Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38                              u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41 /* ---------- SMP task management ---------- */
42
43 static void smp_task_timedout(unsigned long _task)
44 {
45         struct sas_task *task = (void *) _task;
46         unsigned long flags;
47
48         spin_lock_irqsave(&task->task_state_lock, flags);
49         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51         spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53         complete(&task->completion);
54 }
55
56 static void smp_task_done(struct sas_task *task)
57 {
58         if (!del_timer(&task->timer))
59                 return;
60         complete(&task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67                             void *resp, int resp_size)
68 {
69         int res, retry;
70         struct sas_task *task = NULL;
71         struct sas_internal *i =
72                 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74         for (retry = 0; retry < 3; retry++) {
75                 task = sas_alloc_task(GFP_KERNEL);
76                 if (!task)
77                         return -ENOMEM;
78
79                 task->dev = dev;
80                 task->task_proto = dev->tproto;
81                 sg_init_one(&task->smp_task.smp_req, req, req_size);
82                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84                 task->task_done = smp_task_done;
85
86                 task->timer.data = (unsigned long) task;
87                 task->timer.function = smp_task_timedout;
88                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89                 add_timer(&task->timer);
90
91                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93                 if (res) {
94                         del_timer(&task->timer);
95                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
96                         goto ex_err;
97                 }
98
99                 wait_for_completion(&task->completion);
100                 res = -ECOMM;
101                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102                         SAS_DPRINTK("smp task timed out or aborted\n");
103                         i->dft->lldd_abort_task(task);
104                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105                                 SAS_DPRINTK("SMP task aborted and not done\n");
106                                 goto ex_err;
107                         }
108                 }
109                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110                     task->task_status.stat == SAM_STAT_GOOD) {
111                         res = 0;
112                         break;
113                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114                       task->task_status.stat == SAS_DATA_UNDERRUN) {
115                         /* no error, but return the number of bytes of
116                          * underrun */
117                         res = task->task_status.residual;
118                         break;
119                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120                       task->task_status.stat == SAS_DATA_OVERRUN) {
121                         res = -EMSGSIZE;
122                         break;
123                 } else {
124                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125                                     "status 0x%x\n", __func__,
126                                     SAS_ADDR(dev->sas_addr),
127                                     task->task_status.resp,
128                                     task->task_status.stat);
129                         sas_free_task(task);
130                         task = NULL;
131                 }
132         }
133 ex_err:
134         BUG_ON(retry == 3 && task != NULL);
135         if (task != NULL) {
136                 sas_free_task(task);
137         }
138         return res;
139 }
140
141 /* ---------- Allocations ---------- */
142
143 static inline void *alloc_smp_req(int size)
144 {
145         u8 *p = kzalloc(size, GFP_KERNEL);
146         if (p)
147                 p[0] = SMP_REQUEST;
148         return p;
149 }
150
151 static inline void *alloc_smp_resp(int size)
152 {
153         return kzalloc(size, GFP_KERNEL);
154 }
155
156 /* ---------- Expander configuration ---------- */
157
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159                            void *disc_resp)
160 {
161         struct expander_device *ex = &dev->ex_dev;
162         struct ex_phy *phy = &ex->ex_phy[phy_id];
163         struct smp_resp *resp = disc_resp;
164         struct discover_resp *dr = &resp->disc;
165         struct sas_rphy *rphy = dev->rphy;
166         int rediscover = (phy->phy != NULL);
167
168         if (!rediscover) {
169                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171                 /* FIXME: error_handling */
172                 BUG_ON(!phy->phy);
173         }
174
175         switch (resp->result) {
176         case SMP_RESP_PHY_VACANT:
177                 phy->phy_state = PHY_VACANT;
178                 break;
179         default:
180                 phy->phy_state = PHY_NOT_PRESENT;
181                 break;
182         case SMP_RESP_FUNC_ACC:
183                 phy->phy_state = PHY_EMPTY; /* do not know yet */
184                 break;
185         }
186
187         phy->phy_id = phy_id;
188         phy->attached_dev_type = dr->attached_dev_type;
189         phy->linkrate = dr->linkrate;
190         phy->attached_sata_host = dr->attached_sata_host;
191         phy->attached_sata_dev  = dr->attached_sata_dev;
192         phy->attached_sata_ps   = dr->attached_sata_ps;
193         phy->attached_iproto = dr->iproto << 1;
194         phy->attached_tproto = dr->tproto << 1;
195         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196         phy->attached_phy_id = dr->attached_phy_id;
197         phy->phy_change_count = dr->change_count;
198         phy->routing_attr = dr->routing_attr;
199         phy->virtual = dr->virtual;
200         phy->last_da_index = -1;
201
202         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203         phy->phy->identify.target_port_protocols = phy->attached_tproto;
204         phy->phy->identify.phy_identifier = phy_id;
205         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207         phy->phy->minimum_linkrate = dr->pmin_linkrate;
208         phy->phy->maximum_linkrate = dr->pmax_linkrate;
209         phy->phy->negotiated_linkrate = phy->linkrate;
210
211         if (!rediscover)
212                 if (sas_phy_add(phy->phy)) {
213                         sas_phy_free(phy->phy);
214                         return;
215                 }
216
217         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218                     SAS_ADDR(dev->sas_addr), phy->phy_id,
219                     phy->routing_attr == TABLE_ROUTING ? 'T' :
220                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
221                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222                     SAS_ADDR(phy->attached_sas_addr));
223
224         return;
225 }
226
227 #define DISCOVER_REQ_SIZE  16
228 #define DISCOVER_RESP_SIZE 56
229
230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231                                       u8 *disc_resp, int single)
232 {
233         int i, res;
234
235         disc_req[9] = single;
236         for (i = 1 ; i < 3; i++) {
237                 struct discover_resp *dr;
238
239                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240                                        disc_resp, DISCOVER_RESP_SIZE);
241                 if (res)
242                         return res;
243                 /* This is detecting a failure to transmit initial
244                  * dev to host FIS as described in section G.5 of
245                  * sas-2 r 04b */
246                 dr = &((struct smp_resp *)disc_resp)->disc;
247                 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248                           SAS_ADDR_SIZE) == 0) {
249                         sas_printk("Found loopback topology, just ignore it!\n");
250                         return 0;
251                 }
252                 if (!(dr->attached_dev_type == 0 &&
253                       dr->attached_sata_dev))
254                         break;
255                 /* In order to generate the dev to host FIS, we
256                  * send a link reset to the expander port */
257                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258                 /* Wait for the reset to trigger the negotiation */
259                 msleep(500);
260         }
261         sas_set_ex_phy(dev, single, disc_resp);
262         return 0;
263 }
264
265 static int sas_ex_phy_discover(struct domain_device *dev, int single)
266 {
267         struct expander_device *ex = &dev->ex_dev;
268         int  res = 0;
269         u8   *disc_req;
270         u8   *disc_resp;
271
272         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273         if (!disc_req)
274                 return -ENOMEM;
275
276         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277         if (!disc_resp) {
278                 kfree(disc_req);
279                 return -ENOMEM;
280         }
281
282         disc_req[1] = SMP_DISCOVER;
283
284         if (0 <= single && single < ex->num_phys) {
285                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286         } else {
287                 int i;
288
289                 for (i = 0; i < ex->num_phys; i++) {
290                         res = sas_ex_phy_discover_helper(dev, disc_req,
291                                                          disc_resp, i);
292                         if (res)
293                                 goto out_err;
294                 }
295         }
296 out_err:
297         kfree(disc_resp);
298         kfree(disc_req);
299         return res;
300 }
301
302 static int sas_expander_discover(struct domain_device *dev)
303 {
304         struct expander_device *ex = &dev->ex_dev;
305         int res = -ENOMEM;
306
307         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308         if (!ex->ex_phy)
309                 return -ENOMEM;
310
311         res = sas_ex_phy_discover(dev, -1);
312         if (res)
313                 goto out_err;
314
315         return 0;
316  out_err:
317         kfree(ex->ex_phy);
318         ex->ex_phy = NULL;
319         return res;
320 }
321
322 #define MAX_EXPANDER_PHYS 128
323
324 static void ex_assign_report_general(struct domain_device *dev,
325                                             struct smp_resp *resp)
326 {
327         struct report_general_resp *rg = &resp->rg;
328
329         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332         dev->ex_dev.conf_route_table = rg->conf_route_table;
333         dev->ex_dev.configuring = rg->configuring;
334         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
335 }
336
337 #define RG_REQ_SIZE   8
338 #define RG_RESP_SIZE 32
339
340 static int sas_ex_general(struct domain_device *dev)
341 {
342         u8 *rg_req;
343         struct smp_resp *rg_resp;
344         int res;
345         int i;
346
347         rg_req = alloc_smp_req(RG_REQ_SIZE);
348         if (!rg_req)
349                 return -ENOMEM;
350
351         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352         if (!rg_resp) {
353                 kfree(rg_req);
354                 return -ENOMEM;
355         }
356
357         rg_req[1] = SMP_REPORT_GENERAL;
358
359         for (i = 0; i < 5; i++) {
360                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361                                        RG_RESP_SIZE);
362
363                 if (res) {
364                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365                                     SAS_ADDR(dev->sas_addr), res);
366                         goto out;
367                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
370                         res = rg_resp->result;
371                         goto out;
372                 }
373
374                 ex_assign_report_general(dev, rg_resp);
375
376                 if (dev->ex_dev.configuring) {
377                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378                                     SAS_ADDR(dev->sas_addr));
379                         schedule_timeout_interruptible(5*HZ);
380                 } else
381                         break;
382         }
383 out:
384         kfree(rg_req);
385         kfree(rg_resp);
386         return res;
387 }
388
389 static void ex_assign_manuf_info(struct domain_device *dev, void
390                                         *_mi_resp)
391 {
392         u8 *mi_resp = _mi_resp;
393         struct sas_rphy *rphy = dev->rphy;
394         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
395
396         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398         memcpy(edev->product_rev, mi_resp + 36,
399                SAS_EXPANDER_PRODUCT_REV_LEN);
400
401         if (mi_resp[8] & 1) {
402                 memcpy(edev->component_vendor_id, mi_resp + 40,
403                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405                 edev->component_revision_id = mi_resp[50];
406         }
407 }
408
409 #define MI_REQ_SIZE   8
410 #define MI_RESP_SIZE 64
411
412 static int sas_ex_manuf_info(struct domain_device *dev)
413 {
414         u8 *mi_req;
415         u8 *mi_resp;
416         int res;
417
418         mi_req = alloc_smp_req(MI_REQ_SIZE);
419         if (!mi_req)
420                 return -ENOMEM;
421
422         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423         if (!mi_resp) {
424                 kfree(mi_req);
425                 return -ENOMEM;
426         }
427
428         mi_req[1] = SMP_REPORT_MANUF_INFO;
429
430         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431         if (res) {
432                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433                             SAS_ADDR(dev->sas_addr), res);
434                 goto out;
435         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
438                 goto out;
439         }
440
441         ex_assign_manuf_info(dev, mi_resp);
442 out:
443         kfree(mi_req);
444         kfree(mi_resp);
445         return res;
446 }
447
448 #define PC_REQ_SIZE  44
449 #define PC_RESP_SIZE 8
450
451 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452                         enum phy_func phy_func,
453                         struct sas_phy_linkrates *rates)
454 {
455         u8 *pc_req;
456         u8 *pc_resp;
457         int res;
458
459         pc_req = alloc_smp_req(PC_REQ_SIZE);
460         if (!pc_req)
461                 return -ENOMEM;
462
463         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464         if (!pc_resp) {
465                 kfree(pc_req);
466                 return -ENOMEM;
467         }
468
469         pc_req[1] = SMP_PHY_CONTROL;
470         pc_req[9] = phy_id;
471         pc_req[10]= phy_func;
472         if (rates) {
473                 pc_req[32] = rates->minimum_linkrate << 4;
474                 pc_req[33] = rates->maximum_linkrate << 4;
475         }
476
477         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
478
479         kfree(pc_resp);
480         kfree(pc_req);
481         return res;
482 }
483
484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
485 {
486         struct expander_device *ex = &dev->ex_dev;
487         struct ex_phy *phy = &ex->ex_phy[phy_id];
488
489         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490         phy->linkrate = SAS_PHY_DISABLED;
491 }
492
493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
494 {
495         struct expander_device *ex = &dev->ex_dev;
496         int i;
497
498         for (i = 0; i < ex->num_phys; i++) {
499                 struct ex_phy *phy = &ex->ex_phy[i];
500
501                 if (phy->phy_state == PHY_VACANT ||
502                     phy->phy_state == PHY_NOT_PRESENT)
503                         continue;
504
505                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506                         sas_ex_disable_phy(dev, i);
507         }
508 }
509
510 static int sas_dev_present_in_domain(struct asd_sas_port *port,
511                                             u8 *sas_addr)
512 {
513         struct domain_device *dev;
514
515         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516                 return 1;
517         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519                         return 1;
520         }
521         return 0;
522 }
523
524 #define RPEL_REQ_SIZE   16
525 #define RPEL_RESP_SIZE  32
526 int sas_smp_get_phy_events(struct sas_phy *phy)
527 {
528         int res;
529         u8 *req;
530         u8 *resp;
531         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
533
534         req = alloc_smp_req(RPEL_REQ_SIZE);
535         if (!req)
536                 return -ENOMEM;
537
538         resp = alloc_smp_resp(RPEL_RESP_SIZE);
539         if (!resp) {
540                 kfree(req);
541                 return -ENOMEM;
542         }
543
544         req[1] = SMP_REPORT_PHY_ERR_LOG;
545         req[9] = phy->number;
546
547         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548                                     resp, RPEL_RESP_SIZE);
549
550         if (!res)
551                 goto out;
552
553         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
557
558  out:
559         kfree(resp);
560         return res;
561
562 }
563
564 #ifdef CONFIG_SCSI_SAS_ATA
565
566 #define RPS_REQ_SIZE  16
567 #define RPS_RESP_SIZE 60
568
569 static int sas_get_report_phy_sata(struct domain_device *dev,
570                                           int phy_id,
571                                           struct smp_resp *rps_resp)
572 {
573         int res;
574         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575         u8 *resp = (u8 *)rps_resp;
576
577         if (!rps_req)
578                 return -ENOMEM;
579
580         rps_req[1] = SMP_REPORT_PHY_SATA;
581         rps_req[9] = phy_id;
582
583         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584                                     rps_resp, RPS_RESP_SIZE);
585
586         /* 0x34 is the FIS type for the D2H fis.  There's a potential
587          * standards cockup here.  sas-2 explicitly specifies the FIS
588          * should be encoded so that FIS type is in resp[24].
589          * However, some expanders endian reverse this.  Undo the
590          * reversal here */
591         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592                 int i;
593
594                 for (i = 0; i < 5; i++) {
595                         int j = 24 + (i*4);
596                         u8 a, b;
597                         a = resp[j + 0];
598                         b = resp[j + 1];
599                         resp[j + 0] = resp[j + 3];
600                         resp[j + 1] = resp[j + 2];
601                         resp[j + 2] = b;
602                         resp[j + 3] = a;
603                 }
604         }
605
606         kfree(rps_req);
607         return res;
608 }
609 #endif
610
611 static void sas_ex_get_linkrate(struct domain_device *parent,
612                                        struct domain_device *child,
613                                        struct ex_phy *parent_phy)
614 {
615         struct expander_device *parent_ex = &parent->ex_dev;
616         struct sas_port *port;
617         int i;
618
619         child->pathways = 0;
620
621         port = parent_phy->port;
622
623         for (i = 0; i < parent_ex->num_phys; i++) {
624                 struct ex_phy *phy = &parent_ex->ex_phy[i];
625
626                 if (phy->phy_state == PHY_VACANT ||
627                     phy->phy_state == PHY_NOT_PRESENT)
628                         continue;
629
630                 if (SAS_ADDR(phy->attached_sas_addr) ==
631                     SAS_ADDR(child->sas_addr)) {
632
633                         child->min_linkrate = min(parent->min_linkrate,
634                                                   phy->linkrate);
635                         child->max_linkrate = max(parent->max_linkrate,
636                                                   phy->linkrate);
637                         child->pathways++;
638                         sas_port_add_phy(port, phy->phy);
639                 }
640         }
641         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642         child->pathways = min(child->pathways, parent->pathways);
643 }
644
645 static struct domain_device *sas_ex_discover_end_dev(
646         struct domain_device *parent, int phy_id)
647 {
648         struct expander_device *parent_ex = &parent->ex_dev;
649         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650         struct domain_device *child = NULL;
651         struct sas_rphy *rphy;
652         int res;
653
654         if (phy->attached_sata_host || phy->attached_sata_ps)
655                 return NULL;
656
657         child = kzalloc(sizeof(*child), GFP_KERNEL);
658         if (!child)
659                 return NULL;
660
661         child->parent = parent;
662         child->port   = parent->port;
663         child->iproto = phy->attached_iproto;
664         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666         if (!phy->port) {
667                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668                 if (unlikely(!phy->port))
669                         goto out_err;
670                 if (unlikely(sas_port_add(phy->port) != 0)) {
671                         sas_port_free(phy->port);
672                         goto out_err;
673                 }
674         }
675         sas_ex_get_linkrate(parent, child, phy);
676
677 #ifdef CONFIG_SCSI_SAS_ATA
678         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679                 child->dev_type = SATA_DEV;
680                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681                         child->tproto = phy->attached_tproto;
682                 if (phy->attached_sata_dev)
683                         child->tproto |= SATA_DEV;
684                 res = sas_get_report_phy_sata(parent, phy_id,
685                                               &child->sata_dev.rps_resp);
686                 if (res) {
687                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
689                                     phy_id, res);
690                         goto out_free;
691                 }
692                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693                        sizeof(struct dev_to_host_fis));
694
695                 rphy = sas_end_device_alloc(phy->port);
696                 if (unlikely(!rphy))
697                         goto out_free;
698
699                 sas_init_dev(child);
700
701                 child->rphy = rphy;
702
703                 spin_lock_irq(&parent->port->dev_list_lock);
704                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705                 spin_unlock_irq(&parent->port->dev_list_lock);
706
707                 res = sas_discover_sata(child);
708                 if (res) {
709                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710                                     "%016llx:0x%x returned 0x%x\n",
711                                     SAS_ADDR(child->sas_addr),
712                                     SAS_ADDR(parent->sas_addr), phy_id, res);
713                         goto out_list_del;
714                 }
715         } else
716 #endif
717           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718                 child->dev_type = SAS_END_DEV;
719                 rphy = sas_end_device_alloc(phy->port);
720                 /* FIXME: error handling */
721                 if (unlikely(!rphy))
722                         goto out_free;
723                 child->tproto = phy->attached_tproto;
724                 sas_init_dev(child);
725
726                 child->rphy = rphy;
727                 sas_fill_in_rphy(child, rphy);
728
729                 spin_lock_irq(&parent->port->dev_list_lock);
730                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731                 spin_unlock_irq(&parent->port->dev_list_lock);
732
733                 res = sas_discover_end_dev(child);
734                 if (res) {
735                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736                                     "at %016llx:0x%x returned 0x%x\n",
737                                     SAS_ADDR(child->sas_addr),
738                                     SAS_ADDR(parent->sas_addr), phy_id, res);
739                         goto out_list_del;
740                 }
741         } else {
742                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744                             phy_id);
745                 goto out_free;
746         }
747
748         list_add_tail(&child->siblings, &parent_ex->children);
749         return child;
750
751  out_list_del:
752         sas_rphy_free(child->rphy);
753         child->rphy = NULL;
754         list_del(&child->dev_list_node);
755  out_free:
756         sas_port_delete(phy->port);
757  out_err:
758         phy->port = NULL;
759         kfree(child);
760         return NULL;
761 }
762
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
765 {
766         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767         int i;
768
769         for (i = 0; i < parent->ex_dev.num_phys; i++) {
770                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
771
772                 if (ephy == phy)
773                         continue;
774
775                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776                             SAS_ADDR_SIZE) && ephy->port) {
777                         sas_port_add_phy(ephy->port, phy->phy);
778                         phy->port = ephy->port;
779                         phy->phy_state = PHY_DEVICE_DISCOVERED;
780                         return 0;
781                 }
782         }
783
784         return -ENODEV;
785 }
786
787 static struct domain_device *sas_ex_discover_expander(
788         struct domain_device *parent, int phy_id)
789 {
790         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792         struct domain_device *child = NULL;
793         struct sas_rphy *rphy;
794         struct sas_expander_device *edev;
795         struct asd_sas_port *port;
796         int res;
797
798         if (phy->routing_attr == DIRECT_ROUTING) {
799                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800                             "allowed\n",
801                             SAS_ADDR(parent->sas_addr), phy_id,
802                             SAS_ADDR(phy->attached_sas_addr),
803                             phy->attached_phy_id);
804                 return NULL;
805         }
806         child = kzalloc(sizeof(*child), GFP_KERNEL);
807         if (!child)
808                 return NULL;
809
810         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811         /* FIXME: better error handling */
812         BUG_ON(sas_port_add(phy->port) != 0);
813
814
815         switch (phy->attached_dev_type) {
816         case EDGE_DEV:
817                 rphy = sas_expander_alloc(phy->port,
818                                           SAS_EDGE_EXPANDER_DEVICE);
819                 break;
820         case FANOUT_DEV:
821                 rphy = sas_expander_alloc(phy->port,
822                                           SAS_FANOUT_EXPANDER_DEVICE);
823                 break;
824         default:
825                 rphy = NULL;    /* shut gcc up */
826                 BUG();
827         }
828         port = parent->port;
829         child->rphy = rphy;
830         edev = rphy_to_expander_device(rphy);
831         child->dev_type = phy->attached_dev_type;
832         child->parent = parent;
833         child->port = port;
834         child->iproto = phy->attached_iproto;
835         child->tproto = phy->attached_tproto;
836         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838         sas_ex_get_linkrate(parent, child, phy);
839         edev->level = parent_ex->level + 1;
840         parent->port->disc.max_level = max(parent->port->disc.max_level,
841                                            edev->level);
842         sas_init_dev(child);
843         sas_fill_in_rphy(child, rphy);
844         sas_rphy_add(rphy);
845
846         spin_lock_irq(&parent->port->dev_list_lock);
847         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848         spin_unlock_irq(&parent->port->dev_list_lock);
849
850         res = sas_discover_expander(child);
851         if (res) {
852                 spin_lock_irq(&parent->port->dev_list_lock);
853                 list_del(&child->dev_list_node);
854                 spin_unlock_irq(&parent->port->dev_list_lock);
855                 kfree(child);
856                 return NULL;
857         }
858         list_add_tail(&child->siblings, &parent->ex_dev.children);
859         return child;
860 }
861
862 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
863 {
864         struct expander_device *ex = &dev->ex_dev;
865         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
866         struct domain_device *child = NULL;
867         int res = 0;
868
869         /* Phy state */
870         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
871                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
872                         res = sas_ex_phy_discover(dev, phy_id);
873                 if (res)
874                         return res;
875         }
876
877         /* Parent and domain coherency */
878         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
879                              SAS_ADDR(dev->port->sas_addr))) {
880                 sas_add_parent_port(dev, phy_id);
881                 return 0;
882         }
883         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
884                             SAS_ADDR(dev->parent->sas_addr))) {
885                 sas_add_parent_port(dev, phy_id);
886                 if (ex_phy->routing_attr == TABLE_ROUTING)
887                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
888                 return 0;
889         }
890
891         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
892                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
893
894         if (ex_phy->attached_dev_type == NO_DEVICE) {
895                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
896                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
897                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
898                 }
899                 return 0;
900         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
901                 return 0;
902
903         if (ex_phy->attached_dev_type != SAS_END_DEV &&
904             ex_phy->attached_dev_type != FANOUT_DEV &&
905             ex_phy->attached_dev_type != EDGE_DEV) {
906                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
907                             "phy 0x%x\n", ex_phy->attached_dev_type,
908                             SAS_ADDR(dev->sas_addr),
909                             phy_id);
910                 return 0;
911         }
912
913         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
914         if (res) {
915                 SAS_DPRINTK("configure routing for dev %016llx "
916                             "reported 0x%x. Forgotten\n",
917                             SAS_ADDR(ex_phy->attached_sas_addr), res);
918                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
919                 return res;
920         }
921
922         res = sas_ex_join_wide_port(dev, phy_id);
923         if (!res) {
924                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
925                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
926                 return res;
927         }
928
929         switch (ex_phy->attached_dev_type) {
930         case SAS_END_DEV:
931                 child = sas_ex_discover_end_dev(dev, phy_id);
932                 break;
933         case FANOUT_DEV:
934                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
935                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
936                                     "attached to ex %016llx phy 0x%x\n",
937                                     SAS_ADDR(ex_phy->attached_sas_addr),
938                                     ex_phy->attached_phy_id,
939                                     SAS_ADDR(dev->sas_addr),
940                                     phy_id);
941                         sas_ex_disable_phy(dev, phy_id);
942                         break;
943                 } else
944                         memcpy(dev->port->disc.fanout_sas_addr,
945                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
946                 /* fallthrough */
947         case EDGE_DEV:
948                 child = sas_ex_discover_expander(dev, phy_id);
949                 break;
950         default:
951                 break;
952         }
953
954         if (child) {
955                 int i;
956
957                 for (i = 0; i < ex->num_phys; i++) {
958                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
959                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
960                                 continue;
961                         /*
962                          * Due to races, the phy might not get added to the
963                          * wide port, so we add the phy to the wide port here.
964                          */
965                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
966                             SAS_ADDR(child->sas_addr)) {
967                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
968                                 res = sas_ex_join_wide_port(dev, i);
969                                 if (!res)
970                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
971                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
972
973                         }
974                 }
975         }
976
977         return res;
978 }
979
980 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
981 {
982         struct expander_device *ex = &dev->ex_dev;
983         int i;
984
985         for (i = 0; i < ex->num_phys; i++) {
986                 struct ex_phy *phy = &ex->ex_phy[i];
987
988                 if (phy->phy_state == PHY_VACANT ||
989                     phy->phy_state == PHY_NOT_PRESENT)
990                         continue;
991
992                 if ((phy->attached_dev_type == EDGE_DEV ||
993                      phy->attached_dev_type == FANOUT_DEV) &&
994                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
995
996                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
997
998                         return 1;
999                 }
1000         }
1001         return 0;
1002 }
1003
1004 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005 {
1006         struct expander_device *ex = &dev->ex_dev;
1007         struct domain_device *child;
1008         u8 sub_addr[8] = {0, };
1009
1010         list_for_each_entry(child, &ex->children, siblings) {
1011                 if (child->dev_type != EDGE_DEV &&
1012                     child->dev_type != FANOUT_DEV)
1013                         continue;
1014                 if (sub_addr[0] == 0) {
1015                         sas_find_sub_addr(child, sub_addr);
1016                         continue;
1017                 } else {
1018                         u8 s2[8];
1019
1020                         if (sas_find_sub_addr(child, s2) &&
1021                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024                                             "diverges from subtractive "
1025                                             "boundary %016llx\n",
1026                                             SAS_ADDR(dev->sas_addr),
1027                                             SAS_ADDR(child->sas_addr),
1028                                             SAS_ADDR(s2),
1029                                             SAS_ADDR(sub_addr));
1030
1031                                 sas_ex_disable_port(child, s2);
1032                         }
1033                 }
1034         }
1035         return 0;
1036 }
1037 /**
1038  * sas_ex_discover_devices -- discover devices attached to this expander
1039  * dev: pointer to the expander domain device
1040  * single: if you want to do a single phy, else set to -1;
1041  *
1042  * Configure this expander for use with its devices and register the
1043  * devices of this expander.
1044  */
1045 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046 {
1047         struct expander_device *ex = &dev->ex_dev;
1048         int i = 0, end = ex->num_phys;
1049         int res = 0;
1050
1051         if (0 <= single && single < end) {
1052                 i = single;
1053                 end = i+1;
1054         }
1055
1056         for ( ; i < end; i++) {
1057                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059                 if (ex_phy->phy_state == PHY_VACANT ||
1060                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1061                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062                         continue;
1063
1064                 switch (ex_phy->linkrate) {
1065                 case SAS_PHY_DISABLED:
1066                 case SAS_PHY_RESET_PROBLEM:
1067                 case SAS_SATA_PORT_SELECTOR:
1068                         continue;
1069                 default:
1070                         res = sas_ex_discover_dev(dev, i);
1071                         if (res)
1072                                 break;
1073                         continue;
1074                 }
1075         }
1076
1077         if (!res)
1078                 sas_check_level_subtractive_boundary(dev);
1079
1080         return res;
1081 }
1082
1083 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084 {
1085         struct expander_device *ex = &dev->ex_dev;
1086         int i;
1087         u8  *sub_sas_addr = NULL;
1088
1089         if (dev->dev_type != EDGE_DEV)
1090                 return 0;
1091
1092         for (i = 0; i < ex->num_phys; i++) {
1093                 struct ex_phy *phy = &ex->ex_phy[i];
1094
1095                 if (phy->phy_state == PHY_VACANT ||
1096                     phy->phy_state == PHY_NOT_PRESENT)
1097                         continue;
1098
1099                 if ((phy->attached_dev_type == FANOUT_DEV ||
1100                      phy->attached_dev_type == EDGE_DEV) &&
1101                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103                         if (!sub_sas_addr)
1104                                 sub_sas_addr = &phy->attached_sas_addr[0];
1105                         else if (SAS_ADDR(sub_sas_addr) !=
1106                                  SAS_ADDR(phy->attached_sas_addr)) {
1107
1108                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1109                                             "diverges(%016llx) on subtractive "
1110                                             "boundary(%016llx). Disabled\n",
1111                                             SAS_ADDR(dev->sas_addr), i,
1112                                             SAS_ADDR(phy->attached_sas_addr),
1113                                             SAS_ADDR(sub_sas_addr));
1114                                 sas_ex_disable_phy(dev, i);
1115                         }
1116                 }
1117         }
1118         return 0;
1119 }
1120
1121 static void sas_print_parent_topology_bug(struct domain_device *child,
1122                                                  struct ex_phy *parent_phy,
1123                                                  struct ex_phy *child_phy)
1124 {
1125         static const char ra_char[] = {
1126                 [DIRECT_ROUTING] = 'D',
1127                 [SUBTRACTIVE_ROUTING] = 'S',
1128                 [TABLE_ROUTING] = 'T',
1129         };
1130         static const char *ex_type[] = {
1131                 [EDGE_DEV] = "edge",
1132                 [FANOUT_DEV] = "fanout",
1133         };
1134         struct domain_device *parent = child->parent;
1135
1136         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137                    "has %c:%c routing link!\n",
1138
1139                    ex_type[parent->dev_type],
1140                    SAS_ADDR(parent->sas_addr),
1141                    parent_phy->phy_id,
1142
1143                    ex_type[child->dev_type],
1144                    SAS_ADDR(child->sas_addr),
1145                    child_phy->phy_id,
1146
1147                    ra_char[parent_phy->routing_attr],
1148                    ra_char[child_phy->routing_attr]);
1149 }
1150
1151 static int sas_check_eeds(struct domain_device *child,
1152                                  struct ex_phy *parent_phy,
1153                                  struct ex_phy *child_phy)
1154 {
1155         int res = 0;
1156         struct domain_device *parent = child->parent;
1157
1158         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159                 res = -ENODEV;
1160                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1162                             SAS_ADDR(parent->sas_addr),
1163                             parent_phy->phy_id,
1164                             SAS_ADDR(child->sas_addr),
1165                             child_phy->phy_id,
1166                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169                        SAS_ADDR_SIZE);
1170                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171                        SAS_ADDR_SIZE);
1172         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173                     SAS_ADDR(parent->sas_addr)) ||
1174                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1175                     SAS_ADDR(child->sas_addr)))
1176                    &&
1177                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178                      SAS_ADDR(parent->sas_addr)) ||
1179                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1180                      SAS_ADDR(child->sas_addr))))
1181                 ;
1182         else {
1183                 res = -ENODEV;
1184                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185                             "phy 0x%x link forms a third EEDS!\n",
1186                             SAS_ADDR(parent->sas_addr),
1187                             parent_phy->phy_id,
1188                             SAS_ADDR(child->sas_addr),
1189                             child_phy->phy_id);
1190         }
1191
1192         return res;
1193 }
1194
1195 /* Here we spill over 80 columns.  It is intentional.
1196  */
1197 static int sas_check_parent_topology(struct domain_device *child)
1198 {
1199         struct expander_device *child_ex = &child->ex_dev;
1200         struct expander_device *parent_ex;
1201         int i;
1202         int res = 0;
1203
1204         if (!child->parent)
1205                 return 0;
1206
1207         if (child->parent->dev_type != EDGE_DEV &&
1208             child->parent->dev_type != FANOUT_DEV)
1209                 return 0;
1210
1211         parent_ex = &child->parent->ex_dev;
1212
1213         for (i = 0; i < parent_ex->num_phys; i++) {
1214                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215                 struct ex_phy *child_phy;
1216
1217                 if (parent_phy->phy_state == PHY_VACANT ||
1218                     parent_phy->phy_state == PHY_NOT_PRESENT)
1219                         continue;
1220
1221                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222                         continue;
1223
1224                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226                 switch (child->parent->dev_type) {
1227                 case EDGE_DEV:
1228                         if (child->dev_type == FANOUT_DEV) {
1229                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230                                     child_phy->routing_attr != TABLE_ROUTING) {
1231                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232                                         res = -ENODEV;
1233                                 }
1234                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236                                         res = sas_check_eeds(child, parent_phy, child_phy);
1237                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1238                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239                                         res = -ENODEV;
1240                                 }
1241                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244                                 res = -ENODEV;
1245                         }
1246                         break;
1247                 case FANOUT_DEV:
1248                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1249                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251                                 res = -ENODEV;
1252                         }
1253                         break;
1254                 default:
1255                         break;
1256                 }
1257         }
1258
1259         return res;
1260 }
1261
1262 #define RRI_REQ_SIZE  16
1263 #define RRI_RESP_SIZE 44
1264
1265 static int sas_configure_present(struct domain_device *dev, int phy_id,
1266                                  u8 *sas_addr, int *index, int *present)
1267 {
1268         int i, res = 0;
1269         struct expander_device *ex = &dev->ex_dev;
1270         struct ex_phy *phy = &ex->ex_phy[phy_id];
1271         u8 *rri_req;
1272         u8 *rri_resp;
1273
1274         *present = 0;
1275         *index = 0;
1276
1277         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278         if (!rri_req)
1279                 return -ENOMEM;
1280
1281         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282         if (!rri_resp) {
1283                 kfree(rri_req);
1284                 return -ENOMEM;
1285         }
1286
1287         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288         rri_req[9] = phy_id;
1289
1290         for (i = 0; i < ex->max_route_indexes ; i++) {
1291                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293                                        RRI_RESP_SIZE);
1294                 if (res)
1295                         goto out;
1296                 res = rri_resp[2];
1297                 if (res == SMP_RESP_NO_INDEX) {
1298                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1299                                     "phy 0x%x index 0x%x\n",
1300                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1301                         goto out;
1302                 } else if (res != SMP_RESP_FUNC_ACC) {
1303                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304                                     "result 0x%x\n", __func__,
1305                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306                         goto out;
1307                 }
1308                 if (SAS_ADDR(sas_addr) != 0) {
1309                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310                                 *index = i;
1311                                 if ((rri_resp[12] & 0x80) == 0x80)
1312                                         *present = 0;
1313                                 else
1314                                         *present = 1;
1315                                 goto out;
1316                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1317                                 *index = i;
1318                                 *present = 0;
1319                                 goto out;
1320                         }
1321                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1322                            phy->last_da_index < i) {
1323                         phy->last_da_index = i;
1324                         *index = i;
1325                         *present = 0;
1326                         goto out;
1327                 }
1328         }
1329         res = -1;
1330 out:
1331         kfree(rri_req);
1332         kfree(rri_resp);
1333         return res;
1334 }
1335
1336 #define CRI_REQ_SIZE  44
1337 #define CRI_RESP_SIZE  8
1338
1339 static int sas_configure_set(struct domain_device *dev, int phy_id,
1340                              u8 *sas_addr, int index, int include)
1341 {
1342         int res;
1343         u8 *cri_req;
1344         u8 *cri_resp;
1345
1346         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347         if (!cri_req)
1348                 return -ENOMEM;
1349
1350         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351         if (!cri_resp) {
1352                 kfree(cri_req);
1353                 return -ENOMEM;
1354         }
1355
1356         cri_req[1] = SMP_CONF_ROUTE_INFO;
1357         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358         cri_req[9] = phy_id;
1359         if (SAS_ADDR(sas_addr) == 0 || !include)
1360                 cri_req[12] |= 0x80;
1361         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364                                CRI_RESP_SIZE);
1365         if (res)
1366                 goto out;
1367         res = cri_resp[2];
1368         if (res == SMP_RESP_NO_INDEX) {
1369                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370                             "index 0x%x\n",
1371                             SAS_ADDR(dev->sas_addr), phy_id, index);
1372         }
1373 out:
1374         kfree(cri_req);
1375         kfree(cri_resp);
1376         return res;
1377 }
1378
1379 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380                                     u8 *sas_addr, int include)
1381 {
1382         int index;
1383         int present;
1384         int res;
1385
1386         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387         if (res)
1388                 return res;
1389         if (include ^ present)
1390                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392         return res;
1393 }
1394
1395 /**
1396  * sas_configure_parent -- configure routing table of parent
1397  * parent: parent expander
1398  * child: child expander
1399  * sas_addr: SAS port identifier of device directly attached to child
1400  */
1401 static int sas_configure_parent(struct domain_device *parent,
1402                                 struct domain_device *child,
1403                                 u8 *sas_addr, int include)
1404 {
1405         struct expander_device *ex_parent = &parent->ex_dev;
1406         int res = 0;
1407         int i;
1408
1409         if (parent->parent) {
1410                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1411                                            include);
1412                 if (res)
1413                         return res;
1414         }
1415
1416         if (ex_parent->conf_route_table == 0) {
1417                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418                             SAS_ADDR(parent->sas_addr));
1419                 return 0;
1420         }
1421
1422         for (i = 0; i < ex_parent->num_phys; i++) {
1423                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425                 if ((phy->routing_attr == TABLE_ROUTING) &&
1426                     (SAS_ADDR(phy->attached_sas_addr) ==
1427                      SAS_ADDR(child->sas_addr))) {
1428                         res = sas_configure_phy(parent, i, sas_addr, include);
1429                         if (res)
1430                                 return res;
1431                 }
1432         }
1433
1434         return res;
1435 }
1436
1437 /**
1438  * sas_configure_routing -- configure routing
1439  * dev: expander device
1440  * sas_addr: port identifier of device directly attached to the expander device
1441  */
1442 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443 {
1444         if (dev->parent)
1445                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446         return 0;
1447 }
1448
1449 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450 {
1451         if (dev->parent)
1452                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453         return 0;
1454 }
1455
1456 /**
1457  * sas_discover_expander -- expander discovery
1458  * @ex: pointer to expander domain device
1459  *
1460  * See comment in sas_discover_sata().
1461  */
1462 static int sas_discover_expander(struct domain_device *dev)
1463 {
1464         int res;
1465
1466         res = sas_notify_lldd_dev_found(dev);
1467         if (res)
1468                 return res;
1469
1470         res = sas_ex_general(dev);
1471         if (res)
1472                 goto out_err;
1473         res = sas_ex_manuf_info(dev);
1474         if (res)
1475                 goto out_err;
1476
1477         res = sas_expander_discover(dev);
1478         if (res) {
1479                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480                             SAS_ADDR(dev->sas_addr), res);
1481                 goto out_err;
1482         }
1483
1484         sas_check_ex_subtractive_boundary(dev);
1485         res = sas_check_parent_topology(dev);
1486         if (res)
1487                 goto out_err;
1488         return 0;
1489 out_err:
1490         sas_notify_lldd_dev_gone(dev);
1491         return res;
1492 }
1493
1494 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495 {
1496         int res = 0;
1497         struct domain_device *dev;
1498
1499         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500                 if (dev->dev_type == EDGE_DEV ||
1501                     dev->dev_type == FANOUT_DEV) {
1502                         struct sas_expander_device *ex =
1503                                 rphy_to_expander_device(dev->rphy);
1504
1505                         if (level == ex->level)
1506                                 res = sas_ex_discover_devices(dev, -1);
1507                         else if (level > 0)
1508                                 res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510                 }
1511         }
1512
1513         return res;
1514 }
1515
1516 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517 {
1518         int res;
1519         int level;
1520
1521         do {
1522                 level = port->disc.max_level;
1523                 res = sas_ex_level_discovery(port, level);
1524                 mb();
1525         } while (level < port->disc.max_level);
1526
1527         return res;
1528 }
1529
1530 int sas_discover_root_expander(struct domain_device *dev)
1531 {
1532         int res;
1533         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535         res = sas_rphy_add(dev->rphy);
1536         if (res)
1537                 goto out_err;
1538
1539         ex->level = dev->port->disc.max_level; /* 0 */
1540         res = sas_discover_expander(dev);
1541         if (res)
1542                 goto out_err2;
1543
1544         sas_ex_bfs_disc(dev->port);
1545
1546         return res;
1547
1548 out_err2:
1549         sas_rphy_remove(dev->rphy);
1550 out_err:
1551         return res;
1552 }
1553
1554 /* ---------- Domain revalidation ---------- */
1555
1556 static int sas_get_phy_discover(struct domain_device *dev,
1557                                 int phy_id, struct smp_resp *disc_resp)
1558 {
1559         int res;
1560         u8 *disc_req;
1561
1562         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563         if (!disc_req)
1564                 return -ENOMEM;
1565
1566         disc_req[1] = SMP_DISCOVER;
1567         disc_req[9] = phy_id;
1568
1569         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570                                disc_resp, DISCOVER_RESP_SIZE);
1571         if (res)
1572                 goto out;
1573         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574                 res = disc_resp->result;
1575                 goto out;
1576         }
1577 out:
1578         kfree(disc_req);
1579         return res;
1580 }
1581
1582 static int sas_get_phy_change_count(struct domain_device *dev,
1583                                     int phy_id, int *pcc)
1584 {
1585         int res;
1586         struct smp_resp *disc_resp;
1587
1588         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589         if (!disc_resp)
1590                 return -ENOMEM;
1591
1592         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593         if (!res)
1594                 *pcc = disc_resp->disc.change_count;
1595
1596         kfree(disc_resp);
1597         return res;
1598 }
1599
1600 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601                                          int phy_id, u8 *attached_sas_addr)
1602 {
1603         int res;
1604         struct smp_resp *disc_resp;
1605         struct discover_resp *dr;
1606
1607         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608         if (!disc_resp)
1609                 return -ENOMEM;
1610         dr = &disc_resp->disc;
1611
1612         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613         if (!res) {
1614                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615                 if (dr->attached_dev_type == 0)
1616                         memset(attached_sas_addr, 0, 8);
1617         }
1618         kfree(disc_resp);
1619         return res;
1620 }
1621
1622 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623                               int from_phy, bool update)
1624 {
1625         struct expander_device *ex = &dev->ex_dev;
1626         int res = 0;
1627         int i;
1628
1629         for (i = from_phy; i < ex->num_phys; i++) {
1630                 int phy_change_count = 0;
1631
1632                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633                 if (res)
1634                         goto out;
1635                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1636                         if (update)
1637                                 ex->ex_phy[i].phy_change_count =
1638                                         phy_change_count;
1639                         *phy_id = i;
1640                         return 0;
1641                 }
1642         }
1643 out:
1644         return res;
1645 }
1646
1647 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648 {
1649         int res;
1650         u8  *rg_req;
1651         struct smp_resp  *rg_resp;
1652
1653         rg_req = alloc_smp_req(RG_REQ_SIZE);
1654         if (!rg_req)
1655                 return -ENOMEM;
1656
1657         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658         if (!rg_resp) {
1659                 kfree(rg_req);
1660                 return -ENOMEM;
1661         }
1662
1663         rg_req[1] = SMP_REPORT_GENERAL;
1664
1665         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666                                RG_RESP_SIZE);
1667         if (res)
1668                 goto out;
1669         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670                 res = rg_resp->result;
1671                 goto out;
1672         }
1673
1674         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1675 out:
1676         kfree(rg_resp);
1677         kfree(rg_req);
1678         return res;
1679 }
1680 /**
1681  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682  * @dev:domain device to be detect.
1683  * @src_dev: the device which originated BROADCAST(CHANGE).
1684  *
1685  * Add self-configuration expander suport. Suppose two expander cascading,
1686  * when the first level expander is self-configuring, hotplug the disks in
1687  * second level expander, BROADCAST(CHANGE) will not only be originated
1688  * in the second level expander, but also be originated in the first level
1689  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690  * expander changed count in two level expanders will all increment at least
1691  * once, but the phy which chang count has changed is the source device which
1692  * we concerned.
1693  */
1694
1695 static int sas_find_bcast_dev(struct domain_device *dev,
1696                               struct domain_device **src_dev)
1697 {
1698         struct expander_device *ex = &dev->ex_dev;
1699         int ex_change_count = -1;
1700         int phy_id = -1;
1701         int res;
1702         struct domain_device *ch;
1703
1704         res = sas_get_ex_change_count(dev, &ex_change_count);
1705         if (res)
1706                 goto out;
1707         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708                 /* Just detect if this expander phys phy change count changed,
1709                 * in order to determine if this expander originate BROADCAST,
1710                 * and do not update phy change count field in our structure.
1711                 */
1712                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713                 if (phy_id != -1) {
1714                         *src_dev = dev;
1715                         ex->ex_change_count = ex_change_count;
1716                         SAS_DPRINTK("Expander phy change count has changed\n");
1717                         return res;
1718                 } else
1719                         SAS_DPRINTK("Expander phys DID NOT change\n");
1720         }
1721         list_for_each_entry(ch, &ex->children, siblings) {
1722                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723                         res = sas_find_bcast_dev(ch, src_dev);
1724                         if (src_dev)
1725                                 return res;
1726                 }
1727         }
1728 out:
1729         return res;
1730 }
1731
1732 static void sas_unregister_ex_tree(struct domain_device *dev)
1733 {
1734         struct expander_device *ex = &dev->ex_dev;
1735         struct domain_device *child, *n;
1736
1737         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738                 child->gone = 1;
1739                 if (child->dev_type == EDGE_DEV ||
1740                     child->dev_type == FANOUT_DEV)
1741                         sas_unregister_ex_tree(child);
1742                 else
1743                         sas_unregister_dev(child);
1744         }
1745         sas_unregister_dev(dev);
1746 }
1747
1748 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749                                          int phy_id, bool last)
1750 {
1751         struct expander_device *ex_dev = &parent->ex_dev;
1752         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753         struct domain_device *child, *n;
1754         if (last) {
1755                 list_for_each_entry_safe(child, n,
1756                         &ex_dev->children, siblings) {
1757                         if (SAS_ADDR(child->sas_addr) ==
1758                             SAS_ADDR(phy->attached_sas_addr)) {
1759                                 child->gone = 1;
1760                                 if (child->dev_type == EDGE_DEV ||
1761                                     child->dev_type == FANOUT_DEV)
1762                                         sas_unregister_ex_tree(child);
1763                                 else
1764                                         sas_unregister_dev(child);
1765                                 break;
1766                         }
1767                 }
1768                 parent->gone = 1;
1769                 sas_disable_routing(parent, phy->attached_sas_addr);
1770         }
1771         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772         sas_port_delete_phy(phy->port, phy->phy);
1773         if (phy->port->num_phys == 0)
1774                 sas_port_delete(phy->port);
1775         phy->port = NULL;
1776 }
1777
1778 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1779                                           const int level)
1780 {
1781         struct expander_device *ex_root = &root->ex_dev;
1782         struct domain_device *child;
1783         int res = 0;
1784
1785         list_for_each_entry(child, &ex_root->children, siblings) {
1786                 if (child->dev_type == EDGE_DEV ||
1787                     child->dev_type == FANOUT_DEV) {
1788                         struct sas_expander_device *ex =
1789                                 rphy_to_expander_device(child->rphy);
1790
1791                         if (level > ex->level)
1792                                 res = sas_discover_bfs_by_root_level(child,
1793                                                                      level);
1794                         else if (level == ex->level)
1795                                 res = sas_ex_discover_devices(child, -1);
1796                 }
1797         }
1798         return res;
1799 }
1800
1801 static int sas_discover_bfs_by_root(struct domain_device *dev)
1802 {
1803         int res;
1804         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1805         int level = ex->level+1;
1806
1807         res = sas_ex_discover_devices(dev, -1);
1808         if (res)
1809                 goto out;
1810         do {
1811                 res = sas_discover_bfs_by_root_level(dev, level);
1812                 mb();
1813                 level += 1;
1814         } while (level <= dev->port->disc.max_level);
1815 out:
1816         return res;
1817 }
1818
1819 static int sas_discover_new(struct domain_device *dev, int phy_id)
1820 {
1821         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1822         struct domain_device *child;
1823         bool found = false;
1824         int res, i;
1825
1826         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1827                     SAS_ADDR(dev->sas_addr), phy_id);
1828         res = sas_ex_phy_discover(dev, phy_id);
1829         if (res)
1830                 goto out;
1831         /* to support the wide port inserted */
1832         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1833                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1834                 if (i == phy_id)
1835                         continue;
1836                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1837                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1838                         found = true;
1839                         break;
1840                 }
1841         }
1842         if (found) {
1843                 sas_ex_join_wide_port(dev, phy_id);
1844                 return 0;
1845         }
1846         res = sas_ex_discover_devices(dev, phy_id);
1847         if (!res)
1848                 goto out;
1849         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1850                 if (SAS_ADDR(child->sas_addr) ==
1851                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1852                         if (child->dev_type == EDGE_DEV ||
1853                             child->dev_type == FANOUT_DEV)
1854                                 res = sas_discover_bfs_by_root(child);
1855                         break;
1856                 }
1857         }
1858 out:
1859         return res;
1860 }
1861
1862 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1863 {
1864         struct expander_device *ex = &dev->ex_dev;
1865         struct ex_phy *phy = &ex->ex_phy[phy_id];
1866         u8 attached_sas_addr[8];
1867         int res;
1868
1869         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1870         switch (res) {
1871         case SMP_RESP_NO_PHY:
1872                 phy->phy_state = PHY_NOT_PRESENT;
1873                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1874                 goto out; break;
1875         case SMP_RESP_PHY_VACANT:
1876                 phy->phy_state = PHY_VACANT;
1877                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1878                 goto out; break;
1879         case SMP_RESP_FUNC_ACC:
1880                 break;
1881         }
1882
1883         if (SAS_ADDR(attached_sas_addr) == 0) {
1884                 phy->phy_state = PHY_EMPTY;
1885                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1886         } else if (SAS_ADDR(attached_sas_addr) ==
1887                    SAS_ADDR(phy->attached_sas_addr)) {
1888                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1889                             SAS_ADDR(dev->sas_addr), phy_id);
1890                 sas_ex_phy_discover(dev, phy_id);
1891         } else
1892                 res = sas_discover_new(dev, phy_id);
1893 out:
1894         return res;
1895 }
1896
1897 /**
1898  * sas_rediscover - revalidate the domain.
1899  * @dev:domain device to be detect.
1900  * @phy_id: the phy id will be detected.
1901  *
1902  * NOTE: this process _must_ quit (return) as soon as any connection
1903  * errors are encountered.  Connection recovery is done elsewhere.
1904  * Discover process only interrogates devices in order to discover the
1905  * domain.For plugging out, we un-register the device only when it is
1906  * the last phy in the port, for other phys in this port, we just delete it
1907  * from the port.For inserting, we do discovery when it is the
1908  * first phy,for other phys in this port, we add it to the port to
1909  * forming the wide-port.
1910  */
1911 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1912 {
1913         struct expander_device *ex = &dev->ex_dev;
1914         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1915         int res = 0;
1916         int i;
1917         bool last = true;       /* is this the last phy of the port */
1918
1919         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1920                     SAS_ADDR(dev->sas_addr), phy_id);
1921
1922         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1923                 for (i = 0; i < ex->num_phys; i++) {
1924                         struct ex_phy *phy = &ex->ex_phy[i];
1925
1926                         if (i == phy_id)
1927                                 continue;
1928                         if (SAS_ADDR(phy->attached_sas_addr) ==
1929                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1930                                 SAS_DPRINTK("phy%d part of wide port with "
1931                                             "phy%d\n", phy_id, i);
1932                                 last = false;
1933                                 break;
1934                         }
1935                 }
1936                 res = sas_rediscover_dev(dev, phy_id, last);
1937         } else
1938                 res = sas_discover_new(dev, phy_id);
1939         return res;
1940 }
1941
1942 /**
1943  * sas_revalidate_domain -- revalidate the domain
1944  * @port: port to the domain of interest
1945  *
1946  * NOTE: this process _must_ quit (return) as soon as any connection
1947  * errors are encountered.  Connection recovery is done elsewhere.
1948  * Discover process only interrogates devices in order to discover the
1949  * domain.
1950  */
1951 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1952 {
1953         int res;
1954         struct domain_device *dev = NULL;
1955
1956         res = sas_find_bcast_dev(port_dev, &dev);
1957         if (res)
1958                 goto out;
1959         if (dev) {
1960                 struct expander_device *ex = &dev->ex_dev;
1961                 int i = 0, phy_id;
1962
1963                 do {
1964                         phy_id = -1;
1965                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1966                         if (phy_id == -1)
1967                                 break;
1968                         res = sas_rediscover(dev, phy_id);
1969                         i = phy_id + 1;
1970                 } while (i < ex->num_phys);
1971         }
1972 out:
1973         return res;
1974 }
1975
1976 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1977                     struct request *req)
1978 {
1979         struct domain_device *dev;
1980         int ret, type;
1981         struct request *rsp = req->next_rq;
1982
1983         if (!rsp) {
1984                 printk("%s: space for a smp response is missing\n",
1985                        __func__);
1986                 return -EINVAL;
1987         }
1988
1989         /* no rphy means no smp target support (ie aic94xx host) */
1990         if (!rphy)
1991                 return sas_smp_host_handler(shost, req, rsp);
1992
1993         type = rphy->identify.device_type;
1994
1995         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1996             type != SAS_FANOUT_EXPANDER_DEVICE) {
1997                 printk("%s: can we send a smp request to a device?\n",
1998                        __func__);
1999                 return -EINVAL;
2000         }
2001
2002         dev = sas_find_dev_by_rphy(rphy);
2003         if (!dev) {
2004                 printk("%s: fail to find a domain_device?\n", __func__);
2005                 return -EINVAL;
2006         }
2007
2008         /* do we need to support multiple segments? */
2009         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2010                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2011                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2012                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2013                 return -EINVAL;
2014         }
2015
2016         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2017                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2018         if (ret > 0) {
2019                 /* positive number is the untransferred residual */
2020                 rsp->resid_len = ret;
2021                 req->resid_len = 0;
2022                 ret = 0;
2023         } else if (ret == 0) {
2024                 rsp->resid_len = 0;
2025                 req->resid_len = 0;
2026         }
2027
2028         return ret;
2029 }