Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296         /* Exclude 640x boards.  These are two pci devices in one slot
297          * which share a battery backed cache module.  One controls the
298          * cache, the other accesses the cache through the one that controls
299          * it.  If we reset the one controlling the cache, the other will
300          * likely not be happy.  Just forbid resetting this conjoined mess.
301          * The 640x isn't really supported by hpsa anyway.
302          */
303         0x409C0E11, /* Smart Array 6400 */
304         0x409D0E11, /* Smart Array 6400 EM */
305 };
306
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312                 if (unresettable_controller[i] == board_id)
313                         return 0;
314         return 1;
315 }
316
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322                 if (soft_unresettable_controller[i] == board_id)
323                         return 0;
324         return 1;
325 }
326
327 static int ctlr_is_resettable(u32 board_id)
328 {
329         return ctlr_is_hard_resettable(board_id) ||
330                 ctlr_is_soft_resettable(board_id);
331 }
332
333 static ssize_t host_show_resettable(struct device *dev,
334         struct device_attribute *attr, char *buf)
335 {
336         struct ctlr_info *h;
337         struct Scsi_Host *shost = class_to_shost(dev);
338
339         h = shost_to_hba(shost);
340         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345         return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349         "UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352
353 static ssize_t raid_level_show(struct device *dev,
354              struct device_attribute *attr, char *buf)
355 {
356         ssize_t l = 0;
357         unsigned char rlevel;
358         struct ctlr_info *h;
359         struct scsi_device *sdev;
360         struct hpsa_scsi_dev_t *hdev;
361         unsigned long flags;
362
363         sdev = to_scsi_device(dev);
364         h = sdev_to_hba(sdev);
365         spin_lock_irqsave(&h->lock, flags);
366         hdev = sdev->hostdata;
367         if (!hdev) {
368                 spin_unlock_irqrestore(&h->lock, flags);
369                 return -ENODEV;
370         }
371
372         /* Is this even a logical drive? */
373         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376                 return l;
377         }
378
379         rlevel = hdev->raid_level;
380         spin_unlock_irqrestore(&h->lock, flags);
381         if (rlevel > RAID_UNKNOWN)
382                 rlevel = RAID_UNKNOWN;
383         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384         return l;
385 }
386
387 static ssize_t lunid_show(struct device *dev,
388              struct device_attribute *attr, char *buf)
389 {
390         struct ctlr_info *h;
391         struct scsi_device *sdev;
392         struct hpsa_scsi_dev_t *hdev;
393         unsigned long flags;
394         unsigned char lunid[8];
395
396         sdev = to_scsi_device(dev);
397         h = sdev_to_hba(sdev);
398         spin_lock_irqsave(&h->lock, flags);
399         hdev = sdev->hostdata;
400         if (!hdev) {
401                 spin_unlock_irqrestore(&h->lock, flags);
402                 return -ENODEV;
403         }
404         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405         spin_unlock_irqrestore(&h->lock, flags);
406         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407                 lunid[0], lunid[1], lunid[2], lunid[3],
408                 lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410
411 static ssize_t unique_id_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char sn[16];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(sn, hdev->device_id, sizeof(sn));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 16 * 2 + 2,
431                         "%02X%02X%02X%02X%02X%02X%02X%02X"
432                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433                         sn[0], sn[1], sn[2], sn[3],
434                         sn[4], sn[5], sn[6], sn[7],
435                         sn[8], sn[9], sn[10], sn[11],
436                         sn[12], sn[13], sn[14], sn[15]);
437 }
438
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444         host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446         host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448         host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450         host_show_resettable, NULL);
451
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453         &dev_attr_raid_level,
454         &dev_attr_lunid,
455         &dev_attr_unique_id,
456         NULL,
457 };
458
459 static struct device_attribute *hpsa_shost_attrs[] = {
460         &dev_attr_rescan,
461         &dev_attr_firmware_revision,
462         &dev_attr_commands_outstanding,
463         &dev_attr_transport_mode,
464         &dev_attr_resettable,
465         NULL,
466 };
467
468 static struct scsi_host_template hpsa_driver_template = {
469         .module                 = THIS_MODULE,
470         .name                   = "hpsa",
471         .proc_name              = "hpsa",
472         .queuecommand           = hpsa_scsi_queue_command,
473         .scan_start             = hpsa_scan_start,
474         .scan_finished          = hpsa_scan_finished,
475         .change_queue_depth     = hpsa_change_queue_depth,
476         .this_id                = -1,
477         .use_clustering         = ENABLE_CLUSTERING,
478         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479         .ioctl                  = hpsa_ioctl,
480         .slave_alloc            = hpsa_slave_alloc,
481         .slave_destroy          = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483         .compat_ioctl           = hpsa_compat_ioctl,
484 #endif
485         .sdev_attrs = hpsa_sdev_attrs,
486         .shost_attrs = hpsa_shost_attrs,
487 };
488
489
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493         list_add_tail(&c->list, list);
494 }
495
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498         u32 a;
499
500         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501                 return h->access.command_completed(h);
502
503         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505                 (h->reply_pool_head)++;
506                 h->commands_outstanding--;
507         } else {
508                 a = FIFO_EMPTY;
509         }
510         /* Check for wraparound */
511         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512                 h->reply_pool_head = h->reply_pool;
513                 h->reply_pool_wraparound ^= 1;
514         }
515         return a;
516 }
517
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524         if (likely(h->transMethod & CFGTBL_Trans_Performant))
525                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529         struct CommandList *c)
530 {
531         unsigned long flags;
532
533         set_performant_mode(h, c);
534         spin_lock_irqsave(&h->lock, flags);
535         addQ(&h->reqQ, c);
536         h->Qdepth++;
537         start_io(h);
538         spin_unlock_irqrestore(&h->lock, flags);
539 }
540
541 static inline void removeQ(struct CommandList *c)
542 {
543         if (WARN_ON(list_empty(&c->list)))
544                 return;
545         list_del_init(&c->list);
546 }
547
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555         if (!h->hba_inquiry_data)
556                 return 0;
557         if ((h->hba_inquiry_data[2] & 0x07) == 5)
558                 return 1;
559         return 0;
560 }
561
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563         unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565         /* finds an unused bus, target, lun for a new physical device
566          * assumes h->devlock is held
567          */
568         int i, found = 0;
569         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570
571         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572
573         for (i = 0; i < h->ndevices; i++) {
574                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575                         set_bit(h->dev[i]->target, lun_taken);
576         }
577
578         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579                 if (!test_bit(i, lun_taken)) {
580                         /* *bus = 1; */
581                         *target = i;
582                         *lun = 0;
583                         found = 1;
584                         break;
585                 }
586         }
587         return !found;
588 }
589
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592                 struct hpsa_scsi_dev_t *device,
593                 struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595         /* assumes h->devlock is held */
596         int n = h->ndevices;
597         int i;
598         unsigned char addr1[8], addr2[8];
599         struct hpsa_scsi_dev_t *sd;
600
601         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602                 dev_err(&h->pdev->dev, "too many devices, some will be "
603                         "inaccessible.\n");
604                 return -1;
605         }
606
607         /* physical devices do not have lun or target assigned until now. */
608         if (device->lun != -1)
609                 /* Logical device, lun is already assigned. */
610                 goto lun_assigned;
611
612         /* If this device a non-zero lun of a multi-lun device
613          * byte 4 of the 8-byte LUN addr will contain the logical
614          * unit no, zero otherise.
615          */
616         if (device->scsi3addr[4] == 0) {
617                 /* This is not a non-zero lun of a multi-lun device */
618                 if (hpsa_find_target_lun(h, device->scsi3addr,
619                         device->bus, &device->target, &device->lun) != 0)
620                         return -1;
621                 goto lun_assigned;
622         }
623
624         /* This is a non-zero lun of a multi-lun device.
625          * Search through our list and find the device which
626          * has the same 8 byte LUN address, excepting byte 4.
627          * Assign the same bus and target for this new LUN.
628          * Use the logical unit number from the firmware.
629          */
630         memcpy(addr1, device->scsi3addr, 8);
631         addr1[4] = 0;
632         for (i = 0; i < n; i++) {
633                 sd = h->dev[i];
634                 memcpy(addr2, sd->scsi3addr, 8);
635                 addr2[4] = 0;
636                 /* differ only in byte 4? */
637                 if (memcmp(addr1, addr2, 8) == 0) {
638                         device->bus = sd->bus;
639                         device->target = sd->target;
640                         device->lun = device->scsi3addr[4];
641                         break;
642                 }
643         }
644         if (device->lun == -1) {
645                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646                         " suspect firmware bug or unsupported hardware "
647                         "configuration.\n");
648                         return -1;
649         }
650
651 lun_assigned:
652
653         h->dev[n] = device;
654         h->ndevices++;
655         added[*nadded] = device;
656         (*nadded)++;
657
658         /* initially, (before registering with scsi layer) we don't
659          * know our hostno and we don't want to print anything first
660          * time anyway (the scsi layer's inquiries will show that info)
661          */
662         /* if (hostno != -1) */
663                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664                         scsi_device_type(device->devtype), hostno,
665                         device->bus, device->target, device->lun);
666         return 0;
667 }
668
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671         int entry, struct hpsa_scsi_dev_t *new_entry,
672         struct hpsa_scsi_dev_t *added[], int *nadded,
673         struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675         /* assumes h->devlock is held */
676         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677         removed[*nremoved] = h->dev[entry];
678         (*nremoved)++;
679         h->dev[entry] = new_entry;
680         added[*nadded] = new_entry;
681         (*nadded)++;
682         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684                         new_entry->target, new_entry->lun);
685 }
686
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689         struct hpsa_scsi_dev_t *removed[], int *nremoved)
690 {
691         /* assumes h->devlock is held */
692         int i;
693         struct hpsa_scsi_dev_t *sd;
694
695         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
696
697         sd = h->dev[entry];
698         removed[*nremoved] = h->dev[entry];
699         (*nremoved)++;
700
701         for (i = entry; i < h->ndevices-1; i++)
702                 h->dev[i] = h->dev[i+1];
703         h->ndevices--;
704         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706                 sd->lun);
707 }
708
709 #define SCSI3ADDR_EQ(a, b) ( \
710         (a)[7] == (b)[7] && \
711         (a)[6] == (b)[6] && \
712         (a)[5] == (b)[5] && \
713         (a)[4] == (b)[4] && \
714         (a)[3] == (b)[3] && \
715         (a)[2] == (b)[2] && \
716         (a)[1] == (b)[1] && \
717         (a)[0] == (b)[0])
718
719 static void fixup_botched_add(struct ctlr_info *h,
720         struct hpsa_scsi_dev_t *added)
721 {
722         /* called when scsi_add_device fails in order to re-adjust
723          * h->dev[] to match the mid layer's view.
724          */
725         unsigned long flags;
726         int i, j;
727
728         spin_lock_irqsave(&h->lock, flags);
729         for (i = 0; i < h->ndevices; i++) {
730                 if (h->dev[i] == added) {
731                         for (j = i; j < h->ndevices-1; j++)
732                                 h->dev[j] = h->dev[j+1];
733                         h->ndevices--;
734                         break;
735                 }
736         }
737         spin_unlock_irqrestore(&h->lock, flags);
738         kfree(added);
739 }
740
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742         struct hpsa_scsi_dev_t *dev2)
743 {
744         /* we compare everything except lun and target as these
745          * are not yet assigned.  Compare parts likely
746          * to differ first
747          */
748         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749                 sizeof(dev1->scsi3addr)) != 0)
750                 return 0;
751         if (memcmp(dev1->device_id, dev2->device_id,
752                 sizeof(dev1->device_id)) != 0)
753                 return 0;
754         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755                 return 0;
756         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757                 return 0;
758         if (dev1->devtype != dev2->devtype)
759                 return 0;
760         if (dev1->bus != dev2->bus)
761                 return 0;
762         return 1;
763 }
764
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772         int *index)
773 {
774         int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778         for (i = 0; i < haystack_size; i++) {
779                 if (haystack[i] == NULL) /* previously removed. */
780                         continue;
781                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782                         *index = i;
783                         if (device_is_the_same(needle, haystack[i]))
784                                 return DEVICE_SAME;
785                         else
786                                 return DEVICE_CHANGED;
787                 }
788         }
789         *index = -1;
790         return DEVICE_NOT_FOUND;
791 }
792
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794         struct hpsa_scsi_dev_t *sd[], int nsds)
795 {
796         /* sd contains scsi3 addresses and devtypes, and inquiry
797          * data.  This function takes what's in sd to be the current
798          * reality and updates h->dev[] to reflect that reality.
799          */
800         int i, entry, device_change, changes = 0;
801         struct hpsa_scsi_dev_t *csd;
802         unsigned long flags;
803         struct hpsa_scsi_dev_t **added, **removed;
804         int nadded, nremoved;
805         struct Scsi_Host *sh = NULL;
806
807         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808                 GFP_KERNEL);
809         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810                 GFP_KERNEL);
811
812         if (!added || !removed) {
813                 dev_warn(&h->pdev->dev, "out of memory in "
814                         "adjust_hpsa_scsi_table\n");
815                 goto free_and_out;
816         }
817
818         spin_lock_irqsave(&h->devlock, flags);
819
820         /* find any devices in h->dev[] that are not in
821          * sd[] and remove them from h->dev[], and for any
822          * devices which have changed, remove the old device
823          * info and add the new device info.
824          */
825         i = 0;
826         nremoved = 0;
827         nadded = 0;
828         while (i < h->ndevices) {
829                 csd = h->dev[i];
830                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831                 if (device_change == DEVICE_NOT_FOUND) {
832                         changes++;
833                         hpsa_scsi_remove_entry(h, hostno, i,
834                                 removed, &nremoved);
835                         continue; /* remove ^^^, hence i not incremented */
836                 } else if (device_change == DEVICE_CHANGED) {
837                         changes++;
838                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839                                 added, &nadded, removed, &nremoved);
840                         /* Set it to NULL to prevent it from being freed
841                          * at the bottom of hpsa_update_scsi_devices()
842                          */
843                         sd[entry] = NULL;
844                 }
845                 i++;
846         }
847
848         /* Now, make sure every device listed in sd[] is also
849          * listed in h->dev[], adding them if they aren't found
850          */
851
852         for (i = 0; i < nsds; i++) {
853                 if (!sd[i]) /* if already added above. */
854                         continue;
855                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856                                         h->ndevices, &entry);
857                 if (device_change == DEVICE_NOT_FOUND) {
858                         changes++;
859                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
860                                 added, &nadded) != 0)
861                                 break;
862                         sd[i] = NULL; /* prevent from being freed later. */
863                 } else if (device_change == DEVICE_CHANGED) {
864                         /* should never happen... */
865                         changes++;
866                         dev_warn(&h->pdev->dev,
867                                 "device unexpectedly changed.\n");
868                         /* but if it does happen, we just ignore that device */
869                 }
870         }
871         spin_unlock_irqrestore(&h->devlock, flags);
872
873         /* Don't notify scsi mid layer of any changes the first time through
874          * (or if there are no changes) scsi_scan_host will do it later the
875          * first time through.
876          */
877         if (hostno == -1 || !changes)
878                 goto free_and_out;
879
880         sh = h->scsi_host;
881         /* Notify scsi mid layer of any removed devices */
882         for (i = 0; i < nremoved; i++) {
883                 struct scsi_device *sdev =
884                         scsi_device_lookup(sh, removed[i]->bus,
885                                 removed[i]->target, removed[i]->lun);
886                 if (sdev != NULL) {
887                         scsi_remove_device(sdev);
888                         scsi_device_put(sdev);
889                 } else {
890                         /* We don't expect to get here.
891                          * future cmds to this device will get selection
892                          * timeout as if the device was gone.
893                          */
894                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895                                 " for removal.", hostno, removed[i]->bus,
896                                 removed[i]->target, removed[i]->lun);
897                 }
898                 kfree(removed[i]);
899                 removed[i] = NULL;
900         }
901
902         /* Notify scsi mid layer of any added devices */
903         for (i = 0; i < nadded; i++) {
904                 if (scsi_add_device(sh, added[i]->bus,
905                         added[i]->target, added[i]->lun) == 0)
906                         continue;
907                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908                         "device not added.\n", hostno, added[i]->bus,
909                         added[i]->target, added[i]->lun);
910                 /* now we have to remove it from h->dev,
911                  * since it didn't get added to scsi mid layer
912                  */
913                 fixup_botched_add(h, added[i]);
914         }
915
916 free_and_out:
917         kfree(added);
918         kfree(removed);
919 }
920
921 /*
922  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923  * Assume's h->devlock is held.
924  */
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926         int bus, int target, int lun)
927 {
928         int i;
929         struct hpsa_scsi_dev_t *sd;
930
931         for (i = 0; i < h->ndevices; i++) {
932                 sd = h->dev[i];
933                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
934                         return sd;
935         }
936         return NULL;
937 }
938
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
941 {
942         struct hpsa_scsi_dev_t *sd;
943         unsigned long flags;
944         struct ctlr_info *h;
945
946         h = sdev_to_hba(sdev);
947         spin_lock_irqsave(&h->devlock, flags);
948         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949                 sdev_id(sdev), sdev->lun);
950         if (sd != NULL)
951                 sdev->hostdata = sd;
952         spin_unlock_irqrestore(&h->devlock, flags);
953         return 0;
954 }
955
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
957 {
958         /* nothing to do. */
959 }
960
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
962 {
963         int i;
964
965         if (!h->cmd_sg_list)
966                 return;
967         for (i = 0; i < h->nr_cmds; i++) {
968                 kfree(h->cmd_sg_list[i]);
969                 h->cmd_sg_list[i] = NULL;
970         }
971         kfree(h->cmd_sg_list);
972         h->cmd_sg_list = NULL;
973 }
974
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
976 {
977         int i;
978
979         if (h->chainsize <= 0)
980                 return 0;
981
982         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983                                 GFP_KERNEL);
984         if (!h->cmd_sg_list)
985                 return -ENOMEM;
986         for (i = 0; i < h->nr_cmds; i++) {
987                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988                                                 h->chainsize, GFP_KERNEL);
989                 if (!h->cmd_sg_list[i])
990                         goto clean;
991         }
992         return 0;
993
994 clean:
995         hpsa_free_sg_chain_blocks(h);
996         return -ENOMEM;
997 }
998
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000         struct CommandList *c)
1001 {
1002         struct SGDescriptor *chain_sg, *chain_block;
1003         u64 temp64;
1004
1005         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006         chain_block = h->cmd_sg_list[c->cmdindex];
1007         chain_sg->Ext = HPSA_SG_CHAIN;
1008         chain_sg->Len = sizeof(*chain_sg) *
1009                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1010         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011                                 PCI_DMA_TODEVICE);
1012         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1014 }
1015
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017         struct CommandList *c)
1018 {
1019         struct SGDescriptor *chain_sg;
1020         union u64bit temp64;
1021
1022         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023                 return;
1024
1025         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026         temp64.val32.lower = chain_sg->Addr.lower;
1027         temp64.val32.upper = chain_sg->Addr.upper;
1028         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1029 }
1030
1031 static void complete_scsi_command(struct CommandList *cp)
1032 {
1033         struct scsi_cmnd *cmd;
1034         struct ctlr_info *h;
1035         struct ErrorInfo *ei;
1036
1037         unsigned char sense_key;
1038         unsigned char asc;      /* additional sense code */
1039         unsigned char ascq;     /* additional sense code qualifier */
1040
1041         ei = cp->err_info;
1042         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1043         h = cp->h;
1044
1045         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1046         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1047                 hpsa_unmap_sg_chain_block(h, cp);
1048
1049         cmd->result = (DID_OK << 16);           /* host byte */
1050         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1051         cmd->result |= ei->ScsiStatus;
1052
1053         /* copy the sense data whether we need to or not. */
1054         memcpy(cmd->sense_buffer, ei->SenseInfo,
1055                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1056                         SCSI_SENSE_BUFFERSIZE :
1057                         ei->SenseLen);
1058         scsi_set_resid(cmd, ei->ResidualCnt);
1059
1060         if (ei->CommandStatus == 0) {
1061                 cmd->scsi_done(cmd);
1062                 cmd_free(h, cp);
1063                 return;
1064         }
1065
1066         /* an error has occurred */
1067         switch (ei->CommandStatus) {
1068
1069         case CMD_TARGET_STATUS:
1070                 if (ei->ScsiStatus) {
1071                         /* Get sense key */
1072                         sense_key = 0xf & ei->SenseInfo[2];
1073                         /* Get additional sense code */
1074                         asc = ei->SenseInfo[12];
1075                         /* Get addition sense code qualifier */
1076                         ascq = ei->SenseInfo[13];
1077                 }
1078
1079                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1080                         if (check_for_unit_attention(h, cp)) {
1081                                 cmd->result = DID_SOFT_ERROR << 16;
1082                                 break;
1083                         }
1084                         if (sense_key == ILLEGAL_REQUEST) {
1085                                 /*
1086                                  * SCSI REPORT_LUNS is commonly unsupported on
1087                                  * Smart Array.  Suppress noisy complaint.
1088                                  */
1089                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1090                                         break;
1091
1092                                 /* If ASC/ASCQ indicate Logical Unit
1093                                  * Not Supported condition,
1094                                  */
1095                                 if ((asc == 0x25) && (ascq == 0x0)) {
1096                                         dev_warn(&h->pdev->dev, "cp %p "
1097                                                 "has check condition\n", cp);
1098                                         break;
1099                                 }
1100                         }
1101
1102                         if (sense_key == NOT_READY) {
1103                                 /* If Sense is Not Ready, Logical Unit
1104                                  * Not ready, Manual Intervention
1105                                  * required
1106                                  */
1107                                 if ((asc == 0x04) && (ascq == 0x03)) {
1108                                         dev_warn(&h->pdev->dev, "cp %p "
1109                                                 "has check condition: unit "
1110                                                 "not ready, manual "
1111                                                 "intervention required\n", cp);
1112                                         break;
1113                                 }
1114                         }
1115                         if (sense_key == ABORTED_COMMAND) {
1116                                 /* Aborted command is retryable */
1117                                 dev_warn(&h->pdev->dev, "cp %p "
1118                                         "has check condition: aborted command: "
1119                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1120                                         cp, asc, ascq);
1121                                 cmd->result = DID_SOFT_ERROR << 16;
1122                                 break;
1123                         }
1124                         /* Must be some other type of check condition */
1125                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1126                                         "unknown type: "
1127                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1128                                         "Returning result: 0x%x, "
1129                                         "cmd=[%02x %02x %02x %02x %02x "
1130                                         "%02x %02x %02x %02x %02x %02x "
1131                                         "%02x %02x %02x %02x %02x]\n",
1132                                         cp, sense_key, asc, ascq,
1133                                         cmd->result,
1134                                         cmd->cmnd[0], cmd->cmnd[1],
1135                                         cmd->cmnd[2], cmd->cmnd[3],
1136                                         cmd->cmnd[4], cmd->cmnd[5],
1137                                         cmd->cmnd[6], cmd->cmnd[7],
1138                                         cmd->cmnd[8], cmd->cmnd[9],
1139                                         cmd->cmnd[10], cmd->cmnd[11],
1140                                         cmd->cmnd[12], cmd->cmnd[13],
1141                                         cmd->cmnd[14], cmd->cmnd[15]);
1142                         break;
1143                 }
1144
1145
1146                 /* Problem was not a check condition
1147                  * Pass it up to the upper layers...
1148                  */
1149                 if (ei->ScsiStatus) {
1150                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1151                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1152                                 "Returning result: 0x%x\n",
1153                                 cp, ei->ScsiStatus,
1154                                 sense_key, asc, ascq,
1155                                 cmd->result);
1156                 } else {  /* scsi status is zero??? How??? */
1157                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1158                                 "Returning no connection.\n", cp),
1159
1160                         /* Ordinarily, this case should never happen,
1161                          * but there is a bug in some released firmware
1162                          * revisions that allows it to happen if, for
1163                          * example, a 4100 backplane loses power and
1164                          * the tape drive is in it.  We assume that
1165                          * it's a fatal error of some kind because we
1166                          * can't show that it wasn't. We will make it
1167                          * look like selection timeout since that is
1168                          * the most common reason for this to occur,
1169                          * and it's severe enough.
1170                          */
1171
1172                         cmd->result = DID_NO_CONNECT << 16;
1173                 }
1174                 break;
1175
1176         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1177                 break;
1178         case CMD_DATA_OVERRUN:
1179                 dev_warn(&h->pdev->dev, "cp %p has"
1180                         " completed with data overrun "
1181                         "reported\n", cp);
1182                 break;
1183         case CMD_INVALID: {
1184                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1185                 print_cmd(cp); */
1186                 /* We get CMD_INVALID if you address a non-existent device
1187                  * instead of a selection timeout (no response).  You will
1188                  * see this if you yank out a drive, then try to access it.
1189                  * This is kind of a shame because it means that any other
1190                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1191                  * missing target. */
1192                 cmd->result = DID_NO_CONNECT << 16;
1193         }
1194                 break;
1195         case CMD_PROTOCOL_ERR:
1196                 dev_warn(&h->pdev->dev, "cp %p has "
1197                         "protocol error \n", cp);
1198                 break;
1199         case CMD_HARDWARE_ERR:
1200                 cmd->result = DID_ERROR << 16;
1201                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1202                 break;
1203         case CMD_CONNECTION_LOST:
1204                 cmd->result = DID_ERROR << 16;
1205                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1206                 break;
1207         case CMD_ABORTED:
1208                 cmd->result = DID_ABORT << 16;
1209                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1210                                 cp, ei->ScsiStatus);
1211                 break;
1212         case CMD_ABORT_FAILED:
1213                 cmd->result = DID_ERROR << 16;
1214                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1215                 break;
1216         case CMD_UNSOLICITED_ABORT:
1217                 cmd->result = DID_RESET << 16;
1218                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1219                         "abort\n", cp);
1220                 break;
1221         case CMD_TIMEOUT:
1222                 cmd->result = DID_TIME_OUT << 16;
1223                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1224                 break;
1225         case CMD_UNABORTABLE:
1226                 cmd->result = DID_ERROR << 16;
1227                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1228                 break;
1229         default:
1230                 cmd->result = DID_ERROR << 16;
1231                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1232                                 cp, ei->CommandStatus);
1233         }
1234         cmd->scsi_done(cmd);
1235         cmd_free(h, cp);
1236 }
1237
1238 static int hpsa_scsi_detect(struct ctlr_info *h)
1239 {
1240         struct Scsi_Host *sh;
1241         int error;
1242
1243         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1244         if (sh == NULL)
1245                 goto fail;
1246
1247         sh->io_port = 0;
1248         sh->n_io_port = 0;
1249         sh->this_id = -1;
1250         sh->max_channel = 3;
1251         sh->max_cmd_len = MAX_COMMAND_SIZE;
1252         sh->max_lun = HPSA_MAX_LUN;
1253         sh->max_id = HPSA_MAX_LUN;
1254         sh->can_queue = h->nr_cmds;
1255         sh->cmd_per_lun = h->nr_cmds;
1256         sh->sg_tablesize = h->maxsgentries;
1257         h->scsi_host = sh;
1258         sh->hostdata[0] = (unsigned long) h;
1259         sh->irq = h->intr[h->intr_mode];
1260         sh->unique_id = sh->irq;
1261         error = scsi_add_host(sh, &h->pdev->dev);
1262         if (error)
1263                 goto fail_host_put;
1264         scsi_scan_host(sh);
1265         return 0;
1266
1267  fail_host_put:
1268         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1269                 " failed for controller %d\n", h->ctlr);
1270         scsi_host_put(sh);
1271         return error;
1272  fail:
1273         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1274                 " failed for controller %d\n", h->ctlr);
1275         return -ENOMEM;
1276 }
1277
1278 static void hpsa_pci_unmap(struct pci_dev *pdev,
1279         struct CommandList *c, int sg_used, int data_direction)
1280 {
1281         int i;
1282         union u64bit addr64;
1283
1284         for (i = 0; i < sg_used; i++) {
1285                 addr64.val32.lower = c->SG[i].Addr.lower;
1286                 addr64.val32.upper = c->SG[i].Addr.upper;
1287                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1288                         data_direction);
1289         }
1290 }
1291
1292 static void hpsa_map_one(struct pci_dev *pdev,
1293                 struct CommandList *cp,
1294                 unsigned char *buf,
1295                 size_t buflen,
1296                 int data_direction)
1297 {
1298         u64 addr64;
1299
1300         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1301                 cp->Header.SGList = 0;
1302                 cp->Header.SGTotal = 0;
1303                 return;
1304         }
1305
1306         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1307         cp->SG[0].Addr.lower =
1308           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1309         cp->SG[0].Addr.upper =
1310           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1311         cp->SG[0].Len = buflen;
1312         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1313         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1314 }
1315
1316 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1317         struct CommandList *c)
1318 {
1319         DECLARE_COMPLETION_ONSTACK(wait);
1320
1321         c->waiting = &wait;
1322         enqueue_cmd_and_start_io(h, c);
1323         wait_for_completion(&wait);
1324 }
1325
1326 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1327         struct CommandList *c, int data_direction)
1328 {
1329         int retry_count = 0;
1330
1331         do {
1332                 memset(c->err_info, 0, sizeof(*c->err_info));
1333                 hpsa_scsi_do_simple_cmd_core(h, c);
1334                 retry_count++;
1335         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1336         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1337 }
1338
1339 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1340 {
1341         struct ErrorInfo *ei;
1342         struct device *d = &cp->h->pdev->dev;
1343
1344         ei = cp->err_info;
1345         switch (ei->CommandStatus) {
1346         case CMD_TARGET_STATUS:
1347                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1348                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1349                                 ei->ScsiStatus);
1350                 if (ei->ScsiStatus == 0)
1351                         dev_warn(d, "SCSI status is abnormally zero.  "
1352                         "(probably indicates selection timeout "
1353                         "reported incorrectly due to a known "
1354                         "firmware bug, circa July, 2001.)\n");
1355                 break;
1356         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1357                         dev_info(d, "UNDERRUN\n");
1358                 break;
1359         case CMD_DATA_OVERRUN:
1360                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1361                 break;
1362         case CMD_INVALID: {
1363                 /* controller unfortunately reports SCSI passthru's
1364                  * to non-existent targets as invalid commands.
1365                  */
1366                 dev_warn(d, "cp %p is reported invalid (probably means "
1367                         "target device no longer present)\n", cp);
1368                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1369                 print_cmd(cp);  */
1370                 }
1371                 break;
1372         case CMD_PROTOCOL_ERR:
1373                 dev_warn(d, "cp %p has protocol error \n", cp);
1374                 break;
1375         case CMD_HARDWARE_ERR:
1376                 /* cmd->result = DID_ERROR << 16; */
1377                 dev_warn(d, "cp %p had hardware error\n", cp);
1378                 break;
1379         case CMD_CONNECTION_LOST:
1380                 dev_warn(d, "cp %p had connection lost\n", cp);
1381                 break;
1382         case CMD_ABORTED:
1383                 dev_warn(d, "cp %p was aborted\n", cp);
1384                 break;
1385         case CMD_ABORT_FAILED:
1386                 dev_warn(d, "cp %p reports abort failed\n", cp);
1387                 break;
1388         case CMD_UNSOLICITED_ABORT:
1389                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1390                 break;
1391         case CMD_TIMEOUT:
1392                 dev_warn(d, "cp %p timed out\n", cp);
1393                 break;
1394         case CMD_UNABORTABLE:
1395                 dev_warn(d, "Command unabortable\n");
1396                 break;
1397         default:
1398                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1399                                 ei->CommandStatus);
1400         }
1401 }
1402
1403 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1404                         unsigned char page, unsigned char *buf,
1405                         unsigned char bufsize)
1406 {
1407         int rc = IO_OK;
1408         struct CommandList *c;
1409         struct ErrorInfo *ei;
1410
1411         c = cmd_special_alloc(h);
1412
1413         if (c == NULL) {                        /* trouble... */
1414                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1415                 return -ENOMEM;
1416         }
1417
1418         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1419         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1420         ei = c->err_info;
1421         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1422                 hpsa_scsi_interpret_error(c);
1423                 rc = -1;
1424         }
1425         cmd_special_free(h, c);
1426         return rc;
1427 }
1428
1429 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1430 {
1431         int rc = IO_OK;
1432         struct CommandList *c;
1433         struct ErrorInfo *ei;
1434
1435         c = cmd_special_alloc(h);
1436
1437         if (c == NULL) {                        /* trouble... */
1438                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1439                 return -ENOMEM;
1440         }
1441
1442         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1443         hpsa_scsi_do_simple_cmd_core(h, c);
1444         /* no unmap needed here because no data xfer. */
1445
1446         ei = c->err_info;
1447         if (ei->CommandStatus != 0) {
1448                 hpsa_scsi_interpret_error(c);
1449                 rc = -1;
1450         }
1451         cmd_special_free(h, c);
1452         return rc;
1453 }
1454
1455 static void hpsa_get_raid_level(struct ctlr_info *h,
1456         unsigned char *scsi3addr, unsigned char *raid_level)
1457 {
1458         int rc;
1459         unsigned char *buf;
1460
1461         *raid_level = RAID_UNKNOWN;
1462         buf = kzalloc(64, GFP_KERNEL);
1463         if (!buf)
1464                 return;
1465         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1466         if (rc == 0)
1467                 *raid_level = buf[8];
1468         if (*raid_level > RAID_UNKNOWN)
1469                 *raid_level = RAID_UNKNOWN;
1470         kfree(buf);
1471         return;
1472 }
1473
1474 /* Get the device id from inquiry page 0x83 */
1475 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1476         unsigned char *device_id, int buflen)
1477 {
1478         int rc;
1479         unsigned char *buf;
1480
1481         if (buflen > 16)
1482                 buflen = 16;
1483         buf = kzalloc(64, GFP_KERNEL);
1484         if (!buf)
1485                 return -1;
1486         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1487         if (rc == 0)
1488                 memcpy(device_id, &buf[8], buflen);
1489         kfree(buf);
1490         return rc != 0;
1491 }
1492
1493 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1494                 struct ReportLUNdata *buf, int bufsize,
1495                 int extended_response)
1496 {
1497         int rc = IO_OK;
1498         struct CommandList *c;
1499         unsigned char scsi3addr[8];
1500         struct ErrorInfo *ei;
1501
1502         c = cmd_special_alloc(h);
1503         if (c == NULL) {                        /* trouble... */
1504                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1505                 return -1;
1506         }
1507         /* address the controller */
1508         memset(scsi3addr, 0, sizeof(scsi3addr));
1509         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1510                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1511         if (extended_response)
1512                 c->Request.CDB[1] = extended_response;
1513         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1514         ei = c->err_info;
1515         if (ei->CommandStatus != 0 &&
1516             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1517                 hpsa_scsi_interpret_error(c);
1518                 rc = -1;
1519         }
1520         cmd_special_free(h, c);
1521         return rc;
1522 }
1523
1524 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1525                 struct ReportLUNdata *buf,
1526                 int bufsize, int extended_response)
1527 {
1528         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1529 }
1530
1531 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1532                 struct ReportLUNdata *buf, int bufsize)
1533 {
1534         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1535 }
1536
1537 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1538         int bus, int target, int lun)
1539 {
1540         device->bus = bus;
1541         device->target = target;
1542         device->lun = lun;
1543 }
1544
1545 static int hpsa_update_device_info(struct ctlr_info *h,
1546         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1547 {
1548 #define OBDR_TAPE_INQ_SIZE 49
1549         unsigned char *inq_buff;
1550
1551         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1552         if (!inq_buff)
1553                 goto bail_out;
1554
1555         /* Do an inquiry to the device to see what it is. */
1556         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1557                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1558                 /* Inquiry failed (msg printed already) */
1559                 dev_err(&h->pdev->dev,
1560                         "hpsa_update_device_info: inquiry failed\n");
1561                 goto bail_out;
1562         }
1563
1564         this_device->devtype = (inq_buff[0] & 0x1f);
1565         memcpy(this_device->scsi3addr, scsi3addr, 8);
1566         memcpy(this_device->vendor, &inq_buff[8],
1567                 sizeof(this_device->vendor));
1568         memcpy(this_device->model, &inq_buff[16],
1569                 sizeof(this_device->model));
1570         memset(this_device->device_id, 0,
1571                 sizeof(this_device->device_id));
1572         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1573                 sizeof(this_device->device_id));
1574
1575         if (this_device->devtype == TYPE_DISK &&
1576                 is_logical_dev_addr_mode(scsi3addr))
1577                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1578         else
1579                 this_device->raid_level = RAID_UNKNOWN;
1580
1581         kfree(inq_buff);
1582         return 0;
1583
1584 bail_out:
1585         kfree(inq_buff);
1586         return 1;
1587 }
1588
1589 static unsigned char *msa2xxx_model[] = {
1590         "MSA2012",
1591         "MSA2024",
1592         "MSA2312",
1593         "MSA2324",
1594         "P2000 G3 SAS",
1595         NULL,
1596 };
1597
1598 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1599 {
1600         int i;
1601
1602         for (i = 0; msa2xxx_model[i]; i++)
1603                 if (strncmp(device->model, msa2xxx_model[i],
1604                         strlen(msa2xxx_model[i])) == 0)
1605                         return 1;
1606         return 0;
1607 }
1608
1609 /* Helper function to assign bus, target, lun mapping of devices.
1610  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1611  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1612  * Logical drive target and lun are assigned at this time, but
1613  * physical device lun and target assignment are deferred (assigned
1614  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1615  */
1616 static void figure_bus_target_lun(struct ctlr_info *h,
1617         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1618         struct hpsa_scsi_dev_t *device)
1619 {
1620         u32 lunid;
1621
1622         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1623                 /* logical device */
1624                 if (unlikely(is_scsi_rev_5(h))) {
1625                         /* p1210m, logical drives lun assignments
1626                          * match SCSI REPORT LUNS data.
1627                          */
1628                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1629                         *bus = 0;
1630                         *target = 0;
1631                         *lun = (lunid & 0x3fff) + 1;
1632                 } else {
1633                         /* not p1210m... */
1634                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1635                         if (is_msa2xxx(h, device)) {
1636                                 /* msa2xxx way, put logicals on bus 1
1637                                  * and match target/lun numbers box
1638                                  * reports.
1639                                  */
1640                                 *bus = 1;
1641                                 *target = (lunid >> 16) & 0x3fff;
1642                                 *lun = lunid & 0x00ff;
1643                         } else {
1644                                 /* Traditional smart array way. */
1645                                 *bus = 0;
1646                                 *lun = 0;
1647                                 *target = lunid & 0x3fff;
1648                         }
1649                 }
1650         } else {
1651                 /* physical device */
1652                 if (is_hba_lunid(lunaddrbytes))
1653                         if (unlikely(is_scsi_rev_5(h))) {
1654                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1655                                 *target = 0;
1656                                 *lun = 0;
1657                                 return;
1658                         } else
1659                                 *bus = 3; /* traditional smartarray */
1660                 else
1661                         *bus = 2; /* physical disk */
1662                 *target = -1;
1663                 *lun = -1; /* we will fill these in later. */
1664         }
1665 }
1666
1667 /*
1668  * If there is no lun 0 on a target, linux won't find any devices.
1669  * For the MSA2xxx boxes, we have to manually detect the enclosure
1670  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1671  * it for some reason.  *tmpdevice is the target we're adding,
1672  * this_device is a pointer into the current element of currentsd[]
1673  * that we're building up in update_scsi_devices(), below.
1674  * lunzerobits is a bitmap that tracks which targets already have a
1675  * lun 0 assigned.
1676  * Returns 1 if an enclosure was added, 0 if not.
1677  */
1678 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1679         struct hpsa_scsi_dev_t *tmpdevice,
1680         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1681         int bus, int target, int lun, unsigned long lunzerobits[],
1682         int *nmsa2xxx_enclosures)
1683 {
1684         unsigned char scsi3addr[8];
1685
1686         if (test_bit(target, lunzerobits))
1687                 return 0; /* There is already a lun 0 on this target. */
1688
1689         if (!is_logical_dev_addr_mode(lunaddrbytes))
1690                 return 0; /* It's the logical targets that may lack lun 0. */
1691
1692         if (!is_msa2xxx(h, tmpdevice))
1693                 return 0; /* It's only the MSA2xxx that have this problem. */
1694
1695         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1696                 return 0;
1697
1698         memset(scsi3addr, 0, 8);
1699         scsi3addr[3] = target;
1700         if (is_hba_lunid(scsi3addr))
1701                 return 0; /* Don't add the RAID controller here. */
1702
1703         if (is_scsi_rev_5(h))
1704                 return 0; /* p1210m doesn't need to do this. */
1705
1706 #define MAX_MSA2XXX_ENCLOSURES 32
1707         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1708                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1709                         "enclosures exceeded.  Check your hardware "
1710                         "configuration.");
1711                 return 0;
1712         }
1713
1714         if (hpsa_update_device_info(h, scsi3addr, this_device))
1715                 return 0;
1716         (*nmsa2xxx_enclosures)++;
1717         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1718         set_bit(target, lunzerobits);
1719         return 1;
1720 }
1721
1722 /*
1723  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1724  * logdev.  The number of luns in physdev and logdev are returned in
1725  * *nphysicals and *nlogicals, respectively.
1726  * Returns 0 on success, -1 otherwise.
1727  */
1728 static int hpsa_gather_lun_info(struct ctlr_info *h,
1729         int reportlunsize,
1730         struct ReportLUNdata *physdev, u32 *nphysicals,
1731         struct ReportLUNdata *logdev, u32 *nlogicals)
1732 {
1733         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1734                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1735                 return -1;
1736         }
1737         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1738         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1739                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1740                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1741                         *nphysicals - HPSA_MAX_PHYS_LUN);
1742                 *nphysicals = HPSA_MAX_PHYS_LUN;
1743         }
1744         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1745                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1746                 return -1;
1747         }
1748         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1749         /* Reject Logicals in excess of our max capability. */
1750         if (*nlogicals > HPSA_MAX_LUN) {
1751                 dev_warn(&h->pdev->dev,
1752                         "maximum logical LUNs (%d) exceeded.  "
1753                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1754                         *nlogicals - HPSA_MAX_LUN);
1755                         *nlogicals = HPSA_MAX_LUN;
1756         }
1757         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1758                 dev_warn(&h->pdev->dev,
1759                         "maximum logical + physical LUNs (%d) exceeded. "
1760                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1761                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1762                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1763         }
1764         return 0;
1765 }
1766
1767 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1768         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1769         struct ReportLUNdata *logdev_list)
1770 {
1771         /* Helper function, figure out where the LUN ID info is coming from
1772          * given index i, lists of physical and logical devices, where in
1773          * the list the raid controller is supposed to appear (first or last)
1774          */
1775
1776         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1777         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1778
1779         if (i == raid_ctlr_position)
1780                 return RAID_CTLR_LUNID;
1781
1782         if (i < logicals_start)
1783                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1784
1785         if (i < last_device)
1786                 return &logdev_list->LUN[i - nphysicals -
1787                         (raid_ctlr_position == 0)][0];
1788         BUG();
1789         return NULL;
1790 }
1791
1792 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1793 {
1794         /* the idea here is we could get notified
1795          * that some devices have changed, so we do a report
1796          * physical luns and report logical luns cmd, and adjust
1797          * our list of devices accordingly.
1798          *
1799          * The scsi3addr's of devices won't change so long as the
1800          * adapter is not reset.  That means we can rescan and
1801          * tell which devices we already know about, vs. new
1802          * devices, vs.  disappearing devices.
1803          */
1804         struct ReportLUNdata *physdev_list = NULL;
1805         struct ReportLUNdata *logdev_list = NULL;
1806         unsigned char *inq_buff = NULL;
1807         u32 nphysicals = 0;
1808         u32 nlogicals = 0;
1809         u32 ndev_allocated = 0;
1810         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1811         int ncurrent = 0;
1812         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1813         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1814         int bus, target, lun;
1815         int raid_ctlr_position;
1816         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1817
1818         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1819                 GFP_KERNEL);
1820         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1821         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1822         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1823         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1824
1825         if (!currentsd || !physdev_list || !logdev_list ||
1826                 !inq_buff || !tmpdevice) {
1827                 dev_err(&h->pdev->dev, "out of memory\n");
1828                 goto out;
1829         }
1830         memset(lunzerobits, 0, sizeof(lunzerobits));
1831
1832         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1833                         logdev_list, &nlogicals))
1834                 goto out;
1835
1836         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1837          * but each of them 4 times through different paths.  The plus 1
1838          * is for the RAID controller.
1839          */
1840         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1841
1842         /* Allocate the per device structures */
1843         for (i = 0; i < ndevs_to_allocate; i++) {
1844                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1845                 if (!currentsd[i]) {
1846                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1847                                 __FILE__, __LINE__);
1848                         goto out;
1849                 }
1850                 ndev_allocated++;
1851         }
1852
1853         if (unlikely(is_scsi_rev_5(h)))
1854                 raid_ctlr_position = 0;
1855         else
1856                 raid_ctlr_position = nphysicals + nlogicals;
1857
1858         /* adjust our table of devices */
1859         nmsa2xxx_enclosures = 0;
1860         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1861                 u8 *lunaddrbytes;
1862
1863                 /* Figure out where the LUN ID info is coming from */
1864                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1865                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1866                 /* skip masked physical devices. */
1867                 if (lunaddrbytes[3] & 0xC0 &&
1868                         i < nphysicals + (raid_ctlr_position == 0))
1869                         continue;
1870
1871                 /* Get device type, vendor, model, device id */
1872                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1873                         continue; /* skip it if we can't talk to it. */
1874                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1875                         tmpdevice);
1876                 this_device = currentsd[ncurrent];
1877
1878                 /*
1879                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1880                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1881                  * is nonetheless an enclosure device there.  We have to
1882                  * present that otherwise linux won't find anything if
1883                  * there is no lun 0.
1884                  */
1885                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1886                                 lunaddrbytes, bus, target, lun, lunzerobits,
1887                                 &nmsa2xxx_enclosures)) {
1888                         ncurrent++;
1889                         this_device = currentsd[ncurrent];
1890                 }
1891
1892                 *this_device = *tmpdevice;
1893                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1894
1895                 switch (this_device->devtype) {
1896                 case TYPE_ROM: {
1897                         /* We don't *really* support actual CD-ROM devices,
1898                          * just "One Button Disaster Recovery" tape drive
1899                          * which temporarily pretends to be a CD-ROM drive.
1900                          * So we check that the device is really an OBDR tape
1901                          * device by checking for "$DR-10" in bytes 43-48 of
1902                          * the inquiry data.
1903                          */
1904                                 char obdr_sig[7];
1905 #define OBDR_TAPE_SIG "$DR-10"
1906                                 strncpy(obdr_sig, &inq_buff[43], 6);
1907                                 obdr_sig[6] = '\0';
1908                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1909                                         /* Not OBDR device, ignore it. */
1910                                         break;
1911                         }
1912                         ncurrent++;
1913                         break;
1914                 case TYPE_DISK:
1915                         if (i < nphysicals)
1916                                 break;
1917                         ncurrent++;
1918                         break;
1919                 case TYPE_TAPE:
1920                 case TYPE_MEDIUM_CHANGER:
1921                         ncurrent++;
1922                         break;
1923                 case TYPE_RAID:
1924                         /* Only present the Smartarray HBA as a RAID controller.
1925                          * If it's a RAID controller other than the HBA itself
1926                          * (an external RAID controller, MSA500 or similar)
1927                          * don't present it.
1928                          */
1929                         if (!is_hba_lunid(lunaddrbytes))
1930                                 break;
1931                         ncurrent++;
1932                         break;
1933                 default:
1934                         break;
1935                 }
1936                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1937                         break;
1938         }
1939         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1940 out:
1941         kfree(tmpdevice);
1942         for (i = 0; i < ndev_allocated; i++)
1943                 kfree(currentsd[i]);
1944         kfree(currentsd);
1945         kfree(inq_buff);
1946         kfree(physdev_list);
1947         kfree(logdev_list);
1948 }
1949
1950 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1951  * dma mapping  and fills in the scatter gather entries of the
1952  * hpsa command, cp.
1953  */
1954 static int hpsa_scatter_gather(struct ctlr_info *h,
1955                 struct CommandList *cp,
1956                 struct scsi_cmnd *cmd)
1957 {
1958         unsigned int len;
1959         struct scatterlist *sg;
1960         u64 addr64;
1961         int use_sg, i, sg_index, chained;
1962         struct SGDescriptor *curr_sg;
1963
1964         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1965
1966         use_sg = scsi_dma_map(cmd);
1967         if (use_sg < 0)
1968                 return use_sg;
1969
1970         if (!use_sg)
1971                 goto sglist_finished;
1972
1973         curr_sg = cp->SG;
1974         chained = 0;
1975         sg_index = 0;
1976         scsi_for_each_sg(cmd, sg, use_sg, i) {
1977                 if (i == h->max_cmd_sg_entries - 1 &&
1978                         use_sg > h->max_cmd_sg_entries) {
1979                         chained = 1;
1980                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1981                         sg_index = 0;
1982                 }
1983                 addr64 = (u64) sg_dma_address(sg);
1984                 len  = sg_dma_len(sg);
1985                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1986                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1987                 curr_sg->Len = len;
1988                 curr_sg->Ext = 0;  /* we are not chaining */
1989                 curr_sg++;
1990         }
1991
1992         if (use_sg + chained > h->maxSG)
1993                 h->maxSG = use_sg + chained;
1994
1995         if (chained) {
1996                 cp->Header.SGList = h->max_cmd_sg_entries;
1997                 cp->Header.SGTotal = (u16) (use_sg + 1);
1998                 hpsa_map_sg_chain_block(h, cp);
1999                 return 0;
2000         }
2001
2002 sglist_finished:
2003
2004         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2005         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2006         return 0;
2007 }
2008
2009
2010 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2011         void (*done)(struct scsi_cmnd *))
2012 {
2013         struct ctlr_info *h;
2014         struct hpsa_scsi_dev_t *dev;
2015         unsigned char scsi3addr[8];
2016         struct CommandList *c;
2017         unsigned long flags;
2018
2019         /* Get the ptr to our adapter structure out of cmd->host. */
2020         h = sdev_to_hba(cmd->device);
2021         dev = cmd->device->hostdata;
2022         if (!dev) {
2023                 cmd->result = DID_NO_CONNECT << 16;
2024                 done(cmd);
2025                 return 0;
2026         }
2027         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2028
2029         /* Need a lock as this is being allocated from the pool */
2030         spin_lock_irqsave(&h->lock, flags);
2031         c = cmd_alloc(h);
2032         spin_unlock_irqrestore(&h->lock, flags);
2033         if (c == NULL) {                        /* trouble... */
2034                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2035                 return SCSI_MLQUEUE_HOST_BUSY;
2036         }
2037
2038         /* Fill in the command list header */
2039
2040         cmd->scsi_done = done;    /* save this for use by completion code */
2041
2042         /* save c in case we have to abort it  */
2043         cmd->host_scribble = (unsigned char *) c;
2044
2045         c->cmd_type = CMD_SCSI;
2046         c->scsi_cmd = cmd;
2047         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2048         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2049         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2050         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2051
2052         /* Fill in the request block... */
2053
2054         c->Request.Timeout = 0;
2055         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2056         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2057         c->Request.CDBLen = cmd->cmd_len;
2058         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2059         c->Request.Type.Type = TYPE_CMD;
2060         c->Request.Type.Attribute = ATTR_SIMPLE;
2061         switch (cmd->sc_data_direction) {
2062         case DMA_TO_DEVICE:
2063                 c->Request.Type.Direction = XFER_WRITE;
2064                 break;
2065         case DMA_FROM_DEVICE:
2066                 c->Request.Type.Direction = XFER_READ;
2067                 break;
2068         case DMA_NONE:
2069                 c->Request.Type.Direction = XFER_NONE;
2070                 break;
2071         case DMA_BIDIRECTIONAL:
2072                 /* This can happen if a buggy application does a scsi passthru
2073                  * and sets both inlen and outlen to non-zero. ( see
2074                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2075                  */
2076
2077                 c->Request.Type.Direction = XFER_RSVD;
2078                 /* This is technically wrong, and hpsa controllers should
2079                  * reject it with CMD_INVALID, which is the most correct
2080                  * response, but non-fibre backends appear to let it
2081                  * slide by, and give the same results as if this field
2082                  * were set correctly.  Either way is acceptable for
2083                  * our purposes here.
2084                  */
2085
2086                 break;
2087
2088         default:
2089                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2090                         cmd->sc_data_direction);
2091                 BUG();
2092                 break;
2093         }
2094
2095         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2096                 cmd_free(h, c);
2097                 return SCSI_MLQUEUE_HOST_BUSY;
2098         }
2099         enqueue_cmd_and_start_io(h, c);
2100         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2101         return 0;
2102 }
2103
2104 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2105
2106 static void hpsa_scan_start(struct Scsi_Host *sh)
2107 {
2108         struct ctlr_info *h = shost_to_hba(sh);
2109         unsigned long flags;
2110
2111         /* wait until any scan already in progress is finished. */
2112         while (1) {
2113                 spin_lock_irqsave(&h->scan_lock, flags);
2114                 if (h->scan_finished)
2115                         break;
2116                 spin_unlock_irqrestore(&h->scan_lock, flags);
2117                 wait_event(h->scan_wait_queue, h->scan_finished);
2118                 /* Note: We don't need to worry about a race between this
2119                  * thread and driver unload because the midlayer will
2120                  * have incremented the reference count, so unload won't
2121                  * happen if we're in here.
2122                  */
2123         }
2124         h->scan_finished = 0; /* mark scan as in progress */
2125         spin_unlock_irqrestore(&h->scan_lock, flags);
2126
2127         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2128
2129         spin_lock_irqsave(&h->scan_lock, flags);
2130         h->scan_finished = 1; /* mark scan as finished. */
2131         wake_up_all(&h->scan_wait_queue);
2132         spin_unlock_irqrestore(&h->scan_lock, flags);
2133 }
2134
2135 static int hpsa_scan_finished(struct Scsi_Host *sh,
2136         unsigned long elapsed_time)
2137 {
2138         struct ctlr_info *h = shost_to_hba(sh);
2139         unsigned long flags;
2140         int finished;
2141
2142         spin_lock_irqsave(&h->scan_lock, flags);
2143         finished = h->scan_finished;
2144         spin_unlock_irqrestore(&h->scan_lock, flags);
2145         return finished;
2146 }
2147
2148 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2149         int qdepth, int reason)
2150 {
2151         struct ctlr_info *h = sdev_to_hba(sdev);
2152
2153         if (reason != SCSI_QDEPTH_DEFAULT)
2154                 return -ENOTSUPP;
2155
2156         if (qdepth < 1)
2157                 qdepth = 1;
2158         else
2159                 if (qdepth > h->nr_cmds)
2160                         qdepth = h->nr_cmds;
2161         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2162         return sdev->queue_depth;
2163 }
2164
2165 static void hpsa_unregister_scsi(struct ctlr_info *h)
2166 {
2167         /* we are being forcibly unloaded, and may not refuse. */
2168         scsi_remove_host(h->scsi_host);
2169         scsi_host_put(h->scsi_host);
2170         h->scsi_host = NULL;
2171 }
2172
2173 static int hpsa_register_scsi(struct ctlr_info *h)
2174 {
2175         int rc;
2176
2177         rc = hpsa_scsi_detect(h);
2178         if (rc != 0)
2179                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2180                         " hpsa_scsi_detect(), rc is %d\n", rc);
2181         return rc;
2182 }
2183
2184 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2185         unsigned char lunaddr[])
2186 {
2187         int rc = 0;
2188         int count = 0;
2189         int waittime = 1; /* seconds */
2190         struct CommandList *c;
2191
2192         c = cmd_special_alloc(h);
2193         if (!c) {
2194                 dev_warn(&h->pdev->dev, "out of memory in "
2195                         "wait_for_device_to_become_ready.\n");
2196                 return IO_ERROR;
2197         }
2198
2199         /* Send test unit ready until device ready, or give up. */
2200         while (count < HPSA_TUR_RETRY_LIMIT) {
2201
2202                 /* Wait for a bit.  do this first, because if we send
2203                  * the TUR right away, the reset will just abort it.
2204                  */
2205                 msleep(1000 * waittime);
2206                 count++;
2207
2208                 /* Increase wait time with each try, up to a point. */
2209                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2210                         waittime = waittime * 2;
2211
2212                 /* Send the Test Unit Ready */
2213                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2214                 hpsa_scsi_do_simple_cmd_core(h, c);
2215                 /* no unmap needed here because no data xfer. */
2216
2217                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2218                         break;
2219
2220                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2221                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2222                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2223                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2224                         break;
2225
2226                 dev_warn(&h->pdev->dev, "waiting %d secs "
2227                         "for device to become ready.\n", waittime);
2228                 rc = 1; /* device not ready. */
2229         }
2230
2231         if (rc)
2232                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2233         else
2234                 dev_warn(&h->pdev->dev, "device is ready.\n");
2235
2236         cmd_special_free(h, c);
2237         return rc;
2238 }
2239
2240 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2241  * complaining.  Doing a host- or bus-reset can't do anything good here.
2242  */
2243 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2244 {
2245         int rc;
2246         struct ctlr_info *h;
2247         struct hpsa_scsi_dev_t *dev;
2248
2249         /* find the controller to which the command to be aborted was sent */
2250         h = sdev_to_hba(scsicmd->device);
2251         if (h == NULL) /* paranoia */
2252                 return FAILED;
2253         dev = scsicmd->device->hostdata;
2254         if (!dev) {
2255                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2256                         "device lookup failed.\n");
2257                 return FAILED;
2258         }
2259         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2260                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2261         /* send a reset to the SCSI LUN which the command was sent to */
2262         rc = hpsa_send_reset(h, dev->scsi3addr);
2263         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2264                 return SUCCESS;
2265
2266         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2267         return FAILED;
2268 }
2269
2270 /*
2271  * For operations that cannot sleep, a command block is allocated at init,
2272  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2273  * which ones are free or in use.  Lock must be held when calling this.
2274  * cmd_free() is the complement.
2275  */
2276 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2277 {
2278         struct CommandList *c;
2279         int i;
2280         union u64bit temp64;
2281         dma_addr_t cmd_dma_handle, err_dma_handle;
2282
2283         do {
2284                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2285                 if (i == h->nr_cmds)
2286                         return NULL;
2287         } while (test_and_set_bit
2288                  (i & (BITS_PER_LONG - 1),
2289                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2290         c = h->cmd_pool + i;
2291         memset(c, 0, sizeof(*c));
2292         cmd_dma_handle = h->cmd_pool_dhandle
2293             + i * sizeof(*c);
2294         c->err_info = h->errinfo_pool + i;
2295         memset(c->err_info, 0, sizeof(*c->err_info));
2296         err_dma_handle = h->errinfo_pool_dhandle
2297             + i * sizeof(*c->err_info);
2298         h->nr_allocs++;
2299
2300         c->cmdindex = i;
2301
2302         INIT_LIST_HEAD(&c->list);
2303         c->busaddr = (u32) cmd_dma_handle;
2304         temp64.val = (u64) err_dma_handle;
2305         c->ErrDesc.Addr.lower = temp64.val32.lower;
2306         c->ErrDesc.Addr.upper = temp64.val32.upper;
2307         c->ErrDesc.Len = sizeof(*c->err_info);
2308
2309         c->h = h;
2310         return c;
2311 }
2312
2313 /* For operations that can wait for kmalloc to possibly sleep,
2314  * this routine can be called. Lock need not be held to call
2315  * cmd_special_alloc. cmd_special_free() is the complement.
2316  */
2317 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2318 {
2319         struct CommandList *c;
2320         union u64bit temp64;
2321         dma_addr_t cmd_dma_handle, err_dma_handle;
2322
2323         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2324         if (c == NULL)
2325                 return NULL;
2326         memset(c, 0, sizeof(*c));
2327
2328         c->cmdindex = -1;
2329
2330         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2331                     &err_dma_handle);
2332
2333         if (c->err_info == NULL) {
2334                 pci_free_consistent(h->pdev,
2335                         sizeof(*c), c, cmd_dma_handle);
2336                 return NULL;
2337         }
2338         memset(c->err_info, 0, sizeof(*c->err_info));
2339
2340         INIT_LIST_HEAD(&c->list);
2341         c->busaddr = (u32) cmd_dma_handle;
2342         temp64.val = (u64) err_dma_handle;
2343         c->ErrDesc.Addr.lower = temp64.val32.lower;
2344         c->ErrDesc.Addr.upper = temp64.val32.upper;
2345         c->ErrDesc.Len = sizeof(*c->err_info);
2346
2347         c->h = h;
2348         return c;
2349 }
2350
2351 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2352 {
2353         int i;
2354
2355         i = c - h->cmd_pool;
2356         clear_bit(i & (BITS_PER_LONG - 1),
2357                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2358         h->nr_frees++;
2359 }
2360
2361 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2362 {
2363         union u64bit temp64;
2364
2365         temp64.val32.lower = c->ErrDesc.Addr.lower;
2366         temp64.val32.upper = c->ErrDesc.Addr.upper;
2367         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2368                             c->err_info, (dma_addr_t) temp64.val);
2369         pci_free_consistent(h->pdev, sizeof(*c),
2370                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2371 }
2372
2373 #ifdef CONFIG_COMPAT
2374
2375 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2376 {
2377         IOCTL32_Command_struct __user *arg32 =
2378             (IOCTL32_Command_struct __user *) arg;
2379         IOCTL_Command_struct arg64;
2380         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2381         int err;
2382         u32 cp;
2383
2384         memset(&arg64, 0, sizeof(arg64));
2385         err = 0;
2386         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2387                            sizeof(arg64.LUN_info));
2388         err |= copy_from_user(&arg64.Request, &arg32->Request,
2389                            sizeof(arg64.Request));
2390         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2391                            sizeof(arg64.error_info));
2392         err |= get_user(arg64.buf_size, &arg32->buf_size);
2393         err |= get_user(cp, &arg32->buf);
2394         arg64.buf = compat_ptr(cp);
2395         err |= copy_to_user(p, &arg64, sizeof(arg64));
2396
2397         if (err)
2398                 return -EFAULT;
2399
2400         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2401         if (err)
2402                 return err;
2403         err |= copy_in_user(&arg32->error_info, &p->error_info,
2404                          sizeof(arg32->error_info));
2405         if (err)
2406                 return -EFAULT;
2407         return err;
2408 }
2409
2410 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2411         int cmd, void *arg)
2412 {
2413         BIG_IOCTL32_Command_struct __user *arg32 =
2414             (BIG_IOCTL32_Command_struct __user *) arg;
2415         BIG_IOCTL_Command_struct arg64;
2416         BIG_IOCTL_Command_struct __user *p =
2417             compat_alloc_user_space(sizeof(arg64));
2418         int err;
2419         u32 cp;
2420
2421         memset(&arg64, 0, sizeof(arg64));
2422         err = 0;
2423         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2424                            sizeof(arg64.LUN_info));
2425         err |= copy_from_user(&arg64.Request, &arg32->Request,
2426                            sizeof(arg64.Request));
2427         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2428                            sizeof(arg64.error_info));
2429         err |= get_user(arg64.buf_size, &arg32->buf_size);
2430         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2431         err |= get_user(cp, &arg32->buf);
2432         arg64.buf = compat_ptr(cp);
2433         err |= copy_to_user(p, &arg64, sizeof(arg64));
2434
2435         if (err)
2436                 return -EFAULT;
2437
2438         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2439         if (err)
2440                 return err;
2441         err |= copy_in_user(&arg32->error_info, &p->error_info,
2442                          sizeof(arg32->error_info));
2443         if (err)
2444                 return -EFAULT;
2445         return err;
2446 }
2447
2448 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2449 {
2450         switch (cmd) {
2451         case CCISS_GETPCIINFO:
2452         case CCISS_GETINTINFO:
2453         case CCISS_SETINTINFO:
2454         case CCISS_GETNODENAME:
2455         case CCISS_SETNODENAME:
2456         case CCISS_GETHEARTBEAT:
2457         case CCISS_GETBUSTYPES:
2458         case CCISS_GETFIRMVER:
2459         case CCISS_GETDRIVVER:
2460         case CCISS_REVALIDVOLS:
2461         case CCISS_DEREGDISK:
2462         case CCISS_REGNEWDISK:
2463         case CCISS_REGNEWD:
2464         case CCISS_RESCANDISK:
2465         case CCISS_GETLUNINFO:
2466                 return hpsa_ioctl(dev, cmd, arg);
2467
2468         case CCISS_PASSTHRU32:
2469                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2470         case CCISS_BIG_PASSTHRU32:
2471                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2472
2473         default:
2474                 return -ENOIOCTLCMD;
2475         }
2476 }
2477 #endif
2478
2479 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2480 {
2481         struct hpsa_pci_info pciinfo;
2482
2483         if (!argp)
2484                 return -EINVAL;
2485         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2486         pciinfo.bus = h->pdev->bus->number;
2487         pciinfo.dev_fn = h->pdev->devfn;
2488         pciinfo.board_id = h->board_id;
2489         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2490                 return -EFAULT;
2491         return 0;
2492 }
2493
2494 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2495 {
2496         DriverVer_type DriverVer;
2497         unsigned char vmaj, vmin, vsubmin;
2498         int rc;
2499
2500         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2501                 &vmaj, &vmin, &vsubmin);
2502         if (rc != 3) {
2503                 dev_info(&h->pdev->dev, "driver version string '%s' "
2504                         "unrecognized.", HPSA_DRIVER_VERSION);
2505                 vmaj = 0;
2506                 vmin = 0;
2507                 vsubmin = 0;
2508         }
2509         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2510         if (!argp)
2511                 return -EINVAL;
2512         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2513                 return -EFAULT;
2514         return 0;
2515 }
2516
2517 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2518 {
2519         IOCTL_Command_struct iocommand;
2520         struct CommandList *c;
2521         char *buff = NULL;
2522         union u64bit temp64;
2523
2524         if (!argp)
2525                 return -EINVAL;
2526         if (!capable(CAP_SYS_RAWIO))
2527                 return -EPERM;
2528         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2529                 return -EFAULT;
2530         if ((iocommand.buf_size < 1) &&
2531             (iocommand.Request.Type.Direction != XFER_NONE)) {
2532                 return -EINVAL;
2533         }
2534         if (iocommand.buf_size > 0) {
2535                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2536                 if (buff == NULL)
2537                         return -EFAULT;
2538                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2539                         /* Copy the data into the buffer we created */
2540                         if (copy_from_user(buff, iocommand.buf,
2541                                 iocommand.buf_size)) {
2542                                 kfree(buff);
2543                                 return -EFAULT;
2544                         }
2545                 } else {
2546                         memset(buff, 0, iocommand.buf_size);
2547                 }
2548         }
2549         c = cmd_special_alloc(h);
2550         if (c == NULL) {
2551                 kfree(buff);
2552                 return -ENOMEM;
2553         }
2554         /* Fill in the command type */
2555         c->cmd_type = CMD_IOCTL_PEND;
2556         /* Fill in Command Header */
2557         c->Header.ReplyQueue = 0; /* unused in simple mode */
2558         if (iocommand.buf_size > 0) {   /* buffer to fill */
2559                 c->Header.SGList = 1;
2560                 c->Header.SGTotal = 1;
2561         } else  { /* no buffers to fill */
2562                 c->Header.SGList = 0;
2563                 c->Header.SGTotal = 0;
2564         }
2565         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2566         /* use the kernel address the cmd block for tag */
2567         c->Header.Tag.lower = c->busaddr;
2568
2569         /* Fill in Request block */
2570         memcpy(&c->Request, &iocommand.Request,
2571                 sizeof(c->Request));
2572
2573         /* Fill in the scatter gather information */
2574         if (iocommand.buf_size > 0) {
2575                 temp64.val = pci_map_single(h->pdev, buff,
2576                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2577                 c->SG[0].Addr.lower = temp64.val32.lower;
2578                 c->SG[0].Addr.upper = temp64.val32.upper;
2579                 c->SG[0].Len = iocommand.buf_size;
2580                 c->SG[0].Ext = 0; /* we are not chaining*/
2581         }
2582         hpsa_scsi_do_simple_cmd_core(h, c);
2583         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2584         check_ioctl_unit_attention(h, c);
2585
2586         /* Copy the error information out */
2587         memcpy(&iocommand.error_info, c->err_info,
2588                 sizeof(iocommand.error_info));
2589         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2590                 kfree(buff);
2591                 cmd_special_free(h, c);
2592                 return -EFAULT;
2593         }
2594         if (iocommand.Request.Type.Direction == XFER_READ &&
2595                 iocommand.buf_size > 0) {
2596                 /* Copy the data out of the buffer we created */
2597                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2598                         kfree(buff);
2599                         cmd_special_free(h, c);
2600                         return -EFAULT;
2601                 }
2602         }
2603         kfree(buff);
2604         cmd_special_free(h, c);
2605         return 0;
2606 }
2607
2608 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2609 {
2610         BIG_IOCTL_Command_struct *ioc;
2611         struct CommandList *c;
2612         unsigned char **buff = NULL;
2613         int *buff_size = NULL;
2614         union u64bit temp64;
2615         BYTE sg_used = 0;
2616         int status = 0;
2617         int i;
2618         u32 left;
2619         u32 sz;
2620         BYTE __user *data_ptr;
2621
2622         if (!argp)
2623                 return -EINVAL;
2624         if (!capable(CAP_SYS_RAWIO))
2625                 return -EPERM;
2626         ioc = (BIG_IOCTL_Command_struct *)
2627             kmalloc(sizeof(*ioc), GFP_KERNEL);
2628         if (!ioc) {
2629                 status = -ENOMEM;
2630                 goto cleanup1;
2631         }
2632         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2633                 status = -EFAULT;
2634                 goto cleanup1;
2635         }
2636         if ((ioc->buf_size < 1) &&
2637             (ioc->Request.Type.Direction != XFER_NONE)) {
2638                 status = -EINVAL;
2639                 goto cleanup1;
2640         }
2641         /* Check kmalloc limits  using all SGs */
2642         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2643                 status = -EINVAL;
2644                 goto cleanup1;
2645         }
2646         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2647                 status = -EINVAL;
2648                 goto cleanup1;
2649         }
2650         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2651         if (!buff) {
2652                 status = -ENOMEM;
2653                 goto cleanup1;
2654         }
2655         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2656         if (!buff_size) {
2657                 status = -ENOMEM;
2658                 goto cleanup1;
2659         }
2660         left = ioc->buf_size;
2661         data_ptr = ioc->buf;
2662         while (left) {
2663                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2664                 buff_size[sg_used] = sz;
2665                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2666                 if (buff[sg_used] == NULL) {
2667                         status = -ENOMEM;
2668                         goto cleanup1;
2669                 }
2670                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2671                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2672                                 status = -ENOMEM;
2673                                 goto cleanup1;
2674                         }
2675                 } else
2676                         memset(buff[sg_used], 0, sz);
2677                 left -= sz;
2678                 data_ptr += sz;
2679                 sg_used++;
2680         }
2681         c = cmd_special_alloc(h);
2682         if (c == NULL) {
2683                 status = -ENOMEM;
2684                 goto cleanup1;
2685         }
2686         c->cmd_type = CMD_IOCTL_PEND;
2687         c->Header.ReplyQueue = 0;
2688         c->Header.SGList = c->Header.SGTotal = sg_used;
2689         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2690         c->Header.Tag.lower = c->busaddr;
2691         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2692         if (ioc->buf_size > 0) {
2693                 int i;
2694                 for (i = 0; i < sg_used; i++) {
2695                         temp64.val = pci_map_single(h->pdev, buff[i],
2696                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2697                         c->SG[i].Addr.lower = temp64.val32.lower;
2698                         c->SG[i].Addr.upper = temp64.val32.upper;
2699                         c->SG[i].Len = buff_size[i];
2700                         /* we are not chaining */
2701                         c->SG[i].Ext = 0;
2702                 }
2703         }
2704         hpsa_scsi_do_simple_cmd_core(h, c);
2705         if (sg_used)
2706                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2707         check_ioctl_unit_attention(h, c);
2708         /* Copy the error information out */
2709         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2710         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2711                 cmd_special_free(h, c);
2712                 status = -EFAULT;
2713                 goto cleanup1;
2714         }
2715         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2716                 /* Copy the data out of the buffer we created */
2717                 BYTE __user *ptr = ioc->buf;
2718                 for (i = 0; i < sg_used; i++) {
2719                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2720                                 cmd_special_free(h, c);
2721                                 status = -EFAULT;
2722                                 goto cleanup1;
2723                         }
2724                         ptr += buff_size[i];
2725                 }
2726         }
2727         cmd_special_free(h, c);
2728         status = 0;
2729 cleanup1:
2730         if (buff) {
2731                 for (i = 0; i < sg_used; i++)
2732                         kfree(buff[i]);
2733                 kfree(buff);
2734         }
2735         kfree(buff_size);
2736         kfree(ioc);
2737         return status;
2738 }
2739
2740 static void check_ioctl_unit_attention(struct ctlr_info *h,
2741         struct CommandList *c)
2742 {
2743         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2744                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2745                 (void) check_for_unit_attention(h, c);
2746 }
2747 /*
2748  * ioctl
2749  */
2750 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2751 {
2752         struct ctlr_info *h;
2753         void __user *argp = (void __user *)arg;
2754
2755         h = sdev_to_hba(dev);
2756
2757         switch (cmd) {
2758         case CCISS_DEREGDISK:
2759         case CCISS_REGNEWDISK:
2760         case CCISS_REGNEWD:
2761                 hpsa_scan_start(h->scsi_host);
2762                 return 0;
2763         case CCISS_GETPCIINFO:
2764                 return hpsa_getpciinfo_ioctl(h, argp);
2765         case CCISS_GETDRIVVER:
2766                 return hpsa_getdrivver_ioctl(h, argp);
2767         case CCISS_PASSTHRU:
2768                 return hpsa_passthru_ioctl(h, argp);
2769         case CCISS_BIG_PASSTHRU:
2770                 return hpsa_big_passthru_ioctl(h, argp);
2771         default:
2772                 return -ENOTTY;
2773         }
2774 }
2775
2776 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2777         unsigned char *scsi3addr, u8 reset_type)
2778 {
2779         struct CommandList *c;
2780
2781         c = cmd_alloc(h);
2782         if (!c)
2783                 return -ENOMEM;
2784         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2785                 RAID_CTLR_LUNID, TYPE_MSG);
2786         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2787         c->waiting = NULL;
2788         enqueue_cmd_and_start_io(h, c);
2789         /* Don't wait for completion, the reset won't complete.  Don't free
2790          * the command either.  This is the last command we will send before
2791          * re-initializing everything, so it doesn't matter and won't leak.
2792          */
2793         return 0;
2794 }
2795
2796 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2797         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2798         int cmd_type)
2799 {
2800         int pci_dir = XFER_NONE;
2801
2802         c->cmd_type = CMD_IOCTL_PEND;
2803         c->Header.ReplyQueue = 0;
2804         if (buff != NULL && size > 0) {
2805                 c->Header.SGList = 1;
2806                 c->Header.SGTotal = 1;
2807         } else {
2808                 c->Header.SGList = 0;
2809                 c->Header.SGTotal = 0;
2810         }
2811         c->Header.Tag.lower = c->busaddr;
2812         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2813
2814         c->Request.Type.Type = cmd_type;
2815         if (cmd_type == TYPE_CMD) {
2816                 switch (cmd) {
2817                 case HPSA_INQUIRY:
2818                         /* are we trying to read a vital product page */
2819                         if (page_code != 0) {
2820                                 c->Request.CDB[1] = 0x01;
2821                                 c->Request.CDB[2] = page_code;
2822                         }
2823                         c->Request.CDBLen = 6;
2824                         c->Request.Type.Attribute = ATTR_SIMPLE;
2825                         c->Request.Type.Direction = XFER_READ;
2826                         c->Request.Timeout = 0;
2827                         c->Request.CDB[0] = HPSA_INQUIRY;
2828                         c->Request.CDB[4] = size & 0xFF;
2829                         break;
2830                 case HPSA_REPORT_LOG:
2831                 case HPSA_REPORT_PHYS:
2832                         /* Talking to controller so It's a physical command
2833                            mode = 00 target = 0.  Nothing to write.
2834                          */
2835                         c->Request.CDBLen = 12;
2836                         c->Request.Type.Attribute = ATTR_SIMPLE;
2837                         c->Request.Type.Direction = XFER_READ;
2838                         c->Request.Timeout = 0;
2839                         c->Request.CDB[0] = cmd;
2840                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2841                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2842                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2843                         c->Request.CDB[9] = size & 0xFF;
2844                         break;
2845                 case HPSA_CACHE_FLUSH:
2846                         c->Request.CDBLen = 12;
2847                         c->Request.Type.Attribute = ATTR_SIMPLE;
2848                         c->Request.Type.Direction = XFER_WRITE;
2849                         c->Request.Timeout = 0;
2850                         c->Request.CDB[0] = BMIC_WRITE;
2851                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2852                         break;
2853                 case TEST_UNIT_READY:
2854                         c->Request.CDBLen = 6;
2855                         c->Request.Type.Attribute = ATTR_SIMPLE;
2856                         c->Request.Type.Direction = XFER_NONE;
2857                         c->Request.Timeout = 0;
2858                         break;
2859                 default:
2860                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2861                         BUG();
2862                         return;
2863                 }
2864         } else if (cmd_type == TYPE_MSG) {
2865                 switch (cmd) {
2866
2867                 case  HPSA_DEVICE_RESET_MSG:
2868                         c->Request.CDBLen = 16;
2869                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2870                         c->Request.Type.Attribute = ATTR_SIMPLE;
2871                         c->Request.Type.Direction = XFER_NONE;
2872                         c->Request.Timeout = 0; /* Don't time out */
2873                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2874                         c->Request.CDB[0] =  cmd;
2875                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2876                         /* If bytes 4-7 are zero, it means reset the */
2877                         /* LunID device */
2878                         c->Request.CDB[4] = 0x00;
2879                         c->Request.CDB[5] = 0x00;
2880                         c->Request.CDB[6] = 0x00;
2881                         c->Request.CDB[7] = 0x00;
2882                 break;
2883
2884                 default:
2885                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2886                                 cmd);
2887                         BUG();
2888                 }
2889         } else {
2890                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2891                 BUG();
2892         }
2893
2894         switch (c->Request.Type.Direction) {
2895         case XFER_READ:
2896                 pci_dir = PCI_DMA_FROMDEVICE;
2897                 break;
2898         case XFER_WRITE:
2899                 pci_dir = PCI_DMA_TODEVICE;
2900                 break;
2901         case XFER_NONE:
2902                 pci_dir = PCI_DMA_NONE;
2903                 break;
2904         default:
2905                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2906         }
2907
2908         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2909
2910         return;
2911 }
2912
2913 /*
2914  * Map (physical) PCI mem into (virtual) kernel space
2915  */
2916 static void __iomem *remap_pci_mem(ulong base, ulong size)
2917 {
2918         ulong page_base = ((ulong) base) & PAGE_MASK;
2919         ulong page_offs = ((ulong) base) - page_base;
2920         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2921
2922         return page_remapped ? (page_remapped + page_offs) : NULL;
2923 }
2924
2925 /* Takes cmds off the submission queue and sends them to the hardware,
2926  * then puts them on the queue of cmds waiting for completion.
2927  */
2928 static void start_io(struct ctlr_info *h)
2929 {
2930         struct CommandList *c;
2931
2932         while (!list_empty(&h->reqQ)) {
2933                 c = list_entry(h->reqQ.next, struct CommandList, list);
2934                 /* can't do anything if fifo is full */
2935                 if ((h->access.fifo_full(h))) {
2936                         dev_warn(&h->pdev->dev, "fifo full\n");
2937                         break;
2938                 }
2939
2940                 /* Get the first entry from the Request Q */
2941                 removeQ(c);
2942                 h->Qdepth--;
2943
2944                 /* Tell the controller execute command */
2945                 h->access.submit_command(h, c);
2946
2947                 /* Put job onto the completed Q */
2948                 addQ(&h->cmpQ, c);
2949         }
2950 }
2951
2952 static inline unsigned long get_next_completion(struct ctlr_info *h)
2953 {
2954         return h->access.command_completed(h);
2955 }
2956
2957 static inline bool interrupt_pending(struct ctlr_info *h)
2958 {
2959         return h->access.intr_pending(h);
2960 }
2961
2962 static inline long interrupt_not_for_us(struct ctlr_info *h)
2963 {
2964         return (h->access.intr_pending(h) == 0) ||
2965                 (h->interrupts_enabled == 0);
2966 }
2967
2968 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2969         u32 raw_tag)
2970 {
2971         if (unlikely(tag_index >= h->nr_cmds)) {
2972                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2973                 return 1;
2974         }
2975         return 0;
2976 }
2977
2978 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2979 {
2980         removeQ(c);
2981         if (likely(c->cmd_type == CMD_SCSI))
2982                 complete_scsi_command(c);
2983         else if (c->cmd_type == CMD_IOCTL_PEND)
2984                 complete(c->waiting);
2985 }
2986
2987 static inline u32 hpsa_tag_contains_index(u32 tag)
2988 {
2989         return tag & DIRECT_LOOKUP_BIT;
2990 }
2991
2992 static inline u32 hpsa_tag_to_index(u32 tag)
2993 {
2994         return tag >> DIRECT_LOOKUP_SHIFT;
2995 }
2996
2997
2998 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2999 {
3000 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3001 #define HPSA_SIMPLE_ERROR_BITS 0x03
3002         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3003                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3004         return tag & ~HPSA_PERF_ERROR_BITS;
3005 }
3006
3007 /* process completion of an indexed ("direct lookup") command */
3008 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3009         u32 raw_tag)
3010 {
3011         u32 tag_index;
3012         struct CommandList *c;
3013
3014         tag_index = hpsa_tag_to_index(raw_tag);
3015         if (bad_tag(h, tag_index, raw_tag))
3016                 return next_command(h);
3017         c = h->cmd_pool + tag_index;
3018         finish_cmd(c, raw_tag);
3019         return next_command(h);
3020 }
3021
3022 /* process completion of a non-indexed command */
3023 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3024         u32 raw_tag)
3025 {
3026         u32 tag;
3027         struct CommandList *c = NULL;
3028
3029         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3030         list_for_each_entry(c, &h->cmpQ, list) {
3031                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3032                         finish_cmd(c, raw_tag);
3033                         return next_command(h);
3034                 }
3035         }
3036         bad_tag(h, h->nr_cmds + 1, raw_tag);
3037         return next_command(h);
3038 }
3039
3040 /* Some controllers, like p400, will give us one interrupt
3041  * after a soft reset, even if we turned interrupts off.
3042  * Only need to check for this in the hpsa_xxx_discard_completions
3043  * functions.
3044  */
3045 static int ignore_bogus_interrupt(struct ctlr_info *h)
3046 {
3047         if (likely(!reset_devices))
3048                 return 0;
3049
3050         if (likely(h->interrupts_enabled))
3051                 return 0;
3052
3053         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3054                 "(known firmware bug.)  Ignoring.\n");
3055
3056         return 1;
3057 }
3058
3059 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3060 {
3061         struct ctlr_info *h = dev_id;
3062         unsigned long flags;
3063         u32 raw_tag;
3064
3065         if (ignore_bogus_interrupt(h))
3066                 return IRQ_NONE;
3067
3068         if (interrupt_not_for_us(h))
3069                 return IRQ_NONE;
3070         spin_lock_irqsave(&h->lock, flags);
3071         while (interrupt_pending(h)) {
3072                 raw_tag = get_next_completion(h);
3073                 while (raw_tag != FIFO_EMPTY)
3074                         raw_tag = next_command(h);
3075         }
3076         spin_unlock_irqrestore(&h->lock, flags);
3077         return IRQ_HANDLED;
3078 }
3079
3080 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3081 {
3082         struct ctlr_info *h = dev_id;
3083         unsigned long flags;
3084         u32 raw_tag;
3085
3086         if (ignore_bogus_interrupt(h))
3087                 return IRQ_NONE;
3088
3089         spin_lock_irqsave(&h->lock, flags);
3090         raw_tag = get_next_completion(h);
3091         while (raw_tag != FIFO_EMPTY)
3092                 raw_tag = next_command(h);
3093         spin_unlock_irqrestore(&h->lock, flags);
3094         return IRQ_HANDLED;
3095 }
3096
3097 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3098 {
3099         struct ctlr_info *h = dev_id;
3100         unsigned long flags;
3101         u32 raw_tag;
3102
3103         if (interrupt_not_for_us(h))
3104                 return IRQ_NONE;
3105         spin_lock_irqsave(&h->lock, flags);
3106         while (interrupt_pending(h)) {
3107                 raw_tag = get_next_completion(h);
3108                 while (raw_tag != FIFO_EMPTY) {
3109                         if (hpsa_tag_contains_index(raw_tag))
3110                                 raw_tag = process_indexed_cmd(h, raw_tag);
3111                         else
3112                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3113                 }
3114         }
3115         spin_unlock_irqrestore(&h->lock, flags);
3116         return IRQ_HANDLED;
3117 }
3118
3119 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3120 {
3121         struct ctlr_info *h = dev_id;
3122         unsigned long flags;
3123         u32 raw_tag;
3124
3125         spin_lock_irqsave(&h->lock, flags);
3126         raw_tag = get_next_completion(h);
3127         while (raw_tag != FIFO_EMPTY) {
3128                 if (hpsa_tag_contains_index(raw_tag))
3129                         raw_tag = process_indexed_cmd(h, raw_tag);
3130                 else
3131                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3132         }
3133         spin_unlock_irqrestore(&h->lock, flags);
3134         return IRQ_HANDLED;
3135 }
3136
3137 /* Send a message CDB to the firmware. Careful, this only works
3138  * in simple mode, not performant mode due to the tag lookup.
3139  * We only ever use this immediately after a controller reset.
3140  */
3141 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3142                                                 unsigned char type)
3143 {
3144         struct Command {
3145                 struct CommandListHeader CommandHeader;
3146                 struct RequestBlock Request;
3147                 struct ErrDescriptor ErrorDescriptor;
3148         };
3149         struct Command *cmd;
3150         static const size_t cmd_sz = sizeof(*cmd) +
3151                                         sizeof(cmd->ErrorDescriptor);
3152         dma_addr_t paddr64;
3153         uint32_t paddr32, tag;
3154         void __iomem *vaddr;
3155         int i, err;
3156
3157         vaddr = pci_ioremap_bar(pdev, 0);
3158         if (vaddr == NULL)
3159                 return -ENOMEM;
3160
3161         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3162          * CCISS commands, so they must be allocated from the lower 4GiB of
3163          * memory.
3164          */
3165         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3166         if (err) {
3167                 iounmap(vaddr);
3168                 return -ENOMEM;
3169         }
3170
3171         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3172         if (cmd == NULL) {
3173                 iounmap(vaddr);
3174                 return -ENOMEM;
3175         }
3176
3177         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3178          * although there's no guarantee, we assume that the address is at
3179          * least 4-byte aligned (most likely, it's page-aligned).
3180          */
3181         paddr32 = paddr64;
3182
3183         cmd->CommandHeader.ReplyQueue = 0;
3184         cmd->CommandHeader.SGList = 0;
3185         cmd->CommandHeader.SGTotal = 0;
3186         cmd->CommandHeader.Tag.lower = paddr32;
3187         cmd->CommandHeader.Tag.upper = 0;
3188         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3189
3190         cmd->Request.CDBLen = 16;
3191         cmd->Request.Type.Type = TYPE_MSG;
3192         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3193         cmd->Request.Type.Direction = XFER_NONE;
3194         cmd->Request.Timeout = 0; /* Don't time out */
3195         cmd->Request.CDB[0] = opcode;
3196         cmd->Request.CDB[1] = type;
3197         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3198         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3199         cmd->ErrorDescriptor.Addr.upper = 0;
3200         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3201
3202         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3203
3204         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3205                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3206                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3207                         break;
3208                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3209         }
3210
3211         iounmap(vaddr);
3212
3213         /* we leak the DMA buffer here ... no choice since the controller could
3214          *  still complete the command.
3215          */
3216         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3217                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3218                         opcode, type);
3219                 return -ETIMEDOUT;
3220         }
3221
3222         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3223
3224         if (tag & HPSA_ERROR_BIT) {
3225                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3226                         opcode, type);
3227                 return -EIO;
3228         }
3229
3230         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3231                 opcode, type);
3232         return 0;
3233 }
3234
3235 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3236
3237 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3238         void * __iomem vaddr, u32 use_doorbell)
3239 {
3240         u16 pmcsr;
3241         int pos;
3242
3243         if (use_doorbell) {
3244                 /* For everything after the P600, the PCI power state method
3245                  * of resetting the controller doesn't work, so we have this
3246                  * other way using the doorbell register.
3247                  */
3248                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3249                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3250         } else { /* Try to do it the PCI power state way */
3251
3252                 /* Quoting from the Open CISS Specification: "The Power
3253                  * Management Control/Status Register (CSR) controls the power
3254                  * state of the device.  The normal operating state is D0,
3255                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3256                  * the controller, place the interface device in D3 then to D0,
3257                  * this causes a secondary PCI reset which will reset the
3258                  * controller." */
3259
3260                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3261                 if (pos == 0) {
3262                         dev_err(&pdev->dev,
3263                                 "hpsa_reset_controller: "
3264                                 "PCI PM not supported\n");
3265                         return -ENODEV;
3266                 }
3267                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3268                 /* enter the D3hot power management state */
3269                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3270                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3271                 pmcsr |= PCI_D3hot;
3272                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3273
3274                 msleep(500);
3275
3276                 /* enter the D0 power management state */
3277                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3278                 pmcsr |= PCI_D0;
3279                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3280         }
3281         return 0;
3282 }
3283
3284 static __devinit void init_driver_version(char *driver_version, int len)
3285 {
3286         memset(driver_version, 0, len);
3287         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3288 }
3289
3290 static __devinit int write_driver_ver_to_cfgtable(
3291         struct CfgTable __iomem *cfgtable)
3292 {
3293         char *driver_version;
3294         int i, size = sizeof(cfgtable->driver_version);
3295
3296         driver_version = kmalloc(size, GFP_KERNEL);
3297         if (!driver_version)
3298                 return -ENOMEM;
3299
3300         init_driver_version(driver_version, size);
3301         for (i = 0; i < size; i++)
3302                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3303         kfree(driver_version);
3304         return 0;
3305 }
3306
3307 static __devinit void read_driver_ver_from_cfgtable(
3308         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3309 {
3310         int i;
3311
3312         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3313                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3314 }
3315
3316 static __devinit int controller_reset_failed(
3317         struct CfgTable __iomem *cfgtable)
3318 {
3319
3320         char *driver_ver, *old_driver_ver;
3321         int rc, size = sizeof(cfgtable->driver_version);
3322
3323         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3324         if (!old_driver_ver)
3325                 return -ENOMEM;
3326         driver_ver = old_driver_ver + size;
3327
3328         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3329          * should have been changed, otherwise we know the reset failed.
3330          */
3331         init_driver_version(old_driver_ver, size);
3332         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3333         rc = !memcmp(driver_ver, old_driver_ver, size);
3334         kfree(old_driver_ver);
3335         return rc;
3336 }
3337 /* This does a hard reset of the controller using PCI power management
3338  * states or the using the doorbell register.
3339  */
3340 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3341 {
3342         u64 cfg_offset;
3343         u32 cfg_base_addr;
3344         u64 cfg_base_addr_index;
3345         void __iomem *vaddr;
3346         unsigned long paddr;
3347         u32 misc_fw_support;
3348         int rc;
3349         struct CfgTable __iomem *cfgtable;
3350         u32 use_doorbell;
3351         u32 board_id;
3352         u16 command_register;
3353
3354         /* For controllers as old as the P600, this is very nearly
3355          * the same thing as
3356          *
3357          * pci_save_state(pci_dev);
3358          * pci_set_power_state(pci_dev, PCI_D3hot);
3359          * pci_set_power_state(pci_dev, PCI_D0);
3360          * pci_restore_state(pci_dev);
3361          *
3362          * For controllers newer than the P600, the pci power state
3363          * method of resetting doesn't work so we have another way
3364          * using the doorbell register.
3365          */
3366
3367         rc = hpsa_lookup_board_id(pdev, &board_id);
3368         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3369                 dev_warn(&pdev->dev, "Not resetting device.\n");
3370                 return -ENODEV;
3371         }
3372
3373         /* if controller is soft- but not hard resettable... */
3374         if (!ctlr_is_hard_resettable(board_id))
3375                 return -ENOTSUPP; /* try soft reset later. */
3376
3377         /* Save the PCI command register */
3378         pci_read_config_word(pdev, 4, &command_register);
3379         /* Turn the board off.  This is so that later pci_restore_state()
3380          * won't turn the board on before the rest of config space is ready.
3381          */
3382         pci_disable_device(pdev);
3383         pci_save_state(pdev);
3384
3385         /* find the first memory BAR, so we can find the cfg table */
3386         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3387         if (rc)
3388                 return rc;
3389         vaddr = remap_pci_mem(paddr, 0x250);
3390         if (!vaddr)
3391                 return -ENOMEM;
3392
3393         /* find cfgtable in order to check if reset via doorbell is supported */
3394         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3395                                         &cfg_base_addr_index, &cfg_offset);
3396         if (rc)
3397                 goto unmap_vaddr;
3398         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3399                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3400         if (!cfgtable) {
3401                 rc = -ENOMEM;
3402                 goto unmap_vaddr;
3403         }
3404         rc = write_driver_ver_to_cfgtable(cfgtable);
3405         if (rc)
3406                 goto unmap_vaddr;
3407
3408         /* If reset via doorbell register is supported, use that.
3409          * There are two such methods.  Favor the newest method.
3410          */
3411         misc_fw_support = readl(&cfgtable->misc_fw_support);
3412         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3413         if (use_doorbell) {
3414                 use_doorbell = DOORBELL_CTLR_RESET2;
3415         } else {
3416                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3417                 if (use_doorbell) {
3418                         dev_warn(&pdev->dev, "Controller claims that "
3419                                 "'Bit 2 doorbell reset' is "
3420                                 "supported, but not 'bit 5 doorbell reset'.  "
3421                                 "Firmware update is recommended.\n");
3422                         rc = -ENOTSUPP; /* try soft reset */
3423                         goto unmap_cfgtable;
3424                 }
3425         }
3426
3427         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3428         if (rc)
3429                 goto unmap_cfgtable;
3430
3431         pci_restore_state(pdev);
3432         rc = pci_enable_device(pdev);
3433         if (rc) {
3434                 dev_warn(&pdev->dev, "failed to enable device.\n");
3435                 goto unmap_cfgtable;
3436         }
3437         pci_write_config_word(pdev, 4, command_register);
3438
3439         /* Some devices (notably the HP Smart Array 5i Controller)
3440            need a little pause here */
3441         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3442
3443         /* Wait for board to become not ready, then ready. */
3444         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3445         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3446         if (rc) {
3447                 dev_warn(&pdev->dev,
3448                         "failed waiting for board to reset."
3449                         " Will try soft reset.\n");
3450                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3451                 goto unmap_cfgtable;
3452         }
3453         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3454         if (rc) {
3455                 dev_warn(&pdev->dev,
3456                         "failed waiting for board to become ready "
3457                         "after hard reset\n");
3458                 goto unmap_cfgtable;
3459         }
3460
3461         rc = controller_reset_failed(vaddr);
3462         if (rc < 0)
3463                 goto unmap_cfgtable;
3464         if (rc) {
3465                 dev_warn(&pdev->dev, "Unable to successfully reset "
3466                         "controller. Will try soft reset.\n");
3467                 rc = -ENOTSUPP;
3468         } else {
3469                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3470         }
3471
3472 unmap_cfgtable:
3473         iounmap(cfgtable);
3474
3475 unmap_vaddr:
3476         iounmap(vaddr);
3477         return rc;
3478 }
3479
3480 /*
3481  *  We cannot read the structure directly, for portability we must use
3482  *   the io functions.
3483  *   This is for debug only.
3484  */
3485 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3486 {
3487 #ifdef HPSA_DEBUG
3488         int i;
3489         char temp_name[17];
3490
3491         dev_info(dev, "Controller Configuration information\n");
3492         dev_info(dev, "------------------------------------\n");
3493         for (i = 0; i < 4; i++)
3494                 temp_name[i] = readb(&(tb->Signature[i]));
3495         temp_name[4] = '\0';
3496         dev_info(dev, "   Signature = %s\n", temp_name);
3497         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3498         dev_info(dev, "   Transport methods supported = 0x%x\n",
3499                readl(&(tb->TransportSupport)));
3500         dev_info(dev, "   Transport methods active = 0x%x\n",
3501                readl(&(tb->TransportActive)));
3502         dev_info(dev, "   Requested transport Method = 0x%x\n",
3503                readl(&(tb->HostWrite.TransportRequest)));
3504         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3505                readl(&(tb->HostWrite.CoalIntDelay)));
3506         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3507                readl(&(tb->HostWrite.CoalIntCount)));
3508         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3509                readl(&(tb->CmdsOutMax)));
3510         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3511         for (i = 0; i < 16; i++)
3512                 temp_name[i] = readb(&(tb->ServerName[i]));
3513         temp_name[16] = '\0';
3514         dev_info(dev, "   Server Name = %s\n", temp_name);
3515         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3516                 readl(&(tb->HeartBeat)));
3517 #endif                          /* HPSA_DEBUG */
3518 }
3519
3520 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3521 {
3522         int i, offset, mem_type, bar_type;
3523
3524         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3525                 return 0;
3526         offset = 0;
3527         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3528                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3529                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3530                         offset += 4;
3531                 else {
3532                         mem_type = pci_resource_flags(pdev, i) &
3533                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3534                         switch (mem_type) {
3535                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3536                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3537                                 offset += 4;    /* 32 bit */
3538                                 break;
3539                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3540                                 offset += 8;
3541                                 break;
3542                         default:        /* reserved in PCI 2.2 */
3543                                 dev_warn(&pdev->dev,
3544                                        "base address is invalid\n");
3545                                 return -1;
3546                                 break;
3547                         }
3548                 }
3549                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3550                         return i + 1;
3551         }
3552         return -1;
3553 }
3554
3555 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3556  * controllers that are capable. If not, we use IO-APIC mode.
3557  */
3558
3559 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3560 {
3561 #ifdef CONFIG_PCI_MSI
3562         int err;
3563         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3564         {0, 2}, {0, 3}
3565         };
3566
3567         /* Some boards advertise MSI but don't really support it */
3568         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3569             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3570                 goto default_int_mode;
3571         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3572                 dev_info(&h->pdev->dev, "MSIX\n");
3573                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3574                 if (!err) {
3575                         h->intr[0] = hpsa_msix_entries[0].vector;
3576                         h->intr[1] = hpsa_msix_entries[1].vector;
3577                         h->intr[2] = hpsa_msix_entries[2].vector;
3578                         h->intr[3] = hpsa_msix_entries[3].vector;
3579                         h->msix_vector = 1;
3580                         return;
3581                 }
3582                 if (err > 0) {
3583                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3584                                "available\n", err);
3585                         goto default_int_mode;
3586                 } else {
3587                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3588                                err);
3589                         goto default_int_mode;
3590                 }
3591         }
3592         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3593                 dev_info(&h->pdev->dev, "MSI\n");
3594                 if (!pci_enable_msi(h->pdev))
3595                         h->msi_vector = 1;
3596                 else
3597                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3598         }
3599 default_int_mode:
3600 #endif                          /* CONFIG_PCI_MSI */
3601         /* if we get here we're going to use the default interrupt mode */
3602         h->intr[h->intr_mode] = h->pdev->irq;
3603 }
3604
3605 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3606 {
3607         int i;
3608         u32 subsystem_vendor_id, subsystem_device_id;
3609
3610         subsystem_vendor_id = pdev->subsystem_vendor;
3611         subsystem_device_id = pdev->subsystem_device;
3612         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3613                     subsystem_vendor_id;
3614
3615         for (i = 0; i < ARRAY_SIZE(products); i++)
3616                 if (*board_id == products[i].board_id)
3617                         return i;
3618
3619         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3620                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3621                 !hpsa_allow_any) {
3622                 dev_warn(&pdev->dev, "unrecognized board ID: "
3623                         "0x%08x, ignoring.\n", *board_id);
3624                         return -ENODEV;
3625         }
3626         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3627 }
3628
3629 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3630 {
3631         u16 command;
3632
3633         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3634         return ((command & PCI_COMMAND_MEMORY) == 0);
3635 }
3636
3637 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3638         unsigned long *memory_bar)
3639 {
3640         int i;
3641
3642         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3643                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3644                         /* addressing mode bits already removed */
3645                         *memory_bar = pci_resource_start(pdev, i);
3646                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3647                                 *memory_bar);
3648                         return 0;
3649                 }
3650         dev_warn(&pdev->dev, "no memory BAR found\n");
3651         return -ENODEV;
3652 }
3653
3654 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3655         void __iomem *vaddr, int wait_for_ready)
3656 {
3657         int i, iterations;
3658         u32 scratchpad;
3659         if (wait_for_ready)
3660                 iterations = HPSA_BOARD_READY_ITERATIONS;
3661         else
3662                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3663
3664         for (i = 0; i < iterations; i++) {
3665                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3666                 if (wait_for_ready) {
3667                         if (scratchpad == HPSA_FIRMWARE_READY)
3668                                 return 0;
3669                 } else {
3670                         if (scratchpad != HPSA_FIRMWARE_READY)
3671                                 return 0;
3672                 }
3673                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3674         }
3675         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3676         return -ENODEV;
3677 }
3678
3679 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3680         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3681         u64 *cfg_offset)
3682 {
3683         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3684         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3685         *cfg_base_addr &= (u32) 0x0000ffff;
3686         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3687         if (*cfg_base_addr_index == -1) {
3688                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3689                 return -ENODEV;
3690         }
3691         return 0;
3692 }
3693
3694 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3695 {
3696         u64 cfg_offset;
3697         u32 cfg_base_addr;
3698         u64 cfg_base_addr_index;
3699         u32 trans_offset;
3700         int rc;
3701
3702         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3703                 &cfg_base_addr_index, &cfg_offset);
3704         if (rc)
3705                 return rc;
3706         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3707                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3708         if (!h->cfgtable)
3709                 return -ENOMEM;
3710         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3711         if (rc)
3712                 return rc;
3713         /* Find performant mode table. */
3714         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3715         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3716                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3717                                 sizeof(*h->transtable));
3718         if (!h->transtable)
3719                 return -ENOMEM;
3720         return 0;
3721 }
3722
3723 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3724 {
3725         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3726
3727         /* Limit commands in memory limited kdump scenario. */
3728         if (reset_devices && h->max_commands > 32)
3729                 h->max_commands = 32;
3730
3731         if (h->max_commands < 16) {
3732                 dev_warn(&h->pdev->dev, "Controller reports "
3733                         "max supported commands of %d, an obvious lie. "
3734                         "Using 16.  Ensure that firmware is up to date.\n",
3735                         h->max_commands);
3736                 h->max_commands = 16;
3737         }
3738 }
3739
3740 /* Interrogate the hardware for some limits:
3741  * max commands, max SG elements without chaining, and with chaining,
3742  * SG chain block size, etc.
3743  */
3744 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3745 {
3746         hpsa_get_max_perf_mode_cmds(h);
3747         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3748         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3749         /*
3750          * Limit in-command s/g elements to 32 save dma'able memory.
3751          * Howvever spec says if 0, use 31
3752          */
3753         h->max_cmd_sg_entries = 31;
3754         if (h->maxsgentries > 512) {
3755                 h->max_cmd_sg_entries = 32;
3756                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3757                 h->maxsgentries--; /* save one for chain pointer */
3758         } else {
3759                 h->maxsgentries = 31; /* default to traditional values */
3760                 h->chainsize = 0;
3761         }
3762 }
3763
3764 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3765 {
3766         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3767             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3768             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3769             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3770                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3771                 return false;
3772         }
3773         return true;
3774 }
3775
3776 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3777 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3778 {
3779 #ifdef CONFIG_X86
3780         u32 prefetch;
3781
3782         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3783         prefetch |= 0x100;
3784         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3785 #endif
3786 }
3787
3788 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3789  * in a prefetch beyond physical memory.
3790  */
3791 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3792 {
3793         u32 dma_prefetch;
3794
3795         if (h->board_id != 0x3225103C)
3796                 return;
3797         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3798         dma_prefetch |= 0x8000;
3799         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3800 }
3801
3802 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3803 {
3804         int i;
3805         u32 doorbell_value;
3806         unsigned long flags;
3807
3808         /* under certain very rare conditions, this can take awhile.
3809          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3810          * as we enter this code.)
3811          */
3812         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3813                 spin_lock_irqsave(&h->lock, flags);
3814                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3815                 spin_unlock_irqrestore(&h->lock, flags);
3816                 if (!(doorbell_value & CFGTBL_ChangeReq))
3817                         break;
3818                 /* delay and try again */
3819                 usleep_range(10000, 20000);
3820         }
3821 }
3822
3823 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3824 {
3825         u32 trans_support;
3826
3827         trans_support = readl(&(h->cfgtable->TransportSupport));
3828         if (!(trans_support & SIMPLE_MODE))
3829                 return -ENOTSUPP;
3830
3831         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3832         /* Update the field, and then ring the doorbell */
3833         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3834         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3835         hpsa_wait_for_mode_change_ack(h);
3836         print_cfg_table(&h->pdev->dev, h->cfgtable);
3837         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3838                 dev_warn(&h->pdev->dev,
3839                         "unable to get board into simple mode\n");
3840                 return -ENODEV;
3841         }
3842         h->transMethod = CFGTBL_Trans_Simple;
3843         return 0;
3844 }
3845
3846 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3847 {
3848         int prod_index, err;
3849
3850         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3851         if (prod_index < 0)
3852                 return -ENODEV;
3853         h->product_name = products[prod_index].product_name;
3854         h->access = *(products[prod_index].access);
3855
3856         if (hpsa_board_disabled(h->pdev)) {
3857                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3858                 return -ENODEV;
3859         }
3860         err = pci_enable_device(h->pdev);
3861         if (err) {
3862                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3863                 return err;
3864         }
3865
3866         err = pci_request_regions(h->pdev, "hpsa");
3867         if (err) {
3868                 dev_err(&h->pdev->dev,
3869                         "cannot obtain PCI resources, aborting\n");
3870                 return err;
3871         }
3872         hpsa_interrupt_mode(h);
3873         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3874         if (err)
3875                 goto err_out_free_res;
3876         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3877         if (!h->vaddr) {
3878                 err = -ENOMEM;
3879                 goto err_out_free_res;
3880         }
3881         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3882         if (err)
3883                 goto err_out_free_res;
3884         err = hpsa_find_cfgtables(h);
3885         if (err)
3886                 goto err_out_free_res;
3887         hpsa_find_board_params(h);
3888
3889         if (!hpsa_CISS_signature_present(h)) {
3890                 err = -ENODEV;
3891                 goto err_out_free_res;
3892         }
3893         hpsa_enable_scsi_prefetch(h);
3894         hpsa_p600_dma_prefetch_quirk(h);
3895         err = hpsa_enter_simple_mode(h);
3896         if (err)
3897                 goto err_out_free_res;
3898         return 0;
3899
3900 err_out_free_res:
3901         if (h->transtable)
3902                 iounmap(h->transtable);
3903         if (h->cfgtable)
3904                 iounmap(h->cfgtable);
3905         if (h->vaddr)
3906                 iounmap(h->vaddr);
3907         /*
3908          * Deliberately omit pci_disable_device(): it does something nasty to
3909          * Smart Array controllers that pci_enable_device does not undo
3910          */
3911         pci_release_regions(h->pdev);
3912         return err;
3913 }
3914
3915 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3916 {
3917         int rc;
3918
3919 #define HBA_INQUIRY_BYTE_COUNT 64
3920         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3921         if (!h->hba_inquiry_data)
3922                 return;
3923         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3924                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3925         if (rc != 0) {
3926                 kfree(h->hba_inquiry_data);
3927                 h->hba_inquiry_data = NULL;
3928         }
3929 }
3930
3931 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3932 {
3933         int rc, i;
3934
3935         if (!reset_devices)
3936                 return 0;
3937
3938         /* Reset the controller with a PCI power-cycle or via doorbell */
3939         rc = hpsa_kdump_hard_reset_controller(pdev);
3940
3941         /* -ENOTSUPP here means we cannot reset the controller
3942          * but it's already (and still) up and running in
3943          * "performant mode".  Or, it might be 640x, which can't reset
3944          * due to concerns about shared bbwc between 6402/6404 pair.
3945          */
3946         if (rc == -ENOTSUPP)
3947                 return rc; /* just try to do the kdump anyhow. */
3948         if (rc)
3949                 return -ENODEV;
3950
3951         /* Now try to get the controller to respond to a no-op */
3952         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3953         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3954                 if (hpsa_noop(pdev) == 0)
3955                         break;
3956                 else
3957                         dev_warn(&pdev->dev, "no-op failed%s\n",
3958                                         (i < 11 ? "; re-trying" : ""));
3959         }
3960         return 0;
3961 }
3962
3963 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3964 {
3965         h->cmd_pool_bits = kzalloc(
3966                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3967                 sizeof(unsigned long), GFP_KERNEL);
3968         h->cmd_pool = pci_alloc_consistent(h->pdev,
3969                     h->nr_cmds * sizeof(*h->cmd_pool),
3970                     &(h->cmd_pool_dhandle));
3971         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3972                     h->nr_cmds * sizeof(*h->errinfo_pool),
3973                     &(h->errinfo_pool_dhandle));
3974         if ((h->cmd_pool_bits == NULL)
3975             || (h->cmd_pool == NULL)
3976             || (h->errinfo_pool == NULL)) {
3977                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3978                 return -ENOMEM;
3979         }
3980         return 0;
3981 }
3982
3983 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3984 {
3985         kfree(h->cmd_pool_bits);
3986         if (h->cmd_pool)
3987                 pci_free_consistent(h->pdev,
3988                             h->nr_cmds * sizeof(struct CommandList),
3989                             h->cmd_pool, h->cmd_pool_dhandle);
3990         if (h->errinfo_pool)
3991                 pci_free_consistent(h->pdev,
3992                             h->nr_cmds * sizeof(struct ErrorInfo),
3993                             h->errinfo_pool,
3994                             h->errinfo_pool_dhandle);
3995 }
3996
3997 static int hpsa_request_irq(struct ctlr_info *h,
3998         irqreturn_t (*msixhandler)(int, void *),
3999         irqreturn_t (*intxhandler)(int, void *))
4000 {
4001         int rc;
4002
4003         if (h->msix_vector || h->msi_vector)
4004                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4005                                 IRQF_DISABLED, h->devname, h);
4006         else
4007                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4008                                 IRQF_DISABLED, h->devname, h);
4009         if (rc) {
4010                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4011                        h->intr[h->intr_mode], h->devname);
4012                 return -ENODEV;
4013         }
4014         return 0;
4015 }
4016
4017 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4018 {
4019         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4020                 HPSA_RESET_TYPE_CONTROLLER)) {
4021                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4022                 return -EIO;
4023         }
4024
4025         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4026         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4027                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4028                 return -1;
4029         }
4030
4031         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4032         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4033                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4034                         "after soft reset.\n");
4035                 return -1;
4036         }
4037
4038         return 0;
4039 }
4040
4041 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4042 {
4043         free_irq(h->intr[h->intr_mode], h);
4044 #ifdef CONFIG_PCI_MSI
4045         if (h->msix_vector)
4046                 pci_disable_msix(h->pdev);
4047         else if (h->msi_vector)
4048                 pci_disable_msi(h->pdev);
4049 #endif /* CONFIG_PCI_MSI */
4050         hpsa_free_sg_chain_blocks(h);
4051         hpsa_free_cmd_pool(h);
4052         kfree(h->blockFetchTable);
4053         pci_free_consistent(h->pdev, h->reply_pool_size,
4054                 h->reply_pool, h->reply_pool_dhandle);
4055         if (h->vaddr)
4056                 iounmap(h->vaddr);
4057         if (h->transtable)
4058                 iounmap(h->transtable);
4059         if (h->cfgtable)
4060                 iounmap(h->cfgtable);
4061         pci_release_regions(h->pdev);
4062         kfree(h);
4063 }
4064
4065 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4066                                     const struct pci_device_id *ent)
4067 {
4068         int dac, rc;
4069         struct ctlr_info *h;
4070         int try_soft_reset = 0;
4071         unsigned long flags;
4072
4073         if (number_of_controllers == 0)
4074                 printk(KERN_INFO DRIVER_NAME "\n");
4075
4076         rc = hpsa_init_reset_devices(pdev);
4077         if (rc) {
4078                 if (rc != -ENOTSUPP)
4079                         return rc;
4080                 /* If the reset fails in a particular way (it has no way to do
4081                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4082                  * a soft reset once we get the controller configured up to the
4083                  * point that it can accept a command.
4084                  */
4085                 try_soft_reset = 1;
4086                 rc = 0;
4087         }
4088
4089 reinit_after_soft_reset:
4090
4091         /* Command structures must be aligned on a 32-byte boundary because
4092          * the 5 lower bits of the address are used by the hardware. and by
4093          * the driver.  See comments in hpsa.h for more info.
4094          */
4095 #define COMMANDLIST_ALIGNMENT 32
4096         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4097         h = kzalloc(sizeof(*h), GFP_KERNEL);
4098         if (!h)
4099                 return -ENOMEM;
4100
4101         h->pdev = pdev;
4102         h->busy_initializing = 1;
4103         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4104         INIT_LIST_HEAD(&h->cmpQ);
4105         INIT_LIST_HEAD(&h->reqQ);
4106         spin_lock_init(&h->lock);
4107         spin_lock_init(&h->scan_lock);
4108         rc = hpsa_pci_init(h);
4109         if (rc != 0)
4110                 goto clean1;
4111
4112         sprintf(h->devname, "hpsa%d", number_of_controllers);
4113         h->ctlr = number_of_controllers;
4114         number_of_controllers++;
4115
4116         /* configure PCI DMA stuff */
4117         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4118         if (rc == 0) {
4119                 dac = 1;
4120         } else {
4121                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4122                 if (rc == 0) {
4123                         dac = 0;
4124                 } else {
4125                         dev_err(&pdev->dev, "no suitable DMA available\n");
4126                         goto clean1;
4127                 }
4128         }
4129
4130         /* make sure the board interrupts are off */
4131         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4132
4133         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4134                 goto clean2;
4135         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4136                h->devname, pdev->device,
4137                h->intr[h->intr_mode], dac ? "" : " not");
4138         if (hpsa_allocate_cmd_pool(h))
4139                 goto clean4;
4140         if (hpsa_allocate_sg_chain_blocks(h))
4141                 goto clean4;
4142         init_waitqueue_head(&h->scan_wait_queue);
4143         h->scan_finished = 1; /* no scan currently in progress */
4144
4145         pci_set_drvdata(pdev, h);
4146         h->ndevices = 0;
4147         h->scsi_host = NULL;
4148         spin_lock_init(&h->devlock);
4149         hpsa_put_ctlr_into_performant_mode(h);
4150
4151         /* At this point, the controller is ready to take commands.
4152          * Now, if reset_devices and the hard reset didn't work, try
4153          * the soft reset and see if that works.
4154          */
4155         if (try_soft_reset) {
4156
4157                 /* This is kind of gross.  We may or may not get a completion
4158                  * from the soft reset command, and if we do, then the value
4159                  * from the fifo may or may not be valid.  So, we wait 10 secs
4160                  * after the reset throwing away any completions we get during
4161                  * that time.  Unregister the interrupt handler and register
4162                  * fake ones to scoop up any residual completions.
4163                  */
4164                 spin_lock_irqsave(&h->lock, flags);
4165                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166                 spin_unlock_irqrestore(&h->lock, flags);
4167                 free_irq(h->intr[h->intr_mode], h);
4168                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4169                                         hpsa_intx_discard_completions);
4170                 if (rc) {
4171                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4172                                 "soft reset.\n");
4173                         goto clean4;
4174                 }
4175
4176                 rc = hpsa_kdump_soft_reset(h);
4177                 if (rc)
4178                         /* Neither hard nor soft reset worked, we're hosed. */
4179                         goto clean4;
4180
4181                 dev_info(&h->pdev->dev, "Board READY.\n");
4182                 dev_info(&h->pdev->dev,
4183                         "Waiting for stale completions to drain.\n");
4184                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4185                 msleep(10000);
4186                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4187
4188                 rc = controller_reset_failed(h->cfgtable);
4189                 if (rc)
4190                         dev_info(&h->pdev->dev,
4191                                 "Soft reset appears to have failed.\n");
4192
4193                 /* since the controller's reset, we have to go back and re-init
4194                  * everything.  Easiest to just forget what we've done and do it
4195                  * all over again.
4196                  */
4197                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4198                 try_soft_reset = 0;
4199                 if (rc)
4200                         /* don't go to clean4, we already unallocated */
4201                         return -ENODEV;
4202
4203                 goto reinit_after_soft_reset;
4204         }
4205
4206         /* Turn the interrupts on so we can service requests */
4207         h->access.set_intr_mask(h, HPSA_INTR_ON);
4208
4209         hpsa_hba_inquiry(h);
4210         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4211         h->busy_initializing = 0;
4212         return 1;
4213
4214 clean4:
4215         hpsa_free_sg_chain_blocks(h);
4216         hpsa_free_cmd_pool(h);
4217         free_irq(h->intr[h->intr_mode], h);
4218 clean2:
4219 clean1:
4220         h->busy_initializing = 0;
4221         kfree(h);
4222         return rc;
4223 }
4224
4225 static void hpsa_flush_cache(struct ctlr_info *h)
4226 {
4227         char *flush_buf;
4228         struct CommandList *c;
4229
4230         flush_buf = kzalloc(4, GFP_KERNEL);
4231         if (!flush_buf)
4232                 return;
4233
4234         c = cmd_special_alloc(h);
4235         if (!c) {
4236                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4237                 goto out_of_memory;
4238         }
4239         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4240                 RAID_CTLR_LUNID, TYPE_CMD);
4241         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4242         if (c->err_info->CommandStatus != 0)
4243                 dev_warn(&h->pdev->dev,
4244                         "error flushing cache on controller\n");
4245         cmd_special_free(h, c);
4246 out_of_memory:
4247         kfree(flush_buf);
4248 }
4249
4250 static void hpsa_shutdown(struct pci_dev *pdev)
4251 {
4252         struct ctlr_info *h;
4253
4254         h = pci_get_drvdata(pdev);
4255         /* Turn board interrupts off  and send the flush cache command
4256          * sendcmd will turn off interrupt, and send the flush...
4257          * To write all data in the battery backed cache to disks
4258          */
4259         hpsa_flush_cache(h);
4260         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4261         free_irq(h->intr[h->intr_mode], h);
4262 #ifdef CONFIG_PCI_MSI
4263         if (h->msix_vector)
4264                 pci_disable_msix(h->pdev);
4265         else if (h->msi_vector)
4266                 pci_disable_msi(h->pdev);
4267 #endif                          /* CONFIG_PCI_MSI */
4268 }
4269
4270 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4271 {
4272         struct ctlr_info *h;
4273
4274         if (pci_get_drvdata(pdev) == NULL) {
4275                 dev_err(&pdev->dev, "unable to remove device \n");
4276                 return;
4277         }
4278         h = pci_get_drvdata(pdev);
4279         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4280         hpsa_shutdown(pdev);
4281         iounmap(h->vaddr);
4282         iounmap(h->transtable);
4283         iounmap(h->cfgtable);
4284         hpsa_free_sg_chain_blocks(h);
4285         pci_free_consistent(h->pdev,
4286                 h->nr_cmds * sizeof(struct CommandList),
4287                 h->cmd_pool, h->cmd_pool_dhandle);
4288         pci_free_consistent(h->pdev,
4289                 h->nr_cmds * sizeof(struct ErrorInfo),
4290                 h->errinfo_pool, h->errinfo_pool_dhandle);
4291         pci_free_consistent(h->pdev, h->reply_pool_size,
4292                 h->reply_pool, h->reply_pool_dhandle);
4293         kfree(h->cmd_pool_bits);
4294         kfree(h->blockFetchTable);
4295         kfree(h->hba_inquiry_data);
4296         /*
4297          * Deliberately omit pci_disable_device(): it does something nasty to
4298          * Smart Array controllers that pci_enable_device does not undo
4299          */
4300         pci_release_regions(pdev);
4301         pci_set_drvdata(pdev, NULL);
4302         kfree(h);
4303 }
4304
4305 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4306         __attribute__((unused)) pm_message_t state)
4307 {
4308         return -ENOSYS;
4309 }
4310
4311 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4312 {
4313         return -ENOSYS;
4314 }
4315
4316 static struct pci_driver hpsa_pci_driver = {
4317         .name = "hpsa",
4318         .probe = hpsa_init_one,
4319         .remove = __devexit_p(hpsa_remove_one),
4320         .id_table = hpsa_pci_device_id, /* id_table */
4321         .shutdown = hpsa_shutdown,
4322         .suspend = hpsa_suspend,
4323         .resume = hpsa_resume,
4324 };
4325
4326 /* Fill in bucket_map[], given nsgs (the max number of
4327  * scatter gather elements supported) and bucket[],
4328  * which is an array of 8 integers.  The bucket[] array
4329  * contains 8 different DMA transfer sizes (in 16
4330  * byte increments) which the controller uses to fetch
4331  * commands.  This function fills in bucket_map[], which
4332  * maps a given number of scatter gather elements to one of
4333  * the 8 DMA transfer sizes.  The point of it is to allow the
4334  * controller to only do as much DMA as needed to fetch the
4335  * command, with the DMA transfer size encoded in the lower
4336  * bits of the command address.
4337  */
4338 static void  calc_bucket_map(int bucket[], int num_buckets,
4339         int nsgs, int *bucket_map)
4340 {
4341         int i, j, b, size;
4342
4343         /* even a command with 0 SGs requires 4 blocks */
4344 #define MINIMUM_TRANSFER_BLOCKS 4
4345 #define NUM_BUCKETS 8
4346         /* Note, bucket_map must have nsgs+1 entries. */
4347         for (i = 0; i <= nsgs; i++) {
4348                 /* Compute size of a command with i SG entries */
4349                 size = i + MINIMUM_TRANSFER_BLOCKS;
4350                 b = num_buckets; /* Assume the biggest bucket */
4351                 /* Find the bucket that is just big enough */
4352                 for (j = 0; j < 8; j++) {
4353                         if (bucket[j] >= size) {
4354                                 b = j;
4355                                 break;
4356                         }
4357                 }
4358                 /* for a command with i SG entries, use bucket b. */
4359                 bucket_map[i] = b;
4360         }
4361 }
4362
4363 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4364         u32 use_short_tags)
4365 {
4366         int i;
4367         unsigned long register_value;
4368
4369         /* This is a bit complicated.  There are 8 registers on
4370          * the controller which we write to to tell it 8 different
4371          * sizes of commands which there may be.  It's a way of
4372          * reducing the DMA done to fetch each command.  Encoded into
4373          * each command's tag are 3 bits which communicate to the controller
4374          * which of the eight sizes that command fits within.  The size of
4375          * each command depends on how many scatter gather entries there are.
4376          * Each SG entry requires 16 bytes.  The eight registers are programmed
4377          * with the number of 16-byte blocks a command of that size requires.
4378          * The smallest command possible requires 5 such 16 byte blocks.
4379          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4380          * blocks.  Note, this only extends to the SG entries contained
4381          * within the command block, and does not extend to chained blocks
4382          * of SG elements.   bft[] contains the eight values we write to
4383          * the registers.  They are not evenly distributed, but have more
4384          * sizes for small commands, and fewer sizes for larger commands.
4385          */
4386         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4387         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4388         /*  5 = 1 s/g entry or 4k
4389          *  6 = 2 s/g entry or 8k
4390          *  8 = 4 s/g entry or 16k
4391          * 10 = 6 s/g entry or 24k
4392          */
4393
4394         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4395
4396         /* Controller spec: zero out this buffer. */
4397         memset(h->reply_pool, 0, h->reply_pool_size);
4398         h->reply_pool_head = h->reply_pool;
4399
4400         bft[7] = h->max_sg_entries + 4;
4401         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4402         for (i = 0; i < 8; i++)
4403                 writel(bft[i], &h->transtable->BlockFetch[i]);
4404
4405         /* size of controller ring buffer */
4406         writel(h->max_commands, &h->transtable->RepQSize);
4407         writel(1, &h->transtable->RepQCount);
4408         writel(0, &h->transtable->RepQCtrAddrLow32);
4409         writel(0, &h->transtable->RepQCtrAddrHigh32);
4410         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4411         writel(0, &h->transtable->RepQAddr0High32);
4412         writel(CFGTBL_Trans_Performant | use_short_tags,
4413                 &(h->cfgtable->HostWrite.TransportRequest));
4414         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4415         hpsa_wait_for_mode_change_ack(h);
4416         register_value = readl(&(h->cfgtable->TransportActive));
4417         if (!(register_value & CFGTBL_Trans_Performant)) {
4418                 dev_warn(&h->pdev->dev, "unable to get board into"
4419                                         " performant mode\n");
4420                 return;
4421         }
4422         /* Change the access methods to the performant access methods */
4423         h->access = SA5_performant_access;
4424         h->transMethod = CFGTBL_Trans_Performant;
4425 }
4426
4427 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4428 {
4429         u32 trans_support;
4430
4431         if (hpsa_simple_mode)
4432                 return;
4433
4434         trans_support = readl(&(h->cfgtable->TransportSupport));
4435         if (!(trans_support & PERFORMANT_MODE))
4436                 return;
4437
4438         hpsa_get_max_perf_mode_cmds(h);
4439         h->max_sg_entries = 32;
4440         /* Performant mode ring buffer and supporting data structures */
4441         h->reply_pool_size = h->max_commands * sizeof(u64);
4442         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4443                                 &(h->reply_pool_dhandle));
4444
4445         /* Need a block fetch table for performant mode */
4446         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4447                                 sizeof(u32)), GFP_KERNEL);
4448
4449         if ((h->reply_pool == NULL)
4450                 || (h->blockFetchTable == NULL))
4451                 goto clean_up;
4452
4453         hpsa_enter_performant_mode(h,
4454                 trans_support & CFGTBL_Trans_use_short_tags);
4455
4456         return;
4457
4458 clean_up:
4459         if (h->reply_pool)
4460                 pci_free_consistent(h->pdev, h->reply_pool_size,
4461                         h->reply_pool, h->reply_pool_dhandle);
4462         kfree(h->blockFetchTable);
4463 }
4464
4465 /*
4466  *  This is it.  Register the PCI driver information for the cards we control
4467  *  the OS will call our registered routines when it finds one of our cards.
4468  */
4469 static int __init hpsa_init(void)
4470 {
4471         return pci_register_driver(&hpsa_pci_driver);
4472 }
4473
4474 static void __exit hpsa_cleanup(void)
4475 {
4476         pci_unregister_driver(&hpsa_pci_driver);
4477 }
4478
4479 module_init(hpsa_init);
4480 module_exit(hpsa_cleanup);