Merge branch 'x86-kbuild-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 /* ---------- SMP task management ---------- */
41
42 static void smp_task_timedout(unsigned long _task)
43 {
44         struct sas_task *task = (void *) _task;
45         unsigned long flags;
46
47         spin_lock_irqsave(&task->task_state_lock, flags);
48         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
49                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
50         spin_unlock_irqrestore(&task->task_state_lock, flags);
51
52         complete(&task->completion);
53 }
54
55 static void smp_task_done(struct sas_task *task)
56 {
57         if (!del_timer(&task->timer))
58                 return;
59         complete(&task->completion);
60 }
61
62 /* Give it some long enough timeout. In seconds. */
63 #define SMP_TIMEOUT 10
64
65 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
66                             void *resp, int resp_size)
67 {
68         int res, retry;
69         struct sas_task *task = NULL;
70         struct sas_internal *i =
71                 to_sas_internal(dev->port->ha->core.shost->transportt);
72
73         for (retry = 0; retry < 3; retry++) {
74                 task = sas_alloc_task(GFP_KERNEL);
75                 if (!task)
76                         return -ENOMEM;
77
78                 task->dev = dev;
79                 task->task_proto = dev->tproto;
80                 sg_init_one(&task->smp_task.smp_req, req, req_size);
81                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
82
83                 task->task_done = smp_task_done;
84
85                 task->timer.data = (unsigned long) task;
86                 task->timer.function = smp_task_timedout;
87                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
88                 add_timer(&task->timer);
89
90                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
91
92                 if (res) {
93                         del_timer(&task->timer);
94                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
95                         goto ex_err;
96                 }
97
98                 wait_for_completion(&task->completion);
99                 res = -ECOMM;
100                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
101                         SAS_DPRINTK("smp task timed out or aborted\n");
102                         i->dft->lldd_abort_task(task);
103                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
104                                 SAS_DPRINTK("SMP task aborted and not done\n");
105                                 goto ex_err;
106                         }
107                 }
108                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109                     task->task_status.stat == SAM_GOOD) {
110                         res = 0;
111                         break;
112                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
113                       task->task_status.stat == SAS_DATA_UNDERRUN) {
114                         /* no error, but return the number of bytes of
115                          * underrun */
116                         res = task->task_status.residual;
117                         break;
118                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
119                       task->task_status.stat == SAS_DATA_OVERRUN) {
120                         res = -EMSGSIZE;
121                         break;
122                 } else {
123                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
124                                     "status 0x%x\n", __func__,
125                                     SAS_ADDR(dev->sas_addr),
126                                     task->task_status.resp,
127                                     task->task_status.stat);
128                         sas_free_task(task);
129                         task = NULL;
130                 }
131         }
132 ex_err:
133         BUG_ON(retry == 3 && task != NULL);
134         if (task != NULL) {
135                 sas_free_task(task);
136         }
137         return res;
138 }
139
140 /* ---------- Allocations ---------- */
141
142 static inline void *alloc_smp_req(int size)
143 {
144         u8 *p = kzalloc(size, GFP_KERNEL);
145         if (p)
146                 p[0] = SMP_REQUEST;
147         return p;
148 }
149
150 static inline void *alloc_smp_resp(int size)
151 {
152         return kzalloc(size, GFP_KERNEL);
153 }
154
155 /* ---------- Expander configuration ---------- */
156
157 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
158                            void *disc_resp)
159 {
160         struct expander_device *ex = &dev->ex_dev;
161         struct ex_phy *phy = &ex->ex_phy[phy_id];
162         struct smp_resp *resp = disc_resp;
163         struct discover_resp *dr = &resp->disc;
164         struct sas_rphy *rphy = dev->rphy;
165         int rediscover = (phy->phy != NULL);
166
167         if (!rediscover) {
168                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
169
170                 /* FIXME: error_handling */
171                 BUG_ON(!phy->phy);
172         }
173
174         switch (resp->result) {
175         case SMP_RESP_PHY_VACANT:
176                 phy->phy_state = PHY_VACANT;
177                 return;
178         default:
179                 phy->phy_state = PHY_NOT_PRESENT;
180                 return;
181         case SMP_RESP_FUNC_ACC:
182                 phy->phy_state = PHY_EMPTY; /* do not know yet */
183                 break;
184         }
185
186         phy->phy_id = phy_id;
187         phy->attached_dev_type = dr->attached_dev_type;
188         phy->linkrate = dr->linkrate;
189         phy->attached_sata_host = dr->attached_sata_host;
190         phy->attached_sata_dev  = dr->attached_sata_dev;
191         phy->attached_sata_ps   = dr->attached_sata_ps;
192         phy->attached_iproto = dr->iproto << 1;
193         phy->attached_tproto = dr->tproto << 1;
194         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
195         phy->attached_phy_id = dr->attached_phy_id;
196         phy->phy_change_count = dr->change_count;
197         phy->routing_attr = dr->routing_attr;
198         phy->virtual = dr->virtual;
199         phy->last_da_index = -1;
200
201         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
202         phy->phy->identify.target_port_protocols = phy->attached_tproto;
203         phy->phy->identify.phy_identifier = phy_id;
204         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
205         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
206         phy->phy->minimum_linkrate = dr->pmin_linkrate;
207         phy->phy->maximum_linkrate = dr->pmax_linkrate;
208         phy->phy->negotiated_linkrate = phy->linkrate;
209
210         if (!rediscover)
211                 sas_phy_add(phy->phy);
212
213         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
214                     SAS_ADDR(dev->sas_addr), phy->phy_id,
215                     phy->routing_attr == TABLE_ROUTING ? 'T' :
216                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
217                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
218                     SAS_ADDR(phy->attached_sas_addr));
219
220         return;
221 }
222
223 #define DISCOVER_REQ_SIZE  16
224 #define DISCOVER_RESP_SIZE 56
225
226 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
227                                       u8 *disc_resp, int single)
228 {
229         int i, res;
230
231         disc_req[9] = single;
232         for (i = 1 ; i < 3; i++) {
233                 struct discover_resp *dr;
234
235                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
236                                        disc_resp, DISCOVER_RESP_SIZE);
237                 if (res)
238                         return res;
239                 /* This is detecting a failure to transmit inital
240                  * dev to host FIS as described in section G.5 of
241                  * sas-2 r 04b */
242                 dr = &((struct smp_resp *)disc_resp)->disc;
243                 if (!(dr->attached_dev_type == 0 &&
244                       dr->attached_sata_dev))
245                         break;
246                 /* In order to generate the dev to host FIS, we
247                  * send a link reset to the expander port */
248                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
249                 /* Wait for the reset to trigger the negotiation */
250                 msleep(500);
251         }
252         sas_set_ex_phy(dev, single, disc_resp);
253         return 0;
254 }
255
256 static int sas_ex_phy_discover(struct domain_device *dev, int single)
257 {
258         struct expander_device *ex = &dev->ex_dev;
259         int  res = 0;
260         u8   *disc_req;
261         u8   *disc_resp;
262
263         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
264         if (!disc_req)
265                 return -ENOMEM;
266
267         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
268         if (!disc_resp) {
269                 kfree(disc_req);
270                 return -ENOMEM;
271         }
272
273         disc_req[1] = SMP_DISCOVER;
274
275         if (0 <= single && single < ex->num_phys) {
276                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
277         } else {
278                 int i;
279
280                 for (i = 0; i < ex->num_phys; i++) {
281                         res = sas_ex_phy_discover_helper(dev, disc_req,
282                                                          disc_resp, i);
283                         if (res)
284                                 goto out_err;
285                 }
286         }
287 out_err:
288         kfree(disc_resp);
289         kfree(disc_req);
290         return res;
291 }
292
293 static int sas_expander_discover(struct domain_device *dev)
294 {
295         struct expander_device *ex = &dev->ex_dev;
296         int res = -ENOMEM;
297
298         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
299         if (!ex->ex_phy)
300                 return -ENOMEM;
301
302         res = sas_ex_phy_discover(dev, -1);
303         if (res)
304                 goto out_err;
305
306         return 0;
307  out_err:
308         kfree(ex->ex_phy);
309         ex->ex_phy = NULL;
310         return res;
311 }
312
313 #define MAX_EXPANDER_PHYS 128
314
315 static void ex_assign_report_general(struct domain_device *dev,
316                                             struct smp_resp *resp)
317 {
318         struct report_general_resp *rg = &resp->rg;
319
320         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
321         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
322         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
323         dev->ex_dev.conf_route_table = rg->conf_route_table;
324         dev->ex_dev.configuring = rg->configuring;
325         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
326 }
327
328 #define RG_REQ_SIZE   8
329 #define RG_RESP_SIZE 32
330
331 static int sas_ex_general(struct domain_device *dev)
332 {
333         u8 *rg_req;
334         struct smp_resp *rg_resp;
335         int res;
336         int i;
337
338         rg_req = alloc_smp_req(RG_REQ_SIZE);
339         if (!rg_req)
340                 return -ENOMEM;
341
342         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
343         if (!rg_resp) {
344                 kfree(rg_req);
345                 return -ENOMEM;
346         }
347
348         rg_req[1] = SMP_REPORT_GENERAL;
349
350         for (i = 0; i < 5; i++) {
351                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
352                                        RG_RESP_SIZE);
353
354                 if (res) {
355                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
356                                     SAS_ADDR(dev->sas_addr), res);
357                         goto out;
358                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
359                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
360                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
361                         res = rg_resp->result;
362                         goto out;
363                 }
364
365                 ex_assign_report_general(dev, rg_resp);
366
367                 if (dev->ex_dev.configuring) {
368                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
369                                     SAS_ADDR(dev->sas_addr));
370                         schedule_timeout_interruptible(5*HZ);
371                 } else
372                         break;
373         }
374 out:
375         kfree(rg_req);
376         kfree(rg_resp);
377         return res;
378 }
379
380 static void ex_assign_manuf_info(struct domain_device *dev, void
381                                         *_mi_resp)
382 {
383         u8 *mi_resp = _mi_resp;
384         struct sas_rphy *rphy = dev->rphy;
385         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
386
387         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
388         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
389         memcpy(edev->product_rev, mi_resp + 36,
390                SAS_EXPANDER_PRODUCT_REV_LEN);
391
392         if (mi_resp[8] & 1) {
393                 memcpy(edev->component_vendor_id, mi_resp + 40,
394                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
395                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
396                 edev->component_revision_id = mi_resp[50];
397         }
398 }
399
400 #define MI_REQ_SIZE   8
401 #define MI_RESP_SIZE 64
402
403 static int sas_ex_manuf_info(struct domain_device *dev)
404 {
405         u8 *mi_req;
406         u8 *mi_resp;
407         int res;
408
409         mi_req = alloc_smp_req(MI_REQ_SIZE);
410         if (!mi_req)
411                 return -ENOMEM;
412
413         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
414         if (!mi_resp) {
415                 kfree(mi_req);
416                 return -ENOMEM;
417         }
418
419         mi_req[1] = SMP_REPORT_MANUF_INFO;
420
421         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
422         if (res) {
423                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
424                             SAS_ADDR(dev->sas_addr), res);
425                 goto out;
426         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
427                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
428                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
429                 goto out;
430         }
431
432         ex_assign_manuf_info(dev, mi_resp);
433 out:
434         kfree(mi_req);
435         kfree(mi_resp);
436         return res;
437 }
438
439 #define PC_REQ_SIZE  44
440 #define PC_RESP_SIZE 8
441
442 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
443                         enum phy_func phy_func,
444                         struct sas_phy_linkrates *rates)
445 {
446         u8 *pc_req;
447         u8 *pc_resp;
448         int res;
449
450         pc_req = alloc_smp_req(PC_REQ_SIZE);
451         if (!pc_req)
452                 return -ENOMEM;
453
454         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
455         if (!pc_resp) {
456                 kfree(pc_req);
457                 return -ENOMEM;
458         }
459
460         pc_req[1] = SMP_PHY_CONTROL;
461         pc_req[9] = phy_id;
462         pc_req[10]= phy_func;
463         if (rates) {
464                 pc_req[32] = rates->minimum_linkrate << 4;
465                 pc_req[33] = rates->maximum_linkrate << 4;
466         }
467
468         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
469
470         kfree(pc_resp);
471         kfree(pc_req);
472         return res;
473 }
474
475 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
476 {
477         struct expander_device *ex = &dev->ex_dev;
478         struct ex_phy *phy = &ex->ex_phy[phy_id];
479
480         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
481         phy->linkrate = SAS_PHY_DISABLED;
482 }
483
484 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
485 {
486         struct expander_device *ex = &dev->ex_dev;
487         int i;
488
489         for (i = 0; i < ex->num_phys; i++) {
490                 struct ex_phy *phy = &ex->ex_phy[i];
491
492                 if (phy->phy_state == PHY_VACANT ||
493                     phy->phy_state == PHY_NOT_PRESENT)
494                         continue;
495
496                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
497                         sas_ex_disable_phy(dev, i);
498         }
499 }
500
501 static int sas_dev_present_in_domain(struct asd_sas_port *port,
502                                             u8 *sas_addr)
503 {
504         struct domain_device *dev;
505
506         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
507                 return 1;
508         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
509                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
510                         return 1;
511         }
512         return 0;
513 }
514
515 #define RPEL_REQ_SIZE   16
516 #define RPEL_RESP_SIZE  32
517 int sas_smp_get_phy_events(struct sas_phy *phy)
518 {
519         int res;
520         u8 *req;
521         u8 *resp;
522         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
523         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
524
525         req = alloc_smp_req(RPEL_REQ_SIZE);
526         if (!req)
527                 return -ENOMEM;
528
529         resp = alloc_smp_resp(RPEL_RESP_SIZE);
530         if (!resp) {
531                 kfree(req);
532                 return -ENOMEM;
533         }
534
535         req[1] = SMP_REPORT_PHY_ERR_LOG;
536         req[9] = phy->number;
537
538         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
539                                     resp, RPEL_RESP_SIZE);
540
541         if (!res)
542                 goto out;
543
544         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
545         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
546         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
547         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
548
549  out:
550         kfree(resp);
551         return res;
552
553 }
554
555 #ifdef CONFIG_SCSI_SAS_ATA
556
557 #define RPS_REQ_SIZE  16
558 #define RPS_RESP_SIZE 60
559
560 static int sas_get_report_phy_sata(struct domain_device *dev,
561                                           int phy_id,
562                                           struct smp_resp *rps_resp)
563 {
564         int res;
565         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
566         u8 *resp = (u8 *)rps_resp;
567
568         if (!rps_req)
569                 return -ENOMEM;
570
571         rps_req[1] = SMP_REPORT_PHY_SATA;
572         rps_req[9] = phy_id;
573
574         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
575                                     rps_resp, RPS_RESP_SIZE);
576
577         /* 0x34 is the FIS type for the D2H fis.  There's a potential
578          * standards cockup here.  sas-2 explicitly specifies the FIS
579          * should be encoded so that FIS type is in resp[24].
580          * However, some expanders endian reverse this.  Undo the
581          * reversal here */
582         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
583                 int i;
584
585                 for (i = 0; i < 5; i++) {
586                         int j = 24 + (i*4);
587                         u8 a, b;
588                         a = resp[j + 0];
589                         b = resp[j + 1];
590                         resp[j + 0] = resp[j + 3];
591                         resp[j + 1] = resp[j + 2];
592                         resp[j + 2] = b;
593                         resp[j + 3] = a;
594                 }
595         }
596
597         kfree(rps_req);
598         return res;
599 }
600 #endif
601
602 static void sas_ex_get_linkrate(struct domain_device *parent,
603                                        struct domain_device *child,
604                                        struct ex_phy *parent_phy)
605 {
606         struct expander_device *parent_ex = &parent->ex_dev;
607         struct sas_port *port;
608         int i;
609
610         child->pathways = 0;
611
612         port = parent_phy->port;
613
614         for (i = 0; i < parent_ex->num_phys; i++) {
615                 struct ex_phy *phy = &parent_ex->ex_phy[i];
616
617                 if (phy->phy_state == PHY_VACANT ||
618                     phy->phy_state == PHY_NOT_PRESENT)
619                         continue;
620
621                 if (SAS_ADDR(phy->attached_sas_addr) ==
622                     SAS_ADDR(child->sas_addr)) {
623
624                         child->min_linkrate = min(parent->min_linkrate,
625                                                   phy->linkrate);
626                         child->max_linkrate = max(parent->max_linkrate,
627                                                   phy->linkrate);
628                         child->pathways++;
629                         sas_port_add_phy(port, phy->phy);
630                 }
631         }
632         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
633         child->pathways = min(child->pathways, parent->pathways);
634 }
635
636 static struct domain_device *sas_ex_discover_end_dev(
637         struct domain_device *parent, int phy_id)
638 {
639         struct expander_device *parent_ex = &parent->ex_dev;
640         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
641         struct domain_device *child = NULL;
642         struct sas_rphy *rphy;
643         int res;
644
645         if (phy->attached_sata_host || phy->attached_sata_ps)
646                 return NULL;
647
648         child = kzalloc(sizeof(*child), GFP_KERNEL);
649         if (!child)
650                 return NULL;
651
652         child->parent = parent;
653         child->port   = parent->port;
654         child->iproto = phy->attached_iproto;
655         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
656         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
657         if (!phy->port) {
658                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
659                 if (unlikely(!phy->port))
660                         goto out_err;
661                 if (unlikely(sas_port_add(phy->port) != 0)) {
662                         sas_port_free(phy->port);
663                         goto out_err;
664                 }
665         }
666         sas_ex_get_linkrate(parent, child, phy);
667
668 #ifdef CONFIG_SCSI_SAS_ATA
669         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
670                 child->dev_type = SATA_DEV;
671                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
672                         child->tproto = phy->attached_tproto;
673                 if (phy->attached_sata_dev)
674                         child->tproto |= SATA_DEV;
675                 res = sas_get_report_phy_sata(parent, phy_id,
676                                               &child->sata_dev.rps_resp);
677                 if (res) {
678                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
679                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
680                                     phy_id, res);
681                         goto out_free;
682                 }
683                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
684                        sizeof(struct dev_to_host_fis));
685
686                 rphy = sas_end_device_alloc(phy->port);
687                 if (unlikely(!rphy))
688                         goto out_free;
689
690                 sas_init_dev(child);
691
692                 child->rphy = rphy;
693
694                 spin_lock_irq(&parent->port->dev_list_lock);
695                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
696                 spin_unlock_irq(&parent->port->dev_list_lock);
697
698                 res = sas_discover_sata(child);
699                 if (res) {
700                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
701                                     "%016llx:0x%x returned 0x%x\n",
702                                     SAS_ADDR(child->sas_addr),
703                                     SAS_ADDR(parent->sas_addr), phy_id, res);
704                         goto out_list_del;
705                 }
706         } else
707 #endif
708           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
709                 child->dev_type = SAS_END_DEV;
710                 rphy = sas_end_device_alloc(phy->port);
711                 /* FIXME: error handling */
712                 if (unlikely(!rphy))
713                         goto out_free;
714                 child->tproto = phy->attached_tproto;
715                 sas_init_dev(child);
716
717                 child->rphy = rphy;
718                 sas_fill_in_rphy(child, rphy);
719
720                 spin_lock_irq(&parent->port->dev_list_lock);
721                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
722                 spin_unlock_irq(&parent->port->dev_list_lock);
723
724                 res = sas_discover_end_dev(child);
725                 if (res) {
726                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
727                                     "at %016llx:0x%x returned 0x%x\n",
728                                     SAS_ADDR(child->sas_addr),
729                                     SAS_ADDR(parent->sas_addr), phy_id, res);
730                         goto out_list_del;
731                 }
732         } else {
733                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
734                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
735                             phy_id);
736                 goto out_free;
737         }
738
739         list_add_tail(&child->siblings, &parent_ex->children);
740         return child;
741
742  out_list_del:
743         sas_rphy_free(child->rphy);
744         child->rphy = NULL;
745         list_del(&child->dev_list_node);
746  out_free:
747         sas_port_delete(phy->port);
748  out_err:
749         phy->port = NULL;
750         kfree(child);
751         return NULL;
752 }
753
754 /* See if this phy is part of a wide port */
755 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
756 {
757         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
758         int i;
759
760         for (i = 0; i < parent->ex_dev.num_phys; i++) {
761                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
762
763                 if (ephy == phy)
764                         continue;
765
766                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
767                             SAS_ADDR_SIZE) && ephy->port) {
768                         sas_port_add_phy(ephy->port, phy->phy);
769                         phy->port = ephy->port;
770                         phy->phy_state = PHY_DEVICE_DISCOVERED;
771                         return 0;
772                 }
773         }
774
775         return -ENODEV;
776 }
777
778 static struct domain_device *sas_ex_discover_expander(
779         struct domain_device *parent, int phy_id)
780 {
781         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
782         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
783         struct domain_device *child = NULL;
784         struct sas_rphy *rphy;
785         struct sas_expander_device *edev;
786         struct asd_sas_port *port;
787         int res;
788
789         if (phy->routing_attr == DIRECT_ROUTING) {
790                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
791                             "allowed\n",
792                             SAS_ADDR(parent->sas_addr), phy_id,
793                             SAS_ADDR(phy->attached_sas_addr),
794                             phy->attached_phy_id);
795                 return NULL;
796         }
797         child = kzalloc(sizeof(*child), GFP_KERNEL);
798         if (!child)
799                 return NULL;
800
801         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802         /* FIXME: better error handling */
803         BUG_ON(sas_port_add(phy->port) != 0);
804
805
806         switch (phy->attached_dev_type) {
807         case EDGE_DEV:
808                 rphy = sas_expander_alloc(phy->port,
809                                           SAS_EDGE_EXPANDER_DEVICE);
810                 break;
811         case FANOUT_DEV:
812                 rphy = sas_expander_alloc(phy->port,
813                                           SAS_FANOUT_EXPANDER_DEVICE);
814                 break;
815         default:
816                 rphy = NULL;    /* shut gcc up */
817                 BUG();
818         }
819         port = parent->port;
820         child->rphy = rphy;
821         edev = rphy_to_expander_device(rphy);
822         child->dev_type = phy->attached_dev_type;
823         child->parent = parent;
824         child->port = port;
825         child->iproto = phy->attached_iproto;
826         child->tproto = phy->attached_tproto;
827         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
828         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
829         sas_ex_get_linkrate(parent, child, phy);
830         edev->level = parent_ex->level + 1;
831         parent->port->disc.max_level = max(parent->port->disc.max_level,
832                                            edev->level);
833         sas_init_dev(child);
834         sas_fill_in_rphy(child, rphy);
835         sas_rphy_add(rphy);
836
837         spin_lock_irq(&parent->port->dev_list_lock);
838         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
839         spin_unlock_irq(&parent->port->dev_list_lock);
840
841         res = sas_discover_expander(child);
842         if (res) {
843                 kfree(child);
844                 return NULL;
845         }
846         list_add_tail(&child->siblings, &parent->ex_dev.children);
847         return child;
848 }
849
850 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
851 {
852         struct expander_device *ex = &dev->ex_dev;
853         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
854         struct domain_device *child = NULL;
855         int res = 0;
856
857         /* Phy state */
858         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
859                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
860                         res = sas_ex_phy_discover(dev, phy_id);
861                 if (res)
862                         return res;
863         }
864
865         /* Parent and domain coherency */
866         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
867                              SAS_ADDR(dev->port->sas_addr))) {
868                 sas_add_parent_port(dev, phy_id);
869                 return 0;
870         }
871         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
872                             SAS_ADDR(dev->parent->sas_addr))) {
873                 sas_add_parent_port(dev, phy_id);
874                 if (ex_phy->routing_attr == TABLE_ROUTING)
875                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
876                 return 0;
877         }
878
879         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
880                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
881
882         if (ex_phy->attached_dev_type == NO_DEVICE) {
883                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
884                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
885                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
886                 }
887                 return 0;
888         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
889                 return 0;
890
891         if (ex_phy->attached_dev_type != SAS_END_DEV &&
892             ex_phy->attached_dev_type != FANOUT_DEV &&
893             ex_phy->attached_dev_type != EDGE_DEV) {
894                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
895                             "phy 0x%x\n", ex_phy->attached_dev_type,
896                             SAS_ADDR(dev->sas_addr),
897                             phy_id);
898                 return 0;
899         }
900
901         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
902         if (res) {
903                 SAS_DPRINTK("configure routing for dev %016llx "
904                             "reported 0x%x. Forgotten\n",
905                             SAS_ADDR(ex_phy->attached_sas_addr), res);
906                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
907                 return res;
908         }
909
910         res = sas_ex_join_wide_port(dev, phy_id);
911         if (!res) {
912                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
913                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
914                 return res;
915         }
916
917         switch (ex_phy->attached_dev_type) {
918         case SAS_END_DEV:
919                 child = sas_ex_discover_end_dev(dev, phy_id);
920                 break;
921         case FANOUT_DEV:
922                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
923                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
924                                     "attached to ex %016llx phy 0x%x\n",
925                                     SAS_ADDR(ex_phy->attached_sas_addr),
926                                     ex_phy->attached_phy_id,
927                                     SAS_ADDR(dev->sas_addr),
928                                     phy_id);
929                         sas_ex_disable_phy(dev, phy_id);
930                         break;
931                 } else
932                         memcpy(dev->port->disc.fanout_sas_addr,
933                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
934                 /* fallthrough */
935         case EDGE_DEV:
936                 child = sas_ex_discover_expander(dev, phy_id);
937                 break;
938         default:
939                 break;
940         }
941
942         if (child) {
943                 int i;
944
945                 for (i = 0; i < ex->num_phys; i++) {
946                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
947                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
948                                 continue;
949                         /*
950                          * Due to races, the phy might not get added to the
951                          * wide port, so we add the phy to the wide port here.
952                          */
953                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
954                             SAS_ADDR(child->sas_addr)) {
955                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
956                                 res = sas_ex_join_wide_port(dev, i);
957                                 if (!res)
958                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
959                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
960
961                         }
962                 }
963                 res = 0;
964         }
965
966         return res;
967 }
968
969 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
970 {
971         struct expander_device *ex = &dev->ex_dev;
972         int i;
973
974         for (i = 0; i < ex->num_phys; i++) {
975                 struct ex_phy *phy = &ex->ex_phy[i];
976
977                 if (phy->phy_state == PHY_VACANT ||
978                     phy->phy_state == PHY_NOT_PRESENT)
979                         continue;
980
981                 if ((phy->attached_dev_type == EDGE_DEV ||
982                      phy->attached_dev_type == FANOUT_DEV) &&
983                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
984
985                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
986
987                         return 1;
988                 }
989         }
990         return 0;
991 }
992
993 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
994 {
995         struct expander_device *ex = &dev->ex_dev;
996         struct domain_device *child;
997         u8 sub_addr[8] = {0, };
998
999         list_for_each_entry(child, &ex->children, siblings) {
1000                 if (child->dev_type != EDGE_DEV &&
1001                     child->dev_type != FANOUT_DEV)
1002                         continue;
1003                 if (sub_addr[0] == 0) {
1004                         sas_find_sub_addr(child, sub_addr);
1005                         continue;
1006                 } else {
1007                         u8 s2[8];
1008
1009                         if (sas_find_sub_addr(child, s2) &&
1010                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1011
1012                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1013                                             "diverges from subtractive "
1014                                             "boundary %016llx\n",
1015                                             SAS_ADDR(dev->sas_addr),
1016                                             SAS_ADDR(child->sas_addr),
1017                                             SAS_ADDR(s2),
1018                                             SAS_ADDR(sub_addr));
1019
1020                                 sas_ex_disable_port(child, s2);
1021                         }
1022                 }
1023         }
1024         return 0;
1025 }
1026 /**
1027  * sas_ex_discover_devices -- discover devices attached to this expander
1028  * dev: pointer to the expander domain device
1029  * single: if you want to do a single phy, else set to -1;
1030  *
1031  * Configure this expander for use with its devices and register the
1032  * devices of this expander.
1033  */
1034 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1035 {
1036         struct expander_device *ex = &dev->ex_dev;
1037         int i = 0, end = ex->num_phys;
1038         int res = 0;
1039
1040         if (0 <= single && single < end) {
1041                 i = single;
1042                 end = i+1;
1043         }
1044
1045         for ( ; i < end; i++) {
1046                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1047
1048                 if (ex_phy->phy_state == PHY_VACANT ||
1049                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1050                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1051                         continue;
1052
1053                 switch (ex_phy->linkrate) {
1054                 case SAS_PHY_DISABLED:
1055                 case SAS_PHY_RESET_PROBLEM:
1056                 case SAS_SATA_PORT_SELECTOR:
1057                         continue;
1058                 default:
1059                         res = sas_ex_discover_dev(dev, i);
1060                         if (res)
1061                                 break;
1062                         continue;
1063                 }
1064         }
1065
1066         if (!res)
1067                 sas_check_level_subtractive_boundary(dev);
1068
1069         return res;
1070 }
1071
1072 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1073 {
1074         struct expander_device *ex = &dev->ex_dev;
1075         int i;
1076         u8  *sub_sas_addr = NULL;
1077
1078         if (dev->dev_type != EDGE_DEV)
1079                 return 0;
1080
1081         for (i = 0; i < ex->num_phys; i++) {
1082                 struct ex_phy *phy = &ex->ex_phy[i];
1083
1084                 if (phy->phy_state == PHY_VACANT ||
1085                     phy->phy_state == PHY_NOT_PRESENT)
1086                         continue;
1087
1088                 if ((phy->attached_dev_type == FANOUT_DEV ||
1089                      phy->attached_dev_type == EDGE_DEV) &&
1090                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1091
1092                         if (!sub_sas_addr)
1093                                 sub_sas_addr = &phy->attached_sas_addr[0];
1094                         else if (SAS_ADDR(sub_sas_addr) !=
1095                                  SAS_ADDR(phy->attached_sas_addr)) {
1096
1097                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1098                                             "diverges(%016llx) on subtractive "
1099                                             "boundary(%016llx). Disabled\n",
1100                                             SAS_ADDR(dev->sas_addr), i,
1101                                             SAS_ADDR(phy->attached_sas_addr),
1102                                             SAS_ADDR(sub_sas_addr));
1103                                 sas_ex_disable_phy(dev, i);
1104                         }
1105                 }
1106         }
1107         return 0;
1108 }
1109
1110 static void sas_print_parent_topology_bug(struct domain_device *child,
1111                                                  struct ex_phy *parent_phy,
1112                                                  struct ex_phy *child_phy)
1113 {
1114         static const char ra_char[] = {
1115                 [DIRECT_ROUTING] = 'D',
1116                 [SUBTRACTIVE_ROUTING] = 'S',
1117                 [TABLE_ROUTING] = 'T',
1118         };
1119         static const char *ex_type[] = {
1120                 [EDGE_DEV] = "edge",
1121                 [FANOUT_DEV] = "fanout",
1122         };
1123         struct domain_device *parent = child->parent;
1124
1125         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1126                    "has %c:%c routing link!\n",
1127
1128                    ex_type[parent->dev_type],
1129                    SAS_ADDR(parent->sas_addr),
1130                    parent_phy->phy_id,
1131
1132                    ex_type[child->dev_type],
1133                    SAS_ADDR(child->sas_addr),
1134                    child_phy->phy_id,
1135
1136                    ra_char[parent_phy->routing_attr],
1137                    ra_char[child_phy->routing_attr]);
1138 }
1139
1140 static int sas_check_eeds(struct domain_device *child,
1141                                  struct ex_phy *parent_phy,
1142                                  struct ex_phy *child_phy)
1143 {
1144         int res = 0;
1145         struct domain_device *parent = child->parent;
1146
1147         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1148                 res = -ENODEV;
1149                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1150                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1151                             SAS_ADDR(parent->sas_addr),
1152                             parent_phy->phy_id,
1153                             SAS_ADDR(child->sas_addr),
1154                             child_phy->phy_id,
1155                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1156         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1157                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1158                        SAS_ADDR_SIZE);
1159                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1160                        SAS_ADDR_SIZE);
1161         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1162                     SAS_ADDR(parent->sas_addr)) ||
1163                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1164                     SAS_ADDR(child->sas_addr)))
1165                    &&
1166                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1167                      SAS_ADDR(parent->sas_addr)) ||
1168                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1169                      SAS_ADDR(child->sas_addr))))
1170                 ;
1171         else {
1172                 res = -ENODEV;
1173                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1174                             "phy 0x%x link forms a third EEDS!\n",
1175                             SAS_ADDR(parent->sas_addr),
1176                             parent_phy->phy_id,
1177                             SAS_ADDR(child->sas_addr),
1178                             child_phy->phy_id);
1179         }
1180
1181         return res;
1182 }
1183
1184 /* Here we spill over 80 columns.  It is intentional.
1185  */
1186 static int sas_check_parent_topology(struct domain_device *child)
1187 {
1188         struct expander_device *child_ex = &child->ex_dev;
1189         struct expander_device *parent_ex;
1190         int i;
1191         int res = 0;
1192
1193         if (!child->parent)
1194                 return 0;
1195
1196         if (child->parent->dev_type != EDGE_DEV &&
1197             child->parent->dev_type != FANOUT_DEV)
1198                 return 0;
1199
1200         parent_ex = &child->parent->ex_dev;
1201
1202         for (i = 0; i < parent_ex->num_phys; i++) {
1203                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1204                 struct ex_phy *child_phy;
1205
1206                 if (parent_phy->phy_state == PHY_VACANT ||
1207                     parent_phy->phy_state == PHY_NOT_PRESENT)
1208                         continue;
1209
1210                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1211                         continue;
1212
1213                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1214
1215                 switch (child->parent->dev_type) {
1216                 case EDGE_DEV:
1217                         if (child->dev_type == FANOUT_DEV) {
1218                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1219                                     child_phy->routing_attr != TABLE_ROUTING) {
1220                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1221                                         res = -ENODEV;
1222                                 }
1223                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1225                                         res = sas_check_eeds(child, parent_phy, child_phy);
1226                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1227                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1228                                         res = -ENODEV;
1229                                 }
1230                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1231                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1232                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1233                                 res = -ENODEV;
1234                         }
1235                         break;
1236                 case FANOUT_DEV:
1237                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1238                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1239                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1240                                 res = -ENODEV;
1241                         }
1242                         break;
1243                 default:
1244                         break;
1245                 }
1246         }
1247
1248         return res;
1249 }
1250
1251 #define RRI_REQ_SIZE  16
1252 #define RRI_RESP_SIZE 44
1253
1254 static int sas_configure_present(struct domain_device *dev, int phy_id,
1255                                  u8 *sas_addr, int *index, int *present)
1256 {
1257         int i, res = 0;
1258         struct expander_device *ex = &dev->ex_dev;
1259         struct ex_phy *phy = &ex->ex_phy[phy_id];
1260         u8 *rri_req;
1261         u8 *rri_resp;
1262
1263         *present = 0;
1264         *index = 0;
1265
1266         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1267         if (!rri_req)
1268                 return -ENOMEM;
1269
1270         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1271         if (!rri_resp) {
1272                 kfree(rri_req);
1273                 return -ENOMEM;
1274         }
1275
1276         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1277         rri_req[9] = phy_id;
1278
1279         for (i = 0; i < ex->max_route_indexes ; i++) {
1280                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1281                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1282                                        RRI_RESP_SIZE);
1283                 if (res)
1284                         goto out;
1285                 res = rri_resp[2];
1286                 if (res == SMP_RESP_NO_INDEX) {
1287                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1288                                     "phy 0x%x index 0x%x\n",
1289                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1290                         goto out;
1291                 } else if (res != SMP_RESP_FUNC_ACC) {
1292                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1293                                     "result 0x%x\n", __func__,
1294                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1295                         goto out;
1296                 }
1297                 if (SAS_ADDR(sas_addr) != 0) {
1298                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1299                                 *index = i;
1300                                 if ((rri_resp[12] & 0x80) == 0x80)
1301                                         *present = 0;
1302                                 else
1303                                         *present = 1;
1304                                 goto out;
1305                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1306                                 *index = i;
1307                                 *present = 0;
1308                                 goto out;
1309                         }
1310                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1311                            phy->last_da_index < i) {
1312                         phy->last_da_index = i;
1313                         *index = i;
1314                         *present = 0;
1315                         goto out;
1316                 }
1317         }
1318         res = -1;
1319 out:
1320         kfree(rri_req);
1321         kfree(rri_resp);
1322         return res;
1323 }
1324
1325 #define CRI_REQ_SIZE  44
1326 #define CRI_RESP_SIZE  8
1327
1328 static int sas_configure_set(struct domain_device *dev, int phy_id,
1329                              u8 *sas_addr, int index, int include)
1330 {
1331         int res;
1332         u8 *cri_req;
1333         u8 *cri_resp;
1334
1335         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1336         if (!cri_req)
1337                 return -ENOMEM;
1338
1339         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1340         if (!cri_resp) {
1341                 kfree(cri_req);
1342                 return -ENOMEM;
1343         }
1344
1345         cri_req[1] = SMP_CONF_ROUTE_INFO;
1346         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1347         cri_req[9] = phy_id;
1348         if (SAS_ADDR(sas_addr) == 0 || !include)
1349                 cri_req[12] |= 0x80;
1350         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1351
1352         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1353                                CRI_RESP_SIZE);
1354         if (res)
1355                 goto out;
1356         res = cri_resp[2];
1357         if (res == SMP_RESP_NO_INDEX) {
1358                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1359                             "index 0x%x\n",
1360                             SAS_ADDR(dev->sas_addr), phy_id, index);
1361         }
1362 out:
1363         kfree(cri_req);
1364         kfree(cri_resp);
1365         return res;
1366 }
1367
1368 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1369                                     u8 *sas_addr, int include)
1370 {
1371         int index;
1372         int present;
1373         int res;
1374
1375         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1376         if (res)
1377                 return res;
1378         if (include ^ present)
1379                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1380
1381         return res;
1382 }
1383
1384 /**
1385  * sas_configure_parent -- configure routing table of parent
1386  * parent: parent expander
1387  * child: child expander
1388  * sas_addr: SAS port identifier of device directly attached to child
1389  */
1390 static int sas_configure_parent(struct domain_device *parent,
1391                                 struct domain_device *child,
1392                                 u8 *sas_addr, int include)
1393 {
1394         struct expander_device *ex_parent = &parent->ex_dev;
1395         int res = 0;
1396         int i;
1397
1398         if (parent->parent) {
1399                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1400                                            include);
1401                 if (res)
1402                         return res;
1403         }
1404
1405         if (ex_parent->conf_route_table == 0) {
1406                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1407                             SAS_ADDR(parent->sas_addr));
1408                 return 0;
1409         }
1410
1411         for (i = 0; i < ex_parent->num_phys; i++) {
1412                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1413
1414                 if ((phy->routing_attr == TABLE_ROUTING) &&
1415                     (SAS_ADDR(phy->attached_sas_addr) ==
1416                      SAS_ADDR(child->sas_addr))) {
1417                         res = sas_configure_phy(parent, i, sas_addr, include);
1418                         if (res)
1419                                 return res;
1420                 }
1421         }
1422
1423         return res;
1424 }
1425
1426 /**
1427  * sas_configure_routing -- configure routing
1428  * dev: expander device
1429  * sas_addr: port identifier of device directly attached to the expander device
1430  */
1431 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1432 {
1433         if (dev->parent)
1434                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1435         return 0;
1436 }
1437
1438 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1439 {
1440         if (dev->parent)
1441                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1442         return 0;
1443 }
1444
1445 /**
1446  * sas_discover_expander -- expander discovery
1447  * @ex: pointer to expander domain device
1448  *
1449  * See comment in sas_discover_sata().
1450  */
1451 static int sas_discover_expander(struct domain_device *dev)
1452 {
1453         int res;
1454
1455         res = sas_notify_lldd_dev_found(dev);
1456         if (res)
1457                 return res;
1458
1459         res = sas_ex_general(dev);
1460         if (res)
1461                 goto out_err;
1462         res = sas_ex_manuf_info(dev);
1463         if (res)
1464                 goto out_err;
1465
1466         res = sas_expander_discover(dev);
1467         if (res) {
1468                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1469                             SAS_ADDR(dev->sas_addr), res);
1470                 goto out_err;
1471         }
1472
1473         sas_check_ex_subtractive_boundary(dev);
1474         res = sas_check_parent_topology(dev);
1475         if (res)
1476                 goto out_err;
1477         return 0;
1478 out_err:
1479         sas_notify_lldd_dev_gone(dev);
1480         return res;
1481 }
1482
1483 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1484 {
1485         int res = 0;
1486         struct domain_device *dev;
1487
1488         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1489                 if (dev->dev_type == EDGE_DEV ||
1490                     dev->dev_type == FANOUT_DEV) {
1491                         struct sas_expander_device *ex =
1492                                 rphy_to_expander_device(dev->rphy);
1493
1494                         if (level == ex->level)
1495                                 res = sas_ex_discover_devices(dev, -1);
1496                         else if (level > 0)
1497                                 res = sas_ex_discover_devices(port->port_dev, -1);
1498
1499                 }
1500         }
1501
1502         return res;
1503 }
1504
1505 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1506 {
1507         int res;
1508         int level;
1509
1510         do {
1511                 level = port->disc.max_level;
1512                 res = sas_ex_level_discovery(port, level);
1513                 mb();
1514         } while (level < port->disc.max_level);
1515
1516         return res;
1517 }
1518
1519 int sas_discover_root_expander(struct domain_device *dev)
1520 {
1521         int res;
1522         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1523
1524         res = sas_rphy_add(dev->rphy);
1525         if (res)
1526                 goto out_err;
1527
1528         ex->level = dev->port->disc.max_level; /* 0 */
1529         res = sas_discover_expander(dev);
1530         if (res)
1531                 goto out_err2;
1532
1533         sas_ex_bfs_disc(dev->port);
1534
1535         return res;
1536
1537 out_err2:
1538         sas_rphy_remove(dev->rphy);
1539 out_err:
1540         return res;
1541 }
1542
1543 /* ---------- Domain revalidation ---------- */
1544
1545 static int sas_get_phy_discover(struct domain_device *dev,
1546                                 int phy_id, struct smp_resp *disc_resp)
1547 {
1548         int res;
1549         u8 *disc_req;
1550
1551         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1552         if (!disc_req)
1553                 return -ENOMEM;
1554
1555         disc_req[1] = SMP_DISCOVER;
1556         disc_req[9] = phy_id;
1557
1558         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1559                                disc_resp, DISCOVER_RESP_SIZE);
1560         if (res)
1561                 goto out;
1562         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1563                 res = disc_resp->result;
1564                 goto out;
1565         }
1566 out:
1567         kfree(disc_req);
1568         return res;
1569 }
1570
1571 static int sas_get_phy_change_count(struct domain_device *dev,
1572                                     int phy_id, int *pcc)
1573 {
1574         int res;
1575         struct smp_resp *disc_resp;
1576
1577         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1578         if (!disc_resp)
1579                 return -ENOMEM;
1580
1581         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1582         if (!res)
1583                 *pcc = disc_resp->disc.change_count;
1584
1585         kfree(disc_resp);
1586         return res;
1587 }
1588
1589 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1590                                          int phy_id, u8 *attached_sas_addr)
1591 {
1592         int res;
1593         struct smp_resp *disc_resp;
1594         struct discover_resp *dr;
1595
1596         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1597         if (!disc_resp)
1598                 return -ENOMEM;
1599         dr = &disc_resp->disc;
1600
1601         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1602         if (!res) {
1603                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1604                 if (dr->attached_dev_type == 0)
1605                         memset(attached_sas_addr, 0, 8);
1606         }
1607         kfree(disc_resp);
1608         return res;
1609 }
1610
1611 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1612                               int from_phy, bool update)
1613 {
1614         struct expander_device *ex = &dev->ex_dev;
1615         int res = 0;
1616         int i;
1617
1618         for (i = from_phy; i < ex->num_phys; i++) {
1619                 int phy_change_count = 0;
1620
1621                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1622                 if (res)
1623                         goto out;
1624                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1625                         if (update)
1626                                 ex->ex_phy[i].phy_change_count =
1627                                         phy_change_count;
1628                         *phy_id = i;
1629                         return 0;
1630                 }
1631         }
1632 out:
1633         return res;
1634 }
1635
1636 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1637 {
1638         int res;
1639         u8  *rg_req;
1640         struct smp_resp  *rg_resp;
1641
1642         rg_req = alloc_smp_req(RG_REQ_SIZE);
1643         if (!rg_req)
1644                 return -ENOMEM;
1645
1646         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1647         if (!rg_resp) {
1648                 kfree(rg_req);
1649                 return -ENOMEM;
1650         }
1651
1652         rg_req[1] = SMP_REPORT_GENERAL;
1653
1654         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1655                                RG_RESP_SIZE);
1656         if (res)
1657                 goto out;
1658         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1659                 res = rg_resp->result;
1660                 goto out;
1661         }
1662
1663         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1664 out:
1665         kfree(rg_resp);
1666         kfree(rg_req);
1667         return res;
1668 }
1669 /**
1670  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1671  * @dev:domain device to be detect.
1672  * @src_dev: the device which originated BROADCAST(CHANGE).
1673  *
1674  * Add self-configuration expander suport. Suppose two expander cascading,
1675  * when the first level expander is self-configuring, hotplug the disks in
1676  * second level expander, BROADCAST(CHANGE) will not only be originated
1677  * in the second level expander, but also be originated in the first level
1678  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1679  * expander changed count in two level expanders will all increment at least
1680  * once, but the phy which chang count has changed is the source device which
1681  * we concerned.
1682  */
1683
1684 static int sas_find_bcast_dev(struct domain_device *dev,
1685                               struct domain_device **src_dev)
1686 {
1687         struct expander_device *ex = &dev->ex_dev;
1688         int ex_change_count = -1;
1689         int phy_id = -1;
1690         int res;
1691         struct domain_device *ch;
1692
1693         res = sas_get_ex_change_count(dev, &ex_change_count);
1694         if (res)
1695                 goto out;
1696         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1697                 /* Just detect if this expander phys phy change count changed,
1698                 * in order to determine if this expander originate BROADCAST,
1699                 * and do not update phy change count field in our structure.
1700                 */
1701                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1702                 if (phy_id != -1) {
1703                         *src_dev = dev;
1704                         ex->ex_change_count = ex_change_count;
1705                         SAS_DPRINTK("Expander phy change count has changed\n");
1706                         return res;
1707                 } else
1708                         SAS_DPRINTK("Expander phys DID NOT change\n");
1709         }
1710         list_for_each_entry(ch, &ex->children, siblings) {
1711                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1712                         res = sas_find_bcast_dev(ch, src_dev);
1713                         if (src_dev)
1714                                 return res;
1715                 }
1716         }
1717 out:
1718         return res;
1719 }
1720
1721 static void sas_unregister_ex_tree(struct domain_device *dev)
1722 {
1723         struct expander_device *ex = &dev->ex_dev;
1724         struct domain_device *child, *n;
1725
1726         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1727                 if (child->dev_type == EDGE_DEV ||
1728                     child->dev_type == FANOUT_DEV)
1729                         sas_unregister_ex_tree(child);
1730                 else
1731                         sas_unregister_dev(child);
1732         }
1733         sas_unregister_dev(dev);
1734 }
1735
1736 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1737                                          int phy_id, bool last)
1738 {
1739         struct expander_device *ex_dev = &parent->ex_dev;
1740         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1741         struct domain_device *child, *n;
1742         if (last) {
1743                 list_for_each_entry_safe(child, n,
1744                         &ex_dev->children, siblings) {
1745                         if (SAS_ADDR(child->sas_addr) ==
1746                             SAS_ADDR(phy->attached_sas_addr)) {
1747                                 if (child->dev_type == EDGE_DEV ||
1748                                     child->dev_type == FANOUT_DEV)
1749                                         sas_unregister_ex_tree(child);
1750                                 else
1751                                         sas_unregister_dev(child);
1752                                 break;
1753                         }
1754                 }
1755                 sas_disable_routing(parent, phy->attached_sas_addr);
1756         }
1757         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1758         sas_port_delete_phy(phy->port, phy->phy);
1759         if (phy->port->num_phys == 0)
1760                 sas_port_delete(phy->port);
1761         phy->port = NULL;
1762 }
1763
1764 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1765                                           const int level)
1766 {
1767         struct expander_device *ex_root = &root->ex_dev;
1768         struct domain_device *child;
1769         int res = 0;
1770
1771         list_for_each_entry(child, &ex_root->children, siblings) {
1772                 if (child->dev_type == EDGE_DEV ||
1773                     child->dev_type == FANOUT_DEV) {
1774                         struct sas_expander_device *ex =
1775                                 rphy_to_expander_device(child->rphy);
1776
1777                         if (level > ex->level)
1778                                 res = sas_discover_bfs_by_root_level(child,
1779                                                                      level);
1780                         else if (level == ex->level)
1781                                 res = sas_ex_discover_devices(child, -1);
1782                 }
1783         }
1784         return res;
1785 }
1786
1787 static int sas_discover_bfs_by_root(struct domain_device *dev)
1788 {
1789         int res;
1790         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1791         int level = ex->level+1;
1792
1793         res = sas_ex_discover_devices(dev, -1);
1794         if (res)
1795                 goto out;
1796         do {
1797                 res = sas_discover_bfs_by_root_level(dev, level);
1798                 mb();
1799                 level += 1;
1800         } while (level <= dev->port->disc.max_level);
1801 out:
1802         return res;
1803 }
1804
1805 static int sas_discover_new(struct domain_device *dev, int phy_id)
1806 {
1807         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1808         struct domain_device *child;
1809         bool found = false;
1810         int res, i;
1811
1812         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1813                     SAS_ADDR(dev->sas_addr), phy_id);
1814         res = sas_ex_phy_discover(dev, phy_id);
1815         if (res)
1816                 goto out;
1817         /* to support the wide port inserted */
1818         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1819                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1820                 if (i == phy_id)
1821                         continue;
1822                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1823                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1824                         found = true;
1825                         break;
1826                 }
1827         }
1828         if (found) {
1829                 sas_ex_join_wide_port(dev, phy_id);
1830                 return 0;
1831         }
1832         res = sas_ex_discover_devices(dev, phy_id);
1833         if (!res)
1834                 goto out;
1835         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1836                 if (SAS_ADDR(child->sas_addr) ==
1837                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1838                         if (child->dev_type == EDGE_DEV ||
1839                             child->dev_type == FANOUT_DEV)
1840                                 res = sas_discover_bfs_by_root(child);
1841                         break;
1842                 }
1843         }
1844 out:
1845         return res;
1846 }
1847
1848 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1849 {
1850         struct expander_device *ex = &dev->ex_dev;
1851         struct ex_phy *phy = &ex->ex_phy[phy_id];
1852         u8 attached_sas_addr[8];
1853         int res;
1854
1855         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1856         switch (res) {
1857         case SMP_RESP_NO_PHY:
1858                 phy->phy_state = PHY_NOT_PRESENT;
1859                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1860                 goto out; break;
1861         case SMP_RESP_PHY_VACANT:
1862                 phy->phy_state = PHY_VACANT;
1863                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1864                 goto out; break;
1865         case SMP_RESP_FUNC_ACC:
1866                 break;
1867         }
1868
1869         if (SAS_ADDR(attached_sas_addr) == 0) {
1870                 phy->phy_state = PHY_EMPTY;
1871                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1872         } else if (SAS_ADDR(attached_sas_addr) ==
1873                    SAS_ADDR(phy->attached_sas_addr)) {
1874                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1875                             SAS_ADDR(dev->sas_addr), phy_id);
1876                 sas_ex_phy_discover(dev, phy_id);
1877         } else
1878                 res = sas_discover_new(dev, phy_id);
1879 out:
1880         return res;
1881 }
1882
1883 /**
1884  * sas_rediscover - revalidate the domain.
1885  * @dev:domain device to be detect.
1886  * @phy_id: the phy id will be detected.
1887  *
1888  * NOTE: this process _must_ quit (return) as soon as any connection
1889  * errors are encountered.  Connection recovery is done elsewhere.
1890  * Discover process only interrogates devices in order to discover the
1891  * domain.For plugging out, we un-register the device only when it is
1892  * the last phy in the port, for other phys in this port, we just delete it
1893  * from the port.For inserting, we do discovery when it is the
1894  * first phy,for other phys in this port, we add it to the port to
1895  * forming the wide-port.
1896  */
1897 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1898 {
1899         struct expander_device *ex = &dev->ex_dev;
1900         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1901         int res = 0;
1902         int i;
1903         bool last = true;       /* is this the last phy of the port */
1904
1905         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1906                     SAS_ADDR(dev->sas_addr), phy_id);
1907
1908         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1909                 for (i = 0; i < ex->num_phys; i++) {
1910                         struct ex_phy *phy = &ex->ex_phy[i];
1911
1912                         if (i == phy_id)
1913                                 continue;
1914                         if (SAS_ADDR(phy->attached_sas_addr) ==
1915                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1916                                 SAS_DPRINTK("phy%d part of wide port with "
1917                                             "phy%d\n", phy_id, i);
1918                                 last = false;
1919                                 break;
1920                         }
1921                 }
1922                 res = sas_rediscover_dev(dev, phy_id, last);
1923         } else
1924                 res = sas_discover_new(dev, phy_id);
1925         return res;
1926 }
1927
1928 /**
1929  * sas_revalidate_domain -- revalidate the domain
1930  * @port: port to the domain of interest
1931  *
1932  * NOTE: this process _must_ quit (return) as soon as any connection
1933  * errors are encountered.  Connection recovery is done elsewhere.
1934  * Discover process only interrogates devices in order to discover the
1935  * domain.
1936  */
1937 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1938 {
1939         int res;
1940         struct domain_device *dev = NULL;
1941
1942         res = sas_find_bcast_dev(port_dev, &dev);
1943         if (res)
1944                 goto out;
1945         if (dev) {
1946                 struct expander_device *ex = &dev->ex_dev;
1947                 int i = 0, phy_id;
1948
1949                 do {
1950                         phy_id = -1;
1951                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1952                         if (phy_id == -1)
1953                                 break;
1954                         res = sas_rediscover(dev, phy_id);
1955                         i = phy_id + 1;
1956                 } while (i < ex->num_phys);
1957         }
1958 out:
1959         return res;
1960 }
1961
1962 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1963                     struct request *req)
1964 {
1965         struct domain_device *dev;
1966         int ret, type;
1967         struct request *rsp = req->next_rq;
1968
1969         if (!rsp) {
1970                 printk("%s: space for a smp response is missing\n",
1971                        __func__);
1972                 return -EINVAL;
1973         }
1974
1975         /* no rphy means no smp target support (ie aic94xx host) */
1976         if (!rphy)
1977                 return sas_smp_host_handler(shost, req, rsp);
1978
1979         type = rphy->identify.device_type;
1980
1981         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1982             type != SAS_FANOUT_EXPANDER_DEVICE) {
1983                 printk("%s: can we send a smp request to a device?\n",
1984                        __func__);
1985                 return -EINVAL;
1986         }
1987
1988         dev = sas_find_dev_by_rphy(rphy);
1989         if (!dev) {
1990                 printk("%s: fail to find a domain_device?\n", __func__);
1991                 return -EINVAL;
1992         }
1993
1994         /* do we need to support multiple segments? */
1995         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
1996                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
1997                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
1998                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
1999                 return -EINVAL;
2000         }
2001
2002         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2003                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2004         if (ret > 0) {
2005                 /* positive number is the untransferred residual */
2006                 rsp->resid_len = ret;
2007                 req->resid_len = 0;
2008                 ret = 0;
2009         } else if (ret == 0) {
2010                 rsp->resid_len = 0;
2011                 req->resid_len = 0;
2012         }
2013
2014         return ret;
2015 }