spi-topcliff-pch: Add recovery processing in case FIFO overrun error occurs
[pandora-kernel.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_MAX_BAUDRATE        5000000
54 #define PCH_MAX_FIFO_DEPTH      16
55
56 #define STATUS_RUNNING          1
57 #define STATUS_EXITING          2
58 #define PCH_SLEEP_TIME          10
59
60 #define SSN_LOW                 0x02U
61 #define SSN_HIGH                0x03U
62 #define SSN_NO_CONTROL          0x00U
63 #define PCH_MAX_CS              0xFF
64 #define PCI_DEVICE_ID_GE_SPI    0x8816
65
66 #define SPCR_SPE_BIT            (1 << 0)
67 #define SPCR_MSTR_BIT           (1 << 1)
68 #define SPCR_LSBF_BIT           (1 << 4)
69 #define SPCR_CPHA_BIT           (1 << 5)
70 #define SPCR_CPOL_BIT           (1 << 6)
71 #define SPCR_TFIE_BIT           (1 << 8)
72 #define SPCR_RFIE_BIT           (1 << 9)
73 #define SPCR_FIE_BIT            (1 << 10)
74 #define SPCR_ORIE_BIT           (1 << 11)
75 #define SPCR_MDFIE_BIT          (1 << 12)
76 #define SPCR_FICLR_BIT          (1 << 24)
77 #define SPSR_TFI_BIT            (1 << 0)
78 #define SPSR_RFI_BIT            (1 << 1)
79 #define SPSR_FI_BIT             (1 << 2)
80 #define SPSR_ORF_BIT            (1 << 3)
81 #define SPBRR_SIZE_BIT          (1 << 10)
82
83 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
84                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
85
86 #define SPCR_RFIC_FIELD         20
87 #define SPCR_TFIC_FIELD         16
88
89 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
90 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
91 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
92
93 #define PCH_CLOCK_HZ            50000000
94 #define PCH_MAX_SPBR            1023
95
96 /* Definition for ML7213 by OKI SEMICONDUCTOR */
97 #define PCI_VENDOR_ID_ROHM              0x10DB
98 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
99 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
100
101 /*
102  * Set the number of SPI instance max
103  * Intel EG20T PCH :            1ch
104  * OKI SEMICONDUCTOR ML7213 IOH :       2ch
105  * OKI SEMICONDUCTOR ML7223 IOH :       1ch
106 */
107 #define PCH_SPI_MAX_DEV                 2
108
109 #define PCH_BUF_SIZE            4096
110 #define PCH_DMA_TRANS_SIZE      12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115         struct dma_async_tx_descriptor  *desc_tx;
116         struct dma_async_tx_descriptor  *desc_rx;
117         struct pch_dma_slave            param_tx;
118         struct pch_dma_slave            param_rx;
119         struct dma_chan         *chan_tx;
120         struct dma_chan         *chan_rx;
121         struct scatterlist              *sg_tx_p;
122         struct scatterlist              *sg_rx_p;
123         struct scatterlist              sg_tx;
124         struct scatterlist              sg_rx;
125         int                             nent;
126         void                            *tx_buf_virt;
127         void                            *rx_buf_virt;
128         dma_addr_t                      tx_buf_dma;
129         dma_addr_t                      rx_buf_dma;
130 };
131 /**
132  * struct pch_spi_data - Holds the SPI channel specific details
133  * @io_remap_addr:              The remapped PCI base address
134  * @master:                     Pointer to the SPI master structure
135  * @work:                       Reference to work queue handler
136  * @wk:                         Workqueue for carrying out execution of the
137  *                              requests
138  * @wait:                       Wait queue for waking up upon receiving an
139  *                              interrupt.
140  * @transfer_complete:          Status of SPI Transfer
141  * @bcurrent_msg_processing:    Status flag for message processing
142  * @lock:                       Lock for protecting this structure
143  * @queue:                      SPI Message queue
144  * @status:                     Status of the SPI driver
145  * @bpw_len:                    Length of data to be transferred in bits per
146  *                              word
147  * @transfer_active:            Flag showing active transfer
148  * @tx_index:                   Transmit data count; for bookkeeping during
149  *                              transfer
150  * @rx_index:                   Receive data count; for bookkeeping during
151  *                              transfer
152  * @tx_buff:                    Buffer for data to be transmitted
153  * @rx_index:                   Buffer for Received data
154  * @n_curnt_chip:               The chip number that this SPI driver currently
155  *                              operates on
156  * @current_chip:               Reference to the current chip that this SPI
157  *                              driver currently operates on
158  * @current_msg:                The current message that this SPI driver is
159  *                              handling
160  * @cur_trans:                  The current transfer that this SPI driver is
161  *                              handling
162  * @board_dat:                  Reference to the SPI device data structure
163  * @plat_dev:                   platform_device structure
164  * @ch:                         SPI channel number
165  * @irq_reg_sts:                Status of IRQ registration
166  */
167 struct pch_spi_data {
168         void __iomem *io_remap_addr;
169         unsigned long io_base_addr;
170         struct spi_master *master;
171         struct work_struct work;
172         struct workqueue_struct *wk;
173         wait_queue_head_t wait;
174         u8 transfer_complete;
175         u8 bcurrent_msg_processing;
176         spinlock_t lock;
177         struct list_head queue;
178         u8 status;
179         u32 bpw_len;
180         u8 transfer_active;
181         u32 tx_index;
182         u32 rx_index;
183         u16 *pkt_tx_buff;
184         u16 *pkt_rx_buff;
185         u8 n_curnt_chip;
186         struct spi_device *current_chip;
187         struct spi_message *current_msg;
188         struct spi_transfer *cur_trans;
189         struct pch_spi_board_data *board_dat;
190         struct platform_device  *plat_dev;
191         int ch;
192         struct pch_spi_dma_ctrl dma;
193         int use_dma;
194         u8 irq_reg_sts;
195 };
196
197 /**
198  * struct pch_spi_board_data - Holds the SPI device specific details
199  * @pdev:               Pointer to the PCI device
200  * @suspend_sts:        Status of suspend
201  * @num:                The number of SPI device instance
202  */
203 struct pch_spi_board_data {
204         struct pci_dev *pdev;
205         u8 suspend_sts;
206         int num;
207 };
208
209 struct pch_pd_dev_save {
210         int num;
211         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
212         struct pch_spi_board_data *board_dat;
213 };
214
215 static struct pci_device_id pch_spi_pcidev_id[] = {
216         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
217         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
218         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
219         { }
220 };
221
222 /**
223  * pch_spi_writereg() - Performs  register writes
224  * @master:     Pointer to struct spi_master.
225  * @idx:        Register offset.
226  * @val:        Value to be written to register.
227  */
228 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
229 {
230         struct pch_spi_data *data = spi_master_get_devdata(master);
231         iowrite32(val, (data->io_remap_addr + idx));
232 }
233
234 /**
235  * pch_spi_readreg() - Performs register reads
236  * @master:     Pointer to struct spi_master.
237  * @idx:        Register offset.
238  */
239 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
240 {
241         struct pch_spi_data *data = spi_master_get_devdata(master);
242         return ioread32(data->io_remap_addr + idx);
243 }
244
245 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
246                                       u32 set, u32 clr)
247 {
248         u32 tmp = pch_spi_readreg(master, idx);
249         tmp = (tmp & ~clr) | set;
250         pch_spi_writereg(master, idx, tmp);
251 }
252
253 static void pch_spi_set_master_mode(struct spi_master *master)
254 {
255         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
256 }
257
258 /**
259  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
260  * @master:     Pointer to struct spi_master.
261  */
262 static void pch_spi_clear_fifo(struct spi_master *master)
263 {
264         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
265         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
266 }
267
268 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
269                                 void __iomem *io_remap_addr)
270 {
271         u32 n_read, tx_index, rx_index, bpw_len;
272         u16 *pkt_rx_buffer, *pkt_tx_buff;
273         int read_cnt;
274         u32 reg_spcr_val;
275         void __iomem *spsr;
276         void __iomem *spdrr;
277         void __iomem *spdwr;
278
279         spsr = io_remap_addr + PCH_SPSR;
280         iowrite32(reg_spsr_val, spsr);
281
282         if (data->transfer_active) {
283                 rx_index = data->rx_index;
284                 tx_index = data->tx_index;
285                 bpw_len = data->bpw_len;
286                 pkt_rx_buffer = data->pkt_rx_buff;
287                 pkt_tx_buff = data->pkt_tx_buff;
288
289                 spdrr = io_remap_addr + PCH_SPDRR;
290                 spdwr = io_remap_addr + PCH_SPDWR;
291
292                 n_read = PCH_READABLE(reg_spsr_val);
293
294                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
295                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
296                         if (tx_index < bpw_len)
297                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
298                 }
299
300                 /* disable RFI if not needed */
301                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
302                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
303                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
304
305                         /* reset rx threshold */
306                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
307                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
308
309                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
310                 }
311
312                 /* update counts */
313                 data->tx_index = tx_index;
314                 data->rx_index = rx_index;
315
316         }
317
318         /* if transfer complete interrupt */
319         if (reg_spsr_val & SPSR_FI_BIT) {
320                 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
321                         /* disable interrupts */
322                         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
323
324                         /* transfer is completed;
325                            inform pch_spi_process_messages */
326                         data->transfer_complete = true;
327                         data->transfer_active = false;
328                         wake_up(&data->wait);
329                 } else {
330                         dev_err(&data->master->dev,
331                                 "%s : Transfer is not completed", __func__);
332                 }
333         }
334 }
335
336 /**
337  * pch_spi_handler() - Interrupt handler
338  * @irq:        The interrupt number.
339  * @dev_id:     Pointer to struct pch_spi_board_data.
340  */
341 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
342 {
343         u32 reg_spsr_val;
344         void __iomem *spsr;
345         void __iomem *io_remap_addr;
346         irqreturn_t ret = IRQ_NONE;
347         struct pch_spi_data *data = dev_id;
348         struct pch_spi_board_data *board_dat = data->board_dat;
349
350         if (board_dat->suspend_sts) {
351                 dev_dbg(&board_dat->pdev->dev,
352                         "%s returning due to suspend\n", __func__);
353                 return IRQ_NONE;
354         }
355
356         io_remap_addr = data->io_remap_addr;
357         spsr = io_remap_addr + PCH_SPSR;
358
359         reg_spsr_val = ioread32(spsr);
360
361         if (reg_spsr_val & SPSR_ORF_BIT) {
362                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
363                 if (data->current_msg->complete != 0) {
364                         data->transfer_complete = true;
365                         data->current_msg->status = -EIO;
366                         data->current_msg->complete(data->current_msg->context);
367                         data->bcurrent_msg_processing = false;
368                         data->current_msg = NULL;
369                         data->cur_trans = NULL;
370                 }
371         }
372
373         if (data->use_dma)
374                 return IRQ_NONE;
375
376         /* Check if the interrupt is for SPI device */
377         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
378                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
379                 ret = IRQ_HANDLED;
380         }
381
382         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
383                 __func__, ret);
384
385         return ret;
386 }
387
388 /**
389  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
390  * @master:     Pointer to struct spi_master.
391  * @speed_hz:   Baud rate.
392  */
393 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
394 {
395         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
396
397         /* if baud rate is less than we can support limit it */
398         if (n_spbr > PCH_MAX_SPBR)
399                 n_spbr = PCH_MAX_SPBR;
400
401         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
402 }
403
404 /**
405  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
406  * @master:             Pointer to struct spi_master.
407  * @bits_per_word:      Bits per word for SPI transfer.
408  */
409 static void pch_spi_set_bits_per_word(struct spi_master *master,
410                                       u8 bits_per_word)
411 {
412         if (bits_per_word == 8)
413                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
414         else
415                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
416 }
417
418 /**
419  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
420  * @spi:        Pointer to struct spi_device.
421  */
422 static void pch_spi_setup_transfer(struct spi_device *spi)
423 {
424         u32 flags = 0;
425
426         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
427                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
428                 spi->max_speed_hz);
429         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
430
431         /* set bits per word */
432         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
433
434         if (!(spi->mode & SPI_LSB_FIRST))
435                 flags |= SPCR_LSBF_BIT;
436         if (spi->mode & SPI_CPOL)
437                 flags |= SPCR_CPOL_BIT;
438         if (spi->mode & SPI_CPHA)
439                 flags |= SPCR_CPHA_BIT;
440         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
441                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
442
443         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
444         pch_spi_clear_fifo(spi->master);
445 }
446
447 /**
448  * pch_spi_reset() - Clears SPI registers
449  * @master:     Pointer to struct spi_master.
450  */
451 static void pch_spi_reset(struct spi_master *master)
452 {
453         /* write 1 to reset SPI */
454         pch_spi_writereg(master, PCH_SRST, 0x1);
455
456         /* clear reset */
457         pch_spi_writereg(master, PCH_SRST, 0x0);
458 }
459
460 static int pch_spi_setup(struct spi_device *pspi)
461 {
462         /* check bits per word */
463         if (pspi->bits_per_word == 0) {
464                 pspi->bits_per_word = 8;
465                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
466         }
467
468         if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
469                 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
470                 return -EINVAL;
471         }
472
473         /* Check baud rate setting */
474         /* if baud rate of chip is greater than
475            max we can support,return error */
476         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
477                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
478
479         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
480                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
481
482         return 0;
483 }
484
485 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
486 {
487
488         struct spi_transfer *transfer;
489         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
490         int retval;
491         unsigned long flags;
492
493         /* validate spi message and baud rate */
494         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
495                 dev_err(&pspi->dev, "%s list empty\n", __func__);
496                 retval = -EINVAL;
497                 goto err_out;
498         }
499
500         if (unlikely(pspi->max_speed_hz == 0)) {
501                 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
502                         __func__, pspi->max_speed_hz);
503                 retval = -EINVAL;
504                 goto err_out;
505         }
506
507         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
508                 "Transfer Speed is set.\n", __func__);
509
510         spin_lock_irqsave(&data->lock, flags);
511         /* validate Tx/Rx buffers and Transfer length */
512         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
513                 if (!transfer->tx_buf && !transfer->rx_buf) {
514                         dev_err(&pspi->dev,
515                                 "%s Tx and Rx buffer NULL\n", __func__);
516                         retval = -EINVAL;
517                         goto err_return_spinlock;
518                 }
519
520                 if (!transfer->len) {
521                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
522                                 __func__);
523                         retval = -EINVAL;
524                         goto err_return_spinlock;
525                 }
526
527                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
528                         " valid\n", __func__);
529
530                 /* if baud rate has been specified validate the same */
531                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
532                         transfer->speed_hz = PCH_MAX_BAUDRATE;
533
534                 /* if bits per word has been specified validate the same */
535                 if (transfer->bits_per_word) {
536                         if ((transfer->bits_per_word != 8)
537                             && (transfer->bits_per_word != 16)) {
538                                 retval = -EINVAL;
539                                 dev_err(&pspi->dev,
540                                         "%s Invalid bits per word\n", __func__);
541                                 goto err_return_spinlock;
542                         }
543                 }
544         }
545         spin_unlock_irqrestore(&data->lock, flags);
546
547         /* We won't process any messages if we have been asked to terminate */
548         if (data->status == STATUS_EXITING) {
549                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
550                 retval = -ESHUTDOWN;
551                 goto err_out;
552         }
553
554         /* If suspended ,return -EINVAL */
555         if (data->board_dat->suspend_sts) {
556                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
557                 retval = -EINVAL;
558                 goto err_out;
559         }
560
561         /* set status of message */
562         pmsg->actual_length = 0;
563         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
564
565         pmsg->status = -EINPROGRESS;
566         spin_lock_irqsave(&data->lock, flags);
567         /* add message to queue */
568         list_add_tail(&pmsg->queue, &data->queue);
569         spin_unlock_irqrestore(&data->lock, flags);
570
571         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
572
573         /* schedule work queue to run */
574         queue_work(data->wk, &data->work);
575         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
576
577         retval = 0;
578
579 err_out:
580         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
581         return retval;
582 err_return_spinlock:
583         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
584         spin_unlock_irqrestore(&data->lock, flags);
585         return retval;
586 }
587
588 static inline void pch_spi_select_chip(struct pch_spi_data *data,
589                                        struct spi_device *pspi)
590 {
591         if (data->current_chip != NULL) {
592                 if (pspi->chip_select != data->n_curnt_chip) {
593                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
594                         data->current_chip = NULL;
595                 }
596         }
597
598         data->current_chip = pspi;
599
600         data->n_curnt_chip = data->current_chip->chip_select;
601
602         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
603         pch_spi_setup_transfer(pspi);
604 }
605
606 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
607 {
608         int size;
609         u32 n_writes;
610         int j;
611         struct spi_message *pmsg;
612         const u8 *tx_buf;
613         const u16 *tx_sbuf;
614
615         /* set baud rate if needed */
616         if (data->cur_trans->speed_hz) {
617                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
618                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
619         }
620
621         /* set bits per word if needed */
622         if (data->cur_trans->bits_per_word &&
623             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
624                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
625                 pch_spi_set_bits_per_word(data->master,
626                                           data->cur_trans->bits_per_word);
627                 *bpw = data->cur_trans->bits_per_word;
628         } else {
629                 *bpw = data->current_msg->spi->bits_per_word;
630         }
631
632         /* reset Tx/Rx index */
633         data->tx_index = 0;
634         data->rx_index = 0;
635
636         data->bpw_len = data->cur_trans->len / (*bpw / 8);
637
638         /* find alloc size */
639         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
640
641         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
642         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
643         if (data->pkt_tx_buff != NULL) {
644                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
645                 if (!data->pkt_rx_buff)
646                         kfree(data->pkt_tx_buff);
647         }
648
649         if (!data->pkt_rx_buff) {
650                 /* flush queue and set status of all transfers to -ENOMEM */
651                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
652                 list_for_each_entry(pmsg, data->queue.next, queue) {
653                         pmsg->status = -ENOMEM;
654
655                         if (pmsg->complete != 0)
656                                 pmsg->complete(pmsg->context);
657
658                         /* delete from queue */
659                         list_del_init(&pmsg->queue);
660                 }
661                 return;
662         }
663
664         /* copy Tx Data */
665         if (data->cur_trans->tx_buf != NULL) {
666                 if (*bpw == 8) {
667                         tx_buf = data->cur_trans->tx_buf;
668                         for (j = 0; j < data->bpw_len; j++)
669                                 data->pkt_tx_buff[j] = *tx_buf++;
670                 } else {
671                         tx_sbuf = data->cur_trans->tx_buf;
672                         for (j = 0; j < data->bpw_len; j++)
673                                 data->pkt_tx_buff[j] = *tx_sbuf++;
674                 }
675         }
676
677         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
678         n_writes = data->bpw_len;
679         if (n_writes > PCH_MAX_FIFO_DEPTH)
680                 n_writes = PCH_MAX_FIFO_DEPTH;
681
682         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
683                 "0x2 to SSNXCR\n", __func__);
684         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
685
686         for (j = 0; j < n_writes; j++)
687                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
688
689         /* update tx_index */
690         data->tx_index = j;
691
692         /* reset transfer complete flag */
693         data->transfer_complete = false;
694         data->transfer_active = true;
695 }
696
697 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
698 {
699         struct spi_message *pmsg;
700         dev_dbg(&data->master->dev, "%s called\n", __func__);
701         /* Invoke complete callback
702          * [To the spi core..indicating end of transfer] */
703         data->current_msg->status = 0;
704
705         if (data->current_msg->complete != 0) {
706                 dev_dbg(&data->master->dev,
707                         "%s:Invoking callback of SPI core\n", __func__);
708                 data->current_msg->complete(data->current_msg->context);
709         }
710
711         /* update status in global variable */
712         data->bcurrent_msg_processing = false;
713
714         dev_dbg(&data->master->dev,
715                 "%s:data->bcurrent_msg_processing = false\n", __func__);
716
717         data->current_msg = NULL;
718         data->cur_trans = NULL;
719
720         /* check if we have items in list and not suspending
721          * return 1 if list empty */
722         if ((list_empty(&data->queue) == 0) &&
723             (!data->board_dat->suspend_sts) &&
724             (data->status != STATUS_EXITING)) {
725                 /* We have some more work to do (either there is more tranint
726                  * bpw;sfer requests in the current message or there are
727                  *more messages)
728                  */
729                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
730                 queue_work(data->wk, &data->work);
731         } else if (data->board_dat->suspend_sts ||
732                    data->status == STATUS_EXITING) {
733                 dev_dbg(&data->master->dev,
734                         "%s suspend/remove initiated, flushing queue\n",
735                         __func__);
736                 list_for_each_entry(pmsg, data->queue.next, queue) {
737                         pmsg->status = -EIO;
738
739                         if (pmsg->complete)
740                                 pmsg->complete(pmsg->context);
741
742                         /* delete from queue */
743                         list_del_init(&pmsg->queue);
744                 }
745         }
746 }
747
748 static void pch_spi_set_ir(struct pch_spi_data *data)
749 {
750         /* enable interrupts, set threshold, enable SPI */
751         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
752                 /* set receive threshold to PCH_RX_THOLD */
753                 pch_spi_setclr_reg(data->master, PCH_SPCR,
754                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
755                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
756                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
757                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
758         else
759                 /* set receive threshold to maximum */
760                 pch_spi_setclr_reg(data->master, PCH_SPCR,
761                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
762                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
763                                    SPCR_SPE_BIT,
764                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
765
766         /* Wait until the transfer completes; go to sleep after
767                                  initiating the transfer. */
768         dev_dbg(&data->master->dev,
769                 "%s:waiting for transfer to get over\n", __func__);
770
771         wait_event_interruptible(data->wait, data->transfer_complete);
772
773         /* clear all interrupts */
774         pch_spi_writereg(data->master, PCH_SPSR,
775                          pch_spi_readreg(data->master, PCH_SPSR));
776         /* Disable interrupts and SPI transfer */
777         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
778         /* clear FIFO */
779         pch_spi_clear_fifo(data->master);
780 }
781
782 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
783 {
784         int j;
785         u8 *rx_buf;
786         u16 *rx_sbuf;
787
788         /* copy Rx Data */
789         if (!data->cur_trans->rx_buf)
790                 return;
791
792         if (bpw == 8) {
793                 rx_buf = data->cur_trans->rx_buf;
794                 for (j = 0; j < data->bpw_len; j++)
795                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
796         } else {
797                 rx_sbuf = data->cur_trans->rx_buf;
798                 for (j = 0; j < data->bpw_len; j++)
799                         *rx_sbuf++ = data->pkt_rx_buff[j];
800         }
801 }
802
803 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
804 {
805         int j;
806         u8 *rx_buf;
807         u16 *rx_sbuf;
808         const u8 *rx_dma_buf;
809         const u16 *rx_dma_sbuf;
810
811         /* copy Rx Data */
812         if (!data->cur_trans->rx_buf)
813                 return;
814
815         if (bpw == 8) {
816                 rx_buf = data->cur_trans->rx_buf;
817                 rx_dma_buf = data->dma.rx_buf_virt;
818                 for (j = 0; j < data->bpw_len; j++)
819                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
820         } else {
821                 rx_sbuf = data->cur_trans->rx_buf;
822                 rx_dma_sbuf = data->dma.rx_buf_virt;
823                 for (j = 0; j < data->bpw_len; j++)
824                         *rx_sbuf++ = *rx_dma_sbuf++;
825         }
826 }
827
828 static int pch_spi_start_transfer(struct pch_spi_data *data)
829 {
830         struct pch_spi_dma_ctrl *dma;
831         unsigned long flags;
832         int rtn;
833
834         dma = &data->dma;
835
836         spin_lock_irqsave(&data->lock, flags);
837
838         /* disable interrupts, SPI set enable */
839         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
840
841         spin_unlock_irqrestore(&data->lock, flags);
842
843         /* Wait until the transfer completes; go to sleep after
844                                  initiating the transfer. */
845         dev_dbg(&data->master->dev,
846                 "%s:waiting for transfer to get over\n", __func__);
847         rtn = wait_event_interruptible_timeout(data->wait,
848                                                data->transfer_complete,
849                                                msecs_to_jiffies(2 * HZ));
850
851         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
852                             DMA_FROM_DEVICE);
853
854         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
855                             DMA_FROM_DEVICE);
856         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
857
858         async_tx_ack(dma->desc_rx);
859         async_tx_ack(dma->desc_tx);
860         kfree(dma->sg_tx_p);
861         kfree(dma->sg_rx_p);
862
863         spin_lock_irqsave(&data->lock, flags);
864
865         /* clear fifo threshold, disable interrupts, disable SPI transfer */
866         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
867                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
868                            SPCR_SPE_BIT);
869         /* clear all interrupts */
870         pch_spi_writereg(data->master, PCH_SPSR,
871                          pch_spi_readreg(data->master, PCH_SPSR));
872         /* clear FIFO */
873         pch_spi_clear_fifo(data->master);
874
875         spin_unlock_irqrestore(&data->lock, flags);
876
877         return rtn;
878 }
879
880 static void pch_dma_rx_complete(void *arg)
881 {
882         struct pch_spi_data *data = arg;
883
884         /* transfer is completed;inform pch_spi_process_messages_dma */
885         data->transfer_complete = true;
886         wake_up_interruptible(&data->wait);
887 }
888
889 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
890 {
891         struct pch_dma_slave *param = slave;
892
893         if ((chan->chan_id == param->chan_id) &&
894             (param->dma_dev == chan->device->dev)) {
895                 chan->private = param;
896                 return true;
897         } else {
898                 return false;
899         }
900 }
901
902 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
903 {
904         dma_cap_mask_t mask;
905         struct dma_chan *chan;
906         struct pci_dev *dma_dev;
907         struct pch_dma_slave *param;
908         struct pch_spi_dma_ctrl *dma;
909         unsigned int width;
910
911         if (bpw == 8)
912                 width = PCH_DMA_WIDTH_1_BYTE;
913         else
914                 width = PCH_DMA_WIDTH_2_BYTES;
915
916         dma = &data->dma;
917         dma_cap_zero(mask);
918         dma_cap_set(DMA_SLAVE, mask);
919
920         /* Get DMA's dev information */
921         dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
922
923         /* Set Tx DMA */
924         param = &dma->param_tx;
925         param->dma_dev = &dma_dev->dev;
926         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
927         param->tx_reg = data->io_base_addr + PCH_SPDWR;
928         param->width = width;
929         chan = dma_request_channel(mask, pch_spi_filter, param);
930         if (!chan) {
931                 dev_err(&data->master->dev,
932                         "ERROR: dma_request_channel FAILS(Tx)\n");
933                 data->use_dma = 0;
934                 return;
935         }
936         dma->chan_tx = chan;
937
938         /* Set Rx DMA */
939         param = &dma->param_rx;
940         param->dma_dev = &dma_dev->dev;
941         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
942         param->rx_reg = data->io_base_addr + PCH_SPDRR;
943         param->width = width;
944         chan = dma_request_channel(mask, pch_spi_filter, param);
945         if (!chan) {
946                 dev_err(&data->master->dev,
947                         "ERROR: dma_request_channel FAILS(Rx)\n");
948                 dma_release_channel(dma->chan_tx);
949                 dma->chan_tx = NULL;
950                 data->use_dma = 0;
951                 return;
952         }
953         dma->chan_rx = chan;
954 }
955
956 static void pch_spi_release_dma(struct pch_spi_data *data)
957 {
958         struct pch_spi_dma_ctrl *dma;
959
960         dma = &data->dma;
961         if (dma->chan_tx) {
962                 dma_release_channel(dma->chan_tx);
963                 dma->chan_tx = NULL;
964         }
965         if (dma->chan_rx) {
966                 dma_release_channel(dma->chan_rx);
967                 dma->chan_rx = NULL;
968         }
969         return;
970 }
971
972 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
973 {
974         const u8 *tx_buf;
975         const u16 *tx_sbuf;
976         u8 *tx_dma_buf;
977         u16 *tx_dma_sbuf;
978         struct scatterlist *sg;
979         struct dma_async_tx_descriptor *desc_tx;
980         struct dma_async_tx_descriptor *desc_rx;
981         int num;
982         int i;
983         int size;
984         int rem;
985         unsigned long flags;
986         struct pch_spi_dma_ctrl *dma;
987
988         dma = &data->dma;
989
990         /* set baud rate if needed */
991         if (data->cur_trans->speed_hz) {
992                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
993                 spin_lock_irqsave(&data->lock, flags);
994                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
995                 spin_unlock_irqrestore(&data->lock, flags);
996         }
997
998         /* set bits per word if needed */
999         if (data->cur_trans->bits_per_word &&
1000             (data->current_msg->spi->bits_per_word !=
1001              data->cur_trans->bits_per_word)) {
1002                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
1003                 spin_lock_irqsave(&data->lock, flags);
1004                 pch_spi_set_bits_per_word(data->master,
1005                                           data->cur_trans->bits_per_word);
1006                 spin_unlock_irqrestore(&data->lock, flags);
1007                 *bpw = data->cur_trans->bits_per_word;
1008         } else {
1009                 *bpw = data->current_msg->spi->bits_per_word;
1010         }
1011         data->bpw_len = data->cur_trans->len / (*bpw / 8);
1012
1013         /* copy Tx Data */
1014         if (data->cur_trans->tx_buf != NULL) {
1015                 if (*bpw == 8) {
1016                         tx_buf = data->cur_trans->tx_buf;
1017                         tx_dma_buf = dma->tx_buf_virt;
1018                         for (i = 0; i < data->bpw_len; i++)
1019                                 *tx_dma_buf++ = *tx_buf++;
1020                 } else {
1021                         tx_sbuf = data->cur_trans->tx_buf;
1022                         tx_dma_sbuf = dma->tx_buf_virt;
1023                         for (i = 0; i < data->bpw_len; i++)
1024                                 *tx_dma_sbuf++ = *tx_sbuf++;
1025                 }
1026         }
1027         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1028                 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1029                 size = PCH_DMA_TRANS_SIZE;
1030                 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1031         } else {
1032                 num = 1;
1033                 size = data->bpw_len;
1034                 rem = data->bpw_len;
1035         }
1036         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1037                 __func__, num, size, rem);
1038         spin_lock_irqsave(&data->lock, flags);
1039
1040         /* set receive fifo threshold and transmit fifo threshold */
1041         pch_spi_setclr_reg(data->master, PCH_SPCR,
1042                            ((size - 1) << SPCR_RFIC_FIELD) |
1043                            ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
1044                             SPCR_TFIC_FIELD),
1045                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1046
1047         spin_unlock_irqrestore(&data->lock, flags);
1048
1049         /* RX */
1050         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1051         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1052         /* offset, length setting */
1053         sg = dma->sg_rx_p;
1054         for (i = 0; i < num; i++, sg++) {
1055                 if (i == 0) {
1056                         sg->offset = 0;
1057                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1058                                     sg->offset);
1059                         sg_dma_len(sg) = rem;
1060                 } else {
1061                         sg->offset = rem + size * (i - 1);
1062                         sg->offset = sg->offset * (*bpw / 8);
1063                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1064                                     sg->offset);
1065                         sg_dma_len(sg) = size;
1066                 }
1067                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1068         }
1069         sg = dma->sg_rx_p;
1070         desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1071                                         num, DMA_FROM_DEVICE,
1072                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1073         if (!desc_rx) {
1074                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1075                         __func__);
1076                 return;
1077         }
1078         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1079         desc_rx->callback = pch_dma_rx_complete;
1080         desc_rx->callback_param = data;
1081         dma->nent = num;
1082         dma->desc_rx = desc_rx;
1083
1084         /* TX */
1085         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1086         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1087         /* offset, length setting */
1088         sg = dma->sg_tx_p;
1089         for (i = 0; i < num; i++, sg++) {
1090                 if (i == 0) {
1091                         sg->offset = 0;
1092                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1093                                     sg->offset);
1094                         sg_dma_len(sg) = rem;
1095                 } else {
1096                         sg->offset = rem + size * (i - 1);
1097                         sg->offset = sg->offset * (*bpw / 8);
1098                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1099                                     sg->offset);
1100                         sg_dma_len(sg) = size;
1101                 }
1102                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1103         }
1104         sg = dma->sg_tx_p;
1105         desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1106                                         sg, num, DMA_TO_DEVICE,
1107                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1108         if (!desc_tx) {
1109                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1110                         __func__);
1111                 return;
1112         }
1113         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1114         desc_tx->callback = NULL;
1115         desc_tx->callback_param = data;
1116         dma->nent = num;
1117         dma->desc_tx = desc_tx;
1118
1119         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1120                 "0x2 to SSNXCR\n", __func__);
1121
1122         spin_lock_irqsave(&data->lock, flags);
1123         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1124         desc_rx->tx_submit(desc_rx);
1125         desc_tx->tx_submit(desc_tx);
1126         spin_unlock_irqrestore(&data->lock, flags);
1127
1128         /* reset transfer complete flag */
1129         data->transfer_complete = false;
1130 }
1131
1132 static void pch_spi_process_messages(struct work_struct *pwork)
1133 {
1134         struct spi_message *pmsg;
1135         struct pch_spi_data *data;
1136         int bpw;
1137
1138         data = container_of(pwork, struct pch_spi_data, work);
1139         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1140
1141         spin_lock(&data->lock);
1142         /* check if suspend has been initiated;if yes flush queue */
1143         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1144                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1145                         "flushing queue\n", __func__);
1146                 list_for_each_entry(pmsg, data->queue.next, queue) {
1147                         pmsg->status = -EIO;
1148
1149                         if (pmsg->complete != 0) {
1150                                 spin_unlock(&data->lock);
1151                                 pmsg->complete(pmsg->context);
1152                                 spin_lock(&data->lock);
1153                         }
1154
1155                         /* delete from queue */
1156                         list_del_init(&pmsg->queue);
1157                 }
1158
1159                 spin_unlock(&data->lock);
1160                 return;
1161         }
1162
1163         data->bcurrent_msg_processing = true;
1164         dev_dbg(&data->master->dev,
1165                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1166
1167         /* Get the message from the queue and delete it from there. */
1168         data->current_msg = list_entry(data->queue.next, struct spi_message,
1169                                         queue);
1170
1171         list_del_init(&data->current_msg->queue);
1172
1173         data->current_msg->status = 0;
1174
1175         pch_spi_select_chip(data, data->current_msg->spi);
1176
1177         spin_unlock(&data->lock);
1178
1179         if (data->use_dma)
1180                 pch_spi_request_dma(data,
1181                                     data->current_msg->spi->bits_per_word);
1182         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1183         do {
1184                 /* If we are already processing a message get the next
1185                 transfer structure from the message otherwise retrieve
1186                 the 1st transfer request from the message. */
1187                 spin_lock(&data->lock);
1188                 if (data->cur_trans == NULL) {
1189                         data->cur_trans =
1190                                 list_entry(data->current_msg->transfers.next,
1191                                            struct spi_transfer, transfer_list);
1192                         dev_dbg(&data->master->dev, "%s "
1193                                 ":Getting 1st transfer message\n", __func__);
1194                 } else {
1195                         data->cur_trans =
1196                                 list_entry(data->cur_trans->transfer_list.next,
1197                                            struct spi_transfer, transfer_list);
1198                         dev_dbg(&data->master->dev, "%s "
1199                                 ":Getting next transfer message\n", __func__);
1200                 }
1201                 spin_unlock(&data->lock);
1202
1203                 if (data->use_dma) {
1204                         pch_spi_handle_dma(data, &bpw);
1205                         if (!pch_spi_start_transfer(data))
1206                                 goto out;
1207                         pch_spi_copy_rx_data_for_dma(data, bpw);
1208                 } else {
1209                         pch_spi_set_tx(data, &bpw);
1210                         pch_spi_set_ir(data);
1211                         pch_spi_copy_rx_data(data, bpw);
1212                         kfree(data->pkt_rx_buff);
1213                         data->pkt_rx_buff = NULL;
1214                         kfree(data->pkt_tx_buff);
1215                         data->pkt_tx_buff = NULL;
1216                 }
1217                 /* increment message count */
1218                 data->current_msg->actual_length += data->cur_trans->len;
1219
1220                 dev_dbg(&data->master->dev,
1221                         "%s:data->current_msg->actual_length=%d\n",
1222                         __func__, data->current_msg->actual_length);
1223
1224                 /* check for delay */
1225                 if (data->cur_trans->delay_usecs) {
1226                         dev_dbg(&data->master->dev, "%s:"
1227                                 "delay in usec=%d\n", __func__,
1228                                 data->cur_trans->delay_usecs);
1229                         udelay(data->cur_trans->delay_usecs);
1230                 }
1231
1232                 spin_lock(&data->lock);
1233
1234                 /* No more transfer in this message. */
1235                 if ((data->cur_trans->transfer_list.next) ==
1236                     &(data->current_msg->transfers)) {
1237                         pch_spi_nomore_transfer(data);
1238                 }
1239
1240                 spin_unlock(&data->lock);
1241
1242         } while (data->cur_trans != NULL);
1243
1244 out:
1245         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1246         if (data->use_dma)
1247                 pch_spi_release_dma(data);
1248 }
1249
1250 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1251                                    struct pch_spi_data *data)
1252 {
1253         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1254
1255         /* free workqueue */
1256         if (data->wk != NULL) {
1257                 destroy_workqueue(data->wk);
1258                 data->wk = NULL;
1259                 dev_dbg(&board_dat->pdev->dev,
1260                         "%s destroy_workqueue invoked successfully\n",
1261                         __func__);
1262         }
1263 }
1264
1265 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1266                                  struct pch_spi_data *data)
1267 {
1268         int retval = 0;
1269
1270         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1271
1272         /* create workqueue */
1273         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1274         if (!data->wk) {
1275                 dev_err(&board_dat->pdev->dev,
1276                         "%s create_singlet hread_workqueue failed\n", __func__);
1277                 retval = -EBUSY;
1278                 goto err_return;
1279         }
1280
1281         /* reset PCH SPI h/w */
1282         pch_spi_reset(data->master);
1283         dev_dbg(&board_dat->pdev->dev,
1284                 "%s pch_spi_reset invoked successfully\n", __func__);
1285
1286         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1287
1288 err_return:
1289         if (retval != 0) {
1290                 dev_err(&board_dat->pdev->dev,
1291                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1292                 pch_spi_free_resources(board_dat, data);
1293         }
1294
1295         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1296
1297         return retval;
1298 }
1299
1300 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1301                              struct pch_spi_data *data)
1302 {
1303         struct pch_spi_dma_ctrl *dma;
1304
1305         dma = &data->dma;
1306         if (dma->tx_buf_dma)
1307                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1308                                   dma->tx_buf_virt, dma->tx_buf_dma);
1309         if (dma->rx_buf_dma)
1310                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1311                                   dma->rx_buf_virt, dma->rx_buf_dma);
1312         return;
1313 }
1314
1315 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1316                               struct pch_spi_data *data)
1317 {
1318         struct pch_spi_dma_ctrl *dma;
1319
1320         dma = &data->dma;
1321         /* Get Consistent memory for Tx DMA */
1322         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1323                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1324         /* Get Consistent memory for Rx DMA */
1325         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1326                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1327 }
1328
1329 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1330 {
1331         int ret;
1332         struct spi_master *master;
1333         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1334         struct pch_spi_data *data;
1335
1336         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1337
1338         master = spi_alloc_master(&board_dat->pdev->dev,
1339                                   sizeof(struct pch_spi_data));
1340         if (!master) {
1341                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1342                         plat_dev->id);
1343                 return -ENOMEM;
1344         }
1345
1346         data = spi_master_get_devdata(master);
1347         data->master = master;
1348
1349         platform_set_drvdata(plat_dev, data);
1350
1351         /* baseaddress + address offset) */
1352         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1353                                          PCH_ADDRESS_SIZE * plat_dev->id;
1354         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1355                                          PCH_ADDRESS_SIZE * plat_dev->id;
1356         if (!data->io_remap_addr) {
1357                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1358                 ret = -ENOMEM;
1359                 goto err_pci_iomap;
1360         }
1361
1362         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1363                 plat_dev->id, data->io_remap_addr);
1364
1365         /* initialize members of SPI master */
1366         master->bus_num = -1;
1367         master->num_chipselect = PCH_MAX_CS;
1368         master->setup = pch_spi_setup;
1369         master->transfer = pch_spi_transfer;
1370
1371         data->board_dat = board_dat;
1372         data->plat_dev = plat_dev;
1373         data->n_curnt_chip = 255;
1374         data->status = STATUS_RUNNING;
1375         data->ch = plat_dev->id;
1376         data->use_dma = use_dma;
1377
1378         INIT_LIST_HEAD(&data->queue);
1379         spin_lock_init(&data->lock);
1380         INIT_WORK(&data->work, pch_spi_process_messages);
1381         init_waitqueue_head(&data->wait);
1382
1383         ret = pch_spi_get_resources(board_dat, data);
1384         if (ret) {
1385                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1386                 goto err_spi_get_resources;
1387         }
1388
1389         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1390                           IRQF_SHARED, KBUILD_MODNAME, data);
1391         if (ret) {
1392                 dev_err(&plat_dev->dev,
1393                         "%s request_irq failed\n", __func__);
1394                 goto err_request_irq;
1395         }
1396         data->irq_reg_sts = true;
1397
1398         pch_spi_set_master_mode(master);
1399
1400         ret = spi_register_master(master);
1401         if (ret != 0) {
1402                 dev_err(&plat_dev->dev,
1403                         "%s spi_register_master FAILED\n", __func__);
1404                 goto err_spi_register_master;
1405         }
1406
1407         if (use_dma) {
1408                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1409                 pch_alloc_dma_buf(board_dat, data);
1410         }
1411
1412         return 0;
1413
1414 err_spi_register_master:
1415         free_irq(board_dat->pdev->irq, board_dat);
1416 err_request_irq:
1417         pch_spi_free_resources(board_dat, data);
1418 err_spi_get_resources:
1419         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1420 err_pci_iomap:
1421         spi_master_put(master);
1422
1423         return ret;
1424 }
1425
1426 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1427 {
1428         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1429         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1430         int count;
1431         unsigned long flags;
1432
1433         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1434                 __func__, plat_dev->id, board_dat->pdev->irq);
1435
1436         if (use_dma)
1437                 pch_free_dma_buf(board_dat, data);
1438
1439         /* check for any pending messages; no action is taken if the queue
1440          * is still full; but at least we tried.  Unload anyway */
1441         count = 500;
1442         spin_lock_irqsave(&data->lock, flags);
1443         data->status = STATUS_EXITING;
1444         while ((list_empty(&data->queue) == 0) && --count) {
1445                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1446                         __func__);
1447                 spin_unlock_irqrestore(&data->lock, flags);
1448                 msleep(PCH_SLEEP_TIME);
1449                 spin_lock_irqsave(&data->lock, flags);
1450         }
1451         spin_unlock_irqrestore(&data->lock, flags);
1452
1453         pch_spi_free_resources(board_dat, data);
1454         /* disable interrupts & free IRQ */
1455         if (data->irq_reg_sts) {
1456                 /* disable interrupts */
1457                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1458                 data->irq_reg_sts = false;
1459                 free_irq(board_dat->pdev->irq, data);
1460         }
1461
1462         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1463         spi_unregister_master(data->master);
1464         spi_master_put(data->master);
1465         platform_set_drvdata(plat_dev, NULL);
1466
1467         return 0;
1468 }
1469 #ifdef CONFIG_PM
1470 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1471                               pm_message_t state)
1472 {
1473         u8 count;
1474         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1475         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1476
1477         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1478
1479         if (!board_dat) {
1480                 dev_err(&pd_dev->dev,
1481                         "%s pci_get_drvdata returned NULL\n", __func__);
1482                 return -EFAULT;
1483         }
1484
1485         /* check if the current message is processed:
1486            Only after thats done the transfer will be suspended */
1487         count = 255;
1488         while ((--count) > 0) {
1489                 if (!(data->bcurrent_msg_processing))
1490                         break;
1491                 msleep(PCH_SLEEP_TIME);
1492         }
1493
1494         /* Free IRQ */
1495         if (data->irq_reg_sts) {
1496                 /* disable all interrupts */
1497                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1498                 pch_spi_reset(data->master);
1499                 free_irq(board_dat->pdev->irq, data);
1500
1501                 data->irq_reg_sts = false;
1502                 dev_dbg(&pd_dev->dev,
1503                         "%s free_irq invoked successfully.\n", __func__);
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1510 {
1511         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1512         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1513         int retval;
1514
1515         if (!board_dat) {
1516                 dev_err(&pd_dev->dev,
1517                         "%s pci_get_drvdata returned NULL\n", __func__);
1518                 return -EFAULT;
1519         }
1520
1521         if (!data->irq_reg_sts) {
1522                 /* register IRQ */
1523                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1524                                      IRQF_SHARED, KBUILD_MODNAME, data);
1525                 if (retval < 0) {
1526                         dev_err(&pd_dev->dev,
1527                                 "%s request_irq failed\n", __func__);
1528                         return retval;
1529                 }
1530
1531                 /* reset PCH SPI h/w */
1532                 pch_spi_reset(data->master);
1533                 pch_spi_set_master_mode(data->master);
1534                 data->irq_reg_sts = true;
1535         }
1536         return 0;
1537 }
1538 #else
1539 #define pch_spi_pd_suspend NULL
1540 #define pch_spi_pd_resume NULL
1541 #endif
1542
1543 static struct platform_driver pch_spi_pd_driver = {
1544         .driver = {
1545                 .name = "pch-spi",
1546                 .owner = THIS_MODULE,
1547         },
1548         .probe = pch_spi_pd_probe,
1549         .remove = __devexit_p(pch_spi_pd_remove),
1550         .suspend = pch_spi_pd_suspend,
1551         .resume = pch_spi_pd_resume
1552 };
1553
1554 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1555                                    const struct pci_device_id *id)
1556 {
1557         struct pch_spi_board_data *board_dat;
1558         struct platform_device *pd_dev = NULL;
1559         int retval;
1560         int i;
1561         struct pch_pd_dev_save *pd_dev_save;
1562
1563         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1564         if (!pd_dev_save) {
1565                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1566                 return -ENOMEM;
1567         }
1568
1569         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1570         if (!board_dat) {
1571                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1572                 retval = -ENOMEM;
1573                 goto err_no_mem;
1574         }
1575
1576         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1577         if (retval) {
1578                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1579                 goto pci_request_regions;
1580         }
1581
1582         board_dat->pdev = pdev;
1583         board_dat->num = id->driver_data;
1584         pd_dev_save->num = id->driver_data;
1585         pd_dev_save->board_dat = board_dat;
1586
1587         retval = pci_enable_device(pdev);
1588         if (retval) {
1589                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1590                 goto pci_enable_device;
1591         }
1592
1593         for (i = 0; i < board_dat->num; i++) {
1594                 pd_dev = platform_device_alloc("pch-spi", i);
1595                 if (!pd_dev) {
1596                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1597                         goto err_platform_device;
1598                 }
1599                 pd_dev_save->pd_save[i] = pd_dev;
1600                 pd_dev->dev.parent = &pdev->dev;
1601
1602                 retval = platform_device_add_data(pd_dev, board_dat,
1603                                                   sizeof(*board_dat));
1604                 if (retval) {
1605                         dev_err(&pdev->dev,
1606                                 "platform_device_add_data failed\n");
1607                         platform_device_put(pd_dev);
1608                         goto err_platform_device;
1609                 }
1610
1611                 retval = platform_device_add(pd_dev);
1612                 if (retval) {
1613                         dev_err(&pdev->dev, "platform_device_add failed\n");
1614                         platform_device_put(pd_dev);
1615                         goto err_platform_device;
1616                 }
1617         }
1618
1619         pci_set_drvdata(pdev, pd_dev_save);
1620
1621         return 0;
1622
1623 err_platform_device:
1624         pci_disable_device(pdev);
1625 pci_enable_device:
1626         pci_release_regions(pdev);
1627 pci_request_regions:
1628         kfree(board_dat);
1629 err_no_mem:
1630         kfree(pd_dev_save);
1631
1632         return retval;
1633 }
1634
1635 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1636 {
1637         int i;
1638         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1639
1640         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1641
1642         for (i = 0; i < pd_dev_save->num; i++)
1643                 platform_device_unregister(pd_dev_save->pd_save[i]);
1644
1645         pci_disable_device(pdev);
1646         pci_release_regions(pdev);
1647         kfree(pd_dev_save->board_dat);
1648         kfree(pd_dev_save);
1649 }
1650
1651 #ifdef CONFIG_PM
1652 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1653 {
1654         int retval;
1655         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1656
1657         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1658
1659         pd_dev_save->board_dat->suspend_sts = true;
1660
1661         /* save config space */
1662         retval = pci_save_state(pdev);
1663         if (retval == 0) {
1664                 pci_enable_wake(pdev, PCI_D3hot, 0);
1665                 pci_disable_device(pdev);
1666                 pci_set_power_state(pdev, PCI_D3hot);
1667         } else {
1668                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1669         }
1670
1671         return retval;
1672 }
1673
1674 static int pch_spi_resume(struct pci_dev *pdev)
1675 {
1676         int retval;
1677         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1678         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1679
1680         pci_set_power_state(pdev, PCI_D0);
1681         pci_restore_state(pdev);
1682
1683         retval = pci_enable_device(pdev);
1684         if (retval < 0) {
1685                 dev_err(&pdev->dev,
1686                         "%s pci_enable_device failed\n", __func__);
1687         } else {
1688                 pci_enable_wake(pdev, PCI_D3hot, 0);
1689
1690                 /* set suspend status to false */
1691                 pd_dev_save->board_dat->suspend_sts = false;
1692         }
1693
1694         return retval;
1695 }
1696 #else
1697 #define pch_spi_suspend NULL
1698 #define pch_spi_resume NULL
1699
1700 #endif
1701
1702 static struct pci_driver pch_spi_pcidev = {
1703         .name = "pch_spi",
1704         .id_table = pch_spi_pcidev_id,
1705         .probe = pch_spi_probe,
1706         .remove = pch_spi_remove,
1707         .suspend = pch_spi_suspend,
1708         .resume = pch_spi_resume,
1709 };
1710
1711 static int __init pch_spi_init(void)
1712 {
1713         int ret;
1714         ret = platform_driver_register(&pch_spi_pd_driver);
1715         if (ret)
1716                 return ret;
1717
1718         ret = pci_register_driver(&pch_spi_pcidev);
1719         if (ret)
1720                 return ret;
1721
1722         return 0;
1723 }
1724 module_init(pch_spi_init);
1725
1726 static void __exit pch_spi_exit(void)
1727 {
1728         pci_unregister_driver(&pch_spi_pcidev);
1729         platform_driver_unregister(&pch_spi_pd_driver);
1730 }
1731 module_exit(pch_spi_exit);
1732
1733 module_param(use_dma, int, 0644);
1734 MODULE_PARM_DESC(use_dma,
1735                  "to use DMA for data transfers pass 1 else 0; default 1");
1736
1737 MODULE_LICENSE("GPL");
1738 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");