pandora: update defconfig
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89 #define PCI_DEVICE_ID_HP_CISSF 0x333f
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
91         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
92                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
97
98 /*  board_id = Subsystem Device ID & Vendor ID
99  *  product = Marketing Name for the board
100  *  access = Address of the struct of function pointers
101  */
102 static struct board_type products[] = {
103         {0x3241103C, "Smart Array P212", &SA5_access},
104         {0x3243103C, "Smart Array P410", &SA5_access},
105         {0x3245103C, "Smart Array P410i", &SA5_access},
106         {0x3247103C, "Smart Array P411", &SA5_access},
107         {0x3249103C, "Smart Array P812", &SA5_access},
108         {0x324a103C, "Smart Array P712m", &SA5_access},
109         {0x324b103C, "Smart Array P711m", &SA5_access},
110         {0x3233103C, "StorageWorks P1210m", &SA5_access},
111         {0x333F103C, "StorageWorks P1210m", &SA5_access},
112         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114
115 static int number_of_controllers;
116
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
131         int cmd_type);
132
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134                 void (*done)(struct scsi_cmnd *));
135 static void hpsa_scan_start(struct Scsi_Host *);
136 static int hpsa_scan_finished(struct Scsi_Host *sh,
137         unsigned long elapsed_time);
138 static int hpsa_change_queue_depth(struct scsi_device *sdev,
139         int qdepth, int reason);
140
141 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
142 static int hpsa_slave_alloc(struct scsi_device *sdev);
143 static void hpsa_slave_destroy(struct scsi_device *sdev);
144
145 static ssize_t raid_level_show(struct device *dev,
146         struct device_attribute *attr, char *buf);
147 static ssize_t lunid_show(struct device *dev,
148         struct device_attribute *attr, char *buf);
149 static ssize_t unique_id_show(struct device *dev,
150         struct device_attribute *attr, char *buf);
151 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
152 static ssize_t host_store_rescan(struct device *dev,
153          struct device_attribute *attr, const char *buf, size_t count);
154 static int check_for_unit_attention(struct ctlr_info *h,
155         struct CommandList *c);
156 static void check_ioctl_unit_attention(struct ctlr_info *h,
157         struct CommandList *c);
158 /* performant mode helper functions */
159 static void calc_bucket_map(int *bucket, int num_buckets,
160         int nsgs, int *bucket_map);
161 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
162 static inline u32 next_command(struct ctlr_info *h);
163
164 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
165 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
166 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
167 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
168
169 static struct device_attribute *hpsa_sdev_attrs[] = {
170         &dev_attr_raid_level,
171         &dev_attr_lunid,
172         &dev_attr_unique_id,
173         NULL,
174 };
175
176 static struct device_attribute *hpsa_shost_attrs[] = {
177         &dev_attr_rescan,
178         NULL,
179 };
180
181 static struct scsi_host_template hpsa_driver_template = {
182         .module                 = THIS_MODULE,
183         .name                   = "hpsa",
184         .proc_name              = "hpsa",
185         .queuecommand           = hpsa_scsi_queue_command,
186         .scan_start             = hpsa_scan_start,
187         .scan_finished          = hpsa_scan_finished,
188         .change_queue_depth     = hpsa_change_queue_depth,
189         .this_id                = -1,
190         .use_clustering         = ENABLE_CLUSTERING,
191         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
192         .ioctl                  = hpsa_ioctl,
193         .slave_alloc            = hpsa_slave_alloc,
194         .slave_destroy          = hpsa_slave_destroy,
195 #ifdef CONFIG_COMPAT
196         .compat_ioctl           = hpsa_compat_ioctl,
197 #endif
198         .sdev_attrs = hpsa_sdev_attrs,
199         .shost_attrs = hpsa_shost_attrs,
200 };
201
202 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
203 {
204         unsigned long *priv = shost_priv(sdev->host);
205         return (struct ctlr_info *) *priv;
206 }
207
208 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
209 {
210         unsigned long *priv = shost_priv(sh);
211         return (struct ctlr_info *) *priv;
212 }
213
214 static int check_for_unit_attention(struct ctlr_info *h,
215         struct CommandList *c)
216 {
217         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
218                 return 0;
219
220         switch (c->err_info->SenseInfo[12]) {
221         case STATE_CHANGED:
222                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
223                         "detected, command retried\n", h->ctlr);
224                 break;
225         case LUN_FAILED:
226                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
227                         "detected, action required\n", h->ctlr);
228                 break;
229         case REPORT_LUNS_CHANGED:
230                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
231                         "changed, action required\n", h->ctlr);
232         /*
233          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
234          */
235                 break;
236         case POWER_OR_RESET:
237                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
238                         "or device reset detected\n", h->ctlr);
239                 break;
240         case UNIT_ATTENTION_CLEARED:
241                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
242                     "cleared by another initiator\n", h->ctlr);
243                 break;
244         default:
245                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
246                         "unit attention detected\n", h->ctlr);
247                 break;
248         }
249         return 1;
250 }
251
252 static ssize_t host_store_rescan(struct device *dev,
253                                  struct device_attribute *attr,
254                                  const char *buf, size_t count)
255 {
256         struct ctlr_info *h;
257         struct Scsi_Host *shost = class_to_shost(dev);
258         h = shost_to_hba(shost);
259         hpsa_scan_start(h->scsi_host);
260         return count;
261 }
262
263 /* Enqueuing and dequeuing functions for cmdlists. */
264 static inline void addQ(struct hlist_head *list, struct CommandList *c)
265 {
266         hlist_add_head(&c->list, list);
267 }
268
269 static inline u32 next_command(struct ctlr_info *h)
270 {
271         u32 a;
272
273         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
274                 return h->access.command_completed(h);
275
276         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
277                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
278                 (h->reply_pool_head)++;
279                 h->commands_outstanding--;
280         } else {
281                 a = FIFO_EMPTY;
282         }
283         /* Check for wraparound */
284         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
285                 h->reply_pool_head = h->reply_pool;
286                 h->reply_pool_wraparound ^= 1;
287         }
288         return a;
289 }
290
291 /* set_performant_mode: Modify the tag for cciss performant
292  * set bit 0 for pull model, bits 3-1 for block fetch
293  * register number
294  */
295 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
296 {
297         if (likely(h->transMethod == CFGTBL_Trans_Performant))
298                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
299 }
300
301 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
302         struct CommandList *c)
303 {
304         unsigned long flags;
305
306         set_performant_mode(h, c);
307         spin_lock_irqsave(&h->lock, flags);
308         addQ(&h->reqQ, c);
309         h->Qdepth++;
310         start_io(h);
311         spin_unlock_irqrestore(&h->lock, flags);
312 }
313
314 static inline void removeQ(struct CommandList *c)
315 {
316         if (WARN_ON(hlist_unhashed(&c->list)))
317                 return;
318         hlist_del_init(&c->list);
319 }
320
321 static inline int is_hba_lunid(unsigned char scsi3addr[])
322 {
323         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
324 }
325
326 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
327 {
328         return (scsi3addr[3] & 0xC0) == 0x40;
329 }
330
331 static inline int is_scsi_rev_5(struct ctlr_info *h)
332 {
333         if (!h->hba_inquiry_data)
334                 return 0;
335         if ((h->hba_inquiry_data[2] & 0x07) == 5)
336                 return 1;
337         return 0;
338 }
339
340 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
341         "UNKNOWN"
342 };
343 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
344
345 static ssize_t raid_level_show(struct device *dev,
346              struct device_attribute *attr, char *buf)
347 {
348         ssize_t l = 0;
349         unsigned char rlevel;
350         struct ctlr_info *h;
351         struct scsi_device *sdev;
352         struct hpsa_scsi_dev_t *hdev;
353         unsigned long flags;
354
355         sdev = to_scsi_device(dev);
356         h = sdev_to_hba(sdev);
357         spin_lock_irqsave(&h->lock, flags);
358         hdev = sdev->hostdata;
359         if (!hdev) {
360                 spin_unlock_irqrestore(&h->lock, flags);
361                 return -ENODEV;
362         }
363
364         /* Is this even a logical drive? */
365         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
366                 spin_unlock_irqrestore(&h->lock, flags);
367                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
368                 return l;
369         }
370
371         rlevel = hdev->raid_level;
372         spin_unlock_irqrestore(&h->lock, flags);
373         if (rlevel > RAID_UNKNOWN)
374                 rlevel = RAID_UNKNOWN;
375         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
376         return l;
377 }
378
379 static ssize_t lunid_show(struct device *dev,
380              struct device_attribute *attr, char *buf)
381 {
382         struct ctlr_info *h;
383         struct scsi_device *sdev;
384         struct hpsa_scsi_dev_t *hdev;
385         unsigned long flags;
386         unsigned char lunid[8];
387
388         sdev = to_scsi_device(dev);
389         h = sdev_to_hba(sdev);
390         spin_lock_irqsave(&h->lock, flags);
391         hdev = sdev->hostdata;
392         if (!hdev) {
393                 spin_unlock_irqrestore(&h->lock, flags);
394                 return -ENODEV;
395         }
396         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
397         spin_unlock_irqrestore(&h->lock, flags);
398         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
399                 lunid[0], lunid[1], lunid[2], lunid[3],
400                 lunid[4], lunid[5], lunid[6], lunid[7]);
401 }
402
403 static ssize_t unique_id_show(struct device *dev,
404              struct device_attribute *attr, char *buf)
405 {
406         struct ctlr_info *h;
407         struct scsi_device *sdev;
408         struct hpsa_scsi_dev_t *hdev;
409         unsigned long flags;
410         unsigned char sn[16];
411
412         sdev = to_scsi_device(dev);
413         h = sdev_to_hba(sdev);
414         spin_lock_irqsave(&h->lock, flags);
415         hdev = sdev->hostdata;
416         if (!hdev) {
417                 spin_unlock_irqrestore(&h->lock, flags);
418                 return -ENODEV;
419         }
420         memcpy(sn, hdev->device_id, sizeof(sn));
421         spin_unlock_irqrestore(&h->lock, flags);
422         return snprintf(buf, 16 * 2 + 2,
423                         "%02X%02X%02X%02X%02X%02X%02X%02X"
424                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
425                         sn[0], sn[1], sn[2], sn[3],
426                         sn[4], sn[5], sn[6], sn[7],
427                         sn[8], sn[9], sn[10], sn[11],
428                         sn[12], sn[13], sn[14], sn[15]);
429 }
430
431 static int hpsa_find_target_lun(struct ctlr_info *h,
432         unsigned char scsi3addr[], int bus, int *target, int *lun)
433 {
434         /* finds an unused bus, target, lun for a new physical device
435          * assumes h->devlock is held
436          */
437         int i, found = 0;
438         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
439
440         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
441
442         for (i = 0; i < h->ndevices; i++) {
443                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
444                         set_bit(h->dev[i]->target, lun_taken);
445         }
446
447         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
448                 if (!test_bit(i, lun_taken)) {
449                         /* *bus = 1; */
450                         *target = i;
451                         *lun = 0;
452                         found = 1;
453                         break;
454                 }
455         }
456         return !found;
457 }
458
459 /* Add an entry into h->dev[] array. */
460 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
461                 struct hpsa_scsi_dev_t *device,
462                 struct hpsa_scsi_dev_t *added[], int *nadded)
463 {
464         /* assumes h->devlock is held */
465         int n = h->ndevices;
466         int i;
467         unsigned char addr1[8], addr2[8];
468         struct hpsa_scsi_dev_t *sd;
469
470         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
471                 dev_err(&h->pdev->dev, "too many devices, some will be "
472                         "inaccessible.\n");
473                 return -1;
474         }
475
476         /* physical devices do not have lun or target assigned until now. */
477         if (device->lun != -1)
478                 /* Logical device, lun is already assigned. */
479                 goto lun_assigned;
480
481         /* If this device a non-zero lun of a multi-lun device
482          * byte 4 of the 8-byte LUN addr will contain the logical
483          * unit no, zero otherise.
484          */
485         if (device->scsi3addr[4] == 0) {
486                 /* This is not a non-zero lun of a multi-lun device */
487                 if (hpsa_find_target_lun(h, device->scsi3addr,
488                         device->bus, &device->target, &device->lun) != 0)
489                         return -1;
490                 goto lun_assigned;
491         }
492
493         /* This is a non-zero lun of a multi-lun device.
494          * Search through our list and find the device which
495          * has the same 8 byte LUN address, excepting byte 4.
496          * Assign the same bus and target for this new LUN.
497          * Use the logical unit number from the firmware.
498          */
499         memcpy(addr1, device->scsi3addr, 8);
500         addr1[4] = 0;
501         for (i = 0; i < n; i++) {
502                 sd = h->dev[i];
503                 memcpy(addr2, sd->scsi3addr, 8);
504                 addr2[4] = 0;
505                 /* differ only in byte 4? */
506                 if (memcmp(addr1, addr2, 8) == 0) {
507                         device->bus = sd->bus;
508                         device->target = sd->target;
509                         device->lun = device->scsi3addr[4];
510                         break;
511                 }
512         }
513         if (device->lun == -1) {
514                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
515                         " suspect firmware bug or unsupported hardware "
516                         "configuration.\n");
517                         return -1;
518         }
519
520 lun_assigned:
521
522         h->dev[n] = device;
523         h->ndevices++;
524         added[*nadded] = device;
525         (*nadded)++;
526
527         /* initially, (before registering with scsi layer) we don't
528          * know our hostno and we don't want to print anything first
529          * time anyway (the scsi layer's inquiries will show that info)
530          */
531         /* if (hostno != -1) */
532                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
533                         scsi_device_type(device->devtype), hostno,
534                         device->bus, device->target, device->lun);
535         return 0;
536 }
537
538 /* Replace an entry from h->dev[] array. */
539 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
540         int entry, struct hpsa_scsi_dev_t *new_entry,
541         struct hpsa_scsi_dev_t *added[], int *nadded,
542         struct hpsa_scsi_dev_t *removed[], int *nremoved)
543 {
544         /* assumes h->devlock is held */
545         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
546         removed[*nremoved] = h->dev[entry];
547         (*nremoved)++;
548         h->dev[entry] = new_entry;
549         added[*nadded] = new_entry;
550         (*nadded)++;
551         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
552                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
553                         new_entry->target, new_entry->lun);
554 }
555
556 /* Remove an entry from h->dev[] array. */
557 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
558         struct hpsa_scsi_dev_t *removed[], int *nremoved)
559 {
560         /* assumes h->devlock is held */
561         int i;
562         struct hpsa_scsi_dev_t *sd;
563
564         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
565
566         sd = h->dev[entry];
567         removed[*nremoved] = h->dev[entry];
568         (*nremoved)++;
569
570         for (i = entry; i < h->ndevices-1; i++)
571                 h->dev[i] = h->dev[i+1];
572         h->ndevices--;
573         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
574                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
575                 sd->lun);
576 }
577
578 #define SCSI3ADDR_EQ(a, b) ( \
579         (a)[7] == (b)[7] && \
580         (a)[6] == (b)[6] && \
581         (a)[5] == (b)[5] && \
582         (a)[4] == (b)[4] && \
583         (a)[3] == (b)[3] && \
584         (a)[2] == (b)[2] && \
585         (a)[1] == (b)[1] && \
586         (a)[0] == (b)[0])
587
588 static void fixup_botched_add(struct ctlr_info *h,
589         struct hpsa_scsi_dev_t *added)
590 {
591         /* called when scsi_add_device fails in order to re-adjust
592          * h->dev[] to match the mid layer's view.
593          */
594         unsigned long flags;
595         int i, j;
596
597         spin_lock_irqsave(&h->lock, flags);
598         for (i = 0; i < h->ndevices; i++) {
599                 if (h->dev[i] == added) {
600                         for (j = i; j < h->ndevices-1; j++)
601                                 h->dev[j] = h->dev[j+1];
602                         h->ndevices--;
603                         break;
604                 }
605         }
606         spin_unlock_irqrestore(&h->lock, flags);
607         kfree(added);
608 }
609
610 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
611         struct hpsa_scsi_dev_t *dev2)
612 {
613         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
614                 (dev1->lun != -1 && dev2->lun != -1)) &&
615                 dev1->devtype != 0x0C)
616                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
617
618         /* we compare everything except lun and target as these
619          * are not yet assigned.  Compare parts likely
620          * to differ first
621          */
622         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
623                 sizeof(dev1->scsi3addr)) != 0)
624                 return 0;
625         if (memcmp(dev1->device_id, dev2->device_id,
626                 sizeof(dev1->device_id)) != 0)
627                 return 0;
628         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
629                 return 0;
630         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
631                 return 0;
632         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
633                 return 0;
634         if (dev1->devtype != dev2->devtype)
635                 return 0;
636         if (dev1->raid_level != dev2->raid_level)
637                 return 0;
638         if (dev1->bus != dev2->bus)
639                 return 0;
640         return 1;
641 }
642
643 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
644  * and return needle location in *index.  If scsi3addr matches, but not
645  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
646  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
647  */
648 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
649         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
650         int *index)
651 {
652         int i;
653 #define DEVICE_NOT_FOUND 0
654 #define DEVICE_CHANGED 1
655 #define DEVICE_SAME 2
656         for (i = 0; i < haystack_size; i++) {
657                 if (haystack[i] == NULL) /* previously removed. */
658                         continue;
659                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
660                         *index = i;
661                         if (device_is_the_same(needle, haystack[i]))
662                                 return DEVICE_SAME;
663                         else
664                                 return DEVICE_CHANGED;
665                 }
666         }
667         *index = -1;
668         return DEVICE_NOT_FOUND;
669 }
670
671 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
672         struct hpsa_scsi_dev_t *sd[], int nsds)
673 {
674         /* sd contains scsi3 addresses and devtypes, and inquiry
675          * data.  This function takes what's in sd to be the current
676          * reality and updates h->dev[] to reflect that reality.
677          */
678         int i, entry, device_change, changes = 0;
679         struct hpsa_scsi_dev_t *csd;
680         unsigned long flags;
681         struct hpsa_scsi_dev_t **added, **removed;
682         int nadded, nremoved;
683         struct Scsi_Host *sh = NULL;
684
685         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
686                 GFP_KERNEL);
687         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
688                 GFP_KERNEL);
689
690         if (!added || !removed) {
691                 dev_warn(&h->pdev->dev, "out of memory in "
692                         "adjust_hpsa_scsi_table\n");
693                 goto free_and_out;
694         }
695
696         spin_lock_irqsave(&h->devlock, flags);
697
698         /* find any devices in h->dev[] that are not in
699          * sd[] and remove them from h->dev[], and for any
700          * devices which have changed, remove the old device
701          * info and add the new device info.
702          */
703         i = 0;
704         nremoved = 0;
705         nadded = 0;
706         while (i < h->ndevices) {
707                 csd = h->dev[i];
708                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
709                 if (device_change == DEVICE_NOT_FOUND) {
710                         changes++;
711                         hpsa_scsi_remove_entry(h, hostno, i,
712                                 removed, &nremoved);
713                         continue; /* remove ^^^, hence i not incremented */
714                 } else if (device_change == DEVICE_CHANGED) {
715                         changes++;
716                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
717                                 added, &nadded, removed, &nremoved);
718                         /* Set it to NULL to prevent it from being freed
719                          * at the bottom of hpsa_update_scsi_devices()
720                          */
721                         sd[entry] = NULL;
722                 }
723                 i++;
724         }
725
726         /* Now, make sure every device listed in sd[] is also
727          * listed in h->dev[], adding them if they aren't found
728          */
729
730         for (i = 0; i < nsds; i++) {
731                 if (!sd[i]) /* if already added above. */
732                         continue;
733                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
734                                         h->ndevices, &entry);
735                 if (device_change == DEVICE_NOT_FOUND) {
736                         changes++;
737                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
738                                 added, &nadded) != 0)
739                                 break;
740                         sd[i] = NULL; /* prevent from being freed later. */
741                 } else if (device_change == DEVICE_CHANGED) {
742                         /* should never happen... */
743                         changes++;
744                         dev_warn(&h->pdev->dev,
745                                 "device unexpectedly changed.\n");
746                         /* but if it does happen, we just ignore that device */
747                 }
748         }
749         spin_unlock_irqrestore(&h->devlock, flags);
750
751         /* Don't notify scsi mid layer of any changes the first time through
752          * (or if there are no changes) scsi_scan_host will do it later the
753          * first time through.
754          */
755         if (hostno == -1 || !changes)
756                 goto free_and_out;
757
758         sh = h->scsi_host;
759         /* Notify scsi mid layer of any removed devices */
760         for (i = 0; i < nremoved; i++) {
761                 struct scsi_device *sdev =
762                         scsi_device_lookup(sh, removed[i]->bus,
763                                 removed[i]->target, removed[i]->lun);
764                 if (sdev != NULL) {
765                         scsi_remove_device(sdev);
766                         scsi_device_put(sdev);
767                 } else {
768                         /* We don't expect to get here.
769                          * future cmds to this device will get selection
770                          * timeout as if the device was gone.
771                          */
772                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
773                                 " for removal.", hostno, removed[i]->bus,
774                                 removed[i]->target, removed[i]->lun);
775                 }
776                 kfree(removed[i]);
777                 removed[i] = NULL;
778         }
779
780         /* Notify scsi mid layer of any added devices */
781         for (i = 0; i < nadded; i++) {
782                 if (scsi_add_device(sh, added[i]->bus,
783                         added[i]->target, added[i]->lun) == 0)
784                         continue;
785                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
786                         "device not added.\n", hostno, added[i]->bus,
787                         added[i]->target, added[i]->lun);
788                 /* now we have to remove it from h->dev,
789                  * since it didn't get added to scsi mid layer
790                  */
791                 fixup_botched_add(h, added[i]);
792         }
793
794 free_and_out:
795         kfree(added);
796         kfree(removed);
797 }
798
799 /*
800  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
801  * Assume's h->devlock is held.
802  */
803 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
804         int bus, int target, int lun)
805 {
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         for (i = 0; i < h->ndevices; i++) {
810                 sd = h->dev[i];
811                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
812                         return sd;
813         }
814         return NULL;
815 }
816
817 /* link sdev->hostdata to our per-device structure. */
818 static int hpsa_slave_alloc(struct scsi_device *sdev)
819 {
820         struct hpsa_scsi_dev_t *sd;
821         unsigned long flags;
822         struct ctlr_info *h;
823
824         h = sdev_to_hba(sdev);
825         spin_lock_irqsave(&h->devlock, flags);
826         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
827                 sdev_id(sdev), sdev->lun);
828         if (sd != NULL)
829                 sdev->hostdata = sd;
830         spin_unlock_irqrestore(&h->devlock, flags);
831         return 0;
832 }
833
834 static void hpsa_slave_destroy(struct scsi_device *sdev)
835 {
836         /* nothing to do. */
837 }
838
839 static void hpsa_scsi_setup(struct ctlr_info *h)
840 {
841         h->ndevices = 0;
842         h->scsi_host = NULL;
843         spin_lock_init(&h->devlock);
844 }
845
846 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
847 {
848         int i;
849
850         if (!h->cmd_sg_list)
851                 return;
852         for (i = 0; i < h->nr_cmds; i++) {
853                 kfree(h->cmd_sg_list[i]);
854                 h->cmd_sg_list[i] = NULL;
855         }
856         kfree(h->cmd_sg_list);
857         h->cmd_sg_list = NULL;
858 }
859
860 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
861 {
862         int i;
863
864         if (h->chainsize <= 0)
865                 return 0;
866
867         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
868                                 GFP_KERNEL);
869         if (!h->cmd_sg_list)
870                 return -ENOMEM;
871         for (i = 0; i < h->nr_cmds; i++) {
872                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
873                                                 h->chainsize, GFP_KERNEL);
874                 if (!h->cmd_sg_list[i])
875                         goto clean;
876         }
877         return 0;
878
879 clean:
880         hpsa_free_sg_chain_blocks(h);
881         return -ENOMEM;
882 }
883
884 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
885         struct CommandList *c)
886 {
887         struct SGDescriptor *chain_sg, *chain_block;
888         u64 temp64;
889
890         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
891         chain_block = h->cmd_sg_list[c->cmdindex];
892         chain_sg->Ext = HPSA_SG_CHAIN;
893         chain_sg->Len = sizeof(*chain_sg) *
894                 (c->Header.SGTotal - h->max_cmd_sg_entries);
895         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
896                                 PCI_DMA_TODEVICE);
897         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
898         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
899 }
900
901 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
902         struct CommandList *c)
903 {
904         struct SGDescriptor *chain_sg;
905         union u64bit temp64;
906
907         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
908                 return;
909
910         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
911         temp64.val32.lower = chain_sg->Addr.lower;
912         temp64.val32.upper = chain_sg->Addr.upper;
913         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
914 }
915
916 static void complete_scsi_command(struct CommandList *cp,
917         int timeout, u32 tag)
918 {
919         struct scsi_cmnd *cmd;
920         struct ctlr_info *h;
921         struct ErrorInfo *ei;
922
923         unsigned char sense_key;
924         unsigned char asc;      /* additional sense code */
925         unsigned char ascq;     /* additional sense code qualifier */
926
927         ei = cp->err_info;
928         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
929         h = cp->h;
930
931         scsi_dma_unmap(cmd); /* undo the DMA mappings */
932         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
933                 hpsa_unmap_sg_chain_block(h, cp);
934
935         cmd->result = (DID_OK << 16);           /* host byte */
936         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
937         cmd->result |= ei->ScsiStatus;
938
939         /* copy the sense data whether we need to or not. */
940         memcpy(cmd->sense_buffer, ei->SenseInfo,
941                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
942                         SCSI_SENSE_BUFFERSIZE :
943                         ei->SenseLen);
944         scsi_set_resid(cmd, ei->ResidualCnt);
945
946         if (ei->CommandStatus == 0) {
947                 cmd->scsi_done(cmd);
948                 cmd_free(h, cp);
949                 return;
950         }
951
952         /* an error has occurred */
953         switch (ei->CommandStatus) {
954
955         case CMD_TARGET_STATUS:
956                 if (ei->ScsiStatus) {
957                         /* Get sense key */
958                         sense_key = 0xf & ei->SenseInfo[2];
959                         /* Get additional sense code */
960                         asc = ei->SenseInfo[12];
961                         /* Get addition sense code qualifier */
962                         ascq = ei->SenseInfo[13];
963                 }
964
965                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
966                         if (check_for_unit_attention(h, cp)) {
967                                 cmd->result = DID_SOFT_ERROR << 16;
968                                 break;
969                         }
970                         if (sense_key == ILLEGAL_REQUEST) {
971                                 /*
972                                  * SCSI REPORT_LUNS is commonly unsupported on
973                                  * Smart Array.  Suppress noisy complaint.
974                                  */
975                                 if (cp->Request.CDB[0] == REPORT_LUNS)
976                                         break;
977
978                                 /* If ASC/ASCQ indicate Logical Unit
979                                  * Not Supported condition,
980                                  */
981                                 if ((asc == 0x25) && (ascq == 0x0)) {
982                                         dev_warn(&h->pdev->dev, "cp %p "
983                                                 "has check condition\n", cp);
984                                         break;
985                                 }
986                         }
987
988                         if (sense_key == NOT_READY) {
989                                 /* If Sense is Not Ready, Logical Unit
990                                  * Not ready, Manual Intervention
991                                  * required
992                                  */
993                                 if ((asc == 0x04) && (ascq == 0x03)) {
994                                         dev_warn(&h->pdev->dev, "cp %p "
995                                                 "has check condition: unit "
996                                                 "not ready, manual "
997                                                 "intervention required\n", cp);
998                                         break;
999                                 }
1000                         }
1001                         if (sense_key == ABORTED_COMMAND) {
1002                                 /* Aborted command is retryable */
1003                                 dev_warn(&h->pdev->dev, "cp %p "
1004                                         "has check condition: aborted command: "
1005                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1006                                         cp, asc, ascq);
1007                                 cmd->result = DID_SOFT_ERROR << 16;
1008                                 break;
1009                         }
1010                         /* Must be some other type of check condition */
1011                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1012                                         "unknown type: "
1013                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1014                                         "Returning result: 0x%x, "
1015                                         "cmd=[%02x %02x %02x %02x %02x "
1016                                         "%02x %02x %02x %02x %02x %02x "
1017                                         "%02x %02x %02x %02x %02x]\n",
1018                                         cp, sense_key, asc, ascq,
1019                                         cmd->result,
1020                                         cmd->cmnd[0], cmd->cmnd[1],
1021                                         cmd->cmnd[2], cmd->cmnd[3],
1022                                         cmd->cmnd[4], cmd->cmnd[5],
1023                                         cmd->cmnd[6], cmd->cmnd[7],
1024                                         cmd->cmnd[8], cmd->cmnd[9],
1025                                         cmd->cmnd[10], cmd->cmnd[11],
1026                                         cmd->cmnd[12], cmd->cmnd[13],
1027                                         cmd->cmnd[14], cmd->cmnd[15]);
1028                         break;
1029                 }
1030
1031
1032                 /* Problem was not a check condition
1033                  * Pass it up to the upper layers...
1034                  */
1035                 if (ei->ScsiStatus) {
1036                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1037                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1038                                 "Returning result: 0x%x\n",
1039                                 cp, ei->ScsiStatus,
1040                                 sense_key, asc, ascq,
1041                                 cmd->result);
1042                 } else {  /* scsi status is zero??? How??? */
1043                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1044                                 "Returning no connection.\n", cp),
1045
1046                         /* Ordinarily, this case should never happen,
1047                          * but there is a bug in some released firmware
1048                          * revisions that allows it to happen if, for
1049                          * example, a 4100 backplane loses power and
1050                          * the tape drive is in it.  We assume that
1051                          * it's a fatal error of some kind because we
1052                          * can't show that it wasn't. We will make it
1053                          * look like selection timeout since that is
1054                          * the most common reason for this to occur,
1055                          * and it's severe enough.
1056                          */
1057
1058                         cmd->result = DID_NO_CONNECT << 16;
1059                 }
1060                 break;
1061
1062         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1063                 break;
1064         case CMD_DATA_OVERRUN:
1065                 dev_warn(&h->pdev->dev, "cp %p has"
1066                         " completed with data overrun "
1067                         "reported\n", cp);
1068                 break;
1069         case CMD_INVALID: {
1070                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1071                 print_cmd(cp); */
1072                 /* We get CMD_INVALID if you address a non-existent device
1073                  * instead of a selection timeout (no response).  You will
1074                  * see this if you yank out a drive, then try to access it.
1075                  * This is kind of a shame because it means that any other
1076                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1077                  * missing target. */
1078                 cmd->result = DID_NO_CONNECT << 16;
1079         }
1080                 break;
1081         case CMD_PROTOCOL_ERR:
1082                 dev_warn(&h->pdev->dev, "cp %p has "
1083                         "protocol error \n", cp);
1084                 break;
1085         case CMD_HARDWARE_ERR:
1086                 cmd->result = DID_ERROR << 16;
1087                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1088                 break;
1089         case CMD_CONNECTION_LOST:
1090                 cmd->result = DID_ERROR << 16;
1091                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1092                 break;
1093         case CMD_ABORTED:
1094                 cmd->result = DID_ABORT << 16;
1095                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1096                                 cp, ei->ScsiStatus);
1097                 break;
1098         case CMD_ABORT_FAILED:
1099                 cmd->result = DID_ERROR << 16;
1100                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1101                 break;
1102         case CMD_UNSOLICITED_ABORT:
1103                 cmd->result = DID_RESET << 16;
1104                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1105                         "abort\n", cp);
1106                 break;
1107         case CMD_TIMEOUT:
1108                 cmd->result = DID_TIME_OUT << 16;
1109                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1110                 break;
1111         default:
1112                 cmd->result = DID_ERROR << 16;
1113                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1114                                 cp, ei->CommandStatus);
1115         }
1116         cmd->scsi_done(cmd);
1117         cmd_free(h, cp);
1118 }
1119
1120 static int hpsa_scsi_detect(struct ctlr_info *h)
1121 {
1122         struct Scsi_Host *sh;
1123         int error;
1124
1125         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1126         if (sh == NULL)
1127                 goto fail;
1128
1129         sh->io_port = 0;
1130         sh->n_io_port = 0;
1131         sh->this_id = -1;
1132         sh->max_channel = 3;
1133         sh->max_cmd_len = MAX_COMMAND_SIZE;
1134         sh->max_lun = HPSA_MAX_LUN;
1135         sh->max_id = HPSA_MAX_LUN;
1136         sh->can_queue = h->nr_cmds;
1137         sh->cmd_per_lun = h->nr_cmds;
1138         sh->sg_tablesize = h->maxsgentries;
1139         h->scsi_host = sh;
1140         sh->hostdata[0] = (unsigned long) h;
1141         sh->irq = h->intr[PERF_MODE_INT];
1142         sh->unique_id = sh->irq;
1143         error = scsi_add_host(sh, &h->pdev->dev);
1144         if (error)
1145                 goto fail_host_put;
1146         scsi_scan_host(sh);
1147         return 0;
1148
1149  fail_host_put:
1150         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1151                 " failed for controller %d\n", h->ctlr);
1152         scsi_host_put(sh);
1153         return error;
1154  fail:
1155         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1156                 " failed for controller %d\n", h->ctlr);
1157         return -ENOMEM;
1158 }
1159
1160 static void hpsa_pci_unmap(struct pci_dev *pdev,
1161         struct CommandList *c, int sg_used, int data_direction)
1162 {
1163         int i;
1164         union u64bit addr64;
1165
1166         for (i = 0; i < sg_used; i++) {
1167                 addr64.val32.lower = c->SG[i].Addr.lower;
1168                 addr64.val32.upper = c->SG[i].Addr.upper;
1169                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1170                         data_direction);
1171         }
1172 }
1173
1174 static void hpsa_map_one(struct pci_dev *pdev,
1175                 struct CommandList *cp,
1176                 unsigned char *buf,
1177                 size_t buflen,
1178                 int data_direction)
1179 {
1180         u64 addr64;
1181
1182         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1183                 cp->Header.SGList = 0;
1184                 cp->Header.SGTotal = 0;
1185                 return;
1186         }
1187
1188         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1189         cp->SG[0].Addr.lower =
1190           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1191         cp->SG[0].Addr.upper =
1192           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1193         cp->SG[0].Len = buflen;
1194         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1195         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1196 }
1197
1198 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1199         struct CommandList *c)
1200 {
1201         DECLARE_COMPLETION_ONSTACK(wait);
1202
1203         c->waiting = &wait;
1204         enqueue_cmd_and_start_io(h, c);
1205         wait_for_completion(&wait);
1206 }
1207
1208 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1209         struct CommandList *c, int data_direction)
1210 {
1211         int retry_count = 0;
1212
1213         do {
1214                 memset(c->err_info, 0, sizeof(c->err_info));
1215                 hpsa_scsi_do_simple_cmd_core(h, c);
1216                 retry_count++;
1217         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1218         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1219 }
1220
1221 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1222 {
1223         struct ErrorInfo *ei;
1224         struct device *d = &cp->h->pdev->dev;
1225
1226         ei = cp->err_info;
1227         switch (ei->CommandStatus) {
1228         case CMD_TARGET_STATUS:
1229                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1230                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1231                                 ei->ScsiStatus);
1232                 if (ei->ScsiStatus == 0)
1233                         dev_warn(d, "SCSI status is abnormally zero.  "
1234                         "(probably indicates selection timeout "
1235                         "reported incorrectly due to a known "
1236                         "firmware bug, circa July, 2001.)\n");
1237                 break;
1238         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1239                         dev_info(d, "UNDERRUN\n");
1240                 break;
1241         case CMD_DATA_OVERRUN:
1242                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1243                 break;
1244         case CMD_INVALID: {
1245                 /* controller unfortunately reports SCSI passthru's
1246                  * to non-existent targets as invalid commands.
1247                  */
1248                 dev_warn(d, "cp %p is reported invalid (probably means "
1249                         "target device no longer present)\n", cp);
1250                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1251                 print_cmd(cp);  */
1252                 }
1253                 break;
1254         case CMD_PROTOCOL_ERR:
1255                 dev_warn(d, "cp %p has protocol error \n", cp);
1256                 break;
1257         case CMD_HARDWARE_ERR:
1258                 /* cmd->result = DID_ERROR << 16; */
1259                 dev_warn(d, "cp %p had hardware error\n", cp);
1260                 break;
1261         case CMD_CONNECTION_LOST:
1262                 dev_warn(d, "cp %p had connection lost\n", cp);
1263                 break;
1264         case CMD_ABORTED:
1265                 dev_warn(d, "cp %p was aborted\n", cp);
1266                 break;
1267         case CMD_ABORT_FAILED:
1268                 dev_warn(d, "cp %p reports abort failed\n", cp);
1269                 break;
1270         case CMD_UNSOLICITED_ABORT:
1271                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1272                 break;
1273         case CMD_TIMEOUT:
1274                 dev_warn(d, "cp %p timed out\n", cp);
1275                 break;
1276         default:
1277                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1278                                 ei->CommandStatus);
1279         }
1280 }
1281
1282 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1283                         unsigned char page, unsigned char *buf,
1284                         unsigned char bufsize)
1285 {
1286         int rc = IO_OK;
1287         struct CommandList *c;
1288         struct ErrorInfo *ei;
1289
1290         c = cmd_special_alloc(h);
1291
1292         if (c == NULL) {                        /* trouble... */
1293                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1294                 return -ENOMEM;
1295         }
1296
1297         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1298         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1299         ei = c->err_info;
1300         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1301                 hpsa_scsi_interpret_error(c);
1302                 rc = -1;
1303         }
1304         cmd_special_free(h, c);
1305         return rc;
1306 }
1307
1308 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1309 {
1310         int rc = IO_OK;
1311         struct CommandList *c;
1312         struct ErrorInfo *ei;
1313
1314         c = cmd_special_alloc(h);
1315
1316         if (c == NULL) {                        /* trouble... */
1317                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1318                 return -ENOMEM;
1319         }
1320
1321         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1322         hpsa_scsi_do_simple_cmd_core(h, c);
1323         /* no unmap needed here because no data xfer. */
1324
1325         ei = c->err_info;
1326         if (ei->CommandStatus != 0) {
1327                 hpsa_scsi_interpret_error(c);
1328                 rc = -1;
1329         }
1330         cmd_special_free(h, c);
1331         return rc;
1332 }
1333
1334 static void hpsa_get_raid_level(struct ctlr_info *h,
1335         unsigned char *scsi3addr, unsigned char *raid_level)
1336 {
1337         int rc;
1338         unsigned char *buf;
1339
1340         *raid_level = RAID_UNKNOWN;
1341         buf = kzalloc(64, GFP_KERNEL);
1342         if (!buf)
1343                 return;
1344         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1345         if (rc == 0)
1346                 *raid_level = buf[8];
1347         if (*raid_level > RAID_UNKNOWN)
1348                 *raid_level = RAID_UNKNOWN;
1349         kfree(buf);
1350         return;
1351 }
1352
1353 /* Get the device id from inquiry page 0x83 */
1354 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1355         unsigned char *device_id, int buflen)
1356 {
1357         int rc;
1358         unsigned char *buf;
1359
1360         if (buflen > 16)
1361                 buflen = 16;
1362         buf = kzalloc(64, GFP_KERNEL);
1363         if (!buf)
1364                 return -1;
1365         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1366         if (rc == 0)
1367                 memcpy(device_id, &buf[8], buflen);
1368         kfree(buf);
1369         return rc != 0;
1370 }
1371
1372 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1373                 struct ReportLUNdata *buf, int bufsize,
1374                 int extended_response)
1375 {
1376         int rc = IO_OK;
1377         struct CommandList *c;
1378         unsigned char scsi3addr[8];
1379         struct ErrorInfo *ei;
1380
1381         c = cmd_special_alloc(h);
1382         if (c == NULL) {                        /* trouble... */
1383                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1384                 return -1;
1385         }
1386         /* address the controller */
1387         memset(scsi3addr, 0, sizeof(scsi3addr));
1388         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1389                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1390         if (extended_response)
1391                 c->Request.CDB[1] = extended_response;
1392         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1393         ei = c->err_info;
1394         if (ei->CommandStatus != 0 &&
1395             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1396                 hpsa_scsi_interpret_error(c);
1397                 rc = -1;
1398         }
1399         cmd_special_free(h, c);
1400         return rc;
1401 }
1402
1403 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1404                 struct ReportLUNdata *buf,
1405                 int bufsize, int extended_response)
1406 {
1407         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1408 }
1409
1410 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1411                 struct ReportLUNdata *buf, int bufsize)
1412 {
1413         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1414 }
1415
1416 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1417         int bus, int target, int lun)
1418 {
1419         device->bus = bus;
1420         device->target = target;
1421         device->lun = lun;
1422 }
1423
1424 static int hpsa_update_device_info(struct ctlr_info *h,
1425         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1426 {
1427 #define OBDR_TAPE_INQ_SIZE 49
1428         unsigned char *inq_buff;
1429
1430         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1431         if (!inq_buff)
1432                 goto bail_out;
1433
1434         /* Do an inquiry to the device to see what it is. */
1435         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1436                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1437                 /* Inquiry failed (msg printed already) */
1438                 dev_err(&h->pdev->dev,
1439                         "hpsa_update_device_info: inquiry failed\n");
1440                 goto bail_out;
1441         }
1442
1443         /* As a side effect, record the firmware version number
1444          * if we happen to be talking to the RAID controller.
1445          */
1446         if (is_hba_lunid(scsi3addr))
1447                 memcpy(h->firm_ver, &inq_buff[32], 4);
1448
1449         this_device->devtype = (inq_buff[0] & 0x1f);
1450         memcpy(this_device->scsi3addr, scsi3addr, 8);
1451         memcpy(this_device->vendor, &inq_buff[8],
1452                 sizeof(this_device->vendor));
1453         memcpy(this_device->model, &inq_buff[16],
1454                 sizeof(this_device->model));
1455         memcpy(this_device->revision, &inq_buff[32],
1456                 sizeof(this_device->revision));
1457         memset(this_device->device_id, 0,
1458                 sizeof(this_device->device_id));
1459         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1460                 sizeof(this_device->device_id));
1461
1462         if (this_device->devtype == TYPE_DISK &&
1463                 is_logical_dev_addr_mode(scsi3addr))
1464                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1465         else
1466                 this_device->raid_level = RAID_UNKNOWN;
1467
1468         kfree(inq_buff);
1469         return 0;
1470
1471 bail_out:
1472         kfree(inq_buff);
1473         return 1;
1474 }
1475
1476 static unsigned char *msa2xxx_model[] = {
1477         "MSA2012",
1478         "MSA2024",
1479         "MSA2312",
1480         "MSA2324",
1481         NULL,
1482 };
1483
1484 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1485 {
1486         int i;
1487
1488         for (i = 0; msa2xxx_model[i]; i++)
1489                 if (strncmp(device->model, msa2xxx_model[i],
1490                         strlen(msa2xxx_model[i])) == 0)
1491                         return 1;
1492         return 0;
1493 }
1494
1495 /* Helper function to assign bus, target, lun mapping of devices.
1496  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1497  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1498  * Logical drive target and lun are assigned at this time, but
1499  * physical device lun and target assignment are deferred (assigned
1500  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1501  */
1502 static void figure_bus_target_lun(struct ctlr_info *h,
1503         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1504         struct hpsa_scsi_dev_t *device)
1505 {
1506         u32 lunid;
1507
1508         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1509                 /* logical device */
1510                 if (unlikely(is_scsi_rev_5(h))) {
1511                         /* p1210m, logical drives lun assignments
1512                          * match SCSI REPORT LUNS data.
1513                          */
1514                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1515                         *bus = 0;
1516                         *target = 0;
1517                         *lun = (lunid & 0x3fff) + 1;
1518                 } else {
1519                         /* not p1210m... */
1520                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1521                         if (is_msa2xxx(h, device)) {
1522                                 /* msa2xxx way, put logicals on bus 1
1523                                  * and match target/lun numbers box
1524                                  * reports.
1525                                  */
1526                                 *bus = 1;
1527                                 *target = (lunid >> 16) & 0x3fff;
1528                                 *lun = lunid & 0x00ff;
1529                         } else {
1530                                 /* Traditional smart array way. */
1531                                 *bus = 0;
1532                                 *lun = 0;
1533                                 *target = lunid & 0x3fff;
1534                         }
1535                 }
1536         } else {
1537                 /* physical device */
1538                 if (is_hba_lunid(lunaddrbytes))
1539                         if (unlikely(is_scsi_rev_5(h))) {
1540                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1541                                 *target = 0;
1542                                 *lun = 0;
1543                                 return;
1544                         } else
1545                                 *bus = 3; /* traditional smartarray */
1546                 else
1547                         *bus = 2; /* physical disk */
1548                 *target = -1;
1549                 *lun = -1; /* we will fill these in later. */
1550         }
1551 }
1552
1553 /*
1554  * If there is no lun 0 on a target, linux won't find any devices.
1555  * For the MSA2xxx boxes, we have to manually detect the enclosure
1556  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1557  * it for some reason.  *tmpdevice is the target we're adding,
1558  * this_device is a pointer into the current element of currentsd[]
1559  * that we're building up in update_scsi_devices(), below.
1560  * lunzerobits is a bitmap that tracks which targets already have a
1561  * lun 0 assigned.
1562  * Returns 1 if an enclosure was added, 0 if not.
1563  */
1564 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1565         struct hpsa_scsi_dev_t *tmpdevice,
1566         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1567         int bus, int target, int lun, unsigned long lunzerobits[],
1568         int *nmsa2xxx_enclosures)
1569 {
1570         unsigned char scsi3addr[8];
1571
1572         if (test_bit(target, lunzerobits))
1573                 return 0; /* There is already a lun 0 on this target. */
1574
1575         if (!is_logical_dev_addr_mode(lunaddrbytes))
1576                 return 0; /* It's the logical targets that may lack lun 0. */
1577
1578         if (!is_msa2xxx(h, tmpdevice))
1579                 return 0; /* It's only the MSA2xxx that have this problem. */
1580
1581         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1582                 return 0;
1583
1584         if (is_hba_lunid(scsi3addr))
1585                 return 0; /* Don't add the RAID controller here. */
1586
1587         if (is_scsi_rev_5(h))
1588                 return 0; /* p1210m doesn't need to do this. */
1589
1590 #define MAX_MSA2XXX_ENCLOSURES 32
1591         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1592                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1593                         "enclosures exceeded.  Check your hardware "
1594                         "configuration.");
1595                 return 0;
1596         }
1597
1598         memset(scsi3addr, 0, 8);
1599         scsi3addr[3] = target;
1600         if (hpsa_update_device_info(h, scsi3addr, this_device))
1601                 return 0;
1602         (*nmsa2xxx_enclosures)++;
1603         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1604         set_bit(target, lunzerobits);
1605         return 1;
1606 }
1607
1608 /*
1609  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1610  * logdev.  The number of luns in physdev and logdev are returned in
1611  * *nphysicals and *nlogicals, respectively.
1612  * Returns 0 on success, -1 otherwise.
1613  */
1614 static int hpsa_gather_lun_info(struct ctlr_info *h,
1615         int reportlunsize,
1616         struct ReportLUNdata *physdev, u32 *nphysicals,
1617         struct ReportLUNdata *logdev, u32 *nlogicals)
1618 {
1619         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1620                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1621                 return -1;
1622         }
1623         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1624         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1625                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1626                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1627                         *nphysicals - HPSA_MAX_PHYS_LUN);
1628                 *nphysicals = HPSA_MAX_PHYS_LUN;
1629         }
1630         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1631                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1632                 return -1;
1633         }
1634         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1635         /* Reject Logicals in excess of our max capability. */
1636         if (*nlogicals > HPSA_MAX_LUN) {
1637                 dev_warn(&h->pdev->dev,
1638                         "maximum logical LUNs (%d) exceeded.  "
1639                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1640                         *nlogicals - HPSA_MAX_LUN);
1641                         *nlogicals = HPSA_MAX_LUN;
1642         }
1643         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1644                 dev_warn(&h->pdev->dev,
1645                         "maximum logical + physical LUNs (%d) exceeded. "
1646                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1647                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1648                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1649         }
1650         return 0;
1651 }
1652
1653 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1654         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1655         struct ReportLUNdata *logdev_list)
1656 {
1657         /* Helper function, figure out where the LUN ID info is coming from
1658          * given index i, lists of physical and logical devices, where in
1659          * the list the raid controller is supposed to appear (first or last)
1660          */
1661
1662         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1663         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1664
1665         if (i == raid_ctlr_position)
1666                 return RAID_CTLR_LUNID;
1667
1668         if (i < logicals_start)
1669                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1670
1671         if (i < last_device)
1672                 return &logdev_list->LUN[i - nphysicals -
1673                         (raid_ctlr_position == 0)][0];
1674         BUG();
1675         return NULL;
1676 }
1677
1678 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1679 {
1680         /* the idea here is we could get notified
1681          * that some devices have changed, so we do a report
1682          * physical luns and report logical luns cmd, and adjust
1683          * our list of devices accordingly.
1684          *
1685          * The scsi3addr's of devices won't change so long as the
1686          * adapter is not reset.  That means we can rescan and
1687          * tell which devices we already know about, vs. new
1688          * devices, vs.  disappearing devices.
1689          */
1690         struct ReportLUNdata *physdev_list = NULL;
1691         struct ReportLUNdata *logdev_list = NULL;
1692         unsigned char *inq_buff = NULL;
1693         u32 nphysicals = 0;
1694         u32 nlogicals = 0;
1695         u32 ndev_allocated = 0;
1696         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1697         int ncurrent = 0;
1698         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1699         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1700         int bus, target, lun;
1701         int raid_ctlr_position;
1702         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1703
1704         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1705                 GFP_KERNEL);
1706         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1707         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1708         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1709         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1710
1711         if (!currentsd || !physdev_list || !logdev_list ||
1712                 !inq_buff || !tmpdevice) {
1713                 dev_err(&h->pdev->dev, "out of memory\n");
1714                 goto out;
1715         }
1716         memset(lunzerobits, 0, sizeof(lunzerobits));
1717
1718         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1719                         logdev_list, &nlogicals))
1720                 goto out;
1721
1722         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1723          * but each of them 4 times through different paths.  The plus 1
1724          * is for the RAID controller.
1725          */
1726         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1727
1728         /* Allocate the per device structures */
1729         for (i = 0; i < ndevs_to_allocate; i++) {
1730                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1731                 if (!currentsd[i]) {
1732                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1733                                 __FILE__, __LINE__);
1734                         goto out;
1735                 }
1736                 ndev_allocated++;
1737         }
1738
1739         if (unlikely(is_scsi_rev_5(h)))
1740                 raid_ctlr_position = 0;
1741         else
1742                 raid_ctlr_position = nphysicals + nlogicals;
1743
1744         /* adjust our table of devices */
1745         nmsa2xxx_enclosures = 0;
1746         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1747                 u8 *lunaddrbytes;
1748
1749                 /* Figure out where the LUN ID info is coming from */
1750                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1751                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1752                 /* skip masked physical devices. */
1753                 if (lunaddrbytes[3] & 0xC0 &&
1754                         i < nphysicals + (raid_ctlr_position == 0))
1755                         continue;
1756
1757                 /* Get device type, vendor, model, device id */
1758                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1759                         continue; /* skip it if we can't talk to it. */
1760                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1761                         tmpdevice);
1762                 this_device = currentsd[ncurrent];
1763
1764                 /*
1765                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1766                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1767                  * is nonetheless an enclosure device there.  We have to
1768                  * present that otherwise linux won't find anything if
1769                  * there is no lun 0.
1770                  */
1771                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1772                                 lunaddrbytes, bus, target, lun, lunzerobits,
1773                                 &nmsa2xxx_enclosures)) {
1774                         ncurrent++;
1775                         this_device = currentsd[ncurrent];
1776                 }
1777
1778                 *this_device = *tmpdevice;
1779                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1780
1781                 switch (this_device->devtype) {
1782                 case TYPE_ROM: {
1783                         /* We don't *really* support actual CD-ROM devices,
1784                          * just "One Button Disaster Recovery" tape drive
1785                          * which temporarily pretends to be a CD-ROM drive.
1786                          * So we check that the device is really an OBDR tape
1787                          * device by checking for "$DR-10" in bytes 43-48 of
1788                          * the inquiry data.
1789                          */
1790                                 char obdr_sig[7];
1791 #define OBDR_TAPE_SIG "$DR-10"
1792                                 strncpy(obdr_sig, &inq_buff[43], 6);
1793                                 obdr_sig[6] = '\0';
1794                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1795                                         /* Not OBDR device, ignore it. */
1796                                         break;
1797                         }
1798                         ncurrent++;
1799                         break;
1800                 case TYPE_DISK:
1801                         if (i < nphysicals)
1802                                 break;
1803                         ncurrent++;
1804                         break;
1805                 case TYPE_TAPE:
1806                 case TYPE_MEDIUM_CHANGER:
1807                         ncurrent++;
1808                         break;
1809                 case TYPE_RAID:
1810                         /* Only present the Smartarray HBA as a RAID controller.
1811                          * If it's a RAID controller other than the HBA itself
1812                          * (an external RAID controller, MSA500 or similar)
1813                          * don't present it.
1814                          */
1815                         if (!is_hba_lunid(lunaddrbytes))
1816                                 break;
1817                         ncurrent++;
1818                         break;
1819                 default:
1820                         break;
1821                 }
1822                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1823                         break;
1824         }
1825         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1826 out:
1827         kfree(tmpdevice);
1828         for (i = 0; i < ndev_allocated; i++)
1829                 kfree(currentsd[i]);
1830         kfree(currentsd);
1831         kfree(inq_buff);
1832         kfree(physdev_list);
1833         kfree(logdev_list);
1834 }
1835
1836 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1837  * dma mapping  and fills in the scatter gather entries of the
1838  * hpsa command, cp.
1839  */
1840 static int hpsa_scatter_gather(struct ctlr_info *h,
1841                 struct CommandList *cp,
1842                 struct scsi_cmnd *cmd)
1843 {
1844         unsigned int len;
1845         struct scatterlist *sg;
1846         u64 addr64;
1847         int use_sg, i, sg_index, chained;
1848         struct SGDescriptor *curr_sg;
1849
1850         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1851
1852         use_sg = scsi_dma_map(cmd);
1853         if (use_sg < 0)
1854                 return use_sg;
1855
1856         if (!use_sg)
1857                 goto sglist_finished;
1858
1859         curr_sg = cp->SG;
1860         chained = 0;
1861         sg_index = 0;
1862         scsi_for_each_sg(cmd, sg, use_sg, i) {
1863                 if (i == h->max_cmd_sg_entries - 1 &&
1864                         use_sg > h->max_cmd_sg_entries) {
1865                         chained = 1;
1866                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1867                         sg_index = 0;
1868                 }
1869                 addr64 = (u64) sg_dma_address(sg);
1870                 len  = sg_dma_len(sg);
1871                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1872                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1873                 curr_sg->Len = len;
1874                 curr_sg->Ext = 0;  /* we are not chaining */
1875                 curr_sg++;
1876         }
1877
1878         if (use_sg + chained > h->maxSG)
1879                 h->maxSG = use_sg + chained;
1880
1881         if (chained) {
1882                 cp->Header.SGList = h->max_cmd_sg_entries;
1883                 cp->Header.SGTotal = (u16) (use_sg + 1);
1884                 hpsa_map_sg_chain_block(h, cp);
1885                 return 0;
1886         }
1887
1888 sglist_finished:
1889
1890         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1891         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1892         return 0;
1893 }
1894
1895
1896 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1897         void (*done)(struct scsi_cmnd *))
1898 {
1899         struct ctlr_info *h;
1900         struct hpsa_scsi_dev_t *dev;
1901         unsigned char scsi3addr[8];
1902         struct CommandList *c;
1903         unsigned long flags;
1904
1905         /* Get the ptr to our adapter structure out of cmd->host. */
1906         h = sdev_to_hba(cmd->device);
1907         dev = cmd->device->hostdata;
1908         if (!dev) {
1909                 cmd->result = DID_NO_CONNECT << 16;
1910                 done(cmd);
1911                 return 0;
1912         }
1913         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1914
1915         /* Need a lock as this is being allocated from the pool */
1916         spin_lock_irqsave(&h->lock, flags);
1917         c = cmd_alloc(h);
1918         spin_unlock_irqrestore(&h->lock, flags);
1919         if (c == NULL) {                        /* trouble... */
1920                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1921                 return SCSI_MLQUEUE_HOST_BUSY;
1922         }
1923
1924         /* Fill in the command list header */
1925
1926         cmd->scsi_done = done;    /* save this for use by completion code */
1927
1928         /* save c in case we have to abort it  */
1929         cmd->host_scribble = (unsigned char *) c;
1930
1931         c->cmd_type = CMD_SCSI;
1932         c->scsi_cmd = cmd;
1933         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1934         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1935         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1936         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1937
1938         /* Fill in the request block... */
1939
1940         c->Request.Timeout = 0;
1941         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1942         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1943         c->Request.CDBLen = cmd->cmd_len;
1944         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1945         c->Request.Type.Type = TYPE_CMD;
1946         c->Request.Type.Attribute = ATTR_SIMPLE;
1947         switch (cmd->sc_data_direction) {
1948         case DMA_TO_DEVICE:
1949                 c->Request.Type.Direction = XFER_WRITE;
1950                 break;
1951         case DMA_FROM_DEVICE:
1952                 c->Request.Type.Direction = XFER_READ;
1953                 break;
1954         case DMA_NONE:
1955                 c->Request.Type.Direction = XFER_NONE;
1956                 break;
1957         case DMA_BIDIRECTIONAL:
1958                 /* This can happen if a buggy application does a scsi passthru
1959                  * and sets both inlen and outlen to non-zero. ( see
1960                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1961                  */
1962
1963                 c->Request.Type.Direction = XFER_RSVD;
1964                 /* This is technically wrong, and hpsa controllers should
1965                  * reject it with CMD_INVALID, which is the most correct
1966                  * response, but non-fibre backends appear to let it
1967                  * slide by, and give the same results as if this field
1968                  * were set correctly.  Either way is acceptable for
1969                  * our purposes here.
1970                  */
1971
1972                 break;
1973
1974         default:
1975                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1976                         cmd->sc_data_direction);
1977                 BUG();
1978                 break;
1979         }
1980
1981         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1982                 cmd_free(h, c);
1983                 return SCSI_MLQUEUE_HOST_BUSY;
1984         }
1985         enqueue_cmd_and_start_io(h, c);
1986         /* the cmd'll come back via intr handler in complete_scsi_command()  */
1987         return 0;
1988 }
1989
1990 static void hpsa_scan_start(struct Scsi_Host *sh)
1991 {
1992         struct ctlr_info *h = shost_to_hba(sh);
1993         unsigned long flags;
1994
1995         /* wait until any scan already in progress is finished. */
1996         while (1) {
1997                 spin_lock_irqsave(&h->scan_lock, flags);
1998                 if (h->scan_finished)
1999                         break;
2000                 spin_unlock_irqrestore(&h->scan_lock, flags);
2001                 wait_event(h->scan_wait_queue, h->scan_finished);
2002                 /* Note: We don't need to worry about a race between this
2003                  * thread and driver unload because the midlayer will
2004                  * have incremented the reference count, so unload won't
2005                  * happen if we're in here.
2006                  */
2007         }
2008         h->scan_finished = 0; /* mark scan as in progress */
2009         spin_unlock_irqrestore(&h->scan_lock, flags);
2010
2011         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2012
2013         spin_lock_irqsave(&h->scan_lock, flags);
2014         h->scan_finished = 1; /* mark scan as finished. */
2015         wake_up_all(&h->scan_wait_queue);
2016         spin_unlock_irqrestore(&h->scan_lock, flags);
2017 }
2018
2019 static int hpsa_scan_finished(struct Scsi_Host *sh,
2020         unsigned long elapsed_time)
2021 {
2022         struct ctlr_info *h = shost_to_hba(sh);
2023         unsigned long flags;
2024         int finished;
2025
2026         spin_lock_irqsave(&h->scan_lock, flags);
2027         finished = h->scan_finished;
2028         spin_unlock_irqrestore(&h->scan_lock, flags);
2029         return finished;
2030 }
2031
2032 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2033         int qdepth, int reason)
2034 {
2035         struct ctlr_info *h = sdev_to_hba(sdev);
2036
2037         if (reason != SCSI_QDEPTH_DEFAULT)
2038                 return -ENOTSUPP;
2039
2040         if (qdepth < 1)
2041                 qdepth = 1;
2042         else
2043                 if (qdepth > h->nr_cmds)
2044                         qdepth = h->nr_cmds;
2045         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2046         return sdev->queue_depth;
2047 }
2048
2049 static void hpsa_unregister_scsi(struct ctlr_info *h)
2050 {
2051         /* we are being forcibly unloaded, and may not refuse. */
2052         scsi_remove_host(h->scsi_host);
2053         scsi_host_put(h->scsi_host);
2054         h->scsi_host = NULL;
2055 }
2056
2057 static int hpsa_register_scsi(struct ctlr_info *h)
2058 {
2059         int rc;
2060
2061         rc = hpsa_scsi_detect(h);
2062         if (rc != 0)
2063                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2064                         " hpsa_scsi_detect(), rc is %d\n", rc);
2065         return rc;
2066 }
2067
2068 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2069         unsigned char lunaddr[])
2070 {
2071         int rc = 0;
2072         int count = 0;
2073         int waittime = 1; /* seconds */
2074         struct CommandList *c;
2075
2076         c = cmd_special_alloc(h);
2077         if (!c) {
2078                 dev_warn(&h->pdev->dev, "out of memory in "
2079                         "wait_for_device_to_become_ready.\n");
2080                 return IO_ERROR;
2081         }
2082
2083         /* Send test unit ready until device ready, or give up. */
2084         while (count < HPSA_TUR_RETRY_LIMIT) {
2085
2086                 /* Wait for a bit.  do this first, because if we send
2087                  * the TUR right away, the reset will just abort it.
2088                  */
2089                 msleep(1000 * waittime);
2090                 count++;
2091
2092                 /* Increase wait time with each try, up to a point. */
2093                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2094                         waittime = waittime * 2;
2095
2096                 /* Send the Test Unit Ready */
2097                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2098                 hpsa_scsi_do_simple_cmd_core(h, c);
2099                 /* no unmap needed here because no data xfer. */
2100
2101                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2102                         break;
2103
2104                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2105                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2106                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2107                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2108                         break;
2109
2110                 dev_warn(&h->pdev->dev, "waiting %d secs "
2111                         "for device to become ready.\n", waittime);
2112                 rc = 1; /* device not ready. */
2113         }
2114
2115         if (rc)
2116                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2117         else
2118                 dev_warn(&h->pdev->dev, "device is ready.\n");
2119
2120         cmd_special_free(h, c);
2121         return rc;
2122 }
2123
2124 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2125  * complaining.  Doing a host- or bus-reset can't do anything good here.
2126  */
2127 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2128 {
2129         int rc;
2130         struct ctlr_info *h;
2131         struct hpsa_scsi_dev_t *dev;
2132
2133         /* find the controller to which the command to be aborted was sent */
2134         h = sdev_to_hba(scsicmd->device);
2135         if (h == NULL) /* paranoia */
2136                 return FAILED;
2137         dev = scsicmd->device->hostdata;
2138         if (!dev) {
2139                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2140                         "device lookup failed.\n");
2141                 return FAILED;
2142         }
2143         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2144                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2145         /* send a reset to the SCSI LUN which the command was sent to */
2146         rc = hpsa_send_reset(h, dev->scsi3addr);
2147         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2148                 return SUCCESS;
2149
2150         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2151         return FAILED;
2152 }
2153
2154 /*
2155  * For operations that cannot sleep, a command block is allocated at init,
2156  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2157  * which ones are free or in use.  Lock must be held when calling this.
2158  * cmd_free() is the complement.
2159  */
2160 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2161 {
2162         struct CommandList *c;
2163         int i;
2164         union u64bit temp64;
2165         dma_addr_t cmd_dma_handle, err_dma_handle;
2166
2167         do {
2168                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2169                 if (i == h->nr_cmds)
2170                         return NULL;
2171         } while (test_and_set_bit
2172                  (i & (BITS_PER_LONG - 1),
2173                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2174         c = h->cmd_pool + i;
2175         memset(c, 0, sizeof(*c));
2176         cmd_dma_handle = h->cmd_pool_dhandle
2177             + i * sizeof(*c);
2178         c->err_info = h->errinfo_pool + i;
2179         memset(c->err_info, 0, sizeof(*c->err_info));
2180         err_dma_handle = h->errinfo_pool_dhandle
2181             + i * sizeof(*c->err_info);
2182         h->nr_allocs++;
2183
2184         c->cmdindex = i;
2185
2186         INIT_HLIST_NODE(&c->list);
2187         c->busaddr = (u32) cmd_dma_handle;
2188         temp64.val = (u64) err_dma_handle;
2189         c->ErrDesc.Addr.lower = temp64.val32.lower;
2190         c->ErrDesc.Addr.upper = temp64.val32.upper;
2191         c->ErrDesc.Len = sizeof(*c->err_info);
2192
2193         c->h = h;
2194         return c;
2195 }
2196
2197 /* For operations that can wait for kmalloc to possibly sleep,
2198  * this routine can be called. Lock need not be held to call
2199  * cmd_special_alloc. cmd_special_free() is the complement.
2200  */
2201 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2202 {
2203         struct CommandList *c;
2204         union u64bit temp64;
2205         dma_addr_t cmd_dma_handle, err_dma_handle;
2206
2207         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2208         if (c == NULL)
2209                 return NULL;
2210         memset(c, 0, sizeof(*c));
2211
2212         c->cmdindex = -1;
2213
2214         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2215                     &err_dma_handle);
2216
2217         if (c->err_info == NULL) {
2218                 pci_free_consistent(h->pdev,
2219                         sizeof(*c), c, cmd_dma_handle);
2220                 return NULL;
2221         }
2222         memset(c->err_info, 0, sizeof(*c->err_info));
2223
2224         INIT_HLIST_NODE(&c->list);
2225         c->busaddr = (u32) cmd_dma_handle;
2226         temp64.val = (u64) err_dma_handle;
2227         c->ErrDesc.Addr.lower = temp64.val32.lower;
2228         c->ErrDesc.Addr.upper = temp64.val32.upper;
2229         c->ErrDesc.Len = sizeof(*c->err_info);
2230
2231         c->h = h;
2232         return c;
2233 }
2234
2235 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2236 {
2237         int i;
2238
2239         i = c - h->cmd_pool;
2240         clear_bit(i & (BITS_PER_LONG - 1),
2241                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2242         h->nr_frees++;
2243 }
2244
2245 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2246 {
2247         union u64bit temp64;
2248
2249         temp64.val32.lower = c->ErrDesc.Addr.lower;
2250         temp64.val32.upper = c->ErrDesc.Addr.upper;
2251         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2252                             c->err_info, (dma_addr_t) temp64.val);
2253         pci_free_consistent(h->pdev, sizeof(*c),
2254                             c, (dma_addr_t) c->busaddr);
2255 }
2256
2257 #ifdef CONFIG_COMPAT
2258
2259 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2260 {
2261         IOCTL32_Command_struct __user *arg32 =
2262             (IOCTL32_Command_struct __user *) arg;
2263         IOCTL_Command_struct arg64;
2264         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2265         int err;
2266         u32 cp;
2267
2268         err = 0;
2269         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2270                            sizeof(arg64.LUN_info));
2271         err |= copy_from_user(&arg64.Request, &arg32->Request,
2272                            sizeof(arg64.Request));
2273         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2274                            sizeof(arg64.error_info));
2275         err |= get_user(arg64.buf_size, &arg32->buf_size);
2276         err |= get_user(cp, &arg32->buf);
2277         arg64.buf = compat_ptr(cp);
2278         err |= copy_to_user(p, &arg64, sizeof(arg64));
2279
2280         if (err)
2281                 return -EFAULT;
2282
2283         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2284         if (err)
2285                 return err;
2286         err |= copy_in_user(&arg32->error_info, &p->error_info,
2287                          sizeof(arg32->error_info));
2288         if (err)
2289                 return -EFAULT;
2290         return err;
2291 }
2292
2293 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2294         int cmd, void *arg)
2295 {
2296         BIG_IOCTL32_Command_struct __user *arg32 =
2297             (BIG_IOCTL32_Command_struct __user *) arg;
2298         BIG_IOCTL_Command_struct arg64;
2299         BIG_IOCTL_Command_struct __user *p =
2300             compat_alloc_user_space(sizeof(arg64));
2301         int err;
2302         u32 cp;
2303
2304         err = 0;
2305         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2306                            sizeof(arg64.LUN_info));
2307         err |= copy_from_user(&arg64.Request, &arg32->Request,
2308                            sizeof(arg64.Request));
2309         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2310                            sizeof(arg64.error_info));
2311         err |= get_user(arg64.buf_size, &arg32->buf_size);
2312         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2313         err |= get_user(cp, &arg32->buf);
2314         arg64.buf = compat_ptr(cp);
2315         err |= copy_to_user(p, &arg64, sizeof(arg64));
2316
2317         if (err)
2318                 return -EFAULT;
2319
2320         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2321         if (err)
2322                 return err;
2323         err |= copy_in_user(&arg32->error_info, &p->error_info,
2324                          sizeof(arg32->error_info));
2325         if (err)
2326                 return -EFAULT;
2327         return err;
2328 }
2329
2330 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2331 {
2332         switch (cmd) {
2333         case CCISS_GETPCIINFO:
2334         case CCISS_GETINTINFO:
2335         case CCISS_SETINTINFO:
2336         case CCISS_GETNODENAME:
2337         case CCISS_SETNODENAME:
2338         case CCISS_GETHEARTBEAT:
2339         case CCISS_GETBUSTYPES:
2340         case CCISS_GETFIRMVER:
2341         case CCISS_GETDRIVVER:
2342         case CCISS_REVALIDVOLS:
2343         case CCISS_DEREGDISK:
2344         case CCISS_REGNEWDISK:
2345         case CCISS_REGNEWD:
2346         case CCISS_RESCANDISK:
2347         case CCISS_GETLUNINFO:
2348                 return hpsa_ioctl(dev, cmd, arg);
2349
2350         case CCISS_PASSTHRU32:
2351                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2352         case CCISS_BIG_PASSTHRU32:
2353                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2354
2355         default:
2356                 return -ENOIOCTLCMD;
2357         }
2358 }
2359 #endif
2360
2361 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2362 {
2363         struct hpsa_pci_info pciinfo;
2364
2365         if (!argp)
2366                 return -EINVAL;
2367         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2368         pciinfo.bus = h->pdev->bus->number;
2369         pciinfo.dev_fn = h->pdev->devfn;
2370         pciinfo.board_id = h->board_id;
2371         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2372                 return -EFAULT;
2373         return 0;
2374 }
2375
2376 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2377 {
2378         DriverVer_type DriverVer;
2379         unsigned char vmaj, vmin, vsubmin;
2380         int rc;
2381
2382         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2383                 &vmaj, &vmin, &vsubmin);
2384         if (rc != 3) {
2385                 dev_info(&h->pdev->dev, "driver version string '%s' "
2386                         "unrecognized.", HPSA_DRIVER_VERSION);
2387                 vmaj = 0;
2388                 vmin = 0;
2389                 vsubmin = 0;
2390         }
2391         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2392         if (!argp)
2393                 return -EINVAL;
2394         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2395                 return -EFAULT;
2396         return 0;
2397 }
2398
2399 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2400 {
2401         IOCTL_Command_struct iocommand;
2402         struct CommandList *c;
2403         char *buff = NULL;
2404         union u64bit temp64;
2405
2406         if (!argp)
2407                 return -EINVAL;
2408         if (!capable(CAP_SYS_RAWIO))
2409                 return -EPERM;
2410         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2411                 return -EFAULT;
2412         if ((iocommand.buf_size < 1) &&
2413             (iocommand.Request.Type.Direction != XFER_NONE)) {
2414                 return -EINVAL;
2415         }
2416         if (iocommand.buf_size > 0) {
2417                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2418                 if (buff == NULL)
2419                         return -EFAULT;
2420         }
2421         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2422                 /* Copy the data into the buffer we created */
2423                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2424                         kfree(buff);
2425                         return -EFAULT;
2426                 }
2427         } else
2428                 memset(buff, 0, iocommand.buf_size);
2429         c = cmd_special_alloc(h);
2430         if (c == NULL) {
2431                 kfree(buff);
2432                 return -ENOMEM;
2433         }
2434         /* Fill in the command type */
2435         c->cmd_type = CMD_IOCTL_PEND;
2436         /* Fill in Command Header */
2437         c->Header.ReplyQueue = 0; /* unused in simple mode */
2438         if (iocommand.buf_size > 0) {   /* buffer to fill */
2439                 c->Header.SGList = 1;
2440                 c->Header.SGTotal = 1;
2441         } else  { /* no buffers to fill */
2442                 c->Header.SGList = 0;
2443                 c->Header.SGTotal = 0;
2444         }
2445         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2446         /* use the kernel address the cmd block for tag */
2447         c->Header.Tag.lower = c->busaddr;
2448
2449         /* Fill in Request block */
2450         memcpy(&c->Request, &iocommand.Request,
2451                 sizeof(c->Request));
2452
2453         /* Fill in the scatter gather information */
2454         if (iocommand.buf_size > 0) {
2455                 temp64.val = pci_map_single(h->pdev, buff,
2456                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2457                 c->SG[0].Addr.lower = temp64.val32.lower;
2458                 c->SG[0].Addr.upper = temp64.val32.upper;
2459                 c->SG[0].Len = iocommand.buf_size;
2460                 c->SG[0].Ext = 0; /* we are not chaining*/
2461         }
2462         hpsa_scsi_do_simple_cmd_core(h, c);
2463         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2464         check_ioctl_unit_attention(h, c);
2465
2466         /* Copy the error information out */
2467         memcpy(&iocommand.error_info, c->err_info,
2468                 sizeof(iocommand.error_info));
2469         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2470                 kfree(buff);
2471                 cmd_special_free(h, c);
2472                 return -EFAULT;
2473         }
2474
2475         if (iocommand.Request.Type.Direction == XFER_READ) {
2476                 /* Copy the data out of the buffer we created */
2477                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2478                         kfree(buff);
2479                         cmd_special_free(h, c);
2480                         return -EFAULT;
2481                 }
2482         }
2483         kfree(buff);
2484         cmd_special_free(h, c);
2485         return 0;
2486 }
2487
2488 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2489 {
2490         BIG_IOCTL_Command_struct *ioc;
2491         struct CommandList *c;
2492         unsigned char **buff = NULL;
2493         int *buff_size = NULL;
2494         union u64bit temp64;
2495         BYTE sg_used = 0;
2496         int status = 0;
2497         int i;
2498         u32 left;
2499         u32 sz;
2500         BYTE __user *data_ptr;
2501
2502         if (!argp)
2503                 return -EINVAL;
2504         if (!capable(CAP_SYS_RAWIO))
2505                 return -EPERM;
2506         ioc = (BIG_IOCTL_Command_struct *)
2507             kmalloc(sizeof(*ioc), GFP_KERNEL);
2508         if (!ioc) {
2509                 status = -ENOMEM;
2510                 goto cleanup1;
2511         }
2512         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2513                 status = -EFAULT;
2514                 goto cleanup1;
2515         }
2516         if ((ioc->buf_size < 1) &&
2517             (ioc->Request.Type.Direction != XFER_NONE)) {
2518                 status = -EINVAL;
2519                 goto cleanup1;
2520         }
2521         /* Check kmalloc limits  using all SGs */
2522         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2523                 status = -EINVAL;
2524                 goto cleanup1;
2525         }
2526         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2527                 status = -EINVAL;
2528                 goto cleanup1;
2529         }
2530         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2531         if (!buff) {
2532                 status = -ENOMEM;
2533                 goto cleanup1;
2534         }
2535         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2536         if (!buff_size) {
2537                 status = -ENOMEM;
2538                 goto cleanup1;
2539         }
2540         left = ioc->buf_size;
2541         data_ptr = ioc->buf;
2542         while (left) {
2543                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2544                 buff_size[sg_used] = sz;
2545                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2546                 if (buff[sg_used] == NULL) {
2547                         status = -ENOMEM;
2548                         goto cleanup1;
2549                 }
2550                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2551                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2552                                 status = -ENOMEM;
2553                                 goto cleanup1;
2554                         }
2555                 } else
2556                         memset(buff[sg_used], 0, sz);
2557                 left -= sz;
2558                 data_ptr += sz;
2559                 sg_used++;
2560         }
2561         c = cmd_special_alloc(h);
2562         if (c == NULL) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         c->cmd_type = CMD_IOCTL_PEND;
2567         c->Header.ReplyQueue = 0;
2568
2569         if (ioc->buf_size > 0) {
2570                 c->Header.SGList = sg_used;
2571                 c->Header.SGTotal = sg_used;
2572         } else {
2573                 c->Header.SGList = 0;
2574                 c->Header.SGTotal = 0;
2575         }
2576         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2577         c->Header.Tag.lower = c->busaddr;
2578         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2579         if (ioc->buf_size > 0) {
2580                 int i;
2581                 for (i = 0; i < sg_used; i++) {
2582                         temp64.val = pci_map_single(h->pdev, buff[i],
2583                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2584                         c->SG[i].Addr.lower = temp64.val32.lower;
2585                         c->SG[i].Addr.upper = temp64.val32.upper;
2586                         c->SG[i].Len = buff_size[i];
2587                         /* we are not chaining */
2588                         c->SG[i].Ext = 0;
2589                 }
2590         }
2591         hpsa_scsi_do_simple_cmd_core(h, c);
2592         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2593         check_ioctl_unit_attention(h, c);
2594         /* Copy the error information out */
2595         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2596         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2597                 cmd_special_free(h, c);
2598                 status = -EFAULT;
2599                 goto cleanup1;
2600         }
2601         if (ioc->Request.Type.Direction == XFER_READ) {
2602                 /* Copy the data out of the buffer we created */
2603                 BYTE __user *ptr = ioc->buf;
2604                 for (i = 0; i < sg_used; i++) {
2605                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2606                                 cmd_special_free(h, c);
2607                                 status = -EFAULT;
2608                                 goto cleanup1;
2609                         }
2610                         ptr += buff_size[i];
2611                 }
2612         }
2613         cmd_special_free(h, c);
2614         status = 0;
2615 cleanup1:
2616         if (buff) {
2617                 for (i = 0; i < sg_used; i++)
2618                         kfree(buff[i]);
2619                 kfree(buff);
2620         }
2621         kfree(buff_size);
2622         kfree(ioc);
2623         return status;
2624 }
2625
2626 static void check_ioctl_unit_attention(struct ctlr_info *h,
2627         struct CommandList *c)
2628 {
2629         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2630                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2631                 (void) check_for_unit_attention(h, c);
2632 }
2633 /*
2634  * ioctl
2635  */
2636 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2637 {
2638         struct ctlr_info *h;
2639         void __user *argp = (void __user *)arg;
2640
2641         h = sdev_to_hba(dev);
2642
2643         switch (cmd) {
2644         case CCISS_DEREGDISK:
2645         case CCISS_REGNEWDISK:
2646         case CCISS_REGNEWD:
2647                 hpsa_scan_start(h->scsi_host);
2648                 return 0;
2649         case CCISS_GETPCIINFO:
2650                 return hpsa_getpciinfo_ioctl(h, argp);
2651         case CCISS_GETDRIVVER:
2652                 return hpsa_getdrivver_ioctl(h, argp);
2653         case CCISS_PASSTHRU:
2654                 return hpsa_passthru_ioctl(h, argp);
2655         case CCISS_BIG_PASSTHRU:
2656                 return hpsa_big_passthru_ioctl(h, argp);
2657         default:
2658                 return -ENOTTY;
2659         }
2660 }
2661
2662 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2663         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2664         int cmd_type)
2665 {
2666         int pci_dir = XFER_NONE;
2667
2668         c->cmd_type = CMD_IOCTL_PEND;
2669         c->Header.ReplyQueue = 0;
2670         if (buff != NULL && size > 0) {
2671                 c->Header.SGList = 1;
2672                 c->Header.SGTotal = 1;
2673         } else {
2674                 c->Header.SGList = 0;
2675                 c->Header.SGTotal = 0;
2676         }
2677         c->Header.Tag.lower = c->busaddr;
2678         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2679
2680         c->Request.Type.Type = cmd_type;
2681         if (cmd_type == TYPE_CMD) {
2682                 switch (cmd) {
2683                 case HPSA_INQUIRY:
2684                         /* are we trying to read a vital product page */
2685                         if (page_code != 0) {
2686                                 c->Request.CDB[1] = 0x01;
2687                                 c->Request.CDB[2] = page_code;
2688                         }
2689                         c->Request.CDBLen = 6;
2690                         c->Request.Type.Attribute = ATTR_SIMPLE;
2691                         c->Request.Type.Direction = XFER_READ;
2692                         c->Request.Timeout = 0;
2693                         c->Request.CDB[0] = HPSA_INQUIRY;
2694                         c->Request.CDB[4] = size & 0xFF;
2695                         break;
2696                 case HPSA_REPORT_LOG:
2697                 case HPSA_REPORT_PHYS:
2698                         /* Talking to controller so It's a physical command
2699                            mode = 00 target = 0.  Nothing to write.
2700                          */
2701                         c->Request.CDBLen = 12;
2702                         c->Request.Type.Attribute = ATTR_SIMPLE;
2703                         c->Request.Type.Direction = XFER_READ;
2704                         c->Request.Timeout = 0;
2705                         c->Request.CDB[0] = cmd;
2706                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2707                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2708                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2709                         c->Request.CDB[9] = size & 0xFF;
2710                         break;
2711                 case HPSA_CACHE_FLUSH:
2712                         c->Request.CDBLen = 12;
2713                         c->Request.Type.Attribute = ATTR_SIMPLE;
2714                         c->Request.Type.Direction = XFER_WRITE;
2715                         c->Request.Timeout = 0;
2716                         c->Request.CDB[0] = BMIC_WRITE;
2717                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2718                         break;
2719                 case TEST_UNIT_READY:
2720                         c->Request.CDBLen = 6;
2721                         c->Request.Type.Attribute = ATTR_SIMPLE;
2722                         c->Request.Type.Direction = XFER_NONE;
2723                         c->Request.Timeout = 0;
2724                         break;
2725                 default:
2726                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2727                         BUG();
2728                         return;
2729                 }
2730         } else if (cmd_type == TYPE_MSG) {
2731                 switch (cmd) {
2732
2733                 case  HPSA_DEVICE_RESET_MSG:
2734                         c->Request.CDBLen = 16;
2735                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2736                         c->Request.Type.Attribute = ATTR_SIMPLE;
2737                         c->Request.Type.Direction = XFER_NONE;
2738                         c->Request.Timeout = 0; /* Don't time out */
2739                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2740                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2741                         /* If bytes 4-7 are zero, it means reset the */
2742                         /* LunID device */
2743                         c->Request.CDB[4] = 0x00;
2744                         c->Request.CDB[5] = 0x00;
2745                         c->Request.CDB[6] = 0x00;
2746                         c->Request.CDB[7] = 0x00;
2747                 break;
2748
2749                 default:
2750                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2751                                 cmd);
2752                         BUG();
2753                 }
2754         } else {
2755                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2756                 BUG();
2757         }
2758
2759         switch (c->Request.Type.Direction) {
2760         case XFER_READ:
2761                 pci_dir = PCI_DMA_FROMDEVICE;
2762                 break;
2763         case XFER_WRITE:
2764                 pci_dir = PCI_DMA_TODEVICE;
2765                 break;
2766         case XFER_NONE:
2767                 pci_dir = PCI_DMA_NONE;
2768                 break;
2769         default:
2770                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2771         }
2772
2773         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2774
2775         return;
2776 }
2777
2778 /*
2779  * Map (physical) PCI mem into (virtual) kernel space
2780  */
2781 static void __iomem *remap_pci_mem(ulong base, ulong size)
2782 {
2783         ulong page_base = ((ulong) base) & PAGE_MASK;
2784         ulong page_offs = ((ulong) base) - page_base;
2785         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2786
2787         return page_remapped ? (page_remapped + page_offs) : NULL;
2788 }
2789
2790 /* Takes cmds off the submission queue and sends them to the hardware,
2791  * then puts them on the queue of cmds waiting for completion.
2792  */
2793 static void start_io(struct ctlr_info *h)
2794 {
2795         struct CommandList *c;
2796
2797         while (!hlist_empty(&h->reqQ)) {
2798                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2799                 /* can't do anything if fifo is full */
2800                 if ((h->access.fifo_full(h))) {
2801                         dev_warn(&h->pdev->dev, "fifo full\n");
2802                         break;
2803                 }
2804
2805                 /* Get the first entry from the Request Q */
2806                 removeQ(c);
2807                 h->Qdepth--;
2808
2809                 /* Tell the controller execute command */
2810                 h->access.submit_command(h, c);
2811
2812                 /* Put job onto the completed Q */
2813                 addQ(&h->cmpQ, c);
2814         }
2815 }
2816
2817 static inline unsigned long get_next_completion(struct ctlr_info *h)
2818 {
2819         return h->access.command_completed(h);
2820 }
2821
2822 static inline bool interrupt_pending(struct ctlr_info *h)
2823 {
2824         return h->access.intr_pending(h);
2825 }
2826
2827 static inline long interrupt_not_for_us(struct ctlr_info *h)
2828 {
2829         return !(h->msi_vector || h->msix_vector) &&
2830                 ((h->access.intr_pending(h) == 0) ||
2831                 (h->interrupts_enabled == 0));
2832 }
2833
2834 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2835         u32 raw_tag)
2836 {
2837         if (unlikely(tag_index >= h->nr_cmds)) {
2838                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2839                 return 1;
2840         }
2841         return 0;
2842 }
2843
2844 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2845 {
2846         removeQ(c);
2847         if (likely(c->cmd_type == CMD_SCSI))
2848                 complete_scsi_command(c, 0, raw_tag);
2849         else if (c->cmd_type == CMD_IOCTL_PEND)
2850                 complete(c->waiting);
2851 }
2852
2853 static inline u32 hpsa_tag_contains_index(u32 tag)
2854 {
2855 #define DIRECT_LOOKUP_BIT 0x10
2856         return tag & DIRECT_LOOKUP_BIT;
2857 }
2858
2859 static inline u32 hpsa_tag_to_index(u32 tag)
2860 {
2861 #define DIRECT_LOOKUP_SHIFT 5
2862         return tag >> DIRECT_LOOKUP_SHIFT;
2863 }
2864
2865 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2866 {
2867 #define HPSA_ERROR_BITS 0x03
2868         return tag & ~HPSA_ERROR_BITS;
2869 }
2870
2871 /* process completion of an indexed ("direct lookup") command */
2872 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2873         u32 raw_tag)
2874 {
2875         u32 tag_index;
2876         struct CommandList *c;
2877
2878         tag_index = hpsa_tag_to_index(raw_tag);
2879         if (bad_tag(h, tag_index, raw_tag))
2880                 return next_command(h);
2881         c = h->cmd_pool + tag_index;
2882         finish_cmd(c, raw_tag);
2883         return next_command(h);
2884 }
2885
2886 /* process completion of a non-indexed command */
2887 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2888         u32 raw_tag)
2889 {
2890         u32 tag;
2891         struct CommandList *c = NULL;
2892         struct hlist_node *tmp;
2893
2894         tag = hpsa_tag_discard_error_bits(raw_tag);
2895         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2896                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2897                         finish_cmd(c, raw_tag);
2898                         return next_command(h);
2899                 }
2900         }
2901         bad_tag(h, h->nr_cmds + 1, raw_tag);
2902         return next_command(h);
2903 }
2904
2905 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2906 {
2907         struct ctlr_info *h = dev_id;
2908         unsigned long flags;
2909         u32 raw_tag;
2910
2911         if (interrupt_not_for_us(h))
2912                 return IRQ_NONE;
2913         spin_lock_irqsave(&h->lock, flags);
2914         raw_tag = get_next_completion(h);
2915         while (raw_tag != FIFO_EMPTY) {
2916                 if (hpsa_tag_contains_index(raw_tag))
2917                         raw_tag = process_indexed_cmd(h, raw_tag);
2918                 else
2919                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2920         }
2921         spin_unlock_irqrestore(&h->lock, flags);
2922         return IRQ_HANDLED;
2923 }
2924
2925 /* Send a message CDB to the firmware. */
2926 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2927                                                 unsigned char type)
2928 {
2929         struct Command {
2930                 struct CommandListHeader CommandHeader;
2931                 struct RequestBlock Request;
2932                 struct ErrDescriptor ErrorDescriptor;
2933         };
2934         struct Command *cmd;
2935         static const size_t cmd_sz = sizeof(*cmd) +
2936                                         sizeof(cmd->ErrorDescriptor);
2937         dma_addr_t paddr64;
2938         uint32_t paddr32, tag;
2939         void __iomem *vaddr;
2940         int i, err;
2941
2942         vaddr = pci_ioremap_bar(pdev, 0);
2943         if (vaddr == NULL)
2944                 return -ENOMEM;
2945
2946         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2947          * CCISS commands, so they must be allocated from the lower 4GiB of
2948          * memory.
2949          */
2950         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2951         if (err) {
2952                 iounmap(vaddr);
2953                 return -ENOMEM;
2954         }
2955
2956         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2957         if (cmd == NULL) {
2958                 iounmap(vaddr);
2959                 return -ENOMEM;
2960         }
2961
2962         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2963          * although there's no guarantee, we assume that the address is at
2964          * least 4-byte aligned (most likely, it's page-aligned).
2965          */
2966         paddr32 = paddr64;
2967
2968         cmd->CommandHeader.ReplyQueue = 0;
2969         cmd->CommandHeader.SGList = 0;
2970         cmd->CommandHeader.SGTotal = 0;
2971         cmd->CommandHeader.Tag.lower = paddr32;
2972         cmd->CommandHeader.Tag.upper = 0;
2973         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2974
2975         cmd->Request.CDBLen = 16;
2976         cmd->Request.Type.Type = TYPE_MSG;
2977         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2978         cmd->Request.Type.Direction = XFER_NONE;
2979         cmd->Request.Timeout = 0; /* Don't time out */
2980         cmd->Request.CDB[0] = opcode;
2981         cmd->Request.CDB[1] = type;
2982         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2983         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2984         cmd->ErrorDescriptor.Addr.upper = 0;
2985         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
2986
2987         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
2988
2989         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
2990                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
2991                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
2992                         break;
2993                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
2994         }
2995
2996         iounmap(vaddr);
2997
2998         /* we leak the DMA buffer here ... no choice since the controller could
2999          *  still complete the command.
3000          */
3001         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3002                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3003                         opcode, type);
3004                 return -ETIMEDOUT;
3005         }
3006
3007         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3008
3009         if (tag & HPSA_ERROR_BIT) {
3010                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3011                         opcode, type);
3012                 return -EIO;
3013         }
3014
3015         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3016                 opcode, type);
3017         return 0;
3018 }
3019
3020 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3021 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3022
3023 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3024 {
3025 /* the #defines are stolen from drivers/pci/msi.h. */
3026 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3027 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3028
3029         int pos;
3030         u16 control = 0;
3031
3032         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3033         if (pos) {
3034                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3035                 if (control & PCI_MSI_FLAGS_ENABLE) {
3036                         dev_info(&pdev->dev, "resetting MSI\n");
3037                         pci_write_config_word(pdev, msi_control_reg(pos),
3038                                         control & ~PCI_MSI_FLAGS_ENABLE);
3039                 }
3040         }
3041
3042         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3043         if (pos) {
3044                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3045                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3046                         dev_info(&pdev->dev, "resetting MSI-X\n");
3047                         pci_write_config_word(pdev, msi_control_reg(pos),
3048                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3049                 }
3050         }
3051
3052         return 0;
3053 }
3054
3055 /* This does a hard reset of the controller using PCI power management
3056  * states.
3057  */
3058 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3059 {
3060         u16 pmcsr, saved_config_space[32];
3061         int i, pos;
3062
3063         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3064
3065         /* This is very nearly the same thing as
3066          *
3067          * pci_save_state(pci_dev);
3068          * pci_set_power_state(pci_dev, PCI_D3hot);
3069          * pci_set_power_state(pci_dev, PCI_D0);
3070          * pci_restore_state(pci_dev);
3071          *
3072          * but we can't use these nice canned kernel routines on
3073          * kexec, because they also check the MSI/MSI-X state in PCI
3074          * configuration space and do the wrong thing when it is
3075          * set/cleared.  Also, the pci_save/restore_state functions
3076          * violate the ordering requirements for restoring the
3077          * configuration space from the CCISS document (see the
3078          * comment below).  So we roll our own ....
3079          */
3080
3081         for (i = 0; i < 32; i++)
3082                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3083
3084         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3085         if (pos == 0) {
3086                 dev_err(&pdev->dev,
3087                         "hpsa_reset_controller: PCI PM not supported\n");
3088                 return -ENODEV;
3089         }
3090
3091         /* Quoting from the Open CISS Specification: "The Power
3092          * Management Control/Status Register (CSR) controls the power
3093          * state of the device.  The normal operating state is D0,
3094          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3095          * the controller, place the interface device in D3 then to
3096          * D0, this causes a secondary PCI reset which will reset the
3097          * controller."
3098          */
3099
3100         /* enter the D3hot power management state */
3101         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3102         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3103         pmcsr |= PCI_D3hot;
3104         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3105
3106         msleep(500);
3107
3108         /* enter the D0 power management state */
3109         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3110         pmcsr |= PCI_D0;
3111         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3112
3113         msleep(500);
3114
3115         /* Restore the PCI configuration space.  The Open CISS
3116          * Specification says, "Restore the PCI Configuration
3117          * Registers, offsets 00h through 60h. It is important to
3118          * restore the command register, 16-bits at offset 04h,
3119          * last. Do not restore the configuration status register,
3120          * 16-bits at offset 06h."  Note that the offset is 2*i.
3121          */
3122         for (i = 0; i < 32; i++) {
3123                 if (i == 2 || i == 3)
3124                         continue;
3125                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3126         }
3127         wmb();
3128         pci_write_config_word(pdev, 4, saved_config_space[2]);
3129
3130         return 0;
3131 }
3132
3133 /*
3134  *  We cannot read the structure directly, for portability we must use
3135  *   the io functions.
3136  *   This is for debug only.
3137  */
3138 #ifdef HPSA_DEBUG
3139 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3140 {
3141         int i;
3142         char temp_name[17];
3143
3144         dev_info(dev, "Controller Configuration information\n");
3145         dev_info(dev, "------------------------------------\n");
3146         for (i = 0; i < 4; i++)
3147                 temp_name[i] = readb(&(tb->Signature[i]));
3148         temp_name[4] = '\0';
3149         dev_info(dev, "   Signature = %s\n", temp_name);
3150         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3151         dev_info(dev, "   Transport methods supported = 0x%x\n",
3152                readl(&(tb->TransportSupport)));
3153         dev_info(dev, "   Transport methods active = 0x%x\n",
3154                readl(&(tb->TransportActive)));
3155         dev_info(dev, "   Requested transport Method = 0x%x\n",
3156                readl(&(tb->HostWrite.TransportRequest)));
3157         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3158                readl(&(tb->HostWrite.CoalIntDelay)));
3159         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3160                readl(&(tb->HostWrite.CoalIntCount)));
3161         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3162                readl(&(tb->CmdsOutMax)));
3163         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3164         for (i = 0; i < 16; i++)
3165                 temp_name[i] = readb(&(tb->ServerName[i]));
3166         temp_name[16] = '\0';
3167         dev_info(dev, "   Server Name = %s\n", temp_name);
3168         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3169                 readl(&(tb->HeartBeat)));
3170 }
3171 #endif                          /* HPSA_DEBUG */
3172
3173 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3174 {
3175         int i, offset, mem_type, bar_type;
3176
3177         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3178                 return 0;
3179         offset = 0;
3180         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3181                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3182                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3183                         offset += 4;
3184                 else {
3185                         mem_type = pci_resource_flags(pdev, i) &
3186                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3187                         switch (mem_type) {
3188                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3189                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3190                                 offset += 4;    /* 32 bit */
3191                                 break;
3192                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3193                                 offset += 8;
3194                                 break;
3195                         default:        /* reserved in PCI 2.2 */
3196                                 dev_warn(&pdev->dev,
3197                                        "base address is invalid\n");
3198                                 return -1;
3199                                 break;
3200                         }
3201                 }
3202                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3203                         return i + 1;
3204         }
3205         return -1;
3206 }
3207
3208 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3209  * controllers that are capable. If not, we use IO-APIC mode.
3210  */
3211
3212 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3213                                            struct pci_dev *pdev, u32 board_id)
3214 {
3215 #ifdef CONFIG_PCI_MSI
3216         int err;
3217         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3218         {0, 2}, {0, 3}
3219         };
3220
3221         /* Some boards advertise MSI but don't really support it */
3222         if ((board_id == 0x40700E11) ||
3223             (board_id == 0x40800E11) ||
3224             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3225                 goto default_int_mode;
3226         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3227                 dev_info(&pdev->dev, "MSIX\n");
3228                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3229                 if (!err) {
3230                         h->intr[0] = hpsa_msix_entries[0].vector;
3231                         h->intr[1] = hpsa_msix_entries[1].vector;
3232                         h->intr[2] = hpsa_msix_entries[2].vector;
3233                         h->intr[3] = hpsa_msix_entries[3].vector;
3234                         h->msix_vector = 1;
3235                         return;
3236                 }
3237                 if (err > 0) {
3238                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3239                                "available\n", err);
3240                         goto default_int_mode;
3241                 } else {
3242                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3243                                err);
3244                         goto default_int_mode;
3245                 }
3246         }
3247         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3248                 dev_info(&pdev->dev, "MSI\n");
3249                 if (!pci_enable_msi(pdev))
3250                         h->msi_vector = 1;
3251                 else
3252                         dev_warn(&pdev->dev, "MSI init failed\n");
3253         }
3254 default_int_mode:
3255 #endif                          /* CONFIG_PCI_MSI */
3256         /* if we get here we're going to use the default interrupt mode */
3257         h->intr[PERF_MODE_INT] = pdev->irq;
3258 }
3259
3260 static int __devinit hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3261 {
3262         ushort subsystem_vendor_id, subsystem_device_id, command;
3263         u32 board_id, scratchpad = 0;
3264         u64 cfg_offset;
3265         u32 cfg_base_addr;
3266         u64 cfg_base_addr_index;
3267         u32 trans_offset;
3268         int i, prod_index, err;
3269
3270         subsystem_vendor_id = pdev->subsystem_vendor;
3271         subsystem_device_id = pdev->subsystem_device;
3272         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3273                     subsystem_vendor_id);
3274
3275         for (i = 0; i < ARRAY_SIZE(products); i++)
3276                 if (board_id == products[i].board_id)
3277                         break;
3278
3279         prod_index = i;
3280
3281         if (prod_index == ARRAY_SIZE(products)) {
3282                 prod_index--;
3283                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3284                                 !hpsa_allow_any) {
3285                         dev_warn(&pdev->dev, "unrecognized board ID:"
3286                                 " 0x%08lx, ignoring.\n",
3287                                 (unsigned long) board_id);
3288                         return -ENODEV;
3289                 }
3290         }
3291         /* check to see if controller has been disabled
3292          * BEFORE trying to enable it
3293          */
3294         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3295         if (!(command & 0x02)) {
3296                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3297                 return -ENODEV;
3298         }
3299
3300         err = pci_enable_device(pdev);
3301         if (err) {
3302                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3303                 return err;
3304         }
3305
3306         err = pci_request_regions(pdev, "hpsa");
3307         if (err) {
3308                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3309                 return err;
3310         }
3311
3312         /* If the kernel supports MSI/MSI-X we will try to enable that,
3313          * else we use the IO-APIC interrupt assigned to us by system ROM.
3314          */
3315         hpsa_interrupt_mode(h, pdev, board_id);
3316
3317         /* find the memory BAR */
3318         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3319                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3320                         break;
3321         }
3322         if (i == DEVICE_COUNT_RESOURCE) {
3323                 dev_warn(&pdev->dev, "no memory BAR found\n");
3324                 err = -ENODEV;
3325                 goto err_out_free_res;
3326         }
3327
3328         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3329                                                  * already removed
3330                                                  */
3331
3332         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3333
3334         /* Wait for the board to become ready.  */
3335         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3336                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3337                 if (scratchpad == HPSA_FIRMWARE_READY)
3338                         break;
3339                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3340         }
3341         if (scratchpad != HPSA_FIRMWARE_READY) {
3342                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3343                 err = -ENODEV;
3344                 goto err_out_free_res;
3345         }
3346
3347         /* get the address index number */
3348         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3349         cfg_base_addr &= (u32) 0x0000ffff;
3350         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3351         if (cfg_base_addr_index == -1) {
3352                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3353                 err = -ENODEV;
3354                 goto err_out_free_res;
3355         }
3356
3357         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3358         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3359                                cfg_base_addr_index) + cfg_offset,
3360                                 sizeof(h->cfgtable));
3361         /* Find performant mode table. */
3362         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3363         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3364                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3365                                 sizeof(*h->transtable));
3366
3367         h->board_id = board_id;
3368         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3369         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3370
3371         /*
3372          * Limit in-command s/g elements to 32 save dma'able memory.
3373          * Howvever spec says if 0, use 31
3374          */
3375
3376         h->max_cmd_sg_entries = 31;
3377         if (h->maxsgentries > 512) {
3378                 h->max_cmd_sg_entries = 32;
3379                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3380                 h->maxsgentries--; /* save one for chain pointer */
3381         } else {
3382                 h->maxsgentries = 31; /* default to traditional values */
3383                 h->chainsize = 0;
3384         }
3385
3386         h->product_name = products[prod_index].product_name;
3387         h->access = *(products[prod_index].access);
3388         /* Allow room for some ioctls */
3389         h->nr_cmds = h->max_commands - 4;
3390
3391         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3392             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3393             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3394             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3395                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3396                 err = -ENODEV;
3397                 goto err_out_free_res;
3398         }
3399 #ifdef CONFIG_X86
3400         {
3401                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3402                 u32 prefetch;
3403                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3404                 prefetch |= 0x100;
3405                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3406         }
3407 #endif
3408
3409         /* Disabling DMA prefetch for the P600
3410          * An ASIC bug may result in a prefetch beyond
3411          * physical memory.
3412          */
3413         if (board_id == 0x3225103C) {
3414                 u32 dma_prefetch;
3415                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3416                 dma_prefetch |= 0x8000;
3417                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3418         }
3419
3420         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3421         /* Update the field, and then ring the doorbell */
3422         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3423         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3424
3425         /* under certain very rare conditions, this can take awhile.
3426          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3427          * as we enter this code.)
3428          */
3429         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3430                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3431                         break;
3432                 /* delay and try again */
3433                 msleep(10);
3434         }
3435
3436 #ifdef HPSA_DEBUG
3437         print_cfg_table(&pdev->dev, h->cfgtable);
3438 #endif                          /* HPSA_DEBUG */
3439
3440         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3441                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3442                 err = -ENODEV;
3443                 goto err_out_free_res;
3444         }
3445         return 0;
3446
3447 err_out_free_res:
3448         /*
3449          * Deliberately omit pci_disable_device(): it does something nasty to
3450          * Smart Array controllers that pci_enable_device does not undo
3451          */
3452         pci_release_regions(pdev);
3453         return err;
3454 }
3455
3456 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3457 {
3458         int rc;
3459
3460 #define HBA_INQUIRY_BYTE_COUNT 64
3461         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3462         if (!h->hba_inquiry_data)
3463                 return;
3464         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3465                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3466         if (rc != 0) {
3467                 kfree(h->hba_inquiry_data);
3468                 h->hba_inquiry_data = NULL;
3469         }
3470 }
3471
3472 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3473                                     const struct pci_device_id *ent)
3474 {
3475         int i, rc;
3476         int dac;
3477         struct ctlr_info *h;
3478
3479         if (number_of_controllers == 0)
3480                 printk(KERN_INFO DRIVER_NAME "\n");
3481         if (reset_devices) {
3482                 /* Reset the controller with a PCI power-cycle */
3483                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3484                         return -ENODEV;
3485
3486                 /* Some devices (notably the HP Smart Array 5i Controller)
3487                    need a little pause here */
3488                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3489
3490                 /* Now try to get the controller to respond to a no-op */
3491                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3492                         if (hpsa_noop(pdev) == 0)
3493                                 break;
3494                         else
3495                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3496                                                 (i < 11 ? "; re-trying" : ""));
3497                 }
3498         }
3499
3500         /* Command structures must be aligned on a 32-byte boundary because
3501          * the 5 lower bits of the address are used by the hardware. and by
3502          * the driver.  See comments in hpsa.h for more info.
3503          */
3504 #define COMMANDLIST_ALIGNMENT 32
3505         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3506         h = kzalloc(sizeof(*h), GFP_KERNEL);
3507         if (!h)
3508                 return -ENOMEM;
3509
3510         h->busy_initializing = 1;
3511         INIT_HLIST_HEAD(&h->cmpQ);
3512         INIT_HLIST_HEAD(&h->reqQ);
3513         rc = hpsa_pci_init(h, pdev);
3514         if (rc != 0)
3515                 goto clean1;
3516
3517         sprintf(h->devname, "hpsa%d", number_of_controllers);
3518         h->ctlr = number_of_controllers;
3519         number_of_controllers++;
3520         h->pdev = pdev;
3521
3522         /* configure PCI DMA stuff */
3523         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3524         if (rc == 0) {
3525                 dac = 1;
3526         } else {
3527                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3528                 if (rc == 0) {
3529                         dac = 0;
3530                 } else {
3531                         dev_err(&pdev->dev, "no suitable DMA available\n");
3532                         goto clean1;
3533                 }
3534         }
3535
3536         /* make sure the board interrupts are off */
3537         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3538         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3539                         IRQF_DISABLED, h->devname, h);
3540         if (rc) {
3541                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3542                        h->intr[PERF_MODE_INT], h->devname);
3543                 goto clean2;
3544         }
3545
3546         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3547                h->devname, pdev->device,
3548                h->intr[PERF_MODE_INT], dac ? "" : " not");
3549
3550         h->cmd_pool_bits =
3551             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3552                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3553         h->cmd_pool = pci_alloc_consistent(h->pdev,
3554                     h->nr_cmds * sizeof(*h->cmd_pool),
3555                     &(h->cmd_pool_dhandle));
3556         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3557                     h->nr_cmds * sizeof(*h->errinfo_pool),
3558                     &(h->errinfo_pool_dhandle));
3559         if ((h->cmd_pool_bits == NULL)
3560             || (h->cmd_pool == NULL)
3561             || (h->errinfo_pool == NULL)) {
3562                 dev_err(&pdev->dev, "out of memory");
3563                 rc = -ENOMEM;
3564                 goto clean4;
3565         }
3566         if (hpsa_allocate_sg_chain_blocks(h))
3567                 goto clean4;
3568         spin_lock_init(&h->lock);
3569         spin_lock_init(&h->scan_lock);
3570         init_waitqueue_head(&h->scan_wait_queue);
3571         h->scan_finished = 1; /* no scan currently in progress */
3572
3573         pci_set_drvdata(pdev, h);
3574         memset(h->cmd_pool_bits, 0,
3575                ((h->nr_cmds + BITS_PER_LONG -
3576                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3577
3578         hpsa_scsi_setup(h);
3579
3580         /* Turn the interrupts on so we can service requests */
3581         h->access.set_intr_mask(h, HPSA_INTR_ON);
3582
3583         hpsa_put_ctlr_into_performant_mode(h);
3584         hpsa_hba_inquiry(h);
3585         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3586         h->busy_initializing = 0;
3587         return 1;
3588
3589 clean4:
3590         hpsa_free_sg_chain_blocks(h);
3591         kfree(h->cmd_pool_bits);
3592         if (h->cmd_pool)
3593                 pci_free_consistent(h->pdev,
3594                             h->nr_cmds * sizeof(struct CommandList),
3595                             h->cmd_pool, h->cmd_pool_dhandle);
3596         if (h->errinfo_pool)
3597                 pci_free_consistent(h->pdev,
3598                             h->nr_cmds * sizeof(struct ErrorInfo),
3599                             h->errinfo_pool,
3600                             h->errinfo_pool_dhandle);
3601         free_irq(h->intr[PERF_MODE_INT], h);
3602 clean2:
3603 clean1:
3604         h->busy_initializing = 0;
3605         kfree(h);
3606         return rc;
3607 }
3608
3609 static void hpsa_flush_cache(struct ctlr_info *h)
3610 {
3611         char *flush_buf;
3612         struct CommandList *c;
3613
3614         flush_buf = kzalloc(4, GFP_KERNEL);
3615         if (!flush_buf)
3616                 return;
3617
3618         c = cmd_special_alloc(h);
3619         if (!c) {
3620                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3621                 goto out_of_memory;
3622         }
3623         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3624                 RAID_CTLR_LUNID, TYPE_CMD);
3625         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3626         if (c->err_info->CommandStatus != 0)
3627                 dev_warn(&h->pdev->dev,
3628                         "error flushing cache on controller\n");
3629         cmd_special_free(h, c);
3630 out_of_memory:
3631         kfree(flush_buf);
3632 }
3633
3634 static void hpsa_shutdown(struct pci_dev *pdev)
3635 {
3636         struct ctlr_info *h;
3637
3638         h = pci_get_drvdata(pdev);
3639         /* Turn board interrupts off  and send the flush cache command
3640          * sendcmd will turn off interrupt, and send the flush...
3641          * To write all data in the battery backed cache to disks
3642          */
3643         hpsa_flush_cache(h);
3644         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3645         free_irq(h->intr[PERF_MODE_INT], h);
3646 #ifdef CONFIG_PCI_MSI
3647         if (h->msix_vector)
3648                 pci_disable_msix(h->pdev);
3649         else if (h->msi_vector)
3650                 pci_disable_msi(h->pdev);
3651 #endif                          /* CONFIG_PCI_MSI */
3652 }
3653
3654 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3655 {
3656         struct ctlr_info *h;
3657
3658         if (pci_get_drvdata(pdev) == NULL) {
3659                 dev_err(&pdev->dev, "unable to remove device \n");
3660                 return;
3661         }
3662         h = pci_get_drvdata(pdev);
3663         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3664         hpsa_shutdown(pdev);
3665         iounmap(h->vaddr);
3666         hpsa_free_sg_chain_blocks(h);
3667         pci_free_consistent(h->pdev,
3668                 h->nr_cmds * sizeof(struct CommandList),
3669                 h->cmd_pool, h->cmd_pool_dhandle);
3670         pci_free_consistent(h->pdev,
3671                 h->nr_cmds * sizeof(struct ErrorInfo),
3672                 h->errinfo_pool, h->errinfo_pool_dhandle);
3673         pci_free_consistent(h->pdev, h->reply_pool_size,
3674                 h->reply_pool, h->reply_pool_dhandle);
3675         kfree(h->cmd_pool_bits);
3676         kfree(h->blockFetchTable);
3677         kfree(h->hba_inquiry_data);
3678         /*
3679          * Deliberately omit pci_disable_device(): it does something nasty to
3680          * Smart Array controllers that pci_enable_device does not undo
3681          */
3682         pci_release_regions(pdev);
3683         pci_set_drvdata(pdev, NULL);
3684         kfree(h);
3685 }
3686
3687 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3688         __attribute__((unused)) pm_message_t state)
3689 {
3690         return -ENOSYS;
3691 }
3692
3693 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3694 {
3695         return -ENOSYS;
3696 }
3697
3698 static struct pci_driver hpsa_pci_driver = {
3699         .name = "hpsa",
3700         .probe = hpsa_init_one,
3701         .remove = __devexit_p(hpsa_remove_one),
3702         .id_table = hpsa_pci_device_id, /* id_table */
3703         .shutdown = hpsa_shutdown,
3704         .suspend = hpsa_suspend,
3705         .resume = hpsa_resume,
3706 };
3707
3708 /* Fill in bucket_map[], given nsgs (the max number of
3709  * scatter gather elements supported) and bucket[],
3710  * which is an array of 8 integers.  The bucket[] array
3711  * contains 8 different DMA transfer sizes (in 16
3712  * byte increments) which the controller uses to fetch
3713  * commands.  This function fills in bucket_map[], which
3714  * maps a given number of scatter gather elements to one of
3715  * the 8 DMA transfer sizes.  The point of it is to allow the
3716  * controller to only do as much DMA as needed to fetch the
3717  * command, with the DMA transfer size encoded in the lower
3718  * bits of the command address.
3719  */
3720 static void  calc_bucket_map(int bucket[], int num_buckets,
3721         int nsgs, int *bucket_map)
3722 {
3723         int i, j, b, size;
3724
3725         /* even a command with 0 SGs requires 4 blocks */
3726 #define MINIMUM_TRANSFER_BLOCKS 4
3727 #define NUM_BUCKETS 8
3728         /* Note, bucket_map must have nsgs+1 entries. */
3729         for (i = 0; i <= nsgs; i++) {
3730                 /* Compute size of a command with i SG entries */
3731                 size = i + MINIMUM_TRANSFER_BLOCKS;
3732                 b = num_buckets; /* Assume the biggest bucket */
3733                 /* Find the bucket that is just big enough */
3734                 for (j = 0; j < 8; j++) {
3735                         if (bucket[j] >= size) {
3736                                 b = j;
3737                                 break;
3738                         }
3739                 }
3740                 /* for a command with i SG entries, use bucket b. */
3741                 bucket_map[i] = b;
3742         }
3743 }
3744
3745 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3746 {
3747         u32 trans_support;
3748         u64 trans_offset;
3749         /*  5 = 1 s/g entry or 4k
3750          *  6 = 2 s/g entry or 8k
3751          *  8 = 4 s/g entry or 16k
3752          * 10 = 6 s/g entry or 24k
3753          */
3754         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3755         int i = 0;
3756         int l = 0;
3757         unsigned long register_value;
3758
3759         trans_support = readl(&(h->cfgtable->TransportSupport));
3760         if (!(trans_support & PERFORMANT_MODE))
3761                 return;
3762
3763         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3764         h->max_sg_entries = 32;
3765         /* Performant mode ring buffer and supporting data structures */
3766         h->reply_pool_size = h->max_commands * sizeof(u64);
3767         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3768                                 &(h->reply_pool_dhandle));
3769
3770         /* Need a block fetch table for performant mode */
3771         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3772                                 sizeof(u32)), GFP_KERNEL);
3773
3774         if ((h->reply_pool == NULL)
3775                 || (h->blockFetchTable == NULL))
3776                 goto clean_up;
3777
3778         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3779
3780         /* Controller spec: zero out this buffer. */
3781         memset(h->reply_pool, 0, h->reply_pool_size);
3782         h->reply_pool_head = h->reply_pool;
3783
3784         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3785         bft[7] = h->max_sg_entries + 4;
3786         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3787         for (i = 0; i < 8; i++)
3788                 writel(bft[i], &h->transtable->BlockFetch[i]);
3789
3790         /* size of controller ring buffer */
3791         writel(h->max_commands, &h->transtable->RepQSize);
3792         writel(1, &h->transtable->RepQCount);
3793         writel(0, &h->transtable->RepQCtrAddrLow32);
3794         writel(0, &h->transtable->RepQCtrAddrHigh32);
3795         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3796         writel(0, &h->transtable->RepQAddr0High32);
3797         writel(CFGTBL_Trans_Performant,
3798                 &(h->cfgtable->HostWrite.TransportRequest));
3799         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3800         /* under certain very rare conditions, this can take awhile.
3801          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3802          * as we enter this code.) */
3803         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3804                 register_value = readl(h->vaddr + SA5_DOORBELL);
3805                 if (!(register_value & CFGTBL_ChangeReq))
3806                         break;
3807                 /* delay and try again */
3808                 set_current_state(TASK_INTERRUPTIBLE);
3809                 schedule_timeout(10);
3810         }
3811         register_value = readl(&(h->cfgtable->TransportActive));
3812         if (!(register_value & CFGTBL_Trans_Performant)) {
3813                 dev_warn(&h->pdev->dev, "unable to get board into"
3814                                         " performant mode\n");
3815                 return;
3816         }
3817
3818         /* Change the access methods to the performant access methods */
3819         h->access = SA5_performant_access;
3820         h->transMethod = CFGTBL_Trans_Performant;
3821
3822         return;
3823
3824 clean_up:
3825         if (h->reply_pool)
3826                 pci_free_consistent(h->pdev, h->reply_pool_size,
3827                         h->reply_pool, h->reply_pool_dhandle);
3828         kfree(h->blockFetchTable);
3829 }
3830
3831 /*
3832  *  This is it.  Register the PCI driver information for the cards we control
3833  *  the OS will call our registered routines when it finds one of our cards.
3834  */
3835 static int __init hpsa_init(void)
3836 {
3837         return pci_register_driver(&hpsa_pci_driver);
3838 }
3839
3840 static void __exit hpsa_cleanup(void)
3841 {
3842         pci_unregister_driver(&hpsa_pci_driver);
3843 }
3844
3845 module_init(hpsa_init);
3846 module_exit(hpsa_cleanup);