BKL: remove extraneous #include <smp_lock.h>
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
93 #define PCI_DEVICE_ID_HP_CISSF 0x333f
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
95         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
96                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
97         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
98                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
99         {0,}
100 };
101
102 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
103
104 /*  board_id = Subsystem Device ID & Vendor ID
105  *  product = Marketing Name for the board
106  *  access = Address of the struct of function pointers
107  */
108 static struct board_type products[] = {
109         {0x3241103C, "Smart Array P212", &SA5_access},
110         {0x3243103C, "Smart Array P410", &SA5_access},
111         {0x3245103C, "Smart Array P410i", &SA5_access},
112         {0x3247103C, "Smart Array P411", &SA5_access},
113         {0x3249103C, "Smart Array P812", &SA5_access},
114         {0x324a103C, "Smart Array P712m", &SA5_access},
115         {0x324b103C, "Smart Array P711m", &SA5_access},
116         {0x3233103C, "StorageWorks P1210m", &SA5_access},
117         {0x333F103C, "StorageWorks P1210m", &SA5_access},
118         {0x3250103C, "Smart Array", &SA5_access},
119         {0x3250113C, "Smart Array", &SA5_access},
120         {0x3250123C, "Smart Array", &SA5_access},
121         {0x3250133C, "Smart Array", &SA5_access},
122         {0x3250143C, "Smart Array", &SA5_access},
123         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
124 };
125
126 static int number_of_controllers;
127
128 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
129 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
130 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
131 static void start_io(struct ctlr_info *h);
132
133 #ifdef CONFIG_COMPAT
134 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
135 #endif
136
137 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
138 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
139 static struct CommandList *cmd_alloc(struct ctlr_info *h);
140 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
141 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
142         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
143         int cmd_type);
144
145 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
146 static void hpsa_scan_start(struct Scsi_Host *);
147 static int hpsa_scan_finished(struct Scsi_Host *sh,
148         unsigned long elapsed_time);
149 static int hpsa_change_queue_depth(struct scsi_device *sdev,
150         int qdepth, int reason);
151
152 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
153 static int hpsa_slave_alloc(struct scsi_device *sdev);
154 static void hpsa_slave_destroy(struct scsi_device *sdev);
155
156 static ssize_t raid_level_show(struct device *dev,
157         struct device_attribute *attr, char *buf);
158 static ssize_t lunid_show(struct device *dev,
159         struct device_attribute *attr, char *buf);
160 static ssize_t unique_id_show(struct device *dev,
161         struct device_attribute *attr, char *buf);
162 static ssize_t host_show_firmware_revision(struct device *dev,
163              struct device_attribute *attr, char *buf);
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static ssize_t host_store_rescan(struct device *dev,
166          struct device_attribute *attr, const char *buf, size_t count);
167 static int check_for_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 static void check_ioctl_unit_attention(struct ctlr_info *h,
170         struct CommandList *c);
171 /* performant mode helper functions */
172 static void calc_bucket_map(int *bucket, int num_buckets,
173         int nsgs, int *bucket_map);
174 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
175 static inline u32 next_command(struct ctlr_info *h);
176 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
177         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
178         u64 *cfg_offset);
179 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
180         unsigned long *memory_bar);
181 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
182
183 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
184 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
185 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
186 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
187 static DEVICE_ATTR(firmware_revision, S_IRUGO,
188         host_show_firmware_revision, NULL);
189
190 static struct device_attribute *hpsa_sdev_attrs[] = {
191         &dev_attr_raid_level,
192         &dev_attr_lunid,
193         &dev_attr_unique_id,
194         NULL,
195 };
196
197 static struct device_attribute *hpsa_shost_attrs[] = {
198         &dev_attr_rescan,
199         &dev_attr_firmware_revision,
200         NULL,
201 };
202
203 static struct scsi_host_template hpsa_driver_template = {
204         .module                 = THIS_MODULE,
205         .name                   = "hpsa",
206         .proc_name              = "hpsa",
207         .queuecommand           = hpsa_scsi_queue_command,
208         .scan_start             = hpsa_scan_start,
209         .scan_finished          = hpsa_scan_finished,
210         .change_queue_depth     = hpsa_change_queue_depth,
211         .this_id                = -1,
212         .use_clustering         = ENABLE_CLUSTERING,
213         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
214         .ioctl                  = hpsa_ioctl,
215         .slave_alloc            = hpsa_slave_alloc,
216         .slave_destroy          = hpsa_slave_destroy,
217 #ifdef CONFIG_COMPAT
218         .compat_ioctl           = hpsa_compat_ioctl,
219 #endif
220         .sdev_attrs = hpsa_sdev_attrs,
221         .shost_attrs = hpsa_shost_attrs,
222 };
223
224 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
225 {
226         unsigned long *priv = shost_priv(sdev->host);
227         return (struct ctlr_info *) *priv;
228 }
229
230 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
231 {
232         unsigned long *priv = shost_priv(sh);
233         return (struct ctlr_info *) *priv;
234 }
235
236 static int check_for_unit_attention(struct ctlr_info *h,
237         struct CommandList *c)
238 {
239         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
240                 return 0;
241
242         switch (c->err_info->SenseInfo[12]) {
243         case STATE_CHANGED:
244                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
245                         "detected, command retried\n", h->ctlr);
246                 break;
247         case LUN_FAILED:
248                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
249                         "detected, action required\n", h->ctlr);
250                 break;
251         case REPORT_LUNS_CHANGED:
252                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
253                         "changed, action required\n", h->ctlr);
254         /*
255          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
256          */
257                 break;
258         case POWER_OR_RESET:
259                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
260                         "or device reset detected\n", h->ctlr);
261                 break;
262         case UNIT_ATTENTION_CLEARED:
263                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
264                     "cleared by another initiator\n", h->ctlr);
265                 break;
266         default:
267                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
268                         "unit attention detected\n", h->ctlr);
269                 break;
270         }
271         return 1;
272 }
273
274 static ssize_t host_store_rescan(struct device *dev,
275                                  struct device_attribute *attr,
276                                  const char *buf, size_t count)
277 {
278         struct ctlr_info *h;
279         struct Scsi_Host *shost = class_to_shost(dev);
280         h = shost_to_hba(shost);
281         hpsa_scan_start(h->scsi_host);
282         return count;
283 }
284
285 static ssize_t host_show_firmware_revision(struct device *dev,
286              struct device_attribute *attr, char *buf)
287 {
288         struct ctlr_info *h;
289         struct Scsi_Host *shost = class_to_shost(dev);
290         unsigned char *fwrev;
291
292         h = shost_to_hba(shost);
293         if (!h->hba_inquiry_data)
294                 return 0;
295         fwrev = &h->hba_inquiry_data[32];
296         return snprintf(buf, 20, "%c%c%c%c\n",
297                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
298 }
299
300 /* Enqueuing and dequeuing functions for cmdlists. */
301 static inline void addQ(struct hlist_head *list, struct CommandList *c)
302 {
303         hlist_add_head(&c->list, list);
304 }
305
306 static inline u32 next_command(struct ctlr_info *h)
307 {
308         u32 a;
309
310         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
311                 return h->access.command_completed(h);
312
313         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
314                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
315                 (h->reply_pool_head)++;
316                 h->commands_outstanding--;
317         } else {
318                 a = FIFO_EMPTY;
319         }
320         /* Check for wraparound */
321         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
322                 h->reply_pool_head = h->reply_pool;
323                 h->reply_pool_wraparound ^= 1;
324         }
325         return a;
326 }
327
328 /* set_performant_mode: Modify the tag for cciss performant
329  * set bit 0 for pull model, bits 3-1 for block fetch
330  * register number
331  */
332 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
333 {
334         if (likely(h->transMethod == CFGTBL_Trans_Performant))
335                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
336 }
337
338 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         unsigned long flags;
342
343         set_performant_mode(h, c);
344         spin_lock_irqsave(&h->lock, flags);
345         addQ(&h->reqQ, c);
346         h->Qdepth++;
347         start_io(h);
348         spin_unlock_irqrestore(&h->lock, flags);
349 }
350
351 static inline void removeQ(struct CommandList *c)
352 {
353         if (WARN_ON(hlist_unhashed(&c->list)))
354                 return;
355         hlist_del_init(&c->list);
356 }
357
358 static inline int is_hba_lunid(unsigned char scsi3addr[])
359 {
360         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
361 }
362
363 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
364 {
365         return (scsi3addr[3] & 0xC0) == 0x40;
366 }
367
368 static inline int is_scsi_rev_5(struct ctlr_info *h)
369 {
370         if (!h->hba_inquiry_data)
371                 return 0;
372         if ((h->hba_inquiry_data[2] & 0x07) == 5)
373                 return 1;
374         return 0;
375 }
376
377 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
378         "UNKNOWN"
379 };
380 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
381
382 static ssize_t raid_level_show(struct device *dev,
383              struct device_attribute *attr, char *buf)
384 {
385         ssize_t l = 0;
386         unsigned char rlevel;
387         struct ctlr_info *h;
388         struct scsi_device *sdev;
389         struct hpsa_scsi_dev_t *hdev;
390         unsigned long flags;
391
392         sdev = to_scsi_device(dev);
393         h = sdev_to_hba(sdev);
394         spin_lock_irqsave(&h->lock, flags);
395         hdev = sdev->hostdata;
396         if (!hdev) {
397                 spin_unlock_irqrestore(&h->lock, flags);
398                 return -ENODEV;
399         }
400
401         /* Is this even a logical drive? */
402         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
403                 spin_unlock_irqrestore(&h->lock, flags);
404                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
405                 return l;
406         }
407
408         rlevel = hdev->raid_level;
409         spin_unlock_irqrestore(&h->lock, flags);
410         if (rlevel > RAID_UNKNOWN)
411                 rlevel = RAID_UNKNOWN;
412         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
413         return l;
414 }
415
416 static ssize_t lunid_show(struct device *dev,
417              struct device_attribute *attr, char *buf)
418 {
419         struct ctlr_info *h;
420         struct scsi_device *sdev;
421         struct hpsa_scsi_dev_t *hdev;
422         unsigned long flags;
423         unsigned char lunid[8];
424
425         sdev = to_scsi_device(dev);
426         h = sdev_to_hba(sdev);
427         spin_lock_irqsave(&h->lock, flags);
428         hdev = sdev->hostdata;
429         if (!hdev) {
430                 spin_unlock_irqrestore(&h->lock, flags);
431                 return -ENODEV;
432         }
433         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
434         spin_unlock_irqrestore(&h->lock, flags);
435         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
436                 lunid[0], lunid[1], lunid[2], lunid[3],
437                 lunid[4], lunid[5], lunid[6], lunid[7]);
438 }
439
440 static ssize_t unique_id_show(struct device *dev,
441              struct device_attribute *attr, char *buf)
442 {
443         struct ctlr_info *h;
444         struct scsi_device *sdev;
445         struct hpsa_scsi_dev_t *hdev;
446         unsigned long flags;
447         unsigned char sn[16];
448
449         sdev = to_scsi_device(dev);
450         h = sdev_to_hba(sdev);
451         spin_lock_irqsave(&h->lock, flags);
452         hdev = sdev->hostdata;
453         if (!hdev) {
454                 spin_unlock_irqrestore(&h->lock, flags);
455                 return -ENODEV;
456         }
457         memcpy(sn, hdev->device_id, sizeof(sn));
458         spin_unlock_irqrestore(&h->lock, flags);
459         return snprintf(buf, 16 * 2 + 2,
460                         "%02X%02X%02X%02X%02X%02X%02X%02X"
461                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
462                         sn[0], sn[1], sn[2], sn[3],
463                         sn[4], sn[5], sn[6], sn[7],
464                         sn[8], sn[9], sn[10], sn[11],
465                         sn[12], sn[13], sn[14], sn[15]);
466 }
467
468 static int hpsa_find_target_lun(struct ctlr_info *h,
469         unsigned char scsi3addr[], int bus, int *target, int *lun)
470 {
471         /* finds an unused bus, target, lun for a new physical device
472          * assumes h->devlock is held
473          */
474         int i, found = 0;
475         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
476
477         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
478
479         for (i = 0; i < h->ndevices; i++) {
480                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
481                         set_bit(h->dev[i]->target, lun_taken);
482         }
483
484         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
485                 if (!test_bit(i, lun_taken)) {
486                         /* *bus = 1; */
487                         *target = i;
488                         *lun = 0;
489                         found = 1;
490                         break;
491                 }
492         }
493         return !found;
494 }
495
496 /* Add an entry into h->dev[] array. */
497 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
498                 struct hpsa_scsi_dev_t *device,
499                 struct hpsa_scsi_dev_t *added[], int *nadded)
500 {
501         /* assumes h->devlock is held */
502         int n = h->ndevices;
503         int i;
504         unsigned char addr1[8], addr2[8];
505         struct hpsa_scsi_dev_t *sd;
506
507         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
508                 dev_err(&h->pdev->dev, "too many devices, some will be "
509                         "inaccessible.\n");
510                 return -1;
511         }
512
513         /* physical devices do not have lun or target assigned until now. */
514         if (device->lun != -1)
515                 /* Logical device, lun is already assigned. */
516                 goto lun_assigned;
517
518         /* If this device a non-zero lun of a multi-lun device
519          * byte 4 of the 8-byte LUN addr will contain the logical
520          * unit no, zero otherise.
521          */
522         if (device->scsi3addr[4] == 0) {
523                 /* This is not a non-zero lun of a multi-lun device */
524                 if (hpsa_find_target_lun(h, device->scsi3addr,
525                         device->bus, &device->target, &device->lun) != 0)
526                         return -1;
527                 goto lun_assigned;
528         }
529
530         /* This is a non-zero lun of a multi-lun device.
531          * Search through our list and find the device which
532          * has the same 8 byte LUN address, excepting byte 4.
533          * Assign the same bus and target for this new LUN.
534          * Use the logical unit number from the firmware.
535          */
536         memcpy(addr1, device->scsi3addr, 8);
537         addr1[4] = 0;
538         for (i = 0; i < n; i++) {
539                 sd = h->dev[i];
540                 memcpy(addr2, sd->scsi3addr, 8);
541                 addr2[4] = 0;
542                 /* differ only in byte 4? */
543                 if (memcmp(addr1, addr2, 8) == 0) {
544                         device->bus = sd->bus;
545                         device->target = sd->target;
546                         device->lun = device->scsi3addr[4];
547                         break;
548                 }
549         }
550         if (device->lun == -1) {
551                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
552                         " suspect firmware bug or unsupported hardware "
553                         "configuration.\n");
554                         return -1;
555         }
556
557 lun_assigned:
558
559         h->dev[n] = device;
560         h->ndevices++;
561         added[*nadded] = device;
562         (*nadded)++;
563
564         /* initially, (before registering with scsi layer) we don't
565          * know our hostno and we don't want to print anything first
566          * time anyway (the scsi layer's inquiries will show that info)
567          */
568         /* if (hostno != -1) */
569                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
570                         scsi_device_type(device->devtype), hostno,
571                         device->bus, device->target, device->lun);
572         return 0;
573 }
574
575 /* Replace an entry from h->dev[] array. */
576 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
577         int entry, struct hpsa_scsi_dev_t *new_entry,
578         struct hpsa_scsi_dev_t *added[], int *nadded,
579         struct hpsa_scsi_dev_t *removed[], int *nremoved)
580 {
581         /* assumes h->devlock is held */
582         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
583         removed[*nremoved] = h->dev[entry];
584         (*nremoved)++;
585         h->dev[entry] = new_entry;
586         added[*nadded] = new_entry;
587         (*nadded)++;
588         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
589                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
590                         new_entry->target, new_entry->lun);
591 }
592
593 /* Remove an entry from h->dev[] array. */
594 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
595         struct hpsa_scsi_dev_t *removed[], int *nremoved)
596 {
597         /* assumes h->devlock is held */
598         int i;
599         struct hpsa_scsi_dev_t *sd;
600
601         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
602
603         sd = h->dev[entry];
604         removed[*nremoved] = h->dev[entry];
605         (*nremoved)++;
606
607         for (i = entry; i < h->ndevices-1; i++)
608                 h->dev[i] = h->dev[i+1];
609         h->ndevices--;
610         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
611                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
612                 sd->lun);
613 }
614
615 #define SCSI3ADDR_EQ(a, b) ( \
616         (a)[7] == (b)[7] && \
617         (a)[6] == (b)[6] && \
618         (a)[5] == (b)[5] && \
619         (a)[4] == (b)[4] && \
620         (a)[3] == (b)[3] && \
621         (a)[2] == (b)[2] && \
622         (a)[1] == (b)[1] && \
623         (a)[0] == (b)[0])
624
625 static void fixup_botched_add(struct ctlr_info *h,
626         struct hpsa_scsi_dev_t *added)
627 {
628         /* called when scsi_add_device fails in order to re-adjust
629          * h->dev[] to match the mid layer's view.
630          */
631         unsigned long flags;
632         int i, j;
633
634         spin_lock_irqsave(&h->lock, flags);
635         for (i = 0; i < h->ndevices; i++) {
636                 if (h->dev[i] == added) {
637                         for (j = i; j < h->ndevices-1; j++)
638                                 h->dev[j] = h->dev[j+1];
639                         h->ndevices--;
640                         break;
641                 }
642         }
643         spin_unlock_irqrestore(&h->lock, flags);
644         kfree(added);
645 }
646
647 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
648         struct hpsa_scsi_dev_t *dev2)
649 {
650         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
651                 (dev1->lun != -1 && dev2->lun != -1)) &&
652                 dev1->devtype != 0x0C)
653                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
654
655         /* we compare everything except lun and target as these
656          * are not yet assigned.  Compare parts likely
657          * to differ first
658          */
659         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
660                 sizeof(dev1->scsi3addr)) != 0)
661                 return 0;
662         if (memcmp(dev1->device_id, dev2->device_id,
663                 sizeof(dev1->device_id)) != 0)
664                 return 0;
665         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
666                 return 0;
667         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
668                 return 0;
669         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
670                 return 0;
671         if (dev1->devtype != dev2->devtype)
672                 return 0;
673         if (dev1->raid_level != dev2->raid_level)
674                 return 0;
675         if (dev1->bus != dev2->bus)
676                 return 0;
677         return 1;
678 }
679
680 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
681  * and return needle location in *index.  If scsi3addr matches, but not
682  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
683  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
684  */
685 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
686         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
687         int *index)
688 {
689         int i;
690 #define DEVICE_NOT_FOUND 0
691 #define DEVICE_CHANGED 1
692 #define DEVICE_SAME 2
693         for (i = 0; i < haystack_size; i++) {
694                 if (haystack[i] == NULL) /* previously removed. */
695                         continue;
696                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
697                         *index = i;
698                         if (device_is_the_same(needle, haystack[i]))
699                                 return DEVICE_SAME;
700                         else
701                                 return DEVICE_CHANGED;
702                 }
703         }
704         *index = -1;
705         return DEVICE_NOT_FOUND;
706 }
707
708 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
709         struct hpsa_scsi_dev_t *sd[], int nsds)
710 {
711         /* sd contains scsi3 addresses and devtypes, and inquiry
712          * data.  This function takes what's in sd to be the current
713          * reality and updates h->dev[] to reflect that reality.
714          */
715         int i, entry, device_change, changes = 0;
716         struct hpsa_scsi_dev_t *csd;
717         unsigned long flags;
718         struct hpsa_scsi_dev_t **added, **removed;
719         int nadded, nremoved;
720         struct Scsi_Host *sh = NULL;
721
722         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
723                 GFP_KERNEL);
724         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
725                 GFP_KERNEL);
726
727         if (!added || !removed) {
728                 dev_warn(&h->pdev->dev, "out of memory in "
729                         "adjust_hpsa_scsi_table\n");
730                 goto free_and_out;
731         }
732
733         spin_lock_irqsave(&h->devlock, flags);
734
735         /* find any devices in h->dev[] that are not in
736          * sd[] and remove them from h->dev[], and for any
737          * devices which have changed, remove the old device
738          * info and add the new device info.
739          */
740         i = 0;
741         nremoved = 0;
742         nadded = 0;
743         while (i < h->ndevices) {
744                 csd = h->dev[i];
745                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
746                 if (device_change == DEVICE_NOT_FOUND) {
747                         changes++;
748                         hpsa_scsi_remove_entry(h, hostno, i,
749                                 removed, &nremoved);
750                         continue; /* remove ^^^, hence i not incremented */
751                 } else if (device_change == DEVICE_CHANGED) {
752                         changes++;
753                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
754                                 added, &nadded, removed, &nremoved);
755                         /* Set it to NULL to prevent it from being freed
756                          * at the bottom of hpsa_update_scsi_devices()
757                          */
758                         sd[entry] = NULL;
759                 }
760                 i++;
761         }
762
763         /* Now, make sure every device listed in sd[] is also
764          * listed in h->dev[], adding them if they aren't found
765          */
766
767         for (i = 0; i < nsds; i++) {
768                 if (!sd[i]) /* if already added above. */
769                         continue;
770                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
771                                         h->ndevices, &entry);
772                 if (device_change == DEVICE_NOT_FOUND) {
773                         changes++;
774                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
775                                 added, &nadded) != 0)
776                                 break;
777                         sd[i] = NULL; /* prevent from being freed later. */
778                 } else if (device_change == DEVICE_CHANGED) {
779                         /* should never happen... */
780                         changes++;
781                         dev_warn(&h->pdev->dev,
782                                 "device unexpectedly changed.\n");
783                         /* but if it does happen, we just ignore that device */
784                 }
785         }
786         spin_unlock_irqrestore(&h->devlock, flags);
787
788         /* Don't notify scsi mid layer of any changes the first time through
789          * (or if there are no changes) scsi_scan_host will do it later the
790          * first time through.
791          */
792         if (hostno == -1 || !changes)
793                 goto free_and_out;
794
795         sh = h->scsi_host;
796         /* Notify scsi mid layer of any removed devices */
797         for (i = 0; i < nremoved; i++) {
798                 struct scsi_device *sdev =
799                         scsi_device_lookup(sh, removed[i]->bus,
800                                 removed[i]->target, removed[i]->lun);
801                 if (sdev != NULL) {
802                         scsi_remove_device(sdev);
803                         scsi_device_put(sdev);
804                 } else {
805                         /* We don't expect to get here.
806                          * future cmds to this device will get selection
807                          * timeout as if the device was gone.
808                          */
809                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
810                                 " for removal.", hostno, removed[i]->bus,
811                                 removed[i]->target, removed[i]->lun);
812                 }
813                 kfree(removed[i]);
814                 removed[i] = NULL;
815         }
816
817         /* Notify scsi mid layer of any added devices */
818         for (i = 0; i < nadded; i++) {
819                 if (scsi_add_device(sh, added[i]->bus,
820                         added[i]->target, added[i]->lun) == 0)
821                         continue;
822                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
823                         "device not added.\n", hostno, added[i]->bus,
824                         added[i]->target, added[i]->lun);
825                 /* now we have to remove it from h->dev,
826                  * since it didn't get added to scsi mid layer
827                  */
828                 fixup_botched_add(h, added[i]);
829         }
830
831 free_and_out:
832         kfree(added);
833         kfree(removed);
834 }
835
836 /*
837  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
838  * Assume's h->devlock is held.
839  */
840 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
841         int bus, int target, int lun)
842 {
843         int i;
844         struct hpsa_scsi_dev_t *sd;
845
846         for (i = 0; i < h->ndevices; i++) {
847                 sd = h->dev[i];
848                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
849                         return sd;
850         }
851         return NULL;
852 }
853
854 /* link sdev->hostdata to our per-device structure. */
855 static int hpsa_slave_alloc(struct scsi_device *sdev)
856 {
857         struct hpsa_scsi_dev_t *sd;
858         unsigned long flags;
859         struct ctlr_info *h;
860
861         h = sdev_to_hba(sdev);
862         spin_lock_irqsave(&h->devlock, flags);
863         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
864                 sdev_id(sdev), sdev->lun);
865         if (sd != NULL)
866                 sdev->hostdata = sd;
867         spin_unlock_irqrestore(&h->devlock, flags);
868         return 0;
869 }
870
871 static void hpsa_slave_destroy(struct scsi_device *sdev)
872 {
873         /* nothing to do. */
874 }
875
876 static void hpsa_scsi_setup(struct ctlr_info *h)
877 {
878         h->ndevices = 0;
879         h->scsi_host = NULL;
880         spin_lock_init(&h->devlock);
881 }
882
883 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
884 {
885         int i;
886
887         if (!h->cmd_sg_list)
888                 return;
889         for (i = 0; i < h->nr_cmds; i++) {
890                 kfree(h->cmd_sg_list[i]);
891                 h->cmd_sg_list[i] = NULL;
892         }
893         kfree(h->cmd_sg_list);
894         h->cmd_sg_list = NULL;
895 }
896
897 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
898 {
899         int i;
900
901         if (h->chainsize <= 0)
902                 return 0;
903
904         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
905                                 GFP_KERNEL);
906         if (!h->cmd_sg_list)
907                 return -ENOMEM;
908         for (i = 0; i < h->nr_cmds; i++) {
909                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
910                                                 h->chainsize, GFP_KERNEL);
911                 if (!h->cmd_sg_list[i])
912                         goto clean;
913         }
914         return 0;
915
916 clean:
917         hpsa_free_sg_chain_blocks(h);
918         return -ENOMEM;
919 }
920
921 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
922         struct CommandList *c)
923 {
924         struct SGDescriptor *chain_sg, *chain_block;
925         u64 temp64;
926
927         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
928         chain_block = h->cmd_sg_list[c->cmdindex];
929         chain_sg->Ext = HPSA_SG_CHAIN;
930         chain_sg->Len = sizeof(*chain_sg) *
931                 (c->Header.SGTotal - h->max_cmd_sg_entries);
932         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
933                                 PCI_DMA_TODEVICE);
934         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
935         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
936 }
937
938 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
939         struct CommandList *c)
940 {
941         struct SGDescriptor *chain_sg;
942         union u64bit temp64;
943
944         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
945                 return;
946
947         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
948         temp64.val32.lower = chain_sg->Addr.lower;
949         temp64.val32.upper = chain_sg->Addr.upper;
950         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
951 }
952
953 static void complete_scsi_command(struct CommandList *cp,
954         int timeout, u32 tag)
955 {
956         struct scsi_cmnd *cmd;
957         struct ctlr_info *h;
958         struct ErrorInfo *ei;
959
960         unsigned char sense_key;
961         unsigned char asc;      /* additional sense code */
962         unsigned char ascq;     /* additional sense code qualifier */
963
964         ei = cp->err_info;
965         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
966         h = cp->h;
967
968         scsi_dma_unmap(cmd); /* undo the DMA mappings */
969         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
970                 hpsa_unmap_sg_chain_block(h, cp);
971
972         cmd->result = (DID_OK << 16);           /* host byte */
973         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
974         cmd->result |= ei->ScsiStatus;
975
976         /* copy the sense data whether we need to or not. */
977         memcpy(cmd->sense_buffer, ei->SenseInfo,
978                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
979                         SCSI_SENSE_BUFFERSIZE :
980                         ei->SenseLen);
981         scsi_set_resid(cmd, ei->ResidualCnt);
982
983         if (ei->CommandStatus == 0) {
984                 cmd->scsi_done(cmd);
985                 cmd_free(h, cp);
986                 return;
987         }
988
989         /* an error has occurred */
990         switch (ei->CommandStatus) {
991
992         case CMD_TARGET_STATUS:
993                 if (ei->ScsiStatus) {
994                         /* Get sense key */
995                         sense_key = 0xf & ei->SenseInfo[2];
996                         /* Get additional sense code */
997                         asc = ei->SenseInfo[12];
998                         /* Get addition sense code qualifier */
999                         ascq = ei->SenseInfo[13];
1000                 }
1001
1002                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1003                         if (check_for_unit_attention(h, cp)) {
1004                                 cmd->result = DID_SOFT_ERROR << 16;
1005                                 break;
1006                         }
1007                         if (sense_key == ILLEGAL_REQUEST) {
1008                                 /*
1009                                  * SCSI REPORT_LUNS is commonly unsupported on
1010                                  * Smart Array.  Suppress noisy complaint.
1011                                  */
1012                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1013                                         break;
1014
1015                                 /* If ASC/ASCQ indicate Logical Unit
1016                                  * Not Supported condition,
1017                                  */
1018                                 if ((asc == 0x25) && (ascq == 0x0)) {
1019                                         dev_warn(&h->pdev->dev, "cp %p "
1020                                                 "has check condition\n", cp);
1021                                         break;
1022                                 }
1023                         }
1024
1025                         if (sense_key == NOT_READY) {
1026                                 /* If Sense is Not Ready, Logical Unit
1027                                  * Not ready, Manual Intervention
1028                                  * required
1029                                  */
1030                                 if ((asc == 0x04) && (ascq == 0x03)) {
1031                                         dev_warn(&h->pdev->dev, "cp %p "
1032                                                 "has check condition: unit "
1033                                                 "not ready, manual "
1034                                                 "intervention required\n", cp);
1035                                         break;
1036                                 }
1037                         }
1038                         if (sense_key == ABORTED_COMMAND) {
1039                                 /* Aborted command is retryable */
1040                                 dev_warn(&h->pdev->dev, "cp %p "
1041                                         "has check condition: aborted command: "
1042                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1043                                         cp, asc, ascq);
1044                                 cmd->result = DID_SOFT_ERROR << 16;
1045                                 break;
1046                         }
1047                         /* Must be some other type of check condition */
1048                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1049                                         "unknown type: "
1050                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1051                                         "Returning result: 0x%x, "
1052                                         "cmd=[%02x %02x %02x %02x %02x "
1053                                         "%02x %02x %02x %02x %02x %02x "
1054                                         "%02x %02x %02x %02x %02x]\n",
1055                                         cp, sense_key, asc, ascq,
1056                                         cmd->result,
1057                                         cmd->cmnd[0], cmd->cmnd[1],
1058                                         cmd->cmnd[2], cmd->cmnd[3],
1059                                         cmd->cmnd[4], cmd->cmnd[5],
1060                                         cmd->cmnd[6], cmd->cmnd[7],
1061                                         cmd->cmnd[8], cmd->cmnd[9],
1062                                         cmd->cmnd[10], cmd->cmnd[11],
1063                                         cmd->cmnd[12], cmd->cmnd[13],
1064                                         cmd->cmnd[14], cmd->cmnd[15]);
1065                         break;
1066                 }
1067
1068
1069                 /* Problem was not a check condition
1070                  * Pass it up to the upper layers...
1071                  */
1072                 if (ei->ScsiStatus) {
1073                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1074                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1075                                 "Returning result: 0x%x\n",
1076                                 cp, ei->ScsiStatus,
1077                                 sense_key, asc, ascq,
1078                                 cmd->result);
1079                 } else {  /* scsi status is zero??? How??? */
1080                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1081                                 "Returning no connection.\n", cp),
1082
1083                         /* Ordinarily, this case should never happen,
1084                          * but there is a bug in some released firmware
1085                          * revisions that allows it to happen if, for
1086                          * example, a 4100 backplane loses power and
1087                          * the tape drive is in it.  We assume that
1088                          * it's a fatal error of some kind because we
1089                          * can't show that it wasn't. We will make it
1090                          * look like selection timeout since that is
1091                          * the most common reason for this to occur,
1092                          * and it's severe enough.
1093                          */
1094
1095                         cmd->result = DID_NO_CONNECT << 16;
1096                 }
1097                 break;
1098
1099         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1100                 break;
1101         case CMD_DATA_OVERRUN:
1102                 dev_warn(&h->pdev->dev, "cp %p has"
1103                         " completed with data overrun "
1104                         "reported\n", cp);
1105                 break;
1106         case CMD_INVALID: {
1107                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1108                 print_cmd(cp); */
1109                 /* We get CMD_INVALID if you address a non-existent device
1110                  * instead of a selection timeout (no response).  You will
1111                  * see this if you yank out a drive, then try to access it.
1112                  * This is kind of a shame because it means that any other
1113                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1114                  * missing target. */
1115                 cmd->result = DID_NO_CONNECT << 16;
1116         }
1117                 break;
1118         case CMD_PROTOCOL_ERR:
1119                 dev_warn(&h->pdev->dev, "cp %p has "
1120                         "protocol error \n", cp);
1121                 break;
1122         case CMD_HARDWARE_ERR:
1123                 cmd->result = DID_ERROR << 16;
1124                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1125                 break;
1126         case CMD_CONNECTION_LOST:
1127                 cmd->result = DID_ERROR << 16;
1128                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1129                 break;
1130         case CMD_ABORTED:
1131                 cmd->result = DID_ABORT << 16;
1132                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1133                                 cp, ei->ScsiStatus);
1134                 break;
1135         case CMD_ABORT_FAILED:
1136                 cmd->result = DID_ERROR << 16;
1137                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1138                 break;
1139         case CMD_UNSOLICITED_ABORT:
1140                 cmd->result = DID_RESET << 16;
1141                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1142                         "abort\n", cp);
1143                 break;
1144         case CMD_TIMEOUT:
1145                 cmd->result = DID_TIME_OUT << 16;
1146                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1147                 break;
1148         default:
1149                 cmd->result = DID_ERROR << 16;
1150                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1151                                 cp, ei->CommandStatus);
1152         }
1153         cmd->scsi_done(cmd);
1154         cmd_free(h, cp);
1155 }
1156
1157 static int hpsa_scsi_detect(struct ctlr_info *h)
1158 {
1159         struct Scsi_Host *sh;
1160         int error;
1161
1162         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1163         if (sh == NULL)
1164                 goto fail;
1165
1166         sh->io_port = 0;
1167         sh->n_io_port = 0;
1168         sh->this_id = -1;
1169         sh->max_channel = 3;
1170         sh->max_cmd_len = MAX_COMMAND_SIZE;
1171         sh->max_lun = HPSA_MAX_LUN;
1172         sh->max_id = HPSA_MAX_LUN;
1173         sh->can_queue = h->nr_cmds;
1174         sh->cmd_per_lun = h->nr_cmds;
1175         sh->sg_tablesize = h->maxsgentries;
1176         h->scsi_host = sh;
1177         sh->hostdata[0] = (unsigned long) h;
1178         sh->irq = h->intr[PERF_MODE_INT];
1179         sh->unique_id = sh->irq;
1180         error = scsi_add_host(sh, &h->pdev->dev);
1181         if (error)
1182                 goto fail_host_put;
1183         scsi_scan_host(sh);
1184         return 0;
1185
1186  fail_host_put:
1187         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1188                 " failed for controller %d\n", h->ctlr);
1189         scsi_host_put(sh);
1190         return error;
1191  fail:
1192         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1193                 " failed for controller %d\n", h->ctlr);
1194         return -ENOMEM;
1195 }
1196
1197 static void hpsa_pci_unmap(struct pci_dev *pdev,
1198         struct CommandList *c, int sg_used, int data_direction)
1199 {
1200         int i;
1201         union u64bit addr64;
1202
1203         for (i = 0; i < sg_used; i++) {
1204                 addr64.val32.lower = c->SG[i].Addr.lower;
1205                 addr64.val32.upper = c->SG[i].Addr.upper;
1206                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1207                         data_direction);
1208         }
1209 }
1210
1211 static void hpsa_map_one(struct pci_dev *pdev,
1212                 struct CommandList *cp,
1213                 unsigned char *buf,
1214                 size_t buflen,
1215                 int data_direction)
1216 {
1217         u64 addr64;
1218
1219         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1220                 cp->Header.SGList = 0;
1221                 cp->Header.SGTotal = 0;
1222                 return;
1223         }
1224
1225         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1226         cp->SG[0].Addr.lower =
1227           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1228         cp->SG[0].Addr.upper =
1229           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1230         cp->SG[0].Len = buflen;
1231         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1232         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1233 }
1234
1235 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1236         struct CommandList *c)
1237 {
1238         DECLARE_COMPLETION_ONSTACK(wait);
1239
1240         c->waiting = &wait;
1241         enqueue_cmd_and_start_io(h, c);
1242         wait_for_completion(&wait);
1243 }
1244
1245 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1246         struct CommandList *c, int data_direction)
1247 {
1248         int retry_count = 0;
1249
1250         do {
1251                 memset(c->err_info, 0, sizeof(c->err_info));
1252                 hpsa_scsi_do_simple_cmd_core(h, c);
1253                 retry_count++;
1254         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1255         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1256 }
1257
1258 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1259 {
1260         struct ErrorInfo *ei;
1261         struct device *d = &cp->h->pdev->dev;
1262
1263         ei = cp->err_info;
1264         switch (ei->CommandStatus) {
1265         case CMD_TARGET_STATUS:
1266                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1267                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1268                                 ei->ScsiStatus);
1269                 if (ei->ScsiStatus == 0)
1270                         dev_warn(d, "SCSI status is abnormally zero.  "
1271                         "(probably indicates selection timeout "
1272                         "reported incorrectly due to a known "
1273                         "firmware bug, circa July, 2001.)\n");
1274                 break;
1275         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1276                         dev_info(d, "UNDERRUN\n");
1277                 break;
1278         case CMD_DATA_OVERRUN:
1279                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1280                 break;
1281         case CMD_INVALID: {
1282                 /* controller unfortunately reports SCSI passthru's
1283                  * to non-existent targets as invalid commands.
1284                  */
1285                 dev_warn(d, "cp %p is reported invalid (probably means "
1286                         "target device no longer present)\n", cp);
1287                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1288                 print_cmd(cp);  */
1289                 }
1290                 break;
1291         case CMD_PROTOCOL_ERR:
1292                 dev_warn(d, "cp %p has protocol error \n", cp);
1293                 break;
1294         case CMD_HARDWARE_ERR:
1295                 /* cmd->result = DID_ERROR << 16; */
1296                 dev_warn(d, "cp %p had hardware error\n", cp);
1297                 break;
1298         case CMD_CONNECTION_LOST:
1299                 dev_warn(d, "cp %p had connection lost\n", cp);
1300                 break;
1301         case CMD_ABORTED:
1302                 dev_warn(d, "cp %p was aborted\n", cp);
1303                 break;
1304         case CMD_ABORT_FAILED:
1305                 dev_warn(d, "cp %p reports abort failed\n", cp);
1306                 break;
1307         case CMD_UNSOLICITED_ABORT:
1308                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1309                 break;
1310         case CMD_TIMEOUT:
1311                 dev_warn(d, "cp %p timed out\n", cp);
1312                 break;
1313         default:
1314                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1315                                 ei->CommandStatus);
1316         }
1317 }
1318
1319 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1320                         unsigned char page, unsigned char *buf,
1321                         unsigned char bufsize)
1322 {
1323         int rc = IO_OK;
1324         struct CommandList *c;
1325         struct ErrorInfo *ei;
1326
1327         c = cmd_special_alloc(h);
1328
1329         if (c == NULL) {                        /* trouble... */
1330                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1331                 return -ENOMEM;
1332         }
1333
1334         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1335         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1336         ei = c->err_info;
1337         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1338                 hpsa_scsi_interpret_error(c);
1339                 rc = -1;
1340         }
1341         cmd_special_free(h, c);
1342         return rc;
1343 }
1344
1345 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1346 {
1347         int rc = IO_OK;
1348         struct CommandList *c;
1349         struct ErrorInfo *ei;
1350
1351         c = cmd_special_alloc(h);
1352
1353         if (c == NULL) {                        /* trouble... */
1354                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1355                 return -ENOMEM;
1356         }
1357
1358         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1359         hpsa_scsi_do_simple_cmd_core(h, c);
1360         /* no unmap needed here because no data xfer. */
1361
1362         ei = c->err_info;
1363         if (ei->CommandStatus != 0) {
1364                 hpsa_scsi_interpret_error(c);
1365                 rc = -1;
1366         }
1367         cmd_special_free(h, c);
1368         return rc;
1369 }
1370
1371 static void hpsa_get_raid_level(struct ctlr_info *h,
1372         unsigned char *scsi3addr, unsigned char *raid_level)
1373 {
1374         int rc;
1375         unsigned char *buf;
1376
1377         *raid_level = RAID_UNKNOWN;
1378         buf = kzalloc(64, GFP_KERNEL);
1379         if (!buf)
1380                 return;
1381         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1382         if (rc == 0)
1383                 *raid_level = buf[8];
1384         if (*raid_level > RAID_UNKNOWN)
1385                 *raid_level = RAID_UNKNOWN;
1386         kfree(buf);
1387         return;
1388 }
1389
1390 /* Get the device id from inquiry page 0x83 */
1391 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1392         unsigned char *device_id, int buflen)
1393 {
1394         int rc;
1395         unsigned char *buf;
1396
1397         if (buflen > 16)
1398                 buflen = 16;
1399         buf = kzalloc(64, GFP_KERNEL);
1400         if (!buf)
1401                 return -1;
1402         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1403         if (rc == 0)
1404                 memcpy(device_id, &buf[8], buflen);
1405         kfree(buf);
1406         return rc != 0;
1407 }
1408
1409 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1410                 struct ReportLUNdata *buf, int bufsize,
1411                 int extended_response)
1412 {
1413         int rc = IO_OK;
1414         struct CommandList *c;
1415         unsigned char scsi3addr[8];
1416         struct ErrorInfo *ei;
1417
1418         c = cmd_special_alloc(h);
1419         if (c == NULL) {                        /* trouble... */
1420                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1421                 return -1;
1422         }
1423         /* address the controller */
1424         memset(scsi3addr, 0, sizeof(scsi3addr));
1425         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1426                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1427         if (extended_response)
1428                 c->Request.CDB[1] = extended_response;
1429         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1430         ei = c->err_info;
1431         if (ei->CommandStatus != 0 &&
1432             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1433                 hpsa_scsi_interpret_error(c);
1434                 rc = -1;
1435         }
1436         cmd_special_free(h, c);
1437         return rc;
1438 }
1439
1440 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1441                 struct ReportLUNdata *buf,
1442                 int bufsize, int extended_response)
1443 {
1444         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1445 }
1446
1447 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1448                 struct ReportLUNdata *buf, int bufsize)
1449 {
1450         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1451 }
1452
1453 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1454         int bus, int target, int lun)
1455 {
1456         device->bus = bus;
1457         device->target = target;
1458         device->lun = lun;
1459 }
1460
1461 static int hpsa_update_device_info(struct ctlr_info *h,
1462         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1463 {
1464 #define OBDR_TAPE_INQ_SIZE 49
1465         unsigned char *inq_buff;
1466
1467         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1468         if (!inq_buff)
1469                 goto bail_out;
1470
1471         /* Do an inquiry to the device to see what it is. */
1472         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1473                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1474                 /* Inquiry failed (msg printed already) */
1475                 dev_err(&h->pdev->dev,
1476                         "hpsa_update_device_info: inquiry failed\n");
1477                 goto bail_out;
1478         }
1479
1480         this_device->devtype = (inq_buff[0] & 0x1f);
1481         memcpy(this_device->scsi3addr, scsi3addr, 8);
1482         memcpy(this_device->vendor, &inq_buff[8],
1483                 sizeof(this_device->vendor));
1484         memcpy(this_device->model, &inq_buff[16],
1485                 sizeof(this_device->model));
1486         memcpy(this_device->revision, &inq_buff[32],
1487                 sizeof(this_device->revision));
1488         memset(this_device->device_id, 0,
1489                 sizeof(this_device->device_id));
1490         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1491                 sizeof(this_device->device_id));
1492
1493         if (this_device->devtype == TYPE_DISK &&
1494                 is_logical_dev_addr_mode(scsi3addr))
1495                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1496         else
1497                 this_device->raid_level = RAID_UNKNOWN;
1498
1499         kfree(inq_buff);
1500         return 0;
1501
1502 bail_out:
1503         kfree(inq_buff);
1504         return 1;
1505 }
1506
1507 static unsigned char *msa2xxx_model[] = {
1508         "MSA2012",
1509         "MSA2024",
1510         "MSA2312",
1511         "MSA2324",
1512         NULL,
1513 };
1514
1515 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1516 {
1517         int i;
1518
1519         for (i = 0; msa2xxx_model[i]; i++)
1520                 if (strncmp(device->model, msa2xxx_model[i],
1521                         strlen(msa2xxx_model[i])) == 0)
1522                         return 1;
1523         return 0;
1524 }
1525
1526 /* Helper function to assign bus, target, lun mapping of devices.
1527  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1528  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1529  * Logical drive target and lun are assigned at this time, but
1530  * physical device lun and target assignment are deferred (assigned
1531  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1532  */
1533 static void figure_bus_target_lun(struct ctlr_info *h,
1534         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1535         struct hpsa_scsi_dev_t *device)
1536 {
1537         u32 lunid;
1538
1539         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1540                 /* logical device */
1541                 if (unlikely(is_scsi_rev_5(h))) {
1542                         /* p1210m, logical drives lun assignments
1543                          * match SCSI REPORT LUNS data.
1544                          */
1545                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1546                         *bus = 0;
1547                         *target = 0;
1548                         *lun = (lunid & 0x3fff) + 1;
1549                 } else {
1550                         /* not p1210m... */
1551                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1552                         if (is_msa2xxx(h, device)) {
1553                                 /* msa2xxx way, put logicals on bus 1
1554                                  * and match target/lun numbers box
1555                                  * reports.
1556                                  */
1557                                 *bus = 1;
1558                                 *target = (lunid >> 16) & 0x3fff;
1559                                 *lun = lunid & 0x00ff;
1560                         } else {
1561                                 /* Traditional smart array way. */
1562                                 *bus = 0;
1563                                 *lun = 0;
1564                                 *target = lunid & 0x3fff;
1565                         }
1566                 }
1567         } else {
1568                 /* physical device */
1569                 if (is_hba_lunid(lunaddrbytes))
1570                         if (unlikely(is_scsi_rev_5(h))) {
1571                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1572                                 *target = 0;
1573                                 *lun = 0;
1574                                 return;
1575                         } else
1576                                 *bus = 3; /* traditional smartarray */
1577                 else
1578                         *bus = 2; /* physical disk */
1579                 *target = -1;
1580                 *lun = -1; /* we will fill these in later. */
1581         }
1582 }
1583
1584 /*
1585  * If there is no lun 0 on a target, linux won't find any devices.
1586  * For the MSA2xxx boxes, we have to manually detect the enclosure
1587  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1588  * it for some reason.  *tmpdevice is the target we're adding,
1589  * this_device is a pointer into the current element of currentsd[]
1590  * that we're building up in update_scsi_devices(), below.
1591  * lunzerobits is a bitmap that tracks which targets already have a
1592  * lun 0 assigned.
1593  * Returns 1 if an enclosure was added, 0 if not.
1594  */
1595 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1596         struct hpsa_scsi_dev_t *tmpdevice,
1597         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1598         int bus, int target, int lun, unsigned long lunzerobits[],
1599         int *nmsa2xxx_enclosures)
1600 {
1601         unsigned char scsi3addr[8];
1602
1603         if (test_bit(target, lunzerobits))
1604                 return 0; /* There is already a lun 0 on this target. */
1605
1606         if (!is_logical_dev_addr_mode(lunaddrbytes))
1607                 return 0; /* It's the logical targets that may lack lun 0. */
1608
1609         if (!is_msa2xxx(h, tmpdevice))
1610                 return 0; /* It's only the MSA2xxx that have this problem. */
1611
1612         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1613                 return 0;
1614
1615         if (is_hba_lunid(scsi3addr))
1616                 return 0; /* Don't add the RAID controller here. */
1617
1618         if (is_scsi_rev_5(h))
1619                 return 0; /* p1210m doesn't need to do this. */
1620
1621 #define MAX_MSA2XXX_ENCLOSURES 32
1622         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1623                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1624                         "enclosures exceeded.  Check your hardware "
1625                         "configuration.");
1626                 return 0;
1627         }
1628
1629         memset(scsi3addr, 0, 8);
1630         scsi3addr[3] = target;
1631         if (hpsa_update_device_info(h, scsi3addr, this_device))
1632                 return 0;
1633         (*nmsa2xxx_enclosures)++;
1634         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1635         set_bit(target, lunzerobits);
1636         return 1;
1637 }
1638
1639 /*
1640  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1641  * logdev.  The number of luns in physdev and logdev are returned in
1642  * *nphysicals and *nlogicals, respectively.
1643  * Returns 0 on success, -1 otherwise.
1644  */
1645 static int hpsa_gather_lun_info(struct ctlr_info *h,
1646         int reportlunsize,
1647         struct ReportLUNdata *physdev, u32 *nphysicals,
1648         struct ReportLUNdata *logdev, u32 *nlogicals)
1649 {
1650         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1651                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1652                 return -1;
1653         }
1654         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1655         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1656                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1657                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1658                         *nphysicals - HPSA_MAX_PHYS_LUN);
1659                 *nphysicals = HPSA_MAX_PHYS_LUN;
1660         }
1661         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1662                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1663                 return -1;
1664         }
1665         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1666         /* Reject Logicals in excess of our max capability. */
1667         if (*nlogicals > HPSA_MAX_LUN) {
1668                 dev_warn(&h->pdev->dev,
1669                         "maximum logical LUNs (%d) exceeded.  "
1670                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1671                         *nlogicals - HPSA_MAX_LUN);
1672                         *nlogicals = HPSA_MAX_LUN;
1673         }
1674         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1675                 dev_warn(&h->pdev->dev,
1676                         "maximum logical + physical LUNs (%d) exceeded. "
1677                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1678                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1679                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1680         }
1681         return 0;
1682 }
1683
1684 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1685         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1686         struct ReportLUNdata *logdev_list)
1687 {
1688         /* Helper function, figure out where the LUN ID info is coming from
1689          * given index i, lists of physical and logical devices, where in
1690          * the list the raid controller is supposed to appear (first or last)
1691          */
1692
1693         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1694         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1695
1696         if (i == raid_ctlr_position)
1697                 return RAID_CTLR_LUNID;
1698
1699         if (i < logicals_start)
1700                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1701
1702         if (i < last_device)
1703                 return &logdev_list->LUN[i - nphysicals -
1704                         (raid_ctlr_position == 0)][0];
1705         BUG();
1706         return NULL;
1707 }
1708
1709 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1710 {
1711         /* the idea here is we could get notified
1712          * that some devices have changed, so we do a report
1713          * physical luns and report logical luns cmd, and adjust
1714          * our list of devices accordingly.
1715          *
1716          * The scsi3addr's of devices won't change so long as the
1717          * adapter is not reset.  That means we can rescan and
1718          * tell which devices we already know about, vs. new
1719          * devices, vs.  disappearing devices.
1720          */
1721         struct ReportLUNdata *physdev_list = NULL;
1722         struct ReportLUNdata *logdev_list = NULL;
1723         unsigned char *inq_buff = NULL;
1724         u32 nphysicals = 0;
1725         u32 nlogicals = 0;
1726         u32 ndev_allocated = 0;
1727         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1728         int ncurrent = 0;
1729         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1730         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1731         int bus, target, lun;
1732         int raid_ctlr_position;
1733         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1734
1735         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1736                 GFP_KERNEL);
1737         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1738         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1739         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1740         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1741
1742         if (!currentsd || !physdev_list || !logdev_list ||
1743                 !inq_buff || !tmpdevice) {
1744                 dev_err(&h->pdev->dev, "out of memory\n");
1745                 goto out;
1746         }
1747         memset(lunzerobits, 0, sizeof(lunzerobits));
1748
1749         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1750                         logdev_list, &nlogicals))
1751                 goto out;
1752
1753         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1754          * but each of them 4 times through different paths.  The plus 1
1755          * is for the RAID controller.
1756          */
1757         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1758
1759         /* Allocate the per device structures */
1760         for (i = 0; i < ndevs_to_allocate; i++) {
1761                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1762                 if (!currentsd[i]) {
1763                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1764                                 __FILE__, __LINE__);
1765                         goto out;
1766                 }
1767                 ndev_allocated++;
1768         }
1769
1770         if (unlikely(is_scsi_rev_5(h)))
1771                 raid_ctlr_position = 0;
1772         else
1773                 raid_ctlr_position = nphysicals + nlogicals;
1774
1775         /* adjust our table of devices */
1776         nmsa2xxx_enclosures = 0;
1777         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1778                 u8 *lunaddrbytes;
1779
1780                 /* Figure out where the LUN ID info is coming from */
1781                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1782                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1783                 /* skip masked physical devices. */
1784                 if (lunaddrbytes[3] & 0xC0 &&
1785                         i < nphysicals + (raid_ctlr_position == 0))
1786                         continue;
1787
1788                 /* Get device type, vendor, model, device id */
1789                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1790                         continue; /* skip it if we can't talk to it. */
1791                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1792                         tmpdevice);
1793                 this_device = currentsd[ncurrent];
1794
1795                 /*
1796                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1797                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1798                  * is nonetheless an enclosure device there.  We have to
1799                  * present that otherwise linux won't find anything if
1800                  * there is no lun 0.
1801                  */
1802                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1803                                 lunaddrbytes, bus, target, lun, lunzerobits,
1804                                 &nmsa2xxx_enclosures)) {
1805                         ncurrent++;
1806                         this_device = currentsd[ncurrent];
1807                 }
1808
1809                 *this_device = *tmpdevice;
1810                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1811
1812                 switch (this_device->devtype) {
1813                 case TYPE_ROM: {
1814                         /* We don't *really* support actual CD-ROM devices,
1815                          * just "One Button Disaster Recovery" tape drive
1816                          * which temporarily pretends to be a CD-ROM drive.
1817                          * So we check that the device is really an OBDR tape
1818                          * device by checking for "$DR-10" in bytes 43-48 of
1819                          * the inquiry data.
1820                          */
1821                                 char obdr_sig[7];
1822 #define OBDR_TAPE_SIG "$DR-10"
1823                                 strncpy(obdr_sig, &inq_buff[43], 6);
1824                                 obdr_sig[6] = '\0';
1825                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1826                                         /* Not OBDR device, ignore it. */
1827                                         break;
1828                         }
1829                         ncurrent++;
1830                         break;
1831                 case TYPE_DISK:
1832                         if (i < nphysicals)
1833                                 break;
1834                         ncurrent++;
1835                         break;
1836                 case TYPE_TAPE:
1837                 case TYPE_MEDIUM_CHANGER:
1838                         ncurrent++;
1839                         break;
1840                 case TYPE_RAID:
1841                         /* Only present the Smartarray HBA as a RAID controller.
1842                          * If it's a RAID controller other than the HBA itself
1843                          * (an external RAID controller, MSA500 or similar)
1844                          * don't present it.
1845                          */
1846                         if (!is_hba_lunid(lunaddrbytes))
1847                                 break;
1848                         ncurrent++;
1849                         break;
1850                 default:
1851                         break;
1852                 }
1853                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1854                         break;
1855         }
1856         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1857 out:
1858         kfree(tmpdevice);
1859         for (i = 0; i < ndev_allocated; i++)
1860                 kfree(currentsd[i]);
1861         kfree(currentsd);
1862         kfree(inq_buff);
1863         kfree(physdev_list);
1864         kfree(logdev_list);
1865 }
1866
1867 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1868  * dma mapping  and fills in the scatter gather entries of the
1869  * hpsa command, cp.
1870  */
1871 static int hpsa_scatter_gather(struct ctlr_info *h,
1872                 struct CommandList *cp,
1873                 struct scsi_cmnd *cmd)
1874 {
1875         unsigned int len;
1876         struct scatterlist *sg;
1877         u64 addr64;
1878         int use_sg, i, sg_index, chained;
1879         struct SGDescriptor *curr_sg;
1880
1881         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1882
1883         use_sg = scsi_dma_map(cmd);
1884         if (use_sg < 0)
1885                 return use_sg;
1886
1887         if (!use_sg)
1888                 goto sglist_finished;
1889
1890         curr_sg = cp->SG;
1891         chained = 0;
1892         sg_index = 0;
1893         scsi_for_each_sg(cmd, sg, use_sg, i) {
1894                 if (i == h->max_cmd_sg_entries - 1 &&
1895                         use_sg > h->max_cmd_sg_entries) {
1896                         chained = 1;
1897                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1898                         sg_index = 0;
1899                 }
1900                 addr64 = (u64) sg_dma_address(sg);
1901                 len  = sg_dma_len(sg);
1902                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1903                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1904                 curr_sg->Len = len;
1905                 curr_sg->Ext = 0;  /* we are not chaining */
1906                 curr_sg++;
1907         }
1908
1909         if (use_sg + chained > h->maxSG)
1910                 h->maxSG = use_sg + chained;
1911
1912         if (chained) {
1913                 cp->Header.SGList = h->max_cmd_sg_entries;
1914                 cp->Header.SGTotal = (u16) (use_sg + 1);
1915                 hpsa_map_sg_chain_block(h, cp);
1916                 return 0;
1917         }
1918
1919 sglist_finished:
1920
1921         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1922         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1923         return 0;
1924 }
1925
1926
1927 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1928         void (*done)(struct scsi_cmnd *))
1929 {
1930         struct ctlr_info *h;
1931         struct hpsa_scsi_dev_t *dev;
1932         unsigned char scsi3addr[8];
1933         struct CommandList *c;
1934         unsigned long flags;
1935
1936         /* Get the ptr to our adapter structure out of cmd->host. */
1937         h = sdev_to_hba(cmd->device);
1938         dev = cmd->device->hostdata;
1939         if (!dev) {
1940                 cmd->result = DID_NO_CONNECT << 16;
1941                 done(cmd);
1942                 return 0;
1943         }
1944         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1945
1946         /* Need a lock as this is being allocated from the pool */
1947         spin_lock_irqsave(&h->lock, flags);
1948         c = cmd_alloc(h);
1949         spin_unlock_irqrestore(&h->lock, flags);
1950         if (c == NULL) {                        /* trouble... */
1951                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1952                 return SCSI_MLQUEUE_HOST_BUSY;
1953         }
1954
1955         /* Fill in the command list header */
1956
1957         cmd->scsi_done = done;    /* save this for use by completion code */
1958
1959         /* save c in case we have to abort it  */
1960         cmd->host_scribble = (unsigned char *) c;
1961
1962         c->cmd_type = CMD_SCSI;
1963         c->scsi_cmd = cmd;
1964         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1965         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1966         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1967         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1968
1969         /* Fill in the request block... */
1970
1971         c->Request.Timeout = 0;
1972         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1973         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1974         c->Request.CDBLen = cmd->cmd_len;
1975         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1976         c->Request.Type.Type = TYPE_CMD;
1977         c->Request.Type.Attribute = ATTR_SIMPLE;
1978         switch (cmd->sc_data_direction) {
1979         case DMA_TO_DEVICE:
1980                 c->Request.Type.Direction = XFER_WRITE;
1981                 break;
1982         case DMA_FROM_DEVICE:
1983                 c->Request.Type.Direction = XFER_READ;
1984                 break;
1985         case DMA_NONE:
1986                 c->Request.Type.Direction = XFER_NONE;
1987                 break;
1988         case DMA_BIDIRECTIONAL:
1989                 /* This can happen if a buggy application does a scsi passthru
1990                  * and sets both inlen and outlen to non-zero. ( see
1991                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1992                  */
1993
1994                 c->Request.Type.Direction = XFER_RSVD;
1995                 /* This is technically wrong, and hpsa controllers should
1996                  * reject it with CMD_INVALID, which is the most correct
1997                  * response, but non-fibre backends appear to let it
1998                  * slide by, and give the same results as if this field
1999                  * were set correctly.  Either way is acceptable for
2000                  * our purposes here.
2001                  */
2002
2003                 break;
2004
2005         default:
2006                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2007                         cmd->sc_data_direction);
2008                 BUG();
2009                 break;
2010         }
2011
2012         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2013                 cmd_free(h, c);
2014                 return SCSI_MLQUEUE_HOST_BUSY;
2015         }
2016         enqueue_cmd_and_start_io(h, c);
2017         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2018         return 0;
2019 }
2020
2021 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2022
2023 static void hpsa_scan_start(struct Scsi_Host *sh)
2024 {
2025         struct ctlr_info *h = shost_to_hba(sh);
2026         unsigned long flags;
2027
2028         /* wait until any scan already in progress is finished. */
2029         while (1) {
2030                 spin_lock_irqsave(&h->scan_lock, flags);
2031                 if (h->scan_finished)
2032                         break;
2033                 spin_unlock_irqrestore(&h->scan_lock, flags);
2034                 wait_event(h->scan_wait_queue, h->scan_finished);
2035                 /* Note: We don't need to worry about a race between this
2036                  * thread and driver unload because the midlayer will
2037                  * have incremented the reference count, so unload won't
2038                  * happen if we're in here.
2039                  */
2040         }
2041         h->scan_finished = 0; /* mark scan as in progress */
2042         spin_unlock_irqrestore(&h->scan_lock, flags);
2043
2044         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2045
2046         spin_lock_irqsave(&h->scan_lock, flags);
2047         h->scan_finished = 1; /* mark scan as finished. */
2048         wake_up_all(&h->scan_wait_queue);
2049         spin_unlock_irqrestore(&h->scan_lock, flags);
2050 }
2051
2052 static int hpsa_scan_finished(struct Scsi_Host *sh,
2053         unsigned long elapsed_time)
2054 {
2055         struct ctlr_info *h = shost_to_hba(sh);
2056         unsigned long flags;
2057         int finished;
2058
2059         spin_lock_irqsave(&h->scan_lock, flags);
2060         finished = h->scan_finished;
2061         spin_unlock_irqrestore(&h->scan_lock, flags);
2062         return finished;
2063 }
2064
2065 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2066         int qdepth, int reason)
2067 {
2068         struct ctlr_info *h = sdev_to_hba(sdev);
2069
2070         if (reason != SCSI_QDEPTH_DEFAULT)
2071                 return -ENOTSUPP;
2072
2073         if (qdepth < 1)
2074                 qdepth = 1;
2075         else
2076                 if (qdepth > h->nr_cmds)
2077                         qdepth = h->nr_cmds;
2078         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2079         return sdev->queue_depth;
2080 }
2081
2082 static void hpsa_unregister_scsi(struct ctlr_info *h)
2083 {
2084         /* we are being forcibly unloaded, and may not refuse. */
2085         scsi_remove_host(h->scsi_host);
2086         scsi_host_put(h->scsi_host);
2087         h->scsi_host = NULL;
2088 }
2089
2090 static int hpsa_register_scsi(struct ctlr_info *h)
2091 {
2092         int rc;
2093
2094         rc = hpsa_scsi_detect(h);
2095         if (rc != 0)
2096                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2097                         " hpsa_scsi_detect(), rc is %d\n", rc);
2098         return rc;
2099 }
2100
2101 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2102         unsigned char lunaddr[])
2103 {
2104         int rc = 0;
2105         int count = 0;
2106         int waittime = 1; /* seconds */
2107         struct CommandList *c;
2108
2109         c = cmd_special_alloc(h);
2110         if (!c) {
2111                 dev_warn(&h->pdev->dev, "out of memory in "
2112                         "wait_for_device_to_become_ready.\n");
2113                 return IO_ERROR;
2114         }
2115
2116         /* Send test unit ready until device ready, or give up. */
2117         while (count < HPSA_TUR_RETRY_LIMIT) {
2118
2119                 /* Wait for a bit.  do this first, because if we send
2120                  * the TUR right away, the reset will just abort it.
2121                  */
2122                 msleep(1000 * waittime);
2123                 count++;
2124
2125                 /* Increase wait time with each try, up to a point. */
2126                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2127                         waittime = waittime * 2;
2128
2129                 /* Send the Test Unit Ready */
2130                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2131                 hpsa_scsi_do_simple_cmd_core(h, c);
2132                 /* no unmap needed here because no data xfer. */
2133
2134                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2135                         break;
2136
2137                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2138                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2139                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2140                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2141                         break;
2142
2143                 dev_warn(&h->pdev->dev, "waiting %d secs "
2144                         "for device to become ready.\n", waittime);
2145                 rc = 1; /* device not ready. */
2146         }
2147
2148         if (rc)
2149                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2150         else
2151                 dev_warn(&h->pdev->dev, "device is ready.\n");
2152
2153         cmd_special_free(h, c);
2154         return rc;
2155 }
2156
2157 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2158  * complaining.  Doing a host- or bus-reset can't do anything good here.
2159  */
2160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2161 {
2162         int rc;
2163         struct ctlr_info *h;
2164         struct hpsa_scsi_dev_t *dev;
2165
2166         /* find the controller to which the command to be aborted was sent */
2167         h = sdev_to_hba(scsicmd->device);
2168         if (h == NULL) /* paranoia */
2169                 return FAILED;
2170         dev = scsicmd->device->hostdata;
2171         if (!dev) {
2172                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2173                         "device lookup failed.\n");
2174                 return FAILED;
2175         }
2176         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2177                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2178         /* send a reset to the SCSI LUN which the command was sent to */
2179         rc = hpsa_send_reset(h, dev->scsi3addr);
2180         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2181                 return SUCCESS;
2182
2183         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2184         return FAILED;
2185 }
2186
2187 /*
2188  * For operations that cannot sleep, a command block is allocated at init,
2189  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2190  * which ones are free or in use.  Lock must be held when calling this.
2191  * cmd_free() is the complement.
2192  */
2193 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2194 {
2195         struct CommandList *c;
2196         int i;
2197         union u64bit temp64;
2198         dma_addr_t cmd_dma_handle, err_dma_handle;
2199
2200         do {
2201                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2202                 if (i == h->nr_cmds)
2203                         return NULL;
2204         } while (test_and_set_bit
2205                  (i & (BITS_PER_LONG - 1),
2206                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2207         c = h->cmd_pool + i;
2208         memset(c, 0, sizeof(*c));
2209         cmd_dma_handle = h->cmd_pool_dhandle
2210             + i * sizeof(*c);
2211         c->err_info = h->errinfo_pool + i;
2212         memset(c->err_info, 0, sizeof(*c->err_info));
2213         err_dma_handle = h->errinfo_pool_dhandle
2214             + i * sizeof(*c->err_info);
2215         h->nr_allocs++;
2216
2217         c->cmdindex = i;
2218
2219         INIT_HLIST_NODE(&c->list);
2220         c->busaddr = (u32) cmd_dma_handle;
2221         temp64.val = (u64) err_dma_handle;
2222         c->ErrDesc.Addr.lower = temp64.val32.lower;
2223         c->ErrDesc.Addr.upper = temp64.val32.upper;
2224         c->ErrDesc.Len = sizeof(*c->err_info);
2225
2226         c->h = h;
2227         return c;
2228 }
2229
2230 /* For operations that can wait for kmalloc to possibly sleep,
2231  * this routine can be called. Lock need not be held to call
2232  * cmd_special_alloc. cmd_special_free() is the complement.
2233  */
2234 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2235 {
2236         struct CommandList *c;
2237         union u64bit temp64;
2238         dma_addr_t cmd_dma_handle, err_dma_handle;
2239
2240         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2241         if (c == NULL)
2242                 return NULL;
2243         memset(c, 0, sizeof(*c));
2244
2245         c->cmdindex = -1;
2246
2247         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2248                     &err_dma_handle);
2249
2250         if (c->err_info == NULL) {
2251                 pci_free_consistent(h->pdev,
2252                         sizeof(*c), c, cmd_dma_handle);
2253                 return NULL;
2254         }
2255         memset(c->err_info, 0, sizeof(*c->err_info));
2256
2257         INIT_HLIST_NODE(&c->list);
2258         c->busaddr = (u32) cmd_dma_handle;
2259         temp64.val = (u64) err_dma_handle;
2260         c->ErrDesc.Addr.lower = temp64.val32.lower;
2261         c->ErrDesc.Addr.upper = temp64.val32.upper;
2262         c->ErrDesc.Len = sizeof(*c->err_info);
2263
2264         c->h = h;
2265         return c;
2266 }
2267
2268 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2269 {
2270         int i;
2271
2272         i = c - h->cmd_pool;
2273         clear_bit(i & (BITS_PER_LONG - 1),
2274                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2275         h->nr_frees++;
2276 }
2277
2278 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2279 {
2280         union u64bit temp64;
2281
2282         temp64.val32.lower = c->ErrDesc.Addr.lower;
2283         temp64.val32.upper = c->ErrDesc.Addr.upper;
2284         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2285                             c->err_info, (dma_addr_t) temp64.val);
2286         pci_free_consistent(h->pdev, sizeof(*c),
2287                             c, (dma_addr_t) c->busaddr);
2288 }
2289
2290 #ifdef CONFIG_COMPAT
2291
2292 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2293 {
2294         IOCTL32_Command_struct __user *arg32 =
2295             (IOCTL32_Command_struct __user *) arg;
2296         IOCTL_Command_struct arg64;
2297         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2298         int err;
2299         u32 cp;
2300
2301         err = 0;
2302         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2303                            sizeof(arg64.LUN_info));
2304         err |= copy_from_user(&arg64.Request, &arg32->Request,
2305                            sizeof(arg64.Request));
2306         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2307                            sizeof(arg64.error_info));
2308         err |= get_user(arg64.buf_size, &arg32->buf_size);
2309         err |= get_user(cp, &arg32->buf);
2310         arg64.buf = compat_ptr(cp);
2311         err |= copy_to_user(p, &arg64, sizeof(arg64));
2312
2313         if (err)
2314                 return -EFAULT;
2315
2316         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2317         if (err)
2318                 return err;
2319         err |= copy_in_user(&arg32->error_info, &p->error_info,
2320                          sizeof(arg32->error_info));
2321         if (err)
2322                 return -EFAULT;
2323         return err;
2324 }
2325
2326 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2327         int cmd, void *arg)
2328 {
2329         BIG_IOCTL32_Command_struct __user *arg32 =
2330             (BIG_IOCTL32_Command_struct __user *) arg;
2331         BIG_IOCTL_Command_struct arg64;
2332         BIG_IOCTL_Command_struct __user *p =
2333             compat_alloc_user_space(sizeof(arg64));
2334         int err;
2335         u32 cp;
2336
2337         err = 0;
2338         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2339                            sizeof(arg64.LUN_info));
2340         err |= copy_from_user(&arg64.Request, &arg32->Request,
2341                            sizeof(arg64.Request));
2342         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2343                            sizeof(arg64.error_info));
2344         err |= get_user(arg64.buf_size, &arg32->buf_size);
2345         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2346         err |= get_user(cp, &arg32->buf);
2347         arg64.buf = compat_ptr(cp);
2348         err |= copy_to_user(p, &arg64, sizeof(arg64));
2349
2350         if (err)
2351                 return -EFAULT;
2352
2353         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2354         if (err)
2355                 return err;
2356         err |= copy_in_user(&arg32->error_info, &p->error_info,
2357                          sizeof(arg32->error_info));
2358         if (err)
2359                 return -EFAULT;
2360         return err;
2361 }
2362
2363 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2364 {
2365         switch (cmd) {
2366         case CCISS_GETPCIINFO:
2367         case CCISS_GETINTINFO:
2368         case CCISS_SETINTINFO:
2369         case CCISS_GETNODENAME:
2370         case CCISS_SETNODENAME:
2371         case CCISS_GETHEARTBEAT:
2372         case CCISS_GETBUSTYPES:
2373         case CCISS_GETFIRMVER:
2374         case CCISS_GETDRIVVER:
2375         case CCISS_REVALIDVOLS:
2376         case CCISS_DEREGDISK:
2377         case CCISS_REGNEWDISK:
2378         case CCISS_REGNEWD:
2379         case CCISS_RESCANDISK:
2380         case CCISS_GETLUNINFO:
2381                 return hpsa_ioctl(dev, cmd, arg);
2382
2383         case CCISS_PASSTHRU32:
2384                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2385         case CCISS_BIG_PASSTHRU32:
2386                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2387
2388         default:
2389                 return -ENOIOCTLCMD;
2390         }
2391 }
2392 #endif
2393
2394 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2395 {
2396         struct hpsa_pci_info pciinfo;
2397
2398         if (!argp)
2399                 return -EINVAL;
2400         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2401         pciinfo.bus = h->pdev->bus->number;
2402         pciinfo.dev_fn = h->pdev->devfn;
2403         pciinfo.board_id = h->board_id;
2404         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2405                 return -EFAULT;
2406         return 0;
2407 }
2408
2409 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2410 {
2411         DriverVer_type DriverVer;
2412         unsigned char vmaj, vmin, vsubmin;
2413         int rc;
2414
2415         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2416                 &vmaj, &vmin, &vsubmin);
2417         if (rc != 3) {
2418                 dev_info(&h->pdev->dev, "driver version string '%s' "
2419                         "unrecognized.", HPSA_DRIVER_VERSION);
2420                 vmaj = 0;
2421                 vmin = 0;
2422                 vsubmin = 0;
2423         }
2424         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2425         if (!argp)
2426                 return -EINVAL;
2427         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2428                 return -EFAULT;
2429         return 0;
2430 }
2431
2432 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2433 {
2434         IOCTL_Command_struct iocommand;
2435         struct CommandList *c;
2436         char *buff = NULL;
2437         union u64bit temp64;
2438
2439         if (!argp)
2440                 return -EINVAL;
2441         if (!capable(CAP_SYS_RAWIO))
2442                 return -EPERM;
2443         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2444                 return -EFAULT;
2445         if ((iocommand.buf_size < 1) &&
2446             (iocommand.Request.Type.Direction != XFER_NONE)) {
2447                 return -EINVAL;
2448         }
2449         if (iocommand.buf_size > 0) {
2450                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2451                 if (buff == NULL)
2452                         return -EFAULT;
2453         }
2454         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2455                 /* Copy the data into the buffer we created */
2456                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2457                         kfree(buff);
2458                         return -EFAULT;
2459                 }
2460         } else
2461                 memset(buff, 0, iocommand.buf_size);
2462         c = cmd_special_alloc(h);
2463         if (c == NULL) {
2464                 kfree(buff);
2465                 return -ENOMEM;
2466         }
2467         /* Fill in the command type */
2468         c->cmd_type = CMD_IOCTL_PEND;
2469         /* Fill in Command Header */
2470         c->Header.ReplyQueue = 0; /* unused in simple mode */
2471         if (iocommand.buf_size > 0) {   /* buffer to fill */
2472                 c->Header.SGList = 1;
2473                 c->Header.SGTotal = 1;
2474         } else  { /* no buffers to fill */
2475                 c->Header.SGList = 0;
2476                 c->Header.SGTotal = 0;
2477         }
2478         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2479         /* use the kernel address the cmd block for tag */
2480         c->Header.Tag.lower = c->busaddr;
2481
2482         /* Fill in Request block */
2483         memcpy(&c->Request, &iocommand.Request,
2484                 sizeof(c->Request));
2485
2486         /* Fill in the scatter gather information */
2487         if (iocommand.buf_size > 0) {
2488                 temp64.val = pci_map_single(h->pdev, buff,
2489                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2490                 c->SG[0].Addr.lower = temp64.val32.lower;
2491                 c->SG[0].Addr.upper = temp64.val32.upper;
2492                 c->SG[0].Len = iocommand.buf_size;
2493                 c->SG[0].Ext = 0; /* we are not chaining*/
2494         }
2495         hpsa_scsi_do_simple_cmd_core(h, c);
2496         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2497         check_ioctl_unit_attention(h, c);
2498
2499         /* Copy the error information out */
2500         memcpy(&iocommand.error_info, c->err_info,
2501                 sizeof(iocommand.error_info));
2502         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2503                 kfree(buff);
2504                 cmd_special_free(h, c);
2505                 return -EFAULT;
2506         }
2507
2508         if (iocommand.Request.Type.Direction == XFER_READ) {
2509                 /* Copy the data out of the buffer we created */
2510                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2511                         kfree(buff);
2512                         cmd_special_free(h, c);
2513                         return -EFAULT;
2514                 }
2515         }
2516         kfree(buff);
2517         cmd_special_free(h, c);
2518         return 0;
2519 }
2520
2521 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2522 {
2523         BIG_IOCTL_Command_struct *ioc;
2524         struct CommandList *c;
2525         unsigned char **buff = NULL;
2526         int *buff_size = NULL;
2527         union u64bit temp64;
2528         BYTE sg_used = 0;
2529         int status = 0;
2530         int i;
2531         u32 left;
2532         u32 sz;
2533         BYTE __user *data_ptr;
2534
2535         if (!argp)
2536                 return -EINVAL;
2537         if (!capable(CAP_SYS_RAWIO))
2538                 return -EPERM;
2539         ioc = (BIG_IOCTL_Command_struct *)
2540             kmalloc(sizeof(*ioc), GFP_KERNEL);
2541         if (!ioc) {
2542                 status = -ENOMEM;
2543                 goto cleanup1;
2544         }
2545         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2546                 status = -EFAULT;
2547                 goto cleanup1;
2548         }
2549         if ((ioc->buf_size < 1) &&
2550             (ioc->Request.Type.Direction != XFER_NONE)) {
2551                 status = -EINVAL;
2552                 goto cleanup1;
2553         }
2554         /* Check kmalloc limits  using all SGs */
2555         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2556                 status = -EINVAL;
2557                 goto cleanup1;
2558         }
2559         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2560                 status = -EINVAL;
2561                 goto cleanup1;
2562         }
2563         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2564         if (!buff) {
2565                 status = -ENOMEM;
2566                 goto cleanup1;
2567         }
2568         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2569         if (!buff_size) {
2570                 status = -ENOMEM;
2571                 goto cleanup1;
2572         }
2573         left = ioc->buf_size;
2574         data_ptr = ioc->buf;
2575         while (left) {
2576                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2577                 buff_size[sg_used] = sz;
2578                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2579                 if (buff[sg_used] == NULL) {
2580                         status = -ENOMEM;
2581                         goto cleanup1;
2582                 }
2583                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2584                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2585                                 status = -ENOMEM;
2586                                 goto cleanup1;
2587                         }
2588                 } else
2589                         memset(buff[sg_used], 0, sz);
2590                 left -= sz;
2591                 data_ptr += sz;
2592                 sg_used++;
2593         }
2594         c = cmd_special_alloc(h);
2595         if (c == NULL) {
2596                 status = -ENOMEM;
2597                 goto cleanup1;
2598         }
2599         c->cmd_type = CMD_IOCTL_PEND;
2600         c->Header.ReplyQueue = 0;
2601
2602         if (ioc->buf_size > 0) {
2603                 c->Header.SGList = sg_used;
2604                 c->Header.SGTotal = sg_used;
2605         } else {
2606                 c->Header.SGList = 0;
2607                 c->Header.SGTotal = 0;
2608         }
2609         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2610         c->Header.Tag.lower = c->busaddr;
2611         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2612         if (ioc->buf_size > 0) {
2613                 int i;
2614                 for (i = 0; i < sg_used; i++) {
2615                         temp64.val = pci_map_single(h->pdev, buff[i],
2616                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2617                         c->SG[i].Addr.lower = temp64.val32.lower;
2618                         c->SG[i].Addr.upper = temp64.val32.upper;
2619                         c->SG[i].Len = buff_size[i];
2620                         /* we are not chaining */
2621                         c->SG[i].Ext = 0;
2622                 }
2623         }
2624         hpsa_scsi_do_simple_cmd_core(h, c);
2625         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2626         check_ioctl_unit_attention(h, c);
2627         /* Copy the error information out */
2628         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2629         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2630                 cmd_special_free(h, c);
2631                 status = -EFAULT;
2632                 goto cleanup1;
2633         }
2634         if (ioc->Request.Type.Direction == XFER_READ) {
2635                 /* Copy the data out of the buffer we created */
2636                 BYTE __user *ptr = ioc->buf;
2637                 for (i = 0; i < sg_used; i++) {
2638                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2639                                 cmd_special_free(h, c);
2640                                 status = -EFAULT;
2641                                 goto cleanup1;
2642                         }
2643                         ptr += buff_size[i];
2644                 }
2645         }
2646         cmd_special_free(h, c);
2647         status = 0;
2648 cleanup1:
2649         if (buff) {
2650                 for (i = 0; i < sg_used; i++)
2651                         kfree(buff[i]);
2652                 kfree(buff);
2653         }
2654         kfree(buff_size);
2655         kfree(ioc);
2656         return status;
2657 }
2658
2659 static void check_ioctl_unit_attention(struct ctlr_info *h,
2660         struct CommandList *c)
2661 {
2662         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2663                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2664                 (void) check_for_unit_attention(h, c);
2665 }
2666 /*
2667  * ioctl
2668  */
2669 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2670 {
2671         struct ctlr_info *h;
2672         void __user *argp = (void __user *)arg;
2673
2674         h = sdev_to_hba(dev);
2675
2676         switch (cmd) {
2677         case CCISS_DEREGDISK:
2678         case CCISS_REGNEWDISK:
2679         case CCISS_REGNEWD:
2680                 hpsa_scan_start(h->scsi_host);
2681                 return 0;
2682         case CCISS_GETPCIINFO:
2683                 return hpsa_getpciinfo_ioctl(h, argp);
2684         case CCISS_GETDRIVVER:
2685                 return hpsa_getdrivver_ioctl(h, argp);
2686         case CCISS_PASSTHRU:
2687                 return hpsa_passthru_ioctl(h, argp);
2688         case CCISS_BIG_PASSTHRU:
2689                 return hpsa_big_passthru_ioctl(h, argp);
2690         default:
2691                 return -ENOTTY;
2692         }
2693 }
2694
2695 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2696         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2697         int cmd_type)
2698 {
2699         int pci_dir = XFER_NONE;
2700
2701         c->cmd_type = CMD_IOCTL_PEND;
2702         c->Header.ReplyQueue = 0;
2703         if (buff != NULL && size > 0) {
2704                 c->Header.SGList = 1;
2705                 c->Header.SGTotal = 1;
2706         } else {
2707                 c->Header.SGList = 0;
2708                 c->Header.SGTotal = 0;
2709         }
2710         c->Header.Tag.lower = c->busaddr;
2711         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2712
2713         c->Request.Type.Type = cmd_type;
2714         if (cmd_type == TYPE_CMD) {
2715                 switch (cmd) {
2716                 case HPSA_INQUIRY:
2717                         /* are we trying to read a vital product page */
2718                         if (page_code != 0) {
2719                                 c->Request.CDB[1] = 0x01;
2720                                 c->Request.CDB[2] = page_code;
2721                         }
2722                         c->Request.CDBLen = 6;
2723                         c->Request.Type.Attribute = ATTR_SIMPLE;
2724                         c->Request.Type.Direction = XFER_READ;
2725                         c->Request.Timeout = 0;
2726                         c->Request.CDB[0] = HPSA_INQUIRY;
2727                         c->Request.CDB[4] = size & 0xFF;
2728                         break;
2729                 case HPSA_REPORT_LOG:
2730                 case HPSA_REPORT_PHYS:
2731                         /* Talking to controller so It's a physical command
2732                            mode = 00 target = 0.  Nothing to write.
2733                          */
2734                         c->Request.CDBLen = 12;
2735                         c->Request.Type.Attribute = ATTR_SIMPLE;
2736                         c->Request.Type.Direction = XFER_READ;
2737                         c->Request.Timeout = 0;
2738                         c->Request.CDB[0] = cmd;
2739                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2740                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2741                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2742                         c->Request.CDB[9] = size & 0xFF;
2743                         break;
2744                 case HPSA_CACHE_FLUSH:
2745                         c->Request.CDBLen = 12;
2746                         c->Request.Type.Attribute = ATTR_SIMPLE;
2747                         c->Request.Type.Direction = XFER_WRITE;
2748                         c->Request.Timeout = 0;
2749                         c->Request.CDB[0] = BMIC_WRITE;
2750                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2751                         break;
2752                 case TEST_UNIT_READY:
2753                         c->Request.CDBLen = 6;
2754                         c->Request.Type.Attribute = ATTR_SIMPLE;
2755                         c->Request.Type.Direction = XFER_NONE;
2756                         c->Request.Timeout = 0;
2757                         break;
2758                 default:
2759                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2760                         BUG();
2761                         return;
2762                 }
2763         } else if (cmd_type == TYPE_MSG) {
2764                 switch (cmd) {
2765
2766                 case  HPSA_DEVICE_RESET_MSG:
2767                         c->Request.CDBLen = 16;
2768                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2769                         c->Request.Type.Attribute = ATTR_SIMPLE;
2770                         c->Request.Type.Direction = XFER_NONE;
2771                         c->Request.Timeout = 0; /* Don't time out */
2772                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2773                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2774                         /* If bytes 4-7 are zero, it means reset the */
2775                         /* LunID device */
2776                         c->Request.CDB[4] = 0x00;
2777                         c->Request.CDB[5] = 0x00;
2778                         c->Request.CDB[6] = 0x00;
2779                         c->Request.CDB[7] = 0x00;
2780                 break;
2781
2782                 default:
2783                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2784                                 cmd);
2785                         BUG();
2786                 }
2787         } else {
2788                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2789                 BUG();
2790         }
2791
2792         switch (c->Request.Type.Direction) {
2793         case XFER_READ:
2794                 pci_dir = PCI_DMA_FROMDEVICE;
2795                 break;
2796         case XFER_WRITE:
2797                 pci_dir = PCI_DMA_TODEVICE;
2798                 break;
2799         case XFER_NONE:
2800                 pci_dir = PCI_DMA_NONE;
2801                 break;
2802         default:
2803                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2804         }
2805
2806         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2807
2808         return;
2809 }
2810
2811 /*
2812  * Map (physical) PCI mem into (virtual) kernel space
2813  */
2814 static void __iomem *remap_pci_mem(ulong base, ulong size)
2815 {
2816         ulong page_base = ((ulong) base) & PAGE_MASK;
2817         ulong page_offs = ((ulong) base) - page_base;
2818         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2819
2820         return page_remapped ? (page_remapped + page_offs) : NULL;
2821 }
2822
2823 /* Takes cmds off the submission queue and sends them to the hardware,
2824  * then puts them on the queue of cmds waiting for completion.
2825  */
2826 static void start_io(struct ctlr_info *h)
2827 {
2828         struct CommandList *c;
2829
2830         while (!hlist_empty(&h->reqQ)) {
2831                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2832                 /* can't do anything if fifo is full */
2833                 if ((h->access.fifo_full(h))) {
2834                         dev_warn(&h->pdev->dev, "fifo full\n");
2835                         break;
2836                 }
2837
2838                 /* Get the first entry from the Request Q */
2839                 removeQ(c);
2840                 h->Qdepth--;
2841
2842                 /* Tell the controller execute command */
2843                 h->access.submit_command(h, c);
2844
2845                 /* Put job onto the completed Q */
2846                 addQ(&h->cmpQ, c);
2847         }
2848 }
2849
2850 static inline unsigned long get_next_completion(struct ctlr_info *h)
2851 {
2852         return h->access.command_completed(h);
2853 }
2854
2855 static inline bool interrupt_pending(struct ctlr_info *h)
2856 {
2857         return h->access.intr_pending(h);
2858 }
2859
2860 static inline long interrupt_not_for_us(struct ctlr_info *h)
2861 {
2862         return (h->access.intr_pending(h) == 0) ||
2863                 (h->interrupts_enabled == 0);
2864 }
2865
2866 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2867         u32 raw_tag)
2868 {
2869         if (unlikely(tag_index >= h->nr_cmds)) {
2870                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2871                 return 1;
2872         }
2873         return 0;
2874 }
2875
2876 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2877 {
2878         removeQ(c);
2879         if (likely(c->cmd_type == CMD_SCSI))
2880                 complete_scsi_command(c, 0, raw_tag);
2881         else if (c->cmd_type == CMD_IOCTL_PEND)
2882                 complete(c->waiting);
2883 }
2884
2885 static inline u32 hpsa_tag_contains_index(u32 tag)
2886 {
2887 #define DIRECT_LOOKUP_BIT 0x10
2888         return tag & DIRECT_LOOKUP_BIT;
2889 }
2890
2891 static inline u32 hpsa_tag_to_index(u32 tag)
2892 {
2893 #define DIRECT_LOOKUP_SHIFT 5
2894         return tag >> DIRECT_LOOKUP_SHIFT;
2895 }
2896
2897 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2898 {
2899 #define HPSA_ERROR_BITS 0x03
2900         return tag & ~HPSA_ERROR_BITS;
2901 }
2902
2903 /* process completion of an indexed ("direct lookup") command */
2904 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2905         u32 raw_tag)
2906 {
2907         u32 tag_index;
2908         struct CommandList *c;
2909
2910         tag_index = hpsa_tag_to_index(raw_tag);
2911         if (bad_tag(h, tag_index, raw_tag))
2912                 return next_command(h);
2913         c = h->cmd_pool + tag_index;
2914         finish_cmd(c, raw_tag);
2915         return next_command(h);
2916 }
2917
2918 /* process completion of a non-indexed command */
2919 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2920         u32 raw_tag)
2921 {
2922         u32 tag;
2923         struct CommandList *c = NULL;
2924         struct hlist_node *tmp;
2925
2926         tag = hpsa_tag_discard_error_bits(raw_tag);
2927         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2928                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2929                         finish_cmd(c, raw_tag);
2930                         return next_command(h);
2931                 }
2932         }
2933         bad_tag(h, h->nr_cmds + 1, raw_tag);
2934         return next_command(h);
2935 }
2936
2937 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2938 {
2939         struct ctlr_info *h = dev_id;
2940         unsigned long flags;
2941         u32 raw_tag;
2942
2943         if (interrupt_not_for_us(h))
2944                 return IRQ_NONE;
2945         spin_lock_irqsave(&h->lock, flags);
2946         while (interrupt_pending(h)) {
2947                 raw_tag = get_next_completion(h);
2948                 while (raw_tag != FIFO_EMPTY) {
2949                         if (hpsa_tag_contains_index(raw_tag))
2950                                 raw_tag = process_indexed_cmd(h, raw_tag);
2951                         else
2952                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2953                 }
2954         }
2955         spin_unlock_irqrestore(&h->lock, flags);
2956         return IRQ_HANDLED;
2957 }
2958
2959 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2960 {
2961         struct ctlr_info *h = dev_id;
2962         unsigned long flags;
2963         u32 raw_tag;
2964
2965         spin_lock_irqsave(&h->lock, flags);
2966         raw_tag = get_next_completion(h);
2967         while (raw_tag != FIFO_EMPTY) {
2968                 if (hpsa_tag_contains_index(raw_tag))
2969                         raw_tag = process_indexed_cmd(h, raw_tag);
2970                 else
2971                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2972         }
2973         spin_unlock_irqrestore(&h->lock, flags);
2974         return IRQ_HANDLED;
2975 }
2976
2977 /* Send a message CDB to the firmware. */
2978 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2979                                                 unsigned char type)
2980 {
2981         struct Command {
2982                 struct CommandListHeader CommandHeader;
2983                 struct RequestBlock Request;
2984                 struct ErrDescriptor ErrorDescriptor;
2985         };
2986         struct Command *cmd;
2987         static const size_t cmd_sz = sizeof(*cmd) +
2988                                         sizeof(cmd->ErrorDescriptor);
2989         dma_addr_t paddr64;
2990         uint32_t paddr32, tag;
2991         void __iomem *vaddr;
2992         int i, err;
2993
2994         vaddr = pci_ioremap_bar(pdev, 0);
2995         if (vaddr == NULL)
2996                 return -ENOMEM;
2997
2998         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2999          * CCISS commands, so they must be allocated from the lower 4GiB of
3000          * memory.
3001          */
3002         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3003         if (err) {
3004                 iounmap(vaddr);
3005                 return -ENOMEM;
3006         }
3007
3008         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3009         if (cmd == NULL) {
3010                 iounmap(vaddr);
3011                 return -ENOMEM;
3012         }
3013
3014         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3015          * although there's no guarantee, we assume that the address is at
3016          * least 4-byte aligned (most likely, it's page-aligned).
3017          */
3018         paddr32 = paddr64;
3019
3020         cmd->CommandHeader.ReplyQueue = 0;
3021         cmd->CommandHeader.SGList = 0;
3022         cmd->CommandHeader.SGTotal = 0;
3023         cmd->CommandHeader.Tag.lower = paddr32;
3024         cmd->CommandHeader.Tag.upper = 0;
3025         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3026
3027         cmd->Request.CDBLen = 16;
3028         cmd->Request.Type.Type = TYPE_MSG;
3029         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3030         cmd->Request.Type.Direction = XFER_NONE;
3031         cmd->Request.Timeout = 0; /* Don't time out */
3032         cmd->Request.CDB[0] = opcode;
3033         cmd->Request.CDB[1] = type;
3034         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3035         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3036         cmd->ErrorDescriptor.Addr.upper = 0;
3037         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3038
3039         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3040
3041         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3042                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3043                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3044                         break;
3045                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3046         }
3047
3048         iounmap(vaddr);
3049
3050         /* we leak the DMA buffer here ... no choice since the controller could
3051          *  still complete the command.
3052          */
3053         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3054                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3055                         opcode, type);
3056                 return -ETIMEDOUT;
3057         }
3058
3059         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3060
3061         if (tag & HPSA_ERROR_BIT) {
3062                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3063                         opcode, type);
3064                 return -EIO;
3065         }
3066
3067         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3068                 opcode, type);
3069         return 0;
3070 }
3071
3072 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3073 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3074
3075 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3076 {
3077 /* the #defines are stolen from drivers/pci/msi.h. */
3078 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3079 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3080
3081         int pos;
3082         u16 control = 0;
3083
3084         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3085         if (pos) {
3086                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3087                 if (control & PCI_MSI_FLAGS_ENABLE) {
3088                         dev_info(&pdev->dev, "resetting MSI\n");
3089                         pci_write_config_word(pdev, msi_control_reg(pos),
3090                                         control & ~PCI_MSI_FLAGS_ENABLE);
3091                 }
3092         }
3093
3094         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3095         if (pos) {
3096                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3097                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3098                         dev_info(&pdev->dev, "resetting MSI-X\n");
3099                         pci_write_config_word(pdev, msi_control_reg(pos),
3100                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3101                 }
3102         }
3103
3104         return 0;
3105 }
3106
3107 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3108         void * __iomem vaddr, bool use_doorbell)
3109 {
3110         u16 pmcsr;
3111         int pos;
3112
3113         if (use_doorbell) {
3114                 /* For everything after the P600, the PCI power state method
3115                  * of resetting the controller doesn't work, so we have this
3116                  * other way using the doorbell register.
3117                  */
3118                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3119                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3120                 msleep(1000);
3121         } else { /* Try to do it the PCI power state way */
3122
3123                 /* Quoting from the Open CISS Specification: "The Power
3124                  * Management Control/Status Register (CSR) controls the power
3125                  * state of the device.  The normal operating state is D0,
3126                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3127                  * the controller, place the interface device in D3 then to D0,
3128                  * this causes a secondary PCI reset which will reset the
3129                  * controller." */
3130
3131                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3132                 if (pos == 0) {
3133                         dev_err(&pdev->dev,
3134                                 "hpsa_reset_controller: "
3135                                 "PCI PM not supported\n");
3136                         return -ENODEV;
3137                 }
3138                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3139                 /* enter the D3hot power management state */
3140                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142                 pmcsr |= PCI_D3hot;
3143                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144
3145                 msleep(500);
3146
3147                 /* enter the D0 power management state */
3148                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149                 pmcsr |= PCI_D0;
3150                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151
3152                 msleep(500);
3153         }
3154         return 0;
3155 }
3156
3157 /* This does a hard reset of the controller using PCI power management
3158  * states or the using the doorbell register.
3159  */
3160 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3161 {
3162         u16 saved_config_space[32];
3163         u64 cfg_offset;
3164         u32 cfg_base_addr;
3165         u64 cfg_base_addr_index;
3166         void __iomem *vaddr;
3167         unsigned long paddr;
3168         u32 misc_fw_support, active_transport;
3169         int rc, i;
3170         struct CfgTable __iomem *cfgtable;
3171         bool use_doorbell;
3172         u32 board_id;
3173
3174         /* For controllers as old as the P600, this is very nearly
3175          * the same thing as
3176          *
3177          * pci_save_state(pci_dev);
3178          * pci_set_power_state(pci_dev, PCI_D3hot);
3179          * pci_set_power_state(pci_dev, PCI_D0);
3180          * pci_restore_state(pci_dev);
3181          *
3182          * but we can't use these nice canned kernel routines on
3183          * kexec, because they also check the MSI/MSI-X state in PCI
3184          * configuration space and do the wrong thing when it is
3185          * set/cleared.  Also, the pci_save/restore_state functions
3186          * violate the ordering requirements for restoring the
3187          * configuration space from the CCISS document (see the
3188          * comment below).  So we roll our own ....
3189          *
3190          * For controllers newer than the P600, the pci power state
3191          * method of resetting doesn't work so we have another way
3192          * using the doorbell register.
3193          */
3194
3195         /* Exclude 640x boards.  These are two pci devices in one slot
3196          * which share a battery backed cache module.  One controls the
3197          * cache, the other accesses the cache through the one that controls
3198          * it.  If we reset the one controlling the cache, the other will
3199          * likely not be happy.  Just forbid resetting this conjoined mess.
3200          * The 640x isn't really supported by hpsa anyway.
3201          */
3202         hpsa_lookup_board_id(pdev, &board_id);
3203         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3204                 return -ENOTSUPP;
3205
3206         for (i = 0; i < 32; i++)
3207                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3208
3209
3210         /* find the first memory BAR, so we can find the cfg table */
3211         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3212         if (rc)
3213                 return rc;
3214         vaddr = remap_pci_mem(paddr, 0x250);
3215         if (!vaddr)
3216                 return -ENOMEM;
3217
3218         /* find cfgtable in order to check if reset via doorbell is supported */
3219         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3220                                         &cfg_base_addr_index, &cfg_offset);
3221         if (rc)
3222                 goto unmap_vaddr;
3223         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3224                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3225         if (!cfgtable) {
3226                 rc = -ENOMEM;
3227                 goto unmap_vaddr;
3228         }
3229
3230         /* If reset via doorbell register is supported, use that. */
3231         misc_fw_support = readl(&cfgtable->misc_fw_support);
3232         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3233
3234         /* The doorbell reset seems to cause lockups on some Smart
3235          * Arrays (e.g. P410, P410i, maybe others).  Until this is
3236          * fixed or at least isolated, avoid the doorbell reset.
3237          */
3238         use_doorbell = 0;
3239
3240         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3241         if (rc)
3242                 goto unmap_cfgtable;
3243
3244         /* Restore the PCI configuration space.  The Open CISS
3245          * Specification says, "Restore the PCI Configuration
3246          * Registers, offsets 00h through 60h. It is important to
3247          * restore the command register, 16-bits at offset 04h,
3248          * last. Do not restore the configuration status register,
3249          * 16-bits at offset 06h."  Note that the offset is 2*i.
3250          */
3251         for (i = 0; i < 32; i++) {
3252                 if (i == 2 || i == 3)
3253                         continue;
3254                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3255         }
3256         wmb();
3257         pci_write_config_word(pdev, 4, saved_config_space[2]);
3258
3259         /* Some devices (notably the HP Smart Array 5i Controller)
3260            need a little pause here */
3261         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3262
3263         /* Controller should be in simple mode at this point.  If it's not,
3264          * It means we're on one of those controllers which doesn't support
3265          * the doorbell reset method and on which the PCI power management reset
3266          * method doesn't work (P800, for example.)
3267          * In those cases, pretend the reset worked and hope for the best.
3268          */
3269         active_transport = readl(&cfgtable->TransportActive);
3270         if (active_transport & PERFORMANT_MODE) {
3271                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3272                         " proceeding anyway.\n");
3273                 rc = -ENOTSUPP;
3274         }
3275
3276 unmap_cfgtable:
3277         iounmap(cfgtable);
3278
3279 unmap_vaddr:
3280         iounmap(vaddr);
3281         return rc;
3282 }
3283
3284 /*
3285  *  We cannot read the structure directly, for portability we must use
3286  *   the io functions.
3287  *   This is for debug only.
3288  */
3289 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3290 {
3291 #ifdef HPSA_DEBUG
3292         int i;
3293         char temp_name[17];
3294
3295         dev_info(dev, "Controller Configuration information\n");
3296         dev_info(dev, "------------------------------------\n");
3297         for (i = 0; i < 4; i++)
3298                 temp_name[i] = readb(&(tb->Signature[i]));
3299         temp_name[4] = '\0';
3300         dev_info(dev, "   Signature = %s\n", temp_name);
3301         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3302         dev_info(dev, "   Transport methods supported = 0x%x\n",
3303                readl(&(tb->TransportSupport)));
3304         dev_info(dev, "   Transport methods active = 0x%x\n",
3305                readl(&(tb->TransportActive)));
3306         dev_info(dev, "   Requested transport Method = 0x%x\n",
3307                readl(&(tb->HostWrite.TransportRequest)));
3308         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3309                readl(&(tb->HostWrite.CoalIntDelay)));
3310         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3311                readl(&(tb->HostWrite.CoalIntCount)));
3312         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3313                readl(&(tb->CmdsOutMax)));
3314         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3315         for (i = 0; i < 16; i++)
3316                 temp_name[i] = readb(&(tb->ServerName[i]));
3317         temp_name[16] = '\0';
3318         dev_info(dev, "   Server Name = %s\n", temp_name);
3319         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3320                 readl(&(tb->HeartBeat)));
3321 #endif                          /* HPSA_DEBUG */
3322 }
3323
3324 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3325 {
3326         int i, offset, mem_type, bar_type;
3327
3328         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3329                 return 0;
3330         offset = 0;
3331         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3332                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3333                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3334                         offset += 4;
3335                 else {
3336                         mem_type = pci_resource_flags(pdev, i) &
3337                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3338                         switch (mem_type) {
3339                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3340                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3341                                 offset += 4;    /* 32 bit */
3342                                 break;
3343                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3344                                 offset += 8;
3345                                 break;
3346                         default:        /* reserved in PCI 2.2 */
3347                                 dev_warn(&pdev->dev,
3348                                        "base address is invalid\n");
3349                                 return -1;
3350                                 break;
3351                         }
3352                 }
3353                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3354                         return i + 1;
3355         }
3356         return -1;
3357 }
3358
3359 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3360  * controllers that are capable. If not, we use IO-APIC mode.
3361  */
3362
3363 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3364 {
3365 #ifdef CONFIG_PCI_MSI
3366         int err;
3367         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3368         {0, 2}, {0, 3}
3369         };
3370
3371         /* Some boards advertise MSI but don't really support it */
3372         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3373             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3374                 goto default_int_mode;
3375         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3376                 dev_info(&h->pdev->dev, "MSIX\n");
3377                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3378                 if (!err) {
3379                         h->intr[0] = hpsa_msix_entries[0].vector;
3380                         h->intr[1] = hpsa_msix_entries[1].vector;
3381                         h->intr[2] = hpsa_msix_entries[2].vector;
3382                         h->intr[3] = hpsa_msix_entries[3].vector;
3383                         h->msix_vector = 1;
3384                         return;
3385                 }
3386                 if (err > 0) {
3387                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3388                                "available\n", err);
3389                         goto default_int_mode;
3390                 } else {
3391                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3392                                err);
3393                         goto default_int_mode;
3394                 }
3395         }
3396         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3397                 dev_info(&h->pdev->dev, "MSI\n");
3398                 if (!pci_enable_msi(h->pdev))
3399                         h->msi_vector = 1;
3400                 else
3401                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3402         }
3403 default_int_mode:
3404 #endif                          /* CONFIG_PCI_MSI */
3405         /* if we get here we're going to use the default interrupt mode */
3406         h->intr[PERF_MODE_INT] = h->pdev->irq;
3407 }
3408
3409 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3410 {
3411         int i;
3412         u32 subsystem_vendor_id, subsystem_device_id;
3413
3414         subsystem_vendor_id = pdev->subsystem_vendor;
3415         subsystem_device_id = pdev->subsystem_device;
3416         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3417                     subsystem_vendor_id;
3418
3419         for (i = 0; i < ARRAY_SIZE(products); i++)
3420                 if (*board_id == products[i].board_id)
3421                         return i;
3422
3423         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3424                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3425                 !hpsa_allow_any) {
3426                 dev_warn(&pdev->dev, "unrecognized board ID: "
3427                         "0x%08x, ignoring.\n", *board_id);
3428                         return -ENODEV;
3429         }
3430         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3431 }
3432
3433 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3434 {
3435         u16 command;
3436
3437         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3438         return ((command & PCI_COMMAND_MEMORY) == 0);
3439 }
3440
3441 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3442         unsigned long *memory_bar)
3443 {
3444         int i;
3445
3446         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3447                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3448                         /* addressing mode bits already removed */
3449                         *memory_bar = pci_resource_start(pdev, i);
3450                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3451                                 *memory_bar);
3452                         return 0;
3453                 }
3454         dev_warn(&pdev->dev, "no memory BAR found\n");
3455         return -ENODEV;
3456 }
3457
3458 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3459 {
3460         int i;
3461         u32 scratchpad;
3462
3463         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3464                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3465                 if (scratchpad == HPSA_FIRMWARE_READY)
3466                         return 0;
3467                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3468         }
3469         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3470         return -ENODEV;
3471 }
3472
3473 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3474         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3475         u64 *cfg_offset)
3476 {
3477         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3478         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3479         *cfg_base_addr &= (u32) 0x0000ffff;
3480         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3481         if (*cfg_base_addr_index == -1) {
3482                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3483                 return -ENODEV;
3484         }
3485         return 0;
3486 }
3487
3488 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3489 {
3490         u64 cfg_offset;
3491         u32 cfg_base_addr;
3492         u64 cfg_base_addr_index;
3493         u32 trans_offset;
3494         int rc;
3495
3496         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3497                 &cfg_base_addr_index, &cfg_offset);
3498         if (rc)
3499                 return rc;
3500         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3501                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3502         if (!h->cfgtable)
3503                 return -ENOMEM;
3504         /* Find performant mode table. */
3505         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3506         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3507                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3508                                 sizeof(*h->transtable));
3509         if (!h->transtable)
3510                 return -ENOMEM;
3511         return 0;
3512 }
3513
3514 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3515 {
3516         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3517         if (h->max_commands < 16) {
3518                 dev_warn(&h->pdev->dev, "Controller reports "
3519                         "max supported commands of %d, an obvious lie. "
3520                         "Using 16.  Ensure that firmware is up to date.\n",
3521                         h->max_commands);
3522                 h->max_commands = 16;
3523         }
3524 }
3525
3526 /* Interrogate the hardware for some limits:
3527  * max commands, max SG elements without chaining, and with chaining,
3528  * SG chain block size, etc.
3529  */
3530 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3531 {
3532         hpsa_get_max_perf_mode_cmds(h);
3533         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3534         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3535         /*
3536          * Limit in-command s/g elements to 32 save dma'able memory.
3537          * Howvever spec says if 0, use 31
3538          */
3539         h->max_cmd_sg_entries = 31;
3540         if (h->maxsgentries > 512) {
3541                 h->max_cmd_sg_entries = 32;
3542                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3543                 h->maxsgentries--; /* save one for chain pointer */
3544         } else {
3545                 h->maxsgentries = 31; /* default to traditional values */
3546                 h->chainsize = 0;
3547         }
3548 }
3549
3550 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3551 {
3552         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3553             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3554             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3555             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3556                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3557                 return false;
3558         }
3559         return true;
3560 }
3561
3562 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3563 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3564 {
3565 #ifdef CONFIG_X86
3566         u32 prefetch;
3567
3568         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3569         prefetch |= 0x100;
3570         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3571 #endif
3572 }
3573
3574 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3575  * in a prefetch beyond physical memory.
3576  */
3577 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3578 {
3579         u32 dma_prefetch;
3580
3581         if (h->board_id != 0x3225103C)
3582                 return;
3583         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3584         dma_prefetch |= 0x8000;
3585         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3586 }
3587
3588 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3589 {
3590         int i;
3591
3592         /* under certain very rare conditions, this can take awhile.
3593          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3594          * as we enter this code.)
3595          */
3596         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3597                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3598                         break;
3599                 /* delay and try again */
3600                 msleep(10);
3601         }
3602 }
3603
3604 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3605 {
3606         u32 trans_support;
3607
3608         trans_support = readl(&(h->cfgtable->TransportSupport));
3609         if (!(trans_support & SIMPLE_MODE))
3610                 return -ENOTSUPP;
3611
3612         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3613         /* Update the field, and then ring the doorbell */
3614         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3615         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3616         hpsa_wait_for_mode_change_ack(h);
3617         print_cfg_table(&h->pdev->dev, h->cfgtable);
3618         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3619                 dev_warn(&h->pdev->dev,
3620                         "unable to get board into simple mode\n");
3621                 return -ENODEV;
3622         }
3623         return 0;
3624 }
3625
3626 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3627 {
3628         int prod_index, err;
3629
3630         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3631         if (prod_index < 0)
3632                 return -ENODEV;
3633         h->product_name = products[prod_index].product_name;
3634         h->access = *(products[prod_index].access);
3635
3636         if (hpsa_board_disabled(h->pdev)) {
3637                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3638                 return -ENODEV;
3639         }
3640         err = pci_enable_device(h->pdev);
3641         if (err) {
3642                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3643                 return err;
3644         }
3645
3646         err = pci_request_regions(h->pdev, "hpsa");
3647         if (err) {
3648                 dev_err(&h->pdev->dev,
3649                         "cannot obtain PCI resources, aborting\n");
3650                 return err;
3651         }
3652         hpsa_interrupt_mode(h);
3653         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3654         if (err)
3655                 goto err_out_free_res;
3656         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3657         if (!h->vaddr) {
3658                 err = -ENOMEM;
3659                 goto err_out_free_res;
3660         }
3661         err = hpsa_wait_for_board_ready(h);
3662         if (err)
3663                 goto err_out_free_res;
3664         err = hpsa_find_cfgtables(h);
3665         if (err)
3666                 goto err_out_free_res;
3667         hpsa_find_board_params(h);
3668
3669         if (!hpsa_CISS_signature_present(h)) {
3670                 err = -ENODEV;
3671                 goto err_out_free_res;
3672         }
3673         hpsa_enable_scsi_prefetch(h);
3674         hpsa_p600_dma_prefetch_quirk(h);
3675         err = hpsa_enter_simple_mode(h);
3676         if (err)
3677                 goto err_out_free_res;
3678         return 0;
3679
3680 err_out_free_res:
3681         if (h->transtable)
3682                 iounmap(h->transtable);
3683         if (h->cfgtable)
3684                 iounmap(h->cfgtable);
3685         if (h->vaddr)
3686                 iounmap(h->vaddr);
3687         /*
3688          * Deliberately omit pci_disable_device(): it does something nasty to
3689          * Smart Array controllers that pci_enable_device does not undo
3690          */
3691         pci_release_regions(h->pdev);
3692         return err;
3693 }
3694
3695 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3696 {
3697         int rc;
3698
3699 #define HBA_INQUIRY_BYTE_COUNT 64
3700         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3701         if (!h->hba_inquiry_data)
3702                 return;
3703         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3704                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3705         if (rc != 0) {
3706                 kfree(h->hba_inquiry_data);
3707                 h->hba_inquiry_data = NULL;
3708         }
3709 }
3710
3711 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3712 {
3713         int rc, i;
3714
3715         if (!reset_devices)
3716                 return 0;
3717
3718         /* Reset the controller with a PCI power-cycle or via doorbell */
3719         rc = hpsa_kdump_hard_reset_controller(pdev);
3720
3721         /* -ENOTSUPP here means we cannot reset the controller
3722          * but it's already (and still) up and running in
3723          * "performant mode".  Or, it might be 640x, which can't reset
3724          * due to concerns about shared bbwc between 6402/6404 pair.
3725          */
3726         if (rc == -ENOTSUPP)
3727                 return 0; /* just try to do the kdump anyhow. */
3728         if (rc)
3729                 return -ENODEV;
3730         if (hpsa_reset_msi(pdev))
3731                 return -ENODEV;
3732
3733         /* Now try to get the controller to respond to a no-op */
3734         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3735                 if (hpsa_noop(pdev) == 0)
3736                         break;
3737                 else
3738                         dev_warn(&pdev->dev, "no-op failed%s\n",
3739                                         (i < 11 ? "; re-trying" : ""));
3740         }
3741         return 0;
3742 }
3743
3744 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3745                                     const struct pci_device_id *ent)
3746 {
3747         int dac, rc;
3748         struct ctlr_info *h;
3749
3750         if (number_of_controllers == 0)
3751                 printk(KERN_INFO DRIVER_NAME "\n");
3752
3753         rc = hpsa_init_reset_devices(pdev);
3754         if (rc)
3755                 return rc;
3756
3757         /* Command structures must be aligned on a 32-byte boundary because
3758          * the 5 lower bits of the address are used by the hardware. and by
3759          * the driver.  See comments in hpsa.h for more info.
3760          */
3761 #define COMMANDLIST_ALIGNMENT 32
3762         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3763         h = kzalloc(sizeof(*h), GFP_KERNEL);
3764         if (!h)
3765                 return -ENOMEM;
3766
3767         h->pdev = pdev;
3768         h->busy_initializing = 1;
3769         INIT_HLIST_HEAD(&h->cmpQ);
3770         INIT_HLIST_HEAD(&h->reqQ);
3771         rc = hpsa_pci_init(h);
3772         if (rc != 0)
3773                 goto clean1;
3774
3775         sprintf(h->devname, "hpsa%d", number_of_controllers);
3776         h->ctlr = number_of_controllers;
3777         number_of_controllers++;
3778
3779         /* configure PCI DMA stuff */
3780         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3781         if (rc == 0) {
3782                 dac = 1;
3783         } else {
3784                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3785                 if (rc == 0) {
3786                         dac = 0;
3787                 } else {
3788                         dev_err(&pdev->dev, "no suitable DMA available\n");
3789                         goto clean1;
3790                 }
3791         }
3792
3793         /* make sure the board interrupts are off */
3794         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3795
3796         if (h->msix_vector || h->msi_vector)
3797                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3798                                 IRQF_DISABLED, h->devname, h);
3799         else
3800                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3801                                 IRQF_DISABLED, h->devname, h);
3802         if (rc) {
3803                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3804                        h->intr[PERF_MODE_INT], h->devname);
3805                 goto clean2;
3806         }
3807
3808         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3809                h->devname, pdev->device,
3810                h->intr[PERF_MODE_INT], dac ? "" : " not");
3811
3812         h->cmd_pool_bits =
3813             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3814                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3815         h->cmd_pool = pci_alloc_consistent(h->pdev,
3816                     h->nr_cmds * sizeof(*h->cmd_pool),
3817                     &(h->cmd_pool_dhandle));
3818         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3819                     h->nr_cmds * sizeof(*h->errinfo_pool),
3820                     &(h->errinfo_pool_dhandle));
3821         if ((h->cmd_pool_bits == NULL)
3822             || (h->cmd_pool == NULL)
3823             || (h->errinfo_pool == NULL)) {
3824                 dev_err(&pdev->dev, "out of memory");
3825                 rc = -ENOMEM;
3826                 goto clean4;
3827         }
3828         if (hpsa_allocate_sg_chain_blocks(h))
3829                 goto clean4;
3830         spin_lock_init(&h->lock);
3831         spin_lock_init(&h->scan_lock);
3832         init_waitqueue_head(&h->scan_wait_queue);
3833         h->scan_finished = 1; /* no scan currently in progress */
3834
3835         pci_set_drvdata(pdev, h);
3836         memset(h->cmd_pool_bits, 0,
3837                ((h->nr_cmds + BITS_PER_LONG -
3838                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3839
3840         hpsa_scsi_setup(h);
3841
3842         /* Turn the interrupts on so we can service requests */
3843         h->access.set_intr_mask(h, HPSA_INTR_ON);
3844
3845         hpsa_put_ctlr_into_performant_mode(h);
3846         hpsa_hba_inquiry(h);
3847         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3848         h->busy_initializing = 0;
3849         return 1;
3850
3851 clean4:
3852         hpsa_free_sg_chain_blocks(h);
3853         kfree(h->cmd_pool_bits);
3854         if (h->cmd_pool)
3855                 pci_free_consistent(h->pdev,
3856                             h->nr_cmds * sizeof(struct CommandList),
3857                             h->cmd_pool, h->cmd_pool_dhandle);
3858         if (h->errinfo_pool)
3859                 pci_free_consistent(h->pdev,
3860                             h->nr_cmds * sizeof(struct ErrorInfo),
3861                             h->errinfo_pool,
3862                             h->errinfo_pool_dhandle);
3863         free_irq(h->intr[PERF_MODE_INT], h);
3864 clean2:
3865 clean1:
3866         h->busy_initializing = 0;
3867         kfree(h);
3868         return rc;
3869 }
3870
3871 static void hpsa_flush_cache(struct ctlr_info *h)
3872 {
3873         char *flush_buf;
3874         struct CommandList *c;
3875
3876         flush_buf = kzalloc(4, GFP_KERNEL);
3877         if (!flush_buf)
3878                 return;
3879
3880         c = cmd_special_alloc(h);
3881         if (!c) {
3882                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3883                 goto out_of_memory;
3884         }
3885         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3886                 RAID_CTLR_LUNID, TYPE_CMD);
3887         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3888         if (c->err_info->CommandStatus != 0)
3889                 dev_warn(&h->pdev->dev,
3890                         "error flushing cache on controller\n");
3891         cmd_special_free(h, c);
3892 out_of_memory:
3893         kfree(flush_buf);
3894 }
3895
3896 static void hpsa_shutdown(struct pci_dev *pdev)
3897 {
3898         struct ctlr_info *h;
3899
3900         h = pci_get_drvdata(pdev);
3901         /* Turn board interrupts off  and send the flush cache command
3902          * sendcmd will turn off interrupt, and send the flush...
3903          * To write all data in the battery backed cache to disks
3904          */
3905         hpsa_flush_cache(h);
3906         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3907         free_irq(h->intr[PERF_MODE_INT], h);
3908 #ifdef CONFIG_PCI_MSI
3909         if (h->msix_vector)
3910                 pci_disable_msix(h->pdev);
3911         else if (h->msi_vector)
3912                 pci_disable_msi(h->pdev);
3913 #endif                          /* CONFIG_PCI_MSI */
3914 }
3915
3916 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3917 {
3918         struct ctlr_info *h;
3919
3920         if (pci_get_drvdata(pdev) == NULL) {
3921                 dev_err(&pdev->dev, "unable to remove device \n");
3922                 return;
3923         }
3924         h = pci_get_drvdata(pdev);
3925         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3926         hpsa_shutdown(pdev);
3927         iounmap(h->vaddr);
3928         iounmap(h->transtable);
3929         iounmap(h->cfgtable);
3930         hpsa_free_sg_chain_blocks(h);
3931         pci_free_consistent(h->pdev,
3932                 h->nr_cmds * sizeof(struct CommandList),
3933                 h->cmd_pool, h->cmd_pool_dhandle);
3934         pci_free_consistent(h->pdev,
3935                 h->nr_cmds * sizeof(struct ErrorInfo),
3936                 h->errinfo_pool, h->errinfo_pool_dhandle);
3937         pci_free_consistent(h->pdev, h->reply_pool_size,
3938                 h->reply_pool, h->reply_pool_dhandle);
3939         kfree(h->cmd_pool_bits);
3940         kfree(h->blockFetchTable);
3941         kfree(h->hba_inquiry_data);
3942         /*
3943          * Deliberately omit pci_disable_device(): it does something nasty to
3944          * Smart Array controllers that pci_enable_device does not undo
3945          */
3946         pci_release_regions(pdev);
3947         pci_set_drvdata(pdev, NULL);
3948         kfree(h);
3949 }
3950
3951 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3952         __attribute__((unused)) pm_message_t state)
3953 {
3954         return -ENOSYS;
3955 }
3956
3957 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3958 {
3959         return -ENOSYS;
3960 }
3961
3962 static struct pci_driver hpsa_pci_driver = {
3963         .name = "hpsa",
3964         .probe = hpsa_init_one,
3965         .remove = __devexit_p(hpsa_remove_one),
3966         .id_table = hpsa_pci_device_id, /* id_table */
3967         .shutdown = hpsa_shutdown,
3968         .suspend = hpsa_suspend,
3969         .resume = hpsa_resume,
3970 };
3971
3972 /* Fill in bucket_map[], given nsgs (the max number of
3973  * scatter gather elements supported) and bucket[],
3974  * which is an array of 8 integers.  The bucket[] array
3975  * contains 8 different DMA transfer sizes (in 16
3976  * byte increments) which the controller uses to fetch
3977  * commands.  This function fills in bucket_map[], which
3978  * maps a given number of scatter gather elements to one of
3979  * the 8 DMA transfer sizes.  The point of it is to allow the
3980  * controller to only do as much DMA as needed to fetch the
3981  * command, with the DMA transfer size encoded in the lower
3982  * bits of the command address.
3983  */
3984 static void  calc_bucket_map(int bucket[], int num_buckets,
3985         int nsgs, int *bucket_map)
3986 {
3987         int i, j, b, size;
3988
3989         /* even a command with 0 SGs requires 4 blocks */
3990 #define MINIMUM_TRANSFER_BLOCKS 4
3991 #define NUM_BUCKETS 8
3992         /* Note, bucket_map must have nsgs+1 entries. */
3993         for (i = 0; i <= nsgs; i++) {
3994                 /* Compute size of a command with i SG entries */
3995                 size = i + MINIMUM_TRANSFER_BLOCKS;
3996                 b = num_buckets; /* Assume the biggest bucket */
3997                 /* Find the bucket that is just big enough */
3998                 for (j = 0; j < 8; j++) {
3999                         if (bucket[j] >= size) {
4000                                 b = j;
4001                                 break;
4002                         }
4003                 }
4004                 /* for a command with i SG entries, use bucket b. */
4005                 bucket_map[i] = b;
4006         }
4007 }
4008
4009 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
4010 {
4011         int i;
4012         unsigned long register_value;
4013
4014         /* This is a bit complicated.  There are 8 registers on
4015          * the controller which we write to to tell it 8 different
4016          * sizes of commands which there may be.  It's a way of
4017          * reducing the DMA done to fetch each command.  Encoded into
4018          * each command's tag are 3 bits which communicate to the controller
4019          * which of the eight sizes that command fits within.  The size of
4020          * each command depends on how many scatter gather entries there are.
4021          * Each SG entry requires 16 bytes.  The eight registers are programmed
4022          * with the number of 16-byte blocks a command of that size requires.
4023          * The smallest command possible requires 5 such 16 byte blocks.
4024          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4025          * blocks.  Note, this only extends to the SG entries contained
4026          * within the command block, and does not extend to chained blocks
4027          * of SG elements.   bft[] contains the eight values we write to
4028          * the registers.  They are not evenly distributed, but have more
4029          * sizes for small commands, and fewer sizes for larger commands.
4030          */
4031         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4032         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4033         /*  5 = 1 s/g entry or 4k
4034          *  6 = 2 s/g entry or 8k
4035          *  8 = 4 s/g entry or 16k
4036          * 10 = 6 s/g entry or 24k
4037          */
4038
4039         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4040
4041         /* Controller spec: zero out this buffer. */
4042         memset(h->reply_pool, 0, h->reply_pool_size);
4043         h->reply_pool_head = h->reply_pool;
4044
4045         bft[7] = h->max_sg_entries + 4;
4046         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4047         for (i = 0; i < 8; i++)
4048                 writel(bft[i], &h->transtable->BlockFetch[i]);
4049
4050         /* size of controller ring buffer */
4051         writel(h->max_commands, &h->transtable->RepQSize);
4052         writel(1, &h->transtable->RepQCount);
4053         writel(0, &h->transtable->RepQCtrAddrLow32);
4054         writel(0, &h->transtable->RepQCtrAddrHigh32);
4055         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4056         writel(0, &h->transtable->RepQAddr0High32);
4057         writel(CFGTBL_Trans_Performant,
4058                 &(h->cfgtable->HostWrite.TransportRequest));
4059         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4060         hpsa_wait_for_mode_change_ack(h);
4061         register_value = readl(&(h->cfgtable->TransportActive));
4062         if (!(register_value & CFGTBL_Trans_Performant)) {
4063                 dev_warn(&h->pdev->dev, "unable to get board into"
4064                                         " performant mode\n");
4065                 return;
4066         }
4067 }
4068
4069 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4070 {
4071         u32 trans_support;
4072
4073         trans_support = readl(&(h->cfgtable->TransportSupport));
4074         if (!(trans_support & PERFORMANT_MODE))
4075                 return;
4076
4077         hpsa_get_max_perf_mode_cmds(h);
4078         h->max_sg_entries = 32;
4079         /* Performant mode ring buffer and supporting data structures */
4080         h->reply_pool_size = h->max_commands * sizeof(u64);
4081         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4082                                 &(h->reply_pool_dhandle));
4083
4084         /* Need a block fetch table for performant mode */
4085         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4086                                 sizeof(u32)), GFP_KERNEL);
4087
4088         if ((h->reply_pool == NULL)
4089                 || (h->blockFetchTable == NULL))
4090                 goto clean_up;
4091
4092         hpsa_enter_performant_mode(h);
4093
4094         /* Change the access methods to the performant access methods */
4095         h->access = SA5_performant_access;
4096         h->transMethod = CFGTBL_Trans_Performant;
4097
4098         return;
4099
4100 clean_up:
4101         if (h->reply_pool)
4102                 pci_free_consistent(h->pdev, h->reply_pool_size,
4103                         h->reply_pool, h->reply_pool_dhandle);
4104         kfree(h->blockFetchTable);
4105 }
4106
4107 /*
4108  *  This is it.  Register the PCI driver information for the cards we control
4109  *  the OS will call our registered routines when it finds one of our cards.
4110  */
4111 static int __init hpsa_init(void)
4112 {
4113         return pci_register_driver(&hpsa_pci_driver);
4114 }
4115
4116 static void __exit hpsa_cleanup(void)
4117 {
4118         pci_unregister_driver(&hpsa_pci_driver);
4119 }
4120
4121 module_init(hpsa_init);
4122 module_exit(hpsa_cleanup);