a9e5c79ae52a04a43aebabeacfc2d3cc29e03e77
[pandora-kernel.git] / drivers / spi / spi.c
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/spi/spi.h>
29 #include <linux/of_spi.h>
30
31
32 /* SPI bustype and spi_master class are registered after board init code
33  * provides the SPI device tables, ensuring that both are present by the
34  * time controller driver registration causes spi_devices to "enumerate".
35  */
36 static void spidev_release(struct device *dev)
37 {
38         struct spi_device       *spi = to_spi_device(dev);
39
40         /* spi masters may cleanup for released devices */
41         if (spi->master->cleanup)
42                 spi->master->cleanup(spi);
43
44         spi_master_put(spi->master);
45         kfree(spi);
46 }
47
48 static ssize_t
49 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
50 {
51         const struct spi_device *spi = to_spi_device(dev);
52
53         return sprintf(buf, "%s\n", spi->modalias);
54 }
55
56 static struct device_attribute spi_dev_attrs[] = {
57         __ATTR_RO(modalias),
58         __ATTR_NULL,
59 };
60
61 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
62  * and the sysfs version makes coldplug work too.
63  */
64
65 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
66                                                 const struct spi_device *sdev)
67 {
68         while (id->name[0]) {
69                 if (!strcmp(sdev->modalias, id->name))
70                         return id;
71                 id++;
72         }
73         return NULL;
74 }
75
76 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
77 {
78         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
79
80         return spi_match_id(sdrv->id_table, sdev);
81 }
82 EXPORT_SYMBOL_GPL(spi_get_device_id);
83
84 static int spi_match_device(struct device *dev, struct device_driver *drv)
85 {
86         const struct spi_device *spi = to_spi_device(dev);
87         const struct spi_driver *sdrv = to_spi_driver(drv);
88
89         if (sdrv->id_table)
90                 return !!spi_match_id(sdrv->id_table, spi);
91
92         return strcmp(spi->modalias, drv->name) == 0;
93 }
94
95 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
96 {
97         const struct spi_device         *spi = to_spi_device(dev);
98
99         add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
100         return 0;
101 }
102
103 #ifdef  CONFIG_PM
104
105 static int spi_suspend(struct device *dev, pm_message_t message)
106 {
107         int                     value = 0;
108         struct spi_driver       *drv = to_spi_driver(dev->driver);
109
110         /* suspend will stop irqs and dma; no more i/o */
111         if (drv) {
112                 if (drv->suspend)
113                         value = drv->suspend(to_spi_device(dev), message);
114                 else
115                         dev_dbg(dev, "... can't suspend\n");
116         }
117         return value;
118 }
119
120 static int spi_resume(struct device *dev)
121 {
122         int                     value = 0;
123         struct spi_driver       *drv = to_spi_driver(dev->driver);
124
125         /* resume may restart the i/o queue */
126         if (drv) {
127                 if (drv->resume)
128                         value = drv->resume(to_spi_device(dev));
129                 else
130                         dev_dbg(dev, "... can't resume\n");
131         }
132         return value;
133 }
134
135 #else
136 #define spi_suspend     NULL
137 #define spi_resume      NULL
138 #endif
139
140 struct bus_type spi_bus_type = {
141         .name           = "spi",
142         .dev_attrs      = spi_dev_attrs,
143         .match          = spi_match_device,
144         .uevent         = spi_uevent,
145         .suspend        = spi_suspend,
146         .resume         = spi_resume,
147 };
148 EXPORT_SYMBOL_GPL(spi_bus_type);
149
150
151 static int spi_drv_probe(struct device *dev)
152 {
153         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
154
155         return sdrv->probe(to_spi_device(dev));
156 }
157
158 static int spi_drv_remove(struct device *dev)
159 {
160         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
161
162         return sdrv->remove(to_spi_device(dev));
163 }
164
165 static void spi_drv_shutdown(struct device *dev)
166 {
167         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
168
169         sdrv->shutdown(to_spi_device(dev));
170 }
171
172 /**
173  * spi_register_driver - register a SPI driver
174  * @sdrv: the driver to register
175  * Context: can sleep
176  */
177 int spi_register_driver(struct spi_driver *sdrv)
178 {
179         sdrv->driver.bus = &spi_bus_type;
180         if (sdrv->probe)
181                 sdrv->driver.probe = spi_drv_probe;
182         if (sdrv->remove)
183                 sdrv->driver.remove = spi_drv_remove;
184         if (sdrv->shutdown)
185                 sdrv->driver.shutdown = spi_drv_shutdown;
186         return driver_register(&sdrv->driver);
187 }
188 EXPORT_SYMBOL_GPL(spi_register_driver);
189
190 /*-------------------------------------------------------------------------*/
191
192 /* SPI devices should normally not be created by SPI device drivers; that
193  * would make them board-specific.  Similarly with SPI master drivers.
194  * Device registration normally goes into like arch/.../mach.../board-YYY.c
195  * with other readonly (flashable) information about mainboard devices.
196  */
197
198 struct boardinfo {
199         struct list_head        list;
200         unsigned                n_board_info;
201         struct spi_board_info   board_info[0];
202 };
203
204 static LIST_HEAD(board_list);
205 static DEFINE_MUTEX(board_lock);
206
207 /**
208  * spi_alloc_device - Allocate a new SPI device
209  * @master: Controller to which device is connected
210  * Context: can sleep
211  *
212  * Allows a driver to allocate and initialize a spi_device without
213  * registering it immediately.  This allows a driver to directly
214  * fill the spi_device with device parameters before calling
215  * spi_add_device() on it.
216  *
217  * Caller is responsible to call spi_add_device() on the returned
218  * spi_device structure to add it to the SPI master.  If the caller
219  * needs to discard the spi_device without adding it, then it should
220  * call spi_dev_put() on it.
221  *
222  * Returns a pointer to the new device, or NULL.
223  */
224 struct spi_device *spi_alloc_device(struct spi_master *master)
225 {
226         struct spi_device       *spi;
227         struct device           *dev = master->dev.parent;
228
229         if (!spi_master_get(master))
230                 return NULL;
231
232         spi = kzalloc(sizeof *spi, GFP_KERNEL);
233         if (!spi) {
234                 dev_err(dev, "cannot alloc spi_device\n");
235                 spi_master_put(master);
236                 return NULL;
237         }
238
239         spi->master = master;
240         spi->dev.parent = dev;
241         spi->dev.bus = &spi_bus_type;
242         spi->dev.release = spidev_release;
243         device_initialize(&spi->dev);
244         return spi;
245 }
246 EXPORT_SYMBOL_GPL(spi_alloc_device);
247
248 /**
249  * spi_add_device - Add spi_device allocated with spi_alloc_device
250  * @spi: spi_device to register
251  *
252  * Companion function to spi_alloc_device.  Devices allocated with
253  * spi_alloc_device can be added onto the spi bus with this function.
254  *
255  * Returns 0 on success; negative errno on failure
256  */
257 int spi_add_device(struct spi_device *spi)
258 {
259         static DEFINE_MUTEX(spi_add_lock);
260         struct device *dev = spi->master->dev.parent;
261         struct device *d;
262         int status;
263
264         /* Chipselects are numbered 0..max; validate. */
265         if (spi->chip_select >= spi->master->num_chipselect) {
266                 dev_err(dev, "cs%d >= max %d\n",
267                         spi->chip_select,
268                         spi->master->num_chipselect);
269                 return -EINVAL;
270         }
271
272         /* Set the bus ID string */
273         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
274                         spi->chip_select);
275
276
277         /* We need to make sure there's no other device with this
278          * chipselect **BEFORE** we call setup(), else we'll trash
279          * its configuration.  Lock against concurrent add() calls.
280          */
281         mutex_lock(&spi_add_lock);
282
283         d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
284         if (d != NULL) {
285                 dev_err(dev, "chipselect %d already in use\n",
286                                 spi->chip_select);
287                 put_device(d);
288                 status = -EBUSY;
289                 goto done;
290         }
291
292         /* Drivers may modify this initial i/o setup, but will
293          * normally rely on the device being setup.  Devices
294          * using SPI_CS_HIGH can't coexist well otherwise...
295          */
296         status = spi_setup(spi);
297         if (status < 0) {
298                 dev_err(dev, "can't %s %s, status %d\n",
299                                 "setup", dev_name(&spi->dev), status);
300                 goto done;
301         }
302
303         /* Device may be bound to an active driver when this returns */
304         status = device_add(&spi->dev);
305         if (status < 0)
306                 dev_err(dev, "can't %s %s, status %d\n",
307                                 "add", dev_name(&spi->dev), status);
308         else
309                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
310
311 done:
312         mutex_unlock(&spi_add_lock);
313         return status;
314 }
315 EXPORT_SYMBOL_GPL(spi_add_device);
316
317 /**
318  * spi_new_device - instantiate one new SPI device
319  * @master: Controller to which device is connected
320  * @chip: Describes the SPI device
321  * Context: can sleep
322  *
323  * On typical mainboards, this is purely internal; and it's not needed
324  * after board init creates the hard-wired devices.  Some development
325  * platforms may not be able to use spi_register_board_info though, and
326  * this is exported so that for example a USB or parport based adapter
327  * driver could add devices (which it would learn about out-of-band).
328  *
329  * Returns the new device, or NULL.
330  */
331 struct spi_device *spi_new_device(struct spi_master *master,
332                                   struct spi_board_info *chip)
333 {
334         struct spi_device       *proxy;
335         int                     status;
336
337         /* NOTE:  caller did any chip->bus_num checks necessary.
338          *
339          * Also, unless we change the return value convention to use
340          * error-or-pointer (not NULL-or-pointer), troubleshootability
341          * suggests syslogged diagnostics are best here (ugh).
342          */
343
344         proxy = spi_alloc_device(master);
345         if (!proxy)
346                 return NULL;
347
348         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
349
350         proxy->chip_select = chip->chip_select;
351         proxy->max_speed_hz = chip->max_speed_hz;
352         proxy->mode = chip->mode;
353         proxy->irq = chip->irq;
354         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
355         proxy->dev.platform_data = (void *) chip->platform_data;
356         proxy->controller_data = chip->controller_data;
357         proxy->controller_state = NULL;
358
359         status = spi_add_device(proxy);
360         if (status < 0) {
361                 spi_dev_put(proxy);
362                 return NULL;
363         }
364
365         return proxy;
366 }
367 EXPORT_SYMBOL_GPL(spi_new_device);
368
369 /**
370  * spi_register_board_info - register SPI devices for a given board
371  * @info: array of chip descriptors
372  * @n: how many descriptors are provided
373  * Context: can sleep
374  *
375  * Board-specific early init code calls this (probably during arch_initcall)
376  * with segments of the SPI device table.  Any device nodes are created later,
377  * after the relevant parent SPI controller (bus_num) is defined.  We keep
378  * this table of devices forever, so that reloading a controller driver will
379  * not make Linux forget about these hard-wired devices.
380  *
381  * Other code can also call this, e.g. a particular add-on board might provide
382  * SPI devices through its expansion connector, so code initializing that board
383  * would naturally declare its SPI devices.
384  *
385  * The board info passed can safely be __initdata ... but be careful of
386  * any embedded pointers (platform_data, etc), they're copied as-is.
387  */
388 int __init
389 spi_register_board_info(struct spi_board_info const *info, unsigned n)
390 {
391         struct boardinfo        *bi;
392
393         bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
394         if (!bi)
395                 return -ENOMEM;
396         bi->n_board_info = n;
397         memcpy(bi->board_info, info, n * sizeof *info);
398
399         mutex_lock(&board_lock);
400         list_add_tail(&bi->list, &board_list);
401         mutex_unlock(&board_lock);
402         return 0;
403 }
404
405 /* FIXME someone should add support for a __setup("spi", ...) that
406  * creates board info from kernel command lines
407  */
408
409 static void scan_boardinfo(struct spi_master *master)
410 {
411         struct boardinfo        *bi;
412
413         mutex_lock(&board_lock);
414         list_for_each_entry(bi, &board_list, list) {
415                 struct spi_board_info   *chip = bi->board_info;
416                 unsigned                n;
417
418                 for (n = bi->n_board_info; n > 0; n--, chip++) {
419                         if (chip->bus_num != master->bus_num)
420                                 continue;
421                         /* NOTE: this relies on spi_new_device to
422                          * issue diagnostics when given bogus inputs
423                          */
424                         (void) spi_new_device(master, chip);
425                 }
426         }
427         mutex_unlock(&board_lock);
428 }
429
430 /*-------------------------------------------------------------------------*/
431
432 static void spi_master_release(struct device *dev)
433 {
434         struct spi_master *master;
435
436         master = container_of(dev, struct spi_master, dev);
437         kfree(master);
438 }
439
440 static struct class spi_master_class = {
441         .name           = "spi_master",
442         .owner          = THIS_MODULE,
443         .dev_release    = spi_master_release,
444 };
445
446
447 /**
448  * spi_alloc_master - allocate SPI master controller
449  * @dev: the controller, possibly using the platform_bus
450  * @size: how much zeroed driver-private data to allocate; the pointer to this
451  *      memory is in the driver_data field of the returned device,
452  *      accessible with spi_master_get_devdata().
453  * Context: can sleep
454  *
455  * This call is used only by SPI master controller drivers, which are the
456  * only ones directly touching chip registers.  It's how they allocate
457  * an spi_master structure, prior to calling spi_register_master().
458  *
459  * This must be called from context that can sleep.  It returns the SPI
460  * master structure on success, else NULL.
461  *
462  * The caller is responsible for assigning the bus number and initializing
463  * the master's methods before calling spi_register_master(); and (after errors
464  * adding the device) calling spi_master_put() to prevent a memory leak.
465  */
466 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
467 {
468         struct spi_master       *master;
469
470         if (!dev)
471                 return NULL;
472
473         master = kzalloc(size + sizeof *master, GFP_KERNEL);
474         if (!master)
475                 return NULL;
476
477         device_initialize(&master->dev);
478         master->dev.class = &spi_master_class;
479         master->dev.parent = get_device(dev);
480         spi_master_set_devdata(master, &master[1]);
481
482         return master;
483 }
484 EXPORT_SYMBOL_GPL(spi_alloc_master);
485
486 /**
487  * spi_register_master - register SPI master controller
488  * @master: initialized master, originally from spi_alloc_master()
489  * Context: can sleep
490  *
491  * SPI master controllers connect to their drivers using some non-SPI bus,
492  * such as the platform bus.  The final stage of probe() in that code
493  * includes calling spi_register_master() to hook up to this SPI bus glue.
494  *
495  * SPI controllers use board specific (often SOC specific) bus numbers,
496  * and board-specific addressing for SPI devices combines those numbers
497  * with chip select numbers.  Since SPI does not directly support dynamic
498  * device identification, boards need configuration tables telling which
499  * chip is at which address.
500  *
501  * This must be called from context that can sleep.  It returns zero on
502  * success, else a negative error code (dropping the master's refcount).
503  * After a successful return, the caller is responsible for calling
504  * spi_unregister_master().
505  */
506 int spi_register_master(struct spi_master *master)
507 {
508         static atomic_t         dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
509         struct device           *dev = master->dev.parent;
510         int                     status = -ENODEV;
511         int                     dynamic = 0;
512
513         if (!dev)
514                 return -ENODEV;
515
516         /* even if it's just one always-selected device, there must
517          * be at least one chipselect
518          */
519         if (master->num_chipselect == 0)
520                 return -EINVAL;
521
522         /* convention:  dynamically assigned bus IDs count down from the max */
523         if (master->bus_num < 0) {
524                 /* FIXME switch to an IDR based scheme, something like
525                  * I2C now uses, so we can't run out of "dynamic" IDs
526                  */
527                 master->bus_num = atomic_dec_return(&dyn_bus_id);
528                 dynamic = 1;
529         }
530
531         spin_lock_init(&master->bus_lock_spinlock);
532         mutex_init(&master->bus_lock_mutex);
533         master->bus_lock_flag = 0;
534
535         /* register the device, then userspace will see it.
536          * registration fails if the bus ID is in use.
537          */
538         dev_set_name(&master->dev, "spi%u", master->bus_num);
539         status = device_add(&master->dev);
540         if (status < 0)
541                 goto done;
542         dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
543                         dynamic ? " (dynamic)" : "");
544
545         /* populate children from any spi device tables */
546         scan_boardinfo(master);
547         status = 0;
548
549         /* Register devices from the device tree */
550         of_register_spi_devices(master);
551 done:
552         return status;
553 }
554 EXPORT_SYMBOL_GPL(spi_register_master);
555
556
557 static int __unregister(struct device *dev, void *master_dev)
558 {
559         /* note: before about 2.6.14-rc1 this would corrupt memory: */
560         if (dev != master_dev)
561                 spi_unregister_device(to_spi_device(dev));
562         return 0;
563 }
564
565 /**
566  * spi_unregister_master - unregister SPI master controller
567  * @master: the master being unregistered
568  * Context: can sleep
569  *
570  * This call is used only by SPI master controller drivers, which are the
571  * only ones directly touching chip registers.
572  *
573  * This must be called from context that can sleep.
574  */
575 void spi_unregister_master(struct spi_master *master)
576 {
577         int dummy;
578
579         dummy = device_for_each_child(master->dev.parent, &master->dev,
580                                         __unregister);
581         device_unregister(&master->dev);
582 }
583 EXPORT_SYMBOL_GPL(spi_unregister_master);
584
585 static int __spi_master_match(struct device *dev, void *data)
586 {
587         struct spi_master *m;
588         u16 *bus_num = data;
589
590         m = container_of(dev, struct spi_master, dev);
591         return m->bus_num == *bus_num;
592 }
593
594 /**
595  * spi_busnum_to_master - look up master associated with bus_num
596  * @bus_num: the master's bus number
597  * Context: can sleep
598  *
599  * This call may be used with devices that are registered after
600  * arch init time.  It returns a refcounted pointer to the relevant
601  * spi_master (which the caller must release), or NULL if there is
602  * no such master registered.
603  */
604 struct spi_master *spi_busnum_to_master(u16 bus_num)
605 {
606         struct device           *dev;
607         struct spi_master       *master = NULL;
608
609         dev = class_find_device(&spi_master_class, NULL, &bus_num,
610                                 __spi_master_match);
611         if (dev)
612                 master = container_of(dev, struct spi_master, dev);
613         /* reference got in class_find_device */
614         return master;
615 }
616 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
617
618
619 /*-------------------------------------------------------------------------*/
620
621 /* Core methods for SPI master protocol drivers.  Some of the
622  * other core methods are currently defined as inline functions.
623  */
624
625 /**
626  * spi_setup - setup SPI mode and clock rate
627  * @spi: the device whose settings are being modified
628  * Context: can sleep, and no requests are queued to the device
629  *
630  * SPI protocol drivers may need to update the transfer mode if the
631  * device doesn't work with its default.  They may likewise need
632  * to update clock rates or word sizes from initial values.  This function
633  * changes those settings, and must be called from a context that can sleep.
634  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
635  * effect the next time the device is selected and data is transferred to
636  * or from it.  When this function returns, the spi device is deselected.
637  *
638  * Note that this call will fail if the protocol driver specifies an option
639  * that the underlying controller or its driver does not support.  For
640  * example, not all hardware supports wire transfers using nine bit words,
641  * LSB-first wire encoding, or active-high chipselects.
642  */
643 int spi_setup(struct spi_device *spi)
644 {
645         unsigned        bad_bits;
646         int             status;
647
648         /* help drivers fail *cleanly* when they need options
649          * that aren't supported with their current master
650          */
651         bad_bits = spi->mode & ~spi->master->mode_bits;
652         if (bad_bits) {
653                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
654                         bad_bits);
655                 return -EINVAL;
656         }
657
658         if (!spi->bits_per_word)
659                 spi->bits_per_word = 8;
660
661         status = spi->master->setup(spi);
662
663         dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
664                                 "%u bits/w, %u Hz max --> %d\n",
665                         (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
666                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
667                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
668                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
669                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
670                         spi->bits_per_word, spi->max_speed_hz,
671                         status);
672
673         return status;
674 }
675 EXPORT_SYMBOL_GPL(spi_setup);
676
677 static int __spi_async(struct spi_device *spi, struct spi_message *message)
678 {
679         struct spi_master *master = spi->master;
680
681         /* Half-duplex links include original MicroWire, and ones with
682          * only one data pin like SPI_3WIRE (switches direction) or where
683          * either MOSI or MISO is missing.  They can also be caused by
684          * software limitations.
685          */
686         if ((master->flags & SPI_MASTER_HALF_DUPLEX)
687                         || (spi->mode & SPI_3WIRE)) {
688                 struct spi_transfer *xfer;
689                 unsigned flags = master->flags;
690
691                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
692                         if (xfer->rx_buf && xfer->tx_buf)
693                                 return -EINVAL;
694                         if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
695                                 return -EINVAL;
696                         if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
697                                 return -EINVAL;
698                 }
699         }
700
701         message->spi = spi;
702         message->status = -EINPROGRESS;
703         return master->transfer(spi, message);
704 }
705
706 /**
707  * spi_async - asynchronous SPI transfer
708  * @spi: device with which data will be exchanged
709  * @message: describes the data transfers, including completion callback
710  * Context: any (irqs may be blocked, etc)
711  *
712  * This call may be used in_irq and other contexts which can't sleep,
713  * as well as from task contexts which can sleep.
714  *
715  * The completion callback is invoked in a context which can't sleep.
716  * Before that invocation, the value of message->status is undefined.
717  * When the callback is issued, message->status holds either zero (to
718  * indicate complete success) or a negative error code.  After that
719  * callback returns, the driver which issued the transfer request may
720  * deallocate the associated memory; it's no longer in use by any SPI
721  * core or controller driver code.
722  *
723  * Note that although all messages to a spi_device are handled in
724  * FIFO order, messages may go to different devices in other orders.
725  * Some device might be higher priority, or have various "hard" access
726  * time requirements, for example.
727  *
728  * On detection of any fault during the transfer, processing of
729  * the entire message is aborted, and the device is deselected.
730  * Until returning from the associated message completion callback,
731  * no other spi_message queued to that device will be processed.
732  * (This rule applies equally to all the synchronous transfer calls,
733  * which are wrappers around this core asynchronous primitive.)
734  */
735 int spi_async(struct spi_device *spi, struct spi_message *message)
736 {
737         struct spi_master *master = spi->master;
738         int ret;
739         unsigned long flags;
740
741         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
742
743         if (master->bus_lock_flag)
744                 ret = -EBUSY;
745         else
746                 ret = __spi_async(spi, message);
747
748         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
749
750         return ret;
751 }
752 EXPORT_SYMBOL_GPL(spi_async);
753
754 /**
755  * spi_async_locked - version of spi_async with exclusive bus usage
756  * @spi: device with which data will be exchanged
757  * @message: describes the data transfers, including completion callback
758  * Context: any (irqs may be blocked, etc)
759  *
760  * This call may be used in_irq and other contexts which can't sleep,
761  * as well as from task contexts which can sleep.
762  *
763  * The completion callback is invoked in a context which can't sleep.
764  * Before that invocation, the value of message->status is undefined.
765  * When the callback is issued, message->status holds either zero (to
766  * indicate complete success) or a negative error code.  After that
767  * callback returns, the driver which issued the transfer request may
768  * deallocate the associated memory; it's no longer in use by any SPI
769  * core or controller driver code.
770  *
771  * Note that although all messages to a spi_device are handled in
772  * FIFO order, messages may go to different devices in other orders.
773  * Some device might be higher priority, or have various "hard" access
774  * time requirements, for example.
775  *
776  * On detection of any fault during the transfer, processing of
777  * the entire message is aborted, and the device is deselected.
778  * Until returning from the associated message completion callback,
779  * no other spi_message queued to that device will be processed.
780  * (This rule applies equally to all the synchronous transfer calls,
781  * which are wrappers around this core asynchronous primitive.)
782  */
783 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
784 {
785         struct spi_master *master = spi->master;
786         int ret;
787         unsigned long flags;
788
789         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
790
791         ret = __spi_async(spi, message);
792
793         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
794
795         return ret;
796
797 }
798 EXPORT_SYMBOL_GPL(spi_async_locked);
799
800
801 /*-------------------------------------------------------------------------*/
802
803 /* Utility methods for SPI master protocol drivers, layered on
804  * top of the core.  Some other utility methods are defined as
805  * inline functions.
806  */
807
808 static void spi_complete(void *arg)
809 {
810         complete(arg);
811 }
812
813 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
814                       int bus_locked)
815 {
816         DECLARE_COMPLETION_ONSTACK(done);
817         int status;
818         struct spi_master *master = spi->master;
819
820         message->complete = spi_complete;
821         message->context = &done;
822
823         if (!bus_locked)
824                 mutex_lock(&master->bus_lock_mutex);
825
826         status = spi_async_locked(spi, message);
827
828         if (!bus_locked)
829                 mutex_unlock(&master->bus_lock_mutex);
830
831         if (status == 0) {
832                 wait_for_completion(&done);
833                 status = message->status;
834         }
835         message->context = NULL;
836         return status;
837 }
838
839 /**
840  * spi_sync - blocking/synchronous SPI data transfers
841  * @spi: device with which data will be exchanged
842  * @message: describes the data transfers
843  * Context: can sleep
844  *
845  * This call may only be used from a context that may sleep.  The sleep
846  * is non-interruptible, and has no timeout.  Low-overhead controller
847  * drivers may DMA directly into and out of the message buffers.
848  *
849  * Note that the SPI device's chip select is active during the message,
850  * and then is normally disabled between messages.  Drivers for some
851  * frequently-used devices may want to minimize costs of selecting a chip,
852  * by leaving it selected in anticipation that the next message will go
853  * to the same chip.  (That may increase power usage.)
854  *
855  * Also, the caller is guaranteeing that the memory associated with the
856  * message will not be freed before this call returns.
857  *
858  * It returns zero on success, else a negative error code.
859  */
860 int spi_sync(struct spi_device *spi, struct spi_message *message)
861 {
862         return __spi_sync(spi, message, 0);
863 }
864 EXPORT_SYMBOL_GPL(spi_sync);
865
866 /**
867  * spi_sync_locked - version of spi_sync with exclusive bus usage
868  * @spi: device with which data will be exchanged
869  * @message: describes the data transfers
870  * Context: can sleep
871  *
872  * This call may only be used from a context that may sleep.  The sleep
873  * is non-interruptible, and has no timeout.  Low-overhead controller
874  * drivers may DMA directly into and out of the message buffers.
875  *
876  * This call should be used by drivers that require exclusive access to the
877  * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
878  * be released by a spi_bus_unlock call when the exclusive access is over.
879  *
880  * It returns zero on success, else a negative error code.
881  */
882 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
883 {
884         return __spi_sync(spi, message, 1);
885 }
886 EXPORT_SYMBOL_GPL(spi_sync_locked);
887
888 /**
889  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
890  * @master: SPI bus master that should be locked for exclusive bus access
891  * Context: can sleep
892  *
893  * This call may only be used from a context that may sleep.  The sleep
894  * is non-interruptible, and has no timeout.
895  *
896  * This call should be used by drivers that require exclusive access to the
897  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
898  * exclusive access is over. Data transfer must be done by spi_sync_locked
899  * and spi_async_locked calls when the SPI bus lock is held.
900  *
901  * It returns zero on success, else a negative error code.
902  */
903 int spi_bus_lock(struct spi_master *master)
904 {
905         unsigned long flags;
906
907         mutex_lock(&master->bus_lock_mutex);
908
909         spin_lock_irqsave(&master->bus_lock_spinlock, flags);
910         master->bus_lock_flag = 1;
911         spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
912
913         /* mutex remains locked until spi_bus_unlock is called */
914
915         return 0;
916 }
917 EXPORT_SYMBOL_GPL(spi_bus_lock);
918
919 /**
920  * spi_bus_unlock - release the lock for exclusive SPI bus usage
921  * @master: SPI bus master that was locked for exclusive bus access
922  * Context: can sleep
923  *
924  * This call may only be used from a context that may sleep.  The sleep
925  * is non-interruptible, and has no timeout.
926  *
927  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
928  * call.
929  *
930  * It returns zero on success, else a negative error code.
931  */
932 int spi_bus_unlock(struct spi_master *master)
933 {
934         master->bus_lock_flag = 0;
935
936         mutex_unlock(&master->bus_lock_mutex);
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(spi_bus_unlock);
941
942 /* portable code must never pass more than 32 bytes */
943 #define SPI_BUFSIZ      max(32,SMP_CACHE_BYTES)
944
945 static u8       *buf;
946
947 /**
948  * spi_write_then_read - SPI synchronous write followed by read
949  * @spi: device with which data will be exchanged
950  * @txbuf: data to be written (need not be dma-safe)
951  * @n_tx: size of txbuf, in bytes
952  * @rxbuf: buffer into which data will be read (need not be dma-safe)
953  * @n_rx: size of rxbuf, in bytes
954  * Context: can sleep
955  *
956  * This performs a half duplex MicroWire style transaction with the
957  * device, sending txbuf and then reading rxbuf.  The return value
958  * is zero for success, else a negative errno status code.
959  * This call may only be used from a context that may sleep.
960  *
961  * Parameters to this routine are always copied using a small buffer;
962  * portable code should never use this for more than 32 bytes.
963  * Performance-sensitive or bulk transfer code should instead use
964  * spi_{async,sync}() calls with dma-safe buffers.
965  */
966 int spi_write_then_read(struct spi_device *spi,
967                 const u8 *txbuf, unsigned n_tx,
968                 u8 *rxbuf, unsigned n_rx)
969 {
970         static DEFINE_MUTEX(lock);
971
972         int                     status;
973         struct spi_message      message;
974         struct spi_transfer     x[2];
975         u8                      *local_buf;
976
977         /* Use preallocated DMA-safe buffer.  We can't avoid copying here,
978          * (as a pure convenience thing), but we can keep heap costs
979          * out of the hot path ...
980          */
981         if ((n_tx + n_rx) > SPI_BUFSIZ)
982                 return -EINVAL;
983
984         spi_message_init(&message);
985         memset(x, 0, sizeof x);
986         if (n_tx) {
987                 x[0].len = n_tx;
988                 spi_message_add_tail(&x[0], &message);
989         }
990         if (n_rx) {
991                 x[1].len = n_rx;
992                 spi_message_add_tail(&x[1], &message);
993         }
994
995         /* ... unless someone else is using the pre-allocated buffer */
996         if (!mutex_trylock(&lock)) {
997                 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
998                 if (!local_buf)
999                         return -ENOMEM;
1000         } else
1001                 local_buf = buf;
1002
1003         memcpy(local_buf, txbuf, n_tx);
1004         x[0].tx_buf = local_buf;
1005         x[1].rx_buf = local_buf + n_tx;
1006
1007         /* do the i/o */
1008         status = spi_sync(spi, &message);
1009         if (status == 0)
1010                 memcpy(rxbuf, x[1].rx_buf, n_rx);
1011
1012         if (x[0].tx_buf == buf)
1013                 mutex_unlock(&lock);
1014         else
1015                 kfree(local_buf);
1016
1017         return status;
1018 }
1019 EXPORT_SYMBOL_GPL(spi_write_then_read);
1020
1021 /*-------------------------------------------------------------------------*/
1022
1023 static int __init spi_init(void)
1024 {
1025         int     status;
1026
1027         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1028         if (!buf) {
1029                 status = -ENOMEM;
1030                 goto err0;
1031         }
1032
1033         status = bus_register(&spi_bus_type);
1034         if (status < 0)
1035                 goto err1;
1036
1037         status = class_register(&spi_master_class);
1038         if (status < 0)
1039                 goto err2;
1040         return 0;
1041
1042 err2:
1043         bus_unregister(&spi_bus_type);
1044 err1:
1045         kfree(buf);
1046         buf = NULL;
1047 err0:
1048         return status;
1049 }
1050
1051 /* board_info is normally registered in arch_initcall(),
1052  * but even essential drivers wait till later
1053  *
1054  * REVISIT only boardinfo really needs static linking. the rest (device and
1055  * driver registration) _could_ be dynamically linked (modular) ... costs
1056  * include needing to have boardinfo data structures be much more public.
1057  */
1058 postcore_initcall(spi_init);
1059