Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[pandora-kernel.git] / drivers / spi / spi_mpc8xxx.c
1 /*
2  * MPC8xxx SPI controller driver.
3  *
4  * Maintainer: Kumar Gala
5  *
6  * Copyright (C) 2006 Polycom, Inc.
7  *
8  * CPM SPI and QE buffer descriptors mode support:
9  * Copyright (c) 2009  MontaVista Software, Inc.
10  * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
11  *
12  * This program is free software; you can redistribute  it and/or modify it
13  * under  the terms of  the GNU General  Public License as published by the
14  * Free Software Foundation;  either version 2 of the  License, or (at your
15  * option) any later version.
16  */
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/bug.h>
22 #include <linux/errno.h>
23 #include <linux/err.h>
24 #include <linux/io.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/irq.h>
29 #include <linux/device.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi_bitbang.h>
32 #include <linux/platform_device.h>
33 #include <linux/fsl_devices.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/of.h>
38 #include <linux/of_platform.h>
39 #include <linux/gpio.h>
40 #include <linux/of_gpio.h>
41 #include <linux/of_spi.h>
42 #include <linux/slab.h>
43
44 #include <sysdev/fsl_soc.h>
45 #include <asm/cpm.h>
46 #include <asm/qe.h>
47 #include <asm/irq.h>
48
49 /* CPM1 and CPM2 are mutually exclusive. */
50 #ifdef CONFIG_CPM1
51 #include <asm/cpm1.h>
52 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
53 #else
54 #include <asm/cpm2.h>
55 #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
56 #endif
57
58 /* SPI Controller registers */
59 struct mpc8xxx_spi_reg {
60         u8 res1[0x20];
61         __be32 mode;
62         __be32 event;
63         __be32 mask;
64         __be32 command;
65         __be32 transmit;
66         __be32 receive;
67 };
68
69 /* SPI Parameter RAM */
70 struct spi_pram {
71         __be16  rbase;  /* Rx Buffer descriptor base address */
72         __be16  tbase;  /* Tx Buffer descriptor base address */
73         u8      rfcr;   /* Rx function code */
74         u8      tfcr;   /* Tx function code */
75         __be16  mrblr;  /* Max receive buffer length */
76         __be32  rstate; /* Internal */
77         __be32  rdp;    /* Internal */
78         __be16  rbptr;  /* Internal */
79         __be16  rbc;    /* Internal */
80         __be32  rxtmp;  /* Internal */
81         __be32  tstate; /* Internal */
82         __be32  tdp;    /* Internal */
83         __be16  tbptr;  /* Internal */
84         __be16  tbc;    /* Internal */
85         __be32  txtmp;  /* Internal */
86         __be32  res;    /* Tx temp. */
87         __be16  rpbase; /* Relocation pointer (CPM1 only) */
88         __be16  res1;   /* Reserved */
89 };
90
91 /* SPI Controller mode register definitions */
92 #define SPMODE_LOOP             (1 << 30)
93 #define SPMODE_CI_INACTIVEHIGH  (1 << 29)
94 #define SPMODE_CP_BEGIN_EDGECLK (1 << 28)
95 #define SPMODE_DIV16            (1 << 27)
96 #define SPMODE_REV              (1 << 26)
97 #define SPMODE_MS               (1 << 25)
98 #define SPMODE_ENABLE           (1 << 24)
99 #define SPMODE_LEN(x)           ((x) << 20)
100 #define SPMODE_PM(x)            ((x) << 16)
101 #define SPMODE_OP               (1 << 14)
102 #define SPMODE_CG(x)            ((x) << 7)
103
104 /*
105  * Default for SPI Mode:
106  *      SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk
107  */
108 #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \
109                          SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf))
110
111 /* SPIE register values */
112 #define SPIE_NE         0x00000200      /* Not empty */
113 #define SPIE_NF         0x00000100      /* Not full */
114
115 /* SPIM register values */
116 #define SPIM_NE         0x00000200      /* Not empty */
117 #define SPIM_NF         0x00000100      /* Not full */
118
119 #define SPIE_TXB        0x00000200      /* Last char is written to tx fifo */
120 #define SPIE_RXB        0x00000100      /* Last char is written to rx buf */
121
122 /* SPCOM register values */
123 #define SPCOM_STR       (1 << 23)       /* Start transmit */
124
125 #define SPI_PRAM_SIZE   0x100
126 #define SPI_MRBLR       ((unsigned int)PAGE_SIZE)
127
128 /* SPI Controller driver's private data. */
129 struct mpc8xxx_spi {
130         struct device *dev;
131         struct mpc8xxx_spi_reg __iomem *base;
132
133         /* rx & tx bufs from the spi_transfer */
134         const void *tx;
135         void *rx;
136
137         int subblock;
138         struct spi_pram __iomem *pram;
139         struct cpm_buf_desc __iomem *tx_bd;
140         struct cpm_buf_desc __iomem *rx_bd;
141
142         struct spi_transfer *xfer_in_progress;
143
144         /* dma addresses for CPM transfers */
145         dma_addr_t tx_dma;
146         dma_addr_t rx_dma;
147         bool map_tx_dma;
148         bool map_rx_dma;
149
150         dma_addr_t dma_dummy_tx;
151         dma_addr_t dma_dummy_rx;
152
153         /* functions to deal with different sized buffers */
154         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
155         u32(*get_tx) (struct mpc8xxx_spi *);
156
157         unsigned int count;
158         unsigned int irq;
159
160         unsigned nsecs;         /* (clock cycle time)/2 */
161
162         u32 spibrg;             /* SPIBRG input clock */
163         u32 rx_shift;           /* RX data reg shift when in qe mode */
164         u32 tx_shift;           /* TX data reg shift when in qe mode */
165
166         unsigned int flags;
167
168         struct workqueue_struct *workqueue;
169         struct work_struct work;
170
171         struct list_head queue;
172         spinlock_t lock;
173
174         struct completion done;
175 };
176
177 static void *mpc8xxx_dummy_rx;
178 static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
179 static int mpc8xxx_dummy_rx_refcnt;
180
181 struct spi_mpc8xxx_cs {
182         /* functions to deal with different sized buffers */
183         void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
184         u32 (*get_tx) (struct mpc8xxx_spi *);
185         u32 rx_shift;           /* RX data reg shift when in qe mode */
186         u32 tx_shift;           /* TX data reg shift when in qe mode */
187         u32 hw_mode;            /* Holds HW mode register settings */
188 };
189
190 static inline void mpc8xxx_spi_write_reg(__be32 __iomem *reg, u32 val)
191 {
192         out_be32(reg, val);
193 }
194
195 static inline u32 mpc8xxx_spi_read_reg(__be32 __iomem *reg)
196 {
197         return in_be32(reg);
198 }
199
200 #define MPC83XX_SPI_RX_BUF(type)                                          \
201 static                                                                    \
202 void mpc8xxx_spi_rx_buf_##type(u32 data, struct mpc8xxx_spi *mpc8xxx_spi) \
203 {                                                                         \
204         type *rx = mpc8xxx_spi->rx;                                       \
205         *rx++ = (type)(data >> mpc8xxx_spi->rx_shift);                    \
206         mpc8xxx_spi->rx = rx;                                             \
207 }
208
209 #define MPC83XX_SPI_TX_BUF(type)                                \
210 static                                                          \
211 u32 mpc8xxx_spi_tx_buf_##type(struct mpc8xxx_spi *mpc8xxx_spi)  \
212 {                                                               \
213         u32 data;                                               \
214         const type *tx = mpc8xxx_spi->tx;                       \
215         if (!tx)                                                \
216                 return 0;                                       \
217         data = *tx++ << mpc8xxx_spi->tx_shift;                  \
218         mpc8xxx_spi->tx = tx;                                   \
219         return data;                                            \
220 }
221
222 MPC83XX_SPI_RX_BUF(u8)
223 MPC83XX_SPI_RX_BUF(u16)
224 MPC83XX_SPI_RX_BUF(u32)
225 MPC83XX_SPI_TX_BUF(u8)
226 MPC83XX_SPI_TX_BUF(u16)
227 MPC83XX_SPI_TX_BUF(u32)
228
229 static void mpc8xxx_spi_change_mode(struct spi_device *spi)
230 {
231         struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
232         struct spi_mpc8xxx_cs *cs = spi->controller_state;
233         __be32 __iomem *mode = &mspi->base->mode;
234         unsigned long flags;
235
236         if (cs->hw_mode == mpc8xxx_spi_read_reg(mode))
237                 return;
238
239         /* Turn off IRQs locally to minimize time that SPI is disabled. */
240         local_irq_save(flags);
241
242         /* Turn off SPI unit prior changing mode */
243         mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
244         mpc8xxx_spi_write_reg(mode, cs->hw_mode);
245
246         /* When in CPM mode, we need to reinit tx and rx. */
247         if (mspi->flags & SPI_CPM_MODE) {
248                 if (mspi->flags & SPI_QE) {
249                         qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
250                                      QE_CR_PROTOCOL_UNSPECIFIED, 0);
251                 } else {
252                         cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
253                         if (mspi->flags & SPI_CPM1) {
254                                 out_be16(&mspi->pram->rbptr,
255                                          in_be16(&mspi->pram->rbase));
256                                 out_be16(&mspi->pram->tbptr,
257                                          in_be16(&mspi->pram->tbase));
258                         }
259                 }
260         }
261
262         local_irq_restore(flags);
263 }
264
265 static void mpc8xxx_spi_chipselect(struct spi_device *spi, int value)
266 {
267         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
268         struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data;
269         bool pol = spi->mode & SPI_CS_HIGH;
270         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
271
272         if (value == BITBANG_CS_INACTIVE) {
273                 if (pdata->cs_control)
274                         pdata->cs_control(spi, !pol);
275         }
276
277         if (value == BITBANG_CS_ACTIVE) {
278                 mpc8xxx_spi->rx_shift = cs->rx_shift;
279                 mpc8xxx_spi->tx_shift = cs->tx_shift;
280                 mpc8xxx_spi->get_rx = cs->get_rx;
281                 mpc8xxx_spi->get_tx = cs->get_tx;
282
283                 mpc8xxx_spi_change_mode(spi);
284
285                 if (pdata->cs_control)
286                         pdata->cs_control(spi, pol);
287         }
288 }
289
290 static
291 int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
292 {
293         struct mpc8xxx_spi *mpc8xxx_spi;
294         u8 bits_per_word, pm;
295         u32 hz;
296         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
297
298         mpc8xxx_spi = spi_master_get_devdata(spi->master);
299
300         if (t) {
301                 bits_per_word = t->bits_per_word;
302                 hz = t->speed_hz;
303         } else {
304                 bits_per_word = 0;
305                 hz = 0;
306         }
307
308         /* spi_transfer level calls that work per-word */
309         if (!bits_per_word)
310                 bits_per_word = spi->bits_per_word;
311
312         /* Make sure its a bit width we support [4..16, 32] */
313         if ((bits_per_word < 4)
314             || ((bits_per_word > 16) && (bits_per_word != 32)))
315                 return -EINVAL;
316
317         if (!hz)
318                 hz = spi->max_speed_hz;
319
320         cs->rx_shift = 0;
321         cs->tx_shift = 0;
322         if (bits_per_word <= 8) {
323                 cs->get_rx = mpc8xxx_spi_rx_buf_u8;
324                 cs->get_tx = mpc8xxx_spi_tx_buf_u8;
325                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
326                         cs->rx_shift = 16;
327                         cs->tx_shift = 24;
328                 }
329         } else if (bits_per_word <= 16) {
330                 cs->get_rx = mpc8xxx_spi_rx_buf_u16;
331                 cs->get_tx = mpc8xxx_spi_tx_buf_u16;
332                 if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
333                         cs->rx_shift = 16;
334                         cs->tx_shift = 16;
335                 }
336         } else if (bits_per_word <= 32) {
337                 cs->get_rx = mpc8xxx_spi_rx_buf_u32;
338                 cs->get_tx = mpc8xxx_spi_tx_buf_u32;
339         } else
340                 return -EINVAL;
341
342         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE &&
343                         spi->mode & SPI_LSB_FIRST) {
344                 cs->tx_shift = 0;
345                 if (bits_per_word <= 8)
346                         cs->rx_shift = 8;
347                 else
348                         cs->rx_shift = 0;
349         }
350
351         mpc8xxx_spi->rx_shift = cs->rx_shift;
352         mpc8xxx_spi->tx_shift = cs->tx_shift;
353         mpc8xxx_spi->get_rx = cs->get_rx;
354         mpc8xxx_spi->get_tx = cs->get_tx;
355
356         if (bits_per_word == 32)
357                 bits_per_word = 0;
358         else
359                 bits_per_word = bits_per_word - 1;
360
361         /* mask out bits we are going to set */
362         cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16
363                                   | SPMODE_PM(0xF));
364
365         cs->hw_mode |= SPMODE_LEN(bits_per_word);
366
367         if ((mpc8xxx_spi->spibrg / hz) > 64) {
368                 cs->hw_mode |= SPMODE_DIV16;
369                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
370
371                 WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
372                           "Will use %d Hz instead.\n", dev_name(&spi->dev),
373                           hz, mpc8xxx_spi->spibrg / 1024);
374                 if (pm > 16)
375                         pm = 16;
376         } else
377                 pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
378         if (pm)
379                 pm--;
380
381         cs->hw_mode |= SPMODE_PM(pm);
382
383         mpc8xxx_spi_change_mode(spi);
384         return 0;
385 }
386
387 static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
388 {
389         struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
390         struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
391         unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
392         unsigned int xfer_ofs;
393
394         xfer_ofs = mspi->xfer_in_progress->len - mspi->count;
395
396         out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
397         out_be16(&rx_bd->cbd_datlen, 0);
398         out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);
399
400         out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
401         out_be16(&tx_bd->cbd_datlen, xfer_len);
402         out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
403                                  BD_SC_LAST);
404
405         /* start transfer */
406         mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
407 }
408
409 static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
410                                 struct spi_transfer *t, bool is_dma_mapped)
411 {
412         struct device *dev = mspi->dev;
413
414         if (is_dma_mapped) {
415                 mspi->map_tx_dma = 0;
416                 mspi->map_rx_dma = 0;
417         } else {
418                 mspi->map_tx_dma = 1;
419                 mspi->map_rx_dma = 1;
420         }
421
422         if (!t->tx_buf) {
423                 mspi->tx_dma = mspi->dma_dummy_tx;
424                 mspi->map_tx_dma = 0;
425         }
426
427         if (!t->rx_buf) {
428                 mspi->rx_dma = mspi->dma_dummy_rx;
429                 mspi->map_rx_dma = 0;
430         }
431
432         if (mspi->map_tx_dma) {
433                 void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */
434
435                 mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
436                                               DMA_TO_DEVICE);
437                 if (dma_mapping_error(dev, mspi->tx_dma)) {
438                         dev_err(dev, "unable to map tx dma\n");
439                         return -ENOMEM;
440                 }
441         } else {
442                 mspi->tx_dma = t->tx_dma;
443         }
444
445         if (mspi->map_rx_dma) {
446                 mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
447                                               DMA_FROM_DEVICE);
448                 if (dma_mapping_error(dev, mspi->rx_dma)) {
449                         dev_err(dev, "unable to map rx dma\n");
450                         goto err_rx_dma;
451                 }
452         } else {
453                 mspi->rx_dma = t->rx_dma;
454         }
455
456         /* enable rx ints */
457         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);
458
459         mspi->xfer_in_progress = t;
460         mspi->count = t->len;
461
462         /* start CPM transfers */
463         mpc8xxx_spi_cpm_bufs_start(mspi);
464
465         return 0;
466
467 err_rx_dma:
468         if (mspi->map_tx_dma)
469                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
470         return -ENOMEM;
471 }
472
473 static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
474 {
475         struct device *dev = mspi->dev;
476         struct spi_transfer *t = mspi->xfer_in_progress;
477
478         if (mspi->map_tx_dma)
479                 dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
480         if (mspi->map_tx_dma)
481                 dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
482         mspi->xfer_in_progress = NULL;
483 }
484
485 static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
486                                 struct spi_transfer *t, unsigned int len)
487 {
488         u32 word;
489
490         mspi->count = len;
491
492         /* enable rx ints */
493         mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);
494
495         /* transmit word */
496         word = mspi->get_tx(mspi);
497         mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
498
499         return 0;
500 }
501
502 static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
503                             bool is_dma_mapped)
504 {
505         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
506         unsigned int len = t->len;
507         u8 bits_per_word;
508         int ret;
509
510         bits_per_word = spi->bits_per_word;
511         if (t->bits_per_word)
512                 bits_per_word = t->bits_per_word;
513
514         if (bits_per_word > 8) {
515                 /* invalid length? */
516                 if (len & 1)
517                         return -EINVAL;
518                 len /= 2;
519         }
520         if (bits_per_word > 16) {
521                 /* invalid length? */
522                 if (len & 1)
523                         return -EINVAL;
524                 len /= 2;
525         }
526
527         mpc8xxx_spi->tx = t->tx_buf;
528         mpc8xxx_spi->rx = t->rx_buf;
529
530         INIT_COMPLETION(mpc8xxx_spi->done);
531
532         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
533                 ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
534         else
535                 ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
536         if (ret)
537                 return ret;
538
539         wait_for_completion(&mpc8xxx_spi->done);
540
541         /* disable rx ints */
542         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
543
544         if (mpc8xxx_spi->flags & SPI_CPM_MODE)
545                 mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);
546
547         return mpc8xxx_spi->count;
548 }
549
550 static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
551 {
552         struct spi_device *spi = m->spi;
553         struct spi_transfer *t;
554         unsigned int cs_change;
555         const int nsecs = 50;
556         int status;
557
558         cs_change = 1;
559         status = 0;
560         list_for_each_entry(t, &m->transfers, transfer_list) {
561                 if (t->bits_per_word || t->speed_hz) {
562                         /* Don't allow changes if CS is active */
563                         status = -EINVAL;
564
565                         if (cs_change)
566                                 status = mpc8xxx_spi_setup_transfer(spi, t);
567                         if (status < 0)
568                                 break;
569                 }
570
571                 if (cs_change) {
572                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_ACTIVE);
573                         ndelay(nsecs);
574                 }
575                 cs_change = t->cs_change;
576                 if (t->len)
577                         status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
578                 if (status) {
579                         status = -EMSGSIZE;
580                         break;
581                 }
582                 m->actual_length += t->len;
583
584                 if (t->delay_usecs)
585                         udelay(t->delay_usecs);
586
587                 if (cs_change) {
588                         ndelay(nsecs);
589                         mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
590                         ndelay(nsecs);
591                 }
592         }
593
594         m->status = status;
595         m->complete(m->context);
596
597         if (status || !cs_change) {
598                 ndelay(nsecs);
599                 mpc8xxx_spi_chipselect(spi, BITBANG_CS_INACTIVE);
600         }
601
602         mpc8xxx_spi_setup_transfer(spi, NULL);
603 }
604
605 static void mpc8xxx_spi_work(struct work_struct *work)
606 {
607         struct mpc8xxx_spi *mpc8xxx_spi = container_of(work, struct mpc8xxx_spi,
608                                                        work);
609
610         spin_lock_irq(&mpc8xxx_spi->lock);
611         while (!list_empty(&mpc8xxx_spi->queue)) {
612                 struct spi_message *m = container_of(mpc8xxx_spi->queue.next,
613                                                    struct spi_message, queue);
614
615                 list_del_init(&m->queue);
616                 spin_unlock_irq(&mpc8xxx_spi->lock);
617
618                 mpc8xxx_spi_do_one_msg(m);
619
620                 spin_lock_irq(&mpc8xxx_spi->lock);
621         }
622         spin_unlock_irq(&mpc8xxx_spi->lock);
623 }
624
625 static int mpc8xxx_spi_setup(struct spi_device *spi)
626 {
627         struct mpc8xxx_spi *mpc8xxx_spi;
628         int retval;
629         u32 hw_mode;
630         struct spi_mpc8xxx_cs   *cs = spi->controller_state;
631
632         if (!spi->max_speed_hz)
633                 return -EINVAL;
634
635         if (!cs) {
636                 cs = kzalloc(sizeof *cs, GFP_KERNEL);
637                 if (!cs)
638                         return -ENOMEM;
639                 spi->controller_state = cs;
640         }
641         mpc8xxx_spi = spi_master_get_devdata(spi->master);
642
643         hw_mode = cs->hw_mode; /* Save original settings */
644         cs->hw_mode = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->mode);
645         /* mask out bits we are going to set */
646         cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH
647                          | SPMODE_REV | SPMODE_LOOP);
648
649         if (spi->mode & SPI_CPHA)
650                 cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK;
651         if (spi->mode & SPI_CPOL)
652                 cs->hw_mode |= SPMODE_CI_INACTIVEHIGH;
653         if (!(spi->mode & SPI_LSB_FIRST))
654                 cs->hw_mode |= SPMODE_REV;
655         if (spi->mode & SPI_LOOP)
656                 cs->hw_mode |= SPMODE_LOOP;
657
658         retval = mpc8xxx_spi_setup_transfer(spi, NULL);
659         if (retval < 0) {
660                 cs->hw_mode = hw_mode; /* Restore settings */
661                 return retval;
662         }
663         return 0;
664 }
665
666 static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
667 {
668         u16 len;
669
670         dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
671                 in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);
672
673         len = in_be16(&mspi->rx_bd->cbd_datlen);
674         if (len > mspi->count) {
675                 WARN_ON(1);
676                 len = mspi->count;
677         }
678
679         /* Clear the events */
680         mpc8xxx_spi_write_reg(&mspi->base->event, events);
681
682         mspi->count -= len;
683         if (mspi->count)
684                 mpc8xxx_spi_cpm_bufs_start(mspi);
685         else
686                 complete(&mspi->done);
687 }
688
689 static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
690 {
691         /* We need handle RX first */
692         if (events & SPIE_NE) {
693                 u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);
694
695                 if (mspi->rx)
696                         mspi->get_rx(rx_data, mspi);
697         }
698
699         if ((events & SPIE_NF) == 0)
700                 /* spin until TX is done */
701                 while (((events =
702                         mpc8xxx_spi_read_reg(&mspi->base->event)) &
703                                                 SPIE_NF) == 0)
704                         cpu_relax();
705
706         /* Clear the events */
707         mpc8xxx_spi_write_reg(&mspi->base->event, events);
708
709         mspi->count -= 1;
710         if (mspi->count) {
711                 u32 word = mspi->get_tx(mspi);
712
713                 mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
714         } else {
715                 complete(&mspi->done);
716         }
717 }
718
719 static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
720 {
721         struct mpc8xxx_spi *mspi = context_data;
722         irqreturn_t ret = IRQ_NONE;
723         u32 events;
724
725         /* Get interrupt events(tx/rx) */
726         events = mpc8xxx_spi_read_reg(&mspi->base->event);
727         if (events)
728                 ret = IRQ_HANDLED;
729
730         dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);
731
732         if (mspi->flags & SPI_CPM_MODE)
733                 mpc8xxx_spi_cpm_irq(mspi, events);
734         else
735                 mpc8xxx_spi_cpu_irq(mspi, events);
736
737         return ret;
738 }
739
740 static int mpc8xxx_spi_transfer(struct spi_device *spi,
741                                 struct spi_message *m)
742 {
743         struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
744         unsigned long flags;
745
746         m->actual_length = 0;
747         m->status = -EINPROGRESS;
748
749         spin_lock_irqsave(&mpc8xxx_spi->lock, flags);
750         list_add_tail(&m->queue, &mpc8xxx_spi->queue);
751         queue_work(mpc8xxx_spi->workqueue, &mpc8xxx_spi->work);
752         spin_unlock_irqrestore(&mpc8xxx_spi->lock, flags);
753
754         return 0;
755 }
756
757
758 static void mpc8xxx_spi_cleanup(struct spi_device *spi)
759 {
760         kfree(spi->controller_state);
761 }
762
763 static void *mpc8xxx_spi_alloc_dummy_rx(void)
764 {
765         mutex_lock(&mpc8xxx_dummy_rx_lock);
766
767         if (!mpc8xxx_dummy_rx)
768                 mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
769         if (mpc8xxx_dummy_rx)
770                 mpc8xxx_dummy_rx_refcnt++;
771
772         mutex_unlock(&mpc8xxx_dummy_rx_lock);
773
774         return mpc8xxx_dummy_rx;
775 }
776
777 static void mpc8xxx_spi_free_dummy_rx(void)
778 {
779         mutex_lock(&mpc8xxx_dummy_rx_lock);
780
781         switch (mpc8xxx_dummy_rx_refcnt) {
782         case 0:
783                 WARN_ON(1);
784                 break;
785         case 1:
786                 kfree(mpc8xxx_dummy_rx);
787                 mpc8xxx_dummy_rx = NULL;
788                 /* fall through */
789         default:
790                 mpc8xxx_dummy_rx_refcnt--;
791                 break;
792         }
793
794         mutex_unlock(&mpc8xxx_dummy_rx_lock);
795 }
796
797 static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
798 {
799         struct device *dev = mspi->dev;
800         struct device_node *np = dev->of_node;
801         const u32 *iprop;
802         int size;
803         unsigned long spi_base_ofs;
804         unsigned long pram_ofs = -ENOMEM;
805
806         /* Can't use of_address_to_resource(), QE muram isn't at 0. */
807         iprop = of_get_property(np, "reg", &size);
808
809         /* QE with a fixed pram location? */
810         if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
811                 return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);
812
813         /* QE but with a dynamic pram location? */
814         if (mspi->flags & SPI_QE) {
815                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
816                 qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
817                                 QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
818                 return pram_ofs;
819         }
820
821         /* CPM1 and CPM2 pram must be at a fixed addr. */
822         if (!iprop || size != sizeof(*iprop) * 4)
823                 return -ENOMEM;
824
825         spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
826         if (IS_ERR_VALUE(spi_base_ofs))
827                 return -ENOMEM;
828
829         if (mspi->flags & SPI_CPM2) {
830                 pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
831                 if (!IS_ERR_VALUE(pram_ofs)) {
832                         u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);
833
834                         out_be16(spi_base, pram_ofs);
835                 }
836         } else {
837                 struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
838                 u16 rpbase = in_be16(&pram->rpbase);
839
840                 /* Microcode relocation patch applied? */
841                 if (rpbase)
842                         pram_ofs = rpbase;
843                 else
844                         return spi_base_ofs;
845         }
846
847         cpm_muram_free(spi_base_ofs);
848         return pram_ofs;
849 }
850
851 static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
852 {
853         struct device *dev = mspi->dev;
854         struct device_node *np = dev->of_node;
855         const u32 *iprop;
856         int size;
857         unsigned long pram_ofs;
858         unsigned long bds_ofs;
859
860         if (!(mspi->flags & SPI_CPM_MODE))
861                 return 0;
862
863         if (!mpc8xxx_spi_alloc_dummy_rx())
864                 return -ENOMEM;
865
866         if (mspi->flags & SPI_QE) {
867                 iprop = of_get_property(np, "cell-index", &size);
868                 if (iprop && size == sizeof(*iprop))
869                         mspi->subblock = *iprop;
870
871                 switch (mspi->subblock) {
872                 default:
873                         dev_warn(dev, "cell-index unspecified, assuming SPI1");
874                         /* fall through */
875                 case 0:
876                         mspi->subblock = QE_CR_SUBBLOCK_SPI1;
877                         break;
878                 case 1:
879                         mspi->subblock = QE_CR_SUBBLOCK_SPI2;
880                         break;
881                 }
882         }
883
884         pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
885         if (IS_ERR_VALUE(pram_ofs)) {
886                 dev_err(dev, "can't allocate spi parameter ram\n");
887                 goto err_pram;
888         }
889
890         bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
891                                   sizeof(*mspi->rx_bd), 8);
892         if (IS_ERR_VALUE(bds_ofs)) {
893                 dev_err(dev, "can't allocate bds\n");
894                 goto err_bds;
895         }
896
897         mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
898                                             DMA_TO_DEVICE);
899         if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
900                 dev_err(dev, "unable to map dummy tx buffer\n");
901                 goto err_dummy_tx;
902         }
903
904         mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
905                                             DMA_FROM_DEVICE);
906         if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
907                 dev_err(dev, "unable to map dummy rx buffer\n");
908                 goto err_dummy_rx;
909         }
910
911         mspi->pram = cpm_muram_addr(pram_ofs);
912
913         mspi->tx_bd = cpm_muram_addr(bds_ofs);
914         mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));
915
916         /* Initialize parameter ram. */
917         out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
918         out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
919         out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
920         out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
921         out_be16(&mspi->pram->mrblr, SPI_MRBLR);
922         out_be32(&mspi->pram->rstate, 0);
923         out_be32(&mspi->pram->rdp, 0);
924         out_be16(&mspi->pram->rbptr, 0);
925         out_be16(&mspi->pram->rbc, 0);
926         out_be32(&mspi->pram->rxtmp, 0);
927         out_be32(&mspi->pram->tstate, 0);
928         out_be32(&mspi->pram->tdp, 0);
929         out_be16(&mspi->pram->tbptr, 0);
930         out_be16(&mspi->pram->tbc, 0);
931         out_be32(&mspi->pram->txtmp, 0);
932
933         return 0;
934
935 err_dummy_rx:
936         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
937 err_dummy_tx:
938         cpm_muram_free(bds_ofs);
939 err_bds:
940         cpm_muram_free(pram_ofs);
941 err_pram:
942         mpc8xxx_spi_free_dummy_rx();
943         return -ENOMEM;
944 }
945
946 static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
947 {
948         struct device *dev = mspi->dev;
949
950         dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
951         dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
952         cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
953         cpm_muram_free(cpm_muram_offset(mspi->pram));
954         mpc8xxx_spi_free_dummy_rx();
955 }
956
957 static const char *mpc8xxx_spi_strmode(unsigned int flags)
958 {
959         if (flags & SPI_QE_CPU_MODE) {
960                 return "QE CPU";
961         } else if (flags & SPI_CPM_MODE) {
962                 if (flags & SPI_QE)
963                         return "QE";
964                 else if (flags & SPI_CPM2)
965                         return "CPM2";
966                 else
967                         return "CPM1";
968         }
969         return "CPU";
970 }
971
972 static struct spi_master * __devinit
973 mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
974 {
975         struct fsl_spi_platform_data *pdata = dev->platform_data;
976         struct spi_master *master;
977         struct mpc8xxx_spi *mpc8xxx_spi;
978         u32 regval;
979         int ret = 0;
980
981         master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
982         if (master == NULL) {
983                 ret = -ENOMEM;
984                 goto err;
985         }
986
987         dev_set_drvdata(dev, master);
988
989         /* the spi->mode bits understood by this driver: */
990         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH
991                         | SPI_LSB_FIRST | SPI_LOOP;
992
993         master->setup = mpc8xxx_spi_setup;
994         master->transfer = mpc8xxx_spi_transfer;
995         master->cleanup = mpc8xxx_spi_cleanup;
996
997         mpc8xxx_spi = spi_master_get_devdata(master);
998         mpc8xxx_spi->dev = dev;
999         mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
1000         mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
1001         mpc8xxx_spi->flags = pdata->flags;
1002         mpc8xxx_spi->spibrg = pdata->sysclk;
1003
1004         ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
1005         if (ret)
1006                 goto err_cpm_init;
1007
1008         mpc8xxx_spi->rx_shift = 0;
1009         mpc8xxx_spi->tx_shift = 0;
1010         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
1011                 mpc8xxx_spi->rx_shift = 16;
1012                 mpc8xxx_spi->tx_shift = 24;
1013         }
1014
1015         init_completion(&mpc8xxx_spi->done);
1016
1017         mpc8xxx_spi->base = ioremap(mem->start, resource_size(mem));
1018         if (mpc8xxx_spi->base == NULL) {
1019                 ret = -ENOMEM;
1020                 goto err_ioremap;
1021         }
1022
1023         mpc8xxx_spi->irq = irq;
1024
1025         /* Register for SPI Interrupt */
1026         ret = request_irq(mpc8xxx_spi->irq, mpc8xxx_spi_irq,
1027                           0, "mpc8xxx_spi", mpc8xxx_spi);
1028
1029         if (ret != 0)
1030                 goto unmap_io;
1031
1032         master->bus_num = pdata->bus_num;
1033         master->num_chipselect = pdata->max_chipselect;
1034
1035         /* SPI controller initializations */
1036         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, 0);
1037         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);
1038         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->command, 0);
1039         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, 0xffffffff);
1040
1041         /* Enable SPI interface */
1042         regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
1043         if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE)
1044                 regval |= SPMODE_OP;
1045
1046         mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mode, regval);
1047         spin_lock_init(&mpc8xxx_spi->lock);
1048         init_completion(&mpc8xxx_spi->done);
1049         INIT_WORK(&mpc8xxx_spi->work, mpc8xxx_spi_work);
1050         INIT_LIST_HEAD(&mpc8xxx_spi->queue);
1051
1052         mpc8xxx_spi->workqueue = create_singlethread_workqueue(
1053                 dev_name(master->dev.parent));
1054         if (mpc8xxx_spi->workqueue == NULL) {
1055                 ret = -EBUSY;
1056                 goto free_irq;
1057         }
1058
1059         ret = spi_register_master(master);
1060         if (ret < 0)
1061                 goto unreg_master;
1062
1063         dev_info(dev, "at 0x%p (irq = %d), %s mode\n", mpc8xxx_spi->base,
1064                  mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags));
1065
1066         return master;
1067
1068 unreg_master:
1069         destroy_workqueue(mpc8xxx_spi->workqueue);
1070 free_irq:
1071         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1072 unmap_io:
1073         iounmap(mpc8xxx_spi->base);
1074 err_ioremap:
1075         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1076 err_cpm_init:
1077         spi_master_put(master);
1078 err:
1079         return ERR_PTR(ret);
1080 }
1081
1082 static int __devexit mpc8xxx_spi_remove(struct device *dev)
1083 {
1084         struct mpc8xxx_spi *mpc8xxx_spi;
1085         struct spi_master *master;
1086
1087         master = dev_get_drvdata(dev);
1088         mpc8xxx_spi = spi_master_get_devdata(master);
1089
1090         flush_workqueue(mpc8xxx_spi->workqueue);
1091         destroy_workqueue(mpc8xxx_spi->workqueue);
1092         spi_unregister_master(master);
1093
1094         free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
1095         iounmap(mpc8xxx_spi->base);
1096         mpc8xxx_spi_cpm_free(mpc8xxx_spi);
1097
1098         return 0;
1099 }
1100
1101 struct mpc8xxx_spi_probe_info {
1102         struct fsl_spi_platform_data pdata;
1103         int *gpios;
1104         bool *alow_flags;
1105 };
1106
1107 static struct mpc8xxx_spi_probe_info *
1108 to_of_pinfo(struct fsl_spi_platform_data *pdata)
1109 {
1110         return container_of(pdata, struct mpc8xxx_spi_probe_info, pdata);
1111 }
1112
1113 static void mpc8xxx_spi_cs_control(struct spi_device *spi, bool on)
1114 {
1115         struct device *dev = spi->dev.parent;
1116         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data);
1117         u16 cs = spi->chip_select;
1118         int gpio = pinfo->gpios[cs];
1119         bool alow = pinfo->alow_flags[cs];
1120
1121         gpio_set_value(gpio, on ^ alow);
1122 }
1123
1124 static int of_mpc8xxx_spi_get_chipselects(struct device *dev)
1125 {
1126         struct device_node *np = dev->of_node;
1127         struct fsl_spi_platform_data *pdata = dev->platform_data;
1128         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1129         unsigned int ngpios;
1130         int i = 0;
1131         int ret;
1132
1133         ngpios = of_gpio_count(np);
1134         if (!ngpios) {
1135                 /*
1136                  * SPI w/o chip-select line. One SPI device is still permitted
1137                  * though.
1138                  */
1139                 pdata->max_chipselect = 1;
1140                 return 0;
1141         }
1142
1143         pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
1144         if (!pinfo->gpios)
1145                 return -ENOMEM;
1146         memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
1147
1148         pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
1149                                     GFP_KERNEL);
1150         if (!pinfo->alow_flags) {
1151                 ret = -ENOMEM;
1152                 goto err_alloc_flags;
1153         }
1154
1155         for (; i < ngpios; i++) {
1156                 int gpio;
1157                 enum of_gpio_flags flags;
1158
1159                 gpio = of_get_gpio_flags(np, i, &flags);
1160                 if (!gpio_is_valid(gpio)) {
1161                         dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
1162                         ret = gpio;
1163                         goto err_loop;
1164                 }
1165
1166                 ret = gpio_request(gpio, dev_name(dev));
1167                 if (ret) {
1168                         dev_err(dev, "can't request gpio #%d: %d\n", i, ret);
1169                         goto err_loop;
1170                 }
1171
1172                 pinfo->gpios[i] = gpio;
1173                 pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW;
1174
1175                 ret = gpio_direction_output(pinfo->gpios[i],
1176                                             pinfo->alow_flags[i]);
1177                 if (ret) {
1178                         dev_err(dev, "can't set output direction for gpio "
1179                                 "#%d: %d\n", i, ret);
1180                         goto err_loop;
1181                 }
1182         }
1183
1184         pdata->max_chipselect = ngpios;
1185         pdata->cs_control = mpc8xxx_spi_cs_control;
1186
1187         return 0;
1188
1189 err_loop:
1190         while (i >= 0) {
1191                 if (gpio_is_valid(pinfo->gpios[i]))
1192                         gpio_free(pinfo->gpios[i]);
1193                 i--;
1194         }
1195
1196         kfree(pinfo->alow_flags);
1197         pinfo->alow_flags = NULL;
1198 err_alloc_flags:
1199         kfree(pinfo->gpios);
1200         pinfo->gpios = NULL;
1201         return ret;
1202 }
1203
1204 static int of_mpc8xxx_spi_free_chipselects(struct device *dev)
1205 {
1206         struct fsl_spi_platform_data *pdata = dev->platform_data;
1207         struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata);
1208         int i;
1209
1210         if (!pinfo->gpios)
1211                 return 0;
1212
1213         for (i = 0; i < pdata->max_chipselect; i++) {
1214                 if (gpio_is_valid(pinfo->gpios[i]))
1215                         gpio_free(pinfo->gpios[i]);
1216         }
1217
1218         kfree(pinfo->gpios);
1219         kfree(pinfo->alow_flags);
1220         return 0;
1221 }
1222
1223 static int __devinit of_mpc8xxx_spi_probe(struct of_device *ofdev,
1224                                           const struct of_device_id *ofid)
1225 {
1226         struct device *dev = &ofdev->dev;
1227         struct device_node *np = ofdev->dev.of_node;
1228         struct mpc8xxx_spi_probe_info *pinfo;
1229         struct fsl_spi_platform_data *pdata;
1230         struct spi_master *master;
1231         struct resource mem;
1232         struct resource irq;
1233         const void *prop;
1234         int ret = -ENOMEM;
1235
1236         pinfo = kzalloc(sizeof(*pinfo), GFP_KERNEL);
1237         if (!pinfo)
1238                 return -ENOMEM;
1239
1240         pdata = &pinfo->pdata;
1241         dev->platform_data = pdata;
1242
1243         /* Allocate bus num dynamically. */
1244         pdata->bus_num = -1;
1245
1246         /* SPI controller is either clocked from QE or SoC clock. */
1247         pdata->sysclk = get_brgfreq();
1248         if (pdata->sysclk == -1) {
1249                 pdata->sysclk = fsl_get_sys_freq();
1250                 if (pdata->sysclk == -1) {
1251                         ret = -ENODEV;
1252                         goto err_clk;
1253                 }
1254         }
1255
1256         prop = of_get_property(np, "mode", NULL);
1257         if (prop && !strcmp(prop, "cpu-qe"))
1258                 pdata->flags = SPI_QE_CPU_MODE;
1259         else if (prop && !strcmp(prop, "qe"))
1260                 pdata->flags = SPI_CPM_MODE | SPI_QE;
1261         else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
1262                 pdata->flags = SPI_CPM_MODE | SPI_CPM2;
1263         else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
1264                 pdata->flags = SPI_CPM_MODE | SPI_CPM1;
1265
1266         ret = of_mpc8xxx_spi_get_chipselects(dev);
1267         if (ret)
1268                 goto err;
1269
1270         ret = of_address_to_resource(np, 0, &mem);
1271         if (ret)
1272                 goto err;
1273
1274         ret = of_irq_to_resource(np, 0, &irq);
1275         if (!ret) {
1276                 ret = -EINVAL;
1277                 goto err;
1278         }
1279
1280         master = mpc8xxx_spi_probe(dev, &mem, irq.start);
1281         if (IS_ERR(master)) {
1282                 ret = PTR_ERR(master);
1283                 goto err;
1284         }
1285
1286         of_register_spi_devices(master, np);
1287
1288         return 0;
1289
1290 err:
1291         of_mpc8xxx_spi_free_chipselects(dev);
1292 err_clk:
1293         kfree(pinfo);
1294         return ret;
1295 }
1296
1297 static int __devexit of_mpc8xxx_spi_remove(struct of_device *ofdev)
1298 {
1299         int ret;
1300
1301         ret = mpc8xxx_spi_remove(&ofdev->dev);
1302         if (ret)
1303                 return ret;
1304         of_mpc8xxx_spi_free_chipselects(&ofdev->dev);
1305         return 0;
1306 }
1307
1308 static const struct of_device_id of_mpc8xxx_spi_match[] = {
1309         { .compatible = "fsl,spi" },
1310         {},
1311 };
1312 MODULE_DEVICE_TABLE(of, of_mpc8xxx_spi_match);
1313
1314 static struct of_platform_driver of_mpc8xxx_spi_driver = {
1315         .driver = {
1316                 .name = "mpc8xxx_spi",
1317                 .owner = THIS_MODULE,
1318                 .of_match_table = of_mpc8xxx_spi_match,
1319         },
1320         .probe          = of_mpc8xxx_spi_probe,
1321         .remove         = __devexit_p(of_mpc8xxx_spi_remove),
1322 };
1323
1324 #ifdef CONFIG_MPC832x_RDB
1325 /*
1326  *                              XXX XXX XXX
1327  * This is "legacy" platform driver, was used by the MPC8323E-RDB boards
1328  * only. The driver should go away soon, since newer MPC8323E-RDB's device
1329  * tree can work with OpenFirmware driver. But for now we support old trees
1330  * as well.
1331  */
1332 static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev)
1333 {
1334         struct resource *mem;
1335         int irq;
1336         struct spi_master *master;
1337
1338         if (!pdev->dev.platform_data)
1339                 return -EINVAL;
1340
1341         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1342         if (!mem)
1343                 return -EINVAL;
1344
1345         irq = platform_get_irq(pdev, 0);
1346         if (irq <= 0)
1347                 return -EINVAL;
1348
1349         master = mpc8xxx_spi_probe(&pdev->dev, mem, irq);
1350         if (IS_ERR(master))
1351                 return PTR_ERR(master);
1352         return 0;
1353 }
1354
1355 static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev)
1356 {
1357         return mpc8xxx_spi_remove(&pdev->dev);
1358 }
1359
1360 MODULE_ALIAS("platform:mpc8xxx_spi");
1361 static struct platform_driver mpc8xxx_spi_driver = {
1362         .probe = plat_mpc8xxx_spi_probe,
1363         .remove = __devexit_p(plat_mpc8xxx_spi_remove),
1364         .driver = {
1365                 .name = "mpc8xxx_spi",
1366                 .owner = THIS_MODULE,
1367         },
1368 };
1369
1370 static bool legacy_driver_failed;
1371
1372 static void __init legacy_driver_register(void)
1373 {
1374         legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver);
1375 }
1376
1377 static void __exit legacy_driver_unregister(void)
1378 {
1379         if (legacy_driver_failed)
1380                 return;
1381         platform_driver_unregister(&mpc8xxx_spi_driver);
1382 }
1383 #else
1384 static void __init legacy_driver_register(void) {}
1385 static void __exit legacy_driver_unregister(void) {}
1386 #endif /* CONFIG_MPC832x_RDB */
1387
1388 static int __init mpc8xxx_spi_init(void)
1389 {
1390         legacy_driver_register();
1391         return of_register_platform_driver(&of_mpc8xxx_spi_driver);
1392 }
1393
1394 static void __exit mpc8xxx_spi_exit(void)
1395 {
1396         of_unregister_platform_driver(&of_mpc8xxx_spi_driver);
1397         legacy_driver_unregister();
1398 }
1399
1400 module_init(mpc8xxx_spi_init);
1401 module_exit(mpc8xxx_spi_exit);
1402
1403 MODULE_AUTHOR("Kumar Gala");
1404 MODULE_DESCRIPTION("Simple MPC8xxx SPI Driver");
1405 MODULE_LICENSE("GPL");