Merge branch 'driver-core-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296         /* Exclude 640x boards.  These are two pci devices in one slot
297          * which share a battery backed cache module.  One controls the
298          * cache, the other accesses the cache through the one that controls
299          * it.  If we reset the one controlling the cache, the other will
300          * likely not be happy.  Just forbid resetting this conjoined mess.
301          * The 640x isn't really supported by hpsa anyway.
302          */
303         0x409C0E11, /* Smart Array 6400 */
304         0x409D0E11, /* Smart Array 6400 EM */
305 };
306
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312                 if (unresettable_controller[i] == board_id)
313                         return 0;
314         return 1;
315 }
316
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322                 if (soft_unresettable_controller[i] == board_id)
323                         return 0;
324         return 1;
325 }
326
327 static int ctlr_is_resettable(u32 board_id)
328 {
329         return ctlr_is_hard_resettable(board_id) ||
330                 ctlr_is_soft_resettable(board_id);
331 }
332
333 static ssize_t host_show_resettable(struct device *dev,
334         struct device_attribute *attr, char *buf)
335 {
336         struct ctlr_info *h;
337         struct Scsi_Host *shost = class_to_shost(dev);
338
339         h = shost_to_hba(shost);
340         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345         return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349         "UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352
353 static ssize_t raid_level_show(struct device *dev,
354              struct device_attribute *attr, char *buf)
355 {
356         ssize_t l = 0;
357         unsigned char rlevel;
358         struct ctlr_info *h;
359         struct scsi_device *sdev;
360         struct hpsa_scsi_dev_t *hdev;
361         unsigned long flags;
362
363         sdev = to_scsi_device(dev);
364         h = sdev_to_hba(sdev);
365         spin_lock_irqsave(&h->lock, flags);
366         hdev = sdev->hostdata;
367         if (!hdev) {
368                 spin_unlock_irqrestore(&h->lock, flags);
369                 return -ENODEV;
370         }
371
372         /* Is this even a logical drive? */
373         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376                 return l;
377         }
378
379         rlevel = hdev->raid_level;
380         spin_unlock_irqrestore(&h->lock, flags);
381         if (rlevel > RAID_UNKNOWN)
382                 rlevel = RAID_UNKNOWN;
383         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384         return l;
385 }
386
387 static ssize_t lunid_show(struct device *dev,
388              struct device_attribute *attr, char *buf)
389 {
390         struct ctlr_info *h;
391         struct scsi_device *sdev;
392         struct hpsa_scsi_dev_t *hdev;
393         unsigned long flags;
394         unsigned char lunid[8];
395
396         sdev = to_scsi_device(dev);
397         h = sdev_to_hba(sdev);
398         spin_lock_irqsave(&h->lock, flags);
399         hdev = sdev->hostdata;
400         if (!hdev) {
401                 spin_unlock_irqrestore(&h->lock, flags);
402                 return -ENODEV;
403         }
404         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405         spin_unlock_irqrestore(&h->lock, flags);
406         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407                 lunid[0], lunid[1], lunid[2], lunid[3],
408                 lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410
411 static ssize_t unique_id_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char sn[16];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(sn, hdev->device_id, sizeof(sn));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 16 * 2 + 2,
431                         "%02X%02X%02X%02X%02X%02X%02X%02X"
432                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433                         sn[0], sn[1], sn[2], sn[3],
434                         sn[4], sn[5], sn[6], sn[7],
435                         sn[8], sn[9], sn[10], sn[11],
436                         sn[12], sn[13], sn[14], sn[15]);
437 }
438
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444         host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446         host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448         host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450         host_show_resettable, NULL);
451
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453         &dev_attr_raid_level,
454         &dev_attr_lunid,
455         &dev_attr_unique_id,
456         NULL,
457 };
458
459 static struct device_attribute *hpsa_shost_attrs[] = {
460         &dev_attr_rescan,
461         &dev_attr_firmware_revision,
462         &dev_attr_commands_outstanding,
463         &dev_attr_transport_mode,
464         &dev_attr_resettable,
465         NULL,
466 };
467
468 static struct scsi_host_template hpsa_driver_template = {
469         .module                 = THIS_MODULE,
470         .name                   = "hpsa",
471         .proc_name              = "hpsa",
472         .queuecommand           = hpsa_scsi_queue_command,
473         .scan_start             = hpsa_scan_start,
474         .scan_finished          = hpsa_scan_finished,
475         .change_queue_depth     = hpsa_change_queue_depth,
476         .this_id                = -1,
477         .use_clustering         = ENABLE_CLUSTERING,
478         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479         .ioctl                  = hpsa_ioctl,
480         .slave_alloc            = hpsa_slave_alloc,
481         .slave_destroy          = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483         .compat_ioctl           = hpsa_compat_ioctl,
484 #endif
485         .sdev_attrs = hpsa_sdev_attrs,
486         .shost_attrs = hpsa_shost_attrs,
487 };
488
489
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493         list_add_tail(&c->list, list);
494 }
495
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498         u32 a;
499
500         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501                 return h->access.command_completed(h);
502
503         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505                 (h->reply_pool_head)++;
506                 h->commands_outstanding--;
507         } else {
508                 a = FIFO_EMPTY;
509         }
510         /* Check for wraparound */
511         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512                 h->reply_pool_head = h->reply_pool;
513                 h->reply_pool_wraparound ^= 1;
514         }
515         return a;
516 }
517
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524         if (likely(h->transMethod & CFGTBL_Trans_Performant))
525                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529         struct CommandList *c)
530 {
531         unsigned long flags;
532
533         set_performant_mode(h, c);
534         spin_lock_irqsave(&h->lock, flags);
535         addQ(&h->reqQ, c);
536         h->Qdepth++;
537         start_io(h);
538         spin_unlock_irqrestore(&h->lock, flags);
539 }
540
541 static inline void removeQ(struct CommandList *c)
542 {
543         if (WARN_ON(list_empty(&c->list)))
544                 return;
545         list_del_init(&c->list);
546 }
547
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555         if (!h->hba_inquiry_data)
556                 return 0;
557         if ((h->hba_inquiry_data[2] & 0x07) == 5)
558                 return 1;
559         return 0;
560 }
561
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563         unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565         /* finds an unused bus, target, lun for a new physical device
566          * assumes h->devlock is held
567          */
568         int i, found = 0;
569         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570
571         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572
573         for (i = 0; i < h->ndevices; i++) {
574                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575                         set_bit(h->dev[i]->target, lun_taken);
576         }
577
578         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579                 if (!test_bit(i, lun_taken)) {
580                         /* *bus = 1; */
581                         *target = i;
582                         *lun = 0;
583                         found = 1;
584                         break;
585                 }
586         }
587         return !found;
588 }
589
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592                 struct hpsa_scsi_dev_t *device,
593                 struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595         /* assumes h->devlock is held */
596         int n = h->ndevices;
597         int i;
598         unsigned char addr1[8], addr2[8];
599         struct hpsa_scsi_dev_t *sd;
600
601         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602                 dev_err(&h->pdev->dev, "too many devices, some will be "
603                         "inaccessible.\n");
604                 return -1;
605         }
606
607         /* physical devices do not have lun or target assigned until now. */
608         if (device->lun != -1)
609                 /* Logical device, lun is already assigned. */
610                 goto lun_assigned;
611
612         /* If this device a non-zero lun of a multi-lun device
613          * byte 4 of the 8-byte LUN addr will contain the logical
614          * unit no, zero otherise.
615          */
616         if (device->scsi3addr[4] == 0) {
617                 /* This is not a non-zero lun of a multi-lun device */
618                 if (hpsa_find_target_lun(h, device->scsi3addr,
619                         device->bus, &device->target, &device->lun) != 0)
620                         return -1;
621                 goto lun_assigned;
622         }
623
624         /* This is a non-zero lun of a multi-lun device.
625          * Search through our list and find the device which
626          * has the same 8 byte LUN address, excepting byte 4.
627          * Assign the same bus and target for this new LUN.
628          * Use the logical unit number from the firmware.
629          */
630         memcpy(addr1, device->scsi3addr, 8);
631         addr1[4] = 0;
632         for (i = 0; i < n; i++) {
633                 sd = h->dev[i];
634                 memcpy(addr2, sd->scsi3addr, 8);
635                 addr2[4] = 0;
636                 /* differ only in byte 4? */
637                 if (memcmp(addr1, addr2, 8) == 0) {
638                         device->bus = sd->bus;
639                         device->target = sd->target;
640                         device->lun = device->scsi3addr[4];
641                         break;
642                 }
643         }
644         if (device->lun == -1) {
645                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646                         " suspect firmware bug or unsupported hardware "
647                         "configuration.\n");
648                         return -1;
649         }
650
651 lun_assigned:
652
653         h->dev[n] = device;
654         h->ndevices++;
655         added[*nadded] = device;
656         (*nadded)++;
657
658         /* initially, (before registering with scsi layer) we don't
659          * know our hostno and we don't want to print anything first
660          * time anyway (the scsi layer's inquiries will show that info)
661          */
662         /* if (hostno != -1) */
663                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664                         scsi_device_type(device->devtype), hostno,
665                         device->bus, device->target, device->lun);
666         return 0;
667 }
668
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671         int entry, struct hpsa_scsi_dev_t *new_entry,
672         struct hpsa_scsi_dev_t *added[], int *nadded,
673         struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675         /* assumes h->devlock is held */
676         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677         removed[*nremoved] = h->dev[entry];
678         (*nremoved)++;
679
680         /*
681          * New physical devices won't have target/lun assigned yet
682          * so we need to preserve the values in the slot we are replacing.
683          */
684         if (new_entry->target == -1) {
685                 new_entry->target = h->dev[entry]->target;
686                 new_entry->lun = h->dev[entry]->lun;
687         }
688
689         h->dev[entry] = new_entry;
690         added[*nadded] = new_entry;
691         (*nadded)++;
692         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
693                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
694                         new_entry->target, new_entry->lun);
695 }
696
697 /* Remove an entry from h->dev[] array. */
698 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
699         struct hpsa_scsi_dev_t *removed[], int *nremoved)
700 {
701         /* assumes h->devlock is held */
702         int i;
703         struct hpsa_scsi_dev_t *sd;
704
705         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
706
707         sd = h->dev[entry];
708         removed[*nremoved] = h->dev[entry];
709         (*nremoved)++;
710
711         for (i = entry; i < h->ndevices-1; i++)
712                 h->dev[i] = h->dev[i+1];
713         h->ndevices--;
714         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
715                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
716                 sd->lun);
717 }
718
719 #define SCSI3ADDR_EQ(a, b) ( \
720         (a)[7] == (b)[7] && \
721         (a)[6] == (b)[6] && \
722         (a)[5] == (b)[5] && \
723         (a)[4] == (b)[4] && \
724         (a)[3] == (b)[3] && \
725         (a)[2] == (b)[2] && \
726         (a)[1] == (b)[1] && \
727         (a)[0] == (b)[0])
728
729 static void fixup_botched_add(struct ctlr_info *h,
730         struct hpsa_scsi_dev_t *added)
731 {
732         /* called when scsi_add_device fails in order to re-adjust
733          * h->dev[] to match the mid layer's view.
734          */
735         unsigned long flags;
736         int i, j;
737
738         spin_lock_irqsave(&h->lock, flags);
739         for (i = 0; i < h->ndevices; i++) {
740                 if (h->dev[i] == added) {
741                         for (j = i; j < h->ndevices-1; j++)
742                                 h->dev[j] = h->dev[j+1];
743                         h->ndevices--;
744                         break;
745                 }
746         }
747         spin_unlock_irqrestore(&h->lock, flags);
748         kfree(added);
749 }
750
751 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
752         struct hpsa_scsi_dev_t *dev2)
753 {
754         /* we compare everything except lun and target as these
755          * are not yet assigned.  Compare parts likely
756          * to differ first
757          */
758         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
759                 sizeof(dev1->scsi3addr)) != 0)
760                 return 0;
761         if (memcmp(dev1->device_id, dev2->device_id,
762                 sizeof(dev1->device_id)) != 0)
763                 return 0;
764         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
765                 return 0;
766         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
767                 return 0;
768         if (dev1->devtype != dev2->devtype)
769                 return 0;
770         if (dev1->bus != dev2->bus)
771                 return 0;
772         return 1;
773 }
774
775 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
776  * and return needle location in *index.  If scsi3addr matches, but not
777  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
778  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
779  */
780 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
781         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
782         int *index)
783 {
784         int i;
785 #define DEVICE_NOT_FOUND 0
786 #define DEVICE_CHANGED 1
787 #define DEVICE_SAME 2
788         for (i = 0; i < haystack_size; i++) {
789                 if (haystack[i] == NULL) /* previously removed. */
790                         continue;
791                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
792                         *index = i;
793                         if (device_is_the_same(needle, haystack[i]))
794                                 return DEVICE_SAME;
795                         else
796                                 return DEVICE_CHANGED;
797                 }
798         }
799         *index = -1;
800         return DEVICE_NOT_FOUND;
801 }
802
803 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
804         struct hpsa_scsi_dev_t *sd[], int nsds)
805 {
806         /* sd contains scsi3 addresses and devtypes, and inquiry
807          * data.  This function takes what's in sd to be the current
808          * reality and updates h->dev[] to reflect that reality.
809          */
810         int i, entry, device_change, changes = 0;
811         struct hpsa_scsi_dev_t *csd;
812         unsigned long flags;
813         struct hpsa_scsi_dev_t **added, **removed;
814         int nadded, nremoved;
815         struct Scsi_Host *sh = NULL;
816
817         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
818                 GFP_KERNEL);
819         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
820                 GFP_KERNEL);
821
822         if (!added || !removed) {
823                 dev_warn(&h->pdev->dev, "out of memory in "
824                         "adjust_hpsa_scsi_table\n");
825                 goto free_and_out;
826         }
827
828         spin_lock_irqsave(&h->devlock, flags);
829
830         /* find any devices in h->dev[] that are not in
831          * sd[] and remove them from h->dev[], and for any
832          * devices which have changed, remove the old device
833          * info and add the new device info.
834          */
835         i = 0;
836         nremoved = 0;
837         nadded = 0;
838         while (i < h->ndevices) {
839                 csd = h->dev[i];
840                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
841                 if (device_change == DEVICE_NOT_FOUND) {
842                         changes++;
843                         hpsa_scsi_remove_entry(h, hostno, i,
844                                 removed, &nremoved);
845                         continue; /* remove ^^^, hence i not incremented */
846                 } else if (device_change == DEVICE_CHANGED) {
847                         changes++;
848                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
849                                 added, &nadded, removed, &nremoved);
850                         /* Set it to NULL to prevent it from being freed
851                          * at the bottom of hpsa_update_scsi_devices()
852                          */
853                         sd[entry] = NULL;
854                 }
855                 i++;
856         }
857
858         /* Now, make sure every device listed in sd[] is also
859          * listed in h->dev[], adding them if they aren't found
860          */
861
862         for (i = 0; i < nsds; i++) {
863                 if (!sd[i]) /* if already added above. */
864                         continue;
865                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
866                                         h->ndevices, &entry);
867                 if (device_change == DEVICE_NOT_FOUND) {
868                         changes++;
869                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
870                                 added, &nadded) != 0)
871                                 break;
872                         sd[i] = NULL; /* prevent from being freed later. */
873                 } else if (device_change == DEVICE_CHANGED) {
874                         /* should never happen... */
875                         changes++;
876                         dev_warn(&h->pdev->dev,
877                                 "device unexpectedly changed.\n");
878                         /* but if it does happen, we just ignore that device */
879                 }
880         }
881         spin_unlock_irqrestore(&h->devlock, flags);
882
883         /* Don't notify scsi mid layer of any changes the first time through
884          * (or if there are no changes) scsi_scan_host will do it later the
885          * first time through.
886          */
887         if (hostno == -1 || !changes)
888                 goto free_and_out;
889
890         sh = h->scsi_host;
891         /* Notify scsi mid layer of any removed devices */
892         for (i = 0; i < nremoved; i++) {
893                 struct scsi_device *sdev =
894                         scsi_device_lookup(sh, removed[i]->bus,
895                                 removed[i]->target, removed[i]->lun);
896                 if (sdev != NULL) {
897                         scsi_remove_device(sdev);
898                         scsi_device_put(sdev);
899                 } else {
900                         /* We don't expect to get here.
901                          * future cmds to this device will get selection
902                          * timeout as if the device was gone.
903                          */
904                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
905                                 " for removal.", hostno, removed[i]->bus,
906                                 removed[i]->target, removed[i]->lun);
907                 }
908                 kfree(removed[i]);
909                 removed[i] = NULL;
910         }
911
912         /* Notify scsi mid layer of any added devices */
913         for (i = 0; i < nadded; i++) {
914                 if (scsi_add_device(sh, added[i]->bus,
915                         added[i]->target, added[i]->lun) == 0)
916                         continue;
917                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
918                         "device not added.\n", hostno, added[i]->bus,
919                         added[i]->target, added[i]->lun);
920                 /* now we have to remove it from h->dev,
921                  * since it didn't get added to scsi mid layer
922                  */
923                 fixup_botched_add(h, added[i]);
924         }
925
926 free_and_out:
927         kfree(added);
928         kfree(removed);
929 }
930
931 /*
932  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
933  * Assume's h->devlock is held.
934  */
935 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
936         int bus, int target, int lun)
937 {
938         int i;
939         struct hpsa_scsi_dev_t *sd;
940
941         for (i = 0; i < h->ndevices; i++) {
942                 sd = h->dev[i];
943                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
944                         return sd;
945         }
946         return NULL;
947 }
948
949 /* link sdev->hostdata to our per-device structure. */
950 static int hpsa_slave_alloc(struct scsi_device *sdev)
951 {
952         struct hpsa_scsi_dev_t *sd;
953         unsigned long flags;
954         struct ctlr_info *h;
955
956         h = sdev_to_hba(sdev);
957         spin_lock_irqsave(&h->devlock, flags);
958         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
959                 sdev_id(sdev), sdev->lun);
960         if (sd != NULL)
961                 sdev->hostdata = sd;
962         spin_unlock_irqrestore(&h->devlock, flags);
963         return 0;
964 }
965
966 static void hpsa_slave_destroy(struct scsi_device *sdev)
967 {
968         /* nothing to do. */
969 }
970
971 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
972 {
973         int i;
974
975         if (!h->cmd_sg_list)
976                 return;
977         for (i = 0; i < h->nr_cmds; i++) {
978                 kfree(h->cmd_sg_list[i]);
979                 h->cmd_sg_list[i] = NULL;
980         }
981         kfree(h->cmd_sg_list);
982         h->cmd_sg_list = NULL;
983 }
984
985 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
986 {
987         int i;
988
989         if (h->chainsize <= 0)
990                 return 0;
991
992         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
993                                 GFP_KERNEL);
994         if (!h->cmd_sg_list)
995                 return -ENOMEM;
996         for (i = 0; i < h->nr_cmds; i++) {
997                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
998                                                 h->chainsize, GFP_KERNEL);
999                 if (!h->cmd_sg_list[i])
1000                         goto clean;
1001         }
1002         return 0;
1003
1004 clean:
1005         hpsa_free_sg_chain_blocks(h);
1006         return -ENOMEM;
1007 }
1008
1009 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1010         struct CommandList *c)
1011 {
1012         struct SGDescriptor *chain_sg, *chain_block;
1013         u64 temp64;
1014
1015         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1016         chain_block = h->cmd_sg_list[c->cmdindex];
1017         chain_sg->Ext = HPSA_SG_CHAIN;
1018         chain_sg->Len = sizeof(*chain_sg) *
1019                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1020         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1021                                 PCI_DMA_TODEVICE);
1022         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1023         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1024 }
1025
1026 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1027         struct CommandList *c)
1028 {
1029         struct SGDescriptor *chain_sg;
1030         union u64bit temp64;
1031
1032         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1033                 return;
1034
1035         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1036         temp64.val32.lower = chain_sg->Addr.lower;
1037         temp64.val32.upper = chain_sg->Addr.upper;
1038         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1039 }
1040
1041 static void complete_scsi_command(struct CommandList *cp)
1042 {
1043         struct scsi_cmnd *cmd;
1044         struct ctlr_info *h;
1045         struct ErrorInfo *ei;
1046
1047         unsigned char sense_key;
1048         unsigned char asc;      /* additional sense code */
1049         unsigned char ascq;     /* additional sense code qualifier */
1050         unsigned long sense_data_size;
1051
1052         ei = cp->err_info;
1053         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1054         h = cp->h;
1055
1056         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1057         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1058                 hpsa_unmap_sg_chain_block(h, cp);
1059
1060         cmd->result = (DID_OK << 16);           /* host byte */
1061         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1062         cmd->result |= ei->ScsiStatus;
1063
1064         /* copy the sense data whether we need to or not. */
1065         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1066                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1067         else
1068                 sense_data_size = sizeof(ei->SenseInfo);
1069         if (ei->SenseLen < sense_data_size)
1070                 sense_data_size = ei->SenseLen;
1071
1072         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1073         scsi_set_resid(cmd, ei->ResidualCnt);
1074
1075         if (ei->CommandStatus == 0) {
1076                 cmd->scsi_done(cmd);
1077                 cmd_free(h, cp);
1078                 return;
1079         }
1080
1081         /* an error has occurred */
1082         switch (ei->CommandStatus) {
1083
1084         case CMD_TARGET_STATUS:
1085                 if (ei->ScsiStatus) {
1086                         /* Get sense key */
1087                         sense_key = 0xf & ei->SenseInfo[2];
1088                         /* Get additional sense code */
1089                         asc = ei->SenseInfo[12];
1090                         /* Get addition sense code qualifier */
1091                         ascq = ei->SenseInfo[13];
1092                 }
1093
1094                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1095                         if (check_for_unit_attention(h, cp)) {
1096                                 cmd->result = DID_SOFT_ERROR << 16;
1097                                 break;
1098                         }
1099                         if (sense_key == ILLEGAL_REQUEST) {
1100                                 /*
1101                                  * SCSI REPORT_LUNS is commonly unsupported on
1102                                  * Smart Array.  Suppress noisy complaint.
1103                                  */
1104                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1105                                         break;
1106
1107                                 /* If ASC/ASCQ indicate Logical Unit
1108                                  * Not Supported condition,
1109                                  */
1110                                 if ((asc == 0x25) && (ascq == 0x0)) {
1111                                         dev_warn(&h->pdev->dev, "cp %p "
1112                                                 "has check condition\n", cp);
1113                                         break;
1114                                 }
1115                         }
1116
1117                         if (sense_key == NOT_READY) {
1118                                 /* If Sense is Not Ready, Logical Unit
1119                                  * Not ready, Manual Intervention
1120                                  * required
1121                                  */
1122                                 if ((asc == 0x04) && (ascq == 0x03)) {
1123                                         dev_warn(&h->pdev->dev, "cp %p "
1124                                                 "has check condition: unit "
1125                                                 "not ready, manual "
1126                                                 "intervention required\n", cp);
1127                                         break;
1128                                 }
1129                         }
1130                         if (sense_key == ABORTED_COMMAND) {
1131                                 /* Aborted command is retryable */
1132                                 dev_warn(&h->pdev->dev, "cp %p "
1133                                         "has check condition: aborted command: "
1134                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1135                                         cp, asc, ascq);
1136                                 cmd->result = DID_SOFT_ERROR << 16;
1137                                 break;
1138                         }
1139                         /* Must be some other type of check condition */
1140                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1141                                         "unknown type: "
1142                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1143                                         "Returning result: 0x%x, "
1144                                         "cmd=[%02x %02x %02x %02x %02x "
1145                                         "%02x %02x %02x %02x %02x %02x "
1146                                         "%02x %02x %02x %02x %02x]\n",
1147                                         cp, sense_key, asc, ascq,
1148                                         cmd->result,
1149                                         cmd->cmnd[0], cmd->cmnd[1],
1150                                         cmd->cmnd[2], cmd->cmnd[3],
1151                                         cmd->cmnd[4], cmd->cmnd[5],
1152                                         cmd->cmnd[6], cmd->cmnd[7],
1153                                         cmd->cmnd[8], cmd->cmnd[9],
1154                                         cmd->cmnd[10], cmd->cmnd[11],
1155                                         cmd->cmnd[12], cmd->cmnd[13],
1156                                         cmd->cmnd[14], cmd->cmnd[15]);
1157                         break;
1158                 }
1159
1160
1161                 /* Problem was not a check condition
1162                  * Pass it up to the upper layers...
1163                  */
1164                 if (ei->ScsiStatus) {
1165                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1166                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1167                                 "Returning result: 0x%x\n",
1168                                 cp, ei->ScsiStatus,
1169                                 sense_key, asc, ascq,
1170                                 cmd->result);
1171                 } else {  /* scsi status is zero??? How??? */
1172                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1173                                 "Returning no connection.\n", cp),
1174
1175                         /* Ordinarily, this case should never happen,
1176                          * but there is a bug in some released firmware
1177                          * revisions that allows it to happen if, for
1178                          * example, a 4100 backplane loses power and
1179                          * the tape drive is in it.  We assume that
1180                          * it's a fatal error of some kind because we
1181                          * can't show that it wasn't. We will make it
1182                          * look like selection timeout since that is
1183                          * the most common reason for this to occur,
1184                          * and it's severe enough.
1185                          */
1186
1187                         cmd->result = DID_NO_CONNECT << 16;
1188                 }
1189                 break;
1190
1191         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1192                 break;
1193         case CMD_DATA_OVERRUN:
1194                 dev_warn(&h->pdev->dev, "cp %p has"
1195                         " completed with data overrun "
1196                         "reported\n", cp);
1197                 break;
1198         case CMD_INVALID: {
1199                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1200                 print_cmd(cp); */
1201                 /* We get CMD_INVALID if you address a non-existent device
1202                  * instead of a selection timeout (no response).  You will
1203                  * see this if you yank out a drive, then try to access it.
1204                  * This is kind of a shame because it means that any other
1205                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1206                  * missing target. */
1207                 cmd->result = DID_NO_CONNECT << 16;
1208         }
1209                 break;
1210         case CMD_PROTOCOL_ERR:
1211                 dev_warn(&h->pdev->dev, "cp %p has "
1212                         "protocol error \n", cp);
1213                 break;
1214         case CMD_HARDWARE_ERR:
1215                 cmd->result = DID_ERROR << 16;
1216                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1217                 break;
1218         case CMD_CONNECTION_LOST:
1219                 cmd->result = DID_ERROR << 16;
1220                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1221                 break;
1222         case CMD_ABORTED:
1223                 cmd->result = DID_ABORT << 16;
1224                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1225                                 cp, ei->ScsiStatus);
1226                 break;
1227         case CMD_ABORT_FAILED:
1228                 cmd->result = DID_ERROR << 16;
1229                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1230                 break;
1231         case CMD_UNSOLICITED_ABORT:
1232                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1233                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1234                         "abort\n", cp);
1235                 break;
1236         case CMD_TIMEOUT:
1237                 cmd->result = DID_TIME_OUT << 16;
1238                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1239                 break;
1240         case CMD_UNABORTABLE:
1241                 cmd->result = DID_ERROR << 16;
1242                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1243                 break;
1244         default:
1245                 cmd->result = DID_ERROR << 16;
1246                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1247                                 cp, ei->CommandStatus);
1248         }
1249         cmd->scsi_done(cmd);
1250         cmd_free(h, cp);
1251 }
1252
1253 static int hpsa_scsi_detect(struct ctlr_info *h)
1254 {
1255         struct Scsi_Host *sh;
1256         int error;
1257
1258         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1259         if (sh == NULL)
1260                 goto fail;
1261
1262         sh->io_port = 0;
1263         sh->n_io_port = 0;
1264         sh->this_id = -1;
1265         sh->max_channel = 3;
1266         sh->max_cmd_len = MAX_COMMAND_SIZE;
1267         sh->max_lun = HPSA_MAX_LUN;
1268         sh->max_id = HPSA_MAX_LUN;
1269         sh->can_queue = h->nr_cmds;
1270         sh->cmd_per_lun = h->nr_cmds;
1271         sh->sg_tablesize = h->maxsgentries;
1272         h->scsi_host = sh;
1273         sh->hostdata[0] = (unsigned long) h;
1274         sh->irq = h->intr[h->intr_mode];
1275         sh->unique_id = sh->irq;
1276         error = scsi_add_host(sh, &h->pdev->dev);
1277         if (error)
1278                 goto fail_host_put;
1279         scsi_scan_host(sh);
1280         return 0;
1281
1282  fail_host_put:
1283         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1284                 " failed for controller %d\n", h->ctlr);
1285         scsi_host_put(sh);
1286         return error;
1287  fail:
1288         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1289                 " failed for controller %d\n", h->ctlr);
1290         return -ENOMEM;
1291 }
1292
1293 static void hpsa_pci_unmap(struct pci_dev *pdev,
1294         struct CommandList *c, int sg_used, int data_direction)
1295 {
1296         int i;
1297         union u64bit addr64;
1298
1299         for (i = 0; i < sg_used; i++) {
1300                 addr64.val32.lower = c->SG[i].Addr.lower;
1301                 addr64.val32.upper = c->SG[i].Addr.upper;
1302                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1303                         data_direction);
1304         }
1305 }
1306
1307 static void hpsa_map_one(struct pci_dev *pdev,
1308                 struct CommandList *cp,
1309                 unsigned char *buf,
1310                 size_t buflen,
1311                 int data_direction)
1312 {
1313         u64 addr64;
1314
1315         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1316                 cp->Header.SGList = 0;
1317                 cp->Header.SGTotal = 0;
1318                 return;
1319         }
1320
1321         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1322         cp->SG[0].Addr.lower =
1323           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1324         cp->SG[0].Addr.upper =
1325           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1326         cp->SG[0].Len = buflen;
1327         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1328         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1329 }
1330
1331 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1332         struct CommandList *c)
1333 {
1334         DECLARE_COMPLETION_ONSTACK(wait);
1335
1336         c->waiting = &wait;
1337         enqueue_cmd_and_start_io(h, c);
1338         wait_for_completion(&wait);
1339 }
1340
1341 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1342         struct CommandList *c, int data_direction)
1343 {
1344         int retry_count = 0;
1345
1346         do {
1347                 memset(c->err_info, 0, sizeof(*c->err_info));
1348                 hpsa_scsi_do_simple_cmd_core(h, c);
1349                 retry_count++;
1350         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1351         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1352 }
1353
1354 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1355 {
1356         struct ErrorInfo *ei;
1357         struct device *d = &cp->h->pdev->dev;
1358
1359         ei = cp->err_info;
1360         switch (ei->CommandStatus) {
1361         case CMD_TARGET_STATUS:
1362                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1363                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1364                                 ei->ScsiStatus);
1365                 if (ei->ScsiStatus == 0)
1366                         dev_warn(d, "SCSI status is abnormally zero.  "
1367                         "(probably indicates selection timeout "
1368                         "reported incorrectly due to a known "
1369                         "firmware bug, circa July, 2001.)\n");
1370                 break;
1371         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1372                         dev_info(d, "UNDERRUN\n");
1373                 break;
1374         case CMD_DATA_OVERRUN:
1375                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1376                 break;
1377         case CMD_INVALID: {
1378                 /* controller unfortunately reports SCSI passthru's
1379                  * to non-existent targets as invalid commands.
1380                  */
1381                 dev_warn(d, "cp %p is reported invalid (probably means "
1382                         "target device no longer present)\n", cp);
1383                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1384                 print_cmd(cp);  */
1385                 }
1386                 break;
1387         case CMD_PROTOCOL_ERR:
1388                 dev_warn(d, "cp %p has protocol error \n", cp);
1389                 break;
1390         case CMD_HARDWARE_ERR:
1391                 /* cmd->result = DID_ERROR << 16; */
1392                 dev_warn(d, "cp %p had hardware error\n", cp);
1393                 break;
1394         case CMD_CONNECTION_LOST:
1395                 dev_warn(d, "cp %p had connection lost\n", cp);
1396                 break;
1397         case CMD_ABORTED:
1398                 dev_warn(d, "cp %p was aborted\n", cp);
1399                 break;
1400         case CMD_ABORT_FAILED:
1401                 dev_warn(d, "cp %p reports abort failed\n", cp);
1402                 break;
1403         case CMD_UNSOLICITED_ABORT:
1404                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1405                 break;
1406         case CMD_TIMEOUT:
1407                 dev_warn(d, "cp %p timed out\n", cp);
1408                 break;
1409         case CMD_UNABORTABLE:
1410                 dev_warn(d, "Command unabortable\n");
1411                 break;
1412         default:
1413                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1414                                 ei->CommandStatus);
1415         }
1416 }
1417
1418 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1419                         unsigned char page, unsigned char *buf,
1420                         unsigned char bufsize)
1421 {
1422         int rc = IO_OK;
1423         struct CommandList *c;
1424         struct ErrorInfo *ei;
1425
1426         c = cmd_special_alloc(h);
1427
1428         if (c == NULL) {                        /* trouble... */
1429                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1430                 return -ENOMEM;
1431         }
1432
1433         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1434         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1435         ei = c->err_info;
1436         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1437                 hpsa_scsi_interpret_error(c);
1438                 rc = -1;
1439         }
1440         cmd_special_free(h, c);
1441         return rc;
1442 }
1443
1444 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1445 {
1446         int rc = IO_OK;
1447         struct CommandList *c;
1448         struct ErrorInfo *ei;
1449
1450         c = cmd_special_alloc(h);
1451
1452         if (c == NULL) {                        /* trouble... */
1453                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1454                 return -ENOMEM;
1455         }
1456
1457         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1458         hpsa_scsi_do_simple_cmd_core(h, c);
1459         /* no unmap needed here because no data xfer. */
1460
1461         ei = c->err_info;
1462         if (ei->CommandStatus != 0) {
1463                 hpsa_scsi_interpret_error(c);
1464                 rc = -1;
1465         }
1466         cmd_special_free(h, c);
1467         return rc;
1468 }
1469
1470 static void hpsa_get_raid_level(struct ctlr_info *h,
1471         unsigned char *scsi3addr, unsigned char *raid_level)
1472 {
1473         int rc;
1474         unsigned char *buf;
1475
1476         *raid_level = RAID_UNKNOWN;
1477         buf = kzalloc(64, GFP_KERNEL);
1478         if (!buf)
1479                 return;
1480         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1481         if (rc == 0)
1482                 *raid_level = buf[8];
1483         if (*raid_level > RAID_UNKNOWN)
1484                 *raid_level = RAID_UNKNOWN;
1485         kfree(buf);
1486         return;
1487 }
1488
1489 /* Get the device id from inquiry page 0x83 */
1490 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1491         unsigned char *device_id, int buflen)
1492 {
1493         int rc;
1494         unsigned char *buf;
1495
1496         if (buflen > 16)
1497                 buflen = 16;
1498         buf = kzalloc(64, GFP_KERNEL);
1499         if (!buf)
1500                 return -1;
1501         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1502         if (rc == 0)
1503                 memcpy(device_id, &buf[8], buflen);
1504         kfree(buf);
1505         return rc != 0;
1506 }
1507
1508 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1509                 struct ReportLUNdata *buf, int bufsize,
1510                 int extended_response)
1511 {
1512         int rc = IO_OK;
1513         struct CommandList *c;
1514         unsigned char scsi3addr[8];
1515         struct ErrorInfo *ei;
1516
1517         c = cmd_special_alloc(h);
1518         if (c == NULL) {                        /* trouble... */
1519                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1520                 return -1;
1521         }
1522         /* address the controller */
1523         memset(scsi3addr, 0, sizeof(scsi3addr));
1524         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1525                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1526         if (extended_response)
1527                 c->Request.CDB[1] = extended_response;
1528         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1529         ei = c->err_info;
1530         if (ei->CommandStatus != 0 &&
1531             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1532                 hpsa_scsi_interpret_error(c);
1533                 rc = -1;
1534         }
1535         cmd_special_free(h, c);
1536         return rc;
1537 }
1538
1539 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1540                 struct ReportLUNdata *buf,
1541                 int bufsize, int extended_response)
1542 {
1543         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1544 }
1545
1546 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1547                 struct ReportLUNdata *buf, int bufsize)
1548 {
1549         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1550 }
1551
1552 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1553         int bus, int target, int lun)
1554 {
1555         device->bus = bus;
1556         device->target = target;
1557         device->lun = lun;
1558 }
1559
1560 static int hpsa_update_device_info(struct ctlr_info *h,
1561         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1562         unsigned char *is_OBDR_device)
1563 {
1564
1565 #define OBDR_SIG_OFFSET 43
1566 #define OBDR_TAPE_SIG "$DR-10"
1567 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1568 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1569
1570         unsigned char *inq_buff;
1571         unsigned char *obdr_sig;
1572
1573         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1574         if (!inq_buff)
1575                 goto bail_out;
1576
1577         /* Do an inquiry to the device to see what it is. */
1578         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1579                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1580                 /* Inquiry failed (msg printed already) */
1581                 dev_err(&h->pdev->dev,
1582                         "hpsa_update_device_info: inquiry failed\n");
1583                 goto bail_out;
1584         }
1585
1586         this_device->devtype = (inq_buff[0] & 0x1f);
1587         memcpy(this_device->scsi3addr, scsi3addr, 8);
1588         memcpy(this_device->vendor, &inq_buff[8],
1589                 sizeof(this_device->vendor));
1590         memcpy(this_device->model, &inq_buff[16],
1591                 sizeof(this_device->model));
1592         memset(this_device->device_id, 0,
1593                 sizeof(this_device->device_id));
1594         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1595                 sizeof(this_device->device_id));
1596
1597         if (this_device->devtype == TYPE_DISK &&
1598                 is_logical_dev_addr_mode(scsi3addr))
1599                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1600         else
1601                 this_device->raid_level = RAID_UNKNOWN;
1602
1603         if (is_OBDR_device) {
1604                 /* See if this is a One-Button-Disaster-Recovery device
1605                  * by looking for "$DR-10" at offset 43 in inquiry data.
1606                  */
1607                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1608                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1609                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1610                                                 OBDR_SIG_LEN) == 0);
1611         }
1612
1613         kfree(inq_buff);
1614         return 0;
1615
1616 bail_out:
1617         kfree(inq_buff);
1618         return 1;
1619 }
1620
1621 static unsigned char *msa2xxx_model[] = {
1622         "MSA2012",
1623         "MSA2024",
1624         "MSA2312",
1625         "MSA2324",
1626         "P2000 G3 SAS",
1627         NULL,
1628 };
1629
1630 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1631 {
1632         int i;
1633
1634         for (i = 0; msa2xxx_model[i]; i++)
1635                 if (strncmp(device->model, msa2xxx_model[i],
1636                         strlen(msa2xxx_model[i])) == 0)
1637                         return 1;
1638         return 0;
1639 }
1640
1641 /* Helper function to assign bus, target, lun mapping of devices.
1642  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1643  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1644  * Logical drive target and lun are assigned at this time, but
1645  * physical device lun and target assignment are deferred (assigned
1646  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1647  */
1648 static void figure_bus_target_lun(struct ctlr_info *h,
1649         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1650         struct hpsa_scsi_dev_t *device)
1651 {
1652         u32 lunid;
1653
1654         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1655                 /* logical device */
1656                 if (unlikely(is_scsi_rev_5(h))) {
1657                         /* p1210m, logical drives lun assignments
1658                          * match SCSI REPORT LUNS data.
1659                          */
1660                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1661                         *bus = 0;
1662                         *target = 0;
1663                         *lun = (lunid & 0x3fff) + 1;
1664                 } else {
1665                         /* not p1210m... */
1666                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1667                         if (is_msa2xxx(h, device)) {
1668                                 /* msa2xxx way, put logicals on bus 1
1669                                  * and match target/lun numbers box
1670                                  * reports.
1671                                  */
1672                                 *bus = 1;
1673                                 *target = (lunid >> 16) & 0x3fff;
1674                                 *lun = lunid & 0x00ff;
1675                         } else {
1676                                 /* Traditional smart array way. */
1677                                 *bus = 0;
1678                                 *lun = 0;
1679                                 *target = lunid & 0x3fff;
1680                         }
1681                 }
1682         } else {
1683                 /* physical device */
1684                 if (is_hba_lunid(lunaddrbytes))
1685                         if (unlikely(is_scsi_rev_5(h))) {
1686                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1687                                 *target = 0;
1688                                 *lun = 0;
1689                                 return;
1690                         } else
1691                                 *bus = 3; /* traditional smartarray */
1692                 else
1693                         *bus = 2; /* physical disk */
1694                 *target = -1;
1695                 *lun = -1; /* we will fill these in later. */
1696         }
1697 }
1698
1699 /*
1700  * If there is no lun 0 on a target, linux won't find any devices.
1701  * For the MSA2xxx boxes, we have to manually detect the enclosure
1702  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1703  * it for some reason.  *tmpdevice is the target we're adding,
1704  * this_device is a pointer into the current element of currentsd[]
1705  * that we're building up in update_scsi_devices(), below.
1706  * lunzerobits is a bitmap that tracks which targets already have a
1707  * lun 0 assigned.
1708  * Returns 1 if an enclosure was added, 0 if not.
1709  */
1710 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1711         struct hpsa_scsi_dev_t *tmpdevice,
1712         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1713         int bus, int target, int lun, unsigned long lunzerobits[],
1714         int *nmsa2xxx_enclosures)
1715 {
1716         unsigned char scsi3addr[8];
1717
1718         if (test_bit(target, lunzerobits))
1719                 return 0; /* There is already a lun 0 on this target. */
1720
1721         if (!is_logical_dev_addr_mode(lunaddrbytes))
1722                 return 0; /* It's the logical targets that may lack lun 0. */
1723
1724         if (!is_msa2xxx(h, tmpdevice))
1725                 return 0; /* It's only the MSA2xxx that have this problem. */
1726
1727         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1728                 return 0;
1729
1730         memset(scsi3addr, 0, 8);
1731         scsi3addr[3] = target;
1732         if (is_hba_lunid(scsi3addr))
1733                 return 0; /* Don't add the RAID controller here. */
1734
1735         if (is_scsi_rev_5(h))
1736                 return 0; /* p1210m doesn't need to do this. */
1737
1738 #define MAX_MSA2XXX_ENCLOSURES 32
1739         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1740                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1741                         "enclosures exceeded.  Check your hardware "
1742                         "configuration.");
1743                 return 0;
1744         }
1745
1746         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1747                 return 0;
1748         (*nmsa2xxx_enclosures)++;
1749         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1750         set_bit(target, lunzerobits);
1751         return 1;
1752 }
1753
1754 /*
1755  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1756  * logdev.  The number of luns in physdev and logdev are returned in
1757  * *nphysicals and *nlogicals, respectively.
1758  * Returns 0 on success, -1 otherwise.
1759  */
1760 static int hpsa_gather_lun_info(struct ctlr_info *h,
1761         int reportlunsize,
1762         struct ReportLUNdata *physdev, u32 *nphysicals,
1763         struct ReportLUNdata *logdev, u32 *nlogicals)
1764 {
1765         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1766                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1767                 return -1;
1768         }
1769         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1770         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1771                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1772                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1773                         *nphysicals - HPSA_MAX_PHYS_LUN);
1774                 *nphysicals = HPSA_MAX_PHYS_LUN;
1775         }
1776         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1777                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1778                 return -1;
1779         }
1780         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1781         /* Reject Logicals in excess of our max capability. */
1782         if (*nlogicals > HPSA_MAX_LUN) {
1783                 dev_warn(&h->pdev->dev,
1784                         "maximum logical LUNs (%d) exceeded.  "
1785                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1786                         *nlogicals - HPSA_MAX_LUN);
1787                         *nlogicals = HPSA_MAX_LUN;
1788         }
1789         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1790                 dev_warn(&h->pdev->dev,
1791                         "maximum logical + physical LUNs (%d) exceeded. "
1792                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1794                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1795         }
1796         return 0;
1797 }
1798
1799 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1800         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1801         struct ReportLUNdata *logdev_list)
1802 {
1803         /* Helper function, figure out where the LUN ID info is coming from
1804          * given index i, lists of physical and logical devices, where in
1805          * the list the raid controller is supposed to appear (first or last)
1806          */
1807
1808         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1809         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1810
1811         if (i == raid_ctlr_position)
1812                 return RAID_CTLR_LUNID;
1813
1814         if (i < logicals_start)
1815                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1816
1817         if (i < last_device)
1818                 return &logdev_list->LUN[i - nphysicals -
1819                         (raid_ctlr_position == 0)][0];
1820         BUG();
1821         return NULL;
1822 }
1823
1824 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1825 {
1826         /* the idea here is we could get notified
1827          * that some devices have changed, so we do a report
1828          * physical luns and report logical luns cmd, and adjust
1829          * our list of devices accordingly.
1830          *
1831          * The scsi3addr's of devices won't change so long as the
1832          * adapter is not reset.  That means we can rescan and
1833          * tell which devices we already know about, vs. new
1834          * devices, vs.  disappearing devices.
1835          */
1836         struct ReportLUNdata *physdev_list = NULL;
1837         struct ReportLUNdata *logdev_list = NULL;
1838         u32 nphysicals = 0;
1839         u32 nlogicals = 0;
1840         u32 ndev_allocated = 0;
1841         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1842         int ncurrent = 0;
1843         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1844         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1845         int bus, target, lun;
1846         int raid_ctlr_position;
1847         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1848
1849         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1850                 GFP_KERNEL);
1851         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1852         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1853         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1854
1855         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1856                 dev_err(&h->pdev->dev, "out of memory\n");
1857                 goto out;
1858         }
1859         memset(lunzerobits, 0, sizeof(lunzerobits));
1860
1861         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1862                         logdev_list, &nlogicals))
1863                 goto out;
1864
1865         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1866          * but each of them 4 times through different paths.  The plus 1
1867          * is for the RAID controller.
1868          */
1869         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1870
1871         /* Allocate the per device structures */
1872         for (i = 0; i < ndevs_to_allocate; i++) {
1873                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1874                 if (!currentsd[i]) {
1875                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1876                                 __FILE__, __LINE__);
1877                         goto out;
1878                 }
1879                 ndev_allocated++;
1880         }
1881
1882         if (unlikely(is_scsi_rev_5(h)))
1883                 raid_ctlr_position = 0;
1884         else
1885                 raid_ctlr_position = nphysicals + nlogicals;
1886
1887         /* adjust our table of devices */
1888         nmsa2xxx_enclosures = 0;
1889         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1890                 u8 *lunaddrbytes, is_OBDR = 0;
1891
1892                 /* Figure out where the LUN ID info is coming from */
1893                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1894                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1895                 /* skip masked physical devices. */
1896                 if (lunaddrbytes[3] & 0xC0 &&
1897                         i < nphysicals + (raid_ctlr_position == 0))
1898                         continue;
1899
1900                 /* Get device type, vendor, model, device id */
1901                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1902                                                         &is_OBDR))
1903                         continue; /* skip it if we can't talk to it. */
1904                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1905                         tmpdevice);
1906                 this_device = currentsd[ncurrent];
1907
1908                 /*
1909                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1910                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1911                  * is nonetheless an enclosure device there.  We have to
1912                  * present that otherwise linux won't find anything if
1913                  * there is no lun 0.
1914                  */
1915                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1916                                 lunaddrbytes, bus, target, lun, lunzerobits,
1917                                 &nmsa2xxx_enclosures)) {
1918                         ncurrent++;
1919                         this_device = currentsd[ncurrent];
1920                 }
1921
1922                 *this_device = *tmpdevice;
1923                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1924
1925                 switch (this_device->devtype) {
1926                 case TYPE_ROM:
1927                         /* We don't *really* support actual CD-ROM devices,
1928                          * just "One Button Disaster Recovery" tape drive
1929                          * which temporarily pretends to be a CD-ROM drive.
1930                          * So we check that the device is really an OBDR tape
1931                          * device by checking for "$DR-10" in bytes 43-48 of
1932                          * the inquiry data.
1933                          */
1934                         if (is_OBDR)
1935                                 ncurrent++;
1936                         break;
1937                 case TYPE_DISK:
1938                         if (i < nphysicals)
1939                                 break;
1940                         ncurrent++;
1941                         break;
1942                 case TYPE_TAPE:
1943                 case TYPE_MEDIUM_CHANGER:
1944                         ncurrent++;
1945                         break;
1946                 case TYPE_RAID:
1947                         /* Only present the Smartarray HBA as a RAID controller.
1948                          * If it's a RAID controller other than the HBA itself
1949                          * (an external RAID controller, MSA500 or similar)
1950                          * don't present it.
1951                          */
1952                         if (!is_hba_lunid(lunaddrbytes))
1953                                 break;
1954                         ncurrent++;
1955                         break;
1956                 default:
1957                         break;
1958                 }
1959                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1960                         break;
1961         }
1962         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1963 out:
1964         kfree(tmpdevice);
1965         for (i = 0; i < ndev_allocated; i++)
1966                 kfree(currentsd[i]);
1967         kfree(currentsd);
1968         kfree(physdev_list);
1969         kfree(logdev_list);
1970 }
1971
1972 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1973  * dma mapping  and fills in the scatter gather entries of the
1974  * hpsa command, cp.
1975  */
1976 static int hpsa_scatter_gather(struct ctlr_info *h,
1977                 struct CommandList *cp,
1978                 struct scsi_cmnd *cmd)
1979 {
1980         unsigned int len;
1981         struct scatterlist *sg;
1982         u64 addr64;
1983         int use_sg, i, sg_index, chained;
1984         struct SGDescriptor *curr_sg;
1985
1986         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1987
1988         use_sg = scsi_dma_map(cmd);
1989         if (use_sg < 0)
1990                 return use_sg;
1991
1992         if (!use_sg)
1993                 goto sglist_finished;
1994
1995         curr_sg = cp->SG;
1996         chained = 0;
1997         sg_index = 0;
1998         scsi_for_each_sg(cmd, sg, use_sg, i) {
1999                 if (i == h->max_cmd_sg_entries - 1 &&
2000                         use_sg > h->max_cmd_sg_entries) {
2001                         chained = 1;
2002                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2003                         sg_index = 0;
2004                 }
2005                 addr64 = (u64) sg_dma_address(sg);
2006                 len  = sg_dma_len(sg);
2007                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2008                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2009                 curr_sg->Len = len;
2010                 curr_sg->Ext = 0;  /* we are not chaining */
2011                 curr_sg++;
2012         }
2013
2014         if (use_sg + chained > h->maxSG)
2015                 h->maxSG = use_sg + chained;
2016
2017         if (chained) {
2018                 cp->Header.SGList = h->max_cmd_sg_entries;
2019                 cp->Header.SGTotal = (u16) (use_sg + 1);
2020                 hpsa_map_sg_chain_block(h, cp);
2021                 return 0;
2022         }
2023
2024 sglist_finished:
2025
2026         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2027         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2028         return 0;
2029 }
2030
2031
2032 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2033         void (*done)(struct scsi_cmnd *))
2034 {
2035         struct ctlr_info *h;
2036         struct hpsa_scsi_dev_t *dev;
2037         unsigned char scsi3addr[8];
2038         struct CommandList *c;
2039         unsigned long flags;
2040
2041         /* Get the ptr to our adapter structure out of cmd->host. */
2042         h = sdev_to_hba(cmd->device);
2043         dev = cmd->device->hostdata;
2044         if (!dev) {
2045                 cmd->result = DID_NO_CONNECT << 16;
2046                 done(cmd);
2047                 return 0;
2048         }
2049         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2050
2051         /* Need a lock as this is being allocated from the pool */
2052         spin_lock_irqsave(&h->lock, flags);
2053         c = cmd_alloc(h);
2054         spin_unlock_irqrestore(&h->lock, flags);
2055         if (c == NULL) {                        /* trouble... */
2056                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2057                 return SCSI_MLQUEUE_HOST_BUSY;
2058         }
2059
2060         /* Fill in the command list header */
2061
2062         cmd->scsi_done = done;    /* save this for use by completion code */
2063
2064         /* save c in case we have to abort it  */
2065         cmd->host_scribble = (unsigned char *) c;
2066
2067         c->cmd_type = CMD_SCSI;
2068         c->scsi_cmd = cmd;
2069         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2070         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2071         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2072         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2073
2074         /* Fill in the request block... */
2075
2076         c->Request.Timeout = 0;
2077         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2078         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2079         c->Request.CDBLen = cmd->cmd_len;
2080         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2081         c->Request.Type.Type = TYPE_CMD;
2082         c->Request.Type.Attribute = ATTR_SIMPLE;
2083         switch (cmd->sc_data_direction) {
2084         case DMA_TO_DEVICE:
2085                 c->Request.Type.Direction = XFER_WRITE;
2086                 break;
2087         case DMA_FROM_DEVICE:
2088                 c->Request.Type.Direction = XFER_READ;
2089                 break;
2090         case DMA_NONE:
2091                 c->Request.Type.Direction = XFER_NONE;
2092                 break;
2093         case DMA_BIDIRECTIONAL:
2094                 /* This can happen if a buggy application does a scsi passthru
2095                  * and sets both inlen and outlen to non-zero. ( see
2096                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2097                  */
2098
2099                 c->Request.Type.Direction = XFER_RSVD;
2100                 /* This is technically wrong, and hpsa controllers should
2101                  * reject it with CMD_INVALID, which is the most correct
2102                  * response, but non-fibre backends appear to let it
2103                  * slide by, and give the same results as if this field
2104                  * were set correctly.  Either way is acceptable for
2105                  * our purposes here.
2106                  */
2107
2108                 break;
2109
2110         default:
2111                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2112                         cmd->sc_data_direction);
2113                 BUG();
2114                 break;
2115         }
2116
2117         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2118                 cmd_free(h, c);
2119                 return SCSI_MLQUEUE_HOST_BUSY;
2120         }
2121         enqueue_cmd_and_start_io(h, c);
2122         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2123         return 0;
2124 }
2125
2126 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2127
2128 static void hpsa_scan_start(struct Scsi_Host *sh)
2129 {
2130         struct ctlr_info *h = shost_to_hba(sh);
2131         unsigned long flags;
2132
2133         /* wait until any scan already in progress is finished. */
2134         while (1) {
2135                 spin_lock_irqsave(&h->scan_lock, flags);
2136                 if (h->scan_finished)
2137                         break;
2138                 spin_unlock_irqrestore(&h->scan_lock, flags);
2139                 wait_event(h->scan_wait_queue, h->scan_finished);
2140                 /* Note: We don't need to worry about a race between this
2141                  * thread and driver unload because the midlayer will
2142                  * have incremented the reference count, so unload won't
2143                  * happen if we're in here.
2144                  */
2145         }
2146         h->scan_finished = 0; /* mark scan as in progress */
2147         spin_unlock_irqrestore(&h->scan_lock, flags);
2148
2149         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2150
2151         spin_lock_irqsave(&h->scan_lock, flags);
2152         h->scan_finished = 1; /* mark scan as finished. */
2153         wake_up_all(&h->scan_wait_queue);
2154         spin_unlock_irqrestore(&h->scan_lock, flags);
2155 }
2156
2157 static int hpsa_scan_finished(struct Scsi_Host *sh,
2158         unsigned long elapsed_time)
2159 {
2160         struct ctlr_info *h = shost_to_hba(sh);
2161         unsigned long flags;
2162         int finished;
2163
2164         spin_lock_irqsave(&h->scan_lock, flags);
2165         finished = h->scan_finished;
2166         spin_unlock_irqrestore(&h->scan_lock, flags);
2167         return finished;
2168 }
2169
2170 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2171         int qdepth, int reason)
2172 {
2173         struct ctlr_info *h = sdev_to_hba(sdev);
2174
2175         if (reason != SCSI_QDEPTH_DEFAULT)
2176                 return -ENOTSUPP;
2177
2178         if (qdepth < 1)
2179                 qdepth = 1;
2180         else
2181                 if (qdepth > h->nr_cmds)
2182                         qdepth = h->nr_cmds;
2183         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2184         return sdev->queue_depth;
2185 }
2186
2187 static void hpsa_unregister_scsi(struct ctlr_info *h)
2188 {
2189         /* we are being forcibly unloaded, and may not refuse. */
2190         scsi_remove_host(h->scsi_host);
2191         scsi_host_put(h->scsi_host);
2192         h->scsi_host = NULL;
2193 }
2194
2195 static int hpsa_register_scsi(struct ctlr_info *h)
2196 {
2197         int rc;
2198
2199         rc = hpsa_scsi_detect(h);
2200         if (rc != 0)
2201                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2202                         " hpsa_scsi_detect(), rc is %d\n", rc);
2203         return rc;
2204 }
2205
2206 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2207         unsigned char lunaddr[])
2208 {
2209         int rc = 0;
2210         int count = 0;
2211         int waittime = 1; /* seconds */
2212         struct CommandList *c;
2213
2214         c = cmd_special_alloc(h);
2215         if (!c) {
2216                 dev_warn(&h->pdev->dev, "out of memory in "
2217                         "wait_for_device_to_become_ready.\n");
2218                 return IO_ERROR;
2219         }
2220
2221         /* Send test unit ready until device ready, or give up. */
2222         while (count < HPSA_TUR_RETRY_LIMIT) {
2223
2224                 /* Wait for a bit.  do this first, because if we send
2225                  * the TUR right away, the reset will just abort it.
2226                  */
2227                 msleep(1000 * waittime);
2228                 count++;
2229
2230                 /* Increase wait time with each try, up to a point. */
2231                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2232                         waittime = waittime * 2;
2233
2234                 /* Send the Test Unit Ready */
2235                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2236                 hpsa_scsi_do_simple_cmd_core(h, c);
2237                 /* no unmap needed here because no data xfer. */
2238
2239                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2240                         break;
2241
2242                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2243                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2244                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2245                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2246                         break;
2247
2248                 dev_warn(&h->pdev->dev, "waiting %d secs "
2249                         "for device to become ready.\n", waittime);
2250                 rc = 1; /* device not ready. */
2251         }
2252
2253         if (rc)
2254                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2255         else
2256                 dev_warn(&h->pdev->dev, "device is ready.\n");
2257
2258         cmd_special_free(h, c);
2259         return rc;
2260 }
2261
2262 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2263  * complaining.  Doing a host- or bus-reset can't do anything good here.
2264  */
2265 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2266 {
2267         int rc;
2268         struct ctlr_info *h;
2269         struct hpsa_scsi_dev_t *dev;
2270
2271         /* find the controller to which the command to be aborted was sent */
2272         h = sdev_to_hba(scsicmd->device);
2273         if (h == NULL) /* paranoia */
2274                 return FAILED;
2275         dev = scsicmd->device->hostdata;
2276         if (!dev) {
2277                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2278                         "device lookup failed.\n");
2279                 return FAILED;
2280         }
2281         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2282                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2283         /* send a reset to the SCSI LUN which the command was sent to */
2284         rc = hpsa_send_reset(h, dev->scsi3addr);
2285         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2286                 return SUCCESS;
2287
2288         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2289         return FAILED;
2290 }
2291
2292 /*
2293  * For operations that cannot sleep, a command block is allocated at init,
2294  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2295  * which ones are free or in use.  Lock must be held when calling this.
2296  * cmd_free() is the complement.
2297  */
2298 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2299 {
2300         struct CommandList *c;
2301         int i;
2302         union u64bit temp64;
2303         dma_addr_t cmd_dma_handle, err_dma_handle;
2304
2305         do {
2306                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2307                 if (i == h->nr_cmds)
2308                         return NULL;
2309         } while (test_and_set_bit
2310                  (i & (BITS_PER_LONG - 1),
2311                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2312         c = h->cmd_pool + i;
2313         memset(c, 0, sizeof(*c));
2314         cmd_dma_handle = h->cmd_pool_dhandle
2315             + i * sizeof(*c);
2316         c->err_info = h->errinfo_pool + i;
2317         memset(c->err_info, 0, sizeof(*c->err_info));
2318         err_dma_handle = h->errinfo_pool_dhandle
2319             + i * sizeof(*c->err_info);
2320         h->nr_allocs++;
2321
2322         c->cmdindex = i;
2323
2324         INIT_LIST_HEAD(&c->list);
2325         c->busaddr = (u32) cmd_dma_handle;
2326         temp64.val = (u64) err_dma_handle;
2327         c->ErrDesc.Addr.lower = temp64.val32.lower;
2328         c->ErrDesc.Addr.upper = temp64.val32.upper;
2329         c->ErrDesc.Len = sizeof(*c->err_info);
2330
2331         c->h = h;
2332         return c;
2333 }
2334
2335 /* For operations that can wait for kmalloc to possibly sleep,
2336  * this routine can be called. Lock need not be held to call
2337  * cmd_special_alloc. cmd_special_free() is the complement.
2338  */
2339 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2340 {
2341         struct CommandList *c;
2342         union u64bit temp64;
2343         dma_addr_t cmd_dma_handle, err_dma_handle;
2344
2345         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2346         if (c == NULL)
2347                 return NULL;
2348         memset(c, 0, sizeof(*c));
2349
2350         c->cmdindex = -1;
2351
2352         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2353                     &err_dma_handle);
2354
2355         if (c->err_info == NULL) {
2356                 pci_free_consistent(h->pdev,
2357                         sizeof(*c), c, cmd_dma_handle);
2358                 return NULL;
2359         }
2360         memset(c->err_info, 0, sizeof(*c->err_info));
2361
2362         INIT_LIST_HEAD(&c->list);
2363         c->busaddr = (u32) cmd_dma_handle;
2364         temp64.val = (u64) err_dma_handle;
2365         c->ErrDesc.Addr.lower = temp64.val32.lower;
2366         c->ErrDesc.Addr.upper = temp64.val32.upper;
2367         c->ErrDesc.Len = sizeof(*c->err_info);
2368
2369         c->h = h;
2370         return c;
2371 }
2372
2373 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2374 {
2375         int i;
2376
2377         i = c - h->cmd_pool;
2378         clear_bit(i & (BITS_PER_LONG - 1),
2379                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2380         h->nr_frees++;
2381 }
2382
2383 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2384 {
2385         union u64bit temp64;
2386
2387         temp64.val32.lower = c->ErrDesc.Addr.lower;
2388         temp64.val32.upper = c->ErrDesc.Addr.upper;
2389         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2390                             c->err_info, (dma_addr_t) temp64.val);
2391         pci_free_consistent(h->pdev, sizeof(*c),
2392                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2393 }
2394
2395 #ifdef CONFIG_COMPAT
2396
2397 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2398 {
2399         IOCTL32_Command_struct __user *arg32 =
2400             (IOCTL32_Command_struct __user *) arg;
2401         IOCTL_Command_struct arg64;
2402         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2403         int err;
2404         u32 cp;
2405
2406         memset(&arg64, 0, sizeof(arg64));
2407         err = 0;
2408         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2409                            sizeof(arg64.LUN_info));
2410         err |= copy_from_user(&arg64.Request, &arg32->Request,
2411                            sizeof(arg64.Request));
2412         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2413                            sizeof(arg64.error_info));
2414         err |= get_user(arg64.buf_size, &arg32->buf_size);
2415         err |= get_user(cp, &arg32->buf);
2416         arg64.buf = compat_ptr(cp);
2417         err |= copy_to_user(p, &arg64, sizeof(arg64));
2418
2419         if (err)
2420                 return -EFAULT;
2421
2422         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2423         if (err)
2424                 return err;
2425         err |= copy_in_user(&arg32->error_info, &p->error_info,
2426                          sizeof(arg32->error_info));
2427         if (err)
2428                 return -EFAULT;
2429         return err;
2430 }
2431
2432 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2433         int cmd, void *arg)
2434 {
2435         BIG_IOCTL32_Command_struct __user *arg32 =
2436             (BIG_IOCTL32_Command_struct __user *) arg;
2437         BIG_IOCTL_Command_struct arg64;
2438         BIG_IOCTL_Command_struct __user *p =
2439             compat_alloc_user_space(sizeof(arg64));
2440         int err;
2441         u32 cp;
2442
2443         memset(&arg64, 0, sizeof(arg64));
2444         err = 0;
2445         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2446                            sizeof(arg64.LUN_info));
2447         err |= copy_from_user(&arg64.Request, &arg32->Request,
2448                            sizeof(arg64.Request));
2449         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2450                            sizeof(arg64.error_info));
2451         err |= get_user(arg64.buf_size, &arg32->buf_size);
2452         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2453         err |= get_user(cp, &arg32->buf);
2454         arg64.buf = compat_ptr(cp);
2455         err |= copy_to_user(p, &arg64, sizeof(arg64));
2456
2457         if (err)
2458                 return -EFAULT;
2459
2460         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2461         if (err)
2462                 return err;
2463         err |= copy_in_user(&arg32->error_info, &p->error_info,
2464                          sizeof(arg32->error_info));
2465         if (err)
2466                 return -EFAULT;
2467         return err;
2468 }
2469
2470 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2471 {
2472         switch (cmd) {
2473         case CCISS_GETPCIINFO:
2474         case CCISS_GETINTINFO:
2475         case CCISS_SETINTINFO:
2476         case CCISS_GETNODENAME:
2477         case CCISS_SETNODENAME:
2478         case CCISS_GETHEARTBEAT:
2479         case CCISS_GETBUSTYPES:
2480         case CCISS_GETFIRMVER:
2481         case CCISS_GETDRIVVER:
2482         case CCISS_REVALIDVOLS:
2483         case CCISS_DEREGDISK:
2484         case CCISS_REGNEWDISK:
2485         case CCISS_REGNEWD:
2486         case CCISS_RESCANDISK:
2487         case CCISS_GETLUNINFO:
2488                 return hpsa_ioctl(dev, cmd, arg);
2489
2490         case CCISS_PASSTHRU32:
2491                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2492         case CCISS_BIG_PASSTHRU32:
2493                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2494
2495         default:
2496                 return -ENOIOCTLCMD;
2497         }
2498 }
2499 #endif
2500
2501 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2502 {
2503         struct hpsa_pci_info pciinfo;
2504
2505         if (!argp)
2506                 return -EINVAL;
2507         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2508         pciinfo.bus = h->pdev->bus->number;
2509         pciinfo.dev_fn = h->pdev->devfn;
2510         pciinfo.board_id = h->board_id;
2511         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2512                 return -EFAULT;
2513         return 0;
2514 }
2515
2516 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2517 {
2518         DriverVer_type DriverVer;
2519         unsigned char vmaj, vmin, vsubmin;
2520         int rc;
2521
2522         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2523                 &vmaj, &vmin, &vsubmin);
2524         if (rc != 3) {
2525                 dev_info(&h->pdev->dev, "driver version string '%s' "
2526                         "unrecognized.", HPSA_DRIVER_VERSION);
2527                 vmaj = 0;
2528                 vmin = 0;
2529                 vsubmin = 0;
2530         }
2531         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2532         if (!argp)
2533                 return -EINVAL;
2534         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2535                 return -EFAULT;
2536         return 0;
2537 }
2538
2539 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2540 {
2541         IOCTL_Command_struct iocommand;
2542         struct CommandList *c;
2543         char *buff = NULL;
2544         union u64bit temp64;
2545
2546         if (!argp)
2547                 return -EINVAL;
2548         if (!capable(CAP_SYS_RAWIO))
2549                 return -EPERM;
2550         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2551                 return -EFAULT;
2552         if ((iocommand.buf_size < 1) &&
2553             (iocommand.Request.Type.Direction != XFER_NONE)) {
2554                 return -EINVAL;
2555         }
2556         if (iocommand.buf_size > 0) {
2557                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2558                 if (buff == NULL)
2559                         return -EFAULT;
2560                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2561                         /* Copy the data into the buffer we created */
2562                         if (copy_from_user(buff, iocommand.buf,
2563                                 iocommand.buf_size)) {
2564                                 kfree(buff);
2565                                 return -EFAULT;
2566                         }
2567                 } else {
2568                         memset(buff, 0, iocommand.buf_size);
2569                 }
2570         }
2571         c = cmd_special_alloc(h);
2572         if (c == NULL) {
2573                 kfree(buff);
2574                 return -ENOMEM;
2575         }
2576         /* Fill in the command type */
2577         c->cmd_type = CMD_IOCTL_PEND;
2578         /* Fill in Command Header */
2579         c->Header.ReplyQueue = 0; /* unused in simple mode */
2580         if (iocommand.buf_size > 0) {   /* buffer to fill */
2581                 c->Header.SGList = 1;
2582                 c->Header.SGTotal = 1;
2583         } else  { /* no buffers to fill */
2584                 c->Header.SGList = 0;
2585                 c->Header.SGTotal = 0;
2586         }
2587         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2588         /* use the kernel address the cmd block for tag */
2589         c->Header.Tag.lower = c->busaddr;
2590
2591         /* Fill in Request block */
2592         memcpy(&c->Request, &iocommand.Request,
2593                 sizeof(c->Request));
2594
2595         /* Fill in the scatter gather information */
2596         if (iocommand.buf_size > 0) {
2597                 temp64.val = pci_map_single(h->pdev, buff,
2598                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2599                 c->SG[0].Addr.lower = temp64.val32.lower;
2600                 c->SG[0].Addr.upper = temp64.val32.upper;
2601                 c->SG[0].Len = iocommand.buf_size;
2602                 c->SG[0].Ext = 0; /* we are not chaining*/
2603         }
2604         hpsa_scsi_do_simple_cmd_core(h, c);
2605         if (iocommand.buf_size > 0)
2606                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2607         check_ioctl_unit_attention(h, c);
2608
2609         /* Copy the error information out */
2610         memcpy(&iocommand.error_info, c->err_info,
2611                 sizeof(iocommand.error_info));
2612         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2613                 kfree(buff);
2614                 cmd_special_free(h, c);
2615                 return -EFAULT;
2616         }
2617         if (iocommand.Request.Type.Direction == XFER_READ &&
2618                 iocommand.buf_size > 0) {
2619                 /* Copy the data out of the buffer we created */
2620                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2621                         kfree(buff);
2622                         cmd_special_free(h, c);
2623                         return -EFAULT;
2624                 }
2625         }
2626         kfree(buff);
2627         cmd_special_free(h, c);
2628         return 0;
2629 }
2630
2631 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2632 {
2633         BIG_IOCTL_Command_struct *ioc;
2634         struct CommandList *c;
2635         unsigned char **buff = NULL;
2636         int *buff_size = NULL;
2637         union u64bit temp64;
2638         BYTE sg_used = 0;
2639         int status = 0;
2640         int i;
2641         u32 left;
2642         u32 sz;
2643         BYTE __user *data_ptr;
2644
2645         if (!argp)
2646                 return -EINVAL;
2647         if (!capable(CAP_SYS_RAWIO))
2648                 return -EPERM;
2649         ioc = (BIG_IOCTL_Command_struct *)
2650             kmalloc(sizeof(*ioc), GFP_KERNEL);
2651         if (!ioc) {
2652                 status = -ENOMEM;
2653                 goto cleanup1;
2654         }
2655         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2656                 status = -EFAULT;
2657                 goto cleanup1;
2658         }
2659         if ((ioc->buf_size < 1) &&
2660             (ioc->Request.Type.Direction != XFER_NONE)) {
2661                 status = -EINVAL;
2662                 goto cleanup1;
2663         }
2664         /* Check kmalloc limits  using all SGs */
2665         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2666                 status = -EINVAL;
2667                 goto cleanup1;
2668         }
2669         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2670                 status = -EINVAL;
2671                 goto cleanup1;
2672         }
2673         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2674         if (!buff) {
2675                 status = -ENOMEM;
2676                 goto cleanup1;
2677         }
2678         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2679         if (!buff_size) {
2680                 status = -ENOMEM;
2681                 goto cleanup1;
2682         }
2683         left = ioc->buf_size;
2684         data_ptr = ioc->buf;
2685         while (left) {
2686                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2687                 buff_size[sg_used] = sz;
2688                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2689                 if (buff[sg_used] == NULL) {
2690                         status = -ENOMEM;
2691                         goto cleanup1;
2692                 }
2693                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2694                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2695                                 status = -ENOMEM;
2696                                 goto cleanup1;
2697                         }
2698                 } else
2699                         memset(buff[sg_used], 0, sz);
2700                 left -= sz;
2701                 data_ptr += sz;
2702                 sg_used++;
2703         }
2704         c = cmd_special_alloc(h);
2705         if (c == NULL) {
2706                 status = -ENOMEM;
2707                 goto cleanup1;
2708         }
2709         c->cmd_type = CMD_IOCTL_PEND;
2710         c->Header.ReplyQueue = 0;
2711         c->Header.SGList = c->Header.SGTotal = sg_used;
2712         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2713         c->Header.Tag.lower = c->busaddr;
2714         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2715         if (ioc->buf_size > 0) {
2716                 int i;
2717                 for (i = 0; i < sg_used; i++) {
2718                         temp64.val = pci_map_single(h->pdev, buff[i],
2719                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2720                         c->SG[i].Addr.lower = temp64.val32.lower;
2721                         c->SG[i].Addr.upper = temp64.val32.upper;
2722                         c->SG[i].Len = buff_size[i];
2723                         /* we are not chaining */
2724                         c->SG[i].Ext = 0;
2725                 }
2726         }
2727         hpsa_scsi_do_simple_cmd_core(h, c);
2728         if (sg_used)
2729                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2730         check_ioctl_unit_attention(h, c);
2731         /* Copy the error information out */
2732         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2733         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2734                 cmd_special_free(h, c);
2735                 status = -EFAULT;
2736                 goto cleanup1;
2737         }
2738         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2739                 /* Copy the data out of the buffer we created */
2740                 BYTE __user *ptr = ioc->buf;
2741                 for (i = 0; i < sg_used; i++) {
2742                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2743                                 cmd_special_free(h, c);
2744                                 status = -EFAULT;
2745                                 goto cleanup1;
2746                         }
2747                         ptr += buff_size[i];
2748                 }
2749         }
2750         cmd_special_free(h, c);
2751         status = 0;
2752 cleanup1:
2753         if (buff) {
2754                 for (i = 0; i < sg_used; i++)
2755                         kfree(buff[i]);
2756                 kfree(buff);
2757         }
2758         kfree(buff_size);
2759         kfree(ioc);
2760         return status;
2761 }
2762
2763 static void check_ioctl_unit_attention(struct ctlr_info *h,
2764         struct CommandList *c)
2765 {
2766         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2767                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2768                 (void) check_for_unit_attention(h, c);
2769 }
2770 /*
2771  * ioctl
2772  */
2773 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2774 {
2775         struct ctlr_info *h;
2776         void __user *argp = (void __user *)arg;
2777
2778         h = sdev_to_hba(dev);
2779
2780         switch (cmd) {
2781         case CCISS_DEREGDISK:
2782         case CCISS_REGNEWDISK:
2783         case CCISS_REGNEWD:
2784                 hpsa_scan_start(h->scsi_host);
2785                 return 0;
2786         case CCISS_GETPCIINFO:
2787                 return hpsa_getpciinfo_ioctl(h, argp);
2788         case CCISS_GETDRIVVER:
2789                 return hpsa_getdrivver_ioctl(h, argp);
2790         case CCISS_PASSTHRU:
2791                 return hpsa_passthru_ioctl(h, argp);
2792         case CCISS_BIG_PASSTHRU:
2793                 return hpsa_big_passthru_ioctl(h, argp);
2794         default:
2795                 return -ENOTTY;
2796         }
2797 }
2798
2799 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2800         unsigned char *scsi3addr, u8 reset_type)
2801 {
2802         struct CommandList *c;
2803
2804         c = cmd_alloc(h);
2805         if (!c)
2806                 return -ENOMEM;
2807         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2808                 RAID_CTLR_LUNID, TYPE_MSG);
2809         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2810         c->waiting = NULL;
2811         enqueue_cmd_and_start_io(h, c);
2812         /* Don't wait for completion, the reset won't complete.  Don't free
2813          * the command either.  This is the last command we will send before
2814          * re-initializing everything, so it doesn't matter and won't leak.
2815          */
2816         return 0;
2817 }
2818
2819 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2820         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2821         int cmd_type)
2822 {
2823         int pci_dir = XFER_NONE;
2824
2825         c->cmd_type = CMD_IOCTL_PEND;
2826         c->Header.ReplyQueue = 0;
2827         if (buff != NULL && size > 0) {
2828                 c->Header.SGList = 1;
2829                 c->Header.SGTotal = 1;
2830         } else {
2831                 c->Header.SGList = 0;
2832                 c->Header.SGTotal = 0;
2833         }
2834         c->Header.Tag.lower = c->busaddr;
2835         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2836
2837         c->Request.Type.Type = cmd_type;
2838         if (cmd_type == TYPE_CMD) {
2839                 switch (cmd) {
2840                 case HPSA_INQUIRY:
2841                         /* are we trying to read a vital product page */
2842                         if (page_code != 0) {
2843                                 c->Request.CDB[1] = 0x01;
2844                                 c->Request.CDB[2] = page_code;
2845                         }
2846                         c->Request.CDBLen = 6;
2847                         c->Request.Type.Attribute = ATTR_SIMPLE;
2848                         c->Request.Type.Direction = XFER_READ;
2849                         c->Request.Timeout = 0;
2850                         c->Request.CDB[0] = HPSA_INQUIRY;
2851                         c->Request.CDB[4] = size & 0xFF;
2852                         break;
2853                 case HPSA_REPORT_LOG:
2854                 case HPSA_REPORT_PHYS:
2855                         /* Talking to controller so It's a physical command
2856                            mode = 00 target = 0.  Nothing to write.
2857                          */
2858                         c->Request.CDBLen = 12;
2859                         c->Request.Type.Attribute = ATTR_SIMPLE;
2860                         c->Request.Type.Direction = XFER_READ;
2861                         c->Request.Timeout = 0;
2862                         c->Request.CDB[0] = cmd;
2863                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2864                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2865                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2866                         c->Request.CDB[9] = size & 0xFF;
2867                         break;
2868                 case HPSA_CACHE_FLUSH:
2869                         c->Request.CDBLen = 12;
2870                         c->Request.Type.Attribute = ATTR_SIMPLE;
2871                         c->Request.Type.Direction = XFER_WRITE;
2872                         c->Request.Timeout = 0;
2873                         c->Request.CDB[0] = BMIC_WRITE;
2874                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2875                         break;
2876                 case TEST_UNIT_READY:
2877                         c->Request.CDBLen = 6;
2878                         c->Request.Type.Attribute = ATTR_SIMPLE;
2879                         c->Request.Type.Direction = XFER_NONE;
2880                         c->Request.Timeout = 0;
2881                         break;
2882                 default:
2883                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2884                         BUG();
2885                         return;
2886                 }
2887         } else if (cmd_type == TYPE_MSG) {
2888                 switch (cmd) {
2889
2890                 case  HPSA_DEVICE_RESET_MSG:
2891                         c->Request.CDBLen = 16;
2892                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2893                         c->Request.Type.Attribute = ATTR_SIMPLE;
2894                         c->Request.Type.Direction = XFER_NONE;
2895                         c->Request.Timeout = 0; /* Don't time out */
2896                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2897                         c->Request.CDB[0] =  cmd;
2898                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2899                         /* If bytes 4-7 are zero, it means reset the */
2900                         /* LunID device */
2901                         c->Request.CDB[4] = 0x00;
2902                         c->Request.CDB[5] = 0x00;
2903                         c->Request.CDB[6] = 0x00;
2904                         c->Request.CDB[7] = 0x00;
2905                 break;
2906
2907                 default:
2908                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2909                                 cmd);
2910                         BUG();
2911                 }
2912         } else {
2913                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2914                 BUG();
2915         }
2916
2917         switch (c->Request.Type.Direction) {
2918         case XFER_READ:
2919                 pci_dir = PCI_DMA_FROMDEVICE;
2920                 break;
2921         case XFER_WRITE:
2922                 pci_dir = PCI_DMA_TODEVICE;
2923                 break;
2924         case XFER_NONE:
2925                 pci_dir = PCI_DMA_NONE;
2926                 break;
2927         default:
2928                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2929         }
2930
2931         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2932
2933         return;
2934 }
2935
2936 /*
2937  * Map (physical) PCI mem into (virtual) kernel space
2938  */
2939 static void __iomem *remap_pci_mem(ulong base, ulong size)
2940 {
2941         ulong page_base = ((ulong) base) & PAGE_MASK;
2942         ulong page_offs = ((ulong) base) - page_base;
2943         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2944
2945         return page_remapped ? (page_remapped + page_offs) : NULL;
2946 }
2947
2948 /* Takes cmds off the submission queue and sends them to the hardware,
2949  * then puts them on the queue of cmds waiting for completion.
2950  */
2951 static void start_io(struct ctlr_info *h)
2952 {
2953         struct CommandList *c;
2954
2955         while (!list_empty(&h->reqQ)) {
2956                 c = list_entry(h->reqQ.next, struct CommandList, list);
2957                 /* can't do anything if fifo is full */
2958                 if ((h->access.fifo_full(h))) {
2959                         dev_warn(&h->pdev->dev, "fifo full\n");
2960                         break;
2961                 }
2962
2963                 /* Get the first entry from the Request Q */
2964                 removeQ(c);
2965                 h->Qdepth--;
2966
2967                 /* Tell the controller execute command */
2968                 h->access.submit_command(h, c);
2969
2970                 /* Put job onto the completed Q */
2971                 addQ(&h->cmpQ, c);
2972         }
2973 }
2974
2975 static inline unsigned long get_next_completion(struct ctlr_info *h)
2976 {
2977         return h->access.command_completed(h);
2978 }
2979
2980 static inline bool interrupt_pending(struct ctlr_info *h)
2981 {
2982         return h->access.intr_pending(h);
2983 }
2984
2985 static inline long interrupt_not_for_us(struct ctlr_info *h)
2986 {
2987         return (h->access.intr_pending(h) == 0) ||
2988                 (h->interrupts_enabled == 0);
2989 }
2990
2991 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2992         u32 raw_tag)
2993 {
2994         if (unlikely(tag_index >= h->nr_cmds)) {
2995                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2996                 return 1;
2997         }
2998         return 0;
2999 }
3000
3001 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3002 {
3003         removeQ(c);
3004         if (likely(c->cmd_type == CMD_SCSI))
3005                 complete_scsi_command(c);
3006         else if (c->cmd_type == CMD_IOCTL_PEND)
3007                 complete(c->waiting);
3008 }
3009
3010 static inline u32 hpsa_tag_contains_index(u32 tag)
3011 {
3012         return tag & DIRECT_LOOKUP_BIT;
3013 }
3014
3015 static inline u32 hpsa_tag_to_index(u32 tag)
3016 {
3017         return tag >> DIRECT_LOOKUP_SHIFT;
3018 }
3019
3020
3021 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3022 {
3023 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3024 #define HPSA_SIMPLE_ERROR_BITS 0x03
3025         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3026                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3027         return tag & ~HPSA_PERF_ERROR_BITS;
3028 }
3029
3030 /* process completion of an indexed ("direct lookup") command */
3031 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3032         u32 raw_tag)
3033 {
3034         u32 tag_index;
3035         struct CommandList *c;
3036
3037         tag_index = hpsa_tag_to_index(raw_tag);
3038         if (bad_tag(h, tag_index, raw_tag))
3039                 return next_command(h);
3040         c = h->cmd_pool + tag_index;
3041         finish_cmd(c, raw_tag);
3042         return next_command(h);
3043 }
3044
3045 /* process completion of a non-indexed command */
3046 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3047         u32 raw_tag)
3048 {
3049         u32 tag;
3050         struct CommandList *c = NULL;
3051
3052         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3053         list_for_each_entry(c, &h->cmpQ, list) {
3054                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3055                         finish_cmd(c, raw_tag);
3056                         return next_command(h);
3057                 }
3058         }
3059         bad_tag(h, h->nr_cmds + 1, raw_tag);
3060         return next_command(h);
3061 }
3062
3063 /* Some controllers, like p400, will give us one interrupt
3064  * after a soft reset, even if we turned interrupts off.
3065  * Only need to check for this in the hpsa_xxx_discard_completions
3066  * functions.
3067  */
3068 static int ignore_bogus_interrupt(struct ctlr_info *h)
3069 {
3070         if (likely(!reset_devices))
3071                 return 0;
3072
3073         if (likely(h->interrupts_enabled))
3074                 return 0;
3075
3076         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3077                 "(known firmware bug.)  Ignoring.\n");
3078
3079         return 1;
3080 }
3081
3082 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3083 {
3084         struct ctlr_info *h = dev_id;
3085         unsigned long flags;
3086         u32 raw_tag;
3087
3088         if (ignore_bogus_interrupt(h))
3089                 return IRQ_NONE;
3090
3091         if (interrupt_not_for_us(h))
3092                 return IRQ_NONE;
3093         spin_lock_irqsave(&h->lock, flags);
3094         while (interrupt_pending(h)) {
3095                 raw_tag = get_next_completion(h);
3096                 while (raw_tag != FIFO_EMPTY)
3097                         raw_tag = next_command(h);
3098         }
3099         spin_unlock_irqrestore(&h->lock, flags);
3100         return IRQ_HANDLED;
3101 }
3102
3103 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3104 {
3105         struct ctlr_info *h = dev_id;
3106         unsigned long flags;
3107         u32 raw_tag;
3108
3109         if (ignore_bogus_interrupt(h))
3110                 return IRQ_NONE;
3111
3112         spin_lock_irqsave(&h->lock, flags);
3113         raw_tag = get_next_completion(h);
3114         while (raw_tag != FIFO_EMPTY)
3115                 raw_tag = next_command(h);
3116         spin_unlock_irqrestore(&h->lock, flags);
3117         return IRQ_HANDLED;
3118 }
3119
3120 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3121 {
3122         struct ctlr_info *h = dev_id;
3123         unsigned long flags;
3124         u32 raw_tag;
3125
3126         if (interrupt_not_for_us(h))
3127                 return IRQ_NONE;
3128         spin_lock_irqsave(&h->lock, flags);
3129         while (interrupt_pending(h)) {
3130                 raw_tag = get_next_completion(h);
3131                 while (raw_tag != FIFO_EMPTY) {
3132                         if (hpsa_tag_contains_index(raw_tag))
3133                                 raw_tag = process_indexed_cmd(h, raw_tag);
3134                         else
3135                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3136                 }
3137         }
3138         spin_unlock_irqrestore(&h->lock, flags);
3139         return IRQ_HANDLED;
3140 }
3141
3142 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3143 {
3144         struct ctlr_info *h = dev_id;
3145         unsigned long flags;
3146         u32 raw_tag;
3147
3148         spin_lock_irqsave(&h->lock, flags);
3149         raw_tag = get_next_completion(h);
3150         while (raw_tag != FIFO_EMPTY) {
3151                 if (hpsa_tag_contains_index(raw_tag))
3152                         raw_tag = process_indexed_cmd(h, raw_tag);
3153                 else
3154                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3155         }
3156         spin_unlock_irqrestore(&h->lock, flags);
3157         return IRQ_HANDLED;
3158 }
3159
3160 /* Send a message CDB to the firmware. Careful, this only works
3161  * in simple mode, not performant mode due to the tag lookup.
3162  * We only ever use this immediately after a controller reset.
3163  */
3164 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3165                                                 unsigned char type)
3166 {
3167         struct Command {
3168                 struct CommandListHeader CommandHeader;
3169                 struct RequestBlock Request;
3170                 struct ErrDescriptor ErrorDescriptor;
3171         };
3172         struct Command *cmd;
3173         static const size_t cmd_sz = sizeof(*cmd) +
3174                                         sizeof(cmd->ErrorDescriptor);
3175         dma_addr_t paddr64;
3176         uint32_t paddr32, tag;
3177         void __iomem *vaddr;
3178         int i, err;
3179
3180         vaddr = pci_ioremap_bar(pdev, 0);
3181         if (vaddr == NULL)
3182                 return -ENOMEM;
3183
3184         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3185          * CCISS commands, so they must be allocated from the lower 4GiB of
3186          * memory.
3187          */
3188         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3189         if (err) {
3190                 iounmap(vaddr);
3191                 return -ENOMEM;
3192         }
3193
3194         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3195         if (cmd == NULL) {
3196                 iounmap(vaddr);
3197                 return -ENOMEM;
3198         }
3199
3200         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3201          * although there's no guarantee, we assume that the address is at
3202          * least 4-byte aligned (most likely, it's page-aligned).
3203          */
3204         paddr32 = paddr64;
3205
3206         cmd->CommandHeader.ReplyQueue = 0;
3207         cmd->CommandHeader.SGList = 0;
3208         cmd->CommandHeader.SGTotal = 0;
3209         cmd->CommandHeader.Tag.lower = paddr32;
3210         cmd->CommandHeader.Tag.upper = 0;
3211         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3212
3213         cmd->Request.CDBLen = 16;
3214         cmd->Request.Type.Type = TYPE_MSG;
3215         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3216         cmd->Request.Type.Direction = XFER_NONE;
3217         cmd->Request.Timeout = 0; /* Don't time out */
3218         cmd->Request.CDB[0] = opcode;
3219         cmd->Request.CDB[1] = type;
3220         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3221         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3222         cmd->ErrorDescriptor.Addr.upper = 0;
3223         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3224
3225         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3226
3227         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3228                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3229                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3230                         break;
3231                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3232         }
3233
3234         iounmap(vaddr);
3235
3236         /* we leak the DMA buffer here ... no choice since the controller could
3237          *  still complete the command.
3238          */
3239         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3240                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3241                         opcode, type);
3242                 return -ETIMEDOUT;
3243         }
3244
3245         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3246
3247         if (tag & HPSA_ERROR_BIT) {
3248                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3249                         opcode, type);
3250                 return -EIO;
3251         }
3252
3253         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3254                 opcode, type);
3255         return 0;
3256 }
3257
3258 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3259
3260 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3261         void * __iomem vaddr, u32 use_doorbell)
3262 {
3263         u16 pmcsr;
3264         int pos;
3265
3266         if (use_doorbell) {
3267                 /* For everything after the P600, the PCI power state method
3268                  * of resetting the controller doesn't work, so we have this
3269                  * other way using the doorbell register.
3270                  */
3271                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3272                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3273         } else { /* Try to do it the PCI power state way */
3274
3275                 /* Quoting from the Open CISS Specification: "The Power
3276                  * Management Control/Status Register (CSR) controls the power
3277                  * state of the device.  The normal operating state is D0,
3278                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3279                  * the controller, place the interface device in D3 then to D0,
3280                  * this causes a secondary PCI reset which will reset the
3281                  * controller." */
3282
3283                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3284                 if (pos == 0) {
3285                         dev_err(&pdev->dev,
3286                                 "hpsa_reset_controller: "
3287                                 "PCI PM not supported\n");
3288                         return -ENODEV;
3289                 }
3290                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3291                 /* enter the D3hot power management state */
3292                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3293                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3294                 pmcsr |= PCI_D3hot;
3295                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3296
3297                 msleep(500);
3298
3299                 /* enter the D0 power management state */
3300                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3301                 pmcsr |= PCI_D0;
3302                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3303         }
3304         return 0;
3305 }
3306
3307 static __devinit void init_driver_version(char *driver_version, int len)
3308 {
3309         memset(driver_version, 0, len);
3310         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3311 }
3312
3313 static __devinit int write_driver_ver_to_cfgtable(
3314         struct CfgTable __iomem *cfgtable)
3315 {
3316         char *driver_version;
3317         int i, size = sizeof(cfgtable->driver_version);
3318
3319         driver_version = kmalloc(size, GFP_KERNEL);
3320         if (!driver_version)
3321                 return -ENOMEM;
3322
3323         init_driver_version(driver_version, size);
3324         for (i = 0; i < size; i++)
3325                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3326         kfree(driver_version);
3327         return 0;
3328 }
3329
3330 static __devinit void read_driver_ver_from_cfgtable(
3331         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3332 {
3333         int i;
3334
3335         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3336                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3337 }
3338
3339 static __devinit int controller_reset_failed(
3340         struct CfgTable __iomem *cfgtable)
3341 {
3342
3343         char *driver_ver, *old_driver_ver;
3344         int rc, size = sizeof(cfgtable->driver_version);
3345
3346         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3347         if (!old_driver_ver)
3348                 return -ENOMEM;
3349         driver_ver = old_driver_ver + size;
3350
3351         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3352          * should have been changed, otherwise we know the reset failed.
3353          */
3354         init_driver_version(old_driver_ver, size);
3355         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3356         rc = !memcmp(driver_ver, old_driver_ver, size);
3357         kfree(old_driver_ver);
3358         return rc;
3359 }
3360 /* This does a hard reset of the controller using PCI power management
3361  * states or the using the doorbell register.
3362  */
3363 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3364 {
3365         u64 cfg_offset;
3366         u32 cfg_base_addr;
3367         u64 cfg_base_addr_index;
3368         void __iomem *vaddr;
3369         unsigned long paddr;
3370         u32 misc_fw_support;
3371         int rc;
3372         struct CfgTable __iomem *cfgtable;
3373         u32 use_doorbell;
3374         u32 board_id;
3375         u16 command_register;
3376
3377         /* For controllers as old as the P600, this is very nearly
3378          * the same thing as
3379          *
3380          * pci_save_state(pci_dev);
3381          * pci_set_power_state(pci_dev, PCI_D3hot);
3382          * pci_set_power_state(pci_dev, PCI_D0);
3383          * pci_restore_state(pci_dev);
3384          *
3385          * For controllers newer than the P600, the pci power state
3386          * method of resetting doesn't work so we have another way
3387          * using the doorbell register.
3388          */
3389
3390         rc = hpsa_lookup_board_id(pdev, &board_id);
3391         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3392                 dev_warn(&pdev->dev, "Not resetting device.\n");
3393                 return -ENODEV;
3394         }
3395
3396         /* if controller is soft- but not hard resettable... */
3397         if (!ctlr_is_hard_resettable(board_id))
3398                 return -ENOTSUPP; /* try soft reset later. */
3399
3400         /* Save the PCI command register */
3401         pci_read_config_word(pdev, 4, &command_register);
3402         /* Turn the board off.  This is so that later pci_restore_state()
3403          * won't turn the board on before the rest of config space is ready.
3404          */
3405         pci_disable_device(pdev);
3406         pci_save_state(pdev);
3407
3408         /* find the first memory BAR, so we can find the cfg table */
3409         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3410         if (rc)
3411                 return rc;
3412         vaddr = remap_pci_mem(paddr, 0x250);
3413         if (!vaddr)
3414                 return -ENOMEM;
3415
3416         /* find cfgtable in order to check if reset via doorbell is supported */
3417         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3418                                         &cfg_base_addr_index, &cfg_offset);
3419         if (rc)
3420                 goto unmap_vaddr;
3421         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3422                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3423         if (!cfgtable) {
3424                 rc = -ENOMEM;
3425                 goto unmap_vaddr;
3426         }
3427         rc = write_driver_ver_to_cfgtable(cfgtable);
3428         if (rc)
3429                 goto unmap_vaddr;
3430
3431         /* If reset via doorbell register is supported, use that.
3432          * There are two such methods.  Favor the newest method.
3433          */
3434         misc_fw_support = readl(&cfgtable->misc_fw_support);
3435         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3436         if (use_doorbell) {
3437                 use_doorbell = DOORBELL_CTLR_RESET2;
3438         } else {
3439                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3440                 if (use_doorbell) {
3441                         dev_warn(&pdev->dev, "Controller claims that "
3442                                 "'Bit 2 doorbell reset' is "
3443                                 "supported, but not 'bit 5 doorbell reset'.  "
3444                                 "Firmware update is recommended.\n");
3445                         rc = -ENOTSUPP; /* try soft reset */
3446                         goto unmap_cfgtable;
3447                 }
3448         }
3449
3450         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3451         if (rc)
3452                 goto unmap_cfgtable;
3453
3454         pci_restore_state(pdev);
3455         rc = pci_enable_device(pdev);
3456         if (rc) {
3457                 dev_warn(&pdev->dev, "failed to enable device.\n");
3458                 goto unmap_cfgtable;
3459         }
3460         pci_write_config_word(pdev, 4, command_register);
3461
3462         /* Some devices (notably the HP Smart Array 5i Controller)
3463            need a little pause here */
3464         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3465
3466         /* Wait for board to become not ready, then ready. */
3467         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3468         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3469         if (rc) {
3470                 dev_warn(&pdev->dev,
3471                         "failed waiting for board to reset."
3472                         " Will try soft reset.\n");
3473                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3474                 goto unmap_cfgtable;
3475         }
3476         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3477         if (rc) {
3478                 dev_warn(&pdev->dev,
3479                         "failed waiting for board to become ready "
3480                         "after hard reset\n");
3481                 goto unmap_cfgtable;
3482         }
3483
3484         rc = controller_reset_failed(vaddr);
3485         if (rc < 0)
3486                 goto unmap_cfgtable;
3487         if (rc) {
3488                 dev_warn(&pdev->dev, "Unable to successfully reset "
3489                         "controller. Will try soft reset.\n");
3490                 rc = -ENOTSUPP;
3491         } else {
3492                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3493         }
3494
3495 unmap_cfgtable:
3496         iounmap(cfgtable);
3497
3498 unmap_vaddr:
3499         iounmap(vaddr);
3500         return rc;
3501 }
3502
3503 /*
3504  *  We cannot read the structure directly, for portability we must use
3505  *   the io functions.
3506  *   This is for debug only.
3507  */
3508 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3509 {
3510 #ifdef HPSA_DEBUG
3511         int i;
3512         char temp_name[17];
3513
3514         dev_info(dev, "Controller Configuration information\n");
3515         dev_info(dev, "------------------------------------\n");
3516         for (i = 0; i < 4; i++)
3517                 temp_name[i] = readb(&(tb->Signature[i]));
3518         temp_name[4] = '\0';
3519         dev_info(dev, "   Signature = %s\n", temp_name);
3520         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3521         dev_info(dev, "   Transport methods supported = 0x%x\n",
3522                readl(&(tb->TransportSupport)));
3523         dev_info(dev, "   Transport methods active = 0x%x\n",
3524                readl(&(tb->TransportActive)));
3525         dev_info(dev, "   Requested transport Method = 0x%x\n",
3526                readl(&(tb->HostWrite.TransportRequest)));
3527         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3528                readl(&(tb->HostWrite.CoalIntDelay)));
3529         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3530                readl(&(tb->HostWrite.CoalIntCount)));
3531         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3532                readl(&(tb->CmdsOutMax)));
3533         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3534         for (i = 0; i < 16; i++)
3535                 temp_name[i] = readb(&(tb->ServerName[i]));
3536         temp_name[16] = '\0';
3537         dev_info(dev, "   Server Name = %s\n", temp_name);
3538         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3539                 readl(&(tb->HeartBeat)));
3540 #endif                          /* HPSA_DEBUG */
3541 }
3542
3543 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3544 {
3545         int i, offset, mem_type, bar_type;
3546
3547         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3548                 return 0;
3549         offset = 0;
3550         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3551                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3552                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3553                         offset += 4;
3554                 else {
3555                         mem_type = pci_resource_flags(pdev, i) &
3556                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3557                         switch (mem_type) {
3558                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3559                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3560                                 offset += 4;    /* 32 bit */
3561                                 break;
3562                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3563                                 offset += 8;
3564                                 break;
3565                         default:        /* reserved in PCI 2.2 */
3566                                 dev_warn(&pdev->dev,
3567                                        "base address is invalid\n");
3568                                 return -1;
3569                                 break;
3570                         }
3571                 }
3572                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3573                         return i + 1;
3574         }
3575         return -1;
3576 }
3577
3578 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3579  * controllers that are capable. If not, we use IO-APIC mode.
3580  */
3581
3582 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3583 {
3584 #ifdef CONFIG_PCI_MSI
3585         int err;
3586         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3587         {0, 2}, {0, 3}
3588         };
3589
3590         /* Some boards advertise MSI but don't really support it */
3591         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3592             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3593                 goto default_int_mode;
3594         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3595                 dev_info(&h->pdev->dev, "MSIX\n");
3596                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3597                 if (!err) {
3598                         h->intr[0] = hpsa_msix_entries[0].vector;
3599                         h->intr[1] = hpsa_msix_entries[1].vector;
3600                         h->intr[2] = hpsa_msix_entries[2].vector;
3601                         h->intr[3] = hpsa_msix_entries[3].vector;
3602                         h->msix_vector = 1;
3603                         return;
3604                 }
3605                 if (err > 0) {
3606                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3607                                "available\n", err);
3608                         goto default_int_mode;
3609                 } else {
3610                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3611                                err);
3612                         goto default_int_mode;
3613                 }
3614         }
3615         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3616                 dev_info(&h->pdev->dev, "MSI\n");
3617                 if (!pci_enable_msi(h->pdev))
3618                         h->msi_vector = 1;
3619                 else
3620                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3621         }
3622 default_int_mode:
3623 #endif                          /* CONFIG_PCI_MSI */
3624         /* if we get here we're going to use the default interrupt mode */
3625         h->intr[h->intr_mode] = h->pdev->irq;
3626 }
3627
3628 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3629 {
3630         int i;
3631         u32 subsystem_vendor_id, subsystem_device_id;
3632
3633         subsystem_vendor_id = pdev->subsystem_vendor;
3634         subsystem_device_id = pdev->subsystem_device;
3635         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3636                     subsystem_vendor_id;
3637
3638         for (i = 0; i < ARRAY_SIZE(products); i++)
3639                 if (*board_id == products[i].board_id)
3640                         return i;
3641
3642         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3643                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3644                 !hpsa_allow_any) {
3645                 dev_warn(&pdev->dev, "unrecognized board ID: "
3646                         "0x%08x, ignoring.\n", *board_id);
3647                         return -ENODEV;
3648         }
3649         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3650 }
3651
3652 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3653 {
3654         u16 command;
3655
3656         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3657         return ((command & PCI_COMMAND_MEMORY) == 0);
3658 }
3659
3660 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3661         unsigned long *memory_bar)
3662 {
3663         int i;
3664
3665         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3666                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3667                         /* addressing mode bits already removed */
3668                         *memory_bar = pci_resource_start(pdev, i);
3669                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3670                                 *memory_bar);
3671                         return 0;
3672                 }
3673         dev_warn(&pdev->dev, "no memory BAR found\n");
3674         return -ENODEV;
3675 }
3676
3677 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3678         void __iomem *vaddr, int wait_for_ready)
3679 {
3680         int i, iterations;
3681         u32 scratchpad;
3682         if (wait_for_ready)
3683                 iterations = HPSA_BOARD_READY_ITERATIONS;
3684         else
3685                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3686
3687         for (i = 0; i < iterations; i++) {
3688                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3689                 if (wait_for_ready) {
3690                         if (scratchpad == HPSA_FIRMWARE_READY)
3691                                 return 0;
3692                 } else {
3693                         if (scratchpad != HPSA_FIRMWARE_READY)
3694                                 return 0;
3695                 }
3696                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3697         }
3698         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3699         return -ENODEV;
3700 }
3701
3702 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3703         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3704         u64 *cfg_offset)
3705 {
3706         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3707         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3708         *cfg_base_addr &= (u32) 0x0000ffff;
3709         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3710         if (*cfg_base_addr_index == -1) {
3711                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3712                 return -ENODEV;
3713         }
3714         return 0;
3715 }
3716
3717 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3718 {
3719         u64 cfg_offset;
3720         u32 cfg_base_addr;
3721         u64 cfg_base_addr_index;
3722         u32 trans_offset;
3723         int rc;
3724
3725         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3726                 &cfg_base_addr_index, &cfg_offset);
3727         if (rc)
3728                 return rc;
3729         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3730                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3731         if (!h->cfgtable)
3732                 return -ENOMEM;
3733         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3734         if (rc)
3735                 return rc;
3736         /* Find performant mode table. */
3737         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3738         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3739                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3740                                 sizeof(*h->transtable));
3741         if (!h->transtable)
3742                 return -ENOMEM;
3743         return 0;
3744 }
3745
3746 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3747 {
3748         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3749
3750         /* Limit commands in memory limited kdump scenario. */
3751         if (reset_devices && h->max_commands > 32)
3752                 h->max_commands = 32;
3753
3754         if (h->max_commands < 16) {
3755                 dev_warn(&h->pdev->dev, "Controller reports "
3756                         "max supported commands of %d, an obvious lie. "
3757                         "Using 16.  Ensure that firmware is up to date.\n",
3758                         h->max_commands);
3759                 h->max_commands = 16;
3760         }
3761 }
3762
3763 /* Interrogate the hardware for some limits:
3764  * max commands, max SG elements without chaining, and with chaining,
3765  * SG chain block size, etc.
3766  */
3767 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3768 {
3769         hpsa_get_max_perf_mode_cmds(h);
3770         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3771         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3772         /*
3773          * Limit in-command s/g elements to 32 save dma'able memory.
3774          * Howvever spec says if 0, use 31
3775          */
3776         h->max_cmd_sg_entries = 31;
3777         if (h->maxsgentries > 512) {
3778                 h->max_cmd_sg_entries = 32;
3779                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3780                 h->maxsgentries--; /* save one for chain pointer */
3781         } else {
3782                 h->maxsgentries = 31; /* default to traditional values */
3783                 h->chainsize = 0;
3784         }
3785 }
3786
3787 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3788 {
3789         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3790             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3791             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3792             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3793                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3794                 return false;
3795         }
3796         return true;
3797 }
3798
3799 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3800 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3801 {
3802 #ifdef CONFIG_X86
3803         u32 prefetch;
3804
3805         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3806         prefetch |= 0x100;
3807         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3808 #endif
3809 }
3810
3811 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3812  * in a prefetch beyond physical memory.
3813  */
3814 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3815 {
3816         u32 dma_prefetch;
3817
3818         if (h->board_id != 0x3225103C)
3819                 return;
3820         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3821         dma_prefetch |= 0x8000;
3822         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3823 }
3824
3825 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3826 {
3827         int i;
3828         u32 doorbell_value;
3829         unsigned long flags;
3830
3831         /* under certain very rare conditions, this can take awhile.
3832          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3833          * as we enter this code.)
3834          */
3835         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3836                 spin_lock_irqsave(&h->lock, flags);
3837                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3838                 spin_unlock_irqrestore(&h->lock, flags);
3839                 if (!(doorbell_value & CFGTBL_ChangeReq))
3840                         break;
3841                 /* delay and try again */
3842                 usleep_range(10000, 20000);
3843         }
3844 }
3845
3846 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3847 {
3848         u32 trans_support;
3849
3850         trans_support = readl(&(h->cfgtable->TransportSupport));
3851         if (!(trans_support & SIMPLE_MODE))
3852                 return -ENOTSUPP;
3853
3854         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3855         /* Update the field, and then ring the doorbell */
3856         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3857         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3858         hpsa_wait_for_mode_change_ack(h);
3859         print_cfg_table(&h->pdev->dev, h->cfgtable);
3860         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3861                 dev_warn(&h->pdev->dev,
3862                         "unable to get board into simple mode\n");
3863                 return -ENODEV;
3864         }
3865         h->transMethod = CFGTBL_Trans_Simple;
3866         return 0;
3867 }
3868
3869 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3870 {
3871         int prod_index, err;
3872
3873         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3874         if (prod_index < 0)
3875                 return -ENODEV;
3876         h->product_name = products[prod_index].product_name;
3877         h->access = *(products[prod_index].access);
3878
3879         if (hpsa_board_disabled(h->pdev)) {
3880                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3881                 return -ENODEV;
3882         }
3883         err = pci_enable_device(h->pdev);
3884         if (err) {
3885                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3886                 return err;
3887         }
3888
3889         err = pci_request_regions(h->pdev, "hpsa");
3890         if (err) {
3891                 dev_err(&h->pdev->dev,
3892                         "cannot obtain PCI resources, aborting\n");
3893                 return err;
3894         }
3895         hpsa_interrupt_mode(h);
3896         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3897         if (err)
3898                 goto err_out_free_res;
3899         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3900         if (!h->vaddr) {
3901                 err = -ENOMEM;
3902                 goto err_out_free_res;
3903         }
3904         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3905         if (err)
3906                 goto err_out_free_res;
3907         err = hpsa_find_cfgtables(h);
3908         if (err)
3909                 goto err_out_free_res;
3910         hpsa_find_board_params(h);
3911
3912         if (!hpsa_CISS_signature_present(h)) {
3913                 err = -ENODEV;
3914                 goto err_out_free_res;
3915         }
3916         hpsa_enable_scsi_prefetch(h);
3917         hpsa_p600_dma_prefetch_quirk(h);
3918         err = hpsa_enter_simple_mode(h);
3919         if (err)
3920                 goto err_out_free_res;
3921         return 0;
3922
3923 err_out_free_res:
3924         if (h->transtable)
3925                 iounmap(h->transtable);
3926         if (h->cfgtable)
3927                 iounmap(h->cfgtable);
3928         if (h->vaddr)
3929                 iounmap(h->vaddr);
3930         /*
3931          * Deliberately omit pci_disable_device(): it does something nasty to
3932          * Smart Array controllers that pci_enable_device does not undo
3933          */
3934         pci_release_regions(h->pdev);
3935         return err;
3936 }
3937
3938 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3939 {
3940         int rc;
3941
3942 #define HBA_INQUIRY_BYTE_COUNT 64
3943         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3944         if (!h->hba_inquiry_data)
3945                 return;
3946         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3947                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3948         if (rc != 0) {
3949                 kfree(h->hba_inquiry_data);
3950                 h->hba_inquiry_data = NULL;
3951         }
3952 }
3953
3954 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3955 {
3956         int rc, i;
3957
3958         if (!reset_devices)
3959                 return 0;
3960
3961         /* Reset the controller with a PCI power-cycle or via doorbell */
3962         rc = hpsa_kdump_hard_reset_controller(pdev);
3963
3964         /* -ENOTSUPP here means we cannot reset the controller
3965          * but it's already (and still) up and running in
3966          * "performant mode".  Or, it might be 640x, which can't reset
3967          * due to concerns about shared bbwc between 6402/6404 pair.
3968          */
3969         if (rc == -ENOTSUPP)
3970                 return rc; /* just try to do the kdump anyhow. */
3971         if (rc)
3972                 return -ENODEV;
3973
3974         /* Now try to get the controller to respond to a no-op */
3975         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3976         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3977                 if (hpsa_noop(pdev) == 0)
3978                         break;
3979                 else
3980                         dev_warn(&pdev->dev, "no-op failed%s\n",
3981                                         (i < 11 ? "; re-trying" : ""));
3982         }
3983         return 0;
3984 }
3985
3986 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3987 {
3988         h->cmd_pool_bits = kzalloc(
3989                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3990                 sizeof(unsigned long), GFP_KERNEL);
3991         h->cmd_pool = pci_alloc_consistent(h->pdev,
3992                     h->nr_cmds * sizeof(*h->cmd_pool),
3993                     &(h->cmd_pool_dhandle));
3994         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3995                     h->nr_cmds * sizeof(*h->errinfo_pool),
3996                     &(h->errinfo_pool_dhandle));
3997         if ((h->cmd_pool_bits == NULL)
3998             || (h->cmd_pool == NULL)
3999             || (h->errinfo_pool == NULL)) {
4000                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4001                 return -ENOMEM;
4002         }
4003         return 0;
4004 }
4005
4006 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4007 {
4008         kfree(h->cmd_pool_bits);
4009         if (h->cmd_pool)
4010                 pci_free_consistent(h->pdev,
4011                             h->nr_cmds * sizeof(struct CommandList),
4012                             h->cmd_pool, h->cmd_pool_dhandle);
4013         if (h->errinfo_pool)
4014                 pci_free_consistent(h->pdev,
4015                             h->nr_cmds * sizeof(struct ErrorInfo),
4016                             h->errinfo_pool,
4017                             h->errinfo_pool_dhandle);
4018 }
4019
4020 static int hpsa_request_irq(struct ctlr_info *h,
4021         irqreturn_t (*msixhandler)(int, void *),
4022         irqreturn_t (*intxhandler)(int, void *))
4023 {
4024         int rc;
4025
4026         if (h->msix_vector || h->msi_vector)
4027                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4028                                 IRQF_DISABLED, h->devname, h);
4029         else
4030                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4031                                 IRQF_DISABLED, h->devname, h);
4032         if (rc) {
4033                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4034                        h->intr[h->intr_mode], h->devname);
4035                 return -ENODEV;
4036         }
4037         return 0;
4038 }
4039
4040 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4041 {
4042         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4043                 HPSA_RESET_TYPE_CONTROLLER)) {
4044                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4045                 return -EIO;
4046         }
4047
4048         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4049         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4050                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4051                 return -1;
4052         }
4053
4054         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4055         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4056                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4057                         "after soft reset.\n");
4058                 return -1;
4059         }
4060
4061         return 0;
4062 }
4063
4064 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4065 {
4066         free_irq(h->intr[h->intr_mode], h);
4067 #ifdef CONFIG_PCI_MSI
4068         if (h->msix_vector)
4069                 pci_disable_msix(h->pdev);
4070         else if (h->msi_vector)
4071                 pci_disable_msi(h->pdev);
4072 #endif /* CONFIG_PCI_MSI */
4073         hpsa_free_sg_chain_blocks(h);
4074         hpsa_free_cmd_pool(h);
4075         kfree(h->blockFetchTable);
4076         pci_free_consistent(h->pdev, h->reply_pool_size,
4077                 h->reply_pool, h->reply_pool_dhandle);
4078         if (h->vaddr)
4079                 iounmap(h->vaddr);
4080         if (h->transtable)
4081                 iounmap(h->transtable);
4082         if (h->cfgtable)
4083                 iounmap(h->cfgtable);
4084         pci_release_regions(h->pdev);
4085         kfree(h);
4086 }
4087
4088 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4089                                     const struct pci_device_id *ent)
4090 {
4091         int dac, rc;
4092         struct ctlr_info *h;
4093         int try_soft_reset = 0;
4094         unsigned long flags;
4095
4096         if (number_of_controllers == 0)
4097                 printk(KERN_INFO DRIVER_NAME "\n");
4098
4099         rc = hpsa_init_reset_devices(pdev);
4100         if (rc) {
4101                 if (rc != -ENOTSUPP)
4102                         return rc;
4103                 /* If the reset fails in a particular way (it has no way to do
4104                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4105                  * a soft reset once we get the controller configured up to the
4106                  * point that it can accept a command.
4107                  */
4108                 try_soft_reset = 1;
4109                 rc = 0;
4110         }
4111
4112 reinit_after_soft_reset:
4113
4114         /* Command structures must be aligned on a 32-byte boundary because
4115          * the 5 lower bits of the address are used by the hardware. and by
4116          * the driver.  See comments in hpsa.h for more info.
4117          */
4118 #define COMMANDLIST_ALIGNMENT 32
4119         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4120         h = kzalloc(sizeof(*h), GFP_KERNEL);
4121         if (!h)
4122                 return -ENOMEM;
4123
4124         h->pdev = pdev;
4125         h->busy_initializing = 1;
4126         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4127         INIT_LIST_HEAD(&h->cmpQ);
4128         INIT_LIST_HEAD(&h->reqQ);
4129         spin_lock_init(&h->lock);
4130         spin_lock_init(&h->scan_lock);
4131         rc = hpsa_pci_init(h);
4132         if (rc != 0)
4133                 goto clean1;
4134
4135         sprintf(h->devname, "hpsa%d", number_of_controllers);
4136         h->ctlr = number_of_controllers;
4137         number_of_controllers++;
4138
4139         /* configure PCI DMA stuff */
4140         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4141         if (rc == 0) {
4142                 dac = 1;
4143         } else {
4144                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4145                 if (rc == 0) {
4146                         dac = 0;
4147                 } else {
4148                         dev_err(&pdev->dev, "no suitable DMA available\n");
4149                         goto clean1;
4150                 }
4151         }
4152
4153         /* make sure the board interrupts are off */
4154         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4155
4156         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4157                 goto clean2;
4158         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4159                h->devname, pdev->device,
4160                h->intr[h->intr_mode], dac ? "" : " not");
4161         if (hpsa_allocate_cmd_pool(h))
4162                 goto clean4;
4163         if (hpsa_allocate_sg_chain_blocks(h))
4164                 goto clean4;
4165         init_waitqueue_head(&h->scan_wait_queue);
4166         h->scan_finished = 1; /* no scan currently in progress */
4167
4168         pci_set_drvdata(pdev, h);
4169         h->ndevices = 0;
4170         h->scsi_host = NULL;
4171         spin_lock_init(&h->devlock);
4172         hpsa_put_ctlr_into_performant_mode(h);
4173
4174         /* At this point, the controller is ready to take commands.
4175          * Now, if reset_devices and the hard reset didn't work, try
4176          * the soft reset and see if that works.
4177          */
4178         if (try_soft_reset) {
4179
4180                 /* This is kind of gross.  We may or may not get a completion
4181                  * from the soft reset command, and if we do, then the value
4182                  * from the fifo may or may not be valid.  So, we wait 10 secs
4183                  * after the reset throwing away any completions we get during
4184                  * that time.  Unregister the interrupt handler and register
4185                  * fake ones to scoop up any residual completions.
4186                  */
4187                 spin_lock_irqsave(&h->lock, flags);
4188                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4189                 spin_unlock_irqrestore(&h->lock, flags);
4190                 free_irq(h->intr[h->intr_mode], h);
4191                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4192                                         hpsa_intx_discard_completions);
4193                 if (rc) {
4194                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4195                                 "soft reset.\n");
4196                         goto clean4;
4197                 }
4198
4199                 rc = hpsa_kdump_soft_reset(h);
4200                 if (rc)
4201                         /* Neither hard nor soft reset worked, we're hosed. */
4202                         goto clean4;
4203
4204                 dev_info(&h->pdev->dev, "Board READY.\n");
4205                 dev_info(&h->pdev->dev,
4206                         "Waiting for stale completions to drain.\n");
4207                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4208                 msleep(10000);
4209                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4210
4211                 rc = controller_reset_failed(h->cfgtable);
4212                 if (rc)
4213                         dev_info(&h->pdev->dev,
4214                                 "Soft reset appears to have failed.\n");
4215
4216                 /* since the controller's reset, we have to go back and re-init
4217                  * everything.  Easiest to just forget what we've done and do it
4218                  * all over again.
4219                  */
4220                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4221                 try_soft_reset = 0;
4222                 if (rc)
4223                         /* don't go to clean4, we already unallocated */
4224                         return -ENODEV;
4225
4226                 goto reinit_after_soft_reset;
4227         }
4228
4229         /* Turn the interrupts on so we can service requests */
4230         h->access.set_intr_mask(h, HPSA_INTR_ON);
4231
4232         hpsa_hba_inquiry(h);
4233         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4234         h->busy_initializing = 0;
4235         return 1;
4236
4237 clean4:
4238         hpsa_free_sg_chain_blocks(h);
4239         hpsa_free_cmd_pool(h);
4240         free_irq(h->intr[h->intr_mode], h);
4241 clean2:
4242 clean1:
4243         h->busy_initializing = 0;
4244         kfree(h);
4245         return rc;
4246 }
4247
4248 static void hpsa_flush_cache(struct ctlr_info *h)
4249 {
4250         char *flush_buf;
4251         struct CommandList *c;
4252
4253         flush_buf = kzalloc(4, GFP_KERNEL);
4254         if (!flush_buf)
4255                 return;
4256
4257         c = cmd_special_alloc(h);
4258         if (!c) {
4259                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4260                 goto out_of_memory;
4261         }
4262         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4263                 RAID_CTLR_LUNID, TYPE_CMD);
4264         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4265         if (c->err_info->CommandStatus != 0)
4266                 dev_warn(&h->pdev->dev,
4267                         "error flushing cache on controller\n");
4268         cmd_special_free(h, c);
4269 out_of_memory:
4270         kfree(flush_buf);
4271 }
4272
4273 static void hpsa_shutdown(struct pci_dev *pdev)
4274 {
4275         struct ctlr_info *h;
4276
4277         h = pci_get_drvdata(pdev);
4278         /* Turn board interrupts off  and send the flush cache command
4279          * sendcmd will turn off interrupt, and send the flush...
4280          * To write all data in the battery backed cache to disks
4281          */
4282         hpsa_flush_cache(h);
4283         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4284         free_irq(h->intr[h->intr_mode], h);
4285 #ifdef CONFIG_PCI_MSI
4286         if (h->msix_vector)
4287                 pci_disable_msix(h->pdev);
4288         else if (h->msi_vector)
4289                 pci_disable_msi(h->pdev);
4290 #endif                          /* CONFIG_PCI_MSI */
4291 }
4292
4293 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4294 {
4295         struct ctlr_info *h;
4296
4297         if (pci_get_drvdata(pdev) == NULL) {
4298                 dev_err(&pdev->dev, "unable to remove device \n");
4299                 return;
4300         }
4301         h = pci_get_drvdata(pdev);
4302         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4303         hpsa_shutdown(pdev);
4304         iounmap(h->vaddr);
4305         iounmap(h->transtable);
4306         iounmap(h->cfgtable);
4307         hpsa_free_sg_chain_blocks(h);
4308         pci_free_consistent(h->pdev,
4309                 h->nr_cmds * sizeof(struct CommandList),
4310                 h->cmd_pool, h->cmd_pool_dhandle);
4311         pci_free_consistent(h->pdev,
4312                 h->nr_cmds * sizeof(struct ErrorInfo),
4313                 h->errinfo_pool, h->errinfo_pool_dhandle);
4314         pci_free_consistent(h->pdev, h->reply_pool_size,
4315                 h->reply_pool, h->reply_pool_dhandle);
4316         kfree(h->cmd_pool_bits);
4317         kfree(h->blockFetchTable);
4318         kfree(h->hba_inquiry_data);
4319         /*
4320          * Deliberately omit pci_disable_device(): it does something nasty to
4321          * Smart Array controllers that pci_enable_device does not undo
4322          */
4323         pci_release_regions(pdev);
4324         pci_set_drvdata(pdev, NULL);
4325         kfree(h);
4326 }
4327
4328 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4329         __attribute__((unused)) pm_message_t state)
4330 {
4331         return -ENOSYS;
4332 }
4333
4334 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4335 {
4336         return -ENOSYS;
4337 }
4338
4339 static struct pci_driver hpsa_pci_driver = {
4340         .name = "hpsa",
4341         .probe = hpsa_init_one,
4342         .remove = __devexit_p(hpsa_remove_one),
4343         .id_table = hpsa_pci_device_id, /* id_table */
4344         .shutdown = hpsa_shutdown,
4345         .suspend = hpsa_suspend,
4346         .resume = hpsa_resume,
4347 };
4348
4349 /* Fill in bucket_map[], given nsgs (the max number of
4350  * scatter gather elements supported) and bucket[],
4351  * which is an array of 8 integers.  The bucket[] array
4352  * contains 8 different DMA transfer sizes (in 16
4353  * byte increments) which the controller uses to fetch
4354  * commands.  This function fills in bucket_map[], which
4355  * maps a given number of scatter gather elements to one of
4356  * the 8 DMA transfer sizes.  The point of it is to allow the
4357  * controller to only do as much DMA as needed to fetch the
4358  * command, with the DMA transfer size encoded in the lower
4359  * bits of the command address.
4360  */
4361 static void  calc_bucket_map(int bucket[], int num_buckets,
4362         int nsgs, int *bucket_map)
4363 {
4364         int i, j, b, size;
4365
4366         /* even a command with 0 SGs requires 4 blocks */
4367 #define MINIMUM_TRANSFER_BLOCKS 4
4368 #define NUM_BUCKETS 8
4369         /* Note, bucket_map must have nsgs+1 entries. */
4370         for (i = 0; i <= nsgs; i++) {
4371                 /* Compute size of a command with i SG entries */
4372                 size = i + MINIMUM_TRANSFER_BLOCKS;
4373                 b = num_buckets; /* Assume the biggest bucket */
4374                 /* Find the bucket that is just big enough */
4375                 for (j = 0; j < 8; j++) {
4376                         if (bucket[j] >= size) {
4377                                 b = j;
4378                                 break;
4379                         }
4380                 }
4381                 /* for a command with i SG entries, use bucket b. */
4382                 bucket_map[i] = b;
4383         }
4384 }
4385
4386 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4387         u32 use_short_tags)
4388 {
4389         int i;
4390         unsigned long register_value;
4391
4392         /* This is a bit complicated.  There are 8 registers on
4393          * the controller which we write to to tell it 8 different
4394          * sizes of commands which there may be.  It's a way of
4395          * reducing the DMA done to fetch each command.  Encoded into
4396          * each command's tag are 3 bits which communicate to the controller
4397          * which of the eight sizes that command fits within.  The size of
4398          * each command depends on how many scatter gather entries there are.
4399          * Each SG entry requires 16 bytes.  The eight registers are programmed
4400          * with the number of 16-byte blocks a command of that size requires.
4401          * The smallest command possible requires 5 such 16 byte blocks.
4402          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4403          * blocks.  Note, this only extends to the SG entries contained
4404          * within the command block, and does not extend to chained blocks
4405          * of SG elements.   bft[] contains the eight values we write to
4406          * the registers.  They are not evenly distributed, but have more
4407          * sizes for small commands, and fewer sizes for larger commands.
4408          */
4409         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4410         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4411         /*  5 = 1 s/g entry or 4k
4412          *  6 = 2 s/g entry or 8k
4413          *  8 = 4 s/g entry or 16k
4414          * 10 = 6 s/g entry or 24k
4415          */
4416
4417         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4418
4419         /* Controller spec: zero out this buffer. */
4420         memset(h->reply_pool, 0, h->reply_pool_size);
4421         h->reply_pool_head = h->reply_pool;
4422
4423         bft[7] = h->max_sg_entries + 4;
4424         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4425         for (i = 0; i < 8; i++)
4426                 writel(bft[i], &h->transtable->BlockFetch[i]);
4427
4428         /* size of controller ring buffer */
4429         writel(h->max_commands, &h->transtable->RepQSize);
4430         writel(1, &h->transtable->RepQCount);
4431         writel(0, &h->transtable->RepQCtrAddrLow32);
4432         writel(0, &h->transtable->RepQCtrAddrHigh32);
4433         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4434         writel(0, &h->transtable->RepQAddr0High32);
4435         writel(CFGTBL_Trans_Performant | use_short_tags,
4436                 &(h->cfgtable->HostWrite.TransportRequest));
4437         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4438         hpsa_wait_for_mode_change_ack(h);
4439         register_value = readl(&(h->cfgtable->TransportActive));
4440         if (!(register_value & CFGTBL_Trans_Performant)) {
4441                 dev_warn(&h->pdev->dev, "unable to get board into"
4442                                         " performant mode\n");
4443                 return;
4444         }
4445         /* Change the access methods to the performant access methods */
4446         h->access = SA5_performant_access;
4447         h->transMethod = CFGTBL_Trans_Performant;
4448 }
4449
4450 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4451 {
4452         u32 trans_support;
4453
4454         if (hpsa_simple_mode)
4455                 return;
4456
4457         trans_support = readl(&(h->cfgtable->TransportSupport));
4458         if (!(trans_support & PERFORMANT_MODE))
4459                 return;
4460
4461         hpsa_get_max_perf_mode_cmds(h);
4462         h->max_sg_entries = 32;
4463         /* Performant mode ring buffer and supporting data structures */
4464         h->reply_pool_size = h->max_commands * sizeof(u64);
4465         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4466                                 &(h->reply_pool_dhandle));
4467
4468         /* Need a block fetch table for performant mode */
4469         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4470                                 sizeof(u32)), GFP_KERNEL);
4471
4472         if ((h->reply_pool == NULL)
4473                 || (h->blockFetchTable == NULL))
4474                 goto clean_up;
4475
4476         hpsa_enter_performant_mode(h,
4477                 trans_support & CFGTBL_Trans_use_short_tags);
4478
4479         return;
4480
4481 clean_up:
4482         if (h->reply_pool)
4483                 pci_free_consistent(h->pdev, h->reply_pool_size,
4484                         h->reply_pool, h->reply_pool_dhandle);
4485         kfree(h->blockFetchTable);
4486 }
4487
4488 /*
4489  *  This is it.  Register the PCI driver information for the cards we control
4490  *  the OS will call our registered routines when it finds one of our cards.
4491  */
4492 static int __init hpsa_init(void)
4493 {
4494         return pci_register_driver(&hpsa_pci_driver);
4495 }
4496
4497 static void __exit hpsa_cleanup(void)
4498 {
4499         pci_unregister_driver(&hpsa_pci_driver);
4500 }
4501
4502 module_init(hpsa_init);
4503 module_exit(hpsa_cleanup);