Merge branches 'perf-urgent-for-linus' and 'sched-urgent-for-linus' of git://git...
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_cdb.h"
57 #include "target_core_hba.h"
58 #include "target_core_pr.h"
59 #include "target_core_ua.h"
60
61 static int sub_api_initialized;
62
63 static struct workqueue_struct *target_completion_wq;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72
73 static int transport_generic_write_pending(struct se_cmd *);
74 static int transport_processing_thread(void *param);
75 static int __transport_execute_tasks(struct se_device *dev);
76 static void transport_complete_task_attr(struct se_cmd *cmd);
77 static void transport_handle_queue_full(struct se_cmd *cmd,
78                 struct se_device *dev);
79 static void transport_free_dev_tasks(struct se_cmd *cmd);
80 static int transport_generic_get_mem(struct se_cmd *cmd);
81 static void transport_put_cmd(struct se_cmd *cmd);
82 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
83 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
84 static void transport_generic_request_failure(struct se_cmd *);
85 static void target_complete_ok_work(struct work_struct *work);
86
87 int init_se_kmem_caches(void)
88 {
89         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
90                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
91                         0, NULL);
92         if (!se_tmr_req_cache) {
93                 pr_err("kmem_cache_create() for struct se_tmr_req"
94                                 " failed\n");
95                 goto out;
96         }
97         se_sess_cache = kmem_cache_create("se_sess_cache",
98                         sizeof(struct se_session), __alignof__(struct se_session),
99                         0, NULL);
100         if (!se_sess_cache) {
101                 pr_err("kmem_cache_create() for struct se_session"
102                                 " failed\n");
103                 goto out_free_tmr_req_cache;
104         }
105         se_ua_cache = kmem_cache_create("se_ua_cache",
106                         sizeof(struct se_ua), __alignof__(struct se_ua),
107                         0, NULL);
108         if (!se_ua_cache) {
109                 pr_err("kmem_cache_create() for struct se_ua failed\n");
110                 goto out_free_sess_cache;
111         }
112         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
113                         sizeof(struct t10_pr_registration),
114                         __alignof__(struct t10_pr_registration), 0, NULL);
115         if (!t10_pr_reg_cache) {
116                 pr_err("kmem_cache_create() for struct t10_pr_registration"
117                                 " failed\n");
118                 goto out_free_ua_cache;
119         }
120         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
121                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
122                         0, NULL);
123         if (!t10_alua_lu_gp_cache) {
124                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
125                                 " failed\n");
126                 goto out_free_pr_reg_cache;
127         }
128         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
129                         sizeof(struct t10_alua_lu_gp_member),
130                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
131         if (!t10_alua_lu_gp_mem_cache) {
132                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
133                                 "cache failed\n");
134                 goto out_free_lu_gp_cache;
135         }
136         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
137                         sizeof(struct t10_alua_tg_pt_gp),
138                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
139         if (!t10_alua_tg_pt_gp_cache) {
140                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
141                                 "cache failed\n");
142                 goto out_free_lu_gp_mem_cache;
143         }
144         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
145                         "t10_alua_tg_pt_gp_mem_cache",
146                         sizeof(struct t10_alua_tg_pt_gp_member),
147                         __alignof__(struct t10_alua_tg_pt_gp_member),
148                         0, NULL);
149         if (!t10_alua_tg_pt_gp_mem_cache) {
150                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
151                                 "mem_t failed\n");
152                 goto out_free_tg_pt_gp_cache;
153         }
154
155         target_completion_wq = alloc_workqueue("target_completion",
156                                                WQ_MEM_RECLAIM, 0);
157         if (!target_completion_wq)
158                 goto out_free_tg_pt_gp_mem_cache;
159
160         return 0;
161
162 out_free_tg_pt_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
164 out_free_tg_pt_gp_cache:
165         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
166 out_free_lu_gp_mem_cache:
167         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
168 out_free_lu_gp_cache:
169         kmem_cache_destroy(t10_alua_lu_gp_cache);
170 out_free_pr_reg_cache:
171         kmem_cache_destroy(t10_pr_reg_cache);
172 out_free_ua_cache:
173         kmem_cache_destroy(se_ua_cache);
174 out_free_sess_cache:
175         kmem_cache_destroy(se_sess_cache);
176 out_free_tmr_req_cache:
177         kmem_cache_destroy(se_tmr_req_cache);
178 out:
179         return -ENOMEM;
180 }
181
182 void release_se_kmem_caches(void)
183 {
184         destroy_workqueue(target_completion_wq);
185         kmem_cache_destroy(se_tmr_req_cache);
186         kmem_cache_destroy(se_sess_cache);
187         kmem_cache_destroy(se_ua_cache);
188         kmem_cache_destroy(t10_pr_reg_cache);
189         kmem_cache_destroy(t10_alua_lu_gp_cache);
190         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
192         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_init_queue_obj(struct se_queue_obj *qobj)
216 {
217         atomic_set(&qobj->queue_cnt, 0);
218         INIT_LIST_HEAD(&qobj->qobj_list);
219         init_waitqueue_head(&qobj->thread_wq);
220         spin_lock_init(&qobj->cmd_queue_lock);
221 }
222 EXPORT_SYMBOL(transport_init_queue_obj);
223
224 void transport_subsystem_check_init(void)
225 {
226         int ret;
227
228         if (sub_api_initialized)
229                 return;
230
231         ret = request_module("target_core_iblock");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_iblock\n");
234
235         ret = request_module("target_core_file");
236         if (ret != 0)
237                 pr_err("Unable to load target_core_file\n");
238
239         ret = request_module("target_core_pscsi");
240         if (ret != 0)
241                 pr_err("Unable to load target_core_pscsi\n");
242
243         ret = request_module("target_core_stgt");
244         if (ret != 0)
245                 pr_err("Unable to load target_core_stgt\n");
246
247         sub_api_initialized = 1;
248         return;
249 }
250
251 struct se_session *transport_init_session(void)
252 {
253         struct se_session *se_sess;
254
255         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
256         if (!se_sess) {
257                 pr_err("Unable to allocate struct se_session from"
258                                 " se_sess_cache\n");
259                 return ERR_PTR(-ENOMEM);
260         }
261         INIT_LIST_HEAD(&se_sess->sess_list);
262         INIT_LIST_HEAD(&se_sess->sess_acl_list);
263         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
264         INIT_LIST_HEAD(&se_sess->sess_wait_list);
265         spin_lock_init(&se_sess->sess_cmd_lock);
266
267         return se_sess;
268 }
269 EXPORT_SYMBOL(transport_init_session);
270
271 /*
272  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
273  */
274 void __transport_register_session(
275         struct se_portal_group *se_tpg,
276         struct se_node_acl *se_nacl,
277         struct se_session *se_sess,
278         void *fabric_sess_ptr)
279 {
280         unsigned char buf[PR_REG_ISID_LEN];
281
282         se_sess->se_tpg = se_tpg;
283         se_sess->fabric_sess_ptr = fabric_sess_ptr;
284         /*
285          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
286          *
287          * Only set for struct se_session's that will actually be moving I/O.
288          * eg: *NOT* discovery sessions.
289          */
290         if (se_nacl) {
291                 /*
292                  * If the fabric module supports an ISID based TransportID,
293                  * save this value in binary from the fabric I_T Nexus now.
294                  */
295                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
296                         memset(&buf[0], 0, PR_REG_ISID_LEN);
297                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
298                                         &buf[0], PR_REG_ISID_LEN);
299                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
300                 }
301                 spin_lock_irq(&se_nacl->nacl_sess_lock);
302                 /*
303                  * The se_nacl->nacl_sess pointer will be set to the
304                  * last active I_T Nexus for each struct se_node_acl.
305                  */
306                 se_nacl->nacl_sess = se_sess;
307
308                 list_add_tail(&se_sess->sess_acl_list,
309                               &se_nacl->acl_sess_list);
310                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
311         }
312         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
313
314         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
315                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
316 }
317 EXPORT_SYMBOL(__transport_register_session);
318
319 void transport_register_session(
320         struct se_portal_group *se_tpg,
321         struct se_node_acl *se_nacl,
322         struct se_session *se_sess,
323         void *fabric_sess_ptr)
324 {
325         spin_lock_bh(&se_tpg->session_lock);
326         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
327         spin_unlock_bh(&se_tpg->session_lock);
328 }
329 EXPORT_SYMBOL(transport_register_session);
330
331 void transport_deregister_session_configfs(struct se_session *se_sess)
332 {
333         struct se_node_acl *se_nacl;
334         unsigned long flags;
335         /*
336          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
337          */
338         se_nacl = se_sess->se_node_acl;
339         if (se_nacl) {
340                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
341                 list_del(&se_sess->sess_acl_list);
342                 /*
343                  * If the session list is empty, then clear the pointer.
344                  * Otherwise, set the struct se_session pointer from the tail
345                  * element of the per struct se_node_acl active session list.
346                  */
347                 if (list_empty(&se_nacl->acl_sess_list))
348                         se_nacl->nacl_sess = NULL;
349                 else {
350                         se_nacl->nacl_sess = container_of(
351                                         se_nacl->acl_sess_list.prev,
352                                         struct se_session, sess_acl_list);
353                 }
354                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
355         }
356 }
357 EXPORT_SYMBOL(transport_deregister_session_configfs);
358
359 void transport_free_session(struct se_session *se_sess)
360 {
361         kmem_cache_free(se_sess_cache, se_sess);
362 }
363 EXPORT_SYMBOL(transport_free_session);
364
365 void transport_deregister_session(struct se_session *se_sess)
366 {
367         struct se_portal_group *se_tpg = se_sess->se_tpg;
368         struct se_node_acl *se_nacl;
369         unsigned long flags;
370
371         if (!se_tpg) {
372                 transport_free_session(se_sess);
373                 return;
374         }
375
376         spin_lock_irqsave(&se_tpg->session_lock, flags);
377         list_del(&se_sess->sess_list);
378         se_sess->se_tpg = NULL;
379         se_sess->fabric_sess_ptr = NULL;
380         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
381
382         /*
383          * Determine if we need to do extra work for this initiator node's
384          * struct se_node_acl if it had been previously dynamically generated.
385          */
386         se_nacl = se_sess->se_node_acl;
387         if (se_nacl) {
388                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
389                 if (se_nacl->dynamic_node_acl) {
390                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
391                                         se_tpg)) {
392                                 list_del(&se_nacl->acl_list);
393                                 se_tpg->num_node_acls--;
394                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
395
396                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
397                                 core_free_device_list_for_node(se_nacl, se_tpg);
398                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
399                                                 se_nacl);
400                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
401                         }
402                 }
403                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
404         }
405
406         transport_free_session(se_sess);
407
408         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
409                 se_tpg->se_tpg_tfo->get_fabric_name());
410 }
411 EXPORT_SYMBOL(transport_deregister_session);
412
413 /*
414  * Called with cmd->t_state_lock held.
415  */
416 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
417 {
418         struct se_device *dev = cmd->se_dev;
419         struct se_task *task;
420         unsigned long flags;
421
422         if (!dev)
423                 return;
424
425         list_for_each_entry(task, &cmd->t_task_list, t_list) {
426                 if (task->task_flags & TF_ACTIVE)
427                         continue;
428
429                 if (!atomic_read(&task->task_state_active))
430                         continue;
431
432                 spin_lock_irqsave(&dev->execute_task_lock, flags);
433                 list_del(&task->t_state_list);
434                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
435                         cmd->se_tfo->get_task_tag(cmd), dev, task);
436                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
437
438                 atomic_set(&task->task_state_active, 0);
439                 atomic_dec(&cmd->t_task_cdbs_ex_left);
440         }
441 }
442
443 /*      transport_cmd_check_stop():
444  *
445  *      'transport_off = 1' determines if t_transport_active should be cleared.
446  *      'transport_off = 2' determines if task_dev_state should be removed.
447  *
448  *      A non-zero u8 t_state sets cmd->t_state.
449  *      Returns 1 when command is stopped, else 0.
450  */
451 static int transport_cmd_check_stop(
452         struct se_cmd *cmd,
453         int transport_off,
454         u8 t_state)
455 {
456         unsigned long flags;
457
458         spin_lock_irqsave(&cmd->t_state_lock, flags);
459         /*
460          * Determine if IOCTL context caller in requesting the stopping of this
461          * command for LUN shutdown purposes.
462          */
463         if (atomic_read(&cmd->transport_lun_stop)) {
464                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
465                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
466                         cmd->se_tfo->get_task_tag(cmd));
467
468                 atomic_set(&cmd->t_transport_active, 0);
469                 if (transport_off == 2)
470                         transport_all_task_dev_remove_state(cmd);
471                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
472
473                 complete(&cmd->transport_lun_stop_comp);
474                 return 1;
475         }
476         /*
477          * Determine if frontend context caller is requesting the stopping of
478          * this command for frontend exceptions.
479          */
480         if (atomic_read(&cmd->t_transport_stop)) {
481                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
482                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
483                         cmd->se_tfo->get_task_tag(cmd));
484
485                 if (transport_off == 2)
486                         transport_all_task_dev_remove_state(cmd);
487
488                 /*
489                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
490                  * to FE.
491                  */
492                 if (transport_off == 2)
493                         cmd->se_lun = NULL;
494                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496                 complete(&cmd->t_transport_stop_comp);
497                 return 1;
498         }
499         if (transport_off) {
500                 atomic_set(&cmd->t_transport_active, 0);
501                 if (transport_off == 2) {
502                         transport_all_task_dev_remove_state(cmd);
503                         /*
504                          * Clear struct se_cmd->se_lun before the transport_off == 2
505                          * handoff to fabric module.
506                          */
507                         cmd->se_lun = NULL;
508                         /*
509                          * Some fabric modules like tcm_loop can release
510                          * their internally allocated I/O reference now and
511                          * struct se_cmd now.
512                          *
513                          * Fabric modules are expected to return '1' here if the
514                          * se_cmd being passed is released at this point,
515                          * or zero if not being released.
516                          */
517                         if (cmd->se_tfo->check_stop_free != NULL) {
518                                 spin_unlock_irqrestore(
519                                         &cmd->t_state_lock, flags);
520
521                                 return cmd->se_tfo->check_stop_free(cmd);
522                         }
523                 }
524                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526                 return 0;
527         } else if (t_state)
528                 cmd->t_state = t_state;
529         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
530
531         return 0;
532 }
533
534 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
535 {
536         return transport_cmd_check_stop(cmd, 2, 0);
537 }
538
539 static void transport_lun_remove_cmd(struct se_cmd *cmd)
540 {
541         struct se_lun *lun = cmd->se_lun;
542         unsigned long flags;
543
544         if (!lun)
545                 return;
546
547         spin_lock_irqsave(&cmd->t_state_lock, flags);
548         if (!atomic_read(&cmd->transport_dev_active)) {
549                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550                 goto check_lun;
551         }
552         atomic_set(&cmd->transport_dev_active, 0);
553         transport_all_task_dev_remove_state(cmd);
554         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556
557 check_lun:
558         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
559         if (atomic_read(&cmd->transport_lun_active)) {
560                 list_del(&cmd->se_lun_node);
561                 atomic_set(&cmd->transport_lun_active, 0);
562 #if 0
563                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
564                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
565 #endif
566         }
567         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
568 }
569
570 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
571 {
572         if (!cmd->se_tmr_req)
573                 transport_lun_remove_cmd(cmd);
574
575         if (transport_cmd_check_stop_to_fabric(cmd))
576                 return;
577         if (remove) {
578                 transport_remove_cmd_from_queue(cmd);
579                 transport_put_cmd(cmd);
580         }
581 }
582
583 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
584                 bool at_head)
585 {
586         struct se_device *dev = cmd->se_dev;
587         struct se_queue_obj *qobj = &dev->dev_queue_obj;
588         unsigned long flags;
589
590         if (t_state) {
591                 spin_lock_irqsave(&cmd->t_state_lock, flags);
592                 cmd->t_state = t_state;
593                 atomic_set(&cmd->t_transport_active, 1);
594                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
595         }
596
597         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
598
599         /* If the cmd is already on the list, remove it before we add it */
600         if (!list_empty(&cmd->se_queue_node))
601                 list_del(&cmd->se_queue_node);
602         else
603                 atomic_inc(&qobj->queue_cnt);
604
605         if (at_head)
606                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
607         else
608                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
609         atomic_set(&cmd->t_transport_queue_active, 1);
610         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
611
612         wake_up_interruptible(&qobj->thread_wq);
613 }
614
615 static struct se_cmd *
616 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
617 {
618         struct se_cmd *cmd;
619         unsigned long flags;
620
621         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
622         if (list_empty(&qobj->qobj_list)) {
623                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
624                 return NULL;
625         }
626         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
627
628         atomic_set(&cmd->t_transport_queue_active, 0);
629
630         list_del_init(&cmd->se_queue_node);
631         atomic_dec(&qobj->queue_cnt);
632         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
633
634         return cmd;
635 }
636
637 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
638 {
639         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
640         unsigned long flags;
641
642         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
643         if (!atomic_read(&cmd->t_transport_queue_active)) {
644                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
645                 return;
646         }
647         atomic_set(&cmd->t_transport_queue_active, 0);
648         atomic_dec(&qobj->queue_cnt);
649         list_del_init(&cmd->se_queue_node);
650         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
651
652         if (atomic_read(&cmd->t_transport_queue_active)) {
653                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
654                         cmd->se_tfo->get_task_tag(cmd),
655                         atomic_read(&cmd->t_transport_queue_active));
656         }
657 }
658
659 /*
660  * Completion function used by TCM subsystem plugins (such as FILEIO)
661  * for queueing up response from struct se_subsystem_api->do_task()
662  */
663 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
664 {
665         struct se_task *task = list_entry(cmd->t_task_list.next,
666                                 struct se_task, t_list);
667
668         if (good) {
669                 cmd->scsi_status = SAM_STAT_GOOD;
670                 task->task_scsi_status = GOOD;
671         } else {
672                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
673                 task->task_se_cmd->scsi_sense_reason =
674                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
675
676         }
677
678         transport_complete_task(task, good);
679 }
680 EXPORT_SYMBOL(transport_complete_sync_cache);
681
682 static void target_complete_failure_work(struct work_struct *work)
683 {
684         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
685
686         transport_generic_request_failure(cmd);
687 }
688
689 /*      transport_complete_task():
690  *
691  *      Called from interrupt and non interrupt context depending
692  *      on the transport plugin.
693  */
694 void transport_complete_task(struct se_task *task, int success)
695 {
696         struct se_cmd *cmd = task->task_se_cmd;
697         struct se_device *dev = cmd->se_dev;
698         unsigned long flags;
699 #if 0
700         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
701                         cmd->t_task_cdb[0], dev);
702 #endif
703         if (dev)
704                 atomic_inc(&dev->depth_left);
705
706         spin_lock_irqsave(&cmd->t_state_lock, flags);
707         task->task_flags &= ~TF_ACTIVE;
708
709         /*
710          * See if any sense data exists, if so set the TASK_SENSE flag.
711          * Also check for any other post completion work that needs to be
712          * done by the plugins.
713          */
714         if (dev && dev->transport->transport_complete) {
715                 if (dev->transport->transport_complete(task) != 0) {
716                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
717                         task->task_sense = 1;
718                         success = 1;
719                 }
720         }
721
722         /*
723          * See if we are waiting for outstanding struct se_task
724          * to complete for an exception condition
725          */
726         if (task->task_flags & TF_REQUEST_STOP) {
727                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
728                 complete(&task->task_stop_comp);
729                 return;
730         }
731
732         if (!success)
733                 cmd->t_tasks_failed = 1;
734
735         /*
736          * Decrement the outstanding t_task_cdbs_left count.  The last
737          * struct se_task from struct se_cmd will complete itself into the
738          * device queue depending upon int success.
739          */
740         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
741                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
742                 return;
743         }
744
745         if (cmd->t_tasks_failed) {
746                 if (!task->task_error_status) {
747                         task->task_error_status =
748                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
749                         cmd->scsi_sense_reason =
750                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
751                 }
752
753                 INIT_WORK(&cmd->work, target_complete_failure_work);
754         } else {
755                 atomic_set(&cmd->t_transport_complete, 1);
756                 INIT_WORK(&cmd->work, target_complete_ok_work);
757         }
758
759         cmd->t_state = TRANSPORT_COMPLETE;
760         atomic_set(&cmd->t_transport_active, 1);
761         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
762
763         queue_work(target_completion_wq, &cmd->work);
764 }
765 EXPORT_SYMBOL(transport_complete_task);
766
767 /*
768  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
769  * struct se_task list are ready to be added to the active execution list
770  * struct se_device
771
772  * Called with se_dev_t->execute_task_lock called.
773  */
774 static inline int transport_add_task_check_sam_attr(
775         struct se_task *task,
776         struct se_task *task_prev,
777         struct se_device *dev)
778 {
779         /*
780          * No SAM Task attribute emulation enabled, add to tail of
781          * execution queue
782          */
783         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
784                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
785                 return 0;
786         }
787         /*
788          * HEAD_OF_QUEUE attribute for received CDB, which means
789          * the first task that is associated with a struct se_cmd goes to
790          * head of the struct se_device->execute_task_list, and task_prev
791          * after that for each subsequent task
792          */
793         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
794                 list_add(&task->t_execute_list,
795                                 (task_prev != NULL) ?
796                                 &task_prev->t_execute_list :
797                                 &dev->execute_task_list);
798
799                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
800                                 " in execution queue\n",
801                                 task->task_se_cmd->t_task_cdb[0]);
802                 return 1;
803         }
804         /*
805          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
806          * transitioned from Dermant -> Active state, and are added to the end
807          * of the struct se_device->execute_task_list
808          */
809         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
810         return 0;
811 }
812
813 /*      __transport_add_task_to_execute_queue():
814  *
815  *      Called with se_dev_t->execute_task_lock called.
816  */
817 static void __transport_add_task_to_execute_queue(
818         struct se_task *task,
819         struct se_task *task_prev,
820         struct se_device *dev)
821 {
822         int head_of_queue;
823
824         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
825         atomic_inc(&dev->execute_tasks);
826
827         if (atomic_read(&task->task_state_active))
828                 return;
829         /*
830          * Determine if this task needs to go to HEAD_OF_QUEUE for the
831          * state list as well.  Running with SAM Task Attribute emulation
832          * will always return head_of_queue == 0 here
833          */
834         if (head_of_queue)
835                 list_add(&task->t_state_list, (task_prev) ?
836                                 &task_prev->t_state_list :
837                                 &dev->state_task_list);
838         else
839                 list_add_tail(&task->t_state_list, &dev->state_task_list);
840
841         atomic_set(&task->task_state_active, 1);
842
843         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
844                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
845                 task, dev);
846 }
847
848 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
849 {
850         struct se_device *dev = cmd->se_dev;
851         struct se_task *task;
852         unsigned long flags;
853
854         spin_lock_irqsave(&cmd->t_state_lock, flags);
855         list_for_each_entry(task, &cmd->t_task_list, t_list) {
856                 if (atomic_read(&task->task_state_active))
857                         continue;
858
859                 spin_lock(&dev->execute_task_lock);
860                 list_add_tail(&task->t_state_list, &dev->state_task_list);
861                 atomic_set(&task->task_state_active, 1);
862
863                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
864                         task->task_se_cmd->se_tfo->get_task_tag(
865                         task->task_se_cmd), task, dev);
866
867                 spin_unlock(&dev->execute_task_lock);
868         }
869         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
870 }
871
872 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
873 {
874         struct se_device *dev = cmd->se_dev;
875         struct se_task *task, *task_prev = NULL;
876         unsigned long flags;
877
878         spin_lock_irqsave(&dev->execute_task_lock, flags);
879         list_for_each_entry(task, &cmd->t_task_list, t_list) {
880                 if (!list_empty(&task->t_execute_list))
881                         continue;
882                 /*
883                  * __transport_add_task_to_execute_queue() handles the
884                  * SAM Task Attribute emulation if enabled
885                  */
886                 __transport_add_task_to_execute_queue(task, task_prev, dev);
887                 task_prev = task;
888         }
889         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
890 }
891
892 void __transport_remove_task_from_execute_queue(struct se_task *task,
893                 struct se_device *dev)
894 {
895         list_del_init(&task->t_execute_list);
896         atomic_dec(&dev->execute_tasks);
897 }
898
899 void transport_remove_task_from_execute_queue(
900         struct se_task *task,
901         struct se_device *dev)
902 {
903         unsigned long flags;
904
905         if (WARN_ON(list_empty(&task->t_execute_list)))
906                 return;
907
908         spin_lock_irqsave(&dev->execute_task_lock, flags);
909         __transport_remove_task_from_execute_queue(task, dev);
910         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
911 }
912
913 /*
914  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
915  */
916
917 static void target_qf_do_work(struct work_struct *work)
918 {
919         struct se_device *dev = container_of(work, struct se_device,
920                                         qf_work_queue);
921         LIST_HEAD(qf_cmd_list);
922         struct se_cmd *cmd, *cmd_tmp;
923
924         spin_lock_irq(&dev->qf_cmd_lock);
925         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
926         spin_unlock_irq(&dev->qf_cmd_lock);
927
928         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
929                 list_del(&cmd->se_qf_node);
930                 atomic_dec(&dev->dev_qf_count);
931                 smp_mb__after_atomic_dec();
932
933                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
934                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
935                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
936                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
937                         : "UNKNOWN");
938
939                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
940         }
941 }
942
943 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
944 {
945         switch (cmd->data_direction) {
946         case DMA_NONE:
947                 return "NONE";
948         case DMA_FROM_DEVICE:
949                 return "READ";
950         case DMA_TO_DEVICE:
951                 return "WRITE";
952         case DMA_BIDIRECTIONAL:
953                 return "BIDI";
954         default:
955                 break;
956         }
957
958         return "UNKNOWN";
959 }
960
961 void transport_dump_dev_state(
962         struct se_device *dev,
963         char *b,
964         int *bl)
965 {
966         *bl += sprintf(b + *bl, "Status: ");
967         switch (dev->dev_status) {
968         case TRANSPORT_DEVICE_ACTIVATED:
969                 *bl += sprintf(b + *bl, "ACTIVATED");
970                 break;
971         case TRANSPORT_DEVICE_DEACTIVATED:
972                 *bl += sprintf(b + *bl, "DEACTIVATED");
973                 break;
974         case TRANSPORT_DEVICE_SHUTDOWN:
975                 *bl += sprintf(b + *bl, "SHUTDOWN");
976                 break;
977         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
978         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
979                 *bl += sprintf(b + *bl, "OFFLINE");
980                 break;
981         default:
982                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
983                 break;
984         }
985
986         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
987                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
988                 dev->queue_depth);
989         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
990                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
991         *bl += sprintf(b + *bl, "        ");
992 }
993
994 void transport_dump_vpd_proto_id(
995         struct t10_vpd *vpd,
996         unsigned char *p_buf,
997         int p_buf_len)
998 {
999         unsigned char buf[VPD_TMP_BUF_SIZE];
1000         int len;
1001
1002         memset(buf, 0, VPD_TMP_BUF_SIZE);
1003         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1004
1005         switch (vpd->protocol_identifier) {
1006         case 0x00:
1007                 sprintf(buf+len, "Fibre Channel\n");
1008                 break;
1009         case 0x10:
1010                 sprintf(buf+len, "Parallel SCSI\n");
1011                 break;
1012         case 0x20:
1013                 sprintf(buf+len, "SSA\n");
1014                 break;
1015         case 0x30:
1016                 sprintf(buf+len, "IEEE 1394\n");
1017                 break;
1018         case 0x40:
1019                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1020                                 " Protocol\n");
1021                 break;
1022         case 0x50:
1023                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1024                 break;
1025         case 0x60:
1026                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1027                 break;
1028         case 0x70:
1029                 sprintf(buf+len, "Automation/Drive Interface Transport"
1030                                 " Protocol\n");
1031                 break;
1032         case 0x80:
1033                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1034                 break;
1035         default:
1036                 sprintf(buf+len, "Unknown 0x%02x\n",
1037                                 vpd->protocol_identifier);
1038                 break;
1039         }
1040
1041         if (p_buf)
1042                 strncpy(p_buf, buf, p_buf_len);
1043         else
1044                 pr_debug("%s", buf);
1045 }
1046
1047 void
1048 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1049 {
1050         /*
1051          * Check if the Protocol Identifier Valid (PIV) bit is set..
1052          *
1053          * from spc3r23.pdf section 7.5.1
1054          */
1055          if (page_83[1] & 0x80) {
1056                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1057                 vpd->protocol_identifier_set = 1;
1058                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1059         }
1060 }
1061 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1062
1063 int transport_dump_vpd_assoc(
1064         struct t10_vpd *vpd,
1065         unsigned char *p_buf,
1066         int p_buf_len)
1067 {
1068         unsigned char buf[VPD_TMP_BUF_SIZE];
1069         int ret = 0;
1070         int len;
1071
1072         memset(buf, 0, VPD_TMP_BUF_SIZE);
1073         len = sprintf(buf, "T10 VPD Identifier Association: ");
1074
1075         switch (vpd->association) {
1076         case 0x00:
1077                 sprintf(buf+len, "addressed logical unit\n");
1078                 break;
1079         case 0x10:
1080                 sprintf(buf+len, "target port\n");
1081                 break;
1082         case 0x20:
1083                 sprintf(buf+len, "SCSI target device\n");
1084                 break;
1085         default:
1086                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1087                 ret = -EINVAL;
1088                 break;
1089         }
1090
1091         if (p_buf)
1092                 strncpy(p_buf, buf, p_buf_len);
1093         else
1094                 pr_debug("%s", buf);
1095
1096         return ret;
1097 }
1098
1099 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1100 {
1101         /*
1102          * The VPD identification association..
1103          *
1104          * from spc3r23.pdf Section 7.6.3.1 Table 297
1105          */
1106         vpd->association = (page_83[1] & 0x30);
1107         return transport_dump_vpd_assoc(vpd, NULL, 0);
1108 }
1109 EXPORT_SYMBOL(transport_set_vpd_assoc);
1110
1111 int transport_dump_vpd_ident_type(
1112         struct t10_vpd *vpd,
1113         unsigned char *p_buf,
1114         int p_buf_len)
1115 {
1116         unsigned char buf[VPD_TMP_BUF_SIZE];
1117         int ret = 0;
1118         int len;
1119
1120         memset(buf, 0, VPD_TMP_BUF_SIZE);
1121         len = sprintf(buf, "T10 VPD Identifier Type: ");
1122
1123         switch (vpd->device_identifier_type) {
1124         case 0x00:
1125                 sprintf(buf+len, "Vendor specific\n");
1126                 break;
1127         case 0x01:
1128                 sprintf(buf+len, "T10 Vendor ID based\n");
1129                 break;
1130         case 0x02:
1131                 sprintf(buf+len, "EUI-64 based\n");
1132                 break;
1133         case 0x03:
1134                 sprintf(buf+len, "NAA\n");
1135                 break;
1136         case 0x04:
1137                 sprintf(buf+len, "Relative target port identifier\n");
1138                 break;
1139         case 0x08:
1140                 sprintf(buf+len, "SCSI name string\n");
1141                 break;
1142         default:
1143                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1144                                 vpd->device_identifier_type);
1145                 ret = -EINVAL;
1146                 break;
1147         }
1148
1149         if (p_buf) {
1150                 if (p_buf_len < strlen(buf)+1)
1151                         return -EINVAL;
1152                 strncpy(p_buf, buf, p_buf_len);
1153         } else {
1154                 pr_debug("%s", buf);
1155         }
1156
1157         return ret;
1158 }
1159
1160 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1161 {
1162         /*
1163          * The VPD identifier type..
1164          *
1165          * from spc3r23.pdf Section 7.6.3.1 Table 298
1166          */
1167         vpd->device_identifier_type = (page_83[1] & 0x0f);
1168         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1169 }
1170 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1171
1172 int transport_dump_vpd_ident(
1173         struct t10_vpd *vpd,
1174         unsigned char *p_buf,
1175         int p_buf_len)
1176 {
1177         unsigned char buf[VPD_TMP_BUF_SIZE];
1178         int ret = 0;
1179
1180         memset(buf, 0, VPD_TMP_BUF_SIZE);
1181
1182         switch (vpd->device_identifier_code_set) {
1183         case 0x01: /* Binary */
1184                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1185                         &vpd->device_identifier[0]);
1186                 break;
1187         case 0x02: /* ASCII */
1188                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1189                         &vpd->device_identifier[0]);
1190                 break;
1191         case 0x03: /* UTF-8 */
1192                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1193                         &vpd->device_identifier[0]);
1194                 break;
1195         default:
1196                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1197                         " 0x%02x", vpd->device_identifier_code_set);
1198                 ret = -EINVAL;
1199                 break;
1200         }
1201
1202         if (p_buf)
1203                 strncpy(p_buf, buf, p_buf_len);
1204         else
1205                 pr_debug("%s", buf);
1206
1207         return ret;
1208 }
1209
1210 int
1211 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1212 {
1213         static const char hex_str[] = "0123456789abcdef";
1214         int j = 0, i = 4; /* offset to start of the identifer */
1215
1216         /*
1217          * The VPD Code Set (encoding)
1218          *
1219          * from spc3r23.pdf Section 7.6.3.1 Table 296
1220          */
1221         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1222         switch (vpd->device_identifier_code_set) {
1223         case 0x01: /* Binary */
1224                 vpd->device_identifier[j++] =
1225                                 hex_str[vpd->device_identifier_type];
1226                 while (i < (4 + page_83[3])) {
1227                         vpd->device_identifier[j++] =
1228                                 hex_str[(page_83[i] & 0xf0) >> 4];
1229                         vpd->device_identifier[j++] =
1230                                 hex_str[page_83[i] & 0x0f];
1231                         i++;
1232                 }
1233                 break;
1234         case 0x02: /* ASCII */
1235         case 0x03: /* UTF-8 */
1236                 while (i < (4 + page_83[3]))
1237                         vpd->device_identifier[j++] = page_83[i++];
1238                 break;
1239         default:
1240                 break;
1241         }
1242
1243         return transport_dump_vpd_ident(vpd, NULL, 0);
1244 }
1245 EXPORT_SYMBOL(transport_set_vpd_ident);
1246
1247 static void core_setup_task_attr_emulation(struct se_device *dev)
1248 {
1249         /*
1250          * If this device is from Target_Core_Mod/pSCSI, disable the
1251          * SAM Task Attribute emulation.
1252          *
1253          * This is currently not available in upsream Linux/SCSI Target
1254          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1255          */
1256         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1257                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1258                 return;
1259         }
1260
1261         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1262         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1263                 " device\n", dev->transport->name,
1264                 dev->transport->get_device_rev(dev));
1265 }
1266
1267 static void scsi_dump_inquiry(struct se_device *dev)
1268 {
1269         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1270         int i, device_type;
1271         /*
1272          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1273          */
1274         pr_debug("  Vendor: ");
1275         for (i = 0; i < 8; i++)
1276                 if (wwn->vendor[i] >= 0x20)
1277                         pr_debug("%c", wwn->vendor[i]);
1278                 else
1279                         pr_debug(" ");
1280
1281         pr_debug("  Model: ");
1282         for (i = 0; i < 16; i++)
1283                 if (wwn->model[i] >= 0x20)
1284                         pr_debug("%c", wwn->model[i]);
1285                 else
1286                         pr_debug(" ");
1287
1288         pr_debug("  Revision: ");
1289         for (i = 0; i < 4; i++)
1290                 if (wwn->revision[i] >= 0x20)
1291                         pr_debug("%c", wwn->revision[i]);
1292                 else
1293                         pr_debug(" ");
1294
1295         pr_debug("\n");
1296
1297         device_type = dev->transport->get_device_type(dev);
1298         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1299         pr_debug("                 ANSI SCSI revision: %02x\n",
1300                                 dev->transport->get_device_rev(dev));
1301 }
1302
1303 struct se_device *transport_add_device_to_core_hba(
1304         struct se_hba *hba,
1305         struct se_subsystem_api *transport,
1306         struct se_subsystem_dev *se_dev,
1307         u32 device_flags,
1308         void *transport_dev,
1309         struct se_dev_limits *dev_limits,
1310         const char *inquiry_prod,
1311         const char *inquiry_rev)
1312 {
1313         int force_pt;
1314         struct se_device  *dev;
1315
1316         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1317         if (!dev) {
1318                 pr_err("Unable to allocate memory for se_dev_t\n");
1319                 return NULL;
1320         }
1321
1322         transport_init_queue_obj(&dev->dev_queue_obj);
1323         dev->dev_flags          = device_flags;
1324         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1325         dev->dev_ptr            = transport_dev;
1326         dev->se_hba             = hba;
1327         dev->se_sub_dev         = se_dev;
1328         dev->transport          = transport;
1329         INIT_LIST_HEAD(&dev->dev_list);
1330         INIT_LIST_HEAD(&dev->dev_sep_list);
1331         INIT_LIST_HEAD(&dev->dev_tmr_list);
1332         INIT_LIST_HEAD(&dev->execute_task_list);
1333         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1334         INIT_LIST_HEAD(&dev->state_task_list);
1335         INIT_LIST_HEAD(&dev->qf_cmd_list);
1336         spin_lock_init(&dev->execute_task_lock);
1337         spin_lock_init(&dev->delayed_cmd_lock);
1338         spin_lock_init(&dev->dev_reservation_lock);
1339         spin_lock_init(&dev->dev_status_lock);
1340         spin_lock_init(&dev->se_port_lock);
1341         spin_lock_init(&dev->se_tmr_lock);
1342         spin_lock_init(&dev->qf_cmd_lock);
1343
1344         dev->queue_depth        = dev_limits->queue_depth;
1345         atomic_set(&dev->depth_left, dev->queue_depth);
1346         atomic_set(&dev->dev_ordered_id, 0);
1347
1348         se_dev_set_default_attribs(dev, dev_limits);
1349
1350         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1351         dev->creation_time = get_jiffies_64();
1352         spin_lock_init(&dev->stats_lock);
1353
1354         spin_lock(&hba->device_lock);
1355         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1356         hba->dev_count++;
1357         spin_unlock(&hba->device_lock);
1358         /*
1359          * Setup the SAM Task Attribute emulation for struct se_device
1360          */
1361         core_setup_task_attr_emulation(dev);
1362         /*
1363          * Force PR and ALUA passthrough emulation with internal object use.
1364          */
1365         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1366         /*
1367          * Setup the Reservations infrastructure for struct se_device
1368          */
1369         core_setup_reservations(dev, force_pt);
1370         /*
1371          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1372          */
1373         if (core_setup_alua(dev, force_pt) < 0)
1374                 goto out;
1375
1376         /*
1377          * Startup the struct se_device processing thread
1378          */
1379         dev->process_thread = kthread_run(transport_processing_thread, dev,
1380                                           "LIO_%s", dev->transport->name);
1381         if (IS_ERR(dev->process_thread)) {
1382                 pr_err("Unable to create kthread: LIO_%s\n",
1383                         dev->transport->name);
1384                 goto out;
1385         }
1386         /*
1387          * Setup work_queue for QUEUE_FULL
1388          */
1389         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1390         /*
1391          * Preload the initial INQUIRY const values if we are doing
1392          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1393          * passthrough because this is being provided by the backend LLD.
1394          * This is required so that transport_get_inquiry() copies these
1395          * originals once back into DEV_T10_WWN(dev) for the virtual device
1396          * setup.
1397          */
1398         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1399                 if (!inquiry_prod || !inquiry_rev) {
1400                         pr_err("All non TCM/pSCSI plugins require"
1401                                 " INQUIRY consts\n");
1402                         goto out;
1403                 }
1404
1405                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1406                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1407                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1408         }
1409         scsi_dump_inquiry(dev);
1410
1411         return dev;
1412 out:
1413         kthread_stop(dev->process_thread);
1414
1415         spin_lock(&hba->device_lock);
1416         list_del(&dev->dev_list);
1417         hba->dev_count--;
1418         spin_unlock(&hba->device_lock);
1419
1420         se_release_vpd_for_dev(dev);
1421
1422         kfree(dev);
1423
1424         return NULL;
1425 }
1426 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1427
1428 /*      transport_generic_prepare_cdb():
1429  *
1430  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1431  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1432  *      The point of this is since we are mapping iSCSI LUNs to
1433  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1434  *      devices and HBAs for a loop.
1435  */
1436 static inline void transport_generic_prepare_cdb(
1437         unsigned char *cdb)
1438 {
1439         switch (cdb[0]) {
1440         case READ_10: /* SBC - RDProtect */
1441         case READ_12: /* SBC - RDProtect */
1442         case READ_16: /* SBC - RDProtect */
1443         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1444         case VERIFY: /* SBC - VRProtect */
1445         case VERIFY_16: /* SBC - VRProtect */
1446         case WRITE_VERIFY: /* SBC - VRProtect */
1447         case WRITE_VERIFY_12: /* SBC - VRProtect */
1448                 break;
1449         default:
1450                 cdb[1] &= 0x1f; /* clear logical unit number */
1451                 break;
1452         }
1453 }
1454
1455 static struct se_task *
1456 transport_generic_get_task(struct se_cmd *cmd,
1457                 enum dma_data_direction data_direction)
1458 {
1459         struct se_task *task;
1460         struct se_device *dev = cmd->se_dev;
1461
1462         task = dev->transport->alloc_task(cmd->t_task_cdb);
1463         if (!task) {
1464                 pr_err("Unable to allocate struct se_task\n");
1465                 return NULL;
1466         }
1467
1468         INIT_LIST_HEAD(&task->t_list);
1469         INIT_LIST_HEAD(&task->t_execute_list);
1470         INIT_LIST_HEAD(&task->t_state_list);
1471         init_completion(&task->task_stop_comp);
1472         task->task_se_cmd = cmd;
1473         task->task_data_direction = data_direction;
1474
1475         return task;
1476 }
1477
1478 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1479
1480 /*
1481  * Used by fabric modules containing a local struct se_cmd within their
1482  * fabric dependent per I/O descriptor.
1483  */
1484 void transport_init_se_cmd(
1485         struct se_cmd *cmd,
1486         struct target_core_fabric_ops *tfo,
1487         struct se_session *se_sess,
1488         u32 data_length,
1489         int data_direction,
1490         int task_attr,
1491         unsigned char *sense_buffer)
1492 {
1493         INIT_LIST_HEAD(&cmd->se_lun_node);
1494         INIT_LIST_HEAD(&cmd->se_delayed_node);
1495         INIT_LIST_HEAD(&cmd->se_qf_node);
1496         INIT_LIST_HEAD(&cmd->se_queue_node);
1497         INIT_LIST_HEAD(&cmd->se_cmd_list);
1498         INIT_LIST_HEAD(&cmd->t_task_list);
1499         init_completion(&cmd->transport_lun_fe_stop_comp);
1500         init_completion(&cmd->transport_lun_stop_comp);
1501         init_completion(&cmd->t_transport_stop_comp);
1502         init_completion(&cmd->cmd_wait_comp);
1503         spin_lock_init(&cmd->t_state_lock);
1504         atomic_set(&cmd->transport_dev_active, 1);
1505
1506         cmd->se_tfo = tfo;
1507         cmd->se_sess = se_sess;
1508         cmd->data_length = data_length;
1509         cmd->data_direction = data_direction;
1510         cmd->sam_task_attr = task_attr;
1511         cmd->sense_buffer = sense_buffer;
1512 }
1513 EXPORT_SYMBOL(transport_init_se_cmd);
1514
1515 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1516 {
1517         /*
1518          * Check if SAM Task Attribute emulation is enabled for this
1519          * struct se_device storage object
1520          */
1521         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1522                 return 0;
1523
1524         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1525                 pr_debug("SAM Task Attribute ACA"
1526                         " emulation is not supported\n");
1527                 return -EINVAL;
1528         }
1529         /*
1530          * Used to determine when ORDERED commands should go from
1531          * Dormant to Active status.
1532          */
1533         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1534         smp_mb__after_atomic_inc();
1535         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1536                         cmd->se_ordered_id, cmd->sam_task_attr,
1537                         cmd->se_dev->transport->name);
1538         return 0;
1539 }
1540
1541 /*      transport_generic_allocate_tasks():
1542  *
1543  *      Called from fabric RX Thread.
1544  */
1545 int transport_generic_allocate_tasks(
1546         struct se_cmd *cmd,
1547         unsigned char *cdb)
1548 {
1549         int ret;
1550
1551         transport_generic_prepare_cdb(cdb);
1552         /*
1553          * Ensure that the received CDB is less than the max (252 + 8) bytes
1554          * for VARIABLE_LENGTH_CMD
1555          */
1556         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1557                 pr_err("Received SCSI CDB with command_size: %d that"
1558                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1559                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1560                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1561                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1562                 return -EINVAL;
1563         }
1564         /*
1565          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1566          * allocate the additional extended CDB buffer now..  Otherwise
1567          * setup the pointer from __t_task_cdb to t_task_cdb.
1568          */
1569         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1570                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1571                                                 GFP_KERNEL);
1572                 if (!cmd->t_task_cdb) {
1573                         pr_err("Unable to allocate cmd->t_task_cdb"
1574                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1575                                 scsi_command_size(cdb),
1576                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1577                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1578                         cmd->scsi_sense_reason =
1579                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1580                         return -ENOMEM;
1581                 }
1582         } else
1583                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1584         /*
1585          * Copy the original CDB into cmd->
1586          */
1587         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1588         /*
1589          * Setup the received CDB based on SCSI defined opcodes and
1590          * perform unit attention, persistent reservations and ALUA
1591          * checks for virtual device backends.  The cmd->t_task_cdb
1592          * pointer is expected to be setup before we reach this point.
1593          */
1594         ret = transport_generic_cmd_sequencer(cmd, cdb);
1595         if (ret < 0)
1596                 return ret;
1597         /*
1598          * Check for SAM Task Attribute Emulation
1599          */
1600         if (transport_check_alloc_task_attr(cmd) < 0) {
1601                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1602                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1603                 return -EINVAL;
1604         }
1605         spin_lock(&cmd->se_lun->lun_sep_lock);
1606         if (cmd->se_lun->lun_sep)
1607                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1608         spin_unlock(&cmd->se_lun->lun_sep_lock);
1609         return 0;
1610 }
1611 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1612
1613 /*
1614  * Used by fabric module frontends to queue tasks directly.
1615  * Many only be used from process context only
1616  */
1617 int transport_handle_cdb_direct(
1618         struct se_cmd *cmd)
1619 {
1620         int ret;
1621
1622         if (!cmd->se_lun) {
1623                 dump_stack();
1624                 pr_err("cmd->se_lun is NULL\n");
1625                 return -EINVAL;
1626         }
1627         if (in_interrupt()) {
1628                 dump_stack();
1629                 pr_err("transport_generic_handle_cdb cannot be called"
1630                                 " from interrupt context\n");
1631                 return -EINVAL;
1632         }
1633         /*
1634          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1635          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1636          * in existing usage to ensure that outstanding descriptors are handled
1637          * correctly during shutdown via transport_wait_for_tasks()
1638          *
1639          * Also, we don't take cmd->t_state_lock here as we only expect
1640          * this to be called for initial descriptor submission.
1641          */
1642         cmd->t_state = TRANSPORT_NEW_CMD;
1643         atomic_set(&cmd->t_transport_active, 1);
1644         /*
1645          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1646          * so follow TRANSPORT_NEW_CMD processing thread context usage
1647          * and call transport_generic_request_failure() if necessary..
1648          */
1649         ret = transport_generic_new_cmd(cmd);
1650         if (ret < 0)
1651                 transport_generic_request_failure(cmd);
1652
1653         return 0;
1654 }
1655 EXPORT_SYMBOL(transport_handle_cdb_direct);
1656
1657 /*
1658  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1659  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1660  * complete setup in TCM process context w/ TFO->new_cmd_map().
1661  */
1662 int transport_generic_handle_cdb_map(
1663         struct se_cmd *cmd)
1664 {
1665         if (!cmd->se_lun) {
1666                 dump_stack();
1667                 pr_err("cmd->se_lun is NULL\n");
1668                 return -EINVAL;
1669         }
1670
1671         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1672         return 0;
1673 }
1674 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1675
1676 /*      transport_generic_handle_data():
1677  *
1678  *
1679  */
1680 int transport_generic_handle_data(
1681         struct se_cmd *cmd)
1682 {
1683         /*
1684          * For the software fabric case, then we assume the nexus is being
1685          * failed/shutdown when signals are pending from the kthread context
1686          * caller, so we return a failure.  For the HW target mode case running
1687          * in interrupt code, the signal_pending() check is skipped.
1688          */
1689         if (!in_interrupt() && signal_pending(current))
1690                 return -EPERM;
1691         /*
1692          * If the received CDB has aleady been ABORTED by the generic
1693          * target engine, we now call transport_check_aborted_status()
1694          * to queue any delated TASK_ABORTED status for the received CDB to the
1695          * fabric module as we are expecting no further incoming DATA OUT
1696          * sequences at this point.
1697          */
1698         if (transport_check_aborted_status(cmd, 1) != 0)
1699                 return 0;
1700
1701         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1702         return 0;
1703 }
1704 EXPORT_SYMBOL(transport_generic_handle_data);
1705
1706 /*      transport_generic_handle_tmr():
1707  *
1708  *
1709  */
1710 int transport_generic_handle_tmr(
1711         struct se_cmd *cmd)
1712 {
1713         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1714         return 0;
1715 }
1716 EXPORT_SYMBOL(transport_generic_handle_tmr);
1717
1718 /*
1719  * If the task is active, request it to be stopped and sleep until it
1720  * has completed.
1721  */
1722 bool target_stop_task(struct se_task *task, unsigned long *flags)
1723 {
1724         struct se_cmd *cmd = task->task_se_cmd;
1725         bool was_active = false;
1726
1727         if (task->task_flags & TF_ACTIVE) {
1728                 task->task_flags |= TF_REQUEST_STOP;
1729                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1730
1731                 pr_debug("Task %p waiting to complete\n", task);
1732                 wait_for_completion(&task->task_stop_comp);
1733                 pr_debug("Task %p stopped successfully\n", task);
1734
1735                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1736                 atomic_dec(&cmd->t_task_cdbs_left);
1737                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1738                 was_active = true;
1739         }
1740
1741         return was_active;
1742 }
1743
1744 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1745 {
1746         struct se_task *task, *task_tmp;
1747         unsigned long flags;
1748         int ret = 0;
1749
1750         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1751                 cmd->se_tfo->get_task_tag(cmd));
1752
1753         /*
1754          * No tasks remain in the execution queue
1755          */
1756         spin_lock_irqsave(&cmd->t_state_lock, flags);
1757         list_for_each_entry_safe(task, task_tmp,
1758                                 &cmd->t_task_list, t_list) {
1759                 pr_debug("Processing task %p\n", task);
1760                 /*
1761                  * If the struct se_task has not been sent and is not active,
1762                  * remove the struct se_task from the execution queue.
1763                  */
1764                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1765                         spin_unlock_irqrestore(&cmd->t_state_lock,
1766                                         flags);
1767                         transport_remove_task_from_execute_queue(task,
1768                                         cmd->se_dev);
1769
1770                         pr_debug("Task %p removed from execute queue\n", task);
1771                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1772                         continue;
1773                 }
1774
1775                 if (!target_stop_task(task, &flags)) {
1776                         pr_debug("Task %p - did nothing\n", task);
1777                         ret++;
1778                 }
1779         }
1780         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1781
1782         return ret;
1783 }
1784
1785 /*
1786  * Handle SAM-esque emulation for generic transport request failures.
1787  */
1788 static void transport_generic_request_failure(struct se_cmd *cmd)
1789 {
1790         int ret = 0;
1791
1792         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1793                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1794                 cmd->t_task_cdb[0]);
1795         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1796                 cmd->se_tfo->get_cmd_state(cmd),
1797                 cmd->t_state, cmd->scsi_sense_reason);
1798         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1799                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1800                 " t_transport_active: %d t_transport_stop: %d"
1801                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1802                 atomic_read(&cmd->t_task_cdbs_left),
1803                 atomic_read(&cmd->t_task_cdbs_sent),
1804                 atomic_read(&cmd->t_task_cdbs_ex_left),
1805                 atomic_read(&cmd->t_transport_active),
1806                 atomic_read(&cmd->t_transport_stop),
1807                 atomic_read(&cmd->t_transport_sent));
1808
1809         /*
1810          * For SAM Task Attribute emulation for failed struct se_cmd
1811          */
1812         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1813                 transport_complete_task_attr(cmd);
1814
1815         switch (cmd->scsi_sense_reason) {
1816         case TCM_NON_EXISTENT_LUN:
1817         case TCM_UNSUPPORTED_SCSI_OPCODE:
1818         case TCM_INVALID_CDB_FIELD:
1819         case TCM_INVALID_PARAMETER_LIST:
1820         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1821         case TCM_UNKNOWN_MODE_PAGE:
1822         case TCM_WRITE_PROTECTED:
1823         case TCM_CHECK_CONDITION_ABORT_CMD:
1824         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1825         case TCM_CHECK_CONDITION_NOT_READY:
1826                 break;
1827         case TCM_RESERVATION_CONFLICT:
1828                 /*
1829                  * No SENSE Data payload for this case, set SCSI Status
1830                  * and queue the response to $FABRIC_MOD.
1831                  *
1832                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1833                  */
1834                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1835                 /*
1836                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1837                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1838                  * CONFLICT STATUS.
1839                  *
1840                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1841                  */
1842                 if (cmd->se_sess &&
1843                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1844                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1845                                 cmd->orig_fe_lun, 0x2C,
1846                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1847
1848                 ret = cmd->se_tfo->queue_status(cmd);
1849                 if (ret == -EAGAIN || ret == -ENOMEM)
1850                         goto queue_full;
1851                 goto check_stop;
1852         default:
1853                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1854                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1855                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1856                 break;
1857         }
1858         /*
1859          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1860          * make the call to transport_send_check_condition_and_sense()
1861          * directly.  Otherwise expect the fabric to make the call to
1862          * transport_send_check_condition_and_sense() after handling
1863          * possible unsoliticied write data payloads.
1864          */
1865         ret = transport_send_check_condition_and_sense(cmd,
1866                         cmd->scsi_sense_reason, 0);
1867         if (ret == -EAGAIN || ret == -ENOMEM)
1868                 goto queue_full;
1869
1870 check_stop:
1871         transport_lun_remove_cmd(cmd);
1872         if (!transport_cmd_check_stop_to_fabric(cmd))
1873                 ;
1874         return;
1875
1876 queue_full:
1877         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1878         transport_handle_queue_full(cmd, cmd->se_dev);
1879 }
1880
1881 static inline u32 transport_lba_21(unsigned char *cdb)
1882 {
1883         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1884 }
1885
1886 static inline u32 transport_lba_32(unsigned char *cdb)
1887 {
1888         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1889 }
1890
1891 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1892 {
1893         unsigned int __v1, __v2;
1894
1895         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1896         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1897
1898         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1899 }
1900
1901 /*
1902  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1903  */
1904 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1905 {
1906         unsigned int __v1, __v2;
1907
1908         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1909         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1910
1911         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1912 }
1913
1914 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1915 {
1916         unsigned long flags;
1917
1918         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1919         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1920         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1921 }
1922
1923 static inline int transport_tcq_window_closed(struct se_device *dev)
1924 {
1925         if (dev->dev_tcq_window_closed++ <
1926                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1927                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1928         } else
1929                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1930
1931         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1932         return 0;
1933 }
1934
1935 /*
1936  * Called from Fabric Module context from transport_execute_tasks()
1937  *
1938  * The return of this function determins if the tasks from struct se_cmd
1939  * get added to the execution queue in transport_execute_tasks(),
1940  * or are added to the delayed or ordered lists here.
1941  */
1942 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1943 {
1944         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1945                 return 1;
1946         /*
1947          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1948          * to allow the passed struct se_cmd list of tasks to the front of the list.
1949          */
1950          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1951                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1952                         " 0x%02x, se_ordered_id: %u\n",
1953                         cmd->t_task_cdb[0],
1954                         cmd->se_ordered_id);
1955                 return 1;
1956         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1957                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1958                 smp_mb__after_atomic_inc();
1959
1960                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1961                                 " list, se_ordered_id: %u\n",
1962                                 cmd->t_task_cdb[0],
1963                                 cmd->se_ordered_id);
1964                 /*
1965                  * Add ORDERED command to tail of execution queue if
1966                  * no other older commands exist that need to be
1967                  * completed first.
1968                  */
1969                 if (!atomic_read(&cmd->se_dev->simple_cmds))
1970                         return 1;
1971         } else {
1972                 /*
1973                  * For SIMPLE and UNTAGGED Task Attribute commands
1974                  */
1975                 atomic_inc(&cmd->se_dev->simple_cmds);
1976                 smp_mb__after_atomic_inc();
1977         }
1978         /*
1979          * Otherwise if one or more outstanding ORDERED task attribute exist,
1980          * add the dormant task(s) built for the passed struct se_cmd to the
1981          * execution queue and become in Active state for this struct se_device.
1982          */
1983         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1984                 /*
1985                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
1986                  * will be drained upon completion of HEAD_OF_QUEUE task.
1987                  */
1988                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1989                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1990                 list_add_tail(&cmd->se_delayed_node,
1991                                 &cmd->se_dev->delayed_cmd_list);
1992                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1993
1994                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1995                         " delayed CMD list, se_ordered_id: %u\n",
1996                         cmd->t_task_cdb[0], cmd->sam_task_attr,
1997                         cmd->se_ordered_id);
1998                 /*
1999                  * Return zero to let transport_execute_tasks() know
2000                  * not to add the delayed tasks to the execution list.
2001                  */
2002                 return 0;
2003         }
2004         /*
2005          * Otherwise, no ORDERED task attributes exist..
2006          */
2007         return 1;
2008 }
2009
2010 /*
2011  * Called from fabric module context in transport_generic_new_cmd() and
2012  * transport_generic_process_write()
2013  */
2014 static int transport_execute_tasks(struct se_cmd *cmd)
2015 {
2016         int add_tasks;
2017
2018         if (se_dev_check_online(cmd->se_dev) != 0) {
2019                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2020                 transport_generic_request_failure(cmd);
2021                 return 0;
2022         }
2023
2024         /*
2025          * Call transport_cmd_check_stop() to see if a fabric exception
2026          * has occurred that prevents execution.
2027          */
2028         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2029                 /*
2030                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2031                  * attribute for the tasks of the received struct se_cmd CDB
2032                  */
2033                 add_tasks = transport_execute_task_attr(cmd);
2034                 if (!add_tasks)
2035                         goto execute_tasks;
2036                 /*
2037                  * This calls transport_add_tasks_from_cmd() to handle
2038                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2039                  * (if enabled) in __transport_add_task_to_execute_queue() and
2040                  * transport_add_task_check_sam_attr().
2041                  */
2042                 transport_add_tasks_from_cmd(cmd);
2043         }
2044         /*
2045          * Kick the execution queue for the cmd associated struct se_device
2046          * storage object.
2047          */
2048 execute_tasks:
2049         __transport_execute_tasks(cmd->se_dev);
2050         return 0;
2051 }
2052
2053 /*
2054  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2055  * from struct se_device->execute_task_list and
2056  *
2057  * Called from transport_processing_thread()
2058  */
2059 static int __transport_execute_tasks(struct se_device *dev)
2060 {
2061         int error;
2062         struct se_cmd *cmd = NULL;
2063         struct se_task *task = NULL;
2064         unsigned long flags;
2065
2066         /*
2067          * Check if there is enough room in the device and HBA queue to send
2068          * struct se_tasks to the selected transport.
2069          */
2070 check_depth:
2071         if (!atomic_read(&dev->depth_left))
2072                 return transport_tcq_window_closed(dev);
2073
2074         dev->dev_tcq_window_closed = 0;
2075
2076         spin_lock_irq(&dev->execute_task_lock);
2077         if (list_empty(&dev->execute_task_list)) {
2078                 spin_unlock_irq(&dev->execute_task_lock);
2079                 return 0;
2080         }
2081         task = list_first_entry(&dev->execute_task_list,
2082                                 struct se_task, t_execute_list);
2083         __transport_remove_task_from_execute_queue(task, dev);
2084         spin_unlock_irq(&dev->execute_task_lock);
2085
2086         atomic_dec(&dev->depth_left);
2087
2088         cmd = task->task_se_cmd;
2089
2090         spin_lock_irqsave(&cmd->t_state_lock, flags);
2091         task->task_flags |= (TF_ACTIVE | TF_SENT);
2092         atomic_inc(&cmd->t_task_cdbs_sent);
2093
2094         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2095             cmd->t_task_list_num)
2096                 atomic_set(&cmd->t_transport_sent, 1);
2097
2098         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2099
2100         if (cmd->execute_task)
2101                 error = cmd->execute_task(task);
2102         else
2103                 error = dev->transport->do_task(task);
2104         if (error != 0) {
2105                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2106                 task->task_flags &= ~TF_ACTIVE;
2107                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2108                 atomic_set(&cmd->t_transport_sent, 0);
2109                 transport_stop_tasks_for_cmd(cmd);
2110                 atomic_inc(&dev->depth_left);
2111                 transport_generic_request_failure(cmd);
2112         }
2113
2114         goto check_depth;
2115
2116         return 0;
2117 }
2118
2119 static inline u32 transport_get_sectors_6(
2120         unsigned char *cdb,
2121         struct se_cmd *cmd,
2122         int *ret)
2123 {
2124         struct se_device *dev = cmd->se_dev;
2125
2126         /*
2127          * Assume TYPE_DISK for non struct se_device objects.
2128          * Use 8-bit sector value.
2129          */
2130         if (!dev)
2131                 goto type_disk;
2132
2133         /*
2134          * Use 24-bit allocation length for TYPE_TAPE.
2135          */
2136         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2137                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2138
2139         /*
2140          * Everything else assume TYPE_DISK Sector CDB location.
2141          * Use 8-bit sector value.  SBC-3 says:
2142          *
2143          *   A TRANSFER LENGTH field set to zero specifies that 256
2144          *   logical blocks shall be written.  Any other value
2145          *   specifies the number of logical blocks that shall be
2146          *   written.
2147          */
2148 type_disk:
2149         return cdb[4] ? : 256;
2150 }
2151
2152 static inline u32 transport_get_sectors_10(
2153         unsigned char *cdb,
2154         struct se_cmd *cmd,
2155         int *ret)
2156 {
2157         struct se_device *dev = cmd->se_dev;
2158
2159         /*
2160          * Assume TYPE_DISK for non struct se_device objects.
2161          * Use 16-bit sector value.
2162          */
2163         if (!dev)
2164                 goto type_disk;
2165
2166         /*
2167          * XXX_10 is not defined in SSC, throw an exception
2168          */
2169         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2170                 *ret = -EINVAL;
2171                 return 0;
2172         }
2173
2174         /*
2175          * Everything else assume TYPE_DISK Sector CDB location.
2176          * Use 16-bit sector value.
2177          */
2178 type_disk:
2179         return (u32)(cdb[7] << 8) + cdb[8];
2180 }
2181
2182 static inline u32 transport_get_sectors_12(
2183         unsigned char *cdb,
2184         struct se_cmd *cmd,
2185         int *ret)
2186 {
2187         struct se_device *dev = cmd->se_dev;
2188
2189         /*
2190          * Assume TYPE_DISK for non struct se_device objects.
2191          * Use 32-bit sector value.
2192          */
2193         if (!dev)
2194                 goto type_disk;
2195
2196         /*
2197          * XXX_12 is not defined in SSC, throw an exception
2198          */
2199         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2200                 *ret = -EINVAL;
2201                 return 0;
2202         }
2203
2204         /*
2205          * Everything else assume TYPE_DISK Sector CDB location.
2206          * Use 32-bit sector value.
2207          */
2208 type_disk:
2209         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2210 }
2211
2212 static inline u32 transport_get_sectors_16(
2213         unsigned char *cdb,
2214         struct se_cmd *cmd,
2215         int *ret)
2216 {
2217         struct se_device *dev = cmd->se_dev;
2218
2219         /*
2220          * Assume TYPE_DISK for non struct se_device objects.
2221          * Use 32-bit sector value.
2222          */
2223         if (!dev)
2224                 goto type_disk;
2225
2226         /*
2227          * Use 24-bit allocation length for TYPE_TAPE.
2228          */
2229         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2230                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2231
2232 type_disk:
2233         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2234                     (cdb[12] << 8) + cdb[13];
2235 }
2236
2237 /*
2238  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2239  */
2240 static inline u32 transport_get_sectors_32(
2241         unsigned char *cdb,
2242         struct se_cmd *cmd,
2243         int *ret)
2244 {
2245         /*
2246          * Assume TYPE_DISK for non struct se_device objects.
2247          * Use 32-bit sector value.
2248          */
2249         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2250                     (cdb[30] << 8) + cdb[31];
2251
2252 }
2253
2254 static inline u32 transport_get_size(
2255         u32 sectors,
2256         unsigned char *cdb,
2257         struct se_cmd *cmd)
2258 {
2259         struct se_device *dev = cmd->se_dev;
2260
2261         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2262                 if (cdb[1] & 1) { /* sectors */
2263                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2264                 } else /* bytes */
2265                         return sectors;
2266         }
2267 #if 0
2268         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2269                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2270                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2271                         dev->transport->name);
2272 #endif
2273         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2274 }
2275
2276 static void transport_xor_callback(struct se_cmd *cmd)
2277 {
2278         unsigned char *buf, *addr;
2279         struct scatterlist *sg;
2280         unsigned int offset;
2281         int i;
2282         int count;
2283         /*
2284          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2285          *
2286          * 1) read the specified logical block(s);
2287          * 2) transfer logical blocks from the data-out buffer;
2288          * 3) XOR the logical blocks transferred from the data-out buffer with
2289          *    the logical blocks read, storing the resulting XOR data in a buffer;
2290          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2291          *    blocks transferred from the data-out buffer; and
2292          * 5) transfer the resulting XOR data to the data-in buffer.
2293          */
2294         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2295         if (!buf) {
2296                 pr_err("Unable to allocate xor_callback buf\n");
2297                 return;
2298         }
2299         /*
2300          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2301          * into the locally allocated *buf
2302          */
2303         sg_copy_to_buffer(cmd->t_data_sg,
2304                           cmd->t_data_nents,
2305                           buf,
2306                           cmd->data_length);
2307
2308         /*
2309          * Now perform the XOR against the BIDI read memory located at
2310          * cmd->t_mem_bidi_list
2311          */
2312
2313         offset = 0;
2314         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2315                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2316                 if (!addr)
2317                         goto out;
2318
2319                 for (i = 0; i < sg->length; i++)
2320                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2321
2322                 offset += sg->length;
2323                 kunmap_atomic(addr, KM_USER0);
2324         }
2325
2326 out:
2327         kfree(buf);
2328 }
2329
2330 /*
2331  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2332  */
2333 static int transport_get_sense_data(struct se_cmd *cmd)
2334 {
2335         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2336         struct se_device *dev = cmd->se_dev;
2337         struct se_task *task = NULL, *task_tmp;
2338         unsigned long flags;
2339         u32 offset = 0;
2340
2341         WARN_ON(!cmd->se_lun);
2342
2343         if (!dev)
2344                 return 0;
2345
2346         spin_lock_irqsave(&cmd->t_state_lock, flags);
2347         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2348                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2349                 return 0;
2350         }
2351
2352         list_for_each_entry_safe(task, task_tmp,
2353                                 &cmd->t_task_list, t_list) {
2354                 if (!task->task_sense)
2355                         continue;
2356
2357                 if (!dev->transport->get_sense_buffer) {
2358                         pr_err("dev->transport->get_sense_buffer"
2359                                         " is NULL\n");
2360                         continue;
2361                 }
2362
2363                 sense_buffer = dev->transport->get_sense_buffer(task);
2364                 if (!sense_buffer) {
2365                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2366                                 " sense buffer for task with sense\n",
2367                                 cmd->se_tfo->get_task_tag(cmd), task);
2368                         continue;
2369                 }
2370                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2371
2372                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2373                                 TRANSPORT_SENSE_BUFFER);
2374
2375                 memcpy(&buffer[offset], sense_buffer,
2376                                 TRANSPORT_SENSE_BUFFER);
2377                 cmd->scsi_status = task->task_scsi_status;
2378                 /* Automatically padded */
2379                 cmd->scsi_sense_length =
2380                                 (TRANSPORT_SENSE_BUFFER + offset);
2381
2382                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2383                                 " and sense\n",
2384                         dev->se_hba->hba_id, dev->transport->name,
2385                                 cmd->scsi_status);
2386                 return 0;
2387         }
2388         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2389
2390         return -1;
2391 }
2392
2393 static inline long long transport_dev_end_lba(struct se_device *dev)
2394 {
2395         return dev->transport->get_blocks(dev) + 1;
2396 }
2397
2398 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2399 {
2400         struct se_device *dev = cmd->se_dev;
2401         u32 sectors;
2402
2403         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2404                 return 0;
2405
2406         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2407
2408         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2409                 pr_err("LBA: %llu Sectors: %u exceeds"
2410                         " transport_dev_end_lba(): %llu\n",
2411                         cmd->t_task_lba, sectors,
2412                         transport_dev_end_lba(dev));
2413                 return -EINVAL;
2414         }
2415
2416         return 0;
2417 }
2418
2419 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2420 {
2421         /*
2422          * Determine if the received WRITE_SAME is used to for direct
2423          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2424          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2425          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2426          */
2427         int passthrough = (dev->transport->transport_type ==
2428                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2429
2430         if (!passthrough) {
2431                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2432                         pr_err("WRITE_SAME PBDATA and LBDATA"
2433                                 " bits not supported for Block Discard"
2434                                 " Emulation\n");
2435                         return -ENOSYS;
2436                 }
2437                 /*
2438                  * Currently for the emulated case we only accept
2439                  * tpws with the UNMAP=1 bit set.
2440                  */
2441                 if (!(flags[0] & 0x08)) {
2442                         pr_err("WRITE_SAME w/o UNMAP bit not"
2443                                 " supported for Block Discard Emulation\n");
2444                         return -ENOSYS;
2445                 }
2446         }
2447
2448         return 0;
2449 }
2450
2451 /*      transport_generic_cmd_sequencer():
2452  *
2453  *      Generic Command Sequencer that should work for most DAS transport
2454  *      drivers.
2455  *
2456  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2457  *      RX Thread.
2458  *
2459  *      FIXME: Need to support other SCSI OPCODES where as well.
2460  */
2461 static int transport_generic_cmd_sequencer(
2462         struct se_cmd *cmd,
2463         unsigned char *cdb)
2464 {
2465         struct se_device *dev = cmd->se_dev;
2466         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2467         int ret = 0, sector_ret = 0, passthrough;
2468         u32 sectors = 0, size = 0, pr_reg_type = 0;
2469         u16 service_action;
2470         u8 alua_ascq = 0;
2471         /*
2472          * Check for an existing UNIT ATTENTION condition
2473          */
2474         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2475                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2476                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2477                 return -EINVAL;
2478         }
2479         /*
2480          * Check status of Asymmetric Logical Unit Assignment port
2481          */
2482         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2483         if (ret != 0) {
2484                 /*
2485                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2486                  * The ALUA additional sense code qualifier (ASCQ) is determined
2487                  * by the ALUA primary or secondary access state..
2488                  */
2489                 if (ret > 0) {
2490 #if 0
2491                         pr_debug("[%s]: ALUA TG Port not available,"
2492                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2493                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2494 #endif
2495                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2496                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2497                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2498                         return -EINVAL;
2499                 }
2500                 goto out_invalid_cdb_field;
2501         }
2502         /*
2503          * Check status for SPC-3 Persistent Reservations
2504          */
2505         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2506                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2507                                         cmd, cdb, pr_reg_type) != 0) {
2508                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2509                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2510                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2511                         return -EBUSY;
2512                 }
2513                 /*
2514                  * This means the CDB is allowed for the SCSI Initiator port
2515                  * when said port is *NOT* holding the legacy SPC-2 or
2516                  * SPC-3 Persistent Reservation.
2517                  */
2518         }
2519
2520         /*
2521          * If we operate in passthrough mode we skip most CDB emulation and
2522          * instead hand the commands down to the physical SCSI device.
2523          */
2524         passthrough =
2525                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2526
2527         switch (cdb[0]) {
2528         case READ_6:
2529                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2530                 if (sector_ret)
2531                         goto out_unsupported_cdb;
2532                 size = transport_get_size(sectors, cdb, cmd);
2533                 cmd->t_task_lba = transport_lba_21(cdb);
2534                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2535                 break;
2536         case READ_10:
2537                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2538                 if (sector_ret)
2539                         goto out_unsupported_cdb;
2540                 size = transport_get_size(sectors, cdb, cmd);
2541                 cmd->t_task_lba = transport_lba_32(cdb);
2542                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2543                 break;
2544         case READ_12:
2545                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2546                 if (sector_ret)
2547                         goto out_unsupported_cdb;
2548                 size = transport_get_size(sectors, cdb, cmd);
2549                 cmd->t_task_lba = transport_lba_32(cdb);
2550                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2551                 break;
2552         case READ_16:
2553                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2554                 if (sector_ret)
2555                         goto out_unsupported_cdb;
2556                 size = transport_get_size(sectors, cdb, cmd);
2557                 cmd->t_task_lba = transport_lba_64(cdb);
2558                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2559                 break;
2560         case WRITE_6:
2561                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2562                 if (sector_ret)
2563                         goto out_unsupported_cdb;
2564                 size = transport_get_size(sectors, cdb, cmd);
2565                 cmd->t_task_lba = transport_lba_21(cdb);
2566                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2567                 break;
2568         case WRITE_10:
2569                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2570                 if (sector_ret)
2571                         goto out_unsupported_cdb;
2572                 size = transport_get_size(sectors, cdb, cmd);
2573                 cmd->t_task_lba = transport_lba_32(cdb);
2574                 if (cdb[1] & 0x8)
2575                         cmd->se_cmd_flags |= SCF_FUA;
2576                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2577                 break;
2578         case WRITE_12:
2579                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2580                 if (sector_ret)
2581                         goto out_unsupported_cdb;
2582                 size = transport_get_size(sectors, cdb, cmd);
2583                 cmd->t_task_lba = transport_lba_32(cdb);
2584                 if (cdb[1] & 0x8)
2585                         cmd->se_cmd_flags |= SCF_FUA;
2586                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2587                 break;
2588         case WRITE_16:
2589                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2590                 if (sector_ret)
2591                         goto out_unsupported_cdb;
2592                 size = transport_get_size(sectors, cdb, cmd);
2593                 cmd->t_task_lba = transport_lba_64(cdb);
2594                 if (cdb[1] & 0x8)
2595                         cmd->se_cmd_flags |= SCF_FUA;
2596                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2597                 break;
2598         case XDWRITEREAD_10:
2599                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2600                     !(cmd->se_cmd_flags & SCF_BIDI))
2601                         goto out_invalid_cdb_field;
2602                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2603                 if (sector_ret)
2604                         goto out_unsupported_cdb;
2605                 size = transport_get_size(sectors, cdb, cmd);
2606                 cmd->t_task_lba = transport_lba_32(cdb);
2607                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2608
2609                 /*
2610                  * Do now allow BIDI commands for passthrough mode.
2611                  */
2612                 if (passthrough)
2613                         goto out_unsupported_cdb;
2614
2615                 /*
2616                  * Setup BIDI XOR callback to be run after I/O completion.
2617                  */
2618                 cmd->transport_complete_callback = &transport_xor_callback;
2619                 if (cdb[1] & 0x8)
2620                         cmd->se_cmd_flags |= SCF_FUA;
2621                 break;
2622         case VARIABLE_LENGTH_CMD:
2623                 service_action = get_unaligned_be16(&cdb[8]);
2624                 switch (service_action) {
2625                 case XDWRITEREAD_32:
2626                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2627                         if (sector_ret)
2628                                 goto out_unsupported_cdb;
2629                         size = transport_get_size(sectors, cdb, cmd);
2630                         /*
2631                          * Use WRITE_32 and READ_32 opcodes for the emulated
2632                          * XDWRITE_READ_32 logic.
2633                          */
2634                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2635                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2636
2637                         /*
2638                          * Do now allow BIDI commands for passthrough mode.
2639                          */
2640                         if (passthrough)
2641                                 goto out_unsupported_cdb;
2642
2643                         /*
2644                          * Setup BIDI XOR callback to be run during after I/O
2645                          * completion.
2646                          */
2647                         cmd->transport_complete_callback = &transport_xor_callback;
2648                         if (cdb[1] & 0x8)
2649                                 cmd->se_cmd_flags |= SCF_FUA;
2650                         break;
2651                 case WRITE_SAME_32:
2652                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2653                         if (sector_ret)
2654                                 goto out_unsupported_cdb;
2655
2656                         if (sectors)
2657                                 size = transport_get_size(1, cdb, cmd);
2658                         else {
2659                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2660                                        " supported\n");
2661                                 goto out_invalid_cdb_field;
2662                         }
2663
2664                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2665                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2666
2667                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2668                                 goto out_invalid_cdb_field;
2669                         if (!passthrough)
2670                                 cmd->execute_task = target_emulate_write_same;
2671                         break;
2672                 default:
2673                         pr_err("VARIABLE_LENGTH_CMD service action"
2674                                 " 0x%04x not supported\n", service_action);
2675                         goto out_unsupported_cdb;
2676                 }
2677                 break;
2678         case MAINTENANCE_IN:
2679                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2680                         /* MAINTENANCE_IN from SCC-2 */
2681                         /*
2682                          * Check for emulated MI_REPORT_TARGET_PGS.
2683                          */
2684                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2685                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2686                                 cmd->execute_task =
2687                                         target_emulate_report_target_port_groups;
2688                         }
2689                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2690                                (cdb[8] << 8) | cdb[9];
2691                 } else {
2692                         /* GPCMD_SEND_KEY from multi media commands */
2693                         size = (cdb[8] << 8) + cdb[9];
2694                 }
2695                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2696                 break;
2697         case MODE_SELECT:
2698                 size = cdb[4];
2699                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2700                 break;
2701         case MODE_SELECT_10:
2702                 size = (cdb[7] << 8) + cdb[8];
2703                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2704                 break;
2705         case MODE_SENSE:
2706                 size = cdb[4];
2707                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2708                 if (!passthrough)
2709                         cmd->execute_task = target_emulate_modesense;
2710                 break;
2711         case MODE_SENSE_10:
2712                 size = (cdb[7] << 8) + cdb[8];
2713                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2714                 if (!passthrough)
2715                         cmd->execute_task = target_emulate_modesense;
2716                 break;
2717         case GPCMD_READ_BUFFER_CAPACITY:
2718         case GPCMD_SEND_OPC:
2719         case LOG_SELECT:
2720         case LOG_SENSE:
2721                 size = (cdb[7] << 8) + cdb[8];
2722                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2723                 break;
2724         case READ_BLOCK_LIMITS:
2725                 size = READ_BLOCK_LEN;
2726                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2727                 break;
2728         case GPCMD_GET_CONFIGURATION:
2729         case GPCMD_READ_FORMAT_CAPACITIES:
2730         case GPCMD_READ_DISC_INFO:
2731         case GPCMD_READ_TRACK_RZONE_INFO:
2732                 size = (cdb[7] << 8) + cdb[8];
2733                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2734                 break;
2735         case PERSISTENT_RESERVE_IN:
2736                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2737                         cmd->execute_task = target_scsi3_emulate_pr_in;
2738                 size = (cdb[7] << 8) + cdb[8];
2739                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2740                 break;
2741         case PERSISTENT_RESERVE_OUT:
2742                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2743                         cmd->execute_task = target_scsi3_emulate_pr_out;
2744                 size = (cdb[7] << 8) + cdb[8];
2745                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2746                 break;
2747         case GPCMD_MECHANISM_STATUS:
2748         case GPCMD_READ_DVD_STRUCTURE:
2749                 size = (cdb[8] << 8) + cdb[9];
2750                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2751                 break;
2752         case READ_POSITION:
2753                 size = READ_POSITION_LEN;
2754                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2755                 break;
2756         case MAINTENANCE_OUT:
2757                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2758                         /* MAINTENANCE_OUT from SCC-2
2759                          *
2760                          * Check for emulated MO_SET_TARGET_PGS.
2761                          */
2762                         if (cdb[1] == MO_SET_TARGET_PGS &&
2763                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2764                                 cmd->execute_task =
2765                                         target_emulate_set_target_port_groups;
2766                         }
2767
2768                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2769                                (cdb[8] << 8) | cdb[9];
2770                 } else  {
2771                         /* GPCMD_REPORT_KEY from multi media commands */
2772                         size = (cdb[8] << 8) + cdb[9];
2773                 }
2774                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2775                 break;
2776         case INQUIRY:
2777                 size = (cdb[3] << 8) + cdb[4];
2778                 /*
2779                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2780                  * See spc4r17 section 5.3
2781                  */
2782                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2783                         cmd->sam_task_attr = MSG_HEAD_TAG;
2784                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2785                 if (!passthrough)
2786                         cmd->execute_task = target_emulate_inquiry;
2787                 break;
2788         case READ_BUFFER:
2789                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2790                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2791                 break;
2792         case READ_CAPACITY:
2793                 size = READ_CAP_LEN;
2794                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2795                 if (!passthrough)
2796                         cmd->execute_task = target_emulate_readcapacity;
2797                 break;
2798         case READ_MEDIA_SERIAL_NUMBER:
2799         case SECURITY_PROTOCOL_IN:
2800         case SECURITY_PROTOCOL_OUT:
2801                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2802                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2803                 break;
2804         case SERVICE_ACTION_IN:
2805                 switch (cmd->t_task_cdb[1] & 0x1f) {
2806                 case SAI_READ_CAPACITY_16:
2807                         if (!passthrough)
2808                                 cmd->execute_task =
2809                                         target_emulate_readcapacity_16;
2810                         break;
2811                 default:
2812                         if (passthrough)
2813                                 break;
2814
2815                         pr_err("Unsupported SA: 0x%02x\n",
2816                                 cmd->t_task_cdb[1] & 0x1f);
2817                         goto out_unsupported_cdb;
2818                 }
2819                 /*FALLTHROUGH*/
2820         case ACCESS_CONTROL_IN:
2821         case ACCESS_CONTROL_OUT:
2822         case EXTENDED_COPY:
2823         case READ_ATTRIBUTE:
2824         case RECEIVE_COPY_RESULTS:
2825         case WRITE_ATTRIBUTE:
2826                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2827                        (cdb[12] << 8) | cdb[13];
2828                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829                 break;
2830         case RECEIVE_DIAGNOSTIC:
2831         case SEND_DIAGNOSTIC:
2832                 size = (cdb[3] << 8) | cdb[4];
2833                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2834                 break;
2835 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2836 #if 0
2837         case GPCMD_READ_CD:
2838                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2839                 size = (2336 * sectors);
2840                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841                 break;
2842 #endif
2843         case READ_TOC:
2844                 size = cdb[8];
2845                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2846                 break;
2847         case REQUEST_SENSE:
2848                 size = cdb[4];
2849                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2850                 if (!passthrough)
2851                         cmd->execute_task = target_emulate_request_sense;
2852                 break;
2853         case READ_ELEMENT_STATUS:
2854                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2855                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856                 break;
2857         case WRITE_BUFFER:
2858                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2859                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860                 break;
2861         case RESERVE:
2862         case RESERVE_10:
2863                 /*
2864                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2865                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2866                  */
2867                 if (cdb[0] == RESERVE_10)
2868                         size = (cdb[7] << 8) | cdb[8];
2869                 else
2870                         size = cmd->data_length;
2871
2872                 /*
2873                  * Setup the legacy emulated handler for SPC-2 and
2874                  * >= SPC-3 compatible reservation handling (CRH=1)
2875                  * Otherwise, we assume the underlying SCSI logic is
2876                  * is running in SPC_PASSTHROUGH, and wants reservations
2877                  * emulation disabled.
2878                  */
2879                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2880                         cmd->execute_task = target_scsi2_reservation_reserve;
2881                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2882                 break;
2883         case RELEASE:
2884         case RELEASE_10:
2885                 /*
2886                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2887                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2888                 */
2889                 if (cdb[0] == RELEASE_10)
2890                         size = (cdb[7] << 8) | cdb[8];
2891                 else
2892                         size = cmd->data_length;
2893
2894                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2895                         cmd->execute_task = target_scsi2_reservation_release;
2896                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2897                 break;
2898         case SYNCHRONIZE_CACHE:
2899         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2900                 /*
2901                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2902                  */
2903                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2904                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2905                         cmd->t_task_lba = transport_lba_32(cdb);
2906                 } else {
2907                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2908                         cmd->t_task_lba = transport_lba_64(cdb);
2909                 }
2910                 if (sector_ret)
2911                         goto out_unsupported_cdb;
2912
2913                 size = transport_get_size(sectors, cdb, cmd);
2914                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2915
2916                 if (passthrough)
2917                         break;
2918
2919                 /*
2920                  * Check to ensure that LBA + Range does not exceed past end of
2921                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2922                  */
2923                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2924                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2925                                 goto out_invalid_cdb_field;
2926                 }
2927                 cmd->execute_task = target_emulate_synchronize_cache;
2928                 break;
2929         case UNMAP:
2930                 size = get_unaligned_be16(&cdb[7]);
2931                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2932                 if (!passthrough)
2933                         cmd->execute_task = target_emulate_unmap;
2934                 break;
2935         case WRITE_SAME_16:
2936                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2937                 if (sector_ret)
2938                         goto out_unsupported_cdb;
2939
2940                 if (sectors)
2941                         size = transport_get_size(1, cdb, cmd);
2942                 else {
2943                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2944                         goto out_invalid_cdb_field;
2945                 }
2946
2947                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2948                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2949
2950                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2951                         goto out_invalid_cdb_field;
2952                 if (!passthrough)
2953                         cmd->execute_task = target_emulate_write_same;
2954                 break;
2955         case WRITE_SAME:
2956                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2957                 if (sector_ret)
2958                         goto out_unsupported_cdb;
2959
2960                 if (sectors)
2961                         size = transport_get_size(1, cdb, cmd);
2962                 else {
2963                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2964                         goto out_invalid_cdb_field;
2965                 }
2966
2967                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2968                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2969                 /*
2970                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2971                  * of byte 1 bit 3 UNMAP instead of original reserved field
2972                  */
2973                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2974                         goto out_invalid_cdb_field;
2975                 if (!passthrough)
2976                         cmd->execute_task = target_emulate_write_same;
2977                 break;
2978         case ALLOW_MEDIUM_REMOVAL:
2979         case ERASE:
2980         case REZERO_UNIT:
2981         case SEEK_10:
2982         case SPACE:
2983         case START_STOP:
2984         case TEST_UNIT_READY:
2985         case VERIFY:
2986         case WRITE_FILEMARKS:
2987                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2988                 if (!passthrough)
2989                         cmd->execute_task = target_emulate_noop;
2990                 break;
2991         case GPCMD_CLOSE_TRACK:
2992         case INITIALIZE_ELEMENT_STATUS:
2993         case GPCMD_LOAD_UNLOAD:
2994         case GPCMD_SET_SPEED:
2995         case MOVE_MEDIUM:
2996                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2997                 break;
2998         case REPORT_LUNS:
2999                 cmd->execute_task = target_report_luns;
3000                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3001                 /*
3002                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3003                  * See spc4r17 section 5.3
3004                  */
3005                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3006                         cmd->sam_task_attr = MSG_HEAD_TAG;
3007                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3008                 break;
3009         default:
3010                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3011                         " 0x%02x, sending CHECK_CONDITION.\n",
3012                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3013                 goto out_unsupported_cdb;
3014         }
3015
3016         if (size != cmd->data_length) {
3017                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3018                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3019                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3020                                 cmd->data_length, size, cdb[0]);
3021
3022                 cmd->cmd_spdtl = size;
3023
3024                 if (cmd->data_direction == DMA_TO_DEVICE) {
3025                         pr_err("Rejecting underflow/overflow"
3026                                         " WRITE data\n");
3027                         goto out_invalid_cdb_field;
3028                 }
3029                 /*
3030                  * Reject READ_* or WRITE_* with overflow/underflow for
3031                  * type SCF_SCSI_DATA_SG_IO_CDB.
3032                  */
3033                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3034                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3035                                 " CDB on non 512-byte sector setup subsystem"
3036                                 " plugin: %s\n", dev->transport->name);
3037                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3038                         goto out_invalid_cdb_field;
3039                 }
3040
3041                 if (size > cmd->data_length) {
3042                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3043                         cmd->residual_count = (size - cmd->data_length);
3044                 } else {
3045                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3046                         cmd->residual_count = (cmd->data_length - size);
3047                 }
3048                 cmd->data_length = size;
3049         }
3050
3051         /* reject any command that we don't have a handler for */
3052         if (!(passthrough || cmd->execute_task ||
3053              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3054                 goto out_unsupported_cdb;
3055
3056         /* Let's limit control cdbs to a page, for simplicity's sake. */
3057         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3058             size > PAGE_SIZE)
3059                 goto out_invalid_cdb_field;
3060
3061         transport_set_supported_SAM_opcode(cmd);
3062         return ret;
3063
3064 out_unsupported_cdb:
3065         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3066         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3067         return -EINVAL;
3068 out_invalid_cdb_field:
3069         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3070         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3071         return -EINVAL;
3072 }
3073
3074 /*
3075  * Called from I/O completion to determine which dormant/delayed
3076  * and ordered cmds need to have their tasks added to the execution queue.
3077  */
3078 static void transport_complete_task_attr(struct se_cmd *cmd)
3079 {
3080         struct se_device *dev = cmd->se_dev;
3081         struct se_cmd *cmd_p, *cmd_tmp;
3082         int new_active_tasks = 0;
3083
3084         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3085                 atomic_dec(&dev->simple_cmds);
3086                 smp_mb__after_atomic_dec();
3087                 dev->dev_cur_ordered_id++;
3088                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3089                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3090                         cmd->se_ordered_id);
3091         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3092                 dev->dev_cur_ordered_id++;
3093                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3094                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3095                         cmd->se_ordered_id);
3096         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3097                 atomic_dec(&dev->dev_ordered_sync);
3098                 smp_mb__after_atomic_dec();
3099
3100                 dev->dev_cur_ordered_id++;
3101                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3102                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3103         }
3104         /*
3105          * Process all commands up to the last received
3106          * ORDERED task attribute which requires another blocking
3107          * boundary
3108          */
3109         spin_lock(&dev->delayed_cmd_lock);
3110         list_for_each_entry_safe(cmd_p, cmd_tmp,
3111                         &dev->delayed_cmd_list, se_delayed_node) {
3112
3113                 list_del(&cmd_p->se_delayed_node);
3114                 spin_unlock(&dev->delayed_cmd_lock);
3115
3116                 pr_debug("Calling add_tasks() for"
3117                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3118                         " Dormant -> Active, se_ordered_id: %u\n",
3119                         cmd_p->t_task_cdb[0],
3120                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3121
3122                 transport_add_tasks_from_cmd(cmd_p);
3123                 new_active_tasks++;
3124
3125                 spin_lock(&dev->delayed_cmd_lock);
3126                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3127                         break;
3128         }
3129         spin_unlock(&dev->delayed_cmd_lock);
3130         /*
3131          * If new tasks have become active, wake up the transport thread
3132          * to do the processing of the Active tasks.
3133          */
3134         if (new_active_tasks != 0)
3135                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3136 }
3137
3138 static void transport_complete_qf(struct se_cmd *cmd)
3139 {
3140         int ret = 0;
3141
3142         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3143                 transport_complete_task_attr(cmd);
3144
3145         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3146                 ret = cmd->se_tfo->queue_status(cmd);
3147                 if (ret)
3148                         goto out;
3149         }
3150
3151         switch (cmd->data_direction) {
3152         case DMA_FROM_DEVICE:
3153                 ret = cmd->se_tfo->queue_data_in(cmd);
3154                 break;
3155         case DMA_TO_DEVICE:
3156                 if (cmd->t_bidi_data_sg) {
3157                         ret = cmd->se_tfo->queue_data_in(cmd);
3158                         if (ret < 0)
3159                                 break;
3160                 }
3161                 /* Fall through for DMA_TO_DEVICE */
3162         case DMA_NONE:
3163                 ret = cmd->se_tfo->queue_status(cmd);
3164                 break;
3165         default:
3166                 break;
3167         }
3168
3169 out:
3170         if (ret < 0) {
3171                 transport_handle_queue_full(cmd, cmd->se_dev);
3172                 return;
3173         }
3174         transport_lun_remove_cmd(cmd);
3175         transport_cmd_check_stop_to_fabric(cmd);
3176 }
3177
3178 static void transport_handle_queue_full(
3179         struct se_cmd *cmd,
3180         struct se_device *dev)
3181 {
3182         spin_lock_irq(&dev->qf_cmd_lock);
3183         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3184         atomic_inc(&dev->dev_qf_count);
3185         smp_mb__after_atomic_inc();
3186         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3187
3188         schedule_work(&cmd->se_dev->qf_work_queue);
3189 }
3190
3191 static void target_complete_ok_work(struct work_struct *work)
3192 {
3193         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3194         int reason = 0, ret;
3195
3196         /*
3197          * Check if we need to move delayed/dormant tasks from cmds on the
3198          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3199          * Attribute.
3200          */
3201         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3202                 transport_complete_task_attr(cmd);
3203         /*
3204          * Check to schedule QUEUE_FULL work, or execute an existing
3205          * cmd->transport_qf_callback()
3206          */
3207         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3208                 schedule_work(&cmd->se_dev->qf_work_queue);
3209
3210         /*
3211          * Check if we need to retrieve a sense buffer from
3212          * the struct se_cmd in question.
3213          */
3214         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3215                 if (transport_get_sense_data(cmd) < 0)
3216                         reason = TCM_NON_EXISTENT_LUN;
3217
3218                 /*
3219                  * Only set when an struct se_task->task_scsi_status returned
3220                  * a non GOOD status.
3221                  */
3222                 if (cmd->scsi_status) {
3223                         ret = transport_send_check_condition_and_sense(
3224                                         cmd, reason, 1);
3225                         if (ret == -EAGAIN || ret == -ENOMEM)
3226                                 goto queue_full;
3227
3228                         transport_lun_remove_cmd(cmd);
3229                         transport_cmd_check_stop_to_fabric(cmd);
3230                         return;
3231                 }
3232         }
3233         /*
3234          * Check for a callback, used by amongst other things
3235          * XDWRITE_READ_10 emulation.
3236          */
3237         if (cmd->transport_complete_callback)
3238                 cmd->transport_complete_callback(cmd);
3239
3240         switch (cmd->data_direction) {
3241         case DMA_FROM_DEVICE:
3242                 spin_lock(&cmd->se_lun->lun_sep_lock);
3243                 if (cmd->se_lun->lun_sep) {
3244                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3245                                         cmd->data_length;
3246                 }
3247                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3248
3249                 ret = cmd->se_tfo->queue_data_in(cmd);
3250                 if (ret == -EAGAIN || ret == -ENOMEM)
3251                         goto queue_full;
3252                 break;
3253         case DMA_TO_DEVICE:
3254                 spin_lock(&cmd->se_lun->lun_sep_lock);
3255                 if (cmd->se_lun->lun_sep) {
3256                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3257                                 cmd->data_length;
3258                 }
3259                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3260                 /*
3261                  * Check if we need to send READ payload for BIDI-COMMAND
3262                  */
3263                 if (cmd->t_bidi_data_sg) {
3264                         spin_lock(&cmd->se_lun->lun_sep_lock);
3265                         if (cmd->se_lun->lun_sep) {
3266                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3267                                         cmd->data_length;
3268                         }
3269                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3270                         ret = cmd->se_tfo->queue_data_in(cmd);
3271                         if (ret == -EAGAIN || ret == -ENOMEM)
3272                                 goto queue_full;
3273                         break;
3274                 }
3275                 /* Fall through for DMA_TO_DEVICE */
3276         case DMA_NONE:
3277                 ret = cmd->se_tfo->queue_status(cmd);
3278                 if (ret == -EAGAIN || ret == -ENOMEM)
3279                         goto queue_full;
3280                 break;
3281         default:
3282                 break;
3283         }
3284
3285         transport_lun_remove_cmd(cmd);
3286         transport_cmd_check_stop_to_fabric(cmd);
3287         return;
3288
3289 queue_full:
3290         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3291                 " data_direction: %d\n", cmd, cmd->data_direction);
3292         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3293         transport_handle_queue_full(cmd, cmd->se_dev);
3294 }
3295
3296 static void transport_free_dev_tasks(struct se_cmd *cmd)
3297 {
3298         struct se_task *task, *task_tmp;
3299         unsigned long flags;
3300         LIST_HEAD(dispose_list);
3301
3302         spin_lock_irqsave(&cmd->t_state_lock, flags);
3303         list_for_each_entry_safe(task, task_tmp,
3304                                 &cmd->t_task_list, t_list) {
3305                 if (!(task->task_flags & TF_ACTIVE))
3306                         list_move_tail(&task->t_list, &dispose_list);
3307         }
3308         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3309
3310         while (!list_empty(&dispose_list)) {
3311                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3312
3313                 if (task->task_sg != cmd->t_data_sg &&
3314                     task->task_sg != cmd->t_bidi_data_sg)
3315                         kfree(task->task_sg);
3316
3317                 list_del(&task->t_list);
3318
3319                 cmd->se_dev->transport->free_task(task);
3320         }
3321 }
3322
3323 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3324 {
3325         struct scatterlist *sg;
3326         int count;
3327
3328         for_each_sg(sgl, sg, nents, count)
3329                 __free_page(sg_page(sg));
3330
3331         kfree(sgl);
3332 }
3333
3334 static inline void transport_free_pages(struct se_cmd *cmd)
3335 {
3336         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3337                 return;
3338
3339         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3340         cmd->t_data_sg = NULL;
3341         cmd->t_data_nents = 0;
3342
3343         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3344         cmd->t_bidi_data_sg = NULL;
3345         cmd->t_bidi_data_nents = 0;
3346 }
3347
3348 /**
3349  * transport_put_cmd - release a reference to a command
3350  * @cmd:       command to release
3351  *
3352  * This routine releases our reference to the command and frees it if possible.
3353  */
3354 static void transport_put_cmd(struct se_cmd *cmd)
3355 {
3356         unsigned long flags;
3357         int free_tasks = 0;
3358
3359         spin_lock_irqsave(&cmd->t_state_lock, flags);
3360         if (atomic_read(&cmd->t_fe_count)) {
3361                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3362                         goto out_busy;
3363         }
3364
3365         if (atomic_read(&cmd->t_se_count)) {
3366                 if (!atomic_dec_and_test(&cmd->t_se_count))
3367                         goto out_busy;
3368         }
3369
3370         if (atomic_read(&cmd->transport_dev_active)) {
3371                 atomic_set(&cmd->transport_dev_active, 0);
3372                 transport_all_task_dev_remove_state(cmd);
3373                 free_tasks = 1;
3374         }
3375         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3376
3377         if (free_tasks != 0)
3378                 transport_free_dev_tasks(cmd);
3379
3380         transport_free_pages(cmd);
3381         transport_release_cmd(cmd);
3382         return;
3383 out_busy:
3384         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3385 }
3386
3387 /*
3388  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3389  * allocating in the core.
3390  * @cmd:  Associated se_cmd descriptor
3391  * @mem:  SGL style memory for TCM WRITE / READ
3392  * @sg_mem_num: Number of SGL elements
3393  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3394  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3395  *
3396  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3397  * of parameters.
3398  */
3399 int transport_generic_map_mem_to_cmd(
3400         struct se_cmd *cmd,
3401         struct scatterlist *sgl,
3402         u32 sgl_count,
3403         struct scatterlist *sgl_bidi,
3404         u32 sgl_bidi_count)
3405 {
3406         if (!sgl || !sgl_count)
3407                 return 0;
3408
3409         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3410             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3411                 /*
3412                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3413                  * scatterlists already have been set to follow what the fabric
3414                  * passes for the original expected data transfer length.
3415                  */
3416                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3417                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3418                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3419                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3420                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3421                         return -EINVAL;
3422                 }
3423
3424                 cmd->t_data_sg = sgl;
3425                 cmd->t_data_nents = sgl_count;
3426
3427                 if (sgl_bidi && sgl_bidi_count) {
3428                         cmd->t_bidi_data_sg = sgl_bidi;
3429                         cmd->t_bidi_data_nents = sgl_bidi_count;
3430                 }
3431                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3432         }
3433
3434         return 0;
3435 }
3436 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3437
3438 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3439 {
3440         struct scatterlist *sg = cmd->t_data_sg;
3441
3442         BUG_ON(!sg);
3443         /*
3444          * We need to take into account a possible offset here for fabrics like
3445          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3446          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3447          */
3448         return kmap(sg_page(sg)) + sg->offset;
3449 }
3450 EXPORT_SYMBOL(transport_kmap_first_data_page);
3451
3452 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3453 {
3454         kunmap(sg_page(cmd->t_data_sg));
3455 }
3456 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3457
3458 static int
3459 transport_generic_get_mem(struct se_cmd *cmd)
3460 {
3461         u32 length = cmd->data_length;
3462         unsigned int nents;
3463         struct page *page;
3464         int i = 0;
3465
3466         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3467         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3468         if (!cmd->t_data_sg)
3469                 return -ENOMEM;
3470
3471         cmd->t_data_nents = nents;
3472         sg_init_table(cmd->t_data_sg, nents);
3473
3474         while (length) {
3475                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3476                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3477                 if (!page)
3478                         goto out;
3479
3480                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3481                 length -= page_len;
3482                 i++;
3483         }
3484         return 0;
3485
3486 out:
3487         while (i >= 0) {
3488                 __free_page(sg_page(&cmd->t_data_sg[i]));
3489                 i--;
3490         }
3491         kfree(cmd->t_data_sg);
3492         cmd->t_data_sg = NULL;
3493         return -ENOMEM;
3494 }
3495
3496 /* Reduce sectors if they are too long for the device */
3497 static inline sector_t transport_limit_task_sectors(
3498         struct se_device *dev,
3499         unsigned long long lba,
3500         sector_t sectors)
3501 {
3502         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3503
3504         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3505                 if ((lba + sectors) > transport_dev_end_lba(dev))
3506                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3507
3508         return sectors;
3509 }
3510
3511
3512 /*
3513  * This function can be used by HW target mode drivers to create a linked
3514  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3515  * This is intended to be called during the completion path by TCM Core
3516  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3517  */
3518 void transport_do_task_sg_chain(struct se_cmd *cmd)
3519 {
3520         struct scatterlist *sg_first = NULL;
3521         struct scatterlist *sg_prev = NULL;
3522         int sg_prev_nents = 0;
3523         struct scatterlist *sg;
3524         struct se_task *task;
3525         u32 chained_nents = 0;
3526         int i;
3527
3528         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3529
3530         /*
3531          * Walk the struct se_task list and setup scatterlist chains
3532          * for each contiguously allocated struct se_task->task_sg[].
3533          */
3534         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3535                 if (!task->task_sg)
3536                         continue;
3537
3538                 if (!sg_first) {
3539                         sg_first = task->task_sg;
3540                         chained_nents = task->task_sg_nents;
3541                 } else {
3542                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3543                         chained_nents += task->task_sg_nents;
3544                 }
3545                 /*
3546                  * For the padded tasks, use the extra SGL vector allocated
3547                  * in transport_allocate_data_tasks() for the sg_prev_nents
3548                  * offset into sg_chain() above.
3549                  *
3550                  * We do not need the padding for the last task (or a single
3551                  * task), but in that case we will never use the sg_prev_nents
3552                  * value below which would be incorrect.
3553                  */
3554                 sg_prev_nents = (task->task_sg_nents + 1);
3555                 sg_prev = task->task_sg;
3556         }
3557         /*
3558          * Setup the starting pointer and total t_tasks_sg_linked_no including
3559          * padding SGs for linking and to mark the end.
3560          */
3561         cmd->t_tasks_sg_chained = sg_first;
3562         cmd->t_tasks_sg_chained_no = chained_nents;
3563
3564         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3565                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3566                 cmd->t_tasks_sg_chained_no);
3567
3568         for_each_sg(cmd->t_tasks_sg_chained, sg,
3569                         cmd->t_tasks_sg_chained_no, i) {
3570
3571                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3572                         i, sg, sg_page(sg), sg->length, sg->offset);
3573                 if (sg_is_chain(sg))
3574                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3575                 if (sg_is_last(sg))
3576                         pr_debug("SG: %p sg_is_last=1\n", sg);
3577         }
3578 }
3579 EXPORT_SYMBOL(transport_do_task_sg_chain);
3580
3581 /*
3582  * Break up cmd into chunks transport can handle
3583  */
3584 static int
3585 transport_allocate_data_tasks(struct se_cmd *cmd,
3586         enum dma_data_direction data_direction,
3587         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3588 {
3589         struct se_device *dev = cmd->se_dev;
3590         int task_count, i;
3591         unsigned long long lba;
3592         sector_t sectors, dev_max_sectors;
3593         u32 sector_size;
3594
3595         if (transport_cmd_get_valid_sectors(cmd) < 0)
3596                 return -EINVAL;
3597
3598         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3599         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3600
3601         WARN_ON(cmd->data_length % sector_size);
3602
3603         lba = cmd->t_task_lba;
3604         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3605         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3606
3607         /*
3608          * If we need just a single task reuse the SG list in the command
3609          * and avoid a lot of work.
3610          */
3611         if (task_count == 1) {
3612                 struct se_task *task;
3613                 unsigned long flags;
3614
3615                 task = transport_generic_get_task(cmd, data_direction);
3616                 if (!task)
3617                         return -ENOMEM;
3618
3619                 task->task_sg = cmd_sg;
3620                 task->task_sg_nents = sgl_nents;
3621
3622                 task->task_lba = lba;
3623                 task->task_sectors = sectors;
3624                 task->task_size = task->task_sectors * sector_size;
3625
3626                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3627                 list_add_tail(&task->t_list, &cmd->t_task_list);
3628                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3629
3630                 return task_count;
3631         }
3632
3633         for (i = 0; i < task_count; i++) {
3634                 struct se_task *task;
3635                 unsigned int task_size, task_sg_nents_padded;
3636                 struct scatterlist *sg;
3637                 unsigned long flags;
3638                 int count;
3639
3640                 task = transport_generic_get_task(cmd, data_direction);
3641                 if (!task)
3642                         return -ENOMEM;
3643
3644                 task->task_lba = lba;
3645                 task->task_sectors = min(sectors, dev_max_sectors);
3646                 task->task_size = task->task_sectors * sector_size;
3647
3648                 /*
3649                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3650                  * in order to calculate the number per task SGL entries
3651                  */
3652                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3653                 /*
3654                  * Check if the fabric module driver is requesting that all
3655                  * struct se_task->task_sg[] be chained together..  If so,
3656                  * then allocate an extra padding SG entry for linking and
3657                  * marking the end of the chained SGL for every task except
3658                  * the last one for (task_count > 1) operation, or skipping
3659                  * the extra padding for the (task_count == 1) case.
3660                  */
3661                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3662                         task_sg_nents_padded = (task->task_sg_nents + 1);
3663                 } else
3664                         task_sg_nents_padded = task->task_sg_nents;
3665
3666                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3667                                         task_sg_nents_padded, GFP_KERNEL);
3668                 if (!task->task_sg) {
3669                         cmd->se_dev->transport->free_task(task);
3670                         return -ENOMEM;
3671                 }
3672
3673                 sg_init_table(task->task_sg, task_sg_nents_padded);
3674
3675                 task_size = task->task_size;
3676
3677                 /* Build new sgl, only up to task_size */
3678                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3679                         if (cmd_sg->length > task_size)
3680                                 break;
3681
3682                         *sg = *cmd_sg;
3683                         task_size -= cmd_sg->length;
3684                         cmd_sg = sg_next(cmd_sg);
3685                 }
3686
3687                 lba += task->task_sectors;
3688                 sectors -= task->task_sectors;
3689
3690                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3691                 list_add_tail(&task->t_list, &cmd->t_task_list);
3692                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3693         }
3694
3695         return task_count;
3696 }
3697
3698 static int
3699 transport_allocate_control_task(struct se_cmd *cmd)
3700 {
3701         struct se_task *task;
3702         unsigned long flags;
3703
3704         task = transport_generic_get_task(cmd, cmd->data_direction);
3705         if (!task)
3706                 return -ENOMEM;
3707
3708         task->task_sg = cmd->t_data_sg;
3709         task->task_size = cmd->data_length;
3710         task->task_sg_nents = cmd->t_data_nents;
3711
3712         spin_lock_irqsave(&cmd->t_state_lock, flags);
3713         list_add_tail(&task->t_list, &cmd->t_task_list);
3714         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3715
3716         /* Success! Return number of tasks allocated */
3717         return 1;
3718 }
3719
3720 /*
3721  * Allocate any required ressources to execute the command, and either place
3722  * it on the execution queue if possible.  For writes we might not have the
3723  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3724  */
3725 int transport_generic_new_cmd(struct se_cmd *cmd)
3726 {
3727         struct se_device *dev = cmd->se_dev;
3728         int task_cdbs, task_cdbs_bidi = 0;
3729         int set_counts = 1;
3730         int ret = 0;
3731
3732         /*
3733          * Determine is the TCM fabric module has already allocated physical
3734          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3735          * beforehand.
3736          */
3737         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3738             cmd->data_length) {
3739                 ret = transport_generic_get_mem(cmd);
3740                 if (ret < 0)
3741                         goto out_fail;
3742         }
3743
3744         /*
3745          * For BIDI command set up the read tasks first.
3746          */
3747         if (cmd->t_bidi_data_sg &&
3748             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3749                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3750
3751                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3752                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3753                                 cmd->t_bidi_data_nents);
3754                 if (task_cdbs_bidi <= 0)
3755                         goto out_fail;
3756
3757                 atomic_inc(&cmd->t_fe_count);
3758                 atomic_inc(&cmd->t_se_count);
3759                 set_counts = 0;
3760         }
3761
3762         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3763                 task_cdbs = transport_allocate_data_tasks(cmd,
3764                                         cmd->data_direction, cmd->t_data_sg,
3765                                         cmd->t_data_nents);
3766         } else {
3767                 task_cdbs = transport_allocate_control_task(cmd);
3768         }
3769
3770         if (task_cdbs < 0)
3771                 goto out_fail;
3772         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3773                 cmd->t_state = TRANSPORT_COMPLETE;
3774                 atomic_set(&cmd->t_transport_active, 1);
3775                 INIT_WORK(&cmd->work, target_complete_ok_work);
3776                 queue_work(target_completion_wq, &cmd->work);
3777                 return 0;
3778         }
3779
3780         if (set_counts) {
3781                 atomic_inc(&cmd->t_fe_count);
3782                 atomic_inc(&cmd->t_se_count);
3783         }
3784
3785         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3786         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3787         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3788
3789         /*
3790          * For WRITEs, let the fabric know its buffer is ready..
3791          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3792          * will be added to the struct se_device execution queue after its WRITE
3793          * data has arrived. (ie: It gets handled by the transport processing
3794          * thread a second time)
3795          */
3796         if (cmd->data_direction == DMA_TO_DEVICE) {
3797                 transport_add_tasks_to_state_queue(cmd);
3798                 return transport_generic_write_pending(cmd);
3799         }
3800         /*
3801          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3802          * to the execution queue.
3803          */
3804         transport_execute_tasks(cmd);
3805         return 0;
3806
3807 out_fail:
3808         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3809         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3810         return -EINVAL;
3811 }
3812 EXPORT_SYMBOL(transport_generic_new_cmd);
3813
3814 /*      transport_generic_process_write():
3815  *
3816  *
3817  */
3818 void transport_generic_process_write(struct se_cmd *cmd)
3819 {
3820         transport_execute_tasks(cmd);
3821 }
3822 EXPORT_SYMBOL(transport_generic_process_write);
3823
3824 static void transport_write_pending_qf(struct se_cmd *cmd)
3825 {
3826         int ret;
3827
3828         ret = cmd->se_tfo->write_pending(cmd);
3829         if (ret == -EAGAIN || ret == -ENOMEM) {
3830                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3831                          cmd);
3832                 transport_handle_queue_full(cmd, cmd->se_dev);
3833         }
3834 }
3835
3836 static int transport_generic_write_pending(struct se_cmd *cmd)
3837 {
3838         unsigned long flags;
3839         int ret;
3840
3841         spin_lock_irqsave(&cmd->t_state_lock, flags);
3842         cmd->t_state = TRANSPORT_WRITE_PENDING;
3843         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3844
3845         /*
3846          * Clear the se_cmd for WRITE_PENDING status in order to set
3847          * cmd->t_transport_active=0 so that transport_generic_handle_data
3848          * can be called from HW target mode interrupt code.  This is safe
3849          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3850          * because the se_cmd->se_lun pointer is not being cleared.
3851          */
3852         transport_cmd_check_stop(cmd, 1, 0);
3853
3854         /*
3855          * Call the fabric write_pending function here to let the
3856          * frontend know that WRITE buffers are ready.
3857          */
3858         ret = cmd->se_tfo->write_pending(cmd);
3859         if (ret == -EAGAIN || ret == -ENOMEM)
3860                 goto queue_full;
3861         else if (ret < 0)
3862                 return ret;
3863
3864         return 1;
3865
3866 queue_full:
3867         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3868         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3869         transport_handle_queue_full(cmd, cmd->se_dev);
3870         return 0;
3871 }
3872
3873 /**
3874  * transport_release_cmd - free a command
3875  * @cmd:       command to free
3876  *
3877  * This routine unconditionally frees a command, and reference counting
3878  * or list removal must be done in the caller.
3879  */
3880 void transport_release_cmd(struct se_cmd *cmd)
3881 {
3882         BUG_ON(!cmd->se_tfo);
3883
3884         if (cmd->se_tmr_req)
3885                 core_tmr_release_req(cmd->se_tmr_req);
3886         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3887                 kfree(cmd->t_task_cdb);
3888         /*
3889          * Check if target_wait_for_sess_cmds() is expecting to
3890          * release se_cmd directly here..
3891          */
3892         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3893                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3894                         return;
3895
3896         cmd->se_tfo->release_cmd(cmd);
3897 }
3898 EXPORT_SYMBOL(transport_release_cmd);
3899
3900 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3901 {
3902         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3903                 if (wait_for_tasks && cmd->se_tmr_req)
3904                          transport_wait_for_tasks(cmd);
3905
3906                 transport_release_cmd(cmd);
3907         } else {
3908                 if (wait_for_tasks)
3909                         transport_wait_for_tasks(cmd);
3910
3911                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3912
3913                 if (cmd->se_lun)
3914                         transport_lun_remove_cmd(cmd);
3915
3916                 transport_free_dev_tasks(cmd);
3917
3918                 transport_put_cmd(cmd);
3919         }
3920 }
3921 EXPORT_SYMBOL(transport_generic_free_cmd);
3922
3923 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3924  * @se_sess:    session to reference
3925  * @se_cmd:     command descriptor to add
3926  */
3927 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3928 {
3929         unsigned long flags;
3930
3931         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3932         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3933         se_cmd->check_release = 1;
3934         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3935 }
3936 EXPORT_SYMBOL(target_get_sess_cmd);
3937
3938 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3939  * @se_sess:    session to reference
3940  * @se_cmd:     command descriptor to drop
3941  */
3942 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3943 {
3944         unsigned long flags;
3945
3946         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3947         if (list_empty(&se_cmd->se_cmd_list)) {
3948                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3949                 WARN_ON(1);
3950                 return 0;
3951         }
3952
3953         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3954                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3955                 complete(&se_cmd->cmd_wait_comp);
3956                 return 1;
3957         }
3958         list_del(&se_cmd->se_cmd_list);
3959         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3960
3961         return 0;
3962 }
3963 EXPORT_SYMBOL(target_put_sess_cmd);
3964
3965 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3966  * @se_sess:    session to split
3967  */
3968 void target_splice_sess_cmd_list(struct se_session *se_sess)
3969 {
3970         struct se_cmd *se_cmd;
3971         unsigned long flags;
3972
3973         WARN_ON(!list_empty(&se_sess->sess_wait_list));
3974         INIT_LIST_HEAD(&se_sess->sess_wait_list);
3975
3976         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3977         se_sess->sess_tearing_down = 1;
3978
3979         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3980
3981         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3982                 se_cmd->cmd_wait_set = 1;
3983
3984         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3985 }
3986 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3987
3988 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3989  * @se_sess:    session to wait for active I/O
3990  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
3991  */
3992 void target_wait_for_sess_cmds(
3993         struct se_session *se_sess,
3994         int wait_for_tasks)
3995 {
3996         struct se_cmd *se_cmd, *tmp_cmd;
3997         bool rc = false;
3998
3999         list_for_each_entry_safe(se_cmd, tmp_cmd,
4000                                 &se_sess->sess_wait_list, se_cmd_list) {
4001                 list_del(&se_cmd->se_cmd_list);
4002
4003                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4004                         " %d\n", se_cmd, se_cmd->t_state,
4005                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4006
4007                 if (wait_for_tasks) {
4008                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4009                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4010                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4011
4012                         rc = transport_wait_for_tasks(se_cmd);
4013
4014                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4015                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4016                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4017                 }
4018
4019                 if (!rc) {
4020                         wait_for_completion(&se_cmd->cmd_wait_comp);
4021                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4022                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4023                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4024                 }
4025
4026                 se_cmd->se_tfo->release_cmd(se_cmd);
4027         }
4028 }
4029 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4030
4031 /*      transport_lun_wait_for_tasks():
4032  *
4033  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4034  *      an struct se_lun to be successfully shutdown.
4035  */
4036 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4037 {
4038         unsigned long flags;
4039         int ret;
4040         /*
4041          * If the frontend has already requested this struct se_cmd to
4042          * be stopped, we can safely ignore this struct se_cmd.
4043          */
4044         spin_lock_irqsave(&cmd->t_state_lock, flags);
4045         if (atomic_read(&cmd->t_transport_stop)) {
4046                 atomic_set(&cmd->transport_lun_stop, 0);
4047                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4048                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4049                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4050                 transport_cmd_check_stop(cmd, 1, 0);
4051                 return -EPERM;
4052         }
4053         atomic_set(&cmd->transport_lun_fe_stop, 1);
4054         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4055
4056         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4057
4058         ret = transport_stop_tasks_for_cmd(cmd);
4059
4060         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4061                         " %d\n", cmd, cmd->t_task_list_num, ret);
4062         if (!ret) {
4063                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4064                                 cmd->se_tfo->get_task_tag(cmd));
4065                 wait_for_completion(&cmd->transport_lun_stop_comp);
4066                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4067                                 cmd->se_tfo->get_task_tag(cmd));
4068         }
4069         transport_remove_cmd_from_queue(cmd);
4070
4071         return 0;
4072 }
4073
4074 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4075 {
4076         struct se_cmd *cmd = NULL;
4077         unsigned long lun_flags, cmd_flags;
4078         /*
4079          * Do exception processing and return CHECK_CONDITION status to the
4080          * Initiator Port.
4081          */
4082         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4083         while (!list_empty(&lun->lun_cmd_list)) {
4084                 cmd = list_first_entry(&lun->lun_cmd_list,
4085                        struct se_cmd, se_lun_node);
4086                 list_del(&cmd->se_lun_node);
4087
4088                 atomic_set(&cmd->transport_lun_active, 0);
4089                 /*
4090                  * This will notify iscsi_target_transport.c:
4091                  * transport_cmd_check_stop() that a LUN shutdown is in
4092                  * progress for the iscsi_cmd_t.
4093                  */
4094                 spin_lock(&cmd->t_state_lock);
4095                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4096                         "_lun_stop for  ITT: 0x%08x\n",
4097                         cmd->se_lun->unpacked_lun,
4098                         cmd->se_tfo->get_task_tag(cmd));
4099                 atomic_set(&cmd->transport_lun_stop, 1);
4100                 spin_unlock(&cmd->t_state_lock);
4101
4102                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4103
4104                 if (!cmd->se_lun) {
4105                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4106                                 cmd->se_tfo->get_task_tag(cmd),
4107                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4108                         BUG();
4109                 }
4110                 /*
4111                  * If the Storage engine still owns the iscsi_cmd_t, determine
4112                  * and/or stop its context.
4113                  */
4114                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4115                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4116                         cmd->se_tfo->get_task_tag(cmd));
4117
4118                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4119                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4120                         continue;
4121                 }
4122
4123                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4124                         "_wait_for_tasks(): SUCCESS\n",
4125                         cmd->se_lun->unpacked_lun,
4126                         cmd->se_tfo->get_task_tag(cmd));
4127
4128                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4129                 if (!atomic_read(&cmd->transport_dev_active)) {
4130                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4131                         goto check_cond;
4132                 }
4133                 atomic_set(&cmd->transport_dev_active, 0);
4134                 transport_all_task_dev_remove_state(cmd);
4135                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4136
4137                 transport_free_dev_tasks(cmd);
4138                 /*
4139                  * The Storage engine stopped this struct se_cmd before it was
4140                  * send to the fabric frontend for delivery back to the
4141                  * Initiator Node.  Return this SCSI CDB back with an
4142                  * CHECK_CONDITION status.
4143                  */
4144 check_cond:
4145                 transport_send_check_condition_and_sense(cmd,
4146                                 TCM_NON_EXISTENT_LUN, 0);
4147                 /*
4148                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4149                  * be released, notify the waiting thread now that LU has
4150                  * finished accessing it.
4151                  */
4152                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4153                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4154                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4155                                 " struct se_cmd: %p ITT: 0x%08x\n",
4156                                 lun->unpacked_lun,
4157                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4158
4159                         spin_unlock_irqrestore(&cmd->t_state_lock,
4160                                         cmd_flags);
4161                         transport_cmd_check_stop(cmd, 1, 0);
4162                         complete(&cmd->transport_lun_fe_stop_comp);
4163                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4164                         continue;
4165                 }
4166                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4167                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4168
4169                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4170                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4171         }
4172         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4173 }
4174
4175 static int transport_clear_lun_thread(void *p)
4176 {
4177         struct se_lun *lun = (struct se_lun *)p;
4178
4179         __transport_clear_lun_from_sessions(lun);
4180         complete(&lun->lun_shutdown_comp);
4181
4182         return 0;
4183 }
4184
4185 int transport_clear_lun_from_sessions(struct se_lun *lun)
4186 {
4187         struct task_struct *kt;
4188
4189         kt = kthread_run(transport_clear_lun_thread, lun,
4190                         "tcm_cl_%u", lun->unpacked_lun);
4191         if (IS_ERR(kt)) {
4192                 pr_err("Unable to start clear_lun thread\n");
4193                 return PTR_ERR(kt);
4194         }
4195         wait_for_completion(&lun->lun_shutdown_comp);
4196
4197         return 0;
4198 }
4199
4200 /**
4201  * transport_wait_for_tasks - wait for completion to occur
4202  * @cmd:        command to wait
4203  *
4204  * Called from frontend fabric context to wait for storage engine
4205  * to pause and/or release frontend generated struct se_cmd.
4206  */
4207 bool transport_wait_for_tasks(struct se_cmd *cmd)
4208 {
4209         unsigned long flags;
4210
4211         spin_lock_irqsave(&cmd->t_state_lock, flags);
4212         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4213                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4214                 return false;
4215         }
4216         /*
4217          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4218          * has been set in transport_set_supported_SAM_opcode().
4219          */
4220         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4221                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4222                 return false;
4223         }
4224         /*
4225          * If we are already stopped due to an external event (ie: LUN shutdown)
4226          * sleep until the connection can have the passed struct se_cmd back.
4227          * The cmd->transport_lun_stopped_sem will be upped by
4228          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4229          * has completed its operation on the struct se_cmd.
4230          */
4231         if (atomic_read(&cmd->transport_lun_stop)) {
4232
4233                 pr_debug("wait_for_tasks: Stopping"
4234                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4235                         "_stop_comp); for ITT: 0x%08x\n",
4236                         cmd->se_tfo->get_task_tag(cmd));
4237                 /*
4238                  * There is a special case for WRITES where a FE exception +
4239                  * LUN shutdown means ConfigFS context is still sleeping on
4240                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4241                  * We go ahead and up transport_lun_stop_comp just to be sure
4242                  * here.
4243                  */
4244                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4245                 complete(&cmd->transport_lun_stop_comp);
4246                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4247                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4248
4249                 transport_all_task_dev_remove_state(cmd);
4250                 /*
4251                  * At this point, the frontend who was the originator of this
4252                  * struct se_cmd, now owns the structure and can be released through
4253                  * normal means below.
4254                  */
4255                 pr_debug("wait_for_tasks: Stopped"
4256                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4257                         "stop_comp); for ITT: 0x%08x\n",
4258                         cmd->se_tfo->get_task_tag(cmd));
4259
4260                 atomic_set(&cmd->transport_lun_stop, 0);
4261         }
4262         if (!atomic_read(&cmd->t_transport_active) ||
4263              atomic_read(&cmd->t_transport_aborted)) {
4264                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4265                 return false;
4266         }
4267
4268         atomic_set(&cmd->t_transport_stop, 1);
4269
4270         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4271                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4272                 cmd, cmd->se_tfo->get_task_tag(cmd),
4273                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4274
4275         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4276
4277         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4278
4279         wait_for_completion(&cmd->t_transport_stop_comp);
4280
4281         spin_lock_irqsave(&cmd->t_state_lock, flags);
4282         atomic_set(&cmd->t_transport_active, 0);
4283         atomic_set(&cmd->t_transport_stop, 0);
4284
4285         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4286                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4287                 cmd->se_tfo->get_task_tag(cmd));
4288
4289         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4290
4291         return true;
4292 }
4293 EXPORT_SYMBOL(transport_wait_for_tasks);
4294
4295 static int transport_get_sense_codes(
4296         struct se_cmd *cmd,
4297         u8 *asc,
4298         u8 *ascq)
4299 {
4300         *asc = cmd->scsi_asc;
4301         *ascq = cmd->scsi_ascq;
4302
4303         return 0;
4304 }
4305
4306 static int transport_set_sense_codes(
4307         struct se_cmd *cmd,
4308         u8 asc,
4309         u8 ascq)
4310 {
4311         cmd->scsi_asc = asc;
4312         cmd->scsi_ascq = ascq;
4313
4314         return 0;
4315 }
4316
4317 int transport_send_check_condition_and_sense(
4318         struct se_cmd *cmd,
4319         u8 reason,
4320         int from_transport)
4321 {
4322         unsigned char *buffer = cmd->sense_buffer;
4323         unsigned long flags;
4324         int offset;
4325         u8 asc = 0, ascq = 0;
4326
4327         spin_lock_irqsave(&cmd->t_state_lock, flags);
4328         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4329                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4330                 return 0;
4331         }
4332         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4333         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4334
4335         if (!reason && from_transport)
4336                 goto after_reason;
4337
4338         if (!from_transport)
4339                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4340         /*
4341          * Data Segment and SenseLength of the fabric response PDU.
4342          *
4343          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4344          * from include/scsi/scsi_cmnd.h
4345          */
4346         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4347                                 TRANSPORT_SENSE_BUFFER);
4348         /*
4349          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4350          * SENSE KEY values from include/scsi/scsi.h
4351          */
4352         switch (reason) {
4353         case TCM_NON_EXISTENT_LUN:
4354                 /* CURRENT ERROR */
4355                 buffer[offset] = 0x70;
4356                 /* ILLEGAL REQUEST */
4357                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4358                 /* LOGICAL UNIT NOT SUPPORTED */
4359                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4360                 break;
4361         case TCM_UNSUPPORTED_SCSI_OPCODE:
4362         case TCM_SECTOR_COUNT_TOO_MANY:
4363                 /* CURRENT ERROR */
4364                 buffer[offset] = 0x70;
4365                 /* ILLEGAL REQUEST */
4366                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4367                 /* INVALID COMMAND OPERATION CODE */
4368                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4369                 break;
4370         case TCM_UNKNOWN_MODE_PAGE:
4371                 /* CURRENT ERROR */
4372                 buffer[offset] = 0x70;
4373                 /* ILLEGAL REQUEST */
4374                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4375                 /* INVALID FIELD IN CDB */
4376                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4377                 break;
4378         case TCM_CHECK_CONDITION_ABORT_CMD:
4379                 /* CURRENT ERROR */
4380                 buffer[offset] = 0x70;
4381                 /* ABORTED COMMAND */
4382                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4383                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4384                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4385                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4386                 break;
4387         case TCM_INCORRECT_AMOUNT_OF_DATA:
4388                 /* CURRENT ERROR */
4389                 buffer[offset] = 0x70;
4390                 /* ABORTED COMMAND */
4391                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4392                 /* WRITE ERROR */
4393                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4394                 /* NOT ENOUGH UNSOLICITED DATA */
4395                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4396                 break;
4397         case TCM_INVALID_CDB_FIELD:
4398                 /* CURRENT ERROR */
4399                 buffer[offset] = 0x70;
4400                 /* ABORTED COMMAND */
4401                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4402                 /* INVALID FIELD IN CDB */
4403                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4404                 break;
4405         case TCM_INVALID_PARAMETER_LIST:
4406                 /* CURRENT ERROR */
4407                 buffer[offset] = 0x70;
4408                 /* ABORTED COMMAND */
4409                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4410                 /* INVALID FIELD IN PARAMETER LIST */
4411                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4412                 break;
4413         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4414                 /* CURRENT ERROR */
4415                 buffer[offset] = 0x70;
4416                 /* ABORTED COMMAND */
4417                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4418                 /* WRITE ERROR */
4419                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4420                 /* UNEXPECTED_UNSOLICITED_DATA */
4421                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4422                 break;
4423         case TCM_SERVICE_CRC_ERROR:
4424                 /* CURRENT ERROR */
4425                 buffer[offset] = 0x70;
4426                 /* ABORTED COMMAND */
4427                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4428                 /* PROTOCOL SERVICE CRC ERROR */
4429                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4430                 /* N/A */
4431                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4432                 break;
4433         case TCM_SNACK_REJECTED:
4434                 /* CURRENT ERROR */
4435                 buffer[offset] = 0x70;
4436                 /* ABORTED COMMAND */
4437                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4438                 /* READ ERROR */
4439                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4440                 /* FAILED RETRANSMISSION REQUEST */
4441                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4442                 break;
4443         case TCM_WRITE_PROTECTED:
4444                 /* CURRENT ERROR */
4445                 buffer[offset] = 0x70;
4446                 /* DATA PROTECT */
4447                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4448                 /* WRITE PROTECTED */
4449                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4450                 break;
4451         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4452                 /* CURRENT ERROR */
4453                 buffer[offset] = 0x70;
4454                 /* UNIT ATTENTION */
4455                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4456                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4457                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4458                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4459                 break;
4460         case TCM_CHECK_CONDITION_NOT_READY:
4461                 /* CURRENT ERROR */
4462                 buffer[offset] = 0x70;
4463                 /* Not Ready */
4464                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4465                 transport_get_sense_codes(cmd, &asc, &ascq);
4466                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4467                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4468                 break;
4469         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4470         default:
4471                 /* CURRENT ERROR */
4472                 buffer[offset] = 0x70;
4473                 /* ILLEGAL REQUEST */
4474                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4475                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4476                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4477                 break;
4478         }
4479         /*
4480          * This code uses linux/include/scsi/scsi.h SAM status codes!
4481          */
4482         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4483         /*
4484          * Automatically padded, this value is encoded in the fabric's
4485          * data_length response PDU containing the SCSI defined sense data.
4486          */
4487         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4488
4489 after_reason:
4490         return cmd->se_tfo->queue_status(cmd);
4491 }
4492 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4493
4494 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4495 {
4496         int ret = 0;
4497
4498         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4499                 if (!send_status ||
4500                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4501                         return 1;
4502 #if 0
4503                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4504                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4505                         cmd->t_task_cdb[0],
4506                         cmd->se_tfo->get_task_tag(cmd));
4507 #endif
4508                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4509                 cmd->se_tfo->queue_status(cmd);
4510                 ret = 1;
4511         }
4512         return ret;
4513 }
4514 EXPORT_SYMBOL(transport_check_aborted_status);
4515
4516 void transport_send_task_abort(struct se_cmd *cmd)
4517 {
4518         unsigned long flags;
4519
4520         spin_lock_irqsave(&cmd->t_state_lock, flags);
4521         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4522                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4523                 return;
4524         }
4525         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4526
4527         /*
4528          * If there are still expected incoming fabric WRITEs, we wait
4529          * until until they have completed before sending a TASK_ABORTED
4530          * response.  This response with TASK_ABORTED status will be
4531          * queued back to fabric module by transport_check_aborted_status().
4532          */
4533         if (cmd->data_direction == DMA_TO_DEVICE) {
4534                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4535                         atomic_inc(&cmd->t_transport_aborted);
4536                         smp_mb__after_atomic_inc();
4537                 }
4538         }
4539         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4540 #if 0
4541         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4542                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4543                 cmd->se_tfo->get_task_tag(cmd));
4544 #endif
4545         cmd->se_tfo->queue_status(cmd);
4546 }
4547
4548 /*      transport_generic_do_tmr():
4549  *
4550  *
4551  */
4552 int transport_generic_do_tmr(struct se_cmd *cmd)
4553 {
4554         struct se_device *dev = cmd->se_dev;
4555         struct se_tmr_req *tmr = cmd->se_tmr_req;
4556         int ret;
4557
4558         switch (tmr->function) {
4559         case TMR_ABORT_TASK:
4560                 tmr->response = TMR_FUNCTION_REJECTED;
4561                 break;
4562         case TMR_ABORT_TASK_SET:
4563         case TMR_CLEAR_ACA:
4564         case TMR_CLEAR_TASK_SET:
4565                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4566                 break;
4567         case TMR_LUN_RESET:
4568                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4569                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4570                                          TMR_FUNCTION_REJECTED;
4571                 break;
4572         case TMR_TARGET_WARM_RESET:
4573                 tmr->response = TMR_FUNCTION_REJECTED;
4574                 break;
4575         case TMR_TARGET_COLD_RESET:
4576                 tmr->response = TMR_FUNCTION_REJECTED;
4577                 break;
4578         default:
4579                 pr_err("Uknown TMR function: 0x%02x.\n",
4580                                 tmr->function);
4581                 tmr->response = TMR_FUNCTION_REJECTED;
4582                 break;
4583         }
4584
4585         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4586         cmd->se_tfo->queue_tm_rsp(cmd);
4587
4588         transport_cmd_check_stop_to_fabric(cmd);
4589         return 0;
4590 }
4591
4592 /*      transport_processing_thread():
4593  *
4594  *
4595  */
4596 static int transport_processing_thread(void *param)
4597 {
4598         int ret;
4599         struct se_cmd *cmd;
4600         struct se_device *dev = (struct se_device *) param;
4601
4602         while (!kthread_should_stop()) {
4603                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4604                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4605                                 kthread_should_stop());
4606                 if (ret < 0)
4607                         goto out;
4608
4609 get_cmd:
4610                 __transport_execute_tasks(dev);
4611
4612                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4613                 if (!cmd)
4614                         continue;
4615
4616                 switch (cmd->t_state) {
4617                 case TRANSPORT_NEW_CMD:
4618                         BUG();
4619                         break;
4620                 case TRANSPORT_NEW_CMD_MAP:
4621                         if (!cmd->se_tfo->new_cmd_map) {
4622                                 pr_err("cmd->se_tfo->new_cmd_map is"
4623                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4624                                 BUG();
4625                         }
4626                         ret = cmd->se_tfo->new_cmd_map(cmd);
4627                         if (ret < 0) {
4628                                 transport_generic_request_failure(cmd);
4629                                 break;
4630                         }
4631                         ret = transport_generic_new_cmd(cmd);
4632                         if (ret < 0) {
4633                                 transport_generic_request_failure(cmd);
4634                                 break;
4635                         }
4636                         break;
4637                 case TRANSPORT_PROCESS_WRITE:
4638                         transport_generic_process_write(cmd);
4639                         break;
4640                 case TRANSPORT_PROCESS_TMR:
4641                         transport_generic_do_tmr(cmd);
4642                         break;
4643                 case TRANSPORT_COMPLETE_QF_WP:
4644                         transport_write_pending_qf(cmd);
4645                         break;
4646                 case TRANSPORT_COMPLETE_QF_OK:
4647                         transport_complete_qf(cmd);
4648                         break;
4649                 default:
4650                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4651                                 "i_state: %d on SE LUN: %u\n",
4652                                 cmd->t_state,
4653                                 cmd->se_tfo->get_task_tag(cmd),
4654                                 cmd->se_tfo->get_cmd_state(cmd),
4655                                 cmd->se_lun->unpacked_lun);
4656                         BUG();
4657                 }
4658
4659                 goto get_cmd;
4660         }
4661
4662 out:
4663         WARN_ON(!list_empty(&dev->state_task_list));
4664         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4665         dev->process_thread = NULL;
4666         return 0;
4667 }