Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[pandora-kernel.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22
23 #include <asm/io.h>
24 #include <mach/board.h>
25 #include <asm/gpio.h>
26 #include <mach/cpu.h>
27
28 /* SPI register offsets */
29 #define SPI_CR                                  0x0000
30 #define SPI_MR                                  0x0004
31 #define SPI_RDR                                 0x0008
32 #define SPI_TDR                                 0x000c
33 #define SPI_SR                                  0x0010
34 #define SPI_IER                                 0x0014
35 #define SPI_IDR                                 0x0018
36 #define SPI_IMR                                 0x001c
37 #define SPI_CSR0                                0x0030
38 #define SPI_CSR1                                0x0034
39 #define SPI_CSR2                                0x0038
40 #define SPI_CSR3                                0x003c
41 #define SPI_RPR                                 0x0100
42 #define SPI_RCR                                 0x0104
43 #define SPI_TPR                                 0x0108
44 #define SPI_TCR                                 0x010c
45 #define SPI_RNPR                                0x0110
46 #define SPI_RNCR                                0x0114
47 #define SPI_TNPR                                0x0118
48 #define SPI_TNCR                                0x011c
49 #define SPI_PTCR                                0x0120
50 #define SPI_PTSR                                0x0124
51
52 /* Bitfields in CR */
53 #define SPI_SPIEN_OFFSET                        0
54 #define SPI_SPIEN_SIZE                          1
55 #define SPI_SPIDIS_OFFSET                       1
56 #define SPI_SPIDIS_SIZE                         1
57 #define SPI_SWRST_OFFSET                        7
58 #define SPI_SWRST_SIZE                          1
59 #define SPI_LASTXFER_OFFSET                     24
60 #define SPI_LASTXFER_SIZE                       1
61
62 /* Bitfields in MR */
63 #define SPI_MSTR_OFFSET                         0
64 #define SPI_MSTR_SIZE                           1
65 #define SPI_PS_OFFSET                           1
66 #define SPI_PS_SIZE                             1
67 #define SPI_PCSDEC_OFFSET                       2
68 #define SPI_PCSDEC_SIZE                         1
69 #define SPI_FDIV_OFFSET                         3
70 #define SPI_FDIV_SIZE                           1
71 #define SPI_MODFDIS_OFFSET                      4
72 #define SPI_MODFDIS_SIZE                        1
73 #define SPI_LLB_OFFSET                          7
74 #define SPI_LLB_SIZE                            1
75 #define SPI_PCS_OFFSET                          16
76 #define SPI_PCS_SIZE                            4
77 #define SPI_DLYBCS_OFFSET                       24
78 #define SPI_DLYBCS_SIZE                         8
79
80 /* Bitfields in RDR */
81 #define SPI_RD_OFFSET                           0
82 #define SPI_RD_SIZE                             16
83
84 /* Bitfields in TDR */
85 #define SPI_TD_OFFSET                           0
86 #define SPI_TD_SIZE                             16
87
88 /* Bitfields in SR */
89 #define SPI_RDRF_OFFSET                         0
90 #define SPI_RDRF_SIZE                           1
91 #define SPI_TDRE_OFFSET                         1
92 #define SPI_TDRE_SIZE                           1
93 #define SPI_MODF_OFFSET                         2
94 #define SPI_MODF_SIZE                           1
95 #define SPI_OVRES_OFFSET                        3
96 #define SPI_OVRES_SIZE                          1
97 #define SPI_ENDRX_OFFSET                        4
98 #define SPI_ENDRX_SIZE                          1
99 #define SPI_ENDTX_OFFSET                        5
100 #define SPI_ENDTX_SIZE                          1
101 #define SPI_RXBUFF_OFFSET                       6
102 #define SPI_RXBUFF_SIZE                         1
103 #define SPI_TXBUFE_OFFSET                       7
104 #define SPI_TXBUFE_SIZE                         1
105 #define SPI_NSSR_OFFSET                         8
106 #define SPI_NSSR_SIZE                           1
107 #define SPI_TXEMPTY_OFFSET                      9
108 #define SPI_TXEMPTY_SIZE                        1
109 #define SPI_SPIENS_OFFSET                       16
110 #define SPI_SPIENS_SIZE                         1
111
112 /* Bitfields in CSR0 */
113 #define SPI_CPOL_OFFSET                         0
114 #define SPI_CPOL_SIZE                           1
115 #define SPI_NCPHA_OFFSET                        1
116 #define SPI_NCPHA_SIZE                          1
117 #define SPI_CSAAT_OFFSET                        3
118 #define SPI_CSAAT_SIZE                          1
119 #define SPI_BITS_OFFSET                         4
120 #define SPI_BITS_SIZE                           4
121 #define SPI_SCBR_OFFSET                         8
122 #define SPI_SCBR_SIZE                           8
123 #define SPI_DLYBS_OFFSET                        16
124 #define SPI_DLYBS_SIZE                          8
125 #define SPI_DLYBCT_OFFSET                       24
126 #define SPI_DLYBCT_SIZE                         8
127
128 /* Bitfields in RCR */
129 #define SPI_RXCTR_OFFSET                        0
130 #define SPI_RXCTR_SIZE                          16
131
132 /* Bitfields in TCR */
133 #define SPI_TXCTR_OFFSET                        0
134 #define SPI_TXCTR_SIZE                          16
135
136 /* Bitfields in RNCR */
137 #define SPI_RXNCR_OFFSET                        0
138 #define SPI_RXNCR_SIZE                          16
139
140 /* Bitfields in TNCR */
141 #define SPI_TXNCR_OFFSET                        0
142 #define SPI_TXNCR_SIZE                          16
143
144 /* Bitfields in PTCR */
145 #define SPI_RXTEN_OFFSET                        0
146 #define SPI_RXTEN_SIZE                          1
147 #define SPI_RXTDIS_OFFSET                       1
148 #define SPI_RXTDIS_SIZE                         1
149 #define SPI_TXTEN_OFFSET                        8
150 #define SPI_TXTEN_SIZE                          1
151 #define SPI_TXTDIS_OFFSET                       9
152 #define SPI_TXTDIS_SIZE                         1
153
154 /* Constants for BITS */
155 #define SPI_BITS_8_BPT                          0
156 #define SPI_BITS_9_BPT                          1
157 #define SPI_BITS_10_BPT                         2
158 #define SPI_BITS_11_BPT                         3
159 #define SPI_BITS_12_BPT                         4
160 #define SPI_BITS_13_BPT                         5
161 #define SPI_BITS_14_BPT                         6
162 #define SPI_BITS_15_BPT                         7
163 #define SPI_BITS_16_BPT                         8
164
165 /* Bit manipulation macros */
166 #define SPI_BIT(name) \
167         (1 << SPI_##name##_OFFSET)
168 #define SPI_BF(name,value) \
169         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
170 #define SPI_BFEXT(name,value) \
171         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
172 #define SPI_BFINS(name,value,old) \
173         ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
174           | SPI_BF(name,value))
175
176 /* Register access macros */
177 #define spi_readl(port,reg) \
178         __raw_readl((port)->regs + SPI_##reg)
179 #define spi_writel(port,reg,value) \
180         __raw_writel((value), (port)->regs + SPI_##reg)
181
182
183 /*
184  * The core SPI transfer engine just talks to a register bank to set up
185  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
186  * framework provides the base clock, subdivided for each spi_device.
187  */
188 struct atmel_spi {
189         spinlock_t              lock;
190
191         void __iomem            *regs;
192         int                     irq;
193         struct clk              *clk;
194         struct platform_device  *pdev;
195         struct spi_device       *stay;
196
197         u8                      stopping;
198         struct list_head        queue;
199         struct spi_transfer     *current_transfer;
200         unsigned long           current_remaining_bytes;
201         struct spi_transfer     *next_transfer;
202         unsigned long           next_remaining_bytes;
203
204         void                    *buffer;
205         dma_addr_t              buffer_dma;
206 };
207
208 /* Controller-specific per-slave state */
209 struct atmel_spi_device {
210         unsigned int            npcs_pin;
211         u32                     csr;
212 };
213
214 #define BUFFER_SIZE             PAGE_SIZE
215 #define INVALID_DMA_ADDRESS     0xffffffff
216
217 /*
218  * Version 2 of the SPI controller has
219  *  - CR.LASTXFER
220  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
221  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
222  *  - SPI_CSRx.CSAAT
223  *  - SPI_CSRx.SBCR allows faster clocking
224  *
225  * We can determine the controller version by reading the VERSION
226  * register, but I haven't checked that it exists on all chips, and
227  * this is cheaper anyway.
228  */
229 static bool atmel_spi_is_v2(void)
230 {
231         return !cpu_is_at91rm9200();
232 }
233
234 /*
235  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
236  * they assume that spi slave device state will not change on deselect, so
237  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
238  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
239  * controllers have CSAAT and friends.
240  *
241  * Since the CSAAT functionality is a bit weird on newer controllers as
242  * well, we use GPIO to control nCSx pins on all controllers, updating
243  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
244  * support active-high chipselects despite the controller's belief that
245  * only active-low devices/systems exists.
246  *
247  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
248  * right when driven with GPIO.  ("Mode Fault does not allow more than one
249  * Master on Chip Select 0.")  No workaround exists for that ... so for
250  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
251  * and (c) will trigger that first erratum in some cases.
252  *
253  * TODO: Test if the atmel_spi_is_v2() branch below works on
254  * AT91RM9200 if we use some other register than CSR0. However, don't
255  * do this unconditionally since AP7000 has an errata where the BITS
256  * field in CSR0 overrides all other CSRs.
257  */
258
259 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
260 {
261         struct atmel_spi_device *asd = spi->controller_state;
262         unsigned active = spi->mode & SPI_CS_HIGH;
263         u32 mr;
264
265         if (atmel_spi_is_v2()) {
266                 /*
267                  * Always use CSR0. This ensures that the clock
268                  * switches to the correct idle polarity before we
269                  * toggle the CS.
270                  */
271                 spi_writel(as, CSR0, asd->csr);
272                 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
273                                 | SPI_BIT(MSTR));
274                 mr = spi_readl(as, MR);
275                 gpio_set_value(asd->npcs_pin, active);
276         } else {
277                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
278                 int i;
279                 u32 csr;
280
281                 /* Make sure clock polarity is correct */
282                 for (i = 0; i < spi->master->num_chipselect; i++) {
283                         csr = spi_readl(as, CSR0 + 4 * i);
284                         if ((csr ^ cpol) & SPI_BIT(CPOL))
285                                 spi_writel(as, CSR0 + 4 * i,
286                                                 csr ^ SPI_BIT(CPOL));
287                 }
288
289                 mr = spi_readl(as, MR);
290                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
291                 if (spi->chip_select != 0)
292                         gpio_set_value(asd->npcs_pin, active);
293                 spi_writel(as, MR, mr);
294         }
295
296         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
297                         asd->npcs_pin, active ? " (high)" : "",
298                         mr);
299 }
300
301 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
302 {
303         struct atmel_spi_device *asd = spi->controller_state;
304         unsigned active = spi->mode & SPI_CS_HIGH;
305         u32 mr;
306
307         /* only deactivate *this* device; sometimes transfers to
308          * another device may be active when this routine is called.
309          */
310         mr = spi_readl(as, MR);
311         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
312                 mr = SPI_BFINS(PCS, 0xf, mr);
313                 spi_writel(as, MR, mr);
314         }
315
316         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
317                         asd->npcs_pin, active ? " (low)" : "",
318                         mr);
319
320         if (atmel_spi_is_v2() || spi->chip_select != 0)
321                 gpio_set_value(asd->npcs_pin, !active);
322 }
323
324 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
325                                         struct spi_transfer *xfer)
326 {
327         return msg->transfers.prev == &xfer->transfer_list;
328 }
329
330 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
331 {
332         return xfer->delay_usecs == 0 && !xfer->cs_change;
333 }
334
335 static void atmel_spi_next_xfer_data(struct spi_master *master,
336                                 struct spi_transfer *xfer,
337                                 dma_addr_t *tx_dma,
338                                 dma_addr_t *rx_dma,
339                                 u32 *plen)
340 {
341         struct atmel_spi        *as = spi_master_get_devdata(master);
342         u32                     len = *plen;
343
344         /* use scratch buffer only when rx or tx data is unspecified */
345         if (xfer->rx_buf)
346                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
347         else {
348                 *rx_dma = as->buffer_dma;
349                 if (len > BUFFER_SIZE)
350                         len = BUFFER_SIZE;
351         }
352         if (xfer->tx_buf)
353                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
354         else {
355                 *tx_dma = as->buffer_dma;
356                 if (len > BUFFER_SIZE)
357                         len = BUFFER_SIZE;
358                 memset(as->buffer, 0, len);
359                 dma_sync_single_for_device(&as->pdev->dev,
360                                 as->buffer_dma, len, DMA_TO_DEVICE);
361         }
362
363         *plen = len;
364 }
365
366 /*
367  * Submit next transfer for DMA.
368  * lock is held, spi irq is blocked
369  */
370 static void atmel_spi_next_xfer(struct spi_master *master,
371                                 struct spi_message *msg)
372 {
373         struct atmel_spi        *as = spi_master_get_devdata(master);
374         struct spi_transfer     *xfer;
375         u32                     len, remaining;
376         u32                     ieval;
377         dma_addr_t              tx_dma, rx_dma;
378
379         if (!as->current_transfer)
380                 xfer = list_entry(msg->transfers.next,
381                                 struct spi_transfer, transfer_list);
382         else if (!as->next_transfer)
383                 xfer = list_entry(as->current_transfer->transfer_list.next,
384                                 struct spi_transfer, transfer_list);
385         else
386                 xfer = NULL;
387
388         if (xfer) {
389                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
390
391                 len = xfer->len;
392                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
393                 remaining = xfer->len - len;
394
395                 spi_writel(as, RPR, rx_dma);
396                 spi_writel(as, TPR, tx_dma);
397
398                 if (msg->spi->bits_per_word > 8)
399                         len >>= 1;
400                 spi_writel(as, RCR, len);
401                 spi_writel(as, TCR, len);
402
403                 dev_dbg(&msg->spi->dev,
404                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
405                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
406                         xfer->rx_buf, xfer->rx_dma);
407         } else {
408                 xfer = as->next_transfer;
409                 remaining = as->next_remaining_bytes;
410         }
411
412         as->current_transfer = xfer;
413         as->current_remaining_bytes = remaining;
414
415         if (remaining > 0)
416                 len = remaining;
417         else if (!atmel_spi_xfer_is_last(msg, xfer)
418                         && atmel_spi_xfer_can_be_chained(xfer)) {
419                 xfer = list_entry(xfer->transfer_list.next,
420                                 struct spi_transfer, transfer_list);
421                 len = xfer->len;
422         } else
423                 xfer = NULL;
424
425         as->next_transfer = xfer;
426
427         if (xfer) {
428                 u32     total;
429
430                 total = len;
431                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
432                 as->next_remaining_bytes = total - len;
433
434                 spi_writel(as, RNPR, rx_dma);
435                 spi_writel(as, TNPR, tx_dma);
436
437                 if (msg->spi->bits_per_word > 8)
438                         len >>= 1;
439                 spi_writel(as, RNCR, len);
440                 spi_writel(as, TNCR, len);
441
442                 dev_dbg(&msg->spi->dev,
443                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
444                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
445                         xfer->rx_buf, xfer->rx_dma);
446                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
447         } else {
448                 spi_writel(as, RNCR, 0);
449                 spi_writel(as, TNCR, 0);
450                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
451         }
452
453         /* REVISIT: We're waiting for ENDRX before we start the next
454          * transfer because we need to handle some difficult timing
455          * issues otherwise. If we wait for ENDTX in one transfer and
456          * then starts waiting for ENDRX in the next, it's difficult
457          * to tell the difference between the ENDRX interrupt we're
458          * actually waiting for and the ENDRX interrupt of the
459          * previous transfer.
460          *
461          * It should be doable, though. Just not now...
462          */
463         spi_writel(as, IER, ieval);
464         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
465 }
466
467 static void atmel_spi_next_message(struct spi_master *master)
468 {
469         struct atmel_spi        *as = spi_master_get_devdata(master);
470         struct spi_message      *msg;
471         struct spi_device       *spi;
472
473         BUG_ON(as->current_transfer);
474
475         msg = list_entry(as->queue.next, struct spi_message, queue);
476         spi = msg->spi;
477
478         dev_dbg(master->dev.parent, "start message %p for %s\n",
479                         msg, dev_name(&spi->dev));
480
481         /* select chip if it's not still active */
482         if (as->stay) {
483                 if (as->stay != spi) {
484                         cs_deactivate(as, as->stay);
485                         cs_activate(as, spi);
486                 }
487                 as->stay = NULL;
488         } else
489                 cs_activate(as, spi);
490
491         atmel_spi_next_xfer(master, msg);
492 }
493
494 /*
495  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
496  *  - The buffer is either valid for CPU access, else NULL
497  *  - If the buffer is valid, so is its DMA address
498  *
499  * This driver manages the dma address unless message->is_dma_mapped.
500  */
501 static int
502 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
503 {
504         struct device   *dev = &as->pdev->dev;
505
506         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
507         if (xfer->tx_buf) {
508                 /* tx_buf is a const void* where we need a void * for the dma
509                  * mapping */
510                 void *nonconst_tx = (void *)xfer->tx_buf;
511
512                 xfer->tx_dma = dma_map_single(dev,
513                                 nonconst_tx, xfer->len,
514                                 DMA_TO_DEVICE);
515                 if (dma_mapping_error(dev, xfer->tx_dma))
516                         return -ENOMEM;
517         }
518         if (xfer->rx_buf) {
519                 xfer->rx_dma = dma_map_single(dev,
520                                 xfer->rx_buf, xfer->len,
521                                 DMA_FROM_DEVICE);
522                 if (dma_mapping_error(dev, xfer->rx_dma)) {
523                         if (xfer->tx_buf)
524                                 dma_unmap_single(dev,
525                                                 xfer->tx_dma, xfer->len,
526                                                 DMA_TO_DEVICE);
527                         return -ENOMEM;
528                 }
529         }
530         return 0;
531 }
532
533 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
534                                      struct spi_transfer *xfer)
535 {
536         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
537                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
538                                  xfer->len, DMA_TO_DEVICE);
539         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
540                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
541                                  xfer->len, DMA_FROM_DEVICE);
542 }
543
544 static void
545 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
546                 struct spi_message *msg, int status, int stay)
547 {
548         if (!stay || status < 0)
549                 cs_deactivate(as, msg->spi);
550         else
551                 as->stay = msg->spi;
552
553         list_del(&msg->queue);
554         msg->status = status;
555
556         dev_dbg(master->dev.parent,
557                 "xfer complete: %u bytes transferred\n",
558                 msg->actual_length);
559
560         spin_unlock(&as->lock);
561         msg->complete(msg->context);
562         spin_lock(&as->lock);
563
564         as->current_transfer = NULL;
565         as->next_transfer = NULL;
566
567         /* continue if needed */
568         if (list_empty(&as->queue) || as->stopping)
569                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
570         else
571                 atmel_spi_next_message(master);
572 }
573
574 static irqreturn_t
575 atmel_spi_interrupt(int irq, void *dev_id)
576 {
577         struct spi_master       *master = dev_id;
578         struct atmel_spi        *as = spi_master_get_devdata(master);
579         struct spi_message      *msg;
580         struct spi_transfer     *xfer;
581         u32                     status, pending, imr;
582         int                     ret = IRQ_NONE;
583
584         spin_lock(&as->lock);
585
586         xfer = as->current_transfer;
587         msg = list_entry(as->queue.next, struct spi_message, queue);
588
589         imr = spi_readl(as, IMR);
590         status = spi_readl(as, SR);
591         pending = status & imr;
592
593         if (pending & SPI_BIT(OVRES)) {
594                 int timeout;
595
596                 ret = IRQ_HANDLED;
597
598                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
599                                      | SPI_BIT(OVRES)));
600
601                 /*
602                  * When we get an overrun, we disregard the current
603                  * transfer. Data will not be copied back from any
604                  * bounce buffer and msg->actual_len will not be
605                  * updated with the last xfer.
606                  *
607                  * We will also not process any remaning transfers in
608                  * the message.
609                  *
610                  * First, stop the transfer and unmap the DMA buffers.
611                  */
612                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
613                 if (!msg->is_dma_mapped)
614                         atmel_spi_dma_unmap_xfer(master, xfer);
615
616                 /* REVISIT: udelay in irq is unfriendly */
617                 if (xfer->delay_usecs)
618                         udelay(xfer->delay_usecs);
619
620                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
621                          spi_readl(as, TCR), spi_readl(as, RCR));
622
623                 /*
624                  * Clean up DMA registers and make sure the data
625                  * registers are empty.
626                  */
627                 spi_writel(as, RNCR, 0);
628                 spi_writel(as, TNCR, 0);
629                 spi_writel(as, RCR, 0);
630                 spi_writel(as, TCR, 0);
631                 for (timeout = 1000; timeout; timeout--)
632                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
633                                 break;
634                 if (!timeout)
635                         dev_warn(master->dev.parent,
636                                  "timeout waiting for TXEMPTY");
637                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
638                         spi_readl(as, RDR);
639
640                 /* Clear any overrun happening while cleaning up */
641                 spi_readl(as, SR);
642
643                 atmel_spi_msg_done(master, as, msg, -EIO, 0);
644         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
645                 ret = IRQ_HANDLED;
646
647                 spi_writel(as, IDR, pending);
648
649                 if (as->current_remaining_bytes == 0) {
650                         msg->actual_length += xfer->len;
651
652                         if (!msg->is_dma_mapped)
653                                 atmel_spi_dma_unmap_xfer(master, xfer);
654
655                         /* REVISIT: udelay in irq is unfriendly */
656                         if (xfer->delay_usecs)
657                                 udelay(xfer->delay_usecs);
658
659                         if (atmel_spi_xfer_is_last(msg, xfer)) {
660                                 /* report completed message */
661                                 atmel_spi_msg_done(master, as, msg, 0,
662                                                 xfer->cs_change);
663                         } else {
664                                 if (xfer->cs_change) {
665                                         cs_deactivate(as, msg->spi);
666                                         udelay(1);
667                                         cs_activate(as, msg->spi);
668                                 }
669
670                                 /*
671                                  * Not done yet. Submit the next transfer.
672                                  *
673                                  * FIXME handle protocol options for xfer
674                                  */
675                                 atmel_spi_next_xfer(master, msg);
676                         }
677                 } else {
678                         /*
679                          * Keep going, we still have data to send in
680                          * the current transfer.
681                          */
682                         atmel_spi_next_xfer(master, msg);
683                 }
684         }
685
686         spin_unlock(&as->lock);
687
688         return ret;
689 }
690
691 static int atmel_spi_setup(struct spi_device *spi)
692 {
693         struct atmel_spi        *as;
694         struct atmel_spi_device *asd;
695         u32                     scbr, csr;
696         unsigned int            bits = spi->bits_per_word;
697         unsigned long           bus_hz;
698         unsigned int            npcs_pin;
699         int                     ret;
700
701         as = spi_master_get_devdata(spi->master);
702
703         if (as->stopping)
704                 return -ESHUTDOWN;
705
706         if (spi->chip_select > spi->master->num_chipselect) {
707                 dev_dbg(&spi->dev,
708                                 "setup: invalid chipselect %u (%u defined)\n",
709                                 spi->chip_select, spi->master->num_chipselect);
710                 return -EINVAL;
711         }
712
713         if (bits < 8 || bits > 16) {
714                 dev_dbg(&spi->dev,
715                                 "setup: invalid bits_per_word %u (8 to 16)\n",
716                                 bits);
717                 return -EINVAL;
718         }
719
720         /* see notes above re chipselect */
721         if (!atmel_spi_is_v2()
722                         && spi->chip_select == 0
723                         && (spi->mode & SPI_CS_HIGH)) {
724                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
725                 return -EINVAL;
726         }
727
728         /* v1 chips start out at half the peripheral bus speed. */
729         bus_hz = clk_get_rate(as->clk);
730         if (!atmel_spi_is_v2())
731                 bus_hz /= 2;
732
733         if (spi->max_speed_hz) {
734                 /*
735                  * Calculate the lowest divider that satisfies the
736                  * constraint, assuming div32/fdiv/mbz == 0.
737                  */
738                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
739
740                 /*
741                  * If the resulting divider doesn't fit into the
742                  * register bitfield, we can't satisfy the constraint.
743                  */
744                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
745                         dev_dbg(&spi->dev,
746                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
747                                 spi->max_speed_hz, scbr, bus_hz/255);
748                         return -EINVAL;
749                 }
750         } else
751                 /* speed zero means "as slow as possible" */
752                 scbr = 0xff;
753
754         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
755         if (spi->mode & SPI_CPOL)
756                 csr |= SPI_BIT(CPOL);
757         if (!(spi->mode & SPI_CPHA))
758                 csr |= SPI_BIT(NCPHA);
759
760         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
761          *
762          * DLYBCT would add delays between words, slowing down transfers.
763          * It could potentially be useful to cope with DMA bottlenecks, but
764          * in those cases it's probably best to just use a lower bitrate.
765          */
766         csr |= SPI_BF(DLYBS, 0);
767         csr |= SPI_BF(DLYBCT, 0);
768
769         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
770         npcs_pin = (unsigned int)spi->controller_data;
771         asd = spi->controller_state;
772         if (!asd) {
773                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
774                 if (!asd)
775                         return -ENOMEM;
776
777                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
778                 if (ret) {
779                         kfree(asd);
780                         return ret;
781                 }
782
783                 asd->npcs_pin = npcs_pin;
784                 spi->controller_state = asd;
785                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
786         } else {
787                 unsigned long           flags;
788
789                 spin_lock_irqsave(&as->lock, flags);
790                 if (as->stay == spi)
791                         as->stay = NULL;
792                 cs_deactivate(as, spi);
793                 spin_unlock_irqrestore(&as->lock, flags);
794         }
795
796         asd->csr = csr;
797
798         dev_dbg(&spi->dev,
799                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
800                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
801
802         if (!atmel_spi_is_v2())
803                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
804
805         return 0;
806 }
807
808 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
809 {
810         struct atmel_spi        *as;
811         struct spi_transfer     *xfer;
812         unsigned long           flags;
813         struct device           *controller = spi->master->dev.parent;
814         u8                      bits;
815         struct atmel_spi_device *asd;
816
817         as = spi_master_get_devdata(spi->master);
818
819         dev_dbg(controller, "new message %p submitted for %s\n",
820                         msg, dev_name(&spi->dev));
821
822         if (unlikely(list_empty(&msg->transfers)))
823                 return -EINVAL;
824
825         if (as->stopping)
826                 return -ESHUTDOWN;
827
828         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
829                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
830                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
831                         return -EINVAL;
832                 }
833
834                 if (xfer->bits_per_word) {
835                         asd = spi->controller_state;
836                         bits = (asd->csr >> 4) & 0xf;
837                         if (bits != xfer->bits_per_word - 8) {
838                                 dev_dbg(&spi->dev, "you can't yet change "
839                                          "bits_per_word in transfers\n");
840                                 return -ENOPROTOOPT;
841                         }
842                 }
843
844                 /* FIXME implement these protocol options!! */
845                 if (xfer->speed_hz) {
846                         dev_dbg(&spi->dev, "no protocol options yet\n");
847                         return -ENOPROTOOPT;
848                 }
849
850                 /*
851                  * DMA map early, for performance (empties dcache ASAP) and
852                  * better fault reporting.  This is a DMA-only driver.
853                  *
854                  * NOTE that if dma_unmap_single() ever starts to do work on
855                  * platforms supported by this driver, we would need to clean
856                  * up mappings for previously-mapped transfers.
857                  */
858                 if (!msg->is_dma_mapped) {
859                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
860                                 return -ENOMEM;
861                 }
862         }
863
864 #ifdef VERBOSE
865         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866                 dev_dbg(controller,
867                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
868                         xfer, xfer->len,
869                         xfer->tx_buf, xfer->tx_dma,
870                         xfer->rx_buf, xfer->rx_dma);
871         }
872 #endif
873
874         msg->status = -EINPROGRESS;
875         msg->actual_length = 0;
876
877         spin_lock_irqsave(&as->lock, flags);
878         list_add_tail(&msg->queue, &as->queue);
879         if (!as->current_transfer)
880                 atmel_spi_next_message(spi->master);
881         spin_unlock_irqrestore(&as->lock, flags);
882
883         return 0;
884 }
885
886 static void atmel_spi_cleanup(struct spi_device *spi)
887 {
888         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
889         struct atmel_spi_device *asd = spi->controller_state;
890         unsigned                gpio = (unsigned) spi->controller_data;
891         unsigned long           flags;
892
893         if (!asd)
894                 return;
895
896         spin_lock_irqsave(&as->lock, flags);
897         if (as->stay == spi) {
898                 as->stay = NULL;
899                 cs_deactivate(as, spi);
900         }
901         spin_unlock_irqrestore(&as->lock, flags);
902
903         spi->controller_state = NULL;
904         gpio_free(gpio);
905         kfree(asd);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 static int __devinit atmel_spi_probe(struct platform_device *pdev)
911 {
912         struct resource         *regs;
913         int                     irq;
914         struct clk              *clk;
915         int                     ret;
916         struct spi_master       *master;
917         struct atmel_spi        *as;
918
919         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
920         if (!regs)
921                 return -ENXIO;
922
923         irq = platform_get_irq(pdev, 0);
924         if (irq < 0)
925                 return irq;
926
927         clk = clk_get(&pdev->dev, "spi_clk");
928         if (IS_ERR(clk))
929                 return PTR_ERR(clk);
930
931         /* setup spi core then atmel-specific driver state */
932         ret = -ENOMEM;
933         master = spi_alloc_master(&pdev->dev, sizeof *as);
934         if (!master)
935                 goto out_free;
936
937         /* the spi->mode bits understood by this driver: */
938         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
939
940         master->bus_num = pdev->id;
941         master->num_chipselect = 4;
942         master->setup = atmel_spi_setup;
943         master->transfer = atmel_spi_transfer;
944         master->cleanup = atmel_spi_cleanup;
945         platform_set_drvdata(pdev, master);
946
947         as = spi_master_get_devdata(master);
948
949         /*
950          * Scratch buffer is used for throwaway rx and tx data.
951          * It's coherent to minimize dcache pollution.
952          */
953         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
954                                         &as->buffer_dma, GFP_KERNEL);
955         if (!as->buffer)
956                 goto out_free;
957
958         spin_lock_init(&as->lock);
959         INIT_LIST_HEAD(&as->queue);
960         as->pdev = pdev;
961         as->regs = ioremap(regs->start, resource_size(regs));
962         if (!as->regs)
963                 goto out_free_buffer;
964         as->irq = irq;
965         as->clk = clk;
966
967         ret = request_irq(irq, atmel_spi_interrupt, 0,
968                         dev_name(&pdev->dev), master);
969         if (ret)
970                 goto out_unmap_regs;
971
972         /* Initialize the hardware */
973         clk_enable(clk);
974         spi_writel(as, CR, SPI_BIT(SWRST));
975         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
976         spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
977         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
978         spi_writel(as, CR, SPI_BIT(SPIEN));
979
980         /* go! */
981         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
982                         (unsigned long)regs->start, irq);
983
984         ret = spi_register_master(master);
985         if (ret)
986                 goto out_reset_hw;
987
988         return 0;
989
990 out_reset_hw:
991         spi_writel(as, CR, SPI_BIT(SWRST));
992         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
993         clk_disable(clk);
994         free_irq(irq, master);
995 out_unmap_regs:
996         iounmap(as->regs);
997 out_free_buffer:
998         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
999                         as->buffer_dma);
1000 out_free:
1001         clk_put(clk);
1002         spi_master_put(master);
1003         return ret;
1004 }
1005
1006 static int __devexit atmel_spi_remove(struct platform_device *pdev)
1007 {
1008         struct spi_master       *master = platform_get_drvdata(pdev);
1009         struct atmel_spi        *as = spi_master_get_devdata(master);
1010         struct spi_message      *msg;
1011
1012         /* reset the hardware and block queue progress */
1013         spin_lock_irq(&as->lock);
1014         as->stopping = 1;
1015         spi_writel(as, CR, SPI_BIT(SWRST));
1016         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1017         spi_readl(as, SR);
1018         spin_unlock_irq(&as->lock);
1019
1020         /* Terminate remaining queued transfers */
1021         list_for_each_entry(msg, &as->queue, queue) {
1022                 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
1023                  * but we shouldn't depend on that...
1024                  */
1025                 msg->status = -ESHUTDOWN;
1026                 msg->complete(msg->context);
1027         }
1028
1029         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1030                         as->buffer_dma);
1031
1032         clk_disable(as->clk);
1033         clk_put(as->clk);
1034         free_irq(as->irq, master);
1035         iounmap(as->regs);
1036
1037         spi_unregister_master(master);
1038
1039         return 0;
1040 }
1041
1042 #ifdef  CONFIG_PM
1043
1044 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1045 {
1046         struct spi_master       *master = platform_get_drvdata(pdev);
1047         struct atmel_spi        *as = spi_master_get_devdata(master);
1048
1049         clk_disable(as->clk);
1050         return 0;
1051 }
1052
1053 static int atmel_spi_resume(struct platform_device *pdev)
1054 {
1055         struct spi_master       *master = platform_get_drvdata(pdev);
1056         struct atmel_spi        *as = spi_master_get_devdata(master);
1057
1058         clk_enable(as->clk);
1059         return 0;
1060 }
1061
1062 #else
1063 #define atmel_spi_suspend       NULL
1064 #define atmel_spi_resume        NULL
1065 #endif
1066
1067
1068 static struct platform_driver atmel_spi_driver = {
1069         .driver         = {
1070                 .name   = "atmel_spi",
1071                 .owner  = THIS_MODULE,
1072         },
1073         .suspend        = atmel_spi_suspend,
1074         .resume         = atmel_spi_resume,
1075         .probe          = atmel_spi_probe,
1076         .remove         = __exit_p(atmel_spi_remove),
1077 };
1078 module_platform_driver(atmel_spi_driver);
1079
1080 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1081 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1082 MODULE_LICENSE("GPL");
1083 MODULE_ALIAS("platform:atmel_spi");