev");
1574
1575         __tty_fasync(-1, filp, 0);
1576
1577         idx = tty->index;
1578         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579                       tty->driver->subtype == PTY_TYPE_MASTER);
1580         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581         o_tty = tty->link;
1582
1583 #ifdef TTY_PARANOIA_CHECK
1584         if (idx < 0 || idx >= tty->driver->num) {
1585                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586                                   "free (%s)\n", tty->name);
1587                 tty_unlock();
1588                 return 0;
1589         }
1590         if (!devpts) {
1591                 if (tty != tty->driver->ttys[idx]) {
1592                         tty_unlock();
1593                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594                                "for (%s)\n", idx, tty->name);
1595                         return 0;
1596                 }
1597                 if (tty->termios != tty->driver->termios[idx]) {
1598                         tty_unlock();
1599                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600                                "for (%s)\n",
1601                                idx, tty->name);
1602                         return 0;
1603                 }
1604         }
1605 #endif
1606
1607 #ifdef TTY_DEBUG_HANGUP
1608         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609                tty_name(tty, buf), tty->count);
1610 #endif
1611
1612 #ifdef TTY_PARANOIA_CHECK
1613         if (tty->driver->other &&
1614              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615                 if (o_tty != tty->driver->other->ttys[idx]) {
1616                         tty_unlock();
1617                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618                                           "not o_tty for (%s)\n",
1619                                idx, tty->name);
1620                         return 0 ;
1621                 }
1622                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1623                         tty_unlock();
1624                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625                                           "not o_termios for (%s)\n",
1626                                idx, tty->name);
1627                         return 0;
1628                 }
1629                 if (o_tty->link != tty) {
1630                         tty_unlock();
1631                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632                         return 0;
1633                 }
1634         }
1635 #endif
1636         if (tty->ops->close)
1637                 tty->ops->close(tty, filp);
1638
1639         tty_unlock();
1640         /*
1641          * Sanity check: if tty->count is going to zero, there shouldn't be
1642          * any waiters on tty->read_wait or tty->write_wait.  We test the
1643          * wait queues and kick everyone out _before_ actually starting to
1644          * close.  This ensures that we won't block while releasing the tty
1645          * structure.
1646          *
1647          * The test for the o_tty closing is necessary, since the master and
1648          * slave sides may close in any order.  If the slave side closes out
1649          * first, its count will be one, since the master side holds an open.
1650          * Thus this test wouldn't be triggered at the time the slave closes,
1651          * so we do it now.
1652          *
1653          * Note that it's possible for the tty to be opened again while we're
1654          * flushing out waiters.  By recalculating the closing flags before
1655          * each iteration we avoid any problems.
1656          */
1657         while (1) {
1658                 /* Guard against races with tty->count changes elsewhere and
1659                    opens on /dev/tty */
1660
1661                 mutex_lock(&tty_mutex);
1662                 tty_lock();
1663                 tty_closing = tty->count <= 1;
1664                 o_tty_closing = o_tty &&
1665                         (o_tty->count <= (pty_master ? 1 : 0));
1666                 do_sleep = 0;
1667
1668                 if (tty_closing) {
1669                         if (waitqueue_active(&tty->read_wait)) {
1670                                 wake_up_poll(&tty->read_wait, POLLIN);
1671                                 do_sleep++;
1672                         }
1673                         if (waitqueue_active(&tty->write_wait)) {
1674                                 wake_up_poll(&tty->write_wait, POLLOUT);
1675                                 do_sleep++;
1676                         }
1677                 }
1678                 if (o_tty_closing) {
1679                         if (waitqueue_active(&o_tty->read_wait)) {
1680                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1681                                 do_sleep++;
1682                         }
1683                         if (waitqueue_active(&o_tty->write_wait)) {
1684                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1685                                 do_sleep++;
1686                         }
1687                 }
1688                 if (!do_sleep)
1689                         break;
1690
1691                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692                                     "active!\n", tty_name(tty, buf));
1693                 tty_unlock();
1694                 mutex_unlock(&tty_mutex);
1695                 schedule();
1696         }
1697
1698         /*
1699          * The closing flags are now consistent with the open counts on
1700          * both sides, and we've completed the last operation that could
1701          * block, so it's safe to proceed with closing.
1702          */
1703         if (pty_master) {
1704                 if (--o_tty->count < 0) {
1705                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706                                             "(%d) for %s\n",
1707                                o_tty->count, tty_name(o_tty, buf));
1708                         o_tty->count = 0;
1709                 }
1710         }
1711         if (--tty->count < 0) {
1712                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713                        tty->count, tty_name(tty, buf));
1714                 tty->count = 0;
1715         }
1716
1717         /*
1718          * We've decremented tty->count, so we need to remove this file
1719          * descriptor off the tty->tty_files list; this serves two
1720          * purposes:
1721          *  - check_tty_count sees the correct number of file descriptors
1722          *    associated with this tty.
1723          *  - do_tty_hangup no longer sees this file descriptor as
1724          *    something that needs to be handled for hangups.
1725          */
1726         tty_del_file(filp);
1727
1728         /*
1729          * Perform some housekeeping before deciding whether to return.
1730          *
1731          * Set the TTY_CLOSING flag if this was the last open.  In the
1732          * case of a pty we may have to wait around for the other side
1733          * to close, and TTY_CLOSING makes sure we can't be reopened.
1734          */
1735         if (tty_closing)
1736                 set_bit(TTY_CLOSING, &tty->flags);
1737         if (o_tty_closing)
1738                 set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740         /*
1741          * If _either_ side is closing, make sure there aren't any
1742          * processes that still think tty or o_tty is their controlling
1743          * tty.
1744          */
1745         if (tty_closing || o_tty_closing) {
1746                 read_lock(&tasklist_lock);
1747                 session_clear_tty(tty->session);
1748                 if (o_tty)
1749                         session_clear_tty(o_tty->session);
1750                 read_unlock(&tasklist_lock);
1751         }
1752
1753         mutex_unlock(&tty_mutex);
1754
1755         /* check whether both sides are closing ... */
1756         if (!tty_closing || (o_tty && !o_tty_closing)) {
1757                 tty_unlock();
1758                 return 0;
1759         }
1760
1761 #ifdef TTY_DEBUG_HANGUP
1762         printk(KERN_DEBUG "freeing tty structure...");
1763 #endif
1764         /*
1765          * Ask the line discipline code to release its structures
1766          */
1767         tty_ldisc_release(tty, o_tty);
1768         /*
1769          * The release_tty function takes care of the details of clearing
1770          * the slots and preserving the termios structure.
1771          */
1772         release_tty(tty, idx);
1773
1774         /* Make this pty number available for reallocation */
1775         if (devpts)
1776                 devpts_kill_index(inode, idx);
1777         tty_unlock();
1778         return 0;
1779 }
1780
1781 /**
1782  *      tty_open                -       open a tty device
1783  *      @inode: inode of device file
1784  *      @filp: file pointer to tty
1785  *
1786  *      tty_open and tty_release keep up the tty count that contains the
1787  *      number of opens done on a tty. We cannot use the inode-count, as
1788  *      different inodes might point to the same tty.
1789  *
1790  *      Open-counting is needed for pty masters, as well as for keeping
1791  *      track of serial lines: DTR is dropped when the last close happens.
1792  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1793  *
1794  *      The termios state of a pty is reset on first open so that
1795  *      settings don't persist across reuse.
1796  *
1797  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798  *               tty->count should protect the rest.
1799  *               ->siglock protects ->signal/->sighand
1800  */
1801
1802 static int tty_open(struct inode *inode, struct file *filp)
1803 {
1804         struct tty_struct *tty = NULL;
1805         int noctty, retval;
1806         struct tty_driver *driver;
1807         int index;
1808         dev_t device = inode->i_rdev;
1809         unsigned saved_flags = filp->f_flags;
1810
1811         nonseekable_open(inode, filp);
1812
1813 retry_open:
1814         noctty = filp->f_flags & O_NOCTTY;
1815         index  = -1;
1816         retval = 0;
1817
1818         mutex_lock(&tty_mutex);
1819         tty_lock();
1820
1821         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822                 tty = get_current_tty();
1823                 if (!tty) {
1824                         tty_unlock();
1825                         mutex_unlock(&tty_mutex);
1826                         return -ENXIO;
1827                 }
1828                 driver = tty_driver_kref_get(tty->driver);
1829                 index = tty->index;
1830                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831                 /* noctty = 1; */
1832                 /* FIXME: Should we take a driver reference ? */
1833                 tty_kref_put(tty);
1834                 goto got_driver;
1835         }
1836 #ifdef CONFIG_VT
1837         if (device == MKDEV(TTY_MAJOR, 0)) {
1838                 extern struct tty_driver *console_driver;
1839                 driver = tty_driver_kref_get(console_driver);
1840                 index = fg_console;
1841                 noctty = 1;
1842                 goto got_driver;
1843         }
1844 #endif
1845         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846                 struct tty_driver *console_driver = console_device(&index);
1847                 if (console_driver) {
1848                         driver = tty_driver_kref_get(console_driver);
1849                         if (driver) {
1850                                 /* Don't let /dev/console block */
1851                                 filp->f_flags |= O_NONBLOCK;
1852                                 noctty = 1;
1853                                 goto got_driver;
1854                         }
1855                 }
1856                 tty_unlock();
1857                 mutex_unlock(&tty_mutex);
1858                 return -ENODEV;
1859         }
1860
1861         driver = get_tty_driver(device, &index);
1862         if (!driver) {
1863                 tty_unlock();
1864                 mutex_unlock(&tty_mutex);
1865                 return -ENODEV;
1866         }
1867 got_driver:
1868         if (!tty) {
1869                 /* check whether we're reopening an existing tty */
1870                 tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872                 if (IS_ERR(tty)) {
1873                         tty_unlock();
1874                         mutex_unlock(&tty_mutex);
1875                         return PTR_ERR(tty);
1876                 }
1877         }
1878
1879         if (tty) {
1880                 retval = tty_reopen(tty);
1881                 if (retval)
1882                         tty = ERR_PTR(retval);
1883         } else
1884                 tty = tty_init_dev(driver, index, 0);
1885
1886         mutex_unlock(&tty_mutex);
1887         tty_driver_kref_put(driver);
1888         if (IS_ERR(tty)) {
1889                 tty_unlock();
1890                 return PTR_ERR(tty);
1891         }
1892
1893         retval = tty_add_file(tty, filp);
1894         if (retval) {
1895                 tty_unlock();
1896                 tty_release(inode, filp);
1897                 return retval;
1898         }
1899
1900         check_tty_count(tty, "tty_open");
1901         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902             tty->driver->subtype == PTY_TYPE_MASTER)
1903                 noctty = 1;
1904 #ifdef TTY_DEBUG_HANGUP
1905         printk(KERN_DEBUG "opening %s...", tty->name);
1906 #endif
1907         if (tty->ops->open)
1908                 retval = tty->ops->open(tty, filp);
1909         else
1910                 retval = -ENODEV;
1911         filp->f_flags = saved_flags;
1912
1913         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914                                                 !capable(CAP_SYS_ADMIN))
1915                 retval = -EBUSY;
1916
1917         if (retval) {
1918 #ifdef TTY_DEBUG_HANGUP
1919                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1920                        tty->name);
1921 #endif
1922                 tty_unlock(); /* need to call tty_release without BTM */
1923                 tty_release(inode, filp);
1924                 if (retval != -ERESTARTSYS)
1925                         return retval;
1926
1927                 if (signal_pending(current))
1928                         return retval;
1929
1930                 schedule();
1931                 /*
1932                  * Need to reset f_op in case a hangup happened.
1933                  */
1934                 tty_lock();
1935                 if (filp->f_op == &hung_up_tty_fops)
1936                         filp->f_op = &tty_fops;
1937                 tty_unlock();
1938                 goto retry_open;
1939         }
1940         tty_unlock();
1941
1942
1943         mutex_lock(&tty_mutex);
1944         tty_lock();
1945         spin_lock_irq(&current->sighand->siglock);
1946         if (!noctty &&
1947             current->signal->leader &&
1948             !current->signal->tty &&
1949             tty->session == NULL)
1950                 __proc_set_tty(current, tty);
1951         spin_unlock_irq(&current->sighand->siglock);
1952         tty_unlock();
1953         mutex_unlock(&tty_mutex);
1954         return 0;
1955 }
1956
1957
1958
1959 /**
1960  *      tty_poll        -       check tty status
1961  *      @filp: file being polled
1962  *      @wait: poll wait structures to update
1963  *
1964  *      Call the line discipline polling method to obtain the poll
1965  *      status of the device.
1966  *
1967  *      Locking: locks called line discipline but ldisc poll method
1968  *      may be re-entered freely by other callers.
1969  */
1970
1971 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972 {
1973         struct tty_struct *tty = file_tty(filp);
1974         struct tty_ldisc *ld;
1975         int ret = 0;
1976
1977         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978                 return 0;
1979
1980         ld = tty_ldisc_ref_wait(tty);
1981         if (ld->ops->poll)
1982                 ret = (ld->ops->poll)(tty, filp, wait);
1983         tty_ldisc_deref(ld);
1984         return ret;
1985 }
1986
1987 static int __tty_fasync(int fd, struct file *filp, int on)
1988 {
1989         struct tty_struct *tty = file_tty(filp);
1990         unsigned long flags;
1991         int retval = 0;
1992
1993         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994                 goto out;
1995
1996         retval = fasync_helper(fd, filp, on, &tty->fasync);
1997         if (retval <= 0)
1998                 goto out;
1999
2000         if (on) {
2001                 enum pid_type type;
2002                 struct pid *pid;
2003                 if (!waitqueue_active(&tty->read_wait))
2004                         tty->minimum_to_wake = 1;
2005                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2006                 if (tty->pgrp) {
2007                         pid = tty->pgrp;
2008                         type = PIDTYPE_PGID;
2009                 } else {
2010                         pid = task_pid(current);
2011                         type = PIDTYPE_PID;
2012                 }
2013                 get_pid(pid);
2014                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015                 retval = __f_setown(filp, pid, type, 0);
2016                 put_pid(pid);
2017                 if (retval)
2018                         goto out;
2019         } else {
2020                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022         }
2023         retval = 0;
2024 out:
2025         return retval;
2026 }
2027
2028 static int tty_fasync(int fd, struct file *filp, int on)
2029 {
2030         int retval;
2031         tty_lock();
2032         retval = __tty_fasync(fd, filp, on);
2033         tty_unlock();
2034         return retval;
2035 }
2036
2037 /**
2038  *      tiocsti                 -       fake input character
2039  *      @tty: tty to fake input into
2040  *      @p: pointer to character
2041  *
2042  *      Fake input to a tty device. Does the necessary locking and
2043  *      input management.
2044  *
2045  *      FIXME: does not honour flow control ??
2046  *
2047  *      Locking:
2048  *              Called functions take tty_ldisc_lock
2049  *              current->signal->tty check is safe without locks
2050  *
2051  *      FIXME: may race normal receive processing
2052  */
2053
2054 static int tiocsti(struct tty_struct *tty, char __user *p)
2055 {
2056         char ch, mbz = 0;
2057         struct tty_ldisc *ld;
2058
2059         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060                 return -EPERM;
2061         if (get_user(ch, p))
2062                 return -EFAULT;
2063         tty_audit_tiocsti(tty, ch);
2064         ld = tty_ldisc_ref_wait(tty);
2065         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066         tty_ldisc_deref(ld);
2067         return 0;
2068 }
2069
2070 /**
2071  *      tiocgwinsz              -       implement window query ioctl
2072  *      @tty; tty
2073  *      @arg: user buffer for result
2074  *
2075  *      Copies the kernel idea of the window size into the user buffer.
2076  *
2077  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2078  *              is consistent.
2079  */
2080
2081 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082 {
2083         int err;
2084
2085         mutex_lock(&tty->termios_mutex);
2086         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087         mutex_unlock(&tty->termios_mutex);
2088
2089         return err ? -EFAULT: 0;
2090 }
2091
2092 /**
2093  *      tty_do_resize           -       resize event
2094  *      @tty: tty being resized
2095  *      @rows: rows (character)
2096  *      @cols: cols (character)
2097  *
2098  *      Update the termios variables and send the necessary signals to
2099  *      peform a terminal resize correctly
2100  */
2101
2102 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103 {
2104         struct pid *pgrp;
2105         unsigned long flags;
2106
2107         /* Lock the tty */
2108         mutex_lock(&tty->termios_mutex);
2109         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110                 goto done;
2111         /* Get the PID values and reference them so we can
2112            avoid holding the tty ctrl lock while sending signals */
2113         spin_lock_irqsave(&tty->ctrl_lock, flags);
2114         pgrp = get_pid(tty->pgrp);
2115         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
2117         if (pgrp)
2118                 kill_pgrp(pgrp, SIGWINCH, 1);
2119         put_pid(pgrp);
2120
2121         tty->winsize = *ws;
2122 done:
2123         mutex_unlock(&tty->termios_mutex);
2124         return 0;
2125 }
2126
2127 /**
2128  *      tiocswinsz              -       implement window size set ioctl
2129  *      @tty; tty side of tty
2130  *      @arg: user buffer for result
2131  *
2132  *      Copies the user idea of the window size to the kernel. Traditionally
2133  *      this is just advisory information but for the Linux console it
2134  *      actually has driver level meaning and triggers a VC resize.
2135  *
2136  *      Locking:
2137  *              Driver dependent. The default do_resize method takes the
2138  *      tty termios mutex and ctrl_lock. The console takes its own lock
2139  *      then calls into the default method.
2140  */
2141
2142 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143 {
2144         struct winsize tmp_ws;
2145         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146                 return -EFAULT;
2147
2148         if (tty->ops->resize)
2149                 return tty->ops->resize(tty, &tmp_ws);
2150         else
2151                 return tty_do_resize(tty, &tmp_ws);
2152 }
2153
2154 /**
2155  *      tioccons        -       allow admin to move logical console
2156  *      @file: the file to become console
2157  *
2158  *      Allow the administrator to move the redirected console device
2159  *
2160  *      Locking: uses redirect_lock to guard the redirect information
2161  */
2162
2163 static int tioccons(struct file *file)
2164 {
2165         if (!capable(CAP_SYS_ADMIN))
2166                 return -EPERM;
2167         if (file->f_op->write == redirected_tty_write) {
2168                 struct file *f;
2169                 spin_lock(&redirect_lock);
2170                 f = redirect;
2171                 redirect = NULL;
2172                 spin_unlock(&redirect_lock);
2173                 if (f)
2174                         fput(f);
2175                 return 0;
2176         }
2177         spin_lock(&redirect_lock);
2178         if (redirect) {
2179                 spin_unlock(&redirect_lock);
2180                 return -EBUSY;
2181         }
2182         get_file(file);
2183         redirect = file;
2184         spin_unlock(&redirect_lock);
2185         return 0;
2186 }
2187
2188 /**
2189  *      fionbio         -       non blocking ioctl
2190  *      @file: file to set blocking value
2191  *      @p: user parameter
2192  *
2193  *      Historical tty interfaces had a blocking control ioctl before
2194  *      the generic functionality existed. This piece of history is preserved
2195  *      in the expected tty API of posix OS's.
2196  *
2197  *      Locking: none, the open file handle ensures it won't go away.
2198  */
2199
2200 static int fionbio(struct file *file, int __user *p)
2201 {
2202         int nonblock;
2203
2204         if (get_user(nonblock, p))
2205                 return -EFAULT;
2206
2207         spin_lock(&file->f_lock);
2208         if (nonblock)
2209                 file->f_flags |= O_NONBLOCK;
2210         else
2211                 file->f_flags &= ~O_NONBLOCK;
2212         spin_unlock(&file->f_lock);
2213         return 0;
2214 }
2215
2216 /**
2217  *      tiocsctty       -       set controlling tty
2218  *      @tty: tty structure
2219  *      @arg: user argument
2220  *
2221  *      This ioctl is used to manage job control. It permits a session
2222  *      leader to set this tty as the controlling tty for the session.
2223  *
2224  *      Locking:
2225  *              Takes tty_mutex() to protect tty instance
2226  *              Takes tasklist_lock internally to walk sessions
2227  *              Takes ->siglock() when updating signal->tty
2228  */
2229
2230 static int tiocsctty(struct tty_struct *tty, int arg)
2231 {
2232         int ret = 0;
2233         if (current->signal->leader && (task_session(current) == tty->session))
2234                 return ret;
2235
2236         mutex_lock(&tty_mutex);
2237         /*
2238          * The process must be a session leader and
2239          * not have a controlling tty already.
2240          */
2241         if (!current->signal->leader || current->signal->tty) {
2242                 ret = -EPERM;
2243                 goto unlock;
2244         }
2245
2246         if (tty->session) {
2247                 /*
2248                  * This tty is already the controlling
2249                  * tty for another session group!
2250                  */
2251                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252                         /*
2253                          * Steal it away
2254                          */
2255                         read_lock(&tasklist_lock);
2256                         session_clear_tty(tty->session);
2257                         read_unlock(&tasklist_lock);
2258                 } else {
2259                         ret = -EPERM;
2260                         goto unlock;
2261                 }
2262         }
2263         proc_set_tty(current, tty);
2264 unlock:
2265         mutex_unlock(&tty_mutex);
2266         return ret;
2267 }
2268
2269 /**
2270  *      tty_get_pgrp    -       return a ref counted pgrp pid
2271  *      @tty: tty to read
2272  *
2273  *      Returns a refcounted instance of the pid struct for the process
2274  *      group controlling the tty.
2275  */
2276
2277 struct pid *tty_get_pgrp(struct tty_struct *tty)
2278 {
2279         unsigned long flags;
2280         struct pid *pgrp;
2281
2282         spin_lock_irqsave(&tty->ctrl_lock, flags);
2283         pgrp = get_pid(tty->pgrp);
2284         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286         return pgrp;
2287 }
2288 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290 /**
2291  *      tiocgpgrp               -       get process group
2292  *      @tty: tty passed by user
2293  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2294  *      @p: returned pid
2295  *
2296  *      Obtain the process group of the tty. If there is no process group
2297  *      return an error.
2298  *
2299  *      Locking: none. Reference to current->signal->tty is safe.
2300  */
2301
2302 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303 {
2304         struct pid *pid;
2305         int ret;
2306         /*
2307          * (tty == real_tty) is a cheap way of
2308          * testing if the tty is NOT a master pty.
2309          */
2310         if (tty == real_tty && current->signal->tty != real_tty)
2311                 return -ENOTTY;
2312         pid = tty_get_pgrp(real_tty);
2313         ret =  put_user(pid_vnr(pid), p);
2314         put_pid(pid);
2315         return ret;
2316 }
2317
2318 /**
2319  *      tiocspgrp               -       attempt to set process group
2320  *      @tty: tty passed by user
2321  *      @real_tty: tty side device matching tty passed by user
2322  *      @p: pid pointer
2323  *
2324  *      Set the process group of the tty to the session passed. Only
2325  *      permitted where the tty session is our session.
2326  *
2327  *      Locking: RCU, ctrl lock
2328  */
2329
2330 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331 {
2332         struct pid *pgrp;
2333         pid_t pgrp_nr;
2334         int retval = tty_check_change(real_tty);
2335         unsigned long flags;
2336
2337         if (retval == -EIO)
2338                 return -ENOTTY;
2339         if (retval)
2340                 return retval;
2341         if (!current->signal->tty ||
2342             (current->signal->tty != real_tty) ||
2343             (real_tty->session != task_session(current)))
2344                 return -ENOTTY;
2345         if (get_user(pgrp_nr, p))
2346                 return -EFAULT;
2347         if (pgrp_nr < 0)
2348                 return -EINVAL;
2349         rcu_read_lock();
2350         pgrp = find_vpid(pgrp_nr);
2351         retval = -ESRCH;
2352         if (!pgrp)
2353                 goto out_unlock;
2354         retval = -EPERM;
2355         if (session_of_pgrp(pgrp) != task_session(current))
2356                 goto out_unlock;
2357         retval = 0;
2358         spin_lock_irqsave(&tty->ctrl_lock, flags);
2359         put_pid(real_tty->pgrp);
2360         real_tty->pgrp = get_pid(pgrp);
2361         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362 out_unlock:
2363         rcu_read_unlock();
2364         return retval;
2365 }
2366
2367 /**
2368  *      tiocgsid                -       get session id
2369  *      @tty: tty passed by user
2370  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2371  *      @p: pointer to returned session id
2372  *
2373  *      Obtain the session id of the tty. If there is no session
2374  *      return an error.
2375  *
2376  *      Locking: none. Reference to current->signal->tty is safe.
2377  */
2378
2379 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380 {
2381         /*
2382          * (tty == real_tty) is a cheap way of
2383          * testing if the tty is NOT a master pty.
2384         */
2385         if (tty == real_tty && current->signal->tty != real_tty)
2386                 return -ENOTTY;
2387         if (!real_tty->session)
2388                 return -ENOTTY;
2389         return put_user(pid_vnr(real_tty->session), p);
2390 }
2391
2392 /**
2393  *      tiocsetd        -       set line discipline
2394  *      @tty: tty device
2395  *      @p: pointer to user data
2396  *
2397  *      Set the line discipline according to user request.
2398  *
2399  *      Locking: see tty_set_ldisc, this function is just a helper
2400  */
2401
2402 static int tiocsetd(struct tty_struct *tty, int __user *p)
2403 {
2404         int ldisc;
2405         int ret;
2406
2407         if (get_user(ldisc, p))
2408                 return -EFAULT;
2409
2410         ret = tty_set_ldisc(tty, ldisc);
2411
2412         return ret;
2413 }
2414
2415 /**
2416  *      send_break      -       performed time break
2417  *      @tty: device to break on
2418  *      @duration: timeout in mS
2419  *
2420  *      Perform a timed break on hardware that lacks its own driver level
2421  *      timed break functionality.
2422  *
2423  *      Locking:
2424  *              atomic_write_lock serializes
2425  *
2426  */
2427
2428 static int send_break(struct tty_struct *tty, unsigned int duration)
2429 {
2430         int retval;
2431
2432         if (tty->ops->break_ctl == NULL)
2433                 return 0;
2434
2435         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436                 retval = tty->ops->break_ctl(tty, duration);
2437         else {
2438                 /* Do the work ourselves */
2439                 if (tty_write_lock(tty, 0) < 0)
2440                         return -EINTR;
2441                 retval = tty->ops->break_ctl(tty, -1);
2442                 if (retval)
2443                         goto out;
2444                 if (!signal_pending(current))
2445                         msleep_interruptible(duration);
2446                 retval = tty->ops->break_ctl(tty, 0);
2447 out:
2448                 tty_write_unlock(tty);
2449                 if (signal_pending(current))
2450                         retval = -EINTR;
2451         }
2452         return retval;
2453 }
2454
2455 /**
2456  *      tty_tiocmget            -       get modem status
2457  *      @tty: tty device
2458  *      @file: user file pointer
2459  *      @p: pointer to result
2460  *
2461  *      Obtain the modem status bits from the tty driver if the feature
2462  *      is supported. Return -EINVAL if it is not available.
2463  *
2464  *      Locking: none (up to the driver)
2465  */
2466
2467 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468 {
2469         int retval = -EINVAL;
2470
2471         if (tty->ops->tiocmget) {
2472                 retval = tty->ops->tiocmget(tty);
2473
2474                 if (retval >= 0)
2475                         retval = put_user(retval, p);
2476         }
2477         return retval;
2478 }
2479
2480 /**
2481  *      tty_tiocmset            -       set modem status
2482  *      @tty: tty device
2483  *      @cmd: command - clear bits, set bits or set all
2484  *      @p: pointer to desired bits
2485  *
2486  *      Set the modem status bits from the tty driver if the feature
2487  *      is supported. Return -EINVAL if it is not available.
2488  *
2489  *      Locking: none (up to the driver)
2490  */
2491
2492 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493              unsigned __user *p)
2494 {
2495         int retval;
2496         unsigned int set, clear, val;
2497
2498         if (tty->ops->tiocmset == NULL)
2499                 return -EINVAL;
2500
2501         retval = get_user(val, p);
2502         if (retval)
2503                 return retval;
2504         set = clear = 0;
2505         switch (cmd) {
2506         case TIOCMBIS:
2507                 set = val;
2508                 break;
2509         case TIOCMBIC:
2510                 clear = val;
2511                 break;
2512         case TIOCMSET:
2513                 set = val;
2514                 clear = ~val;
2515                 break;
2516         }
2517         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519         return tty->ops->tiocmset(tty, set, clear);
2520 }
2521
2522 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523 {
2524         int retval = -EINVAL;
2525         struct serial_icounter_struct icount;
2526         memset(&icount, 0, sizeof(icount));
2527         if (tty->ops->get_icount)
2528                 retval = tty->ops->get_icount(tty, &icount);
2529         if (retval != 0)
2530                 return retval;
2531         if (copy_to_user(arg, &icount, sizeof(icount)))
2532                 return -EFAULT;
2533         return 0;
2534 }
2535
2536 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537 {
2538         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539             tty->driver->subtype == PTY_TYPE_MASTER)
2540                 tty = tty->link;
2541         return tty;
2542 }
2543 EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2546 {
2547         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548             tty->driver->subtype == PTY_TYPE_MASTER)
2549             return tty;
2550         return tty->link;
2551 }
2552 EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554 /*
2555  * Split this up, as gcc can choke on it otherwise..
2556  */
2557 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558 {
2559         struct tty_struct *tty = file_tty(file);
2560         struct tty_struct *real_tty;
2561         void __user *p = (void __user *)arg;
2562         int retval;
2563         struct tty_ldisc *ld;
2564         struct inode *inode = file->f_dentry->d_inode;
2565
2566         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567                 return -EINVAL;
2568
2569         real_tty = tty_pair_get_tty(tty);
2570
2571         /*
2572          * Factor out some common prep work
2573          */
2574         switch (cmd) {
2575         case TIOCSETD:
2576         case TIOCSBRK:
2577         case TIOCCBRK:
2578         case TCSBRK:
2579         case TCSBRKP:
2580                 retval = tty_check_change(tty);
2581                 if (retval)
2582                         return retval;
2583                 if (cmd != TIOCCBRK) {
2584                         tty_wait_until_sent(tty, 0);
2585                         if (signal_pending(current))
2586                                 return -EINTR;
2587                 }
2588                 break;
2589         }
2590
2591         /*
2592          *      Now do the stuff.
2593          */
2594         switch (cmd) {
2595         case TIOCSTI:
2596                 return tiocsti(tty, p);
2597         case TIOCGWINSZ:
2598                 return tiocgwinsz(real_tty, p);
2599         case TIOCSWINSZ:
2600                 return tiocswinsz(real_tty, p);
2601         case TIOCCONS:
2602                 return real_tty != tty ? -EINVAL : tioccons(file);
2603         case FIONBIO:
2604                 return fionbio(file, p);
2605         case TIOCEXCL:
2606                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2607                 return 0;
2608         case TIOCNXCL:
2609                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610                 return 0;
2611         case TIOCNOTTY:
2612                 if (current->signal->tty != tty)
2613                         return -ENOTTY;
2614                 no_tty();
2615                 return 0;
2616         case TIOCSCTTY:
2617                 return tiocsctty(tty, arg);
2618         case TIOCGPGRP:
2619                 return tiocgpgrp(tty, real_tty, p);
2620         case TIOCSPGRP:
2621                 return tiocspgrp(tty, real_tty, p);
2622         case TIOCGSID:
2623                 return tiocgsid(tty, real_tty, p);
2624         case TIOCGETD:
2625                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2626         case TIOCSETD:
2627                 return tiocsetd(tty, p);
2628         case TIOCVHANGUP:
2629                 if (!capable(CAP_SYS_ADMIN))
2630                         return -EPERM;
2631                 tty_vhangup(tty);
2632                 return 0;
2633         case TIOCGDEV:
2634         {
2635                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636                 return put_user(ret, (unsigned int __user *)p);
2637         }
2638         /*
2639          * Break handling
2640          */
2641         case TIOCSBRK:  /* Turn break on, unconditionally */
2642                 if (tty->ops->break_ctl)
2643                         return tty->ops->break_ctl(tty, -1);
2644                 return 0;
2645         case TIOCCBRK:  /* Turn break off, unconditionally */
2646                 if (tty->ops->break_ctl)
2647                         return tty->ops->break_ctl(tty, 0);
2648                 return 0;
2649         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650                 /* non-zero arg means wait for all output data
2651                  * to be sent (performed above) but don't send break.
2652                  * This is used by the tcdrain() termios function.
2653                  */
2654                 if (!arg)
2655                         return send_break(tty, 250);
2656                 return 0;
2657         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2658                 return send_break(tty, arg ? arg*100 : 250);
2659
2660         case TIOCMGET:
2661                 return tty_tiocmget(tty, p);
2662         case TIOCMSET:
2663         case TIOCMBIC:
2664         case TIOCMBIS:
2665                 return tty_tiocmset(tty, cmd, p);
2666         case TIOCGICOUNT:
2667                 retval = tty_tiocgicount(tty, p);
2668                 /* For the moment allow fall through to the old method */
2669                 if (retval != -EINVAL)
2670                         return retval;
2671                 break;
2672         case TCFLSH:
2673                 switch (arg) {
2674                 case TCIFLUSH:
2675                 case TCIOFLUSH:
2676                 /* flush tty buffer and allow ldisc to process ioctl */
2677                         tty_buffer_flush(tty);
2678                         break;
2679                 }
2680                 break;
2681         }
2682         if (tty->ops->ioctl) {
2683                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2684                 if (retval != -ENOIOCTLCMD)
2685                         return retval;
2686         }
2687         ld = tty_ldisc_ref_wait(tty);
2688         retval = -EINVAL;
2689         if (ld->ops->ioctl) {
2690                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2691                 if (retval == -ENOIOCTLCMD)
2692                         retval = -EINVAL;
2693         }
2694         tty_ldisc_deref(ld);
2695         return retval;
2696 }
2697
2698 #ifdef CONFIG_COMPAT
2699 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700                                 unsigned long arg)
2701 {
2702         struct inode *inode = file->f_dentry->d_inode;
2703         struct tty_struct *tty = file_tty(file);
2704         struct tty_ldisc *ld;
2705         int retval = -ENOIOCTLCMD;
2706
2707         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708                 return -EINVAL;
2709
2710         if (tty->ops->compat_ioctl) {
2711                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712                 if (retval != -ENOIOCTLCMD)
2713                         return retval;
2714         }
2715
2716         ld = tty_ldisc_ref_wait(tty);
2717         if (ld->ops->compat_ioctl)
2718                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2719         tty_ldisc_deref(ld);
2720
2721         return retval;
2722 }
2723 #endif
2724
2725 /*
2726  * This implements the "Secure Attention Key" ---  the idea is to
2727  * prevent trojan horses by killing all processes associated with this
2728  * tty when the user hits the "Secure Attention Key".  Required for
2729  * super-paranoid applications --- see the Orange Book for more details.
2730  *
2731  * This code could be nicer; ideally it should send a HUP, wait a few
2732  * seconds, then send a INT, and then a KILL signal.  But you then
2733  * have to coordinate with the init process, since all processes associated
2734  * with the current tty must be dead before the new getty is allowed
2735  * to spawn.
2736  *
2737  * Now, if it would be correct ;-/ The current code has a nasty hole -
2738  * it doesn't catch files in flight. We may send the descriptor to ourselves
2739  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740  *
2741  * Nasty bug: do_SAK is being called in interrupt context.  This can
2742  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743  */
2744 void __do_SAK(struct tty_struct *tty)
2745 {
2746 #ifdef TTY_SOFT_SAK
2747         tty_hangup(tty);
2748 #else
2749         struct task_struct *g, *p;
2750         struct pid *session;
2751         int             i;
2752         struct file     *filp;
2753         struct fdtable *fdt;
2754
2755         if (!tty)
2756                 return;
2757         session = tty->session;
2758
2759         tty_ldisc_flush(tty);
2760
2761         tty_driver_flush_buffer(tty);
2762
2763         read_lock(&tasklist_lock);
2764         /* Kill the entire session */
2765         do_each_pid_task(session, PIDTYPE_SID, p) {
2766                 printk(KERN_NOTICE "SAK: killed process %d"
2767                         " (%s): task_session(p)==tty->session\n",
2768                         task_pid_nr(p), p->comm);
2769                 send_sig(SIGKILL, p, 1);
2770         } while_each_pid_task(session, PIDTYPE_SID, p);
2771         /* Now kill any processes that happen to have the
2772          * tty open.
2773          */
2774         do_each_thread(g, p) {
2775                 if (p->signal->tty == tty) {
2776                         printk(KERN_NOTICE "SAK: killed process %d"
2777                             " (%s): task_session(p)==tty->session\n",
2778                             task_pid_nr(p), p->comm);
2779                         send_sig(SIGKILL, p, 1);
2780                         continue;
2781                 }
2782                 task_lock(p);
2783                 if (p->files) {
2784                         /*
2785                          * We don't take a ref to the file, so we must
2786                          * hold ->file_lock instead.
2787                          */
2788                         spin_lock(&p->files->file_lock);
2789                         fdt = files_fdtable(p->files);
2790                         for (i = 0; i < fdt->max_fds; i++) {
2791                                 filp = fcheck_files(p->files, i);
2792                                 if (!filp)
2793                                         continue;
2794                                 if (filp->f_op->read == tty_read &&
2795                                     file_tty(filp) == tty) {
2796                                         printk(KERN_NOTICE "SAK: killed process %d"
2797                                             " (%s): fd#%d opened to the tty\n",
2798                                             task_pid_nr(p), p->comm, i);
2799                                         force_sig(SIGKILL, p);
2800                                         break;
2801                                 }
2802                         }
2803                         spin_unlock(&p->files->file_lock);
2804                 }
2805                 task_unlock(p);
2806         } while_each_thread(g, p);
2807         read_unlock(&tasklist_lock);
2808 #endif
2809 }
2810
2811 static void do_SAK_work(struct work_struct *work)
2812 {
2813         struct tty_struct *tty =
2814                 container_of(work, struct tty_struct, SAK_work);
2815         __do_SAK(tty);
2816 }
2817
2818 /*
2819  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821  * the values which we write to it will be identical to the values which it
2822  * already has. --akpm
2823  */
2824 void do_SAK(struct tty_struct *tty)
2825 {
2826         if (!tty)
2827                 return;
2828         schedule_work(&tty->SAK_work);
2829 }
2830
2831 EXPORT_SYMBOL(do_SAK);
2832
2833 static int dev_match_devt(struct device *dev, void *data)
2834 {
2835         dev_t *devt = data;
2836         return dev->devt == *devt;
2837 }
2838
2839 /* Must put_device() after it's unused! */
2840 static struct device *tty_get_device(struct tty_struct *tty)
2841 {
2842         dev_t devt = tty_devnum(tty);
2843         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844 }
2845
2846
2847 /**
2848  *      initialize_tty_struct
2849  *      @tty: tty to initialize
2850  *
2851  *      This subroutine initializes a tty structure that has been newly
2852  *      allocated.
2853  *
2854  *      Locking: none - tty in question must not be exposed at this point
2855  */
2856
2857 void initialize_tty_struct(struct tty_struct *tty,
2858                 struct tty_driver *driver, int idx)
2859 {
2860         memset(tty, 0, sizeof(struct tty_struct));
2861         kref_init(&tty->kref);
2862         tty->magic = TTY_MAGIC;
2863         tty_ldisc_init(tty);
2864         tty->session = NULL;
2865         tty->pgrp = NULL;
2866         tty->overrun_time = jiffies;
2867         tty->buf.head = tty->buf.tail = NULL;
2868         tty_buffer_init(tty);
2869         mutex_init(&tty->termios_mutex);
2870         mutex_init(&tty->ldisc_mutex);
2871         init_waitqueue_head(&tty->write_wait);
2872         init_waitqueue_head(&tty->read_wait);
2873         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874         mutex_init(&tty->atomic_read_lock);
2875         mutex_init(&tty->atomic_write_lock);
2876         mutex_init(&tty->output_lock);
2877         mutex_init(&tty->echo_lock);
2878         spin_lock_init(&tty->read_lock);
2879         spin_lock_init(&tty->ctrl_lock);
2880         INIT_LIST_HEAD(&tty->tty_files);
2881         INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883         tty->driver = driver;
2884         tty->ops = driver->ops;
2885         tty->index = idx;
2886         tty_line_name(driver, idx, tty->name);
2887         tty->dev = tty_get_device(tty);
2888 }
2889
2890 /**
2891  *      deinitialize_tty_struct
2892  *      @tty: tty to deinitialize
2893  *
2894  *      This subroutine deinitializes a tty structure that has been newly
2895  *      allocated but tty_release cannot be called on that yet.
2896  *
2897  *      Locking: none - tty in question must not be exposed at this point
2898  */
2899 void deinitialize_tty_struct(struct tty_struct *tty)
2900 {
2901         tty_ldisc_deinit(tty);
2902 }
2903
2904 /**
2905  *      tty_put_char    -       write one character to a tty
2906  *      @tty: tty
2907  *      @ch: character
2908  *
2909  *      Write one byte to the tty using the provided put_char method
2910  *      if present. Returns the number of characters successfully output.
2911  *
2912  *      Note: the specific put_char operation in the driver layer may go
2913  *      away soon. Don't call it directly, use this method
2914  */
2915
2916 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917 {
2918         if (tty->ops->put_char)
2919                 return tty->ops->put_char(tty, ch);
2920         return tty->ops->write(tty, &ch, 1);
2921 }
2922 EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924 struct class *tty_class;
2925
2926 /**
2927  *      tty_register_device - register a tty device
2928  *      @driver: the tty driver that describes the tty device
2929  *      @index: the index in the tty driver for this tty device
2930  *      @device: a struct device that is associated with this tty device.
2931  *              This field is optional, if there is no known struct device
2932  *              for this tty device it can be set to NULL safely.
2933  *
2934  *      Returns a pointer to the struct device for this tty device
2935  *      (or ERR_PTR(-EFOO) on error).
2936  *
2937  *      This call is required to be made to register an individual tty device
2938  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939  *      that bit is not set, this function should not be called by a tty
2940  *      driver.
2941  *
2942  *      Locking: ??
2943  */
2944
2945 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946                                    struct device *device)
2947 {
2948         char name[64];
2949         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2950
2951         if (index >= driver->num) {
2952                 printk(KERN_ERR "Attempt to register invalid tty line number "
2953                        " (%d).\n", index);
2954                 return ERR_PTR(-EINVAL);
2955         }
2956
2957         if (driver->type == TTY_DRIVER_TYPE_PTY)
2958                 pty_line_name(driver, index, name);
2959         else
2960                 tty_line_name(driver, index, name);
2961
2962         return device_create(tty_class, device, dev, NULL, name);
2963 }
2964 EXPORT_SYMBOL(tty_register_device);
2965
2966 /**
2967  *      tty_unregister_device - unregister a tty device
2968  *      @driver: the tty driver that describes the tty device
2969  *      @index: the index in the tty driver for this tty device
2970  *
2971  *      If a tty device is registered with a call to tty_register_device() then
2972  *      this function must be called when the tty device is gone.
2973  *
2974  *      Locking: ??
2975  */
2976
2977 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978 {
2979         device_destroy(tty_class,
2980                 MKDEV(driver->major, driver->minor_start) + index);
2981 }
2982 EXPORT_SYMBOL(tty_unregister_device);
2983
2984 struct tty_driver *alloc_tty_driver(int lines)
2985 {
2986         struct tty_driver *driver;
2987
2988         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989         if (driver) {
2990                 kref_init(&driver->kref);
2991                 driver->magic = TTY_DRIVER_MAGIC;
2992                 driver->num = lines;
2993                 /* later we'll move allocation of tables here */
2994         }
2995         return driver;
2996 }
2997 EXPORT_SYMBOL(alloc_tty_driver);
2998
2999 static void destruct_tty_driver(struct kref *kref)
3000 {
3001         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002         int i;
3003         struct ktermios *tp;
3004         void *p;
3005
3006         if (driver->flags & TTY_DRIVER_INSTALLED) {
3007                 /*
3008                  * Free the termios and termios_locked structures because
3009                  * we don't want to get memory leaks when modular tty
3010                  * drivers are removed from the kernel.
3011                  */
3012                 for (i = 0; i < driver->num; i++) {
3013                         tp = driver->termios[i];
3014                         if (tp) {
3015                                 driver->termios[i] = NULL;
3016                                 kfree(tp);
3017                         }
3018                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019                                 tty_unregister_device(driver, i);
3020                 }
3021                 p = driver->ttys;
3022                 proc_tty_unregister_driver(driver);
3023                 driver->ttys = NULL;
3024                 driver->termios = NULL;
3025                 kfree(p);
3026                 cdev_del(&driver->cdev);
3027         }
3028         kfree(driver);
3029 }
3030
3031 void tty_driver_kref_put(struct tty_driver *driver)
3032 {
3033         kref_put(&driver->kref, destruct_tty_driver);
3034 }
3035 EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037 void tty_set_operations(struct tty_driver *driver,
3038                         const struct tty_operations *op)
3039 {
3040         driver->ops = op;
3041 };
3042 EXPORT_SYMBOL(tty_set_operations);
3043
3044 void put_tty_driver(struct tty_driver *d)
3045 {
3046         tty_driver_kref_put(d);
3047 }
3048 EXPORT_SYMBOL(put_tty_driver);
3049
3050 /*
3051  * Called by a tty driver to register itself.
3052  */
3053 int tty_register_driver(struct tty_driver *driver)
3054 {
3055         int error;
3056         int i;
3057         dev_t dev;
3058         void **p = NULL;
3059         struct device *d;
3060
3061         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063                 if (!p)
3064                         return -ENOMEM;
3065         }
3066
3067         if (!driver->major) {
3068                 error = alloc_chrdev_region(&dev, driver->minor_start,
3069                                                 driver->num, driver->name);
3070                 if (!error) {
3071                         driver->major = MAJOR(dev);
3072                         driver->minor_start = MINOR(dev);
3073                 }
3074         } else {
3075                 dev = MKDEV(driver->major, driver->minor_start);
3076                 error = register_chrdev_region(dev, driver->num, driver->name);
3077         }
3078         if (error < 0) {
3079                 kfree(p);
3080                 return error;
3081         }
3082
3083         if (p) {
3084                 driver->ttys = (struct tty_struct **)p;
3085                 driver->termios = (struct ktermios **)(p + driver->num);
3086         } else {
3087                 driver->ttys = NULL;
3088                 driver->termios = NULL;
3089         }
3090
3091         cdev_init(&driver->cdev, &tty_fops);
3092         driver->cdev.owner = driver->owner;
3093         error = cdev_add(&driver->cdev, dev, driver->num);
3094         if (error) {
3095                 unregister_chrdev_region(dev, driver->num);
3096                 driver->ttys = NULL;
3097                 driver->termios = NULL;
3098                 kfree(p);
3099                 return error;
3100         }
3101
3102         mutex_lock(&tty_mutex);
3103         list_add(&driver->tty_drivers, &tty_drivers);
3104         mutex_unlock(&tty_mutex);
3105
3106         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107                 for (i = 0; i < driver->num; i++) {
3108                         d = tty_register_device(driver, i, NULL);
3109                         if (IS_ERR(d)) {
3110                                 error = PTR_ERR(d);
3111                                 goto err;
3112                         }
3113                 }
3114         }
3115         proc_tty_register_driver(driver);
3116         driver->flags |= TTY_DRIVER_INSTALLED;
3117         return 0;
3118
3119 err:
3120         for (i--; i >= 0; i--)
3121                 tty_unregister_device(driver, i);
3122
3123         mutex_lock(&tty_mutex);
3124         list_del(&driver->tty_drivers);
3125         mutex_unlock(&tty_mutex);
3126
3127         unregister_chrdev_region(dev, driver->num);
3128         driver->ttys = NULL;
3129         driver->termios = NULL;
3130         kfree(p);
3131         return error;
3132 }
3133
3134 EXPORT_SYMBOL(tty_register_driver);
3135
3136 /*
3137  * Called by a tty driver to unregister itself.
3138  */
3139 int tty_unregister_driver(struct tty_driver *driver)
3140 {
3141 #if 0
3142         /* FIXME */
3143         if (driver->refcount)
3144                 return -EBUSY;
3145 #endif
3146         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147                                 driver->num);
3148         mutex_lock(&tty_mutex);
3149         list_del(&driver->tty_drivers);
3150         mutex_unlock(&tty_mutex);
3151         return 0;
3152 }
3153
3154 EXPORT_SYMBOL(tty_unregister_driver);
3155
3156 dev_t tty_devnum(struct tty_struct *tty)
3157 {
3158         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159 }
3160 EXPORT_SYMBOL(tty_devnum);
3161
3162 void proc_clear_tty(struct task_struct *p)
3163 {
3164         unsigned long flags;
3165         struct tty_struct *tty;
3166         spin_lock_irqsave(&p->sighand->siglock, flags);
3167         tty = p->signal->tty;
3168         p->signal->tty = NULL;
3169         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170         tty_kref_put(tty);
3171 }
3172
3173 /* Called under the sighand lock */
3174
3175 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176 {
3177         if (tty) {
3178                 unsigned long flags;
3179                 /* We should not have a session or pgrp to put here but.... */
3180                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3181                 put_pid(tty->session);
3182                 put_pid(tty->pgrp);
3183                 tty->pgrp = get_pid(task_pgrp(tsk));
3184                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185                 tty->session = get_pid(task_session(tsk));
3186                 if (tsk->signal->tty) {
3187                         printk(KERN_DEBUG "tty not NULL!!\n");
3188                         tty_kref_put(tsk->signal->tty);
3189                 }
3190         }
3191         put_pid(tsk->signal->tty_old_pgrp);
3192         tsk->signal->tty = tty_kref_get(tty);
3193         tsk->signal->tty_old_pgrp = NULL;
3194 }
3195
3196 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197 {
3198         spin_lock_irq(&tsk->sighand->siglock);
3199         __proc_set_tty(tsk, tty);
3200         spin_unlock_irq(&tsk->sighand->siglock);
3201 }
3202
3203 struct tty_struct *get_current_tty(void)
3204 {
3205         struct tty_struct *tty;
3206         unsigned long flags;
3207
3208         spin_lock_irqsave(&current->sighand->siglock, flags);
3209         tty = tty_kref_get(current->signal->tty);
3210         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211         return tty;
3212 }
3213 EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215 void tty_default_fops(struct file_operations *fops)
3216 {
3217         *fops = tty_fops;
3218 }
3219
3220 /*
3221  * Initialize the console device. This is called *early*, so
3222  * we can't necessarily depend on lots of kernel help here.
3223  * Just do some early initializations, and do the complex setup
3224  * later.
3225  */
3226 void __init console_init(void)
3227 {
3228         initcall_t *call;
3229
3230         /* Setup the default TTY line discipline. */
3231         tty_ldisc_begin();
3232
3233         /*
3234          * set up the console device so that later boot sequences can
3235          * inform about problems etc..
3236          */
3237         call = __con_initcall_start;
3238         while (call < __con_initcall_end) {
3239                 (*call)();
3240                 call++;
3241         }
3242 }
3243
3244 static char *tty_devnode(struct device *dev, mode_t *mode)
3245 {
3246         if (!mode)
3247                 return NULL;
3248         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250                 *mode = 0666;
3251         return NULL;
3252 }
3253
3254 static int __init tty_class_init(void)
3255 {
3256         tty_class = class_create(THIS_MODULE, "tty");
3257         if (IS_ERR(tty_class))
3258                 return PTR_ERR(tty_class);
3259         tty_class->devnode = tty_devnode;
3260         return 0;
3261 }
3262
3263 postcore_initcall(tty_class_init);
3264
3265 /* 3/2004 jmc: why do these devices exist? */
3266 static struct cdev tty_cdev, console_cdev;
3267
3268 static ssize_t show_cons_active(struct device *dev,
3269                                 struct device_attribute *attr, char *buf)
3270 {
3271         struct console *cs[16];
3272         int i = 0;
3273         struct console *c;
3274         ssize_t count = 0;
3275
3276         console_lock();
3277         for_each_console(c) {
3278                 if (!c->device)
3279                         continue;
3280                 if (!c->write)
3281                         continue;
3282                 if ((c->flags & CON_ENABLED) == 0)
3283                         continue;
3284                 cs[i++] = c;
3285                 if (i >= ARRAY_SIZE(cs))
3286                         break;
3287         }
3288         while (i--)
3289                 count += sprintf(buf + count, "%s%d%c",
3290                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3291         console_unlock();
3292
3293         return count;
3294 }
3295 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
3297 static struct device *consdev;
3298
3299 void console_sysfs_notify(void)
3300 {
3301         if (consdev)
3302                 sysfs_notify(&consdev->kobj, NULL, "active");
3303 }
3304
3305 /*
3306  * Ok, now we can initialize the rest of the tty devices and can count
3307  * on memory allocations, interrupts etc..
3308  */
3309 int __init tty_init(void)
3310 {
3311         cdev_init(&tty_cdev, &tty_fops);
3312         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314                 panic("Couldn't register /dev/tty driver\n");
3315         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317         cdev_init(&console_cdev, &console_fops);
3318         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320                 panic("Couldn't register /dev/console driver\n");
3321         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322                               "console");
3323         if (IS_ERR(consdev))
3324                 consdev = NULL;
3325         else
3326                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328 #ifdef CONFIG_VT
3329         vty_init(&console_fops);
3330 #endif
3331         return 0;
3332 }
3333