Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72
73 #define smu_max_ports(dcc_value) \
74         (\
75                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77         )
78
79 #define smu_max_task_contexts(dcc_value)        \
80         (\
81                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83         )
84
85 #define smu_max_rncs(dcc_value) \
86         (\
87                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89         )
90
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119         (\
120                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122         )
123
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151                  const struct sci_base_state *state_table, u32 initial_state)
152 {
153         sci_state_transition_t handler;
154
155         sm->initial_state_id    = initial_state;
156         sm->previous_state_id   = initial_state;
157         sm->current_state_id    = initial_state;
158         sm->state_table         = state_table;
159
160         handler = sm->state_table[initial_state].enter_state;
161         if (handler)
162                 handler(sm);
163 }
164
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168         sci_state_transition_t handler;
169
170         handler = sm->state_table[sm->current_state_id].exit_state;
171         if (handler)
172                 handler(sm);
173
174         sm->previous_state_id = sm->current_state_id;
175         sm->current_state_id = next_state;
176
177         handler = sm->state_table[sm->current_state_id].enter_state;
178         if (handler)
179                 handler(sm);
180 }
181
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184         u32 get_value = ihost->completion_queue_get;
185         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189                 return true;
190
191         return false;
192 }
193
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196         if (sci_controller_completion_queue_has_entries(ihost)) {
197                 return true;
198         } else {
199                 /*
200                  * we have a spurious interrupt it could be that we have already
201                  * emptied the completion queue from a previous interrupt */
202                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204                 /*
205                  * There is a race in the hardware that could cause us not to be notified
206                  * of an interrupt completion if we do not take this step.  We will mask
207                  * then unmask the interrupts so if there is another interrupt pending
208                  * the clearing of the interrupt source we get the next interrupt message. */
209                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210                 writel(0, &ihost->smu_registers->interrupt_mask);
211         }
212
213         return false;
214 }
215
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218         struct isci_host *ihost = data;
219
220         if (sci_controller_isr(ihost))
221                 tasklet_schedule(&ihost->completion_tasklet);
222
223         return IRQ_HANDLED;
224 }
225
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228         u32 interrupt_status;
229
230         interrupt_status =
231                 readl(&ihost->smu_registers->interrupt_status);
232         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234         if (interrupt_status != 0) {
235                 /*
236                  * There is an error interrupt pending so let it through and handle
237                  * in the callback */
238                 return true;
239         }
240
241         /*
242          * There is a race in the hardware that could cause us not to be notified
243          * of an interrupt completion if we do not take this step.  We will mask
244          * then unmask the error interrupts so if there was another interrupt
245          * pending we will be notified.
246          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247         writel(0xff, &ihost->smu_registers->interrupt_mask);
248         writel(0, &ihost->smu_registers->interrupt_mask);
249
250         return false;
251 }
252
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255         u32 index = SCU_GET_COMPLETION_INDEX(ent);
256         struct isci_request *ireq = ihost->reqs[index];
257
258         /* Make sure that we really want to process this IO request */
259         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262                 /* Yep this is a valid io request pass it along to the
263                  * io request handler
264                  */
265                 sci_io_request_tc_completion(ireq, ent);
266 }
267
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270         u32 index;
271         struct isci_request *ireq;
272         struct isci_remote_device *idev;
273
274         index = SCU_GET_COMPLETION_INDEX(ent);
275
276         switch (scu_get_command_request_type(ent)) {
277         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279                 ireq = ihost->reqs[index];
280                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281                          __func__, ent, ireq);
282                 /* @todo For a post TC operation we need to fail the IO
283                  * request
284                  */
285                 break;
286         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289                 idev = ihost->device_table[index];
290                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291                          __func__, ent, idev);
292                 /* @todo For a port RNC operation we need to fail the
293                  * device
294                  */
295                 break;
296         default:
297                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298                          __func__, ent);
299                 break;
300         }
301 }
302
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305         u32 index;
306         u32 frame_index;
307
308         struct scu_unsolicited_frame_header *frame_header;
309         struct isci_phy *iphy;
310         struct isci_remote_device *idev;
311
312         enum sci_status result = SCI_FAILURE;
313
314         frame_index = SCU_GET_FRAME_INDEX(ent);
315
316         frame_header = ihost->uf_control.buffers.array[frame_index].header;
317         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319         if (SCU_GET_FRAME_ERROR(ent)) {
320                 /*
321                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322                  * /       this cause a problem? We expect the phy initialization will
323                  * /       fail if there is an error in the frame. */
324                 sci_controller_release_frame(ihost, frame_index);
325                 return;
326         }
327
328         if (frame_header->is_address_frame) {
329                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330                 iphy = &ihost->phys[index];
331                 result = sci_phy_frame_handler(iphy, frame_index);
332         } else {
333
334                 index = SCU_GET_COMPLETION_INDEX(ent);
335
336                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337                         /*
338                          * This is a signature fis or a frame from a direct attached SATA
339                          * device that has not yet been created.  In either case forwared
340                          * the frame to the PE and let it take care of the frame data. */
341                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342                         iphy = &ihost->phys[index];
343                         result = sci_phy_frame_handler(iphy, frame_index);
344                 } else {
345                         if (index < ihost->remote_node_entries)
346                                 idev = ihost->device_table[index];
347                         else
348                                 idev = NULL;
349
350                         if (idev != NULL)
351                                 result = sci_remote_device_frame_handler(idev, frame_index);
352                         else
353                                 sci_controller_release_frame(ihost, frame_index);
354                 }
355         }
356
357         if (result != SCI_SUCCESS) {
358                 /*
359                  * / @todo Is there any reason to report some additional error message
360                  * /       when we get this failure notifiction? */
361         }
362 }
363
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366         struct isci_remote_device *idev;
367         struct isci_request *ireq;
368         struct isci_phy *iphy;
369         u32 index;
370
371         index = SCU_GET_COMPLETION_INDEX(ent);
372
373         switch (scu_get_event_type(ent)) {
374         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375                 /* / @todo The driver did something wrong and we need to fix the condtion. */
376                 dev_err(&ihost->pdev->dev,
377                         "%s: SCIC Controller 0x%p received SMU command error "
378                         "0x%x\n",
379                         __func__,
380                         ihost,
381                         ent);
382                 break;
383
384         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385         case SCU_EVENT_TYPE_SMU_ERROR:
386         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387                 /*
388                  * / @todo This is a hardware failure and its likely that we want to
389                  * /       reset the controller. */
390                 dev_err(&ihost->pdev->dev,
391                         "%s: SCIC Controller 0x%p received fatal controller "
392                         "event  0x%x\n",
393                         __func__,
394                         ihost,
395                         ent);
396                 break;
397
398         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399                 ireq = ihost->reqs[index];
400                 sci_io_request_event_handler(ireq, ent);
401                 break;
402
403         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404                 switch (scu_get_event_specifier(ent)) {
405                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407                         ireq = ihost->reqs[index];
408                         if (ireq != NULL)
409                                 sci_io_request_event_handler(ireq, ent);
410                         else
411                                 dev_warn(&ihost->pdev->dev,
412                                          "%s: SCIC Controller 0x%p received "
413                                          "event 0x%x for io request object "
414                                          "that doesnt exist.\n",
415                                          __func__,
416                                          ihost,
417                                          ent);
418
419                         break;
420
421                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422                         idev = ihost->device_table[index];
423                         if (idev != NULL)
424                                 sci_remote_device_event_handler(idev, ent);
425                         else
426                                 dev_warn(&ihost->pdev->dev,
427                                          "%s: SCIC Controller 0x%p received "
428                                          "event 0x%x for remote device object "
429                                          "that doesnt exist.\n",
430                                          __func__,
431                                          ihost,
432                                          ent);
433
434                         break;
435                 }
436                 break;
437
438         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439         /*
440          * direct the broadcast change event to the phy first and then let
441          * the phy redirect the broadcast change to the port object */
442         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443         /*
444          * direct error counter event to the phy object since that is where
445          * we get the event notification.  This is a type 4 event. */
446         case SCU_EVENT_TYPE_OSSP_EVENT:
447                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448                 iphy = &ihost->phys[index];
449                 sci_phy_event_handler(iphy, ent);
450                 break;
451
452         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454         case SCU_EVENT_TYPE_RNC_OPS_MISC:
455                 if (index < ihost->remote_node_entries) {
456                         idev = ihost->device_table[index];
457
458                         if (idev != NULL)
459                                 sci_remote_device_event_handler(idev, ent);
460                 } else
461                         dev_err(&ihost->pdev->dev,
462                                 "%s: SCIC Controller 0x%p received event 0x%x "
463                                 "for remote device object 0x%0x that doesnt "
464                                 "exist.\n",
465                                 __func__,
466                                 ihost,
467                                 ent,
468                                 index);
469
470                 break;
471
472         default:
473                 dev_warn(&ihost->pdev->dev,
474                          "%s: SCIC Controller received unknown event code %x\n",
475                          __func__,
476                          ent);
477                 break;
478         }
479 }
480
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483         u32 completion_count = 0;
484         u32 ent;
485         u32 get_index;
486         u32 get_cycle;
487         u32 event_get;
488         u32 event_cycle;
489
490         dev_dbg(&ihost->pdev->dev,
491                 "%s: completion queue begining get:0x%08x\n",
492                 __func__,
493                 ihost->completion_queue_get);
494
495         /* Get the component parts of the completion queue */
496         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502         while (
503                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505                 ) {
506                 completion_count++;
507
508                 ent = ihost->completion_queue[get_index];
509
510                 /* increment the get pointer and check for rollover to toggle the cycle bit */
511                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515                 dev_dbg(&ihost->pdev->dev,
516                         "%s: completion queue entry:0x%08x\n",
517                         __func__,
518                         ent);
519
520                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521                 case SCU_COMPLETION_TYPE_TASK:
522                         sci_controller_task_completion(ihost, ent);
523                         break;
524
525                 case SCU_COMPLETION_TYPE_SDMA:
526                         sci_controller_sdma_completion(ihost, ent);
527                         break;
528
529                 case SCU_COMPLETION_TYPE_UFI:
530                         sci_controller_unsolicited_frame(ihost, ent);
531                         break;
532
533                 case SCU_COMPLETION_TYPE_EVENT:
534                 case SCU_COMPLETION_TYPE_NOTIFY: {
535                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
536                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
537                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
538
539                         sci_controller_event_completion(ihost, ent);
540                         break;
541                 }
542                 default:
543                         dev_warn(&ihost->pdev->dev,
544                                  "%s: SCIC Controller received unknown "
545                                  "completion type %x\n",
546                                  __func__,
547                                  ent);
548                         break;
549                 }
550         }
551
552         /* Update the get register if we completed one or more entries */
553         if (completion_count > 0) {
554                 ihost->completion_queue_get =
555                         SMU_CQGR_GEN_BIT(ENABLE) |
556                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
557                         event_cycle |
558                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
559                         get_cycle |
560                         SMU_CQGR_GEN_VAL(POINTER, get_index);
561
562                 writel(ihost->completion_queue_get,
563                        &ihost->smu_registers->completion_queue_get);
564
565         }
566
567         dev_dbg(&ihost->pdev->dev,
568                 "%s: completion queue ending get:0x%08x\n",
569                 __func__,
570                 ihost->completion_queue_get);
571
572 }
573
574 static void sci_controller_error_handler(struct isci_host *ihost)
575 {
576         u32 interrupt_status;
577
578         interrupt_status =
579                 readl(&ihost->smu_registers->interrupt_status);
580
581         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
582             sci_controller_completion_queue_has_entries(ihost)) {
583
584                 sci_controller_process_completions(ihost);
585                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
586         } else {
587                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
588                         interrupt_status);
589
590                 sci_change_state(&ihost->sm, SCIC_FAILED);
591
592                 return;
593         }
594
595         /* If we dont process any completions I am not sure that we want to do this.
596          * We are in the middle of a hardware fault and should probably be reset.
597          */
598         writel(0, &ihost->smu_registers->interrupt_mask);
599 }
600
601 irqreturn_t isci_intx_isr(int vec, void *data)
602 {
603         irqreturn_t ret = IRQ_NONE;
604         struct isci_host *ihost = data;
605
606         if (sci_controller_isr(ihost)) {
607                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
608                 tasklet_schedule(&ihost->completion_tasklet);
609                 ret = IRQ_HANDLED;
610         } else if (sci_controller_error_isr(ihost)) {
611                 spin_lock(&ihost->scic_lock);
612                 sci_controller_error_handler(ihost);
613                 spin_unlock(&ihost->scic_lock);
614                 ret = IRQ_HANDLED;
615         }
616
617         return ret;
618 }
619
620 irqreturn_t isci_error_isr(int vec, void *data)
621 {
622         struct isci_host *ihost = data;
623
624         if (sci_controller_error_isr(ihost))
625                 sci_controller_error_handler(ihost);
626
627         return IRQ_HANDLED;
628 }
629
630 /**
631  * isci_host_start_complete() - This function is called by the core library,
632  *    through the ISCI Module, to indicate controller start status.
633  * @isci_host: This parameter specifies the ISCI host object
634  * @completion_status: This parameter specifies the completion status from the
635  *    core library.
636  *
637  */
638 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
639 {
640         if (completion_status != SCI_SUCCESS)
641                 dev_info(&ihost->pdev->dev,
642                         "controller start timed out, continuing...\n");
643         isci_host_change_state(ihost, isci_ready);
644         clear_bit(IHOST_START_PENDING, &ihost->flags);
645         wake_up(&ihost->eventq);
646 }
647
648 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
649 {
650         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
651
652         if (test_bit(IHOST_START_PENDING, &ihost->flags))
653                 return 0;
654
655         /* todo: use sas_flush_discovery once it is upstream */
656         scsi_flush_work(shost);
657
658         scsi_flush_work(shost);
659
660         dev_dbg(&ihost->pdev->dev,
661                 "%s: ihost->status = %d, time = %ld\n",
662                  __func__, isci_host_get_state(ihost), time);
663
664         return 1;
665
666 }
667
668 /**
669  * sci_controller_get_suggested_start_timeout() - This method returns the
670  *    suggested sci_controller_start() timeout amount.  The user is free to
671  *    use any timeout value, but this method provides the suggested minimum
672  *    start timeout value.  The returned value is based upon empirical
673  *    information determined as a result of interoperability testing.
674  * @controller: the handle to the controller object for which to return the
675  *    suggested start timeout.
676  *
677  * This method returns the number of milliseconds for the suggested start
678  * operation timeout.
679  */
680 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
681 {
682         /* Validate the user supplied parameters. */
683         if (!ihost)
684                 return 0;
685
686         /*
687          * The suggested minimum timeout value for a controller start operation:
688          *
689          *     Signature FIS Timeout
690          *   + Phy Start Timeout
691          *   + Number of Phy Spin Up Intervals
692          *   ---------------------------------
693          *   Number of milliseconds for the controller start operation.
694          *
695          * NOTE: The number of phy spin up intervals will be equivalent
696          *       to the number of phys divided by the number phys allowed
697          *       per interval - 1 (once OEM parameters are supported).
698          *       Currently we assume only 1 phy per interval. */
699
700         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
701                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
702                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
703 }
704
705 static void sci_controller_enable_interrupts(struct isci_host *ihost)
706 {
707         BUG_ON(ihost->smu_registers == NULL);
708         writel(0, &ihost->smu_registers->interrupt_mask);
709 }
710
711 void sci_controller_disable_interrupts(struct isci_host *ihost)
712 {
713         BUG_ON(ihost->smu_registers == NULL);
714         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
715 }
716
717 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
718 {
719         u32 port_task_scheduler_value;
720
721         port_task_scheduler_value =
722                 readl(&ihost->scu_registers->peg0.ptsg.control);
723         port_task_scheduler_value |=
724                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
725                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
726         writel(port_task_scheduler_value,
727                &ihost->scu_registers->peg0.ptsg.control);
728 }
729
730 static void sci_controller_assign_task_entries(struct isci_host *ihost)
731 {
732         u32 task_assignment;
733
734         /*
735          * Assign all the TCs to function 0
736          * TODO: Do we actually need to read this register to write it back?
737          */
738
739         task_assignment =
740                 readl(&ihost->smu_registers->task_context_assignment[0]);
741
742         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
743                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
744                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
745
746         writel(task_assignment,
747                 &ihost->smu_registers->task_context_assignment[0]);
748
749 }
750
751 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
752 {
753         u32 index;
754         u32 completion_queue_control_value;
755         u32 completion_queue_get_value;
756         u32 completion_queue_put_value;
757
758         ihost->completion_queue_get = 0;
759
760         completion_queue_control_value =
761                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
762                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
763
764         writel(completion_queue_control_value,
765                &ihost->smu_registers->completion_queue_control);
766
767
768         /* Set the completion queue get pointer and enable the queue */
769         completion_queue_get_value = (
770                 (SMU_CQGR_GEN_VAL(POINTER, 0))
771                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
772                 | (SMU_CQGR_GEN_BIT(ENABLE))
773                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
774                 );
775
776         writel(completion_queue_get_value,
777                &ihost->smu_registers->completion_queue_get);
778
779         /* Set the completion queue put pointer */
780         completion_queue_put_value = (
781                 (SMU_CQPR_GEN_VAL(POINTER, 0))
782                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
783                 );
784
785         writel(completion_queue_put_value,
786                &ihost->smu_registers->completion_queue_put);
787
788         /* Initialize the cycle bit of the completion queue entries */
789         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
790                 /*
791                  * If get.cycle_bit != completion_queue.cycle_bit
792                  * its not a valid completion queue entry
793                  * so at system start all entries are invalid */
794                 ihost->completion_queue[index] = 0x80000000;
795         }
796 }
797
798 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
799 {
800         u32 frame_queue_control_value;
801         u32 frame_queue_get_value;
802         u32 frame_queue_put_value;
803
804         /* Write the queue size */
805         frame_queue_control_value =
806                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
807
808         writel(frame_queue_control_value,
809                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
810
811         /* Setup the get pointer for the unsolicited frame queue */
812         frame_queue_get_value = (
813                 SCU_UFQGP_GEN_VAL(POINTER, 0)
814                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
815                 );
816
817         writel(frame_queue_get_value,
818                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
819         /* Setup the put pointer for the unsolicited frame queue */
820         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
821         writel(frame_queue_put_value,
822                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
823 }
824
825 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
826 {
827         if (ihost->sm.current_state_id == SCIC_STARTING) {
828                 /*
829                  * We move into the ready state, because some of the phys/ports
830                  * may be up and operational.
831                  */
832                 sci_change_state(&ihost->sm, SCIC_READY);
833
834                 isci_host_start_complete(ihost, status);
835         }
836 }
837
838 static bool is_phy_starting(struct isci_phy *iphy)
839 {
840         enum sci_phy_states state;
841
842         state = iphy->sm.current_state_id;
843         switch (state) {
844         case SCI_PHY_STARTING:
845         case SCI_PHY_SUB_INITIAL:
846         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
847         case SCI_PHY_SUB_AWAIT_IAF_UF:
848         case SCI_PHY_SUB_AWAIT_SAS_POWER:
849         case SCI_PHY_SUB_AWAIT_SATA_POWER:
850         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
851         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
852         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
853         case SCI_PHY_SUB_FINAL:
854                 return true;
855         default:
856                 return false;
857         }
858 }
859
860 /**
861  * sci_controller_start_next_phy - start phy
862  * @scic: controller
863  *
864  * If all the phys have been started, then attempt to transition the
865  * controller to the READY state and inform the user
866  * (sci_cb_controller_start_complete()).
867  */
868 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
869 {
870         struct sci_oem_params *oem = &ihost->oem_parameters;
871         struct isci_phy *iphy;
872         enum sci_status status;
873
874         status = SCI_SUCCESS;
875
876         if (ihost->phy_startup_timer_pending)
877                 return status;
878
879         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
880                 bool is_controller_start_complete = true;
881                 u32 state;
882                 u8 index;
883
884                 for (index = 0; index < SCI_MAX_PHYS; index++) {
885                         iphy = &ihost->phys[index];
886                         state = iphy->sm.current_state_id;
887
888                         if (!phy_get_non_dummy_port(iphy))
889                                 continue;
890
891                         /* The controller start operation is complete iff:
892                          * - all links have been given an opportunity to start
893                          * - have no indication of a connected device
894                          * - have an indication of a connected device and it has
895                          *   finished the link training process.
896                          */
897                         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
898                             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
899                             (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
900                                 is_controller_start_complete = false;
901                                 break;
902                         }
903                 }
904
905                 /*
906                  * The controller has successfully finished the start process.
907                  * Inform the SCI Core user and transition to the READY state. */
908                 if (is_controller_start_complete == true) {
909                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
910                         sci_del_timer(&ihost->phy_timer);
911                         ihost->phy_startup_timer_pending = false;
912                 }
913         } else {
914                 iphy = &ihost->phys[ihost->next_phy_to_start];
915
916                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
917                         if (phy_get_non_dummy_port(iphy) == NULL) {
918                                 ihost->next_phy_to_start++;
919
920                                 /* Caution recursion ahead be forwarned
921                                  *
922                                  * The PHY was never added to a PORT in MPC mode
923                                  * so start the next phy in sequence This phy
924                                  * will never go link up and will not draw power
925                                  * the OEM parameters either configured the phy
926                                  * incorrectly for the PORT or it was never
927                                  * assigned to a PORT
928                                  */
929                                 return sci_controller_start_next_phy(ihost);
930                         }
931                 }
932
933                 status = sci_phy_start(iphy);
934
935                 if (status == SCI_SUCCESS) {
936                         sci_mod_timer(&ihost->phy_timer,
937                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
938                         ihost->phy_startup_timer_pending = true;
939                 } else {
940                         dev_warn(&ihost->pdev->dev,
941                                  "%s: Controller stop operation failed "
942                                  "to stop phy %d because of status "
943                                  "%d.\n",
944                                  __func__,
945                                  ihost->phys[ihost->next_phy_to_start].phy_index,
946                                  status);
947                 }
948
949                 ihost->next_phy_to_start++;
950         }
951
952         return status;
953 }
954
955 static void phy_startup_timeout(unsigned long data)
956 {
957         struct sci_timer *tmr = (struct sci_timer *)data;
958         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
959         unsigned long flags;
960         enum sci_status status;
961
962         spin_lock_irqsave(&ihost->scic_lock, flags);
963
964         if (tmr->cancel)
965                 goto done;
966
967         ihost->phy_startup_timer_pending = false;
968
969         do {
970                 status = sci_controller_start_next_phy(ihost);
971         } while (status != SCI_SUCCESS);
972
973 done:
974         spin_unlock_irqrestore(&ihost->scic_lock, flags);
975 }
976
977 static u16 isci_tci_active(struct isci_host *ihost)
978 {
979         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
980 }
981
982 static enum sci_status sci_controller_start(struct isci_host *ihost,
983                                              u32 timeout)
984 {
985         enum sci_status result;
986         u16 index;
987
988         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
989                 dev_warn(&ihost->pdev->dev,
990                          "SCIC Controller start operation requested in "
991                          "invalid state\n");
992                 return SCI_FAILURE_INVALID_STATE;
993         }
994
995         /* Build the TCi free pool */
996         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
997         ihost->tci_head = 0;
998         ihost->tci_tail = 0;
999         for (index = 0; index < ihost->task_context_entries; index++)
1000                 isci_tci_free(ihost, index);
1001
1002         /* Build the RNi free pool */
1003         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1004                                          ihost->remote_node_entries);
1005
1006         /*
1007          * Before anything else lets make sure we will not be
1008          * interrupted by the hardware.
1009          */
1010         sci_controller_disable_interrupts(ihost);
1011
1012         /* Enable the port task scheduler */
1013         sci_controller_enable_port_task_scheduler(ihost);
1014
1015         /* Assign all the task entries to ihost physical function */
1016         sci_controller_assign_task_entries(ihost);
1017
1018         /* Now initialize the completion queue */
1019         sci_controller_initialize_completion_queue(ihost);
1020
1021         /* Initialize the unsolicited frame queue for use */
1022         sci_controller_initialize_unsolicited_frame_queue(ihost);
1023
1024         /* Start all of the ports on this controller */
1025         for (index = 0; index < ihost->logical_port_entries; index++) {
1026                 struct isci_port *iport = &ihost->ports[index];
1027
1028                 result = sci_port_start(iport);
1029                 if (result)
1030                         return result;
1031         }
1032
1033         sci_controller_start_next_phy(ihost);
1034
1035         sci_mod_timer(&ihost->timer, timeout);
1036
1037         sci_change_state(&ihost->sm, SCIC_STARTING);
1038
1039         return SCI_SUCCESS;
1040 }
1041
1042 void isci_host_scan_start(struct Scsi_Host *shost)
1043 {
1044         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1045         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1046
1047         set_bit(IHOST_START_PENDING, &ihost->flags);
1048
1049         spin_lock_irq(&ihost->scic_lock);
1050         sci_controller_start(ihost, tmo);
1051         sci_controller_enable_interrupts(ihost);
1052         spin_unlock_irq(&ihost->scic_lock);
1053 }
1054
1055 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1056 {
1057         isci_host_change_state(ihost, isci_stopped);
1058         sci_controller_disable_interrupts(ihost);
1059         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1060         wake_up(&ihost->eventq);
1061 }
1062
1063 static void sci_controller_completion_handler(struct isci_host *ihost)
1064 {
1065         /* Empty out the completion queue */
1066         if (sci_controller_completion_queue_has_entries(ihost))
1067                 sci_controller_process_completions(ihost);
1068
1069         /* Clear the interrupt and enable all interrupts again */
1070         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1071         /* Could we write the value of SMU_ISR_COMPLETION? */
1072         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1073         writel(0, &ihost->smu_registers->interrupt_mask);
1074 }
1075
1076 /**
1077  * isci_host_completion_routine() - This function is the delayed service
1078  *    routine that calls the sci core library's completion handler. It's
1079  *    scheduled as a tasklet from the interrupt service routine when interrupts
1080  *    in use, or set as the timeout function in polled mode.
1081  * @data: This parameter specifies the ISCI host object
1082  *
1083  */
1084 static void isci_host_completion_routine(unsigned long data)
1085 {
1086         struct isci_host *ihost = (struct isci_host *)data;
1087         struct list_head    completed_request_list;
1088         struct list_head    errored_request_list;
1089         struct list_head    *current_position;
1090         struct list_head    *next_position;
1091         struct isci_request *request;
1092         struct isci_request *next_request;
1093         struct sas_task     *task;
1094
1095         INIT_LIST_HEAD(&completed_request_list);
1096         INIT_LIST_HEAD(&errored_request_list);
1097
1098         spin_lock_irq(&ihost->scic_lock);
1099
1100         sci_controller_completion_handler(ihost);
1101
1102         /* Take the lists of completed I/Os from the host. */
1103
1104         list_splice_init(&ihost->requests_to_complete,
1105                          &completed_request_list);
1106
1107         /* Take the list of errored I/Os from the host. */
1108         list_splice_init(&ihost->requests_to_errorback,
1109                          &errored_request_list);
1110
1111         spin_unlock_irq(&ihost->scic_lock);
1112
1113         /* Process any completions in the lists. */
1114         list_for_each_safe(current_position, next_position,
1115                            &completed_request_list) {
1116
1117                 request = list_entry(current_position, struct isci_request,
1118                                      completed_node);
1119                 task = isci_request_access_task(request);
1120
1121                 /* Normal notification (task_done) */
1122                 dev_dbg(&ihost->pdev->dev,
1123                         "%s: Normal - request/task = %p/%p\n",
1124                         __func__,
1125                         request,
1126                         task);
1127
1128                 /* Return the task to libsas */
1129                 if (task != NULL) {
1130
1131                         task->lldd_task = NULL;
1132                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1133
1134                                 /* If the task is already in the abort path,
1135                                 * the task_done callback cannot be called.
1136                                 */
1137                                 task->task_done(task);
1138                         }
1139                 }
1140
1141                 spin_lock_irq(&ihost->scic_lock);
1142                 isci_free_tag(ihost, request->io_tag);
1143                 spin_unlock_irq(&ihost->scic_lock);
1144         }
1145         list_for_each_entry_safe(request, next_request, &errored_request_list,
1146                                  completed_node) {
1147
1148                 task = isci_request_access_task(request);
1149
1150                 /* Use sas_task_abort */
1151                 dev_warn(&ihost->pdev->dev,
1152                          "%s: Error - request/task = %p/%p\n",
1153                          __func__,
1154                          request,
1155                          task);
1156
1157                 if (task != NULL) {
1158
1159                         /* Put the task into the abort path if it's not there
1160                          * already.
1161                          */
1162                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1163                                 sas_task_abort(task);
1164
1165                 } else {
1166                         /* This is a case where the request has completed with a
1167                          * status such that it needed further target servicing,
1168                          * but the sas_task reference has already been removed
1169                          * from the request.  Since it was errored, it was not
1170                          * being aborted, so there is nothing to do except free
1171                          * it.
1172                          */
1173
1174                         spin_lock_irq(&ihost->scic_lock);
1175                         /* Remove the request from the remote device's list
1176                         * of pending requests.
1177                         */
1178                         list_del_init(&request->dev_node);
1179                         isci_free_tag(ihost, request->io_tag);
1180                         spin_unlock_irq(&ihost->scic_lock);
1181                 }
1182         }
1183
1184 }
1185
1186 /**
1187  * sci_controller_stop() - This method will stop an individual controller
1188  *    object.This method will invoke the associated user callback upon
1189  *    completion.  The completion callback is called when the following
1190  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1191  *    controller has been quiesced. This method will ensure that all IO
1192  *    requests are quiesced, phys are stopped, and all additional operation by
1193  *    the hardware is halted.
1194  * @controller: the handle to the controller object to stop.
1195  * @timeout: This parameter specifies the number of milliseconds in which the
1196  *    stop operation should complete.
1197  *
1198  * The controller must be in the STARTED or STOPPED state. Indicate if the
1199  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1200  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1201  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1202  * controller is not either in the STARTED or STOPPED states.
1203  */
1204 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1205 {
1206         if (ihost->sm.current_state_id != SCIC_READY) {
1207                 dev_warn(&ihost->pdev->dev,
1208                          "SCIC Controller stop operation requested in "
1209                          "invalid state\n");
1210                 return SCI_FAILURE_INVALID_STATE;
1211         }
1212
1213         sci_mod_timer(&ihost->timer, timeout);
1214         sci_change_state(&ihost->sm, SCIC_STOPPING);
1215         return SCI_SUCCESS;
1216 }
1217
1218 /**
1219  * sci_controller_reset() - This method will reset the supplied core
1220  *    controller regardless of the state of said controller.  This operation is
1221  *    considered destructive.  In other words, all current operations are wiped
1222  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1223  *    requests are not aborted or completed at the actual remote device.
1224  * @controller: the handle to the controller object to reset.
1225  *
1226  * Indicate if the controller reset method succeeded or failed in some way.
1227  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1228  * the controller reset operation is unable to complete.
1229  */
1230 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1231 {
1232         switch (ihost->sm.current_state_id) {
1233         case SCIC_RESET:
1234         case SCIC_READY:
1235         case SCIC_STOPPED:
1236         case SCIC_FAILED:
1237                 /*
1238                  * The reset operation is not a graceful cleanup, just
1239                  * perform the state transition.
1240                  */
1241                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1242                 return SCI_SUCCESS;
1243         default:
1244                 dev_warn(&ihost->pdev->dev,
1245                          "SCIC Controller reset operation requested in "
1246                          "invalid state\n");
1247                 return SCI_FAILURE_INVALID_STATE;
1248         }
1249 }
1250
1251 void isci_host_deinit(struct isci_host *ihost)
1252 {
1253         int i;
1254
1255         isci_host_change_state(ihost, isci_stopping);
1256         for (i = 0; i < SCI_MAX_PORTS; i++) {
1257                 struct isci_port *iport = &ihost->ports[i];
1258                 struct isci_remote_device *idev, *d;
1259
1260                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1261                         if (test_bit(IDEV_ALLOCATED, &idev->flags))
1262                                 isci_remote_device_stop(ihost, idev);
1263                 }
1264         }
1265
1266         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1267
1268         spin_lock_irq(&ihost->scic_lock);
1269         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1270         spin_unlock_irq(&ihost->scic_lock);
1271
1272         wait_for_stop(ihost);
1273         sci_controller_reset(ihost);
1274
1275         /* Cancel any/all outstanding port timers */
1276         for (i = 0; i < ihost->logical_port_entries; i++) {
1277                 struct isci_port *iport = &ihost->ports[i];
1278                 del_timer_sync(&iport->timer.timer);
1279         }
1280
1281         /* Cancel any/all outstanding phy timers */
1282         for (i = 0; i < SCI_MAX_PHYS; i++) {
1283                 struct isci_phy *iphy = &ihost->phys[i];
1284                 del_timer_sync(&iphy->sata_timer.timer);
1285         }
1286
1287         del_timer_sync(&ihost->port_agent.timer.timer);
1288
1289         del_timer_sync(&ihost->power_control.timer.timer);
1290
1291         del_timer_sync(&ihost->timer.timer);
1292
1293         del_timer_sync(&ihost->phy_timer.timer);
1294 }
1295
1296 static void __iomem *scu_base(struct isci_host *isci_host)
1297 {
1298         struct pci_dev *pdev = isci_host->pdev;
1299         int id = isci_host->id;
1300
1301         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1302 }
1303
1304 static void __iomem *smu_base(struct isci_host *isci_host)
1305 {
1306         struct pci_dev *pdev = isci_host->pdev;
1307         int id = isci_host->id;
1308
1309         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1310 }
1311
1312 static void isci_user_parameters_get(struct sci_user_parameters *u)
1313 {
1314         int i;
1315
1316         for (i = 0; i < SCI_MAX_PHYS; i++) {
1317                 struct sci_phy_user_params *u_phy = &u->phys[i];
1318
1319                 u_phy->max_speed_generation = phy_gen;
1320
1321                 /* we are not exporting these for now */
1322                 u_phy->align_insertion_frequency = 0x7f;
1323                 u_phy->in_connection_align_insertion_frequency = 0xff;
1324                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1325         }
1326
1327         u->stp_inactivity_timeout = stp_inactive_to;
1328         u->ssp_inactivity_timeout = ssp_inactive_to;
1329         u->stp_max_occupancy_timeout = stp_max_occ_to;
1330         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1331         u->no_outbound_task_timeout = no_outbound_task_to;
1332         u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1333 }
1334
1335 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1336 {
1337         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1338
1339         sci_change_state(&ihost->sm, SCIC_RESET);
1340 }
1341
1342 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1343 {
1344         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1345
1346         sci_del_timer(&ihost->timer);
1347 }
1348
1349 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1350 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1351 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1352 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1353 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1354 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1355
1356 /**
1357  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1358  *    configure the interrupt coalescence.
1359  * @controller: This parameter represents the handle to the controller object
1360  *    for which its interrupt coalesce register is overridden.
1361  * @coalesce_number: Used to control the number of entries in the Completion
1362  *    Queue before an interrupt is generated. If the number of entries exceed
1363  *    this number, an interrupt will be generated. The valid range of the input
1364  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1365  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1366  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1367  *    interrupt coalescing timeout.
1368  *
1369  * Indicate if the user successfully set the interrupt coalesce parameters.
1370  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1371  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1372  */
1373 static enum sci_status
1374 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1375                                          u32 coalesce_number,
1376                                          u32 coalesce_timeout)
1377 {
1378         u8 timeout_encode = 0;
1379         u32 min = 0;
1380         u32 max = 0;
1381
1382         /* Check if the input parameters fall in the range. */
1383         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1384                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1385
1386         /*
1387          *  Defined encoding for interrupt coalescing timeout:
1388          *              Value   Min      Max     Units
1389          *              -----   ---      ---     -----
1390          *              0       -        -       Disabled
1391          *              1       13.3     20.0    ns
1392          *              2       26.7     40.0
1393          *              3       53.3     80.0
1394          *              4       106.7    160.0
1395          *              5       213.3    320.0
1396          *              6       426.7    640.0
1397          *              7       853.3    1280.0
1398          *              8       1.7      2.6     us
1399          *              9       3.4      5.1
1400          *              10      6.8      10.2
1401          *              11      13.7     20.5
1402          *              12      27.3     41.0
1403          *              13      54.6     81.9
1404          *              14      109.2    163.8
1405          *              15      218.5    327.7
1406          *              16      436.9    655.4
1407          *              17      873.8    1310.7
1408          *              18      1.7      2.6     ms
1409          *              19      3.5      5.2
1410          *              20      7.0      10.5
1411          *              21      14.0     21.0
1412          *              22      28.0     41.9
1413          *              23      55.9     83.9
1414          *              24      111.8    167.8
1415          *              25      223.7    335.5
1416          *              26      447.4    671.1
1417          *              27      894.8    1342.2
1418          *              28      1.8      2.7     s
1419          *              Others Undefined */
1420
1421         /*
1422          * Use the table above to decide the encode of interrupt coalescing timeout
1423          * value for register writing. */
1424         if (coalesce_timeout == 0)
1425                 timeout_encode = 0;
1426         else{
1427                 /* make the timeout value in unit of (10 ns). */
1428                 coalesce_timeout = coalesce_timeout * 100;
1429                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1430                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1431
1432                 /* get the encode of timeout for register writing. */
1433                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1434                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1435                       timeout_encode++) {
1436                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1437                                 break;
1438                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1439                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1440                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1441                                         break;
1442                                 else{
1443                                         timeout_encode++;
1444                                         break;
1445                                 }
1446                         } else {
1447                                 max = max * 2;
1448                                 min = min * 2;
1449                         }
1450                 }
1451
1452                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1453                         /* the value is out of range. */
1454                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1455         }
1456
1457         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1458                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1459                &ihost->smu_registers->interrupt_coalesce_control);
1460
1461
1462         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1463         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1464
1465         return SCI_SUCCESS;
1466 }
1467
1468
1469 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1470 {
1471         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1472
1473         /* set the default interrupt coalescence number and timeout value. */
1474         sci_controller_set_interrupt_coalescence(ihost, 0x10, 250);
1475 }
1476
1477 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1478 {
1479         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1480
1481         /* disable interrupt coalescence. */
1482         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1483 }
1484
1485 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1486 {
1487         u32 index;
1488         enum sci_status status;
1489         enum sci_status phy_status;
1490
1491         status = SCI_SUCCESS;
1492
1493         for (index = 0; index < SCI_MAX_PHYS; index++) {
1494                 phy_status = sci_phy_stop(&ihost->phys[index]);
1495
1496                 if (phy_status != SCI_SUCCESS &&
1497                     phy_status != SCI_FAILURE_INVALID_STATE) {
1498                         status = SCI_FAILURE;
1499
1500                         dev_warn(&ihost->pdev->dev,
1501                                  "%s: Controller stop operation failed to stop "
1502                                  "phy %d because of status %d.\n",
1503                                  __func__,
1504                                  ihost->phys[index].phy_index, phy_status);
1505                 }
1506         }
1507
1508         return status;
1509 }
1510
1511 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1512 {
1513         u32 index;
1514         enum sci_status port_status;
1515         enum sci_status status = SCI_SUCCESS;
1516
1517         for (index = 0; index < ihost->logical_port_entries; index++) {
1518                 struct isci_port *iport = &ihost->ports[index];
1519
1520                 port_status = sci_port_stop(iport);
1521
1522                 if ((port_status != SCI_SUCCESS) &&
1523                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1524                         status = SCI_FAILURE;
1525
1526                         dev_warn(&ihost->pdev->dev,
1527                                  "%s: Controller stop operation failed to "
1528                                  "stop port %d because of status %d.\n",
1529                                  __func__,
1530                                  iport->logical_port_index,
1531                                  port_status);
1532                 }
1533         }
1534
1535         return status;
1536 }
1537
1538 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1539 {
1540         u32 index;
1541         enum sci_status status;
1542         enum sci_status device_status;
1543
1544         status = SCI_SUCCESS;
1545
1546         for (index = 0; index < ihost->remote_node_entries; index++) {
1547                 if (ihost->device_table[index] != NULL) {
1548                         /* / @todo What timeout value do we want to provide to this request? */
1549                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1550
1551                         if ((device_status != SCI_SUCCESS) &&
1552                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1553                                 dev_warn(&ihost->pdev->dev,
1554                                          "%s: Controller stop operation failed "
1555                                          "to stop device 0x%p because of "
1556                                          "status %d.\n",
1557                                          __func__,
1558                                          ihost->device_table[index], device_status);
1559                         }
1560                 }
1561         }
1562
1563         return status;
1564 }
1565
1566 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1567 {
1568         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1569
1570         /* Stop all of the components for this controller */
1571         sci_controller_stop_phys(ihost);
1572         sci_controller_stop_ports(ihost);
1573         sci_controller_stop_devices(ihost);
1574 }
1575
1576 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1577 {
1578         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1579
1580         sci_del_timer(&ihost->timer);
1581 }
1582
1583 static void sci_controller_reset_hardware(struct isci_host *ihost)
1584 {
1585         /* Disable interrupts so we dont take any spurious interrupts */
1586         sci_controller_disable_interrupts(ihost);
1587
1588         /* Reset the SCU */
1589         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1590
1591         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1592         udelay(1000);
1593
1594         /* The write to the CQGR clears the CQP */
1595         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1596
1597         /* The write to the UFQGP clears the UFQPR */
1598         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1599 }
1600
1601 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1602 {
1603         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1604
1605         sci_controller_reset_hardware(ihost);
1606         sci_change_state(&ihost->sm, SCIC_RESET);
1607 }
1608
1609 static const struct sci_base_state sci_controller_state_table[] = {
1610         [SCIC_INITIAL] = {
1611                 .enter_state = sci_controller_initial_state_enter,
1612         },
1613         [SCIC_RESET] = {},
1614         [SCIC_INITIALIZING] = {},
1615         [SCIC_INITIALIZED] = {},
1616         [SCIC_STARTING] = {
1617                 .exit_state  = sci_controller_starting_state_exit,
1618         },
1619         [SCIC_READY] = {
1620                 .enter_state = sci_controller_ready_state_enter,
1621                 .exit_state  = sci_controller_ready_state_exit,
1622         },
1623         [SCIC_RESETTING] = {
1624                 .enter_state = sci_controller_resetting_state_enter,
1625         },
1626         [SCIC_STOPPING] = {
1627                 .enter_state = sci_controller_stopping_state_enter,
1628                 .exit_state = sci_controller_stopping_state_exit,
1629         },
1630         [SCIC_STOPPED] = {},
1631         [SCIC_FAILED] = {}
1632 };
1633
1634 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1635 {
1636         /* these defaults are overridden by the platform / firmware */
1637         u16 index;
1638
1639         /* Default to APC mode. */
1640         ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1641
1642         /* Default to APC mode. */
1643         ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1644
1645         /* Default to no SSC operation. */
1646         ihost->oem_parameters.controller.do_enable_ssc = false;
1647
1648         /* Initialize all of the port parameter information to narrow ports. */
1649         for (index = 0; index < SCI_MAX_PORTS; index++) {
1650                 ihost->oem_parameters.ports[index].phy_mask = 0;
1651         }
1652
1653         /* Initialize all of the phy parameter information. */
1654         for (index = 0; index < SCI_MAX_PHYS; index++) {
1655                 /* Default to 6G (i.e. Gen 3) for now. */
1656                 ihost->user_parameters.phys[index].max_speed_generation = 3;
1657
1658                 /* the frequencies cannot be 0 */
1659                 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1660                 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1661                 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1662
1663                 /*
1664                  * Previous Vitesse based expanders had a arbitration issue that
1665                  * is worked around by having the upper 32-bits of SAS address
1666                  * with a value greater then the Vitesse company identifier.
1667                  * Hence, usage of 0x5FCFFFFF. */
1668                 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1669                 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1670         }
1671
1672         ihost->user_parameters.stp_inactivity_timeout = 5;
1673         ihost->user_parameters.ssp_inactivity_timeout = 5;
1674         ihost->user_parameters.stp_max_occupancy_timeout = 5;
1675         ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1676         ihost->user_parameters.no_outbound_task_timeout = 20;
1677 }
1678
1679 static void controller_timeout(unsigned long data)
1680 {
1681         struct sci_timer *tmr = (struct sci_timer *)data;
1682         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1683         struct sci_base_state_machine *sm = &ihost->sm;
1684         unsigned long flags;
1685
1686         spin_lock_irqsave(&ihost->scic_lock, flags);
1687
1688         if (tmr->cancel)
1689                 goto done;
1690
1691         if (sm->current_state_id == SCIC_STARTING)
1692                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1693         else if (sm->current_state_id == SCIC_STOPPING) {
1694                 sci_change_state(sm, SCIC_FAILED);
1695                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1696         } else  /* / @todo Now what do we want to do in this case? */
1697                 dev_err(&ihost->pdev->dev,
1698                         "%s: Controller timer fired when controller was not "
1699                         "in a state being timed.\n",
1700                         __func__);
1701
1702 done:
1703         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1704 }
1705
1706 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1707                                                 void __iomem *scu_base,
1708                                                 void __iomem *smu_base)
1709 {
1710         u8 i;
1711
1712         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1713
1714         ihost->scu_registers = scu_base;
1715         ihost->smu_registers = smu_base;
1716
1717         sci_port_configuration_agent_construct(&ihost->port_agent);
1718
1719         /* Construct the ports for this controller */
1720         for (i = 0; i < SCI_MAX_PORTS; i++)
1721                 sci_port_construct(&ihost->ports[i], i, ihost);
1722         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1723
1724         /* Construct the phys for this controller */
1725         for (i = 0; i < SCI_MAX_PHYS; i++) {
1726                 /* Add all the PHYs to the dummy port */
1727                 sci_phy_construct(&ihost->phys[i],
1728                                   &ihost->ports[SCI_MAX_PORTS], i);
1729         }
1730
1731         ihost->invalid_phy_mask = 0;
1732
1733         sci_init_timer(&ihost->timer, controller_timeout);
1734
1735         /* Initialize the User and OEM parameters to default values. */
1736         sci_controller_set_default_config_parameters(ihost);
1737
1738         return sci_controller_reset(ihost);
1739 }
1740
1741 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1742 {
1743         int i;
1744
1745         for (i = 0; i < SCI_MAX_PORTS; i++)
1746                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1747                         return -EINVAL;
1748
1749         for (i = 0; i < SCI_MAX_PHYS; i++)
1750                 if (oem->phys[i].sas_address.high == 0 &&
1751                     oem->phys[i].sas_address.low == 0)
1752                         return -EINVAL;
1753
1754         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1755                 for (i = 0; i < SCI_MAX_PHYS; i++)
1756                         if (oem->ports[i].phy_mask != 0)
1757                                 return -EINVAL;
1758         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1759                 u8 phy_mask = 0;
1760
1761                 for (i = 0; i < SCI_MAX_PHYS; i++)
1762                         phy_mask |= oem->ports[i].phy_mask;
1763
1764                 if (phy_mask == 0)
1765                         return -EINVAL;
1766         } else
1767                 return -EINVAL;
1768
1769         if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1770                 return -EINVAL;
1771
1772         return 0;
1773 }
1774
1775 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1776 {
1777         u32 state = ihost->sm.current_state_id;
1778
1779         if (state == SCIC_RESET ||
1780             state == SCIC_INITIALIZING ||
1781             state == SCIC_INITIALIZED) {
1782
1783                 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1784                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1785
1786                 return SCI_SUCCESS;
1787         }
1788
1789         return SCI_FAILURE_INVALID_STATE;
1790 }
1791
1792 static void power_control_timeout(unsigned long data)
1793 {
1794         struct sci_timer *tmr = (struct sci_timer *)data;
1795         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1796         struct isci_phy *iphy;
1797         unsigned long flags;
1798         u8 i;
1799
1800         spin_lock_irqsave(&ihost->scic_lock, flags);
1801
1802         if (tmr->cancel)
1803                 goto done;
1804
1805         ihost->power_control.phys_granted_power = 0;
1806
1807         if (ihost->power_control.phys_waiting == 0) {
1808                 ihost->power_control.timer_started = false;
1809                 goto done;
1810         }
1811
1812         for (i = 0; i < SCI_MAX_PHYS; i++) {
1813
1814                 if (ihost->power_control.phys_waiting == 0)
1815                         break;
1816
1817                 iphy = ihost->power_control.requesters[i];
1818                 if (iphy == NULL)
1819                         continue;
1820
1821                 if (ihost->power_control.phys_granted_power >=
1822                     ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1823                         break;
1824
1825                 ihost->power_control.requesters[i] = NULL;
1826                 ihost->power_control.phys_waiting--;
1827                 ihost->power_control.phys_granted_power++;
1828                 sci_phy_consume_power_handler(iphy);
1829         }
1830
1831         /*
1832          * It doesn't matter if the power list is empty, we need to start the
1833          * timer in case another phy becomes ready.
1834          */
1835         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1836         ihost->power_control.timer_started = true;
1837
1838 done:
1839         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1840 }
1841
1842 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1843                                                struct isci_phy *iphy)
1844 {
1845         BUG_ON(iphy == NULL);
1846
1847         if (ihost->power_control.phys_granted_power <
1848             ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1849                 ihost->power_control.phys_granted_power++;
1850                 sci_phy_consume_power_handler(iphy);
1851
1852                 /*
1853                  * stop and start the power_control timer. When the timer fires, the
1854                  * no_of_phys_granted_power will be set to 0
1855                  */
1856                 if (ihost->power_control.timer_started)
1857                         sci_del_timer(&ihost->power_control.timer);
1858
1859                 sci_mod_timer(&ihost->power_control.timer,
1860                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1861                 ihost->power_control.timer_started = true;
1862
1863         } else {
1864                 /* Add the phy in the waiting list */
1865                 ihost->power_control.requesters[iphy->phy_index] = iphy;
1866                 ihost->power_control.phys_waiting++;
1867         }
1868 }
1869
1870 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1871                                                struct isci_phy *iphy)
1872 {
1873         BUG_ON(iphy == NULL);
1874
1875         if (ihost->power_control.requesters[iphy->phy_index])
1876                 ihost->power_control.phys_waiting--;
1877
1878         ihost->power_control.requesters[iphy->phy_index] = NULL;
1879 }
1880
1881 #define AFE_REGISTER_WRITE_DELAY 10
1882
1883 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1884  * the OEM parameters
1885  */
1886 static void sci_controller_afe_initialization(struct isci_host *ihost)
1887 {
1888         const struct sci_oem_params *oem = &ihost->oem_parameters;
1889         struct pci_dev *pdev = ihost->pdev;
1890         u32 afe_status;
1891         u32 phy_id;
1892
1893         /* Clear DFX Status registers */
1894         writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1895         udelay(AFE_REGISTER_WRITE_DELAY);
1896
1897         if (is_b0(pdev)) {
1898                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1899                  * Timer, PM Stagger Timer */
1900                 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1901                 udelay(AFE_REGISTER_WRITE_DELAY);
1902         }
1903
1904         /* Configure bias currents to normal */
1905         if (is_a2(pdev))
1906                 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1907         else if (is_b0(pdev) || is_c0(pdev))
1908                 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1909
1910         udelay(AFE_REGISTER_WRITE_DELAY);
1911
1912         /* Enable PLL */
1913         if (is_b0(pdev) || is_c0(pdev))
1914                 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1915         else
1916                 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1917
1918         udelay(AFE_REGISTER_WRITE_DELAY);
1919
1920         /* Wait for the PLL to lock */
1921         do {
1922                 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1923                 udelay(AFE_REGISTER_WRITE_DELAY);
1924         } while ((afe_status & 0x00001000) == 0);
1925
1926         if (is_a2(pdev)) {
1927                 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1928                 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1929                 udelay(AFE_REGISTER_WRITE_DELAY);
1930         }
1931
1932         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1933                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1934
1935                 if (is_b0(pdev)) {
1936                          /* Configure transmitter SSC parameters */
1937                         writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1938                         udelay(AFE_REGISTER_WRITE_DELAY);
1939                 } else if (is_c0(pdev)) {
1940                          /* Configure transmitter SSC parameters */
1941                         writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1942                         udelay(AFE_REGISTER_WRITE_DELAY);
1943
1944                         /*
1945                          * All defaults, except the Receive Word Alignament/Comma Detect
1946                          * Enable....(0xe800) */
1947                         writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1948                         udelay(AFE_REGISTER_WRITE_DELAY);
1949                 } else {
1950                         /*
1951                          * All defaults, except the Receive Word Alignament/Comma Detect
1952                          * Enable....(0xe800) */
1953                         writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1954                         udelay(AFE_REGISTER_WRITE_DELAY);
1955
1956                         writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1957                         udelay(AFE_REGISTER_WRITE_DELAY);
1958                 }
1959
1960                 /*
1961                  * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1962                  * & increase TX int & ext bias 20%....(0xe85c) */
1963                 if (is_a2(pdev))
1964                         writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1965                 else if (is_b0(pdev)) {
1966                          /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1967                         writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1968                         udelay(AFE_REGISTER_WRITE_DELAY);
1969
1970                         /*
1971                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1972                          * & increase TX int & ext bias 20%....(0xe85c) */
1973                         writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1974                 } else {
1975                         writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1976                         udelay(AFE_REGISTER_WRITE_DELAY);
1977
1978                         /*
1979                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1980                          * & increase TX int & ext bias 20%....(0xe85c) */
1981                         writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1982                 }
1983                 udelay(AFE_REGISTER_WRITE_DELAY);
1984
1985                 if (is_a2(pdev)) {
1986                         /* Enable TX equalization (0xe824) */
1987                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
1988                         udelay(AFE_REGISTER_WRITE_DELAY);
1989                 }
1990
1991                 /*
1992                  * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
1993                  * RDD=0x0(RX Detect Enabled) ....(0xe800) */
1994                 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1995                 udelay(AFE_REGISTER_WRITE_DELAY);
1996
1997                 /* Leave DFE/FFE on */
1998                 if (is_a2(pdev))
1999                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2000                 else if (is_b0(pdev)) {
2001                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2002                         udelay(AFE_REGISTER_WRITE_DELAY);
2003                         /* Enable TX equalization (0xe824) */
2004                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2005                 } else {
2006                         writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2007                         udelay(AFE_REGISTER_WRITE_DELAY);
2008
2009                         writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2010                         udelay(AFE_REGISTER_WRITE_DELAY);
2011
2012                         /* Enable TX equalization (0xe824) */
2013                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2014                 }
2015
2016                 udelay(AFE_REGISTER_WRITE_DELAY);
2017
2018                 writel(oem_phy->afe_tx_amp_control0,
2019                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2020                 udelay(AFE_REGISTER_WRITE_DELAY);
2021
2022                 writel(oem_phy->afe_tx_amp_control1,
2023                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2024                 udelay(AFE_REGISTER_WRITE_DELAY);
2025
2026                 writel(oem_phy->afe_tx_amp_control2,
2027                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2028                 udelay(AFE_REGISTER_WRITE_DELAY);
2029
2030                 writel(oem_phy->afe_tx_amp_control3,
2031                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2032                 udelay(AFE_REGISTER_WRITE_DELAY);
2033         }
2034
2035         /* Transfer control to the PEs */
2036         writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2037         udelay(AFE_REGISTER_WRITE_DELAY);
2038 }
2039
2040 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2041 {
2042         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2043
2044         memset(ihost->power_control.requesters, 0,
2045                sizeof(ihost->power_control.requesters));
2046
2047         ihost->power_control.phys_waiting = 0;
2048         ihost->power_control.phys_granted_power = 0;
2049 }
2050
2051 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2052 {
2053         struct sci_base_state_machine *sm = &ihost->sm;
2054         enum sci_status result = SCI_FAILURE;
2055         unsigned long i, state, val;
2056
2057         if (ihost->sm.current_state_id != SCIC_RESET) {
2058                 dev_warn(&ihost->pdev->dev,
2059                          "SCIC Controller initialize operation requested "
2060                          "in invalid state\n");
2061                 return SCI_FAILURE_INVALID_STATE;
2062         }
2063
2064         sci_change_state(sm, SCIC_INITIALIZING);
2065
2066         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2067
2068         ihost->next_phy_to_start = 0;
2069         ihost->phy_startup_timer_pending = false;
2070
2071         sci_controller_initialize_power_control(ihost);
2072
2073         /*
2074          * There is nothing to do here for B0 since we do not have to
2075          * program the AFE registers.
2076          * / @todo The AFE settings are supposed to be correct for the B0 but
2077          * /       presently they seem to be wrong. */
2078         sci_controller_afe_initialization(ihost);
2079
2080
2081         /* Take the hardware out of reset */
2082         writel(0, &ihost->smu_registers->soft_reset_control);
2083
2084         /*
2085          * / @todo Provide meaningfull error code for hardware failure
2086          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2087         for (i = 100; i >= 1; i--) {
2088                 u32 status;
2089
2090                 /* Loop until the hardware reports success */
2091                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2092                 status = readl(&ihost->smu_registers->control_status);
2093
2094                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2095                         break;
2096         }
2097         if (i == 0)
2098                 goto out;
2099
2100         /*
2101          * Determine what are the actaul device capacities that the
2102          * hardware will support */
2103         val = readl(&ihost->smu_registers->device_context_capacity);
2104
2105         /* Record the smaller of the two capacity values */
2106         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2107         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2108         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2109
2110         /*
2111          * Make all PEs that are unassigned match up with the
2112          * logical ports
2113          */
2114         for (i = 0; i < ihost->logical_port_entries; i++) {
2115                 struct scu_port_task_scheduler_group_registers __iomem
2116                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2117
2118                 writel(i, &ptsg->protocol_engine[i]);
2119         }
2120
2121         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2122         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2123         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2124         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2125
2126         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2127         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2128         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2129
2130         /*
2131          * Initialize the PHYs before the PORTs because the PHY registers
2132          * are accessed during the port initialization.
2133          */
2134         for (i = 0; i < SCI_MAX_PHYS; i++) {
2135                 result = sci_phy_initialize(&ihost->phys[i],
2136                                             &ihost->scu_registers->peg0.pe[i].tl,
2137                                             &ihost->scu_registers->peg0.pe[i].ll);
2138                 if (result != SCI_SUCCESS)
2139                         goto out;
2140         }
2141
2142         for (i = 0; i < ihost->logical_port_entries; i++) {
2143                 struct isci_port *iport = &ihost->ports[i];
2144
2145                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2146                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2147                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2148         }
2149
2150         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2151
2152  out:
2153         /* Advance the controller state machine */
2154         if (result == SCI_SUCCESS)
2155                 state = SCIC_INITIALIZED;
2156         else
2157                 state = SCIC_FAILED;
2158         sci_change_state(sm, state);
2159
2160         return result;
2161 }
2162
2163 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2164                                                struct sci_user_parameters *sci_parms)
2165 {
2166         u32 state = ihost->sm.current_state_id;
2167
2168         if (state == SCIC_RESET ||
2169             state == SCIC_INITIALIZING ||
2170             state == SCIC_INITIALIZED) {
2171                 u16 index;
2172
2173                 /*
2174                  * Validate the user parameters.  If they are not legal, then
2175                  * return a failure.
2176                  */
2177                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2178                         struct sci_phy_user_params *user_phy;
2179
2180                         user_phy = &sci_parms->phys[index];
2181
2182                         if (!((user_phy->max_speed_generation <=
2183                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2184                               (user_phy->max_speed_generation >
2185                                                 SCIC_SDS_PARM_NO_SPEED)))
2186                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2187
2188                         if (user_phy->in_connection_align_insertion_frequency <
2189                                         3)
2190                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2191
2192                         if ((user_phy->in_connection_align_insertion_frequency <
2193                                                 3) ||
2194                             (user_phy->align_insertion_frequency == 0) ||
2195                             (user_phy->
2196                                 notify_enable_spin_up_insertion_frequency ==
2197                                                 0))
2198                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2199                 }
2200
2201                 if ((sci_parms->stp_inactivity_timeout == 0) ||
2202                     (sci_parms->ssp_inactivity_timeout == 0) ||
2203                     (sci_parms->stp_max_occupancy_timeout == 0) ||
2204                     (sci_parms->ssp_max_occupancy_timeout == 0) ||
2205                     (sci_parms->no_outbound_task_timeout == 0))
2206                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2207
2208                 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2209
2210                 return SCI_SUCCESS;
2211         }
2212
2213         return SCI_FAILURE_INVALID_STATE;
2214 }
2215
2216 static int sci_controller_mem_init(struct isci_host *ihost)
2217 {
2218         struct device *dev = &ihost->pdev->dev;
2219         dma_addr_t dma;
2220         size_t size;
2221         int err;
2222
2223         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2224         ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2225         if (!ihost->completion_queue)
2226                 return -ENOMEM;
2227
2228         writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2229         writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2230
2231         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2232         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2233                                                                GFP_KERNEL);
2234         if (!ihost->remote_node_context_table)
2235                 return -ENOMEM;
2236
2237         writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2238         writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2239
2240         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2241         ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2242         if (!ihost->task_context_table)
2243                 return -ENOMEM;
2244
2245         ihost->task_context_dma = dma;
2246         writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2247         writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2248
2249         err = sci_unsolicited_frame_control_construct(ihost);
2250         if (err)
2251                 return err;
2252
2253         /*
2254          * Inform the silicon as to the location of the UF headers and
2255          * address table.
2256          */
2257         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2258                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2259         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2260                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2261
2262         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2263                 &ihost->scu_registers->sdma.uf_address_table_lower);
2264         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2265                 &ihost->scu_registers->sdma.uf_address_table_upper);
2266
2267         return 0;
2268 }
2269
2270 int isci_host_init(struct isci_host *ihost)
2271 {
2272         int err = 0, i;
2273         enum sci_status status;
2274         struct sci_user_parameters sci_user_params;
2275         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2276
2277         spin_lock_init(&ihost->state_lock);
2278         spin_lock_init(&ihost->scic_lock);
2279         init_waitqueue_head(&ihost->eventq);
2280
2281         isci_host_change_state(ihost, isci_starting);
2282
2283         status = sci_controller_construct(ihost, scu_base(ihost),
2284                                           smu_base(ihost));
2285
2286         if (status != SCI_SUCCESS) {
2287                 dev_err(&ihost->pdev->dev,
2288                         "%s: sci_controller_construct failed - status = %x\n",
2289                         __func__,
2290                         status);
2291                 return -ENODEV;
2292         }
2293
2294         ihost->sas_ha.dev = &ihost->pdev->dev;
2295         ihost->sas_ha.lldd_ha = ihost;
2296
2297         /*
2298          * grab initial values stored in the controller object for OEM and USER
2299          * parameters
2300          */
2301         isci_user_parameters_get(&sci_user_params);
2302         status = sci_user_parameters_set(ihost, &sci_user_params);
2303         if (status != SCI_SUCCESS) {
2304                 dev_warn(&ihost->pdev->dev,
2305                          "%s: sci_user_parameters_set failed\n",
2306                          __func__);
2307                 return -ENODEV;
2308         }
2309
2310         /* grab any OEM parameters specified in orom */
2311         if (pci_info->orom) {
2312                 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2313                                                    pci_info->orom,
2314                                                    ihost->id);
2315                 if (status != SCI_SUCCESS) {
2316                         dev_warn(&ihost->pdev->dev,
2317                                  "parsing firmware oem parameters failed\n");
2318                         return -EINVAL;
2319                 }
2320         }
2321
2322         status = sci_oem_parameters_set(ihost);
2323         if (status != SCI_SUCCESS) {
2324                 dev_warn(&ihost->pdev->dev,
2325                                 "%s: sci_oem_parameters_set failed\n",
2326                                 __func__);
2327                 return -ENODEV;
2328         }
2329
2330         tasklet_init(&ihost->completion_tasklet,
2331                      isci_host_completion_routine, (unsigned long)ihost);
2332
2333         INIT_LIST_HEAD(&ihost->requests_to_complete);
2334         INIT_LIST_HEAD(&ihost->requests_to_errorback);
2335
2336         spin_lock_irq(&ihost->scic_lock);
2337         status = sci_controller_initialize(ihost);
2338         spin_unlock_irq(&ihost->scic_lock);
2339         if (status != SCI_SUCCESS) {
2340                 dev_warn(&ihost->pdev->dev,
2341                          "%s: sci_controller_initialize failed -"
2342                          " status = 0x%x\n",
2343                          __func__, status);
2344                 return -ENODEV;
2345         }
2346
2347         err = sci_controller_mem_init(ihost);
2348         if (err)
2349                 return err;
2350
2351         for (i = 0; i < SCI_MAX_PORTS; i++)
2352                 isci_port_init(&ihost->ports[i], ihost, i);
2353
2354         for (i = 0; i < SCI_MAX_PHYS; i++)
2355                 isci_phy_init(&ihost->phys[i], ihost, i);
2356
2357         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2358                 struct isci_remote_device *idev = &ihost->devices[i];
2359
2360                 INIT_LIST_HEAD(&idev->reqs_in_process);
2361                 INIT_LIST_HEAD(&idev->node);
2362         }
2363
2364         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2365                 struct isci_request *ireq;
2366                 dma_addr_t dma;
2367
2368                 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2369                                            sizeof(struct isci_request), &dma,
2370                                            GFP_KERNEL);
2371                 if (!ireq)
2372                         return -ENOMEM;
2373
2374                 ireq->tc = &ihost->task_context_table[i];
2375                 ireq->owning_controller = ihost;
2376                 spin_lock_init(&ireq->state_lock);
2377                 ireq->request_daddr = dma;
2378                 ireq->isci_host = ihost;
2379                 ihost->reqs[i] = ireq;
2380         }
2381
2382         return 0;
2383 }
2384
2385 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2386                             struct isci_phy *iphy)
2387 {
2388         switch (ihost->sm.current_state_id) {
2389         case SCIC_STARTING:
2390                 sci_del_timer(&ihost->phy_timer);
2391                 ihost->phy_startup_timer_pending = false;
2392                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2393                                                   iport, iphy);
2394                 sci_controller_start_next_phy(ihost);
2395                 break;
2396         case SCIC_READY:
2397                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2398                                                   iport, iphy);
2399                 break;
2400         default:
2401                 dev_dbg(&ihost->pdev->dev,
2402                         "%s: SCIC Controller linkup event from phy %d in "
2403                         "unexpected state %d\n", __func__, iphy->phy_index,
2404                         ihost->sm.current_state_id);
2405         }
2406 }
2407
2408 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2409                               struct isci_phy *iphy)
2410 {
2411         switch (ihost->sm.current_state_id) {
2412         case SCIC_STARTING:
2413         case SCIC_READY:
2414                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2415                                                    iport, iphy);
2416                 break;
2417         default:
2418                 dev_dbg(&ihost->pdev->dev,
2419                         "%s: SCIC Controller linkdown event from phy %d in "
2420                         "unexpected state %d\n",
2421                         __func__,
2422                         iphy->phy_index,
2423                         ihost->sm.current_state_id);
2424         }
2425 }
2426
2427 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2428 {
2429         u32 index;
2430
2431         for (index = 0; index < ihost->remote_node_entries; index++) {
2432                 if ((ihost->device_table[index] != NULL) &&
2433                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2434                         return true;
2435         }
2436
2437         return false;
2438 }
2439
2440 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2441                                           struct isci_remote_device *idev)
2442 {
2443         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2444                 dev_dbg(&ihost->pdev->dev,
2445                         "SCIC Controller 0x%p remote device stopped event "
2446                         "from device 0x%p in unexpected state %d\n",
2447                         ihost, idev,
2448                         ihost->sm.current_state_id);
2449                 return;
2450         }
2451
2452         if (!sci_controller_has_remote_devices_stopping(ihost))
2453                 sci_change_state(&ihost->sm, SCIC_STOPPED);
2454 }
2455
2456 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2457 {
2458         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2459                 __func__, ihost->id, request);
2460
2461         writel(request, &ihost->smu_registers->post_context_port);
2462 }
2463
2464 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2465 {
2466         u16 task_index;
2467         u16 task_sequence;
2468
2469         task_index = ISCI_TAG_TCI(io_tag);
2470
2471         if (task_index < ihost->task_context_entries) {
2472                 struct isci_request *ireq = ihost->reqs[task_index];
2473
2474                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2475                         task_sequence = ISCI_TAG_SEQ(io_tag);
2476
2477                         if (task_sequence == ihost->io_request_sequence[task_index])
2478                                 return ireq;
2479                 }
2480         }
2481
2482         return NULL;
2483 }
2484
2485 /**
2486  * This method allocates remote node index and the reserves the remote node
2487  *    context space for use. This method can fail if there are no more remote
2488  *    node index available.
2489  * @scic: This is the controller object which contains the set of
2490  *    free remote node ids
2491  * @sci_dev: This is the device object which is requesting the a remote node
2492  *    id
2493  * @node_id: This is the remote node id that is assinged to the device if one
2494  *    is available
2495  *
2496  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2497  * node index available.
2498  */
2499 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2500                                                             struct isci_remote_device *idev,
2501                                                             u16 *node_id)
2502 {
2503         u16 node_index;
2504         u32 remote_node_count = sci_remote_device_node_count(idev);
2505
2506         node_index = sci_remote_node_table_allocate_remote_node(
2507                 &ihost->available_remote_nodes, remote_node_count
2508                 );
2509
2510         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2511                 ihost->device_table[node_index] = idev;
2512
2513                 *node_id = node_index;
2514
2515                 return SCI_SUCCESS;
2516         }
2517
2518         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2519 }
2520
2521 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2522                                              struct isci_remote_device *idev,
2523                                              u16 node_id)
2524 {
2525         u32 remote_node_count = sci_remote_device_node_count(idev);
2526
2527         if (ihost->device_table[node_id] == idev) {
2528                 ihost->device_table[node_id] = NULL;
2529
2530                 sci_remote_node_table_release_remote_node_index(
2531                         &ihost->available_remote_nodes, remote_node_count, node_id
2532                         );
2533         }
2534 }
2535
2536 void sci_controller_copy_sata_response(void *response_buffer,
2537                                        void *frame_header,
2538                                        void *frame_buffer)
2539 {
2540         /* XXX type safety? */
2541         memcpy(response_buffer, frame_header, sizeof(u32));
2542
2543         memcpy(response_buffer + sizeof(u32),
2544                frame_buffer,
2545                sizeof(struct dev_to_host_fis) - sizeof(u32));
2546 }
2547
2548 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2549 {
2550         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2551                 writel(ihost->uf_control.get,
2552                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2553 }
2554
2555 void isci_tci_free(struct isci_host *ihost, u16 tci)
2556 {
2557         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2558
2559         ihost->tci_pool[tail] = tci;
2560         ihost->tci_tail = tail + 1;
2561 }
2562
2563 static u16 isci_tci_alloc(struct isci_host *ihost)
2564 {
2565         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2566         u16 tci = ihost->tci_pool[head];
2567
2568         ihost->tci_head = head + 1;
2569         return tci;
2570 }
2571
2572 static u16 isci_tci_space(struct isci_host *ihost)
2573 {
2574         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2575 }
2576
2577 u16 isci_alloc_tag(struct isci_host *ihost)
2578 {
2579         if (isci_tci_space(ihost)) {
2580                 u16 tci = isci_tci_alloc(ihost);
2581                 u8 seq = ihost->io_request_sequence[tci];
2582
2583                 return ISCI_TAG(seq, tci);
2584         }
2585
2586         return SCI_CONTROLLER_INVALID_IO_TAG;
2587 }
2588
2589 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2590 {
2591         u16 tci = ISCI_TAG_TCI(io_tag);
2592         u16 seq = ISCI_TAG_SEQ(io_tag);
2593
2594         /* prevent tail from passing head */
2595         if (isci_tci_active(ihost) == 0)
2596                 return SCI_FAILURE_INVALID_IO_TAG;
2597
2598         if (seq == ihost->io_request_sequence[tci]) {
2599                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2600
2601                 isci_tci_free(ihost, tci);
2602
2603                 return SCI_SUCCESS;
2604         }
2605         return SCI_FAILURE_INVALID_IO_TAG;
2606 }
2607
2608 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2609                                         struct isci_remote_device *idev,
2610                                         struct isci_request *ireq)
2611 {
2612         enum sci_status status;
2613
2614         if (ihost->sm.current_state_id != SCIC_READY) {
2615                 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2616                 return SCI_FAILURE_INVALID_STATE;
2617         }
2618
2619         status = sci_remote_device_start_io(ihost, idev, ireq);
2620         if (status != SCI_SUCCESS)
2621                 return status;
2622
2623         set_bit(IREQ_ACTIVE, &ireq->flags);
2624         sci_controller_post_request(ihost, ireq->post_context);
2625         return SCI_SUCCESS;
2626 }
2627
2628 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2629                                                  struct isci_remote_device *idev,
2630                                                  struct isci_request *ireq)
2631 {
2632         /* terminate an ongoing (i.e. started) core IO request.  This does not
2633          * abort the IO request at the target, but rather removes the IO
2634          * request from the host controller.
2635          */
2636         enum sci_status status;
2637
2638         if (ihost->sm.current_state_id != SCIC_READY) {
2639                 dev_warn(&ihost->pdev->dev,
2640                          "invalid state to terminate request\n");
2641                 return SCI_FAILURE_INVALID_STATE;
2642         }
2643
2644         status = sci_io_request_terminate(ireq);
2645         if (status != SCI_SUCCESS)
2646                 return status;
2647
2648         /*
2649          * Utilize the original post context command and or in the POST_TC_ABORT
2650          * request sub-type.
2651          */
2652         sci_controller_post_request(ihost,
2653                                     ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2654         return SCI_SUCCESS;
2655 }
2656
2657 /**
2658  * sci_controller_complete_io() - This method will perform core specific
2659  *    completion operations for an IO request.  After this method is invoked,
2660  *    the user should consider the IO request as invalid until it is properly
2661  *    reused (i.e. re-constructed).
2662  * @ihost: The handle to the controller object for which to complete the
2663  *    IO request.
2664  * @idev: The handle to the remote device object for which to complete
2665  *    the IO request.
2666  * @ireq: the handle to the io request object to complete.
2667  */
2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669                                            struct isci_remote_device *idev,
2670                                            struct isci_request *ireq)
2671 {
2672         enum sci_status status;
2673         u16 index;
2674
2675         switch (ihost->sm.current_state_id) {
2676         case SCIC_STOPPING:
2677                 /* XXX: Implement this function */
2678                 return SCI_FAILURE;
2679         case SCIC_READY:
2680                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2681                 if (status != SCI_SUCCESS)
2682                         return status;
2683
2684                 index = ISCI_TAG_TCI(ireq->io_tag);
2685                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2686                 return SCI_SUCCESS;
2687         default:
2688                 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2689                 return SCI_FAILURE_INVALID_STATE;
2690         }
2691
2692 }
2693
2694 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2695 {
2696         struct isci_host *ihost = ireq->owning_controller;
2697
2698         if (ihost->sm.current_state_id != SCIC_READY) {
2699                 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2700                 return SCI_FAILURE_INVALID_STATE;
2701         }
2702
2703         set_bit(IREQ_ACTIVE, &ireq->flags);
2704         sci_controller_post_request(ihost, ireq->post_context);
2705         return SCI_SUCCESS;
2706 }
2707
2708 /**
2709  * sci_controller_start_task() - This method is called by the SCIC user to
2710  *    send/start a framework task management request.
2711  * @controller: the handle to the controller object for which to start the task
2712  *    management request.
2713  * @remote_device: the handle to the remote device object for which to start
2714  *    the task management request.
2715  * @task_request: the handle to the task request object to start.
2716  */
2717 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2718                                                struct isci_remote_device *idev,
2719                                                struct isci_request *ireq)
2720 {
2721         enum sci_status status;
2722
2723         if (ihost->sm.current_state_id != SCIC_READY) {
2724                 dev_warn(&ihost->pdev->dev,
2725                          "%s: SCIC Controller starting task from invalid "
2726                          "state\n",
2727                          __func__);
2728                 return SCI_TASK_FAILURE_INVALID_STATE;
2729         }
2730
2731         status = sci_remote_device_start_task(ihost, idev, ireq);
2732         switch (status) {
2733         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734                 set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736                 /*
2737                  * We will let framework know this task request started successfully,
2738                  * although core is still woring on starting the request (to post tc when
2739                  * RNC is resumed.)
2740                  */
2741                 return SCI_SUCCESS;
2742         case SCI_SUCCESS:
2743                 set_bit(IREQ_ACTIVE, &ireq->flags);
2744                 sci_controller_post_request(ihost, ireq->post_context);
2745                 break;
2746         default:
2747                 break;
2748         }
2749
2750         return status;
2751 }