pandora: update defconfig
[pandora-kernel.git] / drivers / serial / zs.c
1 /*
2  * zs.c: Serial port driver for IOASIC DECstations.
3  *
4  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6  *
7  * DECstation changes
8  * Copyright (C) 1998-2000 Harald Koerfgen
9  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
10  *
11  * For the rest of the code the original Copyright applies:
12  * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
14  *
15  *
16  * Note: for IOASIC systems the wiring is as follows:
17  *
18  * mouse/keyboard:
19  * DIN-7 MJ-4  signal        SCC
20  * 2     1     TxD       <-  A.TxD
21  * 3     4     RxD       ->  A.RxD
22  *
23  * EIA-232/EIA-423:
24  * DB-25 MMJ-6 signal        SCC
25  * 2     2     TxD       <-  B.TxD
26  * 3     5     RxD       ->  B.RxD
27  * 4           RTS       <- ~A.RTS
28  * 5           CTS       -> ~B.CTS
29  * 6     6     DSR       -> ~A.SYNC
30  * 8           CD        -> ~B.DCD
31  * 12          DSRS(DCE) -> ~A.CTS  (*)
32  * 15          TxC       ->  B.TxC
33  * 17          RxC       ->  B.RxC
34  * 20    1     DTR       <- ~A.DTR
35  * 22          RI        -> ~A.DCD
36  * 23          DSRS(DTE) <- ~B.RTS
37  *
38  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39  *     is shared with DSRS(DTE) at pin 23.
40  *
41  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42  * is a bit odd.  This makes the handling of port B unnecessarily
43  * complicated and prevents the use of some automatic modes of operation.
44  */
45
46 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47 #define SUPPORT_SYSRQ
48 #endif
49
50 #include <linux/bug.h>
51 #include <linux/console.h>
52 #include <linux/delay.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/interrupt.h>
56 #include <linux/io.h>
57 #include <linux/ioport.h>
58 #include <linux/irqflags.h>
59 #include <linux/kernel.h>
60 #include <linux/major.h>
61 #include <linux/serial.h>
62 #include <linux/serial_core.h>
63 #include <linux/spinlock.h>
64 #include <linux/sysrq.h>
65 #include <linux/tty.h>
66 #include <linux/types.h>
67
68 #include <asm/atomic.h>
69 #include <asm/system.h>
70
71 #include <asm/dec/interrupts.h>
72 #include <asm/dec/ioasic_addrs.h>
73 #include <asm/dec/system.h>
74
75 #include "zs.h"
76
77
78 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
79 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
80 MODULE_LICENSE("GPL");
81
82
83 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
84 static char zs_version[] __initdata = "0.10";
85
86 /*
87  * It would be nice to dynamically allocate everything that
88  * depends on ZS_NUM_SCCS, so we could support any number of
89  * Z85C30s, but for now...
90  */
91 #define ZS_NUM_SCCS     2               /* Max # of ZS chips supported.  */
92 #define ZS_NUM_CHAN     2               /* 2 channels per chip.  */
93 #define ZS_CHAN_A       0               /* Index of the channel A.  */
94 #define ZS_CHAN_B       1               /* Index of the channel B.  */
95 #define ZS_CHAN_IO_SIZE 8               /* IOMEM space size.  */
96 #define ZS_CHAN_IO_STRIDE 4             /* Register alignment.  */
97 #define ZS_CHAN_IO_OFFSET 1             /* The SCC resides on the high byte
98                                            of the 16-bit IOBUS.  */
99 #define ZS_CLOCK        7372800         /* Z85C30 PCLK input clock rate.  */
100
101 #define to_zport(uport) container_of(uport, struct zs_port, port)
102
103 struct zs_parms {
104         resource_size_t scc[ZS_NUM_SCCS];
105         int irq[ZS_NUM_SCCS];
106 };
107
108 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
109
110 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
111         0,                              /* write 0 */
112         PAR_SPEC,                       /* write 1 */
113         0,                              /* write 2 */
114         0,                              /* write 3 */
115         X16CLK | SB1,                   /* write 4 */
116         0,                              /* write 5 */
117         0, 0, 0,                        /* write 6, 7, 8 */
118         MIE | DLC | NV,                 /* write 9 */
119         NRZ,                            /* write 10 */
120         TCBR | RCBR,                    /* write 11 */
121         0, 0,                           /* BRG time constant, write 12 + 13 */
122         BRSRC | BRENABL,                /* write 14 */
123         0,                              /* write 15 */
124 };
125
126 /*
127  * Debugging.
128  */
129 #undef ZS_DEBUG_REGS
130
131
132 /*
133  * Reading and writing Z85C30 registers.
134  */
135 static void recovery_delay(void)
136 {
137         udelay(2);
138 }
139
140 static u8 read_zsreg(struct zs_port *zport, int reg)
141 {
142         void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
143         u8 retval;
144
145         if (reg != 0) {
146                 writeb(reg & 0xf, control);
147                 fast_iob();
148                 recovery_delay();
149         }
150         retval = readb(control);
151         recovery_delay();
152         return retval;
153 }
154
155 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
156 {
157         void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
158
159         if (reg != 0) {
160                 writeb(reg & 0xf, control);
161                 fast_iob(); recovery_delay();
162         }
163         writeb(value, control);
164         fast_iob();
165         recovery_delay();
166         return;
167 }
168
169 static u8 read_zsdata(struct zs_port *zport)
170 {
171         void __iomem *data = zport->port.membase +
172                              ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
173         u8 retval;
174
175         retval = readb(data);
176         recovery_delay();
177         return retval;
178 }
179
180 static void write_zsdata(struct zs_port *zport, u8 value)
181 {
182         void __iomem *data = zport->port.membase +
183                              ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
184
185         writeb(value, data);
186         fast_iob();
187         recovery_delay();
188         return;
189 }
190
191 #ifdef ZS_DEBUG_REGS
192 void zs_dump(void)
193 {
194         struct zs_port *zport;
195         int i, j;
196
197         for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
198                 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
199
200                 if (!zport->scc)
201                         continue;
202
203                 for (j = 0; j < 16; j++)
204                         printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
205                 printk("\n");
206                 for (j = 0; j < 16; j++)
207                         printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
208                 printk("\n\n");
209         }
210 }
211 #endif
212
213
214 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
215 {
216         if (irq)
217                 spin_lock_irq(lock);
218         else
219                 spin_lock(lock);
220 }
221
222 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
223 {
224         if (irq)
225                 spin_unlock_irq(lock);
226         else
227                 spin_unlock(lock);
228 }
229
230 static int zs_receive_drain(struct zs_port *zport)
231 {
232         int loops = 10000;
233
234         while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
235                 read_zsdata(zport);
236         return loops;
237 }
238
239 static int zs_transmit_drain(struct zs_port *zport, int irq)
240 {
241         struct zs_scc *scc = zport->scc;
242         int loops = 10000;
243
244         while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
245                 zs_spin_unlock_cond_irq(&scc->zlock, irq);
246                 udelay(2);
247                 zs_spin_lock_cond_irq(&scc->zlock, irq);
248         }
249         return loops;
250 }
251
252 static int zs_line_drain(struct zs_port *zport, int irq)
253 {
254         struct zs_scc *scc = zport->scc;
255         int loops = 10000;
256
257         while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
258                 zs_spin_unlock_cond_irq(&scc->zlock, irq);
259                 udelay(2);
260                 zs_spin_lock_cond_irq(&scc->zlock, irq);
261         }
262         return loops;
263 }
264
265
266 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
267 {
268         /* Let the current transmission finish.  */
269         zs_line_drain(zport, irq);
270         /* Load 'em up.  */
271         write_zsreg(zport, R3, regs[3] & ~RxENABLE);
272         write_zsreg(zport, R5, regs[5] & ~TxENAB);
273         write_zsreg(zport, R4, regs[4]);
274         write_zsreg(zport, R9, regs[9]);
275         write_zsreg(zport, R1, regs[1]);
276         write_zsreg(zport, R2, regs[2]);
277         write_zsreg(zport, R10, regs[10]);
278         write_zsreg(zport, R14, regs[14] & ~BRENABL);
279         write_zsreg(zport, R11, regs[11]);
280         write_zsreg(zport, R12, regs[12]);
281         write_zsreg(zport, R13, regs[13]);
282         write_zsreg(zport, R14, regs[14]);
283         write_zsreg(zport, R15, regs[15]);
284         if (regs[3] & RxENABLE)
285                 write_zsreg(zport, R3, regs[3]);
286         if (regs[5] & TxENAB)
287                 write_zsreg(zport, R5, regs[5]);
288         return;
289 }
290
291
292 /*
293  * Status handling routines.
294  */
295
296 /*
297  * zs_tx_empty() -- get the transmitter empty status
298  *
299  * Purpose: Let user call ioctl() to get info when the UART physically
300  *          is emptied.  On bus types like RS485, the transmitter must
301  *          release the bus after transmitting.  This must be done when
302  *          the transmit shift register is empty, not be done when the
303  *          transmit holding register is empty.  This functionality
304  *          allows an RS485 driver to be written in user space.
305  */
306 static unsigned int zs_tx_empty(struct uart_port *uport)
307 {
308         struct zs_port *zport = to_zport(uport);
309         struct zs_scc *scc = zport->scc;
310         unsigned long flags;
311         u8 status;
312
313         spin_lock_irqsave(&scc->zlock, flags);
314         status = read_zsreg(zport, R1);
315         spin_unlock_irqrestore(&scc->zlock, flags);
316
317         return status & ALL_SNT ? TIOCSER_TEMT : 0;
318 }
319
320 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
321                                         struct zs_port *zport_b)
322 {
323         u8 status_a, status_b;
324         unsigned int mctrl;
325
326         status_a = read_zsreg(zport_a, R0);
327         status_b = read_zsreg(zport_b, R0);
328
329         mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
330                 ((status_b & DCD) ? TIOCM_CAR : 0) |
331                 ((status_a & DCD) ? TIOCM_RNG : 0) |
332                 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
333
334         return mctrl;
335 }
336
337 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
338 {
339         struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
340
341         return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
342 }
343
344 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
345 {
346         struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
347         unsigned int mmask, mctrl, delta;
348         u8 mask_a, mask_b;
349
350         if (zport == zport_a)
351                 return 0;
352
353         mask_a = zport_a->regs[15];
354         mask_b = zport->regs[15];
355
356         mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
357                 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
358                 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
359                 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
360
361         mctrl = zport->mctrl;
362         if (mmask) {
363                 mctrl &= ~mmask;
364                 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
365         }
366
367         delta = mctrl ^ zport->mctrl;
368         if (delta)
369                 zport->mctrl = mctrl;
370
371         return delta;
372 }
373
374 static unsigned int zs_get_mctrl(struct uart_port *uport)
375 {
376         struct zs_port *zport = to_zport(uport);
377         struct zs_scc *scc = zport->scc;
378         unsigned int mctrl;
379
380         spin_lock(&scc->zlock);
381         mctrl = zs_raw_get_mctrl(zport);
382         spin_unlock(&scc->zlock);
383
384         return mctrl;
385 }
386
387 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
388 {
389         struct zs_port *zport = to_zport(uport);
390         struct zs_scc *scc = zport->scc;
391         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
392         u8 oldloop, newloop;
393
394         spin_lock(&scc->zlock);
395         if (zport != zport_a) {
396                 if (mctrl & TIOCM_DTR)
397                         zport_a->regs[5] |= DTR;
398                 else
399                         zport_a->regs[5] &= ~DTR;
400                 if (mctrl & TIOCM_RTS)
401                         zport_a->regs[5] |= RTS;
402                 else
403                         zport_a->regs[5] &= ~RTS;
404                 write_zsreg(zport_a, R5, zport_a->regs[5]);
405         }
406
407         /* Rarely modified, so don't poke at hardware unless necessary. */
408         oldloop = zport->regs[14];
409         newloop = oldloop;
410         if (mctrl & TIOCM_LOOP)
411                 newloop |= LOOPBAK;
412         else
413                 newloop &= ~LOOPBAK;
414         if (newloop != oldloop) {
415                 zport->regs[14] = newloop;
416                 write_zsreg(zport, R14, zport->regs[14]);
417         }
418         spin_unlock(&scc->zlock);
419 }
420
421 static void zs_raw_stop_tx(struct zs_port *zport)
422 {
423         write_zsreg(zport, R0, RES_Tx_P);
424         zport->tx_stopped = 1;
425 }
426
427 static void zs_stop_tx(struct uart_port *uport)
428 {
429         struct zs_port *zport = to_zport(uport);
430         struct zs_scc *scc = zport->scc;
431
432         spin_lock(&scc->zlock);
433         zs_raw_stop_tx(zport);
434         spin_unlock(&scc->zlock);
435 }
436
437 static void zs_raw_transmit_chars(struct zs_port *);
438
439 static void zs_start_tx(struct uart_port *uport)
440 {
441         struct zs_port *zport = to_zport(uport);
442         struct zs_scc *scc = zport->scc;
443
444         spin_lock(&scc->zlock);
445         if (zport->tx_stopped) {
446                 zs_transmit_drain(zport, 0);
447                 zport->tx_stopped = 0;
448                 zs_raw_transmit_chars(zport);
449         }
450         spin_unlock(&scc->zlock);
451 }
452
453 static void zs_stop_rx(struct uart_port *uport)
454 {
455         struct zs_port *zport = to_zport(uport);
456         struct zs_scc *scc = zport->scc;
457         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
458
459         spin_lock(&scc->zlock);
460         zport->regs[15] &= ~BRKIE;
461         zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
462         zport->regs[1] |= RxINT_DISAB;
463
464         if (zport != zport_a) {
465                 /* A-side DCD tracks RI and SYNC tracks DSR.  */
466                 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
467                 write_zsreg(zport_a, R15, zport_a->regs[15]);
468                 if (!(zport_a->regs[15] & BRKIE)) {
469                         zport_a->regs[1] &= ~EXT_INT_ENAB;
470                         write_zsreg(zport_a, R1, zport_a->regs[1]);
471                 }
472
473                 /* This-side DCD tracks DCD and CTS tracks CTS.  */
474                 zport->regs[15] &= ~(DCDIE | CTSIE);
475                 zport->regs[1] &= ~EXT_INT_ENAB;
476         } else {
477                 /* DCD tracks RI and SYNC tracks DSR for the B side.  */
478                 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
479                         zport->regs[1] &= ~EXT_INT_ENAB;
480         }
481
482         write_zsreg(zport, R15, zport->regs[15]);
483         write_zsreg(zport, R1, zport->regs[1]);
484         spin_unlock(&scc->zlock);
485 }
486
487 static void zs_enable_ms(struct uart_port *uport)
488 {
489         struct zs_port *zport = to_zport(uport);
490         struct zs_scc *scc = zport->scc;
491         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
492
493         if (zport == zport_a)
494                 return;
495
496         spin_lock(&scc->zlock);
497
498         /* Clear Ext interrupts if not being handled already.  */
499         if (!(zport_a->regs[1] & EXT_INT_ENAB))
500                 write_zsreg(zport_a, R0, RES_EXT_INT);
501
502         /* A-side DCD tracks RI and SYNC tracks DSR.  */
503         zport_a->regs[1] |= EXT_INT_ENAB;
504         zport_a->regs[15] |= DCDIE | SYNCIE;
505
506         /* This-side DCD tracks DCD and CTS tracks CTS.  */
507         zport->regs[15] |= DCDIE | CTSIE;
508
509         zs_raw_xor_mctrl(zport);
510
511         write_zsreg(zport_a, R1, zport_a->regs[1]);
512         write_zsreg(zport_a, R15, zport_a->regs[15]);
513         write_zsreg(zport, R15, zport->regs[15]);
514         spin_unlock(&scc->zlock);
515 }
516
517 static void zs_break_ctl(struct uart_port *uport, int break_state)
518 {
519         struct zs_port *zport = to_zport(uport);
520         struct zs_scc *scc = zport->scc;
521         unsigned long flags;
522
523         spin_lock_irqsave(&scc->zlock, flags);
524         if (break_state == -1)
525                 zport->regs[5] |= SND_BRK;
526         else
527                 zport->regs[5] &= ~SND_BRK;
528         write_zsreg(zport, R5, zport->regs[5]);
529         spin_unlock_irqrestore(&scc->zlock, flags);
530 }
531
532
533 /*
534  * Interrupt handling routines.
535  */
536 #define Rx_BRK 0x0100                   /* BREAK event software flag.  */
537 #define Rx_SYS 0x0200                   /* SysRq event software flag.  */
538
539 static void zs_receive_chars(struct zs_port *zport)
540 {
541         struct uart_port *uport = &zport->port;
542         struct zs_scc *scc = zport->scc;
543         struct uart_icount *icount;
544         unsigned int avail, status, ch, flag;
545         int count;
546
547         for (count = 16; count; count--) {
548                 spin_lock(&scc->zlock);
549                 avail = read_zsreg(zport, R0) & Rx_CH_AV;
550                 spin_unlock(&scc->zlock);
551                 if (!avail)
552                         break;
553
554                 spin_lock(&scc->zlock);
555                 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
556                 ch = read_zsdata(zport);
557                 spin_unlock(&scc->zlock);
558
559                 flag = TTY_NORMAL;
560
561                 icount = &uport->icount;
562                 icount->rx++;
563
564                 /* Handle the null char got when BREAK is removed.  */
565                 if (!ch)
566                         status |= zport->tty_break;
567                 if (unlikely(status &
568                              (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
569                         zport->tty_break = 0;
570
571                         /* Reset the error indication.  */
572                         if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
573                                 spin_lock(&scc->zlock);
574                                 write_zsreg(zport, R0, ERR_RES);
575                                 spin_unlock(&scc->zlock);
576                         }
577
578                         if (status & (Rx_SYS | Rx_BRK)) {
579                                 icount->brk++;
580                                 /* SysRq discards the null char.  */
581                                 if (status & Rx_SYS)
582                                         continue;
583                         } else if (status & FRM_ERR)
584                                 icount->frame++;
585                         else if (status & PAR_ERR)
586                                 icount->parity++;
587                         if (status & Rx_OVR)
588                                 icount->overrun++;
589
590                         status &= uport->read_status_mask;
591                         if (status & Rx_BRK)
592                                 flag = TTY_BREAK;
593                         else if (status & FRM_ERR)
594                                 flag = TTY_FRAME;
595                         else if (status & PAR_ERR)
596                                 flag = TTY_PARITY;
597                 }
598
599                 if (uart_handle_sysrq_char(uport, ch))
600                         continue;
601
602                 uart_insert_char(uport, status, Rx_OVR, ch, flag);
603         }
604
605         tty_flip_buffer_push(uport->state->port.tty);
606 }
607
608 static void zs_raw_transmit_chars(struct zs_port *zport)
609 {
610         struct circ_buf *xmit = &zport->port.state->xmit;
611
612         /* XON/XOFF chars.  */
613         if (zport->port.x_char) {
614                 write_zsdata(zport, zport->port.x_char);
615                 zport->port.icount.tx++;
616                 zport->port.x_char = 0;
617                 return;
618         }
619
620         /* If nothing to do or stopped or hardware stopped.  */
621         if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
622                 zs_raw_stop_tx(zport);
623                 return;
624         }
625
626         /* Send char.  */
627         write_zsdata(zport, xmit->buf[xmit->tail]);
628         xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
629         zport->port.icount.tx++;
630
631         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
632                 uart_write_wakeup(&zport->port);
633
634         /* Are we are done?  */
635         if (uart_circ_empty(xmit))
636                 zs_raw_stop_tx(zport);
637 }
638
639 static void zs_transmit_chars(struct zs_port *zport)
640 {
641         struct zs_scc *scc = zport->scc;
642
643         spin_lock(&scc->zlock);
644         zs_raw_transmit_chars(zport);
645         spin_unlock(&scc->zlock);
646 }
647
648 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
649 {
650         struct uart_port *uport = &zport->port;
651         struct zs_scc *scc = zport->scc;
652         unsigned int delta;
653         u8 status, brk;
654
655         spin_lock(&scc->zlock);
656
657         /* Get status from Read Register 0.  */
658         status = read_zsreg(zport, R0);
659
660         if (zport->regs[15] & BRKIE) {
661                 brk = status & BRK_ABRT;
662                 if (brk && !zport->brk) {
663                         spin_unlock(&scc->zlock);
664                         if (uart_handle_break(uport))
665                                 zport->tty_break = Rx_SYS;
666                         else
667                                 zport->tty_break = Rx_BRK;
668                         spin_lock(&scc->zlock);
669                 }
670                 zport->brk = brk;
671         }
672
673         if (zport != zport_a) {
674                 delta = zs_raw_xor_mctrl(zport);
675                 spin_unlock(&scc->zlock);
676
677                 if (delta & TIOCM_CTS)
678                         uart_handle_cts_change(uport,
679                                                zport->mctrl & TIOCM_CTS);
680                 if (delta & TIOCM_CAR)
681                         uart_handle_dcd_change(uport,
682                                                zport->mctrl & TIOCM_CAR);
683                 if (delta & TIOCM_RNG)
684                         uport->icount.dsr++;
685                 if (delta & TIOCM_DSR)
686                         uport->icount.rng++;
687
688                 if (delta)
689                         wake_up_interruptible(&uport->state->port.delta_msr_wait);
690
691                 spin_lock(&scc->zlock);
692         }
693
694         /* Clear the status condition...  */
695         write_zsreg(zport, R0, RES_EXT_INT);
696
697         spin_unlock(&scc->zlock);
698 }
699
700 /*
701  * This is the Z85C30 driver's generic interrupt routine.
702  */
703 static irqreturn_t zs_interrupt(int irq, void *dev_id)
704 {
705         struct zs_scc *scc = dev_id;
706         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
707         struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
708         irqreturn_t status = IRQ_NONE;
709         u8 zs_intreg;
710         int count;
711
712         /*
713          * NOTE: The read register 3, which holds the irq status,
714          *       does so for both channels on each chip.  Although
715          *       the status value itself must be read from the A
716          *       channel and is only valid when read from channel A.
717          *       Yes... broken hardware...
718          */
719         for (count = 16; count; count--) {
720                 spin_lock(&scc->zlock);
721                 zs_intreg = read_zsreg(zport_a, R3);
722                 spin_unlock(&scc->zlock);
723                 if (!zs_intreg)
724                         break;
725
726                 /*
727                  * We do not like losing characters, so we prioritise
728                  * interrupt sources a little bit differently than
729                  * the SCC would, was it allowed to.
730                  */
731                 if (zs_intreg & CHBRxIP)
732                         zs_receive_chars(zport_b);
733                 if (zs_intreg & CHARxIP)
734                         zs_receive_chars(zport_a);
735                 if (zs_intreg & CHBEXT)
736                         zs_status_handle(zport_b, zport_a);
737                 if (zs_intreg & CHAEXT)
738                         zs_status_handle(zport_a, zport_a);
739                 if (zs_intreg & CHBTxIP)
740                         zs_transmit_chars(zport_b);
741                 if (zs_intreg & CHATxIP)
742                         zs_transmit_chars(zport_a);
743
744                 status = IRQ_HANDLED;
745         }
746
747         return status;
748 }
749
750
751 /*
752  * Finally, routines used to initialize the serial port.
753  */
754 static int zs_startup(struct uart_port *uport)
755 {
756         struct zs_port *zport = to_zport(uport);
757         struct zs_scc *scc = zport->scc;
758         unsigned long flags;
759         int irq_guard;
760         int ret;
761
762         irq_guard = atomic_add_return(1, &scc->irq_guard);
763         if (irq_guard == 1) {
764                 ret = request_irq(zport->port.irq, zs_interrupt,
765                                   IRQF_SHARED, "scc", scc);
766                 if (ret) {
767                         atomic_add(-1, &scc->irq_guard);
768                         printk(KERN_ERR "zs: can't get irq %d\n",
769                                zport->port.irq);
770                         return ret;
771                 }
772         }
773
774         spin_lock_irqsave(&scc->zlock, flags);
775
776         /* Clear the receive FIFO.  */
777         zs_receive_drain(zport);
778
779         /* Clear the interrupt registers.  */
780         write_zsreg(zport, R0, ERR_RES);
781         write_zsreg(zport, R0, RES_Tx_P);
782         /* But Ext only if not being handled already.  */
783         if (!(zport->regs[1] & EXT_INT_ENAB))
784                 write_zsreg(zport, R0, RES_EXT_INT);
785
786         /* Finally, enable sequencing and interrupts.  */
787         zport->regs[1] &= ~RxINT_MASK;
788         zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
789         zport->regs[3] |= RxENABLE;
790         zport->regs[15] |= BRKIE;
791         write_zsreg(zport, R1, zport->regs[1]);
792         write_zsreg(zport, R3, zport->regs[3]);
793         write_zsreg(zport, R5, zport->regs[5]);
794         write_zsreg(zport, R15, zport->regs[15]);
795
796         /* Record the current state of RR0.  */
797         zport->mctrl = zs_raw_get_mctrl(zport);
798         zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
799
800         zport->tx_stopped = 1;
801
802         spin_unlock_irqrestore(&scc->zlock, flags);
803
804         return 0;
805 }
806
807 static void zs_shutdown(struct uart_port *uport)
808 {
809         struct zs_port *zport = to_zport(uport);
810         struct zs_scc *scc = zport->scc;
811         unsigned long flags;
812         int irq_guard;
813
814         spin_lock_irqsave(&scc->zlock, flags);
815
816         zport->regs[3] &= ~RxENABLE;
817         write_zsreg(zport, R5, zport->regs[5]);
818         write_zsreg(zport, R3, zport->regs[3]);
819
820         spin_unlock_irqrestore(&scc->zlock, flags);
821
822         irq_guard = atomic_add_return(-1, &scc->irq_guard);
823         if (!irq_guard)
824                 free_irq(zport->port.irq, scc);
825 }
826
827
828 static void zs_reset(struct zs_port *zport)
829 {
830         struct zs_scc *scc = zport->scc;
831         int irq;
832         unsigned long flags;
833
834         spin_lock_irqsave(&scc->zlock, flags);
835         irq = !irqs_disabled_flags(flags);
836         if (!scc->initialised) {
837                 /* Reset the pointer first, just in case...  */
838                 read_zsreg(zport, R0);
839                 /* And let the current transmission finish.  */
840                 zs_line_drain(zport, irq);
841                 write_zsreg(zport, R9, FHWRES);
842                 udelay(10);
843                 write_zsreg(zport, R9, 0);
844                 scc->initialised = 1;
845         }
846         load_zsregs(zport, zport->regs, irq);
847         spin_unlock_irqrestore(&scc->zlock, flags);
848 }
849
850 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
851                            struct ktermios *old_termios)
852 {
853         struct zs_port *zport = to_zport(uport);
854         struct zs_scc *scc = zport->scc;
855         struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
856         int irq;
857         unsigned int baud, brg;
858         unsigned long flags;
859
860         spin_lock_irqsave(&scc->zlock, flags);
861         irq = !irqs_disabled_flags(flags);
862
863         /* Byte size.  */
864         zport->regs[3] &= ~RxNBITS_MASK;
865         zport->regs[5] &= ~TxNBITS_MASK;
866         switch (termios->c_cflag & CSIZE) {
867         case CS5:
868                 zport->regs[3] |= Rx5;
869                 zport->regs[5] |= Tx5;
870                 break;
871         case CS6:
872                 zport->regs[3] |= Rx6;
873                 zport->regs[5] |= Tx6;
874                 break;
875         case CS7:
876                 zport->regs[3] |= Rx7;
877                 zport->regs[5] |= Tx7;
878                 break;
879         case CS8:
880         default:
881                 zport->regs[3] |= Rx8;
882                 zport->regs[5] |= Tx8;
883                 break;
884         }
885
886         /* Parity and stop bits.  */
887         zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
888         if (termios->c_cflag & CSTOPB)
889                 zport->regs[4] |= SB2;
890         else
891                 zport->regs[4] |= SB1;
892         if (termios->c_cflag & PARENB)
893                 zport->regs[4] |= PAR_ENA;
894         if (!(termios->c_cflag & PARODD))
895                 zport->regs[4] |= PAR_EVEN;
896         switch (zport->clk_mode) {
897         case 64:
898                 zport->regs[4] |= X64CLK;
899                 break;
900         case 32:
901                 zport->regs[4] |= X32CLK;
902                 break;
903         case 16:
904                 zport->regs[4] |= X16CLK;
905                 break;
906         case 1:
907                 zport->regs[4] |= X1CLK;
908                 break;
909         default:
910                 BUG();
911         }
912
913         baud = uart_get_baud_rate(uport, termios, old_termios, 0,
914                                   uport->uartclk / zport->clk_mode / 4);
915
916         brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
917         zport->regs[12] = brg & 0xff;
918         zport->regs[13] = (brg >> 8) & 0xff;
919
920         uart_update_timeout(uport, termios->c_cflag, baud);
921
922         uport->read_status_mask = Rx_OVR;
923         if (termios->c_iflag & INPCK)
924                 uport->read_status_mask |= FRM_ERR | PAR_ERR;
925         if (termios->c_iflag & (BRKINT | PARMRK))
926                 uport->read_status_mask |= Rx_BRK;
927
928         uport->ignore_status_mask = 0;
929         if (termios->c_iflag & IGNPAR)
930                 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
931         if (termios->c_iflag & IGNBRK) {
932                 uport->ignore_status_mask |= Rx_BRK;
933                 if (termios->c_iflag & IGNPAR)
934                         uport->ignore_status_mask |= Rx_OVR;
935         }
936
937         if (termios->c_cflag & CREAD)
938                 zport->regs[3] |= RxENABLE;
939         else
940                 zport->regs[3] &= ~RxENABLE;
941
942         if (zport != zport_a) {
943                 if (!(termios->c_cflag & CLOCAL)) {
944                         zport->regs[15] |= DCDIE;
945                 } else
946                         zport->regs[15] &= ~DCDIE;
947                 if (termios->c_cflag & CRTSCTS) {
948                         zport->regs[15] |= CTSIE;
949                 } else
950                         zport->regs[15] &= ~CTSIE;
951                 zs_raw_xor_mctrl(zport);
952         }
953
954         /* Load up the new values.  */
955         load_zsregs(zport, zport->regs, irq);
956
957         spin_unlock_irqrestore(&scc->zlock, flags);
958 }
959
960 /*
961  * Hack alert!
962  * Required solely so that the initial PROM-based console
963  * works undisturbed in parallel with this one.
964  */
965 static void zs_pm(struct uart_port *uport, unsigned int state,
966                   unsigned int oldstate)
967 {
968         struct zs_port *zport = to_zport(uport);
969
970         if (state < 3)
971                 zport->regs[5] |= TxENAB;
972         else
973                 zport->regs[5] &= ~TxENAB;
974         write_zsreg(zport, R5, zport->regs[5]);
975 }
976
977
978 static const char *zs_type(struct uart_port *uport)
979 {
980         return "Z85C30 SCC";
981 }
982
983 static void zs_release_port(struct uart_port *uport)
984 {
985         iounmap(uport->membase);
986         uport->membase = 0;
987         release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
988 }
989
990 static int zs_map_port(struct uart_port *uport)
991 {
992         if (!uport->membase)
993                 uport->membase = ioremap_nocache(uport->mapbase,
994                                                  ZS_CHAN_IO_SIZE);
995         if (!uport->membase) {
996                 printk(KERN_ERR "zs: Cannot map MMIO\n");
997                 return -ENOMEM;
998         }
999         return 0;
1000 }
1001
1002 static int zs_request_port(struct uart_port *uport)
1003 {
1004         int ret;
1005
1006         if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1007                 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1008                 return -EBUSY;
1009         }
1010         ret = zs_map_port(uport);
1011         if (ret) {
1012                 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1013                 return ret;
1014         }
1015         return 0;
1016 }
1017
1018 static void zs_config_port(struct uart_port *uport, int flags)
1019 {
1020         struct zs_port *zport = to_zport(uport);
1021
1022         if (flags & UART_CONFIG_TYPE) {
1023                 if (zs_request_port(uport))
1024                         return;
1025
1026                 uport->type = PORT_ZS;
1027
1028                 zs_reset(zport);
1029         }
1030 }
1031
1032 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1033 {
1034         struct zs_port *zport = to_zport(uport);
1035         int ret = 0;
1036
1037         if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1038                 ret = -EINVAL;
1039         if (ser->irq != uport->irq)
1040                 ret = -EINVAL;
1041         if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1042                 ret = -EINVAL;
1043         return ret;
1044 }
1045
1046
1047 static struct uart_ops zs_ops = {
1048         .tx_empty       = zs_tx_empty,
1049         .set_mctrl      = zs_set_mctrl,
1050         .get_mctrl      = zs_get_mctrl,
1051         .stop_tx        = zs_stop_tx,
1052         .start_tx       = zs_start_tx,
1053         .stop_rx        = zs_stop_rx,
1054         .enable_ms      = zs_enable_ms,
1055         .break_ctl      = zs_break_ctl,
1056         .startup        = zs_startup,
1057         .shutdown       = zs_shutdown,
1058         .set_termios    = zs_set_termios,
1059         .pm             = zs_pm,
1060         .type           = zs_type,
1061         .release_port   = zs_release_port,
1062         .request_port   = zs_request_port,
1063         .config_port    = zs_config_port,
1064         .verify_port    = zs_verify_port,
1065 };
1066
1067 /*
1068  * Initialize Z85C30 port structures.
1069  */
1070 static int __init zs_probe_sccs(void)
1071 {
1072         static int probed;
1073         struct zs_parms zs_parms;
1074         int chip, side, irq;
1075         int n_chips = 0;
1076         int i;
1077
1078         if (probed)
1079                 return 0;
1080
1081         irq = dec_interrupt[DEC_IRQ_SCC0];
1082         if (irq >= 0) {
1083                 zs_parms.scc[n_chips] = IOASIC_SCC0;
1084                 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1085                 n_chips++;
1086         }
1087         irq = dec_interrupt[DEC_IRQ_SCC1];
1088         if (irq >= 0) {
1089                 zs_parms.scc[n_chips] = IOASIC_SCC1;
1090                 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1091                 n_chips++;
1092         }
1093         if (!n_chips)
1094                 return -ENXIO;
1095
1096         probed = 1;
1097
1098         for (chip = 0; chip < n_chips; chip++) {
1099                 spin_lock_init(&zs_sccs[chip].zlock);
1100                 for (side = 0; side < ZS_NUM_CHAN; side++) {
1101                         struct zs_port *zport = &zs_sccs[chip].zport[side];
1102                         struct uart_port *uport = &zport->port;
1103
1104                         zport->scc      = &zs_sccs[chip];
1105                         zport->clk_mode = 16;
1106
1107                         uport->irq      = zs_parms.irq[chip];
1108                         uport->uartclk  = ZS_CLOCK;
1109                         uport->fifosize = 1;
1110                         uport->iotype   = UPIO_MEM;
1111                         uport->flags    = UPF_BOOT_AUTOCONF;
1112                         uport->ops      = &zs_ops;
1113                         uport->line     = chip * ZS_NUM_CHAN + side;
1114                         uport->mapbase  = dec_kn_slot_base +
1115                                           zs_parms.scc[chip] +
1116                                           (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1117
1118                         for (i = 0; i < ZS_NUM_REGS; i++)
1119                                 zport->regs[i] = zs_init_regs[i];
1120                 }
1121         }
1122
1123         return 0;
1124 }
1125
1126
1127 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1128 static void zs_console_putchar(struct uart_port *uport, int ch)
1129 {
1130         struct zs_port *zport = to_zport(uport);
1131         struct zs_scc *scc = zport->scc;
1132         int irq;
1133         unsigned long flags;
1134
1135         spin_lock_irqsave(&scc->zlock, flags);
1136         irq = !irqs_disabled_flags(flags);
1137         if (zs_transmit_drain(zport, irq))
1138                 write_zsdata(zport, ch);
1139         spin_unlock_irqrestore(&scc->zlock, flags);
1140 }
1141
1142 /*
1143  * Print a string to the serial port trying not to disturb
1144  * any possible real use of the port...
1145  */
1146 static void zs_console_write(struct console *co, const char *s,
1147                              unsigned int count)
1148 {
1149         int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1150         struct zs_port *zport = &zs_sccs[chip].zport[side];
1151         struct zs_scc *scc = zport->scc;
1152         unsigned long flags;
1153         u8 txint, txenb;
1154         int irq;
1155
1156         /* Disable transmit interrupts and enable the transmitter. */
1157         spin_lock_irqsave(&scc->zlock, flags);
1158         txint = zport->regs[1];
1159         txenb = zport->regs[5];
1160         if (txint & TxINT_ENAB) {
1161                 zport->regs[1] = txint & ~TxINT_ENAB;
1162                 write_zsreg(zport, R1, zport->regs[1]);
1163         }
1164         if (!(txenb & TxENAB)) {
1165                 zport->regs[5] = txenb | TxENAB;
1166                 write_zsreg(zport, R5, zport->regs[5]);
1167         }
1168         spin_unlock_irqrestore(&scc->zlock, flags);
1169
1170         uart_console_write(&zport->port, s, count, zs_console_putchar);
1171
1172         /* Restore transmit interrupts and the transmitter enable. */
1173         spin_lock_irqsave(&scc->zlock, flags);
1174         irq = !irqs_disabled_flags(flags);
1175         zs_line_drain(zport, irq);
1176         if (!(txenb & TxENAB)) {
1177                 zport->regs[5] &= ~TxENAB;
1178                 write_zsreg(zport, R5, zport->regs[5]);
1179         }
1180         if (txint & TxINT_ENAB) {
1181                 zport->regs[1] |= TxINT_ENAB;
1182                 write_zsreg(zport, R1, zport->regs[1]);
1183         }
1184         spin_unlock_irqrestore(&scc->zlock, flags);
1185 }
1186
1187 /*
1188  * Setup serial console baud/bits/parity.  We do two things here:
1189  * - construct a cflag setting for the first uart_open()
1190  * - initialise the serial port
1191  * Return non-zero if we didn't find a serial port.
1192  */
1193 static int __init zs_console_setup(struct console *co, char *options)
1194 {
1195         int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1196         struct zs_port *zport = &zs_sccs[chip].zport[side];
1197         struct uart_port *uport = &zport->port;
1198         int baud = 9600;
1199         int bits = 8;
1200         int parity = 'n';
1201         int flow = 'n';
1202         int ret;
1203
1204         ret = zs_map_port(uport);
1205         if (ret)
1206                 return ret;
1207
1208         zs_reset(zport);
1209         zs_pm(uport, 0, -1);
1210
1211         if (options)
1212                 uart_parse_options(options, &baud, &parity, &bits, &flow);
1213         return uart_set_options(uport, co, baud, parity, bits, flow);
1214 }
1215
1216 static struct uart_driver zs_reg;
1217 static struct console zs_console = {
1218         .name   = "ttyS",
1219         .write  = zs_console_write,
1220         .device = uart_console_device,
1221         .setup  = zs_console_setup,
1222         .flags  = CON_PRINTBUFFER,
1223         .index  = -1,
1224         .data   = &zs_reg,
1225 };
1226
1227 /*
1228  *      Register console.
1229  */
1230 static int __init zs_serial_console_init(void)
1231 {
1232         int ret;
1233
1234         ret = zs_probe_sccs();
1235         if (ret)
1236                 return ret;
1237         register_console(&zs_console);
1238
1239         return 0;
1240 }
1241
1242 console_initcall(zs_serial_console_init);
1243
1244 #define SERIAL_ZS_CONSOLE       &zs_console
1245 #else
1246 #define SERIAL_ZS_CONSOLE       NULL
1247 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1248
1249 static struct uart_driver zs_reg = {
1250         .owner                  = THIS_MODULE,
1251         .driver_name            = "serial",
1252         .dev_name               = "ttyS",
1253         .major                  = TTY_MAJOR,
1254         .minor                  = 64,
1255         .nr                     = ZS_NUM_SCCS * ZS_NUM_CHAN,
1256         .cons                   = SERIAL_ZS_CONSOLE,
1257 };
1258
1259 /* zs_init inits the driver. */
1260 static int __init zs_init(void)
1261 {
1262         int i, ret;
1263
1264         pr_info("%s%s\n", zs_name, zs_version);
1265
1266         /* Find out how many Z85C30 SCCs we have.  */
1267         ret = zs_probe_sccs();
1268         if (ret)
1269                 return ret;
1270
1271         ret = uart_register_driver(&zs_reg);
1272         if (ret)
1273                 return ret;
1274
1275         for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1276                 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1277                 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1278                 struct uart_port *uport = &zport->port;
1279
1280                 if (zport->scc)
1281                         uart_add_one_port(&zs_reg, uport);
1282         }
1283
1284         return 0;
1285 }
1286
1287 static void __exit zs_exit(void)
1288 {
1289         int i;
1290
1291         for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1292                 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1293                 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1294                 struct uart_port *uport = &zport->port;
1295
1296                 if (zport->scc)
1297                         uart_remove_one_port(&zs_reg, uport);
1298         }
1299
1300         uart_unregister_driver(&zs_reg);
1301 }
1302
1303 module_init(zs_init);
1304 module_exit(zs_exit);