Merge branch 'sh-latest' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[pandora-kernel.git] / drivers / tty / serial / ifx6x60.c
1 /****************************************************************************
2  *
3  * Driver for the IFX 6x60 spi modem.
4  *
5  * Copyright (C) 2008 Option International
6  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7  *                    Denis Joseph Barrow <d.barow@option.com>
8  *                    Jan Dumon <j.dumon@option.com>
9  *
10  * Copyright (C) 2009, 2010 Intel Corp
11  * Russ Gorby <russ.gorby@intel.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25  * USA
26  *
27  * Driver modified by Intel from Option gtm501l_spi.c
28  *
29  * Notes
30  * o    The driver currently assumes a single device only. If you need to
31  *      change this then look for saved_ifx_dev and add a device lookup
32  * o    The driver is intended to be big-endian safe but has never been
33  *      tested that way (no suitable hardware). There are a couple of FIXME
34  *      notes by areas that may need addressing
35  * o    Some of the GPIO naming/setup assumptions may need revisiting if
36  *      you need to use this driver for another platform.
37  *
38  *****************************************************************************/
39 #include <linux/dma-mapping.h>
40 #include <linux/module.h>
41 #include <linux/termios.h>
42 #include <linux/tty.h>
43 #include <linux/device.h>
44 #include <linux/spi/spi.h>
45 #include <linux/kfifo.h>
46 #include <linux/tty_flip.h>
47 #include <linux/timer.h>
48 #include <linux/serial.h>
49 #include <linux/interrupt.h>
50 #include <linux/irq.h>
51 #include <linux/rfkill.h>
52 #include <linux/fs.h>
53 #include <linux/ip.h>
54 #include <linux/dmapool.h>
55 #include <linux/gpio.h>
56 #include <linux/sched.h>
57 #include <linux/time.h>
58 #include <linux/wait.h>
59 #include <linux/pm.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spi/ifx_modem.h>
62 #include <linux/delay.h>
63
64 #include "ifx6x60.h"
65
66 #define IFX_SPI_MORE_MASK               0x10
67 #define IFX_SPI_MORE_BIT                12      /* bit position in u16 */
68 #define IFX_SPI_CTS_BIT                 13      /* bit position in u16 */
69 #define IFX_SPI_MODE                    SPI_MODE_1
70 #define IFX_SPI_TTY_ID                  0
71 #define IFX_SPI_TIMEOUT_SEC             2
72 #define IFX_SPI_HEADER_0                (-1)
73 #define IFX_SPI_HEADER_F                (-2)
74
75 /* forward reference */
76 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
77
78 /* local variables */
79 static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
80 static struct tty_driver *tty_drv;
81 static struct ifx_spi_device *saved_ifx_dev;
82 static struct lock_class_key ifx_spi_key;
83
84 /* GPIO/GPE settings */
85
86 /**
87  *      mrdy_set_high           -       set MRDY GPIO
88  *      @ifx: device we are controlling
89  *
90  */
91 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
92 {
93         gpio_set_value(ifx->gpio.mrdy, 1);
94 }
95
96 /**
97  *      mrdy_set_low            -       clear MRDY GPIO
98  *      @ifx: device we are controlling
99  *
100  */
101 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
102 {
103         gpio_set_value(ifx->gpio.mrdy, 0);
104 }
105
106 /**
107  *      ifx_spi_power_state_set
108  *      @ifx_dev: our SPI device
109  *      @val: bits to set
110  *
111  *      Set bit in power status and signal power system if status becomes non-0
112  */
113 static void
114 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
115 {
116         unsigned long flags;
117
118         spin_lock_irqsave(&ifx_dev->power_lock, flags);
119
120         /*
121          * if power status is already non-0, just update, else
122          * tell power system
123          */
124         if (!ifx_dev->power_status)
125                 pm_runtime_get(&ifx_dev->spi_dev->dev);
126         ifx_dev->power_status |= val;
127
128         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
129 }
130
131 /**
132  *      ifx_spi_power_state_clear       -       clear power bit
133  *      @ifx_dev: our SPI device
134  *      @val: bits to clear
135  *
136  *      clear bit in power status and signal power system if status becomes 0
137  */
138 static void
139 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
140 {
141         unsigned long flags;
142
143         spin_lock_irqsave(&ifx_dev->power_lock, flags);
144
145         if (ifx_dev->power_status) {
146                 ifx_dev->power_status &= ~val;
147                 if (!ifx_dev->power_status)
148                         pm_runtime_put(&ifx_dev->spi_dev->dev);
149         }
150
151         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
152 }
153
154 /**
155  *      swap_buf
156  *      @buf: our buffer
157  *      @len : number of bytes (not words) in the buffer
158  *      @end: end of buffer
159  *
160  *      Swap the contents of a buffer into big endian format
161  */
162 static inline void swap_buf(u16 *buf, int len, void *end)
163 {
164         int n;
165
166         len = ((len + 1) >> 1);
167         if ((void *)&buf[len] > end) {
168                 pr_err("swap_buf: swap exceeds boundary (%p > %p)!",
169                        &buf[len], end);
170                 return;
171         }
172         for (n = 0; n < len; n++) {
173                 *buf = cpu_to_be16(*buf);
174                 buf++;
175         }
176 }
177
178 /**
179  *      mrdy_assert             -       assert MRDY line
180  *      @ifx_dev: our SPI device
181  *
182  *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
183  *      now.
184  *
185  *      FIXME: Can SRDY even go high as we are running this code ?
186  */
187 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
188 {
189         int val = gpio_get_value(ifx_dev->gpio.srdy);
190         if (!val) {
191                 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
192                                       &ifx_dev->flags)) {
193                         ifx_dev->spi_timer.expires =
194                                 jiffies + IFX_SPI_TIMEOUT_SEC*HZ;
195                         add_timer(&ifx_dev->spi_timer);
196
197                 }
198         }
199         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
200         mrdy_set_high(ifx_dev);
201 }
202
203 /**
204  *      ifx_spi_hangup          -       hang up an IFX device
205  *      @ifx_dev: our SPI device
206  *
207  *      Hang up the tty attached to the IFX device if one is currently
208  *      open. If not take no action
209  */
210 static void ifx_spi_ttyhangup(struct ifx_spi_device *ifx_dev)
211 {
212         struct tty_port *pport = &ifx_dev->tty_port;
213         struct tty_struct *tty = tty_port_tty_get(pport);
214         if (tty) {
215                 tty_hangup(tty);
216                 tty_kref_put(tty);
217         }
218 }
219
220 /**
221  *      ifx_spi_timeout         -       SPI timeout
222  *      @arg: our SPI device
223  *
224  *      The SPI has timed out: hang up the tty. Users will then see a hangup
225  *      and error events.
226  */
227 static void ifx_spi_timeout(unsigned long arg)
228 {
229         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
230
231         dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
232         ifx_spi_ttyhangup(ifx_dev);
233         mrdy_set_low(ifx_dev);
234         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
235 }
236
237 /* char/tty operations */
238
239 /**
240  *      ifx_spi_tiocmget        -       get modem lines
241  *      @tty: our tty device
242  *      @filp: file handle issuing the request
243  *
244  *      Map the signal state into Linux modem flags and report the value
245  *      in Linux terms
246  */
247 static int ifx_spi_tiocmget(struct tty_struct *tty)
248 {
249         unsigned int value;
250         struct ifx_spi_device *ifx_dev = tty->driver_data;
251
252         value =
253         (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
254         (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
255         (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
256         (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
257         (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
258         (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
259         return value;
260 }
261
262 /**
263  *      ifx_spi_tiocmset        -       set modem bits
264  *      @tty: the tty structure
265  *      @set: bits to set
266  *      @clear: bits to clear
267  *
268  *      The IFX6x60 only supports DTR and RTS. Set them accordingly
269  *      and flag that an update to the modem is needed.
270  *
271  *      FIXME: do we need to kick the tranfers when we do this ?
272  */
273 static int ifx_spi_tiocmset(struct tty_struct *tty,
274                             unsigned int set, unsigned int clear)
275 {
276         struct ifx_spi_device *ifx_dev = tty->driver_data;
277
278         if (set & TIOCM_RTS)
279                 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
280         if (set & TIOCM_DTR)
281                 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
282         if (clear & TIOCM_RTS)
283                 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
284         if (clear & TIOCM_DTR)
285                 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
286
287         set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
288         return 0;
289 }
290
291 /**
292  *      ifx_spi_open    -       called on tty open
293  *      @tty: our tty device
294  *      @filp: file handle being associated with the tty
295  *
296  *      Open the tty interface. We let the tty_port layer do all the work
297  *      for us.
298  *
299  *      FIXME: Remove single device assumption and saved_ifx_dev
300  */
301 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
302 {
303         return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
304 }
305
306 /**
307  *      ifx_spi_close   -       called when our tty closes
308  *      @tty: the tty being closed
309  *      @filp: the file handle being closed
310  *
311  *      Perform the close of the tty. We use the tty_port layer to do all
312  *      our hard work.
313  */
314 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
315 {
316         struct ifx_spi_device *ifx_dev = tty->driver_data;
317         tty_port_close(&ifx_dev->tty_port, tty, filp);
318         /* FIXME: should we do an ifx_spi_reset here ? */
319 }
320
321 /**
322  *      ifx_decode_spi_header   -       decode received header
323  *      @buffer: the received data
324  *      @length: decoded length
325  *      @more: decoded more flag
326  *      @received_cts: status of cts we received
327  *
328  *      Note how received_cts is handled -- if header is all F it is left
329  *      the same as it was, if header is all 0 it is set to 0 otherwise it is
330  *      taken from the incoming header.
331  *
332  *      FIXME: endianness
333  */
334 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
335                         unsigned char *more, unsigned char *received_cts)
336 {
337         u16 h1;
338         u16 h2;
339         u16 *in_buffer = (u16 *)buffer;
340
341         h1 = *in_buffer;
342         h2 = *(in_buffer+1);
343
344         if (h1 == 0 && h2 == 0) {
345                 *received_cts = 0;
346                 return IFX_SPI_HEADER_0;
347         } else if (h1 == 0xffff && h2 == 0xffff) {
348                 /* spi_slave_cts remains as it was */
349                 return IFX_SPI_HEADER_F;
350         }
351
352         *length = h1 & 0xfff;   /* upper bits of byte are flags */
353         *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
354         *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
355         return 0;
356 }
357
358 /**
359  *      ifx_setup_spi_header    -       set header fields
360  *      @txbuffer: pointer to start of SPI buffer
361  *      @tx_count: bytes
362  *      @more: indicate if more to follow
363  *
364  *      Format up an SPI header for a transfer
365  *
366  *      FIXME: endianness?
367  */
368 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
369                                         unsigned char more)
370 {
371         *(u16 *)(txbuffer) = tx_count;
372         *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
373         txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
374 }
375
376 /**
377  *      ifx_spi_wakeup_serial   -       SPI space made
378  *      @port_data: our SPI device
379  *
380  *      We have emptied the FIFO enough that we want to get more data
381  *      queued into it. Poke the line discipline via tty_wakeup so that
382  *      it will feed us more bits
383  */
384 static void ifx_spi_wakeup_serial(struct ifx_spi_device *ifx_dev)
385 {
386         struct tty_struct *tty;
387
388         tty = tty_port_tty_get(&ifx_dev->tty_port);
389         if (!tty)
390                 return;
391         tty_wakeup(tty);
392         tty_kref_put(tty);
393 }
394
395 /**
396  *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
397  *      @ifx_dev: our SPI device
398  *
399  *      The transmit buffr needs a header and various other bits of
400  *      information followed by as much data as we can pull from the FIFO
401  *      and transfer. This function formats up a suitable buffer in the
402  *      ifx_dev->tx_buffer
403  *
404  *      FIXME: performance - should we wake the tty when the queue is half
405  *                           empty ?
406  */
407 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
408 {
409         int temp_count;
410         int queue_length;
411         int tx_count;
412         unsigned char *tx_buffer;
413
414         tx_buffer = ifx_dev->tx_buffer;
415         memset(tx_buffer, 0, IFX_SPI_TRANSFER_SIZE);
416
417         /* make room for required SPI header */
418         tx_buffer += IFX_SPI_HEADER_OVERHEAD;
419         tx_count = IFX_SPI_HEADER_OVERHEAD;
420
421         /* clear to signal no more data if this turns out to be the
422          * last buffer sent in a sequence */
423         ifx_dev->spi_more = 0;
424
425         /* if modem cts is set, just send empty buffer */
426         if (!ifx_dev->spi_slave_cts) {
427                 /* see if there's tx data */
428                 queue_length = kfifo_len(&ifx_dev->tx_fifo);
429                 if (queue_length != 0) {
430                         /* data to mux -- see if there's room for it */
431                         temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
432                         temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
433                                         tx_buffer, temp_count,
434                                         &ifx_dev->fifo_lock);
435
436                         /* update buffer pointer and data count in message */
437                         tx_buffer += temp_count;
438                         tx_count += temp_count;
439                         if (temp_count == queue_length)
440                                 /* poke port to get more data */
441                                 ifx_spi_wakeup_serial(ifx_dev);
442                         else /* more data in port, use next SPI message */
443                                 ifx_dev->spi_more = 1;
444                 }
445         }
446         /* have data and info for header -- set up SPI header in buffer */
447         /* spi header needs payload size, not entire buffer size */
448         ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
449                                         tx_count-IFX_SPI_HEADER_OVERHEAD,
450                                         ifx_dev->spi_more);
451         /* swap actual data in the buffer */
452         swap_buf((u16 *)(ifx_dev->tx_buffer), tx_count,
453                 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
454         return tx_count;
455 }
456
457 /**
458  *      ifx_spi_write           -       line discipline write
459  *      @tty: our tty device
460  *      @buf: pointer to buffer to write (kernel space)
461  *      @count: size of buffer
462  *
463  *      Write the characters we have been given into the FIFO. If the device
464  *      is not active then activate it, when the SRDY line is asserted back
465  *      this will commence I/O
466  */
467 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
468                          int count)
469 {
470         struct ifx_spi_device *ifx_dev = tty->driver_data;
471         unsigned char *tmp_buf = (unsigned char *)buf;
472         int tx_count = kfifo_in_locked(&ifx_dev->tx_fifo, tmp_buf, count,
473                                    &ifx_dev->fifo_lock);
474         mrdy_assert(ifx_dev);
475         return tx_count;
476 }
477
478 /**
479  *      ifx_spi_chars_in_buffer -       line discipline helper
480  *      @tty: our tty device
481  *
482  *      Report how much data we can accept before we drop bytes. As we use
483  *      a simple FIFO this is nice and easy.
484  */
485 static int ifx_spi_write_room(struct tty_struct *tty)
486 {
487         struct ifx_spi_device *ifx_dev = tty->driver_data;
488         return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
489 }
490
491 /**
492  *      ifx_spi_chars_in_buffer -       line discipline helper
493  *      @tty: our tty device
494  *
495  *      Report how many characters we have buffered. In our case this is the
496  *      number of bytes sitting in our transmit FIFO.
497  */
498 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
499 {
500         struct ifx_spi_device *ifx_dev = tty->driver_data;
501         return kfifo_len(&ifx_dev->tx_fifo);
502 }
503
504 /**
505  *      ifx_port_hangup
506  *      @port: our tty port
507  *
508  *      tty port hang up. Called when tty_hangup processing is invoked either
509  *      by loss of carrier, or by software (eg vhangup). Serialized against
510  *      activate/shutdown by the tty layer.
511  */
512 static void ifx_spi_hangup(struct tty_struct *tty)
513 {
514         struct ifx_spi_device *ifx_dev = tty->driver_data;
515         tty_port_hangup(&ifx_dev->tty_port);
516 }
517
518 /**
519  *      ifx_port_activate
520  *      @port: our tty port
521  *
522  *      tty port activate method - called for first open. Serialized
523  *      with hangup and shutdown by the tty layer.
524  */
525 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
526 {
527         struct ifx_spi_device *ifx_dev =
528                 container_of(port, struct ifx_spi_device, tty_port);
529
530         /* clear any old data; can't do this in 'close' */
531         kfifo_reset(&ifx_dev->tx_fifo);
532
533         /* put port data into this tty */
534         tty->driver_data = ifx_dev;
535
536         /* allows flip string push from int context */
537         tty->low_latency = 1;
538
539         return 0;
540 }
541
542 /**
543  *      ifx_port_shutdown
544  *      @port: our tty port
545  *
546  *      tty port shutdown method - called for last port close. Serialized
547  *      with hangup and activate by the tty layer.
548  */
549 static void ifx_port_shutdown(struct tty_port *port)
550 {
551         struct ifx_spi_device *ifx_dev =
552                 container_of(port, struct ifx_spi_device, tty_port);
553
554         mrdy_set_low(ifx_dev);
555         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
556         tasklet_kill(&ifx_dev->io_work_tasklet);
557 }
558
559 static const struct tty_port_operations ifx_tty_port_ops = {
560         .activate = ifx_port_activate,
561         .shutdown = ifx_port_shutdown,
562 };
563
564 static const struct tty_operations ifx_spi_serial_ops = {
565         .open = ifx_spi_open,
566         .close = ifx_spi_close,
567         .write = ifx_spi_write,
568         .hangup = ifx_spi_hangup,
569         .write_room = ifx_spi_write_room,
570         .chars_in_buffer = ifx_spi_chars_in_buffer,
571         .tiocmget = ifx_spi_tiocmget,
572         .tiocmset = ifx_spi_tiocmset,
573 };
574
575 /**
576  *      ifx_spi_insert_fip_string       -       queue received data
577  *      @ifx_ser: our SPI device
578  *      @chars: buffer we have received
579  *      @size: number of chars reeived
580  *
581  *      Queue bytes to the tty assuming the tty side is currently open. If
582  *      not the discard the data.
583  */
584 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
585                                     unsigned char *chars, size_t size)
586 {
587         struct tty_struct *tty = tty_port_tty_get(&ifx_dev->tty_port);
588         if (!tty)
589                 return;
590         tty_insert_flip_string(tty, chars, size);
591         tty_flip_buffer_push(tty);
592         tty_kref_put(tty);
593 }
594
595 /**
596  *      ifx_spi_complete        -       SPI transfer completed
597  *      @ctx: our SPI device
598  *
599  *      An SPI transfer has completed. Process any received data and kick off
600  *      any further transmits we can commence.
601  */
602 static void ifx_spi_complete(void *ctx)
603 {
604         struct ifx_spi_device *ifx_dev = ctx;
605         struct tty_struct *tty;
606         struct tty_ldisc *ldisc = NULL;
607         int length;
608         int actual_length;
609         unsigned char more;
610         unsigned char cts;
611         int local_write_pending = 0;
612         int queue_length;
613         int srdy;
614         int decode_result;
615
616         mrdy_set_low(ifx_dev);
617
618         if (!ifx_dev->spi_msg.status) {
619                 /* check header validity, get comm flags */
620                 swap_buf((u16 *)ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
621                         &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
622                 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
623                                 &length, &more, &cts);
624                 if (decode_result == IFX_SPI_HEADER_0) {
625                         dev_dbg(&ifx_dev->spi_dev->dev,
626                                 "ignore input: invalid header 0");
627                         ifx_dev->spi_slave_cts = 0;
628                         goto complete_exit;
629                 } else if (decode_result == IFX_SPI_HEADER_F) {
630                         dev_dbg(&ifx_dev->spi_dev->dev,
631                                 "ignore input: invalid header F");
632                         goto complete_exit;
633                 }
634
635                 ifx_dev->spi_slave_cts = cts;
636
637                 actual_length = min((unsigned int)length,
638                                         ifx_dev->spi_msg.actual_length);
639                 swap_buf((u16 *)(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
640                          actual_length,
641                          &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
642                 ifx_spi_insert_flip_string(
643                         ifx_dev,
644                         ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
645                         (size_t)actual_length);
646         } else {
647                 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
648                        ifx_dev->spi_msg.status);
649         }
650
651 complete_exit:
652         if (ifx_dev->write_pending) {
653                 ifx_dev->write_pending = 0;
654                 local_write_pending = 1;
655         }
656
657         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
658
659         queue_length = kfifo_len(&ifx_dev->tx_fifo);
660         srdy = gpio_get_value(ifx_dev->gpio.srdy);
661         if (!srdy)
662                 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
663
664         /* schedule output if there is more to do */
665         if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
666                 tasklet_schedule(&ifx_dev->io_work_tasklet);
667         else {
668                 if (more || ifx_dev->spi_more || queue_length > 0 ||
669                         local_write_pending) {
670                         if (ifx_dev->spi_slave_cts) {
671                                 if (more)
672                                         mrdy_assert(ifx_dev);
673                         } else
674                                 mrdy_assert(ifx_dev);
675                 } else {
676                         /*
677                          * poke line discipline driver if any for more data
678                          * may or may not get more data to write
679                          * for now, say not busy
680                          */
681                         ifx_spi_power_state_clear(ifx_dev,
682                                                   IFX_SPI_POWER_DATA_PENDING);
683                         tty = tty_port_tty_get(&ifx_dev->tty_port);
684                         if (tty) {
685                                 ldisc = tty_ldisc_ref(tty);
686                                 if (ldisc) {
687                                         ldisc->ops->write_wakeup(tty);
688                                         tty_ldisc_deref(ldisc);
689                                 }
690                                 tty_kref_put(tty);
691                         }
692                 }
693         }
694 }
695
696 /**
697  *      ifx_spio_io             -       I/O tasklet
698  *      @data: our SPI device
699  *
700  *      Queue data for transmission if possible and then kick off the
701  *      transfer.
702  */
703 static void ifx_spi_io(unsigned long data)
704 {
705         int retval;
706         struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
707
708         if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags)) {
709                 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
710                         ifx_dev->gpio.unack_srdy_int_nb--;
711
712                 ifx_spi_prepare_tx_buffer(ifx_dev);
713
714                 spi_message_init(&ifx_dev->spi_msg);
715                 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
716
717                 ifx_dev->spi_msg.context = ifx_dev;
718                 ifx_dev->spi_msg.complete = ifx_spi_complete;
719
720                 /* set up our spi transfer */
721                 /* note len is BYTES, not transfers */
722                 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
723                 ifx_dev->spi_xfer.cs_change = 0;
724                 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
725                 /* ifx_dev->spi_xfer.speed_hz = 390625; */
726                 ifx_dev->spi_xfer.bits_per_word = spi_bpw;
727
728                 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
729                 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
730
731                 /*
732                  * setup dma pointers
733                  */
734                 if (ifx_dev->use_dma) {
735                         ifx_dev->spi_msg.is_dma_mapped = 1;
736                         ifx_dev->tx_dma = ifx_dev->tx_bus;
737                         ifx_dev->rx_dma = ifx_dev->rx_bus;
738                         ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
739                         ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
740                 } else {
741                         ifx_dev->spi_msg.is_dma_mapped = 0;
742                         ifx_dev->tx_dma = (dma_addr_t)0;
743                         ifx_dev->rx_dma = (dma_addr_t)0;
744                         ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
745                         ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
746                 }
747
748                 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
749
750                 /* Assert MRDY. This may have already been done by the write
751                  * routine.
752                  */
753                 mrdy_assert(ifx_dev);
754
755                 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
756                 if (retval) {
757                         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
758                                   &ifx_dev->flags);
759                         tasklet_schedule(&ifx_dev->io_work_tasklet);
760                         return;
761                 }
762         } else
763                 ifx_dev->write_pending = 1;
764 }
765
766 /**
767  *      ifx_spi_free_port       -       free up the tty side
768  *      @ifx_dev: IFX device going away
769  *
770  *      Unregister and free up a port when the device goes away
771  */
772 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
773 {
774         if (ifx_dev->tty_dev)
775                 tty_unregister_device(tty_drv, ifx_dev->minor);
776         kfifo_free(&ifx_dev->tx_fifo);
777 }
778
779 /**
780  *      ifx_spi_create_port     -       create a new port
781  *      @ifx_dev: our spi device
782  *
783  *      Allocate and initialise the tty port that goes with this interface
784  *      and add it to the tty layer so that it can be opened.
785  */
786 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
787 {
788         int ret = 0;
789         struct tty_port *pport = &ifx_dev->tty_port;
790
791         spin_lock_init(&ifx_dev->fifo_lock);
792         lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
793                 &ifx_spi_key, 0);
794
795         if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
796                 ret = -ENOMEM;
797                 goto error_ret;
798         }
799
800         tty_port_init(pport);
801         pport->ops = &ifx_tty_port_ops;
802         ifx_dev->minor = IFX_SPI_TTY_ID;
803         ifx_dev->tty_dev = tty_register_device(tty_drv, ifx_dev->minor,
804                                                &ifx_dev->spi_dev->dev);
805         if (IS_ERR(ifx_dev->tty_dev)) {
806                 dev_dbg(&ifx_dev->spi_dev->dev,
807                         "%s: registering tty device failed", __func__);
808                 ret = PTR_ERR(ifx_dev->tty_dev);
809                 goto error_ret;
810         }
811         return 0;
812
813 error_ret:
814         ifx_spi_free_port(ifx_dev);
815         return ret;
816 }
817
818 /**
819  *      ifx_spi_handle_srdy             -       handle SRDY
820  *      @ifx_dev: device asserting SRDY
821  *
822  *      Check our device state and see what we need to kick off when SRDY
823  *      is asserted. This usually means killing the timer and firing off the
824  *      I/O processing.
825  */
826 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
827 {
828         if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
829                 del_timer_sync(&ifx_dev->spi_timer);
830                 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
831         }
832
833         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
834
835         if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
836                 tasklet_schedule(&ifx_dev->io_work_tasklet);
837         else
838                 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
839 }
840
841 /**
842  *      ifx_spi_srdy_interrupt  -       SRDY asserted
843  *      @irq: our IRQ number
844  *      @dev: our ifx device
845  *
846  *      The modem asserted SRDY. Handle the srdy event
847  */
848 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
849 {
850         struct ifx_spi_device *ifx_dev = dev;
851         ifx_dev->gpio.unack_srdy_int_nb++;
852         ifx_spi_handle_srdy(ifx_dev);
853         return IRQ_HANDLED;
854 }
855
856 /**
857  *      ifx_spi_reset_interrupt -       Modem has changed reset state
858  *      @irq: interrupt number
859  *      @dev: our device pointer
860  *
861  *      The modem has either entered or left reset state. Check the GPIO
862  *      line to see which.
863  *
864  *      FIXME: review locking on MR_INPROGRESS versus
865  *      parallel unsolicited reset/solicited reset
866  */
867 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
868 {
869         struct ifx_spi_device *ifx_dev = dev;
870         int val = gpio_get_value(ifx_dev->gpio.reset_out);
871         int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
872
873         if (val == 0) {
874                 /* entered reset */
875                 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
876                 if (!solreset) {
877                         /* unsolicited reset  */
878                         ifx_spi_ttyhangup(ifx_dev);
879                 }
880         } else {
881                 /* exited reset */
882                 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
883                 if (solreset) {
884                         set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
885                         wake_up(&ifx_dev->mdm_reset_wait);
886                 }
887         }
888         return IRQ_HANDLED;
889 }
890
891 /**
892  *      ifx_spi_free_device - free device
893  *      @ifx_dev: device to free
894  *
895  *      Free the IFX device
896  */
897 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
898 {
899         ifx_spi_free_port(ifx_dev);
900         dma_free_coherent(&ifx_dev->spi_dev->dev,
901                                 IFX_SPI_TRANSFER_SIZE,
902                                 ifx_dev->tx_buffer,
903                                 ifx_dev->tx_bus);
904         dma_free_coherent(&ifx_dev->spi_dev->dev,
905                                 IFX_SPI_TRANSFER_SIZE,
906                                 ifx_dev->rx_buffer,
907                                 ifx_dev->rx_bus);
908 }
909
910 /**
911  *      ifx_spi_reset   -       reset modem
912  *      @ifx_dev: modem to reset
913  *
914  *      Perform a reset on the modem
915  */
916 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
917 {
918         int ret;
919         /*
920          * set up modem power, reset
921          *
922          * delays are required on some platforms for the modem
923          * to reset properly
924          */
925         set_bit(MR_START, &ifx_dev->mdm_reset_state);
926         gpio_set_value(ifx_dev->gpio.po, 0);
927         gpio_set_value(ifx_dev->gpio.reset, 0);
928         msleep(25);
929         gpio_set_value(ifx_dev->gpio.reset, 1);
930         msleep(1);
931         gpio_set_value(ifx_dev->gpio.po, 1);
932         msleep(1);
933         gpio_set_value(ifx_dev->gpio.po, 0);
934         ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
935                                  test_bit(MR_COMPLETE,
936                                           &ifx_dev->mdm_reset_state),
937                                  IFX_RESET_TIMEOUT);
938         if (!ret)
939                 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
940                          ifx_dev->mdm_reset_state);
941
942         ifx_dev->mdm_reset_state = 0;
943         return ret;
944 }
945
946 /**
947  *      ifx_spi_spi_probe       -       probe callback
948  *      @spi: our possible matching SPI device
949  *
950  *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
951  *      GPIO setup.
952  *
953  *      FIXME:
954  *      -       Support for multiple devices
955  *      -       Split out MID specific GPIO handling eventually
956  */
957
958 static int ifx_spi_spi_probe(struct spi_device *spi)
959 {
960         int ret;
961         int srdy;
962         struct ifx_modem_platform_data *pl_data;
963         struct ifx_spi_device *ifx_dev;
964
965         if (saved_ifx_dev) {
966                 dev_dbg(&spi->dev, "ignoring subsequent detection");
967                 return -ENODEV;
968         }
969
970         pl_data = (struct ifx_modem_platform_data *)spi->dev.platform_data;
971         if (!pl_data) {
972                 dev_err(&spi->dev, "missing platform data!");
973                 return -ENODEV;
974         }
975
976         /* initialize structure to hold our device variables */
977         ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
978         if (!ifx_dev) {
979                 dev_err(&spi->dev, "spi device allocation failed");
980                 return -ENOMEM;
981         }
982         saved_ifx_dev = ifx_dev;
983         ifx_dev->spi_dev = spi;
984         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
985         spin_lock_init(&ifx_dev->write_lock);
986         spin_lock_init(&ifx_dev->power_lock);
987         ifx_dev->power_status = 0;
988         init_timer(&ifx_dev->spi_timer);
989         ifx_dev->spi_timer.function = ifx_spi_timeout;
990         ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
991         ifx_dev->modem = pl_data->modem_type;
992         ifx_dev->use_dma = pl_data->use_dma;
993         ifx_dev->max_hz = pl_data->max_hz;
994         /* initialize spi mode, etc */
995         spi->max_speed_hz = ifx_dev->max_hz;
996         spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
997         spi->bits_per_word = spi_bpw;
998         ret = spi_setup(spi);
999         if (ret) {
1000                 dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1001                 return -ENODEV;
1002         }
1003
1004         /* ensure SPI protocol flags are initialized to enable transfer */
1005         ifx_dev->spi_more = 0;
1006         ifx_dev->spi_slave_cts = 0;
1007
1008         /*initialize transfer and dma buffers */
1009         ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1010                                 IFX_SPI_TRANSFER_SIZE,
1011                                 &ifx_dev->tx_bus,
1012                                 GFP_KERNEL);
1013         if (!ifx_dev->tx_buffer) {
1014                 dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1015                 ret = -ENOMEM;
1016                 goto error_ret;
1017         }
1018         ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1019                                 IFX_SPI_TRANSFER_SIZE,
1020                                 &ifx_dev->rx_bus,
1021                                 GFP_KERNEL);
1022         if (!ifx_dev->rx_buffer) {
1023                 dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1024                 ret = -ENOMEM;
1025                 goto error_ret;
1026         }
1027
1028         /* initialize waitq for modem reset */
1029         init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1030
1031         spi_set_drvdata(spi, ifx_dev);
1032         tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1033                                                 (unsigned long)ifx_dev);
1034
1035         set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1036
1037         /* create our tty port */
1038         ret = ifx_spi_create_port(ifx_dev);
1039         if (ret != 0) {
1040                 dev_err(&spi->dev, "create default tty port failed");
1041                 goto error_ret;
1042         }
1043
1044         ifx_dev->gpio.reset = pl_data->rst_pmu;
1045         ifx_dev->gpio.po = pl_data->pwr_on;
1046         ifx_dev->gpio.mrdy = pl_data->mrdy;
1047         ifx_dev->gpio.srdy = pl_data->srdy;
1048         ifx_dev->gpio.reset_out = pl_data->rst_out;
1049
1050         dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1051                  ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1052                  ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1053
1054         /* Configure gpios */
1055         ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1056         if (ret < 0) {
1057                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1058                         ifx_dev->gpio.reset);
1059                 goto error_ret;
1060         }
1061         ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1062         ret += gpio_export(ifx_dev->gpio.reset, 1);
1063         if (ret) {
1064                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1065                         ifx_dev->gpio.reset);
1066                 ret = -EBUSY;
1067                 goto error_ret2;
1068         }
1069
1070         ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1071         ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1072         ret += gpio_export(ifx_dev->gpio.po, 1);
1073         if (ret) {
1074                 dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1075                         ifx_dev->gpio.po);
1076                 ret = -EBUSY;
1077                 goto error_ret3;
1078         }
1079
1080         ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1081         if (ret < 0) {
1082                 dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1083                         ifx_dev->gpio.mrdy);
1084                 goto error_ret3;
1085         }
1086         ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1087         ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1088         if (ret) {
1089                 dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1090                         ifx_dev->gpio.mrdy);
1091                 ret = -EBUSY;
1092                 goto error_ret4;
1093         }
1094
1095         ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1096         if (ret < 0) {
1097                 dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1098                         ifx_dev->gpio.srdy);
1099                 ret = -EBUSY;
1100                 goto error_ret4;
1101         }
1102         ret += gpio_export(ifx_dev->gpio.srdy, 1);
1103         ret += gpio_direction_input(ifx_dev->gpio.srdy);
1104         if (ret) {
1105                 dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1106                         ifx_dev->gpio.srdy);
1107                 ret = -EBUSY;
1108                 goto error_ret5;
1109         }
1110
1111         ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1112         if (ret < 0) {
1113                 dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1114                         ifx_dev->gpio.reset_out);
1115                 goto error_ret5;
1116         }
1117         ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1118         ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1119         if (ret) {
1120                 dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1121                         ifx_dev->gpio.reset_out);
1122                 ret = -EBUSY;
1123                 goto error_ret6;
1124         }
1125
1126         ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1127                           ifx_spi_reset_interrupt,
1128                           IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1129                 (void *)ifx_dev);
1130         if (ret) {
1131                 dev_err(&spi->dev, "Unable to get irq %x\n",
1132                         gpio_to_irq(ifx_dev->gpio.reset_out));
1133                 goto error_ret6;
1134         }
1135
1136         ret = ifx_spi_reset(ifx_dev);
1137
1138         ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1139                           ifx_spi_srdy_interrupt,
1140                           IRQF_TRIGGER_RISING, DRVNAME,
1141                           (void *)ifx_dev);
1142         if (ret) {
1143                 dev_err(&spi->dev, "Unable to get irq %x",
1144                         gpio_to_irq(ifx_dev->gpio.srdy));
1145                 goto error_ret7;
1146         }
1147
1148         /* set pm runtime power state and register with power system */
1149         pm_runtime_set_active(&spi->dev);
1150         pm_runtime_enable(&spi->dev);
1151
1152         /* handle case that modem is already signaling SRDY */
1153         /* no outgoing tty open at this point, this just satisfies the
1154          * modem's read and should reset communication properly
1155          */
1156         srdy = gpio_get_value(ifx_dev->gpio.srdy);
1157
1158         if (srdy) {
1159                 mrdy_assert(ifx_dev);
1160                 ifx_spi_handle_srdy(ifx_dev);
1161         } else
1162                 mrdy_set_low(ifx_dev);
1163         return 0;
1164
1165 error_ret7:
1166         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1167 error_ret6:
1168         gpio_free(ifx_dev->gpio.srdy);
1169 error_ret5:
1170         gpio_free(ifx_dev->gpio.mrdy);
1171 error_ret4:
1172         gpio_free(ifx_dev->gpio.reset);
1173 error_ret3:
1174         gpio_free(ifx_dev->gpio.po);
1175 error_ret2:
1176         gpio_free(ifx_dev->gpio.reset_out);
1177 error_ret:
1178         ifx_spi_free_device(ifx_dev);
1179         saved_ifx_dev = NULL;
1180         return ret;
1181 }
1182
1183 /**
1184  *      ifx_spi_spi_remove      -       SPI device was removed
1185  *      @spi: SPI device
1186  *
1187  *      FIXME: We should be shutting the device down here not in
1188  *      the module unload path.
1189  */
1190
1191 static int ifx_spi_spi_remove(struct spi_device *spi)
1192 {
1193         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1194         /* stop activity */
1195         tasklet_kill(&ifx_dev->io_work_tasklet);
1196         /* free irq */
1197         free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1198         free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1199
1200         gpio_free(ifx_dev->gpio.srdy);
1201         gpio_free(ifx_dev->gpio.mrdy);
1202         gpio_free(ifx_dev->gpio.reset);
1203         gpio_free(ifx_dev->gpio.po);
1204         gpio_free(ifx_dev->gpio.reset_out);
1205
1206         /* free allocations */
1207         ifx_spi_free_device(ifx_dev);
1208
1209         saved_ifx_dev = NULL;
1210         return 0;
1211 }
1212
1213 /**
1214  *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1215  *      @spi: SPI device
1216  *
1217  *      No action needs to be taken here
1218  */
1219
1220 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1221 {
1222 }
1223
1224 /*
1225  * various suspends and resumes have nothing to do
1226  * no hardware to save state for
1227  */
1228
1229 /**
1230  *      ifx_spi_spi_suspend     -       suspend SPI on system suspend
1231  *      @dev: device being suspended
1232  *
1233  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1234  *      need extending for other systems.
1235  */
1236 static int ifx_spi_spi_suspend(struct spi_device *spi, pm_message_t msg)
1237 {
1238         return 0;
1239 }
1240
1241 /**
1242  *      ifx_spi_spi_resume      -       resume SPI side on system resume
1243  *      @dev: device being suspended
1244  *
1245  *      Suspend the SPI side. No action needed on Intel MID platforms, may
1246  *      need extending for other systems.
1247  */
1248 static int ifx_spi_spi_resume(struct spi_device *spi)
1249 {
1250         return 0;
1251 }
1252
1253 /**
1254  *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1255  *      @dev: device being suspended
1256  *
1257  *      Suspend the modem. No action needed on Intel MID platforms, may
1258  *      need extending for other systems.
1259  */
1260 static int ifx_spi_pm_suspend(struct device *dev)
1261 {
1262         return 0;
1263 }
1264
1265 /**
1266  *      ifx_spi_pm_resume       -       resume modem on system resume
1267  *      @dev: device being suspended
1268  *
1269  *      Allow the modem to resume. No action needed.
1270  *
1271  *      FIXME: do we need to reset anything here ?
1272  */
1273 static int ifx_spi_pm_resume(struct device *dev)
1274 {
1275         return 0;
1276 }
1277
1278 /**
1279  *      ifx_spi_pm_runtime_resume       -       suspend modem
1280  *      @dev: device being suspended
1281  *
1282  *      Allow the modem to resume. No action needed.
1283  */
1284 static int ifx_spi_pm_runtime_resume(struct device *dev)
1285 {
1286         return 0;
1287 }
1288
1289 /**
1290  *      ifx_spi_pm_runtime_suspend      -       suspend modem
1291  *      @dev: device being suspended
1292  *
1293  *      Allow the modem to suspend and thus suspend to continue up the
1294  *      device tree.
1295  */
1296 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1297 {
1298         return 0;
1299 }
1300
1301 /**
1302  *      ifx_spi_pm_runtime_idle         -       check if modem idle
1303  *      @dev: our device
1304  *
1305  *      Check conditions and queue runtime suspend if idle.
1306  */
1307 static int ifx_spi_pm_runtime_idle(struct device *dev)
1308 {
1309         struct spi_device *spi = to_spi_device(dev);
1310         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1311
1312         if (!ifx_dev->power_status)
1313                 pm_runtime_suspend(dev);
1314
1315         return 0;
1316 }
1317
1318 static const struct dev_pm_ops ifx_spi_pm = {
1319         .resume = ifx_spi_pm_resume,
1320         .suspend = ifx_spi_pm_suspend,
1321         .runtime_resume = ifx_spi_pm_runtime_resume,
1322         .runtime_suspend = ifx_spi_pm_runtime_suspend,
1323         .runtime_idle = ifx_spi_pm_runtime_idle
1324 };
1325
1326 static const struct spi_device_id ifx_id_table[] = {
1327         {"ifx6160", 0},
1328         {"ifx6260", 0},
1329         { }
1330 };
1331 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1332
1333 /* spi operations */
1334 static const struct spi_driver ifx_spi_driver = {
1335         .driver = {
1336                 .name = DRVNAME,
1337                 .bus = &spi_bus_type,
1338                 .pm = &ifx_spi_pm,
1339                 .owner = THIS_MODULE},
1340         .probe = ifx_spi_spi_probe,
1341         .shutdown = ifx_spi_spi_shutdown,
1342         .remove = __devexit_p(ifx_spi_spi_remove),
1343         .suspend = ifx_spi_spi_suspend,
1344         .resume = ifx_spi_spi_resume,
1345         .id_table = ifx_id_table
1346 };
1347
1348 /**
1349  *      ifx_spi_exit    -       module exit
1350  *
1351  *      Unload the module.
1352  */
1353
1354 static void __exit ifx_spi_exit(void)
1355 {
1356         /* unregister */
1357         tty_unregister_driver(tty_drv);
1358         spi_unregister_driver((void *)&ifx_spi_driver);
1359 }
1360
1361 /**
1362  *      ifx_spi_init            -       module entry point
1363  *
1364  *      Initialise the SPI and tty interfaces for the IFX SPI driver
1365  *      We need to initialize upper-edge spi driver after the tty
1366  *      driver because otherwise the spi probe will race
1367  */
1368
1369 static int __init ifx_spi_init(void)
1370 {
1371         int result;
1372
1373         tty_drv = alloc_tty_driver(1);
1374         if (!tty_drv) {
1375                 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1376                 return -ENOMEM;
1377         }
1378
1379         tty_drv->magic = TTY_DRIVER_MAGIC;
1380         tty_drv->owner = THIS_MODULE;
1381         tty_drv->driver_name = DRVNAME;
1382         tty_drv->name = TTYNAME;
1383         tty_drv->minor_start = IFX_SPI_TTY_ID;
1384         tty_drv->num = 1;
1385         tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1386         tty_drv->subtype = SERIAL_TYPE_NORMAL;
1387         tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1388         tty_drv->init_termios = tty_std_termios;
1389
1390         tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1391
1392         result = tty_register_driver(tty_drv);
1393         if (result) {
1394                 pr_err("%s: tty_register_driver failed(%d)",
1395                         DRVNAME, result);
1396                 put_tty_driver(tty_drv);
1397                 return result;
1398         }
1399
1400         result = spi_register_driver((void *)&ifx_spi_driver);
1401         if (result) {
1402                 pr_err("%s: spi_register_driver failed(%d)",
1403                         DRVNAME, result);
1404                 tty_unregister_driver(tty_drv);
1405         }
1406         return result;
1407 }
1408
1409 module_init(ifx_spi_init);
1410 module_exit(ifx_spi_exit);
1411
1412 MODULE_AUTHOR("Intel");
1413 MODULE_DESCRIPTION("IFX6x60 spi driver");
1414 MODULE_LICENSE("GPL");
1415 MODULE_INFO(Version, "0.1-IFX6x60");