b2ccdea30cb92524427cffbad40ddeb5319f5b14
[pandora-kernel.git] / drivers / spi / spi.c
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/mod_devicetable.h>
29 #include <linux/spi/spi.h>
30 #include <linux/of_spi.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/export.h>
33
34 static void spidev_release(struct device *dev)
35 {
36         struct spi_device       *spi = to_spi_device(dev);
37
38         /* spi masters may cleanup for released devices */
39         if (spi->master->cleanup)
40                 spi->master->cleanup(spi);
41
42         spi_master_put(spi->master);
43         kfree(spi);
44 }
45
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 {
49         const struct spi_device *spi = to_spi_device(dev);
50
51         return sprintf(buf, "%s\n", spi->modalias);
52 }
53
54 static struct device_attribute spi_dev_attrs[] = {
55         __ATTR_RO(modalias),
56         __ATTR_NULL,
57 };
58
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60  * and the sysfs version makes coldplug work too.
61  */
62
63 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
64                                                 const struct spi_device *sdev)
65 {
66         while (id->name[0]) {
67                 if (!strcmp(sdev->modalias, id->name))
68                         return id;
69                 id++;
70         }
71         return NULL;
72 }
73
74 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
75 {
76         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
77
78         return spi_match_id(sdrv->id_table, sdev);
79 }
80 EXPORT_SYMBOL_GPL(spi_get_device_id);
81
82 static int spi_match_device(struct device *dev, struct device_driver *drv)
83 {
84         const struct spi_device *spi = to_spi_device(dev);
85         const struct spi_driver *sdrv = to_spi_driver(drv);
86
87         /* Attempt an OF style match */
88         if (of_driver_match_device(dev, drv))
89                 return 1;
90
91         if (sdrv->id_table)
92                 return !!spi_match_id(sdrv->id_table, spi);
93
94         return strcmp(spi->modalias, drv->name) == 0;
95 }
96
97 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
98 {
99         const struct spi_device         *spi = to_spi_device(dev);
100
101         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
102         return 0;
103 }
104
105 #ifdef CONFIG_PM_SLEEP
106 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
107 {
108         int                     value = 0;
109         struct spi_driver       *drv = to_spi_driver(dev->driver);
110
111         /* suspend will stop irqs and dma; no more i/o */
112         if (drv) {
113                 if (drv->suspend)
114                         value = drv->suspend(to_spi_device(dev), message);
115                 else
116                         dev_dbg(dev, "... can't suspend\n");
117         }
118         return value;
119 }
120
121 static int spi_legacy_resume(struct device *dev)
122 {
123         int                     value = 0;
124         struct spi_driver       *drv = to_spi_driver(dev->driver);
125
126         /* resume may restart the i/o queue */
127         if (drv) {
128                 if (drv->resume)
129                         value = drv->resume(to_spi_device(dev));
130                 else
131                         dev_dbg(dev, "... can't resume\n");
132         }
133         return value;
134 }
135
136 static int spi_pm_suspend(struct device *dev)
137 {
138         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
139
140         if (pm)
141                 return pm_generic_suspend(dev);
142         else
143                 return spi_legacy_suspend(dev, PMSG_SUSPEND);
144 }
145
146 static int spi_pm_resume(struct device *dev)
147 {
148         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
149
150         if (pm)
151                 return pm_generic_resume(dev);
152         else
153                 return spi_legacy_resume(dev);
154 }
155
156 static int spi_pm_freeze(struct device *dev)
157 {
158         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
159
160         if (pm)
161                 return pm_generic_freeze(dev);
162         else
163                 return spi_legacy_suspend(dev, PMSG_FREEZE);
164 }
165
166 static int spi_pm_thaw(struct device *dev)
167 {
168         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
169
170         if (pm)
171                 return pm_generic_thaw(dev);
172         else
173                 return spi_legacy_resume(dev);
174 }
175
176 static int spi_pm_poweroff(struct device *dev)
177 {
178         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
179
180         if (pm)
181                 return pm_generic_poweroff(dev);
182         else
183                 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
184 }
185
186 static int spi_pm_restore(struct device *dev)
187 {
188         const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
189
190         if (pm)
191                 return pm_generic_restore(dev);
192         else
193                 return spi_legacy_resume(dev);
194 }
195 #else
196 #define spi_pm_suspend  NULL
197 #define spi_pm_resume   NULL
198 #define spi_pm_freeze   NULL
199 #define spi_pm_thaw     NULL
200 #define spi_pm_poweroff NULL
201 #define spi_pm_restore  NULL
202 #endif
203
204 static const struct dev_pm_ops spi_pm = {
205         .suspend = spi_pm_suspend,
206         .resume = spi_pm_resume,
207         .freeze = spi_pm_freeze,
208         .thaw = spi_pm_thaw,
209         .poweroff = spi_pm_poweroff,
210         .restore = spi_pm_restore,
211         SET_RUNTIME_PM_OPS(
212                 pm_generic_runtime_suspend,
213                 pm_generic_runtime_resume,
214                 pm_generic_runtime_idle
215         )
216 };
217
218 struct bus_type spi_bus_type = {
219         .name           = "spi",
220         .dev_attrs      = spi_dev_attrs,
221         .match          = spi_match_device,
222         .uevent         = spi_uevent,
223         .pm             = &spi_pm,
224 };
225 EXPORT_SYMBOL_GPL(spi_bus_type);
226
227
228 static int spi_drv_probe(struct device *dev)
229 {
230         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
231
232         return sdrv->probe(to_spi_device(dev));
233 }
234
235 static int spi_drv_remove(struct device *dev)
236 {
237         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
238
239         return sdrv->remove(to_spi_device(dev));
240 }
241
242 static void spi_drv_shutdown(struct device *dev)
243 {
244         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
245
246         sdrv->shutdown(to_spi_device(dev));
247 }
248
249 /**
250  * spi_register_driver - register a SPI driver
251  * @sdrv: the driver to register
252  * Context: can sleep
253  */
254 int spi_register_driver(struct spi_driver *sdrv)
255 {
256         sdrv->driver.bus = &spi_bus_type;
257         if (sdrv->probe)
258                 sdrv->driver.probe = spi_drv_probe;
259         if (sdrv->remove)
260                 sdrv->driver.remove = spi_drv_remove;
261         if (sdrv->shutdown)
262                 sdrv->driver.shutdown = spi_drv_shutdown;
263         return driver_register(&sdrv->driver);
264 }
265 EXPORT_SYMBOL_GPL(spi_register_driver);
266
267 /*-------------------------------------------------------------------------*/
268
269 /* SPI devices should normally not be created by SPI device drivers; that
270  * would make them board-specific.  Similarly with SPI master drivers.
271  * Device registration normally goes into like arch/.../mach.../board-YYY.c
272  * with other readonly (flashable) information about mainboard devices.
273  */
274
275 struct boardinfo {
276         struct list_head        list;
277         struct spi_board_info   board_info;
278 };
279
280 static LIST_HEAD(board_list);
281 static LIST_HEAD(spi_master_list);
282
283 /*
284  * Used to protect add/del opertion for board_info list and
285  * spi_master list, and their matching process
286  */
287 static DEFINE_MUTEX(board_lock);
288
289 /**
290  * spi_alloc_device - Allocate a new SPI device
291  * @master: Controller to which device is connected
292  * Context: can sleep
293  *
294  * Allows a driver to allocate and initialize a spi_device without
295  * registering it immediately.  This allows a driver to directly
296  * fill the spi_device with device parameters before calling
297  * spi_add_device() on it.
298  *
299  * Caller is responsible to call spi_add_device() on the returned
300  * spi_device structure to add it to the SPI master.  If the caller
301  * needs to discard the spi_device without adding it, then it should
302  * call spi_dev_put() on it.
303  *
304  * Returns a pointer to the new device, or NULL.
305  */
306 struct spi_device *spi_alloc_device(struct spi_master *master)
307 {
308         struct spi_device       *spi;
309         struct device           *dev = master->dev.parent;
310
311         if (!spi_master_get(master))
312                 return NULL;
313
314         spi = kzalloc(sizeof *spi, GFP_KERNEL);
315         if (!spi) {
316                 dev_err(dev, "cannot alloc spi_device\n");
317                 spi_master_put(master);
318                 return NULL;
319         }
320
321         spi->master = master;
322         spi->dev.parent = &master->dev;
323         spi->dev.bus = &spi_bus_type;
324         spi->dev.release = spidev_release;
325         device_initialize(&spi->dev);
326         return spi;
327 }
328 EXPORT_SYMBOL_GPL(spi_alloc_device);
329
330 /**
331  * spi_add_device - Add spi_device allocated with spi_alloc_device
332  * @spi: spi_device to register
333  *
334  * Companion function to spi_alloc_device.  Devices allocated with
335  * spi_alloc_device can be added onto the spi bus with this function.
336  *
337  * Returns 0 on success; negative errno on failure
338  */
339 int spi_add_device(struct spi_device *spi)
340 {
341         static DEFINE_MUTEX(spi_add_lock);
342         struct device *dev = spi->master->dev.parent;
343         struct device *d;
344         int status;
345
346         /* Chipselects are numbered 0..max; validate. */
347         if (spi->chip_select >= spi->master->num_chipselect) {
348                 dev_err(dev, "cs%d >= max %d\n",
349                         spi->chip_select,
350                         spi->master->num_chipselect);
351                 return -EINVAL;
352         }
353
354         /* Set the bus ID string */
355         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
356                         spi->chip_select);
357
358
359         /* We need to make sure there's no other device with this
360          * chipselect **BEFORE** we call setup(), else we'll trash
361          * its configuration.  Lock against concurrent add() calls.
362          */
363         mutex_lock(&spi_add_lock);
364
365         d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
366         if (d != NULL) {
367                 dev_err(dev, "chipselect %d already in use\n",
368                                 spi->chip_select);
369                 put_device(d);
370                 status = -EBUSY;
371                 goto done;
372         }
373
374         /* Drivers may modify this initial i/o setup, but will
375          * normally rely on the device being setup.  Devices
376          * using SPI_CS_HIGH can't coexist well otherwise...
377          */
378         status = spi_setup(spi);
379         if (status < 0) {
380                 dev_err(dev, "can't setup %s, status %d\n",
381                                 dev_name(&spi->dev), status);
382                 goto done;
383         }
384
385         /* Device may be bound to an active driver when this returns */
386         status = device_add(&spi->dev);
387         if (status < 0)
388                 dev_err(dev, "can't add %s, status %d\n",
389                                 dev_name(&spi->dev), status);
390         else
391                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
392
393 done:
394         mutex_unlock(&spi_add_lock);
395         return status;
396 }
397 EXPORT_SYMBOL_GPL(spi_add_device);
398
399 /**
400  * spi_new_device - instantiate one new SPI device
401  * @master: Controller to which device is connected
402  * @chip: Describes the SPI device
403  * Context: can sleep
404  *
405  * On typical mainboards, this is purely internal; and it's not needed
406  * after board init creates the hard-wired devices.  Some development
407  * platforms may not be able to use spi_register_board_info though, and
408  * this is exported so that for example a USB or parport based adapter
409  * driver could add devices (which it would learn about out-of-band).
410  *
411  * Returns the new device, or NULL.
412  */
413 struct spi_device *spi_new_device(struct spi_master *master,
414                                   struct spi_board_info *chip)
415 {
416         struct spi_device       *proxy;
417         int                     status;
418
419         /* NOTE:  caller did any chip->bus_num checks necessary.
420          *
421          * Also, unless we change the return value convention to use
422          * error-or-pointer (not NULL-or-pointer), troubleshootability
423          * suggests syslogged diagnostics are best here (ugh).
424          */
425
426         proxy = spi_alloc_device(master);
427         if (!proxy)
428                 return NULL;
429
430         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
431
432         proxy->chip_select = chip->chip_select;
433         proxy->max_speed_hz = chip->max_speed_hz;
434         proxy->mode = chip->mode;
435         proxy->irq = chip->irq;
436         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
437         proxy->dev.platform_data = (void *) chip->platform_data;
438         proxy->controller_data = chip->controller_data;
439         proxy->controller_state = NULL;
440
441         status = spi_add_device(proxy);
442         if (status < 0) {
443                 spi_dev_put(proxy);
444                 return NULL;
445         }
446
447         return proxy;
448 }
449 EXPORT_SYMBOL_GPL(spi_new_device);
450
451 static void spi_match_master_to_boardinfo(struct spi_master *master,
452                                 struct spi_board_info *bi)
453 {
454         struct spi_device *dev;
455
456         if (master->bus_num != bi->bus_num)
457                 return;
458
459         dev = spi_new_device(master, bi);
460         if (!dev)
461                 dev_err(master->dev.parent, "can't create new device for %s\n",
462                         bi->modalias);
463 }
464
465 /**
466  * spi_register_board_info - register SPI devices for a given board
467  * @info: array of chip descriptors
468  * @n: how many descriptors are provided
469  * Context: can sleep
470  *
471  * Board-specific early init code calls this (probably during arch_initcall)
472  * with segments of the SPI device table.  Any device nodes are created later,
473  * after the relevant parent SPI controller (bus_num) is defined.  We keep
474  * this table of devices forever, so that reloading a controller driver will
475  * not make Linux forget about these hard-wired devices.
476  *
477  * Other code can also call this, e.g. a particular add-on board might provide
478  * SPI devices through its expansion connector, so code initializing that board
479  * would naturally declare its SPI devices.
480  *
481  * The board info passed can safely be __initdata ... but be careful of
482  * any embedded pointers (platform_data, etc), they're copied as-is.
483  */
484 int __init
485 spi_register_board_info(struct spi_board_info const *info, unsigned n)
486 {
487         struct boardinfo *bi;
488         int i;
489
490         bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
491         if (!bi)
492                 return -ENOMEM;
493
494         for (i = 0; i < n; i++, bi++, info++) {
495                 struct spi_master *master;
496
497                 memcpy(&bi->board_info, info, sizeof(*info));
498                 mutex_lock(&board_lock);
499                 list_add_tail(&bi->list, &board_list);
500                 list_for_each_entry(master, &spi_master_list, list)
501                         spi_match_master_to_boardinfo(master, &bi->board_info);
502                 mutex_unlock(&board_lock);
503         }
504
505         return 0;
506 }
507
508 /*-------------------------------------------------------------------------*/
509
510 static void spi_master_release(struct device *dev)
511 {
512         struct spi_master *master;
513
514         master = container_of(dev, struct spi_master, dev);
515         kfree(master);
516 }
517
518 static struct class spi_master_class = {
519         .name           = "spi_master",
520         .owner          = THIS_MODULE,
521         .dev_release    = spi_master_release,
522 };
523
524
525 /**
526  * spi_alloc_master - allocate SPI master controller
527  * @dev: the controller, possibly using the platform_bus
528  * @size: how much zeroed driver-private data to allocate; the pointer to this
529  *      memory is in the driver_data field of the returned device,
530  *      accessible with spi_master_get_devdata().
531  * Context: can sleep
532  *
533  * This call is used only by SPI master controller drivers, which are the
534  * only ones directly touching chip registers.  It's how they allocate
535  * an spi_master structure, prior to calling spi_register_master().
536  *
537  * This must be called from context that can sleep.  It returns the SPI
538  * master structure on success, else NULL.
539  *
540  * The caller is responsible for assigning the bus number and initializing
541  * the master's methods before calling spi_register_master(); and (after errors
542  * adding the device) calling spi_master_put() to prevent a memory leak.
543  */
544 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
545 {
546         struct spi_master       *master;
547
548         if (!dev)
549                 return NULL;
550
551         master = kzalloc(size + sizeof *master, GFP_KERNEL);
552         if (!master)
553                 return NULL;
554
555         device_initialize(&master->dev);
556         master->dev.class = &spi_master_class;
557         master->dev.parent = get_device(dev);
558         spi_master_set_devdata(master, &master[1]);
559
560         return master;
561 }
562 EXPORT_SYMBOL_GPL(spi_alloc_master);
563
564 /**
565  * spi_register_master - register SPI master controller
566  * @master: initialized master, originally from spi_alloc_master()
567  * Context: can sleep
568  *
569  * SPI master controllers connect to their drivers using some non-SPI bus,
570  * such as the platform bus.  The final stage of probe() in that code
571  * includes calling spi_register_master() to hook up to this SPI bus glue.
572  *
573  * SPI controllers use board specific (often SOC specific) bus numbers,
574  * and board-specific addressing for SPI devices combines those numbers
575  * with chip select numbers.  Since SPI does not directly support dynamic
576  * device identification, boards need configuration tables telling which
577  * chip is at which address.
578  *
579  * This must be called from context that can sleep.  It returns zero on
580  * success, else a negative error code (dropping the master's refcount).
581  * After a successful return, the caller is responsible for calling
582  * spi_unregister_master().
583  */
584 int spi_register_master(struct spi_master *master)
585 {
586         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
587         struct device           *dev = master->dev.parent;
588         struct boardinfo        *bi;
589         int                     status = -ENODEV;
590         int                     dynamic = 0;
591
592         if (!dev)
593                 return -ENODEV;
594
595         /* even if it's just one always-selected device, there must
596          * be at least one chipselect
597          */
598         if (master->num_chipselect == 0)
599                 return -EINVAL;
600
601         /* convention:  dynamically assigned bus IDs count down from the max */
602         if (master->bus_num < 0) {
603                 /* FIXME switch to an IDR based scheme, something like
604                  * I2C now uses, so we can't run out of "dynamic" IDs
605                  */
606                 master->bus_num = atomic_dec_return(&dyn_bus_id);
607                 dynamic = 1;
608         }
609
610         spin_lock_init(&master->bus_lock_spinlock);
611         mutex_init(&master->bus_lock_mutex);
612         master->bus_lock_flag = 0;
613
614         /* register the device, then userspace will see it.
615          * registration fails if the bus ID is in use.
616          */
617         dev_set_name(&master->dev, "spi%u", master->bus_num);
618         status = device_add(&master->dev);
619         if (status < 0)
620                 goto done;
621         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
622                         dynamic ? " (dynamic)" : "");
623
624         mutex_lock(&board_lock);
625         list_add_tail(&master->list, &spi_master_list);
626         list_for_each_entry(bi, &board_list, list)
627                 spi_match_master_to_boardinfo(master, &bi->board_info);
628         mutex_unlock(&board_lock);
629
630         status = 0;
631
632         /* Register devices from the device tree */
633         of_register_spi_devices(master);
634 done:
635         return status;
636 }
637 EXPORT_SYMBOL_GPL(spi_register_master);
638
639
640 static int __unregister(struct device *dev, void *null)
641 {
642         spi_unregister_device(to_spi_device(dev));
643         return 0;
644 }
645
646 /**
647  * spi_unregister_master - unregister SPI master controller
648  * @master: the master being unregistered
649  * Context: can sleep
650  *
651  * This call is used only by SPI master controller drivers, which are the
652  * only ones directly touching chip registers.
653  *
654  * This must be called from context that can sleep.
655  */
656 void spi_unregister_master(struct spi_master *master)
657 {
658         int dummy;
659
660         mutex_lock(&board_lock);
661         list_del(&master->list);
662         mutex_unlock(&board_lock);
663
664         dummy = device_for_each_child(&master->dev, NULL, __unregister);
665         device_unregister(&master->dev);
666 }
667 EXPORT_SYMBOL_GPL(spi_unregister_master);
668
669 static int __spi_master_match(struct device *dev, void *data)
670 {
671         struct spi_master *m;
672         u16 *bus_num = data;
673
674         m = container_of(dev, struct spi_master, dev);
675         return m->bus_num == *bus_num;
676 }
677
678 /**
679  * spi_busnum_to_master - look up master associated with bus_num
680  * @bus_num: the master's bus number
681  * Context: can sleep
682  *
683  * This call may be used with devices that are registered after
684  * arch init time.  It returns a refcounted pointer to the relevant
685  * spi_master (which the caller must release), or NULL if there is
686  * no such master registered.
687  */
688 struct spi_master *spi_busnum_to_master(u16 bus_num)
689 {
690         struct device           *dev;
691         struct spi_master       *master = NULL;
692
693         dev = class_find_device(&spi_master_class, NULL, &bus_num,
694                                 __spi_master_match);
695         if (dev)
696                 master = container_of(dev, struct spi_master, dev);
697         /* reference got in class_find_device */
698         return master;
699 }
700 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
701
702
703 /*-------------------------------------------------------------------------*/
704
705 /* Core methods for SPI master protocol drivers.  Some of the
706  * other core methods are currently defined as inline functions.
707  */
708
709 /**
710  * spi_setup - setup SPI mode and clock rate
711  * @spi: the device whose settings are being modified
712  * Context: can sleep, and no requests are queued to the device
713  *
714  * SPI protocol drivers may need to update the transfer mode if the
715  * device doesn't work with its default.  They may likewise need
716  * to update clock rates or word sizes from initial values.  This function
717  * changes those settings, and must be called from a context that can sleep.
718  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
719  * effect the next time the device is selected and data is transferred to
720  * or from it.  When this function returns, the spi device is deselected.
721  *
722  * Note that this call will fail if the protocol driver specifies an option
723  * that the underlying controller or its driver does not support.  For
724  * example, not all hardware supports wire transfers using nine bit words,
725  * LSB-first wire encoding, or active-high chipselects.
726  */
727 int spi_setup(struct spi_device *spi)
728 {
729         unsigned        bad_bits;
730         int             status;
731
732         /* help drivers fail *cleanly* when they need options
733          * that aren't supported with their current master
734          */
735         bad_bits = spi->mode & ~spi->master->mode_bits;
736         if (bad_bits) {
737                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
738                         bad_bits);
739                 return -EINVAL;
740         }
741
742         if (!spi->bits_per_word)
743                 spi->bits_per_word = 8;
744
745         status = spi->master->setup(spi);
746
747         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
748                                 "%u bits/w, %u Hz max --> %d\n",
749                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
750                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
751                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
752                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
753                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
754                         spi->bits_per_word, spi->max_speed_hz,
755                         status);
756
757         return status;
758 }
759 EXPORT_SYMBOL_GPL(spi_setup);
760
761 static int __spi_async(struct spi_device *spi, struct spi_message *message)
762 {
763         struct spi_master *master = spi->master;
764
765         /* Half-duplex links include original MicroWire, and ones with
766          * only one data pin like SPI_3WIRE (switches direction) or where
767          * either MOSI or MISO is missing.  They can also be caused by
768          * software limitations.
769          */
770         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
771                         || (spi->mode & SPI_3WIRE)) {
772                 struct spi_transfer *xfer;
773                 unsigned flags = master->flags;
774
775                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
776                         if (xfer->rx_buf && xfer->tx_buf)
777                                 return -EINVAL;
778                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
779                                 return -EINVAL;
780                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
781                                 return -EINVAL;
782                 }
783         }
784
785         message->spi = spi;
786         message->status = -EINPROGRESS;
787         return master->transfer(spi, message);
788 }
789
790 /**
791  * spi_async - asynchronous SPI transfer
792  * @spi: device with which data will be exchanged
793  * @message: describes the data transfers, including completion callback
794  * Context: any (irqs may be blocked, etc)
795  *
796  * This call may be used in_irq and other contexts which can't sleep,
797  * as well as from task contexts which can sleep.
798  *
799  * The completion callback is invoked in a context which can't sleep.
800  * Before that invocation, the value of message->status is undefined.
801  * When the callback is issued, message->status holds either zero (to
802  * indicate complete success) or a negative error code.  After that
803  * callback returns, the driver which issued the transfer request may
804  * deallocate the associated memory; it's no longer in use by any SPI
805  * core or controller driver code.
806  *
807  * Note that although all messages to a spi_device are handled in
808  * FIFO order, messages may go to different devices in other orders.
809  * Some device might be higher priority, or have various "hard" access
810  * time requirements, for example.
811  *
812  * On detection of any fault during the transfer, processing of
813  * the entire message is aborted, and the device is deselected.
814  * Until returning from the associated message completion callback,
815  * no other spi_message queued to that device will be processed.
816  * (This rule applies equally to all the synchronous transfer calls,
817  * which are wrappers around this core asynchronous primitive.)
818  */
819 int spi_async(struct spi_device *spi, struct spi_message *message)
820 {
821         struct spi_master *master = spi->master;
822         int ret;
823         unsigned long flags;
824
825         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
826
827         if (master->bus_lock_flag)
828                 ret = -EBUSY;
829         else
830                 ret = __spi_async(spi, message);
831
832         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
833
834         return ret;
835 }
836 EXPORT_SYMBOL_GPL(spi_async);
837
838 /**
839  * spi_async_locked - version of spi_async with exclusive bus usage
840  * @spi: device with which data will be exchanged
841  * @message: describes the data transfers, including completion callback
842  * Context: any (irqs may be blocked, etc)
843  *
844  * This call may be used in_irq and other contexts which can't sleep,
845  * as well as from task contexts which can sleep.
846  *
847  * The completion callback is invoked in a context which can't sleep.
848  * Before that invocation, the value of message->status is undefined.
849  * When the callback is issued, message->status holds either zero (to
850  * indicate complete success) or a negative error code.  After that
851  * callback returns, the driver which issued the transfer request may
852  * deallocate the associated memory; it's no longer in use by any SPI
853  * core or controller driver code.
854  *
855  * Note that although all messages to a spi_device are handled in
856  * FIFO order, messages may go to different devices in other orders.
857  * Some device might be higher priority, or have various "hard" access
858  * time requirements, for example.
859  *
860  * On detection of any fault during the transfer, processing of
861  * the entire message is aborted, and the device is deselected.
862  * Until returning from the associated message completion callback,
863  * no other spi_message queued to that device will be processed.
864  * (This rule applies equally to all the synchronous transfer calls,
865  * which are wrappers around this core asynchronous primitive.)
866  */
867 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
868 {
869         struct spi_master *master = spi->master;
870         int ret;
871         unsigned long flags;
872
873         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
874
875         ret = __spi_async(spi, message);
876
877         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
878
879         return ret;
880
881 }
882 EXPORT_SYMBOL_GPL(spi_async_locked);
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /* Utility methods for SPI master protocol drivers, layered on
888  * top of the core.  Some other utility methods are defined as
889  * inline functions.
890  */
891
892 static void spi_complete(void *arg)
893 {
894         complete(arg);
895 }
896
897 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
898                       int bus_locked)
899 {
900         DECLARE_COMPLETION_ONSTACK(done);
901         int status;
902         struct spi_master *master = spi->master;
903
904         message->complete = spi_complete;
905         message->context = &done;
906
907         if (!bus_locked)
908                 mutex_lock(&master->bus_lock_mutex);
909
910         status = spi_async_locked(spi, message);
911
912         if (!bus_locked)
913                 mutex_unlock(&master->bus_lock_mutex);
914
915         if (status == 0) {
916                 wait_for_completion(&done);
917                 status = message->status;
918         }
919         message->context = NULL;
920         return status;
921 }
922
923 /**
924  * spi_sync - blocking/synchronous SPI data transfers
925  * @spi: device with which data will be exchanged
926  * @message: describes the data transfers
927  * Context: can sleep
928  *
929  * This call may only be used from a context that may sleep.  The sleep
930  * is non-interruptible, and has no timeout.  Low-overhead controller
931  * drivers may DMA directly into and out of the message buffers.
932  *
933  * Note that the SPI device's chip select is active during the message,
934  * and then is normally disabled between messages.  Drivers for some
935  * frequently-used devices may want to minimize costs of selecting a chip,
936  * by leaving it selected in anticipation that the next message will go
937  * to the same chip.  (That may increase power usage.)
938  *
939  * Also, the caller is guaranteeing that the memory associated with the
940  * message will not be freed before this call returns.
941  *
942  * It returns zero on success, else a negative error code.
943  */
944 int spi_sync(struct spi_device *spi, struct spi_message *message)
945 {
946         return __spi_sync(spi, message, 0);
947 }
948 EXPORT_SYMBOL_GPL(spi_sync);
949
950 /**
951  * spi_sync_locked - version of spi_sync with exclusive bus usage
952  * @spi: device with which data will be exchanged
953  * @message: describes the data transfers
954  * Context: can sleep
955  *
956  * This call may only be used from a context that may sleep.  The sleep
957  * is non-interruptible, and has no timeout.  Low-overhead controller
958  * drivers may DMA directly into and out of the message buffers.
959  *
960  * This call should be used by drivers that require exclusive access to the
961  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
962  * be released by a spi_bus_unlock call when the exclusive access is over.
963  *
964  * It returns zero on success, else a negative error code.
965  */
966 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
967 {
968         return __spi_sync(spi, message, 1);
969 }
970 EXPORT_SYMBOL_GPL(spi_sync_locked);
971
972 /**
973  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
974  * @master: SPI bus master that should be locked for exclusive bus access
975  * Context: can sleep
976  *
977  * This call may only be used from a context that may sleep.  The sleep
978  * is non-interruptible, and has no timeout.
979  *
980  * This call should be used by drivers that require exclusive access to the
981  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
982  * exclusive access is over. Data transfer must be done by spi_sync_locked
983  * and spi_async_locked calls when the SPI bus lock is held.
984  *
985  * It returns zero on success, else a negative error code.
986  */
987 int spi_bus_lock(struct spi_master *master)
988 {
989         unsigned long flags;
990
991         mutex_lock(&master->bus_lock_mutex);
992
993         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
994         master->bus_lock_flag = 1;
995         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
996
997         /* mutex remains locked until spi_bus_unlock is called */
998
999         return 0;
1000 }
1001 EXPORT_SYMBOL_GPL(spi_bus_lock);
1002
1003 /**
1004  * spi_bus_unlock - release the lock for exclusive SPI bus usage
1005  * @master: SPI bus master that was locked for exclusive bus access
1006  * Context: can sleep
1007  *
1008  * This call may only be used from a context that may sleep.  The sleep
1009  * is non-interruptible, and has no timeout.
1010  *
1011  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1012  * call.
1013  *
1014  * It returns zero on success, else a negative error code.
1015  */
1016 int spi_bus_unlock(struct spi_master *master)
1017 {
1018         master->bus_lock_flag = 0;
1019
1020         mutex_unlock(&master->bus_lock_mutex);
1021
1022         return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1025
1026 /* portable code must never pass more than 32 bytes */
1027 #define SPI_BUFSIZ      max(32,SMP_CACHE_BYTES)
1028
1029 static u8       *buf;
1030
1031 /**
1032  * spi_write_then_read - SPI synchronous write followed by read
1033  * @spi: device with which data will be exchanged
1034  * @txbuf: data to be written (need not be dma-safe)
1035  * @n_tx: size of txbuf, in bytes
1036  * @rxbuf: buffer into which data will be read (need not be dma-safe)
1037  * @n_rx: size of rxbuf, in bytes
1038  * Context: can sleep
1039  *
1040  * This performs a half duplex MicroWire style transaction with the
1041  * device, sending txbuf and then reading rxbuf.  The return value
1042  * is zero for success, else a negative errno status code.
1043  * This call may only be used from a context that may sleep.
1044  *
1045  * Parameters to this routine are always copied using a small buffer;
1046  * portable code should never use this for more than 32 bytes.
1047  * Performance-sensitive or bulk transfer code should instead use
1048  * spi_{async,sync}() calls with dma-safe buffers.
1049  */
1050 int spi_write_then_read(struct spi_device *spi,
1051                 const void *txbuf, unsigned n_tx,
1052                 void *rxbuf, unsigned n_rx)
1053 {
1054         static DEFINE_MUTEX(lock);
1055
1056         int                     status;
1057         struct spi_message      message;
1058         struct spi_transfer     x[2];
1059         u8                      *local_buf;
1060
1061         /* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1062          * (as a pure convenience thing), but we can keep heap costs
1063          * out of the hot path ...
1064          */
1065         if ((n_tx + n_rx) > SPI_BUFSIZ)
1066                 return -EINVAL;
1067
1068         spi_message_init(&message);
1069         memset(x, 0, sizeof x);
1070         if (n_tx) {
1071                 x[0].len = n_tx;
1072                 spi_message_add_tail(&x[0], &message);
1073         }
1074         if (n_rx) {
1075                 x[1].len = n_rx;
1076                 spi_message_add_tail(&x[1], &message);
1077         }
1078
1079         /* ... unless someone else is using the pre-allocated buffer */
1080         if (!mutex_trylock(&lock)) {
1081                 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1082                 if (!local_buf)
1083                         return -ENOMEM;
1084         } else
1085                 local_buf = buf;
1086
1087         memcpy(local_buf, txbuf, n_tx);
1088         x[0].tx_buf = local_buf;
1089         x[1].rx_buf = local_buf + n_tx;
1090
1091         /* do the i/o */
1092         status = spi_sync(spi, &message);
1093         if (status == 0)
1094                 memcpy(rxbuf, x[1].rx_buf, n_rx);
1095
1096         if (x[0].tx_buf == buf)
1097                 mutex_unlock(&lock);
1098         else
1099                 kfree(local_buf);
1100
1101         return status;
1102 }
1103 EXPORT_SYMBOL_GPL(spi_write_then_read);
1104
1105 /*-------------------------------------------------------------------------*/
1106
1107 static int __init spi_init(void)
1108 {
1109         int     status;
1110
1111         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1112         if (!buf) {
1113                 status = -ENOMEM;
1114                 goto err0;
1115         }
1116
1117         status = bus_register(&spi_bus_type);
1118         if (status < 0)
1119                 goto err1;
1120
1121         status = class_register(&spi_master_class);
1122         if (status < 0)
1123                 goto err2;
1124         return 0;
1125
1126 err2:
1127         bus_unregister(&spi_bus_type);
1128 err1:
1129         kfree(buf);
1130         buf = NULL;
1131 err0:
1132         return status;
1133 }
1134
1135 /* board_info is normally registered in arch_initcall(),
1136  * but even essential drivers wait till later
1137  *
1138  * REVISIT only boardinfo really needs static linking. the rest (device and
1139  * driver registration) _could_ be dynamically linked (modular) ... costs
1140  * include needing to have boardinfo data structures be much more public.
1141  */
1142 postcore_initcall(spi_init);
1143