Merge branch 'staging-next' into Linux 3.1
[pandora-kernel.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72
73 #define smu_max_ports(dcc_value) \
74         (\
75                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77         )
78
79 #define smu_max_task_contexts(dcc_value)        \
80         (\
81                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83         )
84
85 #define smu_max_rncs(dcc_value) \
86         (\
87                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89         )
90
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119         (\
120                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122         )
123
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151                  const struct sci_base_state *state_table, u32 initial_state)
152 {
153         sci_state_transition_t handler;
154
155         sm->initial_state_id    = initial_state;
156         sm->previous_state_id   = initial_state;
157         sm->current_state_id    = initial_state;
158         sm->state_table         = state_table;
159
160         handler = sm->state_table[initial_state].enter_state;
161         if (handler)
162                 handler(sm);
163 }
164
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168         sci_state_transition_t handler;
169
170         handler = sm->state_table[sm->current_state_id].exit_state;
171         if (handler)
172                 handler(sm);
173
174         sm->previous_state_id = sm->current_state_id;
175         sm->current_state_id = next_state;
176
177         handler = sm->state_table[sm->current_state_id].enter_state;
178         if (handler)
179                 handler(sm);
180 }
181
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184         u32 get_value = ihost->completion_queue_get;
185         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189                 return true;
190
191         return false;
192 }
193
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196         if (sci_controller_completion_queue_has_entries(ihost)) {
197                 return true;
198         } else {
199                 /*
200                  * we have a spurious interrupt it could be that we have already
201                  * emptied the completion queue from a previous interrupt */
202                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204                 /*
205                  * There is a race in the hardware that could cause us not to be notified
206                  * of an interrupt completion if we do not take this step.  We will mask
207                  * then unmask the interrupts so if there is another interrupt pending
208                  * the clearing of the interrupt source we get the next interrupt message. */
209                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210                 writel(0, &ihost->smu_registers->interrupt_mask);
211         }
212
213         return false;
214 }
215
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218         struct isci_host *ihost = data;
219
220         if (sci_controller_isr(ihost))
221                 tasklet_schedule(&ihost->completion_tasklet);
222
223         return IRQ_HANDLED;
224 }
225
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228         u32 interrupt_status;
229
230         interrupt_status =
231                 readl(&ihost->smu_registers->interrupt_status);
232         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234         if (interrupt_status != 0) {
235                 /*
236                  * There is an error interrupt pending so let it through and handle
237                  * in the callback */
238                 return true;
239         }
240
241         /*
242          * There is a race in the hardware that could cause us not to be notified
243          * of an interrupt completion if we do not take this step.  We will mask
244          * then unmask the error interrupts so if there was another interrupt
245          * pending we will be notified.
246          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247         writel(0xff, &ihost->smu_registers->interrupt_mask);
248         writel(0, &ihost->smu_registers->interrupt_mask);
249
250         return false;
251 }
252
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255         u32 index = SCU_GET_COMPLETION_INDEX(ent);
256         struct isci_request *ireq = ihost->reqs[index];
257
258         /* Make sure that we really want to process this IO request */
259         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262                 /* Yep this is a valid io request pass it along to the
263                  * io request handler
264                  */
265                 sci_io_request_tc_completion(ireq, ent);
266 }
267
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270         u32 index;
271         struct isci_request *ireq;
272         struct isci_remote_device *idev;
273
274         index = SCU_GET_COMPLETION_INDEX(ent);
275
276         switch (scu_get_command_request_type(ent)) {
277         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279                 ireq = ihost->reqs[index];
280                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281                          __func__, ent, ireq);
282                 /* @todo For a post TC operation we need to fail the IO
283                  * request
284                  */
285                 break;
286         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289                 idev = ihost->device_table[index];
290                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291                          __func__, ent, idev);
292                 /* @todo For a port RNC operation we need to fail the
293                  * device
294                  */
295                 break;
296         default:
297                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298                          __func__, ent);
299                 break;
300         }
301 }
302
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305         u32 index;
306         u32 frame_index;
307
308         struct scu_unsolicited_frame_header *frame_header;
309         struct isci_phy *iphy;
310         struct isci_remote_device *idev;
311
312         enum sci_status result = SCI_FAILURE;
313
314         frame_index = SCU_GET_FRAME_INDEX(ent);
315
316         frame_header = ihost->uf_control.buffers.array[frame_index].header;
317         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319         if (SCU_GET_FRAME_ERROR(ent)) {
320                 /*
321                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322                  * /       this cause a problem? We expect the phy initialization will
323                  * /       fail if there is an error in the frame. */
324                 sci_controller_release_frame(ihost, frame_index);
325                 return;
326         }
327
328         if (frame_header->is_address_frame) {
329                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330                 iphy = &ihost->phys[index];
331                 result = sci_phy_frame_handler(iphy, frame_index);
332         } else {
333
334                 index = SCU_GET_COMPLETION_INDEX(ent);
335
336                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337                         /*
338                          * This is a signature fis or a frame from a direct attached SATA
339                          * device that has not yet been created.  In either case forwared
340                          * the frame to the PE and let it take care of the frame data. */
341                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342                         iphy = &ihost->phys[index];
343                         result = sci_phy_frame_handler(iphy, frame_index);
344                 } else {
345                         if (index < ihost->remote_node_entries)
346                                 idev = ihost->device_table[index];
347                         else
348                                 idev = NULL;
349
350                         if (idev != NULL)
351                                 result = sci_remote_device_frame_handler(idev, frame_index);
352                         else
353                                 sci_controller_release_frame(ihost, frame_index);
354                 }
355         }
356
357         if (result != SCI_SUCCESS) {
358                 /*
359                  * / @todo Is there any reason to report some additional error message
360                  * /       when we get this failure notifiction? */
361         }
362 }
363
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366         struct isci_remote_device *idev;
367         struct isci_request *ireq;
368         struct isci_phy *iphy;
369         u32 index;
370
371         index = SCU_GET_COMPLETION_INDEX(ent);
372
373         switch (scu_get_event_type(ent)) {
374         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375                 /* / @todo The driver did something wrong and we need to fix the condtion. */
376                 dev_err(&ihost->pdev->dev,
377                         "%s: SCIC Controller 0x%p received SMU command error "
378                         "0x%x\n",
379                         __func__,
380                         ihost,
381                         ent);
382                 break;
383
384         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385         case SCU_EVENT_TYPE_SMU_ERROR:
386         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387                 /*
388                  * / @todo This is a hardware failure and its likely that we want to
389                  * /       reset the controller. */
390                 dev_err(&ihost->pdev->dev,
391                         "%s: SCIC Controller 0x%p received fatal controller "
392                         "event  0x%x\n",
393                         __func__,
394                         ihost,
395                         ent);
396                 break;
397
398         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399                 ireq = ihost->reqs[index];
400                 sci_io_request_event_handler(ireq, ent);
401                 break;
402
403         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404                 switch (scu_get_event_specifier(ent)) {
405                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407                         ireq = ihost->reqs[index];
408                         if (ireq != NULL)
409                                 sci_io_request_event_handler(ireq, ent);
410                         else
411                                 dev_warn(&ihost->pdev->dev,
412                                          "%s: SCIC Controller 0x%p received "
413                                          "event 0x%x for io request object "
414                                          "that doesnt exist.\n",
415                                          __func__,
416                                          ihost,
417                                          ent);
418
419                         break;
420
421                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422                         idev = ihost->device_table[index];
423                         if (idev != NULL)
424                                 sci_remote_device_event_handler(idev, ent);
425                         else
426                                 dev_warn(&ihost->pdev->dev,
427                                          "%s: SCIC Controller 0x%p received "
428                                          "event 0x%x for remote device object "
429                                          "that doesnt exist.\n",
430                                          __func__,
431                                          ihost,
432                                          ent);
433
434                         break;
435                 }
436                 break;
437
438         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439         /*
440          * direct the broadcast change event to the phy first and then let
441          * the phy redirect the broadcast change to the port object */
442         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443         /*
444          * direct error counter event to the phy object since that is where
445          * we get the event notification.  This is a type 4 event. */
446         case SCU_EVENT_TYPE_OSSP_EVENT:
447                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448                 iphy = &ihost->phys[index];
449                 sci_phy_event_handler(iphy, ent);
450                 break;
451
452         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454         case SCU_EVENT_TYPE_RNC_OPS_MISC:
455                 if (index < ihost->remote_node_entries) {
456                         idev = ihost->device_table[index];
457
458                         if (idev != NULL)
459                                 sci_remote_device_event_handler(idev, ent);
460                 } else
461                         dev_err(&ihost->pdev->dev,
462                                 "%s: SCIC Controller 0x%p received event 0x%x "
463                                 "for remote device object 0x%0x that doesnt "
464                                 "exist.\n",
465                                 __func__,
466                                 ihost,
467                                 ent,
468                                 index);
469
470                 break;
471
472         default:
473                 dev_warn(&ihost->pdev->dev,
474                          "%s: SCIC Controller received unknown event code %x\n",
475                          __func__,
476                          ent);
477                 break;
478         }
479 }
480
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483         u32 completion_count = 0;
484         u32 ent;
485         u32 get_index;
486         u32 get_cycle;
487         u32 event_get;
488         u32 event_cycle;
489
490         dev_dbg(&ihost->pdev->dev,
491                 "%s: completion queue begining get:0x%08x\n",
492                 __func__,
493                 ihost->completion_queue_get);
494
495         /* Get the component parts of the completion queue */
496         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502         while (
503                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505                 ) {
506                 completion_count++;
507
508                 ent = ihost->completion_queue[get_index];
509
510                 /* increment the get pointer and check for rollover to toggle the cycle bit */
511                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515                 dev_dbg(&ihost->pdev->dev,
516                         "%s: completion queue entry:0x%08x\n",
517                         __func__,
518                         ent);
519
520                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521                 case SCU_COMPLETION_TYPE_TASK:
522                         sci_controller_task_completion(ihost, ent);
523                         break;
524
525                 case SCU_COMPLETION_TYPE_SDMA:
526                         sci_controller_sdma_completion(ihost, ent);
527                         break;
528
529                 case SCU_COMPLETION_TYPE_UFI:
530                         sci_controller_unsolicited_frame(ihost, ent);
531                         break;
532
533                 case SCU_COMPLETION_TYPE_EVENT:
534                         sci_controller_event_completion(ihost, ent);
535                         break;
536
537                 case SCU_COMPLETION_TYPE_NOTIFY: {
538                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541
542                         sci_controller_event_completion(ihost, ent);
543                         break;
544                 }
545                 default:
546                         dev_warn(&ihost->pdev->dev,
547                                  "%s: SCIC Controller received unknown "
548                                  "completion type %x\n",
549                                  __func__,
550                                  ent);
551                         break;
552                 }
553         }
554
555         /* Update the get register if we completed one or more entries */
556         if (completion_count > 0) {
557                 ihost->completion_queue_get =
558                         SMU_CQGR_GEN_BIT(ENABLE) |
559                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560                         event_cycle |
561                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562                         get_cycle |
563                         SMU_CQGR_GEN_VAL(POINTER, get_index);
564
565                 writel(ihost->completion_queue_get,
566                        &ihost->smu_registers->completion_queue_get);
567
568         }
569
570         dev_dbg(&ihost->pdev->dev,
571                 "%s: completion queue ending get:0x%08x\n",
572                 __func__,
573                 ihost->completion_queue_get);
574
575 }
576
577 static void sci_controller_error_handler(struct isci_host *ihost)
578 {
579         u32 interrupt_status;
580
581         interrupt_status =
582                 readl(&ihost->smu_registers->interrupt_status);
583
584         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585             sci_controller_completion_queue_has_entries(ihost)) {
586
587                 sci_controller_process_completions(ihost);
588                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589         } else {
590                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591                         interrupt_status);
592
593                 sci_change_state(&ihost->sm, SCIC_FAILED);
594
595                 return;
596         }
597
598         /* If we dont process any completions I am not sure that we want to do this.
599          * We are in the middle of a hardware fault and should probably be reset.
600          */
601         writel(0, &ihost->smu_registers->interrupt_mask);
602 }
603
604 irqreturn_t isci_intx_isr(int vec, void *data)
605 {
606         irqreturn_t ret = IRQ_NONE;
607         struct isci_host *ihost = data;
608
609         if (sci_controller_isr(ihost)) {
610                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611                 tasklet_schedule(&ihost->completion_tasklet);
612                 ret = IRQ_HANDLED;
613         } else if (sci_controller_error_isr(ihost)) {
614                 spin_lock(&ihost->scic_lock);
615                 sci_controller_error_handler(ihost);
616                 spin_unlock(&ihost->scic_lock);
617                 ret = IRQ_HANDLED;
618         }
619
620         return ret;
621 }
622
623 irqreturn_t isci_error_isr(int vec, void *data)
624 {
625         struct isci_host *ihost = data;
626
627         if (sci_controller_error_isr(ihost))
628                 sci_controller_error_handler(ihost);
629
630         return IRQ_HANDLED;
631 }
632
633 /**
634  * isci_host_start_complete() - This function is called by the core library,
635  *    through the ISCI Module, to indicate controller start status.
636  * @isci_host: This parameter specifies the ISCI host object
637  * @completion_status: This parameter specifies the completion status from the
638  *    core library.
639  *
640  */
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642 {
643         if (completion_status != SCI_SUCCESS)
644                 dev_info(&ihost->pdev->dev,
645                         "controller start timed out, continuing...\n");
646         isci_host_change_state(ihost, isci_ready);
647         clear_bit(IHOST_START_PENDING, &ihost->flags);
648         wake_up(&ihost->eventq);
649 }
650
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652 {
653         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654
655         if (test_bit(IHOST_START_PENDING, &ihost->flags))
656                 return 0;
657
658         /* todo: use sas_flush_discovery once it is upstream */
659         scsi_flush_work(shost);
660
661         scsi_flush_work(shost);
662
663         dev_dbg(&ihost->pdev->dev,
664                 "%s: ihost->status = %d, time = %ld\n",
665                  __func__, isci_host_get_state(ihost), time);
666
667         return 1;
668
669 }
670
671 /**
672  * sci_controller_get_suggested_start_timeout() - This method returns the
673  *    suggested sci_controller_start() timeout amount.  The user is free to
674  *    use any timeout value, but this method provides the suggested minimum
675  *    start timeout value.  The returned value is based upon empirical
676  *    information determined as a result of interoperability testing.
677  * @controller: the handle to the controller object for which to return the
678  *    suggested start timeout.
679  *
680  * This method returns the number of milliseconds for the suggested start
681  * operation timeout.
682  */
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684 {
685         /* Validate the user supplied parameters. */
686         if (!ihost)
687                 return 0;
688
689         /*
690          * The suggested minimum timeout value for a controller start operation:
691          *
692          *     Signature FIS Timeout
693          *   + Phy Start Timeout
694          *   + Number of Phy Spin Up Intervals
695          *   ---------------------------------
696          *   Number of milliseconds for the controller start operation.
697          *
698          * NOTE: The number of phy spin up intervals will be equivalent
699          *       to the number of phys divided by the number phys allowed
700          *       per interval - 1 (once OEM parameters are supported).
701          *       Currently we assume only 1 phy per interval. */
702
703         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706 }
707
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
709 {
710         BUG_ON(ihost->smu_registers == NULL);
711         writel(0, &ihost->smu_registers->interrupt_mask);
712 }
713
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
715 {
716         BUG_ON(ihost->smu_registers == NULL);
717         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718 }
719
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721 {
722         u32 port_task_scheduler_value;
723
724         port_task_scheduler_value =
725                 readl(&ihost->scu_registers->peg0.ptsg.control);
726         port_task_scheduler_value |=
727                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729         writel(port_task_scheduler_value,
730                &ihost->scu_registers->peg0.ptsg.control);
731 }
732
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
734 {
735         u32 task_assignment;
736
737         /*
738          * Assign all the TCs to function 0
739          * TODO: Do we actually need to read this register to write it back?
740          */
741
742         task_assignment =
743                 readl(&ihost->smu_registers->task_context_assignment[0]);
744
745         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748
749         writel(task_assignment,
750                 &ihost->smu_registers->task_context_assignment[0]);
751
752 }
753
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755 {
756         u32 index;
757         u32 completion_queue_control_value;
758         u32 completion_queue_get_value;
759         u32 completion_queue_put_value;
760
761         ihost->completion_queue_get = 0;
762
763         completion_queue_control_value =
764                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766
767         writel(completion_queue_control_value,
768                &ihost->smu_registers->completion_queue_control);
769
770
771         /* Set the completion queue get pointer and enable the queue */
772         completion_queue_get_value = (
773                 (SMU_CQGR_GEN_VAL(POINTER, 0))
774                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775                 | (SMU_CQGR_GEN_BIT(ENABLE))
776                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777                 );
778
779         writel(completion_queue_get_value,
780                &ihost->smu_registers->completion_queue_get);
781
782         /* Set the completion queue put pointer */
783         completion_queue_put_value = (
784                 (SMU_CQPR_GEN_VAL(POINTER, 0))
785                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786                 );
787
788         writel(completion_queue_put_value,
789                &ihost->smu_registers->completion_queue_put);
790
791         /* Initialize the cycle bit of the completion queue entries */
792         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793                 /*
794                  * If get.cycle_bit != completion_queue.cycle_bit
795                  * its not a valid completion queue entry
796                  * so at system start all entries are invalid */
797                 ihost->completion_queue[index] = 0x80000000;
798         }
799 }
800
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802 {
803         u32 frame_queue_control_value;
804         u32 frame_queue_get_value;
805         u32 frame_queue_put_value;
806
807         /* Write the queue size */
808         frame_queue_control_value =
809                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810
811         writel(frame_queue_control_value,
812                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813
814         /* Setup the get pointer for the unsolicited frame queue */
815         frame_queue_get_value = (
816                 SCU_UFQGP_GEN_VAL(POINTER, 0)
817                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818                 );
819
820         writel(frame_queue_get_value,
821                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822         /* Setup the put pointer for the unsolicited frame queue */
823         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824         writel(frame_queue_put_value,
825                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826 }
827
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829 {
830         if (ihost->sm.current_state_id == SCIC_STARTING) {
831                 /*
832                  * We move into the ready state, because some of the phys/ports
833                  * may be up and operational.
834                  */
835                 sci_change_state(&ihost->sm, SCIC_READY);
836
837                 isci_host_start_complete(ihost, status);
838         }
839 }
840
841 static bool is_phy_starting(struct isci_phy *iphy)
842 {
843         enum sci_phy_states state;
844
845         state = iphy->sm.current_state_id;
846         switch (state) {
847         case SCI_PHY_STARTING:
848         case SCI_PHY_SUB_INITIAL:
849         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850         case SCI_PHY_SUB_AWAIT_IAF_UF:
851         case SCI_PHY_SUB_AWAIT_SAS_POWER:
852         case SCI_PHY_SUB_AWAIT_SATA_POWER:
853         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856         case SCI_PHY_SUB_FINAL:
857                 return true;
858         default:
859                 return false;
860         }
861 }
862
863 /**
864  * sci_controller_start_next_phy - start phy
865  * @scic: controller
866  *
867  * If all the phys have been started, then attempt to transition the
868  * controller to the READY state and inform the user
869  * (sci_cb_controller_start_complete()).
870  */
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872 {
873         struct sci_oem_params *oem = &ihost->oem_parameters;
874         struct isci_phy *iphy;
875         enum sci_status status;
876
877         status = SCI_SUCCESS;
878
879         if (ihost->phy_startup_timer_pending)
880                 return status;
881
882         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883                 bool is_controller_start_complete = true;
884                 u32 state;
885                 u8 index;
886
887                 for (index = 0; index < SCI_MAX_PHYS; index++) {
888                         iphy = &ihost->phys[index];
889                         state = iphy->sm.current_state_id;
890
891                         if (!phy_get_non_dummy_port(iphy))
892                                 continue;
893
894                         /* The controller start operation is complete iff:
895                          * - all links have been given an opportunity to start
896                          * - have no indication of a connected device
897                          * - have an indication of a connected device and it has
898                          *   finished the link training process.
899                          */
900                         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901                             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902                             (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
903                                 is_controller_start_complete = false;
904                                 break;
905                         }
906                 }
907
908                 /*
909                  * The controller has successfully finished the start process.
910                  * Inform the SCI Core user and transition to the READY state. */
911                 if (is_controller_start_complete == true) {
912                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
913                         sci_del_timer(&ihost->phy_timer);
914                         ihost->phy_startup_timer_pending = false;
915                 }
916         } else {
917                 iphy = &ihost->phys[ihost->next_phy_to_start];
918
919                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
920                         if (phy_get_non_dummy_port(iphy) == NULL) {
921                                 ihost->next_phy_to_start++;
922
923                                 /* Caution recursion ahead be forwarned
924                                  *
925                                  * The PHY was never added to a PORT in MPC mode
926                                  * so start the next phy in sequence This phy
927                                  * will never go link up and will not draw power
928                                  * the OEM parameters either configured the phy
929                                  * incorrectly for the PORT or it was never
930                                  * assigned to a PORT
931                                  */
932                                 return sci_controller_start_next_phy(ihost);
933                         }
934                 }
935
936                 status = sci_phy_start(iphy);
937
938                 if (status == SCI_SUCCESS) {
939                         sci_mod_timer(&ihost->phy_timer,
940                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
941                         ihost->phy_startup_timer_pending = true;
942                 } else {
943                         dev_warn(&ihost->pdev->dev,
944                                  "%s: Controller stop operation failed "
945                                  "to stop phy %d because of status "
946                                  "%d.\n",
947                                  __func__,
948                                  ihost->phys[ihost->next_phy_to_start].phy_index,
949                                  status);
950                 }
951
952                 ihost->next_phy_to_start++;
953         }
954
955         return status;
956 }
957
958 static void phy_startup_timeout(unsigned long data)
959 {
960         struct sci_timer *tmr = (struct sci_timer *)data;
961         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
962         unsigned long flags;
963         enum sci_status status;
964
965         spin_lock_irqsave(&ihost->scic_lock, flags);
966
967         if (tmr->cancel)
968                 goto done;
969
970         ihost->phy_startup_timer_pending = false;
971
972         do {
973                 status = sci_controller_start_next_phy(ihost);
974         } while (status != SCI_SUCCESS);
975
976 done:
977         spin_unlock_irqrestore(&ihost->scic_lock, flags);
978 }
979
980 static u16 isci_tci_active(struct isci_host *ihost)
981 {
982         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
983 }
984
985 static enum sci_status sci_controller_start(struct isci_host *ihost,
986                                              u32 timeout)
987 {
988         enum sci_status result;
989         u16 index;
990
991         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
992                 dev_warn(&ihost->pdev->dev,
993                          "SCIC Controller start operation requested in "
994                          "invalid state\n");
995                 return SCI_FAILURE_INVALID_STATE;
996         }
997
998         /* Build the TCi free pool */
999         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000         ihost->tci_head = 0;
1001         ihost->tci_tail = 0;
1002         for (index = 0; index < ihost->task_context_entries; index++)
1003                 isci_tci_free(ihost, index);
1004
1005         /* Build the RNi free pool */
1006         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007                                          ihost->remote_node_entries);
1008
1009         /*
1010          * Before anything else lets make sure we will not be
1011          * interrupted by the hardware.
1012          */
1013         sci_controller_disable_interrupts(ihost);
1014
1015         /* Enable the port task scheduler */
1016         sci_controller_enable_port_task_scheduler(ihost);
1017
1018         /* Assign all the task entries to ihost physical function */
1019         sci_controller_assign_task_entries(ihost);
1020
1021         /* Now initialize the completion queue */
1022         sci_controller_initialize_completion_queue(ihost);
1023
1024         /* Initialize the unsolicited frame queue for use */
1025         sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027         /* Start all of the ports on this controller */
1028         for (index = 0; index < ihost->logical_port_entries; index++) {
1029                 struct isci_port *iport = &ihost->ports[index];
1030
1031                 result = sci_port_start(iport);
1032                 if (result)
1033                         return result;
1034         }
1035
1036         sci_controller_start_next_phy(ihost);
1037
1038         sci_mod_timer(&ihost->timer, timeout);
1039
1040         sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042         return SCI_SUCCESS;
1043 }
1044
1045 void isci_host_scan_start(struct Scsi_Host *shost)
1046 {
1047         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050         set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052         spin_lock_irq(&ihost->scic_lock);
1053         sci_controller_start(ihost, tmo);
1054         sci_controller_enable_interrupts(ihost);
1055         spin_unlock_irq(&ihost->scic_lock);
1056 }
1057
1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1059 {
1060         isci_host_change_state(ihost, isci_stopped);
1061         sci_controller_disable_interrupts(ihost);
1062         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1063         wake_up(&ihost->eventq);
1064 }
1065
1066 static void sci_controller_completion_handler(struct isci_host *ihost)
1067 {
1068         /* Empty out the completion queue */
1069         if (sci_controller_completion_queue_has_entries(ihost))
1070                 sci_controller_process_completions(ihost);
1071
1072         /* Clear the interrupt and enable all interrupts again */
1073         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1074         /* Could we write the value of SMU_ISR_COMPLETION? */
1075         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1076         writel(0, &ihost->smu_registers->interrupt_mask);
1077 }
1078
1079 /**
1080  * isci_host_completion_routine() - This function is the delayed service
1081  *    routine that calls the sci core library's completion handler. It's
1082  *    scheduled as a tasklet from the interrupt service routine when interrupts
1083  *    in use, or set as the timeout function in polled mode.
1084  * @data: This parameter specifies the ISCI host object
1085  *
1086  */
1087 static void isci_host_completion_routine(unsigned long data)
1088 {
1089         struct isci_host *ihost = (struct isci_host *)data;
1090         struct list_head    completed_request_list;
1091         struct list_head    errored_request_list;
1092         struct list_head    *current_position;
1093         struct list_head    *next_position;
1094         struct isci_request *request;
1095         struct isci_request *next_request;
1096         struct sas_task     *task;
1097         u16 active;
1098
1099         INIT_LIST_HEAD(&completed_request_list);
1100         INIT_LIST_HEAD(&errored_request_list);
1101
1102         spin_lock_irq(&ihost->scic_lock);
1103
1104         sci_controller_completion_handler(ihost);
1105
1106         /* Take the lists of completed I/Os from the host. */
1107
1108         list_splice_init(&ihost->requests_to_complete,
1109                          &completed_request_list);
1110
1111         /* Take the list of errored I/Os from the host. */
1112         list_splice_init(&ihost->requests_to_errorback,
1113                          &errored_request_list);
1114
1115         spin_unlock_irq(&ihost->scic_lock);
1116
1117         /* Process any completions in the lists. */
1118         list_for_each_safe(current_position, next_position,
1119                            &completed_request_list) {
1120
1121                 request = list_entry(current_position, struct isci_request,
1122                                      completed_node);
1123                 task = isci_request_access_task(request);
1124
1125                 /* Normal notification (task_done) */
1126                 dev_dbg(&ihost->pdev->dev,
1127                         "%s: Normal - request/task = %p/%p\n",
1128                         __func__,
1129                         request,
1130                         task);
1131
1132                 /* Return the task to libsas */
1133                 if (task != NULL) {
1134
1135                         task->lldd_task = NULL;
1136                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1137
1138                                 /* If the task is already in the abort path,
1139                                 * the task_done callback cannot be called.
1140                                 */
1141                                 task->task_done(task);
1142                         }
1143                 }
1144
1145                 spin_lock_irq(&ihost->scic_lock);
1146                 isci_free_tag(ihost, request->io_tag);
1147                 spin_unlock_irq(&ihost->scic_lock);
1148         }
1149         list_for_each_entry_safe(request, next_request, &errored_request_list,
1150                                  completed_node) {
1151
1152                 task = isci_request_access_task(request);
1153
1154                 /* Use sas_task_abort */
1155                 dev_warn(&ihost->pdev->dev,
1156                          "%s: Error - request/task = %p/%p\n",
1157                          __func__,
1158                          request,
1159                          task);
1160
1161                 if (task != NULL) {
1162
1163                         /* Put the task into the abort path if it's not there
1164                          * already.
1165                          */
1166                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1167                                 sas_task_abort(task);
1168
1169                 } else {
1170                         /* This is a case where the request has completed with a
1171                          * status such that it needed further target servicing,
1172                          * but the sas_task reference has already been removed
1173                          * from the request.  Since it was errored, it was not
1174                          * being aborted, so there is nothing to do except free
1175                          * it.
1176                          */
1177
1178                         spin_lock_irq(&ihost->scic_lock);
1179                         /* Remove the request from the remote device's list
1180                         * of pending requests.
1181                         */
1182                         list_del_init(&request->dev_node);
1183                         isci_free_tag(ihost, request->io_tag);
1184                         spin_unlock_irq(&ihost->scic_lock);
1185                 }
1186         }
1187
1188         /* the coalesence timeout doubles at each encoding step, so
1189          * update it based on the ilog2 value of the outstanding requests
1190          */
1191         active = isci_tci_active(ihost);
1192         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1193                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1194                &ihost->smu_registers->interrupt_coalesce_control);
1195 }
1196
1197 /**
1198  * sci_controller_stop() - This method will stop an individual controller
1199  *    object.This method will invoke the associated user callback upon
1200  *    completion.  The completion callback is called when the following
1201  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1202  *    controller has been quiesced. This method will ensure that all IO
1203  *    requests are quiesced, phys are stopped, and all additional operation by
1204  *    the hardware is halted.
1205  * @controller: the handle to the controller object to stop.
1206  * @timeout: This parameter specifies the number of milliseconds in which the
1207  *    stop operation should complete.
1208  *
1209  * The controller must be in the STARTED or STOPPED state. Indicate if the
1210  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1211  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1212  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1213  * controller is not either in the STARTED or STOPPED states.
1214  */
1215 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1216 {
1217         if (ihost->sm.current_state_id != SCIC_READY) {
1218                 dev_warn(&ihost->pdev->dev,
1219                          "SCIC Controller stop operation requested in "
1220                          "invalid state\n");
1221                 return SCI_FAILURE_INVALID_STATE;
1222         }
1223
1224         sci_mod_timer(&ihost->timer, timeout);
1225         sci_change_state(&ihost->sm, SCIC_STOPPING);
1226         return SCI_SUCCESS;
1227 }
1228
1229 /**
1230  * sci_controller_reset() - This method will reset the supplied core
1231  *    controller regardless of the state of said controller.  This operation is
1232  *    considered destructive.  In other words, all current operations are wiped
1233  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1234  *    requests are not aborted or completed at the actual remote device.
1235  * @controller: the handle to the controller object to reset.
1236  *
1237  * Indicate if the controller reset method succeeded or failed in some way.
1238  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1239  * the controller reset operation is unable to complete.
1240  */
1241 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1242 {
1243         switch (ihost->sm.current_state_id) {
1244         case SCIC_RESET:
1245         case SCIC_READY:
1246         case SCIC_STOPPED:
1247         case SCIC_FAILED:
1248                 /*
1249                  * The reset operation is not a graceful cleanup, just
1250                  * perform the state transition.
1251                  */
1252                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1253                 return SCI_SUCCESS;
1254         default:
1255                 dev_warn(&ihost->pdev->dev,
1256                          "SCIC Controller reset operation requested in "
1257                          "invalid state\n");
1258                 return SCI_FAILURE_INVALID_STATE;
1259         }
1260 }
1261
1262 void isci_host_deinit(struct isci_host *ihost)
1263 {
1264         int i;
1265
1266         isci_host_change_state(ihost, isci_stopping);
1267         for (i = 0; i < SCI_MAX_PORTS; i++) {
1268                 struct isci_port *iport = &ihost->ports[i];
1269                 struct isci_remote_device *idev, *d;
1270
1271                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1272                         if (test_bit(IDEV_ALLOCATED, &idev->flags))
1273                                 isci_remote_device_stop(ihost, idev);
1274                 }
1275         }
1276
1277         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1278
1279         spin_lock_irq(&ihost->scic_lock);
1280         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1281         spin_unlock_irq(&ihost->scic_lock);
1282
1283         wait_for_stop(ihost);
1284         sci_controller_reset(ihost);
1285
1286         /* Cancel any/all outstanding port timers */
1287         for (i = 0; i < ihost->logical_port_entries; i++) {
1288                 struct isci_port *iport = &ihost->ports[i];
1289                 del_timer_sync(&iport->timer.timer);
1290         }
1291
1292         /* Cancel any/all outstanding phy timers */
1293         for (i = 0; i < SCI_MAX_PHYS; i++) {
1294                 struct isci_phy *iphy = &ihost->phys[i];
1295                 del_timer_sync(&iphy->sata_timer.timer);
1296         }
1297
1298         del_timer_sync(&ihost->port_agent.timer.timer);
1299
1300         del_timer_sync(&ihost->power_control.timer.timer);
1301
1302         del_timer_sync(&ihost->timer.timer);
1303
1304         del_timer_sync(&ihost->phy_timer.timer);
1305 }
1306
1307 static void __iomem *scu_base(struct isci_host *isci_host)
1308 {
1309         struct pci_dev *pdev = isci_host->pdev;
1310         int id = isci_host->id;
1311
1312         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1313 }
1314
1315 static void __iomem *smu_base(struct isci_host *isci_host)
1316 {
1317         struct pci_dev *pdev = isci_host->pdev;
1318         int id = isci_host->id;
1319
1320         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1321 }
1322
1323 static void isci_user_parameters_get(struct sci_user_parameters *u)
1324 {
1325         int i;
1326
1327         for (i = 0; i < SCI_MAX_PHYS; i++) {
1328                 struct sci_phy_user_params *u_phy = &u->phys[i];
1329
1330                 u_phy->max_speed_generation = phy_gen;
1331
1332                 /* we are not exporting these for now */
1333                 u_phy->align_insertion_frequency = 0x7f;
1334                 u_phy->in_connection_align_insertion_frequency = 0xff;
1335                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1336         }
1337
1338         u->stp_inactivity_timeout = stp_inactive_to;
1339         u->ssp_inactivity_timeout = ssp_inactive_to;
1340         u->stp_max_occupancy_timeout = stp_max_occ_to;
1341         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1342         u->no_outbound_task_timeout = no_outbound_task_to;
1343         u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1344 }
1345
1346 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1347 {
1348         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1349
1350         sci_change_state(&ihost->sm, SCIC_RESET);
1351 }
1352
1353 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1354 {
1355         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1356
1357         sci_del_timer(&ihost->timer);
1358 }
1359
1360 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1361 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1362 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1363 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1364 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1365 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1366
1367 /**
1368  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1369  *    configure the interrupt coalescence.
1370  * @controller: This parameter represents the handle to the controller object
1371  *    for which its interrupt coalesce register is overridden.
1372  * @coalesce_number: Used to control the number of entries in the Completion
1373  *    Queue before an interrupt is generated. If the number of entries exceed
1374  *    this number, an interrupt will be generated. The valid range of the input
1375  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1376  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1377  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1378  *    interrupt coalescing timeout.
1379  *
1380  * Indicate if the user successfully set the interrupt coalesce parameters.
1381  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1382  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1383  */
1384 static enum sci_status
1385 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1386                                          u32 coalesce_number,
1387                                          u32 coalesce_timeout)
1388 {
1389         u8 timeout_encode = 0;
1390         u32 min = 0;
1391         u32 max = 0;
1392
1393         /* Check if the input parameters fall in the range. */
1394         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1395                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1396
1397         /*
1398          *  Defined encoding for interrupt coalescing timeout:
1399          *              Value   Min      Max     Units
1400          *              -----   ---      ---     -----
1401          *              0       -        -       Disabled
1402          *              1       13.3     20.0    ns
1403          *              2       26.7     40.0
1404          *              3       53.3     80.0
1405          *              4       106.7    160.0
1406          *              5       213.3    320.0
1407          *              6       426.7    640.0
1408          *              7       853.3    1280.0
1409          *              8       1.7      2.6     us
1410          *              9       3.4      5.1
1411          *              10      6.8      10.2
1412          *              11      13.7     20.5
1413          *              12      27.3     41.0
1414          *              13      54.6     81.9
1415          *              14      109.2    163.8
1416          *              15      218.5    327.7
1417          *              16      436.9    655.4
1418          *              17      873.8    1310.7
1419          *              18      1.7      2.6     ms
1420          *              19      3.5      5.2
1421          *              20      7.0      10.5
1422          *              21      14.0     21.0
1423          *              22      28.0     41.9
1424          *              23      55.9     83.9
1425          *              24      111.8    167.8
1426          *              25      223.7    335.5
1427          *              26      447.4    671.1
1428          *              27      894.8    1342.2
1429          *              28      1.8      2.7     s
1430          *              Others Undefined */
1431
1432         /*
1433          * Use the table above to decide the encode of interrupt coalescing timeout
1434          * value for register writing. */
1435         if (coalesce_timeout == 0)
1436                 timeout_encode = 0;
1437         else{
1438                 /* make the timeout value in unit of (10 ns). */
1439                 coalesce_timeout = coalesce_timeout * 100;
1440                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1441                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1442
1443                 /* get the encode of timeout for register writing. */
1444                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1445                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1446                       timeout_encode++) {
1447                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1448                                 break;
1449                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1450                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1451                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1452                                         break;
1453                                 else{
1454                                         timeout_encode++;
1455                                         break;
1456                                 }
1457                         } else {
1458                                 max = max * 2;
1459                                 min = min * 2;
1460                         }
1461                 }
1462
1463                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1464                         /* the value is out of range. */
1465                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1466         }
1467
1468         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1469                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1470                &ihost->smu_registers->interrupt_coalesce_control);
1471
1472
1473         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1474         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1475
1476         return SCI_SUCCESS;
1477 }
1478
1479
1480 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1481 {
1482         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1483
1484         /* set the default interrupt coalescence number and timeout value. */
1485         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1486 }
1487
1488 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1489 {
1490         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1491
1492         /* disable interrupt coalescence. */
1493         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1494 }
1495
1496 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1497 {
1498         u32 index;
1499         enum sci_status status;
1500         enum sci_status phy_status;
1501
1502         status = SCI_SUCCESS;
1503
1504         for (index = 0; index < SCI_MAX_PHYS; index++) {
1505                 phy_status = sci_phy_stop(&ihost->phys[index]);
1506
1507                 if (phy_status != SCI_SUCCESS &&
1508                     phy_status != SCI_FAILURE_INVALID_STATE) {
1509                         status = SCI_FAILURE;
1510
1511                         dev_warn(&ihost->pdev->dev,
1512                                  "%s: Controller stop operation failed to stop "
1513                                  "phy %d because of status %d.\n",
1514                                  __func__,
1515                                  ihost->phys[index].phy_index, phy_status);
1516                 }
1517         }
1518
1519         return status;
1520 }
1521
1522 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1523 {
1524         u32 index;
1525         enum sci_status port_status;
1526         enum sci_status status = SCI_SUCCESS;
1527
1528         for (index = 0; index < ihost->logical_port_entries; index++) {
1529                 struct isci_port *iport = &ihost->ports[index];
1530
1531                 port_status = sci_port_stop(iport);
1532
1533                 if ((port_status != SCI_SUCCESS) &&
1534                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1535                         status = SCI_FAILURE;
1536
1537                         dev_warn(&ihost->pdev->dev,
1538                                  "%s: Controller stop operation failed to "
1539                                  "stop port %d because of status %d.\n",
1540                                  __func__,
1541                                  iport->logical_port_index,
1542                                  port_status);
1543                 }
1544         }
1545
1546         return status;
1547 }
1548
1549 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1550 {
1551         u32 index;
1552         enum sci_status status;
1553         enum sci_status device_status;
1554
1555         status = SCI_SUCCESS;
1556
1557         for (index = 0; index < ihost->remote_node_entries; index++) {
1558                 if (ihost->device_table[index] != NULL) {
1559                         /* / @todo What timeout value do we want to provide to this request? */
1560                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1561
1562                         if ((device_status != SCI_SUCCESS) &&
1563                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1564                                 dev_warn(&ihost->pdev->dev,
1565                                          "%s: Controller stop operation failed "
1566                                          "to stop device 0x%p because of "
1567                                          "status %d.\n",
1568                                          __func__,
1569                                          ihost->device_table[index], device_status);
1570                         }
1571                 }
1572         }
1573
1574         return status;
1575 }
1576
1577 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1578 {
1579         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1580
1581         /* Stop all of the components for this controller */
1582         sci_controller_stop_phys(ihost);
1583         sci_controller_stop_ports(ihost);
1584         sci_controller_stop_devices(ihost);
1585 }
1586
1587 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1588 {
1589         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1590
1591         sci_del_timer(&ihost->timer);
1592 }
1593
1594 static void sci_controller_reset_hardware(struct isci_host *ihost)
1595 {
1596         /* Disable interrupts so we dont take any spurious interrupts */
1597         sci_controller_disable_interrupts(ihost);
1598
1599         /* Reset the SCU */
1600         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1601
1602         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1603         udelay(1000);
1604
1605         /* The write to the CQGR clears the CQP */
1606         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1607
1608         /* The write to the UFQGP clears the UFQPR */
1609         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1610 }
1611
1612 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1613 {
1614         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1615
1616         sci_controller_reset_hardware(ihost);
1617         sci_change_state(&ihost->sm, SCIC_RESET);
1618 }
1619
1620 static const struct sci_base_state sci_controller_state_table[] = {
1621         [SCIC_INITIAL] = {
1622                 .enter_state = sci_controller_initial_state_enter,
1623         },
1624         [SCIC_RESET] = {},
1625         [SCIC_INITIALIZING] = {},
1626         [SCIC_INITIALIZED] = {},
1627         [SCIC_STARTING] = {
1628                 .exit_state  = sci_controller_starting_state_exit,
1629         },
1630         [SCIC_READY] = {
1631                 .enter_state = sci_controller_ready_state_enter,
1632                 .exit_state  = sci_controller_ready_state_exit,
1633         },
1634         [SCIC_RESETTING] = {
1635                 .enter_state = sci_controller_resetting_state_enter,
1636         },
1637         [SCIC_STOPPING] = {
1638                 .enter_state = sci_controller_stopping_state_enter,
1639                 .exit_state = sci_controller_stopping_state_exit,
1640         },
1641         [SCIC_STOPPED] = {},
1642         [SCIC_FAILED] = {}
1643 };
1644
1645 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1646 {
1647         /* these defaults are overridden by the platform / firmware */
1648         u16 index;
1649
1650         /* Default to APC mode. */
1651         ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1652
1653         /* Default to APC mode. */
1654         ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1655
1656         /* Default to no SSC operation. */
1657         ihost->oem_parameters.controller.do_enable_ssc = false;
1658
1659         /* Initialize all of the port parameter information to narrow ports. */
1660         for (index = 0; index < SCI_MAX_PORTS; index++) {
1661                 ihost->oem_parameters.ports[index].phy_mask = 0;
1662         }
1663
1664         /* Initialize all of the phy parameter information. */
1665         for (index = 0; index < SCI_MAX_PHYS; index++) {
1666                 /* Default to 6G (i.e. Gen 3) for now. */
1667                 ihost->user_parameters.phys[index].max_speed_generation = 3;
1668
1669                 /* the frequencies cannot be 0 */
1670                 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1671                 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1672                 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1673
1674                 /*
1675                  * Previous Vitesse based expanders had a arbitration issue that
1676                  * is worked around by having the upper 32-bits of SAS address
1677                  * with a value greater then the Vitesse company identifier.
1678                  * Hence, usage of 0x5FCFFFFF. */
1679                 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1680                 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1681         }
1682
1683         ihost->user_parameters.stp_inactivity_timeout = 5;
1684         ihost->user_parameters.ssp_inactivity_timeout = 5;
1685         ihost->user_parameters.stp_max_occupancy_timeout = 5;
1686         ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1687         ihost->user_parameters.no_outbound_task_timeout = 20;
1688 }
1689
1690 static void controller_timeout(unsigned long data)
1691 {
1692         struct sci_timer *tmr = (struct sci_timer *)data;
1693         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1694         struct sci_base_state_machine *sm = &ihost->sm;
1695         unsigned long flags;
1696
1697         spin_lock_irqsave(&ihost->scic_lock, flags);
1698
1699         if (tmr->cancel)
1700                 goto done;
1701
1702         if (sm->current_state_id == SCIC_STARTING)
1703                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1704         else if (sm->current_state_id == SCIC_STOPPING) {
1705                 sci_change_state(sm, SCIC_FAILED);
1706                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1707         } else  /* / @todo Now what do we want to do in this case? */
1708                 dev_err(&ihost->pdev->dev,
1709                         "%s: Controller timer fired when controller was not "
1710                         "in a state being timed.\n",
1711                         __func__);
1712
1713 done:
1714         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1715 }
1716
1717 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1718                                                 void __iomem *scu_base,
1719                                                 void __iomem *smu_base)
1720 {
1721         u8 i;
1722
1723         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1724
1725         ihost->scu_registers = scu_base;
1726         ihost->smu_registers = smu_base;
1727
1728         sci_port_configuration_agent_construct(&ihost->port_agent);
1729
1730         /* Construct the ports for this controller */
1731         for (i = 0; i < SCI_MAX_PORTS; i++)
1732                 sci_port_construct(&ihost->ports[i], i, ihost);
1733         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1734
1735         /* Construct the phys for this controller */
1736         for (i = 0; i < SCI_MAX_PHYS; i++) {
1737                 /* Add all the PHYs to the dummy port */
1738                 sci_phy_construct(&ihost->phys[i],
1739                                   &ihost->ports[SCI_MAX_PORTS], i);
1740         }
1741
1742         ihost->invalid_phy_mask = 0;
1743
1744         sci_init_timer(&ihost->timer, controller_timeout);
1745
1746         /* Initialize the User and OEM parameters to default values. */
1747         sci_controller_set_default_config_parameters(ihost);
1748
1749         return sci_controller_reset(ihost);
1750 }
1751
1752 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1753 {
1754         int i;
1755
1756         for (i = 0; i < SCI_MAX_PORTS; i++)
1757                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1758                         return -EINVAL;
1759
1760         for (i = 0; i < SCI_MAX_PHYS; i++)
1761                 if (oem->phys[i].sas_address.high == 0 &&
1762                     oem->phys[i].sas_address.low == 0)
1763                         return -EINVAL;
1764
1765         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1766                 for (i = 0; i < SCI_MAX_PHYS; i++)
1767                         if (oem->ports[i].phy_mask != 0)
1768                                 return -EINVAL;
1769         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1770                 u8 phy_mask = 0;
1771
1772                 for (i = 0; i < SCI_MAX_PHYS; i++)
1773                         phy_mask |= oem->ports[i].phy_mask;
1774
1775                 if (phy_mask == 0)
1776                         return -EINVAL;
1777         } else
1778                 return -EINVAL;
1779
1780         if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1781                 return -EINVAL;
1782
1783         return 0;
1784 }
1785
1786 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1787 {
1788         u32 state = ihost->sm.current_state_id;
1789
1790         if (state == SCIC_RESET ||
1791             state == SCIC_INITIALIZING ||
1792             state == SCIC_INITIALIZED) {
1793
1794                 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1795                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1796
1797                 return SCI_SUCCESS;
1798         }
1799
1800         return SCI_FAILURE_INVALID_STATE;
1801 }
1802
1803 static void power_control_timeout(unsigned long data)
1804 {
1805         struct sci_timer *tmr = (struct sci_timer *)data;
1806         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1807         struct isci_phy *iphy;
1808         unsigned long flags;
1809         u8 i;
1810
1811         spin_lock_irqsave(&ihost->scic_lock, flags);
1812
1813         if (tmr->cancel)
1814                 goto done;
1815
1816         ihost->power_control.phys_granted_power = 0;
1817
1818         if (ihost->power_control.phys_waiting == 0) {
1819                 ihost->power_control.timer_started = false;
1820                 goto done;
1821         }
1822
1823         for (i = 0; i < SCI_MAX_PHYS; i++) {
1824
1825                 if (ihost->power_control.phys_waiting == 0)
1826                         break;
1827
1828                 iphy = ihost->power_control.requesters[i];
1829                 if (iphy == NULL)
1830                         continue;
1831
1832                 if (ihost->power_control.phys_granted_power >=
1833                     ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1834                         break;
1835
1836                 ihost->power_control.requesters[i] = NULL;
1837                 ihost->power_control.phys_waiting--;
1838                 ihost->power_control.phys_granted_power++;
1839                 sci_phy_consume_power_handler(iphy);
1840         }
1841
1842         /*
1843          * It doesn't matter if the power list is empty, we need to start the
1844          * timer in case another phy becomes ready.
1845          */
1846         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1847         ihost->power_control.timer_started = true;
1848
1849 done:
1850         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1851 }
1852
1853 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1854                                                struct isci_phy *iphy)
1855 {
1856         BUG_ON(iphy == NULL);
1857
1858         if (ihost->power_control.phys_granted_power <
1859             ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1860                 ihost->power_control.phys_granted_power++;
1861                 sci_phy_consume_power_handler(iphy);
1862
1863                 /*
1864                  * stop and start the power_control timer. When the timer fires, the
1865                  * no_of_phys_granted_power will be set to 0
1866                  */
1867                 if (ihost->power_control.timer_started)
1868                         sci_del_timer(&ihost->power_control.timer);
1869
1870                 sci_mod_timer(&ihost->power_control.timer,
1871                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1872                 ihost->power_control.timer_started = true;
1873
1874         } else {
1875                 /* Add the phy in the waiting list */
1876                 ihost->power_control.requesters[iphy->phy_index] = iphy;
1877                 ihost->power_control.phys_waiting++;
1878         }
1879 }
1880
1881 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1882                                                struct isci_phy *iphy)
1883 {
1884         BUG_ON(iphy == NULL);
1885
1886         if (ihost->power_control.requesters[iphy->phy_index])
1887                 ihost->power_control.phys_waiting--;
1888
1889         ihost->power_control.requesters[iphy->phy_index] = NULL;
1890 }
1891
1892 #define AFE_REGISTER_WRITE_DELAY 10
1893
1894 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1895  * the OEM parameters
1896  */
1897 static void sci_controller_afe_initialization(struct isci_host *ihost)
1898 {
1899         const struct sci_oem_params *oem = &ihost->oem_parameters;
1900         struct pci_dev *pdev = ihost->pdev;
1901         u32 afe_status;
1902         u32 phy_id;
1903
1904         /* Clear DFX Status registers */
1905         writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1906         udelay(AFE_REGISTER_WRITE_DELAY);
1907
1908         if (is_b0(pdev)) {
1909                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1910                  * Timer, PM Stagger Timer */
1911                 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1912                 udelay(AFE_REGISTER_WRITE_DELAY);
1913         }
1914
1915         /* Configure bias currents to normal */
1916         if (is_a2(pdev))
1917                 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1918         else if (is_b0(pdev) || is_c0(pdev))
1919                 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1920
1921         udelay(AFE_REGISTER_WRITE_DELAY);
1922
1923         /* Enable PLL */
1924         if (is_b0(pdev) || is_c0(pdev))
1925                 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1926         else
1927                 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1928
1929         udelay(AFE_REGISTER_WRITE_DELAY);
1930
1931         /* Wait for the PLL to lock */
1932         do {
1933                 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1934                 udelay(AFE_REGISTER_WRITE_DELAY);
1935         } while ((afe_status & 0x00001000) == 0);
1936
1937         if (is_a2(pdev)) {
1938                 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1939                 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1940                 udelay(AFE_REGISTER_WRITE_DELAY);
1941         }
1942
1943         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1944                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1945
1946                 if (is_b0(pdev)) {
1947                          /* Configure transmitter SSC parameters */
1948                         writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1949                         udelay(AFE_REGISTER_WRITE_DELAY);
1950                 } else if (is_c0(pdev)) {
1951                          /* Configure transmitter SSC parameters */
1952                         writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1953                         udelay(AFE_REGISTER_WRITE_DELAY);
1954
1955                         /*
1956                          * All defaults, except the Receive Word Alignament/Comma Detect
1957                          * Enable....(0xe800) */
1958                         writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1959                         udelay(AFE_REGISTER_WRITE_DELAY);
1960                 } else {
1961                         /*
1962                          * All defaults, except the Receive Word Alignament/Comma Detect
1963                          * Enable....(0xe800) */
1964                         writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1965                         udelay(AFE_REGISTER_WRITE_DELAY);
1966
1967                         writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1968                         udelay(AFE_REGISTER_WRITE_DELAY);
1969                 }
1970
1971                 /*
1972                  * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1973                  * & increase TX int & ext bias 20%....(0xe85c) */
1974                 if (is_a2(pdev))
1975                         writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1976                 else if (is_b0(pdev)) {
1977                          /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1978                         writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1979                         udelay(AFE_REGISTER_WRITE_DELAY);
1980
1981                         /*
1982                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1983                          * & increase TX int & ext bias 20%....(0xe85c) */
1984                         writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1985                 } else {
1986                         writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1987                         udelay(AFE_REGISTER_WRITE_DELAY);
1988
1989                         /*
1990                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1991                          * & increase TX int & ext bias 20%....(0xe85c) */
1992                         writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1993                 }
1994                 udelay(AFE_REGISTER_WRITE_DELAY);
1995
1996                 if (is_a2(pdev)) {
1997                         /* Enable TX equalization (0xe824) */
1998                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
1999                         udelay(AFE_REGISTER_WRITE_DELAY);
2000                 }
2001
2002                 /*
2003                  * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2004                  * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2005                 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2006                 udelay(AFE_REGISTER_WRITE_DELAY);
2007
2008                 /* Leave DFE/FFE on */
2009                 if (is_a2(pdev))
2010                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2011                 else if (is_b0(pdev)) {
2012                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2013                         udelay(AFE_REGISTER_WRITE_DELAY);
2014                         /* Enable TX equalization (0xe824) */
2015                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2016                 } else {
2017                         writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2018                         udelay(AFE_REGISTER_WRITE_DELAY);
2019
2020                         writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2021                         udelay(AFE_REGISTER_WRITE_DELAY);
2022
2023                         /* Enable TX equalization (0xe824) */
2024                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2025                 }
2026
2027                 udelay(AFE_REGISTER_WRITE_DELAY);
2028
2029                 writel(oem_phy->afe_tx_amp_control0,
2030                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2031                 udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033                 writel(oem_phy->afe_tx_amp_control1,
2034                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2035                 udelay(AFE_REGISTER_WRITE_DELAY);
2036
2037                 writel(oem_phy->afe_tx_amp_control2,
2038                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2039                 udelay(AFE_REGISTER_WRITE_DELAY);
2040
2041                 writel(oem_phy->afe_tx_amp_control3,
2042                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2043                 udelay(AFE_REGISTER_WRITE_DELAY);
2044         }
2045
2046         /* Transfer control to the PEs */
2047         writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2048         udelay(AFE_REGISTER_WRITE_DELAY);
2049 }
2050
2051 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2052 {
2053         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2054
2055         memset(ihost->power_control.requesters, 0,
2056                sizeof(ihost->power_control.requesters));
2057
2058         ihost->power_control.phys_waiting = 0;
2059         ihost->power_control.phys_granted_power = 0;
2060 }
2061
2062 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2063 {
2064         struct sci_base_state_machine *sm = &ihost->sm;
2065         enum sci_status result = SCI_FAILURE;
2066         unsigned long i, state, val;
2067
2068         if (ihost->sm.current_state_id != SCIC_RESET) {
2069                 dev_warn(&ihost->pdev->dev,
2070                          "SCIC Controller initialize operation requested "
2071                          "in invalid state\n");
2072                 return SCI_FAILURE_INVALID_STATE;
2073         }
2074
2075         sci_change_state(sm, SCIC_INITIALIZING);
2076
2077         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2078
2079         ihost->next_phy_to_start = 0;
2080         ihost->phy_startup_timer_pending = false;
2081
2082         sci_controller_initialize_power_control(ihost);
2083
2084         /*
2085          * There is nothing to do here for B0 since we do not have to
2086          * program the AFE registers.
2087          * / @todo The AFE settings are supposed to be correct for the B0 but
2088          * /       presently they seem to be wrong. */
2089         sci_controller_afe_initialization(ihost);
2090
2091
2092         /* Take the hardware out of reset */
2093         writel(0, &ihost->smu_registers->soft_reset_control);
2094
2095         /*
2096          * / @todo Provide meaningfull error code for hardware failure
2097          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2098         for (i = 100; i >= 1; i--) {
2099                 u32 status;
2100
2101                 /* Loop until the hardware reports success */
2102                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2103                 status = readl(&ihost->smu_registers->control_status);
2104
2105                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2106                         break;
2107         }
2108         if (i == 0)
2109                 goto out;
2110
2111         /*
2112          * Determine what are the actaul device capacities that the
2113          * hardware will support */
2114         val = readl(&ihost->smu_registers->device_context_capacity);
2115
2116         /* Record the smaller of the two capacity values */
2117         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2118         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2119         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2120
2121         /*
2122          * Make all PEs that are unassigned match up with the
2123          * logical ports
2124          */
2125         for (i = 0; i < ihost->logical_port_entries; i++) {
2126                 struct scu_port_task_scheduler_group_registers __iomem
2127                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2128
2129                 writel(i, &ptsg->protocol_engine[i]);
2130         }
2131
2132         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2133         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2134         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2135         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2136
2137         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2138         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2139         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2140
2141         /*
2142          * Initialize the PHYs before the PORTs because the PHY registers
2143          * are accessed during the port initialization.
2144          */
2145         for (i = 0; i < SCI_MAX_PHYS; i++) {
2146                 result = sci_phy_initialize(&ihost->phys[i],
2147                                             &ihost->scu_registers->peg0.pe[i].tl,
2148                                             &ihost->scu_registers->peg0.pe[i].ll);
2149                 if (result != SCI_SUCCESS)
2150                         goto out;
2151         }
2152
2153         for (i = 0; i < ihost->logical_port_entries; i++) {
2154                 struct isci_port *iport = &ihost->ports[i];
2155
2156                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2157                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2158                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2159         }
2160
2161         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2162
2163  out:
2164         /* Advance the controller state machine */
2165         if (result == SCI_SUCCESS)
2166                 state = SCIC_INITIALIZED;
2167         else
2168                 state = SCIC_FAILED;
2169         sci_change_state(sm, state);
2170
2171         return result;
2172 }
2173
2174 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2175                                                struct sci_user_parameters *sci_parms)
2176 {
2177         u32 state = ihost->sm.current_state_id;
2178
2179         if (state == SCIC_RESET ||
2180             state == SCIC_INITIALIZING ||
2181             state == SCIC_INITIALIZED) {
2182                 u16 index;
2183
2184                 /*
2185                  * Validate the user parameters.  If they are not legal, then
2186                  * return a failure.
2187                  */
2188                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2189                         struct sci_phy_user_params *user_phy;
2190
2191                         user_phy = &sci_parms->phys[index];
2192
2193                         if (!((user_phy->max_speed_generation <=
2194                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2195                               (user_phy->max_speed_generation >
2196                                                 SCIC_SDS_PARM_NO_SPEED)))
2197                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2198
2199                         if (user_phy->in_connection_align_insertion_frequency <
2200                                         3)
2201                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2202
2203                         if ((user_phy->in_connection_align_insertion_frequency <
2204                                                 3) ||
2205                             (user_phy->align_insertion_frequency == 0) ||
2206                             (user_phy->
2207                                 notify_enable_spin_up_insertion_frequency ==
2208                                                 0))
2209                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2210                 }
2211
2212                 if ((sci_parms->stp_inactivity_timeout == 0) ||
2213                     (sci_parms->ssp_inactivity_timeout == 0) ||
2214                     (sci_parms->stp_max_occupancy_timeout == 0) ||
2215                     (sci_parms->ssp_max_occupancy_timeout == 0) ||
2216                     (sci_parms->no_outbound_task_timeout == 0))
2217                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2218
2219                 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2220
2221                 return SCI_SUCCESS;
2222         }
2223
2224         return SCI_FAILURE_INVALID_STATE;
2225 }
2226
2227 static int sci_controller_mem_init(struct isci_host *ihost)
2228 {
2229         struct device *dev = &ihost->pdev->dev;
2230         dma_addr_t dma;
2231         size_t size;
2232         int err;
2233
2234         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2235         ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2236         if (!ihost->completion_queue)
2237                 return -ENOMEM;
2238
2239         writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2240         writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2241
2242         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2243         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2244                                                                GFP_KERNEL);
2245         if (!ihost->remote_node_context_table)
2246                 return -ENOMEM;
2247
2248         writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2249         writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2250
2251         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2252         ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2253         if (!ihost->task_context_table)
2254                 return -ENOMEM;
2255
2256         ihost->task_context_dma = dma;
2257         writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2258         writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2259
2260         err = sci_unsolicited_frame_control_construct(ihost);
2261         if (err)
2262                 return err;
2263
2264         /*
2265          * Inform the silicon as to the location of the UF headers and
2266          * address table.
2267          */
2268         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2269                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2270         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2271                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2272
2273         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2274                 &ihost->scu_registers->sdma.uf_address_table_lower);
2275         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2276                 &ihost->scu_registers->sdma.uf_address_table_upper);
2277
2278         return 0;
2279 }
2280
2281 int isci_host_init(struct isci_host *ihost)
2282 {
2283         int err = 0, i;
2284         enum sci_status status;
2285         struct sci_user_parameters sci_user_params;
2286         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2287
2288         spin_lock_init(&ihost->state_lock);
2289         spin_lock_init(&ihost->scic_lock);
2290         init_waitqueue_head(&ihost->eventq);
2291
2292         isci_host_change_state(ihost, isci_starting);
2293
2294         status = sci_controller_construct(ihost, scu_base(ihost),
2295                                           smu_base(ihost));
2296
2297         if (status != SCI_SUCCESS) {
2298                 dev_err(&ihost->pdev->dev,
2299                         "%s: sci_controller_construct failed - status = %x\n",
2300                         __func__,
2301                         status);
2302                 return -ENODEV;
2303         }
2304
2305         ihost->sas_ha.dev = &ihost->pdev->dev;
2306         ihost->sas_ha.lldd_ha = ihost;
2307
2308         /*
2309          * grab initial values stored in the controller object for OEM and USER
2310          * parameters
2311          */
2312         isci_user_parameters_get(&sci_user_params);
2313         status = sci_user_parameters_set(ihost, &sci_user_params);
2314         if (status != SCI_SUCCESS) {
2315                 dev_warn(&ihost->pdev->dev,
2316                          "%s: sci_user_parameters_set failed\n",
2317                          __func__);
2318                 return -ENODEV;
2319         }
2320
2321         /* grab any OEM parameters specified in orom */
2322         if (pci_info->orom) {
2323                 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2324                                                    pci_info->orom,
2325                                                    ihost->id);
2326                 if (status != SCI_SUCCESS) {
2327                         dev_warn(&ihost->pdev->dev,
2328                                  "parsing firmware oem parameters failed\n");
2329                         return -EINVAL;
2330                 }
2331         }
2332
2333         status = sci_oem_parameters_set(ihost);
2334         if (status != SCI_SUCCESS) {
2335                 dev_warn(&ihost->pdev->dev,
2336                                 "%s: sci_oem_parameters_set failed\n",
2337                                 __func__);
2338                 return -ENODEV;
2339         }
2340
2341         tasklet_init(&ihost->completion_tasklet,
2342                      isci_host_completion_routine, (unsigned long)ihost);
2343
2344         INIT_LIST_HEAD(&ihost->requests_to_complete);
2345         INIT_LIST_HEAD(&ihost->requests_to_errorback);
2346
2347         spin_lock_irq(&ihost->scic_lock);
2348         status = sci_controller_initialize(ihost);
2349         spin_unlock_irq(&ihost->scic_lock);
2350         if (status != SCI_SUCCESS) {
2351                 dev_warn(&ihost->pdev->dev,
2352                          "%s: sci_controller_initialize failed -"
2353                          " status = 0x%x\n",
2354                          __func__, status);
2355                 return -ENODEV;
2356         }
2357
2358         err = sci_controller_mem_init(ihost);
2359         if (err)
2360                 return err;
2361
2362         for (i = 0; i < SCI_MAX_PORTS; i++)
2363                 isci_port_init(&ihost->ports[i], ihost, i);
2364
2365         for (i = 0; i < SCI_MAX_PHYS; i++)
2366                 isci_phy_init(&ihost->phys[i], ihost, i);
2367
2368         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2369                 struct isci_remote_device *idev = &ihost->devices[i];
2370
2371                 INIT_LIST_HEAD(&idev->reqs_in_process);
2372                 INIT_LIST_HEAD(&idev->node);
2373         }
2374
2375         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2376                 struct isci_request *ireq;
2377                 dma_addr_t dma;
2378
2379                 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2380                                            sizeof(struct isci_request), &dma,
2381                                            GFP_KERNEL);
2382                 if (!ireq)
2383                         return -ENOMEM;
2384
2385                 ireq->tc = &ihost->task_context_table[i];
2386                 ireq->owning_controller = ihost;
2387                 spin_lock_init(&ireq->state_lock);
2388                 ireq->request_daddr = dma;
2389                 ireq->isci_host = ihost;
2390                 ihost->reqs[i] = ireq;
2391         }
2392
2393         return 0;
2394 }
2395
2396 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2397                             struct isci_phy *iphy)
2398 {
2399         switch (ihost->sm.current_state_id) {
2400         case SCIC_STARTING:
2401                 sci_del_timer(&ihost->phy_timer);
2402                 ihost->phy_startup_timer_pending = false;
2403                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2404                                                   iport, iphy);
2405                 sci_controller_start_next_phy(ihost);
2406                 break;
2407         case SCIC_READY:
2408                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2409                                                   iport, iphy);
2410                 break;
2411         default:
2412                 dev_dbg(&ihost->pdev->dev,
2413                         "%s: SCIC Controller linkup event from phy %d in "
2414                         "unexpected state %d\n", __func__, iphy->phy_index,
2415                         ihost->sm.current_state_id);
2416         }
2417 }
2418
2419 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2420                               struct isci_phy *iphy)
2421 {
2422         switch (ihost->sm.current_state_id) {
2423         case SCIC_STARTING:
2424         case SCIC_READY:
2425                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2426                                                    iport, iphy);
2427                 break;
2428         default:
2429                 dev_dbg(&ihost->pdev->dev,
2430                         "%s: SCIC Controller linkdown event from phy %d in "
2431                         "unexpected state %d\n",
2432                         __func__,
2433                         iphy->phy_index,
2434                         ihost->sm.current_state_id);
2435         }
2436 }
2437
2438 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2439 {
2440         u32 index;
2441
2442         for (index = 0; index < ihost->remote_node_entries; index++) {
2443                 if ((ihost->device_table[index] != NULL) &&
2444                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2445                         return true;
2446         }
2447
2448         return false;
2449 }
2450
2451 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2452                                           struct isci_remote_device *idev)
2453 {
2454         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2455                 dev_dbg(&ihost->pdev->dev,
2456                         "SCIC Controller 0x%p remote device stopped event "
2457                         "from device 0x%p in unexpected state %d\n",
2458                         ihost, idev,
2459                         ihost->sm.current_state_id);
2460                 return;
2461         }
2462
2463         if (!sci_controller_has_remote_devices_stopping(ihost))
2464                 sci_change_state(&ihost->sm, SCIC_STOPPED);
2465 }
2466
2467 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2468 {
2469         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2470                 __func__, ihost->id, request);
2471
2472         writel(request, &ihost->smu_registers->post_context_port);
2473 }
2474
2475 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2476 {
2477         u16 task_index;
2478         u16 task_sequence;
2479
2480         task_index = ISCI_TAG_TCI(io_tag);
2481
2482         if (task_index < ihost->task_context_entries) {
2483                 struct isci_request *ireq = ihost->reqs[task_index];
2484
2485                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2486                         task_sequence = ISCI_TAG_SEQ(io_tag);
2487
2488                         if (task_sequence == ihost->io_request_sequence[task_index])
2489                                 return ireq;
2490                 }
2491         }
2492
2493         return NULL;
2494 }
2495
2496 /**
2497  * This method allocates remote node index and the reserves the remote node
2498  *    context space for use. This method can fail if there are no more remote
2499  *    node index available.
2500  * @scic: This is the controller object which contains the set of
2501  *    free remote node ids
2502  * @sci_dev: This is the device object which is requesting the a remote node
2503  *    id
2504  * @node_id: This is the remote node id that is assinged to the device if one
2505  *    is available
2506  *
2507  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2508  * node index available.
2509  */
2510 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2511                                                             struct isci_remote_device *idev,
2512                                                             u16 *node_id)
2513 {
2514         u16 node_index;
2515         u32 remote_node_count = sci_remote_device_node_count(idev);
2516
2517         node_index = sci_remote_node_table_allocate_remote_node(
2518                 &ihost->available_remote_nodes, remote_node_count
2519                 );
2520
2521         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2522                 ihost->device_table[node_index] = idev;
2523
2524                 *node_id = node_index;
2525
2526                 return SCI_SUCCESS;
2527         }
2528
2529         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2530 }
2531
2532 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2533                                              struct isci_remote_device *idev,
2534                                              u16 node_id)
2535 {
2536         u32 remote_node_count = sci_remote_device_node_count(idev);
2537
2538         if (ihost->device_table[node_id] == idev) {
2539                 ihost->device_table[node_id] = NULL;
2540
2541                 sci_remote_node_table_release_remote_node_index(
2542                         &ihost->available_remote_nodes, remote_node_count, node_id
2543                         );
2544         }
2545 }
2546
2547 void sci_controller_copy_sata_response(void *response_buffer,
2548                                        void *frame_header,
2549                                        void *frame_buffer)
2550 {
2551         /* XXX type safety? */
2552         memcpy(response_buffer, frame_header, sizeof(u32));
2553
2554         memcpy(response_buffer + sizeof(u32),
2555                frame_buffer,
2556                sizeof(struct dev_to_host_fis) - sizeof(u32));
2557 }
2558
2559 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2560 {
2561         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2562                 writel(ihost->uf_control.get,
2563                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2564 }
2565
2566 void isci_tci_free(struct isci_host *ihost, u16 tci)
2567 {
2568         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2569
2570         ihost->tci_pool[tail] = tci;
2571         ihost->tci_tail = tail + 1;
2572 }
2573
2574 static u16 isci_tci_alloc(struct isci_host *ihost)
2575 {
2576         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2577         u16 tci = ihost->tci_pool[head];
2578
2579         ihost->tci_head = head + 1;
2580         return tci;
2581 }
2582
2583 static u16 isci_tci_space(struct isci_host *ihost)
2584 {
2585         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2586 }
2587
2588 u16 isci_alloc_tag(struct isci_host *ihost)
2589 {
2590         if (isci_tci_space(ihost)) {
2591                 u16 tci = isci_tci_alloc(ihost);
2592                 u8 seq = ihost->io_request_sequence[tci];
2593
2594                 return ISCI_TAG(seq, tci);
2595         }
2596
2597         return SCI_CONTROLLER_INVALID_IO_TAG;
2598 }
2599
2600 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2601 {
2602         u16 tci = ISCI_TAG_TCI(io_tag);
2603         u16 seq = ISCI_TAG_SEQ(io_tag);
2604
2605         /* prevent tail from passing head */
2606         if (isci_tci_active(ihost) == 0)
2607                 return SCI_FAILURE_INVALID_IO_TAG;
2608
2609         if (seq == ihost->io_request_sequence[tci]) {
2610                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2611
2612                 isci_tci_free(ihost, tci);
2613
2614                 return SCI_SUCCESS;
2615         }
2616         return SCI_FAILURE_INVALID_IO_TAG;
2617 }
2618
2619 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2620                                         struct isci_remote_device *idev,
2621                                         struct isci_request *ireq)
2622 {
2623         enum sci_status status;
2624
2625         if (ihost->sm.current_state_id != SCIC_READY) {
2626                 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2627                 return SCI_FAILURE_INVALID_STATE;
2628         }
2629
2630         status = sci_remote_device_start_io(ihost, idev, ireq);
2631         if (status != SCI_SUCCESS)
2632                 return status;
2633
2634         set_bit(IREQ_ACTIVE, &ireq->flags);
2635         sci_controller_post_request(ihost, ireq->post_context);
2636         return SCI_SUCCESS;
2637 }
2638
2639 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2640                                                  struct isci_remote_device *idev,
2641                                                  struct isci_request *ireq)
2642 {
2643         /* terminate an ongoing (i.e. started) core IO request.  This does not
2644          * abort the IO request at the target, but rather removes the IO
2645          * request from the host controller.
2646          */
2647         enum sci_status status;
2648
2649         if (ihost->sm.current_state_id != SCIC_READY) {
2650                 dev_warn(&ihost->pdev->dev,
2651                          "invalid state to terminate request\n");
2652                 return SCI_FAILURE_INVALID_STATE;
2653         }
2654
2655         status = sci_io_request_terminate(ireq);
2656         if (status != SCI_SUCCESS)
2657                 return status;
2658
2659         /*
2660          * Utilize the original post context command and or in the POST_TC_ABORT
2661          * request sub-type.
2662          */
2663         sci_controller_post_request(ihost,
2664                                     ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2665         return SCI_SUCCESS;
2666 }
2667
2668 /**
2669  * sci_controller_complete_io() - This method will perform core specific
2670  *    completion operations for an IO request.  After this method is invoked,
2671  *    the user should consider the IO request as invalid until it is properly
2672  *    reused (i.e. re-constructed).
2673  * @ihost: The handle to the controller object for which to complete the
2674  *    IO request.
2675  * @idev: The handle to the remote device object for which to complete
2676  *    the IO request.
2677  * @ireq: the handle to the io request object to complete.
2678  */
2679 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2680                                            struct isci_remote_device *idev,
2681                                            struct isci_request *ireq)
2682 {
2683         enum sci_status status;
2684         u16 index;
2685
2686         switch (ihost->sm.current_state_id) {
2687         case SCIC_STOPPING:
2688                 /* XXX: Implement this function */
2689                 return SCI_FAILURE;
2690         case SCIC_READY:
2691                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2692                 if (status != SCI_SUCCESS)
2693                         return status;
2694
2695                 index = ISCI_TAG_TCI(ireq->io_tag);
2696                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2697                 return SCI_SUCCESS;
2698         default:
2699                 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2700                 return SCI_FAILURE_INVALID_STATE;
2701         }
2702
2703 }
2704
2705 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2706 {
2707         struct isci_host *ihost = ireq->owning_controller;
2708
2709         if (ihost->sm.current_state_id != SCIC_READY) {
2710                 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2711                 return SCI_FAILURE_INVALID_STATE;
2712         }
2713
2714         set_bit(IREQ_ACTIVE, &ireq->flags);
2715         sci_controller_post_request(ihost, ireq->post_context);
2716         return SCI_SUCCESS;
2717 }
2718
2719 /**
2720  * sci_controller_start_task() - This method is called by the SCIC user to
2721  *    send/start a framework task management request.
2722  * @controller: the handle to the controller object for which to start the task
2723  *    management request.
2724  * @remote_device: the handle to the remote device object for which to start
2725  *    the task management request.
2726  * @task_request: the handle to the task request object to start.
2727  */
2728 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2729                                                struct isci_remote_device *idev,
2730                                                struct isci_request *ireq)
2731 {
2732         enum sci_status status;
2733
2734         if (ihost->sm.current_state_id != SCIC_READY) {
2735                 dev_warn(&ihost->pdev->dev,
2736                          "%s: SCIC Controller starting task from invalid "
2737                          "state\n",
2738                          __func__);
2739                 return SCI_TASK_FAILURE_INVALID_STATE;
2740         }
2741
2742         status = sci_remote_device_start_task(ihost, idev, ireq);
2743         switch (status) {
2744         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2745                 set_bit(IREQ_ACTIVE, &ireq->flags);
2746
2747                 /*
2748                  * We will let framework know this task request started successfully,
2749                  * although core is still woring on starting the request (to post tc when
2750                  * RNC is resumed.)
2751                  */
2752                 return SCI_SUCCESS;
2753         case SCI_SUCCESS:
2754                 set_bit(IREQ_ACTIVE, &ireq->flags);
2755                 sci_controller_post_request(ihost, ireq->post_context);
2756                 break;
2757         default:
2758                 break;
2759         }
2760
2761         return status;
2762 }