Merge branch 'fixes' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git-cur...
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70         HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82         "Use 'simple mode' rather than 'performant mode'");
83
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
102                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103         {0,}
104 };
105
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
107
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers
111  */
112 static struct board_type products[] = {
113         {0x3241103C, "Smart Array P212", &SA5_access},
114         {0x3243103C, "Smart Array P410", &SA5_access},
115         {0x3245103C, "Smart Array P410i", &SA5_access},
116         {0x3247103C, "Smart Array P411", &SA5_access},
117         {0x3249103C, "Smart Array P812", &SA5_access},
118         {0x324a103C, "Smart Array P712m", &SA5_access},
119         {0x324b103C, "Smart Array P711m", &SA5_access},
120         {0x3350103C, "Smart Array", &SA5_access},
121         {0x3351103C, "Smart Array", &SA5_access},
122         {0x3352103C, "Smart Array", &SA5_access},
123         {0x3353103C, "Smart Array", &SA5_access},
124         {0x3354103C, "Smart Array", &SA5_access},
125         {0x3355103C, "Smart Array", &SA5_access},
126         {0x3356103C, "Smart Array", &SA5_access},
127         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 };
129
130 static int number_of_controllers;
131
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
135
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
140
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
144
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151         int cmd_type);
152
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156         unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158         int qdepth, int reason);
159
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
163
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166         struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171         int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176         u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178         unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181         void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
186 {
187         unsigned long *priv = shost_priv(sdev->host);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
192 {
193         unsigned long *priv = shost_priv(sh);
194         return (struct ctlr_info *) *priv;
195 }
196
197 static int check_for_unit_attention(struct ctlr_info *h,
198         struct CommandList *c)
199 {
200         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201                 return 0;
202
203         switch (c->err_info->SenseInfo[12]) {
204         case STATE_CHANGED:
205                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206                         "detected, command retried\n", h->ctlr);
207                 break;
208         case LUN_FAILED:
209                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210                         "detected, action required\n", h->ctlr);
211                 break;
212         case REPORT_LUNS_CHANGED:
213                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214                         "changed, action required\n", h->ctlr);
215         /*
216          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
217          */
218                 break;
219         case POWER_OR_RESET:
220                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221                         "or device reset detected\n", h->ctlr);
222                 break;
223         case UNIT_ATTENTION_CLEARED:
224                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225                     "cleared by another initiator\n", h->ctlr);
226                 break;
227         default:
228                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229                         "unit attention detected\n", h->ctlr);
230                 break;
231         }
232         return 1;
233 }
234
235 static ssize_t host_store_rescan(struct device *dev,
236                                  struct device_attribute *attr,
237                                  const char *buf, size_t count)
238 {
239         struct ctlr_info *h;
240         struct Scsi_Host *shost = class_to_shost(dev);
241         h = shost_to_hba(shost);
242         hpsa_scan_start(h->scsi_host);
243         return count;
244 }
245
246 static ssize_t host_show_firmware_revision(struct device *dev,
247              struct device_attribute *attr, char *buf)
248 {
249         struct ctlr_info *h;
250         struct Scsi_Host *shost = class_to_shost(dev);
251         unsigned char *fwrev;
252
253         h = shost_to_hba(shost);
254         if (!h->hba_inquiry_data)
255                 return 0;
256         fwrev = &h->hba_inquiry_data[32];
257         return snprintf(buf, 20, "%c%c%c%c\n",
258                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
259 }
260
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262              struct device_attribute *attr, char *buf)
263 {
264         struct Scsi_Host *shost = class_to_shost(dev);
265         struct ctlr_info *h = shost_to_hba(shost);
266
267         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
268 }
269
270 static ssize_t host_show_transport_mode(struct device *dev,
271         struct device_attribute *attr, char *buf)
272 {
273         struct ctlr_info *h;
274         struct Scsi_Host *shost = class_to_shost(dev);
275
276         h = shost_to_hba(shost);
277         return snprintf(buf, 20, "%s\n",
278                 h->transMethod & CFGTBL_Trans_Performant ?
279                         "performant" : "simple");
280 }
281
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284         0x324a103C, /* Smart Array P712m */
285         0x324b103C, /* SmartArray P711m */
286         0x3223103C, /* Smart Array P800 */
287         0x3234103C, /* Smart Array P400 */
288         0x3235103C, /* Smart Array P400i */
289         0x3211103C, /* Smart Array E200i */
290         0x3212103C, /* Smart Array E200 */
291         0x3213103C, /* Smart Array E200i */
292         0x3214103C, /* Smart Array E200i */
293         0x3215103C, /* Smart Array E200i */
294         0x3237103C, /* Smart Array E500 */
295         0x323D103C, /* Smart Array P700m */
296         0x409C0E11, /* Smart Array 6400 */
297         0x409D0E11, /* Smart Array 6400 EM */
298 };
299
300 /* List of controllers which cannot even be soft reset */
301 static u32 soft_unresettable_controller[] = {
302         /* Exclude 640x boards.  These are two pci devices in one slot
303          * which share a battery backed cache module.  One controls the
304          * cache, the other accesses the cache through the one that controls
305          * it.  If we reset the one controlling the cache, the other will
306          * likely not be happy.  Just forbid resetting this conjoined mess.
307          * The 640x isn't really supported by hpsa anyway.
308          */
309         0x409C0E11, /* Smart Array 6400 */
310         0x409D0E11, /* Smart Array 6400 EM */
311 };
312
313 static int ctlr_is_hard_resettable(u32 board_id)
314 {
315         int i;
316
317         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
318                 if (unresettable_controller[i] == board_id)
319                         return 0;
320         return 1;
321 }
322
323 static int ctlr_is_soft_resettable(u32 board_id)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
328                 if (soft_unresettable_controller[i] == board_id)
329                         return 0;
330         return 1;
331 }
332
333 static int ctlr_is_resettable(u32 board_id)
334 {
335         return ctlr_is_hard_resettable(board_id) ||
336                 ctlr_is_soft_resettable(board_id);
337 }
338
339 static ssize_t host_show_resettable(struct device *dev,
340         struct device_attribute *attr, char *buf)
341 {
342         struct ctlr_info *h;
343         struct Scsi_Host *shost = class_to_shost(dev);
344
345         h = shost_to_hba(shost);
346         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
347 }
348
349 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
350 {
351         return (scsi3addr[3] & 0xC0) == 0x40;
352 }
353
354 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
355         "UNKNOWN"
356 };
357 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
358
359 static ssize_t raid_level_show(struct device *dev,
360              struct device_attribute *attr, char *buf)
361 {
362         ssize_t l = 0;
363         unsigned char rlevel;
364         struct ctlr_info *h;
365         struct scsi_device *sdev;
366         struct hpsa_scsi_dev_t *hdev;
367         unsigned long flags;
368
369         sdev = to_scsi_device(dev);
370         h = sdev_to_hba(sdev);
371         spin_lock_irqsave(&h->lock, flags);
372         hdev = sdev->hostdata;
373         if (!hdev) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 return -ENODEV;
376         }
377
378         /* Is this even a logical drive? */
379         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
380                 spin_unlock_irqrestore(&h->lock, flags);
381                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
382                 return l;
383         }
384
385         rlevel = hdev->raid_level;
386         spin_unlock_irqrestore(&h->lock, flags);
387         if (rlevel > RAID_UNKNOWN)
388                 rlevel = RAID_UNKNOWN;
389         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
390         return l;
391 }
392
393 static ssize_t lunid_show(struct device *dev,
394              struct device_attribute *attr, char *buf)
395 {
396         struct ctlr_info *h;
397         struct scsi_device *sdev;
398         struct hpsa_scsi_dev_t *hdev;
399         unsigned long flags;
400         unsigned char lunid[8];
401
402         sdev = to_scsi_device(dev);
403         h = sdev_to_hba(sdev);
404         spin_lock_irqsave(&h->lock, flags);
405         hdev = sdev->hostdata;
406         if (!hdev) {
407                 spin_unlock_irqrestore(&h->lock, flags);
408                 return -ENODEV;
409         }
410         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
411         spin_unlock_irqrestore(&h->lock, flags);
412         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
413                 lunid[0], lunid[1], lunid[2], lunid[3],
414                 lunid[4], lunid[5], lunid[6], lunid[7]);
415 }
416
417 static ssize_t unique_id_show(struct device *dev,
418              struct device_attribute *attr, char *buf)
419 {
420         struct ctlr_info *h;
421         struct scsi_device *sdev;
422         struct hpsa_scsi_dev_t *hdev;
423         unsigned long flags;
424         unsigned char sn[16];
425
426         sdev = to_scsi_device(dev);
427         h = sdev_to_hba(sdev);
428         spin_lock_irqsave(&h->lock, flags);
429         hdev = sdev->hostdata;
430         if (!hdev) {
431                 spin_unlock_irqrestore(&h->lock, flags);
432                 return -ENODEV;
433         }
434         memcpy(sn, hdev->device_id, sizeof(sn));
435         spin_unlock_irqrestore(&h->lock, flags);
436         return snprintf(buf, 16 * 2 + 2,
437                         "%02X%02X%02X%02X%02X%02X%02X%02X"
438                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
439                         sn[0], sn[1], sn[2], sn[3],
440                         sn[4], sn[5], sn[6], sn[7],
441                         sn[8], sn[9], sn[10], sn[11],
442                         sn[12], sn[13], sn[14], sn[15]);
443 }
444
445 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
446 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
447 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
448 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
449 static DEVICE_ATTR(firmware_revision, S_IRUGO,
450         host_show_firmware_revision, NULL);
451 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
452         host_show_commands_outstanding, NULL);
453 static DEVICE_ATTR(transport_mode, S_IRUGO,
454         host_show_transport_mode, NULL);
455 static DEVICE_ATTR(resettable, S_IRUGO,
456         host_show_resettable, NULL);
457
458 static struct device_attribute *hpsa_sdev_attrs[] = {
459         &dev_attr_raid_level,
460         &dev_attr_lunid,
461         &dev_attr_unique_id,
462         NULL,
463 };
464
465 static struct device_attribute *hpsa_shost_attrs[] = {
466         &dev_attr_rescan,
467         &dev_attr_firmware_revision,
468         &dev_attr_commands_outstanding,
469         &dev_attr_transport_mode,
470         &dev_attr_resettable,
471         NULL,
472 };
473
474 static struct scsi_host_template hpsa_driver_template = {
475         .module                 = THIS_MODULE,
476         .name                   = "hpsa",
477         .proc_name              = "hpsa",
478         .queuecommand           = hpsa_scsi_queue_command,
479         .scan_start             = hpsa_scan_start,
480         .scan_finished          = hpsa_scan_finished,
481         .change_queue_depth     = hpsa_change_queue_depth,
482         .this_id                = -1,
483         .use_clustering         = ENABLE_CLUSTERING,
484         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
485         .ioctl                  = hpsa_ioctl,
486         .slave_alloc            = hpsa_slave_alloc,
487         .slave_destroy          = hpsa_slave_destroy,
488 #ifdef CONFIG_COMPAT
489         .compat_ioctl           = hpsa_compat_ioctl,
490 #endif
491         .sdev_attrs = hpsa_sdev_attrs,
492         .shost_attrs = hpsa_shost_attrs,
493         .max_sectors = 8192,
494 };
495
496
497 /* Enqueuing and dequeuing functions for cmdlists. */
498 static inline void addQ(struct list_head *list, struct CommandList *c)
499 {
500         list_add_tail(&c->list, list);
501 }
502
503 static inline u32 next_command(struct ctlr_info *h)
504 {
505         u32 a;
506
507         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
508                 return h->access.command_completed(h);
509
510         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
511                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
512                 (h->reply_pool_head)++;
513                 h->commands_outstanding--;
514         } else {
515                 a = FIFO_EMPTY;
516         }
517         /* Check for wraparound */
518         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
519                 h->reply_pool_head = h->reply_pool;
520                 h->reply_pool_wraparound ^= 1;
521         }
522         return a;
523 }
524
525 /* set_performant_mode: Modify the tag for cciss performant
526  * set bit 0 for pull model, bits 3-1 for block fetch
527  * register number
528  */
529 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
530 {
531         if (likely(h->transMethod & CFGTBL_Trans_Performant))
532                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
533 }
534
535 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
536         struct CommandList *c)
537 {
538         unsigned long flags;
539
540         set_performant_mode(h, c);
541         spin_lock_irqsave(&h->lock, flags);
542         addQ(&h->reqQ, c);
543         h->Qdepth++;
544         start_io(h);
545         spin_unlock_irqrestore(&h->lock, flags);
546 }
547
548 static inline void removeQ(struct CommandList *c)
549 {
550         if (WARN_ON(list_empty(&c->list)))
551                 return;
552         list_del_init(&c->list);
553 }
554
555 static inline int is_hba_lunid(unsigned char scsi3addr[])
556 {
557         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
558 }
559
560 static inline int is_scsi_rev_5(struct ctlr_info *h)
561 {
562         if (!h->hba_inquiry_data)
563                 return 0;
564         if ((h->hba_inquiry_data[2] & 0x07) == 5)
565                 return 1;
566         return 0;
567 }
568
569 static int hpsa_find_target_lun(struct ctlr_info *h,
570         unsigned char scsi3addr[], int bus, int *target, int *lun)
571 {
572         /* finds an unused bus, target, lun for a new physical device
573          * assumes h->devlock is held
574          */
575         int i, found = 0;
576         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
577
578         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
579
580         for (i = 0; i < h->ndevices; i++) {
581                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
582                         set_bit(h->dev[i]->target, lun_taken);
583         }
584
585         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
586                 if (!test_bit(i, lun_taken)) {
587                         /* *bus = 1; */
588                         *target = i;
589                         *lun = 0;
590                         found = 1;
591                         break;
592                 }
593         }
594         return !found;
595 }
596
597 /* Add an entry into h->dev[] array. */
598 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
599                 struct hpsa_scsi_dev_t *device,
600                 struct hpsa_scsi_dev_t *added[], int *nadded)
601 {
602         /* assumes h->devlock is held */
603         int n = h->ndevices;
604         int i;
605         unsigned char addr1[8], addr2[8];
606         struct hpsa_scsi_dev_t *sd;
607
608         if (n >= HPSA_MAX_DEVICES) {
609                 dev_err(&h->pdev->dev, "too many devices, some will be "
610                         "inaccessible.\n");
611                 return -1;
612         }
613
614         /* physical devices do not have lun or target assigned until now. */
615         if (device->lun != -1)
616                 /* Logical device, lun is already assigned. */
617                 goto lun_assigned;
618
619         /* If this device a non-zero lun of a multi-lun device
620          * byte 4 of the 8-byte LUN addr will contain the logical
621          * unit no, zero otherise.
622          */
623         if (device->scsi3addr[4] == 0) {
624                 /* This is not a non-zero lun of a multi-lun device */
625                 if (hpsa_find_target_lun(h, device->scsi3addr,
626                         device->bus, &device->target, &device->lun) != 0)
627                         return -1;
628                 goto lun_assigned;
629         }
630
631         /* This is a non-zero lun of a multi-lun device.
632          * Search through our list and find the device which
633          * has the same 8 byte LUN address, excepting byte 4.
634          * Assign the same bus and target for this new LUN.
635          * Use the logical unit number from the firmware.
636          */
637         memcpy(addr1, device->scsi3addr, 8);
638         addr1[4] = 0;
639         for (i = 0; i < n; i++) {
640                 sd = h->dev[i];
641                 memcpy(addr2, sd->scsi3addr, 8);
642                 addr2[4] = 0;
643                 /* differ only in byte 4? */
644                 if (memcmp(addr1, addr2, 8) == 0) {
645                         device->bus = sd->bus;
646                         device->target = sd->target;
647                         device->lun = device->scsi3addr[4];
648                         break;
649                 }
650         }
651         if (device->lun == -1) {
652                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
653                         " suspect firmware bug or unsupported hardware "
654                         "configuration.\n");
655                         return -1;
656         }
657
658 lun_assigned:
659
660         h->dev[n] = device;
661         h->ndevices++;
662         added[*nadded] = device;
663         (*nadded)++;
664
665         /* initially, (before registering with scsi layer) we don't
666          * know our hostno and we don't want to print anything first
667          * time anyway (the scsi layer's inquiries will show that info)
668          */
669         /* if (hostno != -1) */
670                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
671                         scsi_device_type(device->devtype), hostno,
672                         device->bus, device->target, device->lun);
673         return 0;
674 }
675
676 /* Replace an entry from h->dev[] array. */
677 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
678         int entry, struct hpsa_scsi_dev_t *new_entry,
679         struct hpsa_scsi_dev_t *added[], int *nadded,
680         struct hpsa_scsi_dev_t *removed[], int *nremoved)
681 {
682         /* assumes h->devlock is held */
683         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
684         removed[*nremoved] = h->dev[entry];
685         (*nremoved)++;
686
687         /*
688          * New physical devices won't have target/lun assigned yet
689          * so we need to preserve the values in the slot we are replacing.
690          */
691         if (new_entry->target == -1) {
692                 new_entry->target = h->dev[entry]->target;
693                 new_entry->lun = h->dev[entry]->lun;
694         }
695
696         h->dev[entry] = new_entry;
697         added[*nadded] = new_entry;
698         (*nadded)++;
699         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
700                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701                         new_entry->target, new_entry->lun);
702 }
703
704 /* Remove an entry from h->dev[] array. */
705 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
706         struct hpsa_scsi_dev_t *removed[], int *nremoved)
707 {
708         /* assumes h->devlock is held */
709         int i;
710         struct hpsa_scsi_dev_t *sd;
711
712         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
713
714         sd = h->dev[entry];
715         removed[*nremoved] = h->dev[entry];
716         (*nremoved)++;
717
718         for (i = entry; i < h->ndevices-1; i++)
719                 h->dev[i] = h->dev[i+1];
720         h->ndevices--;
721         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
722                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
723                 sd->lun);
724 }
725
726 #define SCSI3ADDR_EQ(a, b) ( \
727         (a)[7] == (b)[7] && \
728         (a)[6] == (b)[6] && \
729         (a)[5] == (b)[5] && \
730         (a)[4] == (b)[4] && \
731         (a)[3] == (b)[3] && \
732         (a)[2] == (b)[2] && \
733         (a)[1] == (b)[1] && \
734         (a)[0] == (b)[0])
735
736 static void fixup_botched_add(struct ctlr_info *h,
737         struct hpsa_scsi_dev_t *added)
738 {
739         /* called when scsi_add_device fails in order to re-adjust
740          * h->dev[] to match the mid layer's view.
741          */
742         unsigned long flags;
743         int i, j;
744
745         spin_lock_irqsave(&h->lock, flags);
746         for (i = 0; i < h->ndevices; i++) {
747                 if (h->dev[i] == added) {
748                         for (j = i; j < h->ndevices-1; j++)
749                                 h->dev[j] = h->dev[j+1];
750                         h->ndevices--;
751                         break;
752                 }
753         }
754         spin_unlock_irqrestore(&h->lock, flags);
755         kfree(added);
756 }
757
758 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
759         struct hpsa_scsi_dev_t *dev2)
760 {
761         /* we compare everything except lun and target as these
762          * are not yet assigned.  Compare parts likely
763          * to differ first
764          */
765         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
766                 sizeof(dev1->scsi3addr)) != 0)
767                 return 0;
768         if (memcmp(dev1->device_id, dev2->device_id,
769                 sizeof(dev1->device_id)) != 0)
770                 return 0;
771         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
772                 return 0;
773         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
774                 return 0;
775         if (dev1->devtype != dev2->devtype)
776                 return 0;
777         if (dev1->bus != dev2->bus)
778                 return 0;
779         return 1;
780 }
781
782 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
783  * and return needle location in *index.  If scsi3addr matches, but not
784  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
785  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
786  */
787 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
788         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
789         int *index)
790 {
791         int i;
792 #define DEVICE_NOT_FOUND 0
793 #define DEVICE_CHANGED 1
794 #define DEVICE_SAME 2
795         for (i = 0; i < haystack_size; i++) {
796                 if (haystack[i] == NULL) /* previously removed. */
797                         continue;
798                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
799                         *index = i;
800                         if (device_is_the_same(needle, haystack[i]))
801                                 return DEVICE_SAME;
802                         else
803                                 return DEVICE_CHANGED;
804                 }
805         }
806         *index = -1;
807         return DEVICE_NOT_FOUND;
808 }
809
810 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
811         struct hpsa_scsi_dev_t *sd[], int nsds)
812 {
813         /* sd contains scsi3 addresses and devtypes, and inquiry
814          * data.  This function takes what's in sd to be the current
815          * reality and updates h->dev[] to reflect that reality.
816          */
817         int i, entry, device_change, changes = 0;
818         struct hpsa_scsi_dev_t *csd;
819         unsigned long flags;
820         struct hpsa_scsi_dev_t **added, **removed;
821         int nadded, nremoved;
822         struct Scsi_Host *sh = NULL;
823
824         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
825         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
826
827         if (!added || !removed) {
828                 dev_warn(&h->pdev->dev, "out of memory in "
829                         "adjust_hpsa_scsi_table\n");
830                 goto free_and_out;
831         }
832
833         spin_lock_irqsave(&h->devlock, flags);
834
835         /* find any devices in h->dev[] that are not in
836          * sd[] and remove them from h->dev[], and for any
837          * devices which have changed, remove the old device
838          * info and add the new device info.
839          */
840         i = 0;
841         nremoved = 0;
842         nadded = 0;
843         while (i < h->ndevices) {
844                 csd = h->dev[i];
845                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
846                 if (device_change == DEVICE_NOT_FOUND) {
847                         changes++;
848                         hpsa_scsi_remove_entry(h, hostno, i,
849                                 removed, &nremoved);
850                         continue; /* remove ^^^, hence i not incremented */
851                 } else if (device_change == DEVICE_CHANGED) {
852                         changes++;
853                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
854                                 added, &nadded, removed, &nremoved);
855                         /* Set it to NULL to prevent it from being freed
856                          * at the bottom of hpsa_update_scsi_devices()
857                          */
858                         sd[entry] = NULL;
859                 }
860                 i++;
861         }
862
863         /* Now, make sure every device listed in sd[] is also
864          * listed in h->dev[], adding them if they aren't found
865          */
866
867         for (i = 0; i < nsds; i++) {
868                 if (!sd[i]) /* if already added above. */
869                         continue;
870                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
871                                         h->ndevices, &entry);
872                 if (device_change == DEVICE_NOT_FOUND) {
873                         changes++;
874                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
875                                 added, &nadded) != 0)
876                                 break;
877                         sd[i] = NULL; /* prevent from being freed later. */
878                 } else if (device_change == DEVICE_CHANGED) {
879                         /* should never happen... */
880                         changes++;
881                         dev_warn(&h->pdev->dev,
882                                 "device unexpectedly changed.\n");
883                         /* but if it does happen, we just ignore that device */
884                 }
885         }
886         spin_unlock_irqrestore(&h->devlock, flags);
887
888         /* Don't notify scsi mid layer of any changes the first time through
889          * (or if there are no changes) scsi_scan_host will do it later the
890          * first time through.
891          */
892         if (hostno == -1 || !changes)
893                 goto free_and_out;
894
895         sh = h->scsi_host;
896         /* Notify scsi mid layer of any removed devices */
897         for (i = 0; i < nremoved; i++) {
898                 struct scsi_device *sdev =
899                         scsi_device_lookup(sh, removed[i]->bus,
900                                 removed[i]->target, removed[i]->lun);
901                 if (sdev != NULL) {
902                         scsi_remove_device(sdev);
903                         scsi_device_put(sdev);
904                 } else {
905                         /* We don't expect to get here.
906                          * future cmds to this device will get selection
907                          * timeout as if the device was gone.
908                          */
909                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
910                                 " for removal.", hostno, removed[i]->bus,
911                                 removed[i]->target, removed[i]->lun);
912                 }
913                 kfree(removed[i]);
914                 removed[i] = NULL;
915         }
916
917         /* Notify scsi mid layer of any added devices */
918         for (i = 0; i < nadded; i++) {
919                 if (scsi_add_device(sh, added[i]->bus,
920                         added[i]->target, added[i]->lun) == 0)
921                         continue;
922                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
923                         "device not added.\n", hostno, added[i]->bus,
924                         added[i]->target, added[i]->lun);
925                 /* now we have to remove it from h->dev,
926                  * since it didn't get added to scsi mid layer
927                  */
928                 fixup_botched_add(h, added[i]);
929         }
930
931 free_and_out:
932         kfree(added);
933         kfree(removed);
934 }
935
936 /*
937  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
938  * Assume's h->devlock is held.
939  */
940 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
941         int bus, int target, int lun)
942 {
943         int i;
944         struct hpsa_scsi_dev_t *sd;
945
946         for (i = 0; i < h->ndevices; i++) {
947                 sd = h->dev[i];
948                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
949                         return sd;
950         }
951         return NULL;
952 }
953
954 /* link sdev->hostdata to our per-device structure. */
955 static int hpsa_slave_alloc(struct scsi_device *sdev)
956 {
957         struct hpsa_scsi_dev_t *sd;
958         unsigned long flags;
959         struct ctlr_info *h;
960
961         h = sdev_to_hba(sdev);
962         spin_lock_irqsave(&h->devlock, flags);
963         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
964                 sdev_id(sdev), sdev->lun);
965         if (sd != NULL)
966                 sdev->hostdata = sd;
967         spin_unlock_irqrestore(&h->devlock, flags);
968         return 0;
969 }
970
971 static void hpsa_slave_destroy(struct scsi_device *sdev)
972 {
973         /* nothing to do. */
974 }
975
976 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
977 {
978         int i;
979
980         if (!h->cmd_sg_list)
981                 return;
982         for (i = 0; i < h->nr_cmds; i++) {
983                 kfree(h->cmd_sg_list[i]);
984                 h->cmd_sg_list[i] = NULL;
985         }
986         kfree(h->cmd_sg_list);
987         h->cmd_sg_list = NULL;
988 }
989
990 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
991 {
992         int i;
993
994         if (h->chainsize <= 0)
995                 return 0;
996
997         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
998                                 GFP_KERNEL);
999         if (!h->cmd_sg_list)
1000                 return -ENOMEM;
1001         for (i = 0; i < h->nr_cmds; i++) {
1002                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1003                                                 h->chainsize, GFP_KERNEL);
1004                 if (!h->cmd_sg_list[i])
1005                         goto clean;
1006         }
1007         return 0;
1008
1009 clean:
1010         hpsa_free_sg_chain_blocks(h);
1011         return -ENOMEM;
1012 }
1013
1014 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1015         struct CommandList *c)
1016 {
1017         struct SGDescriptor *chain_sg, *chain_block;
1018         u64 temp64;
1019
1020         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1021         chain_block = h->cmd_sg_list[c->cmdindex];
1022         chain_sg->Ext = HPSA_SG_CHAIN;
1023         chain_sg->Len = sizeof(*chain_sg) *
1024                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1025         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1026                                 PCI_DMA_TODEVICE);
1027         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1028         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1029 }
1030
1031 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1032         struct CommandList *c)
1033 {
1034         struct SGDescriptor *chain_sg;
1035         union u64bit temp64;
1036
1037         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1038                 return;
1039
1040         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1041         temp64.val32.lower = chain_sg->Addr.lower;
1042         temp64.val32.upper = chain_sg->Addr.upper;
1043         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1044 }
1045
1046 static void complete_scsi_command(struct CommandList *cp)
1047 {
1048         struct scsi_cmnd *cmd;
1049         struct ctlr_info *h;
1050         struct ErrorInfo *ei;
1051
1052         unsigned char sense_key;
1053         unsigned char asc;      /* additional sense code */
1054         unsigned char ascq;     /* additional sense code qualifier */
1055         unsigned long sense_data_size;
1056
1057         ei = cp->err_info;
1058         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1059         h = cp->h;
1060
1061         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1062         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1063                 hpsa_unmap_sg_chain_block(h, cp);
1064
1065         cmd->result = (DID_OK << 16);           /* host byte */
1066         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1067         cmd->result |= ei->ScsiStatus;
1068
1069         /* copy the sense data whether we need to or not. */
1070         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1071                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1072         else
1073                 sense_data_size = sizeof(ei->SenseInfo);
1074         if (ei->SenseLen < sense_data_size)
1075                 sense_data_size = ei->SenseLen;
1076
1077         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1078         scsi_set_resid(cmd, ei->ResidualCnt);
1079
1080         if (ei->CommandStatus == 0) {
1081                 cmd->scsi_done(cmd);
1082                 cmd_free(h, cp);
1083                 return;
1084         }
1085
1086         /* an error has occurred */
1087         switch (ei->CommandStatus) {
1088
1089         case CMD_TARGET_STATUS:
1090                 if (ei->ScsiStatus) {
1091                         /* Get sense key */
1092                         sense_key = 0xf & ei->SenseInfo[2];
1093                         /* Get additional sense code */
1094                         asc = ei->SenseInfo[12];
1095                         /* Get addition sense code qualifier */
1096                         ascq = ei->SenseInfo[13];
1097                 }
1098
1099                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1100                         if (check_for_unit_attention(h, cp)) {
1101                                 cmd->result = DID_SOFT_ERROR << 16;
1102                                 break;
1103                         }
1104                         if (sense_key == ILLEGAL_REQUEST) {
1105                                 /*
1106                                  * SCSI REPORT_LUNS is commonly unsupported on
1107                                  * Smart Array.  Suppress noisy complaint.
1108                                  */
1109                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1110                                         break;
1111
1112                                 /* If ASC/ASCQ indicate Logical Unit
1113                                  * Not Supported condition,
1114                                  */
1115                                 if ((asc == 0x25) && (ascq == 0x0)) {
1116                                         dev_warn(&h->pdev->dev, "cp %p "
1117                                                 "has check condition\n", cp);
1118                                         break;
1119                                 }
1120                         }
1121
1122                         if (sense_key == NOT_READY) {
1123                                 /* If Sense is Not Ready, Logical Unit
1124                                  * Not ready, Manual Intervention
1125                                  * required
1126                                  */
1127                                 if ((asc == 0x04) && (ascq == 0x03)) {
1128                                         dev_warn(&h->pdev->dev, "cp %p "
1129                                                 "has check condition: unit "
1130                                                 "not ready, manual "
1131                                                 "intervention required\n", cp);
1132                                         break;
1133                                 }
1134                         }
1135                         if (sense_key == ABORTED_COMMAND) {
1136                                 /* Aborted command is retryable */
1137                                 dev_warn(&h->pdev->dev, "cp %p "
1138                                         "has check condition: aborted command: "
1139                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1140                                         cp, asc, ascq);
1141                                 cmd->result = DID_SOFT_ERROR << 16;
1142                                 break;
1143                         }
1144                         /* Must be some other type of check condition */
1145                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1146                                         "unknown type: "
1147                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1148                                         "Returning result: 0x%x, "
1149                                         "cmd=[%02x %02x %02x %02x %02x "
1150                                         "%02x %02x %02x %02x %02x %02x "
1151                                         "%02x %02x %02x %02x %02x]\n",
1152                                         cp, sense_key, asc, ascq,
1153                                         cmd->result,
1154                                         cmd->cmnd[0], cmd->cmnd[1],
1155                                         cmd->cmnd[2], cmd->cmnd[3],
1156                                         cmd->cmnd[4], cmd->cmnd[5],
1157                                         cmd->cmnd[6], cmd->cmnd[7],
1158                                         cmd->cmnd[8], cmd->cmnd[9],
1159                                         cmd->cmnd[10], cmd->cmnd[11],
1160                                         cmd->cmnd[12], cmd->cmnd[13],
1161                                         cmd->cmnd[14], cmd->cmnd[15]);
1162                         break;
1163                 }
1164
1165
1166                 /* Problem was not a check condition
1167                  * Pass it up to the upper layers...
1168                  */
1169                 if (ei->ScsiStatus) {
1170                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1171                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1172                                 "Returning result: 0x%x\n",
1173                                 cp, ei->ScsiStatus,
1174                                 sense_key, asc, ascq,
1175                                 cmd->result);
1176                 } else {  /* scsi status is zero??? How??? */
1177                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1178                                 "Returning no connection.\n", cp),
1179
1180                         /* Ordinarily, this case should never happen,
1181                          * but there is a bug in some released firmware
1182                          * revisions that allows it to happen if, for
1183                          * example, a 4100 backplane loses power and
1184                          * the tape drive is in it.  We assume that
1185                          * it's a fatal error of some kind because we
1186                          * can't show that it wasn't. We will make it
1187                          * look like selection timeout since that is
1188                          * the most common reason for this to occur,
1189                          * and it's severe enough.
1190                          */
1191
1192                         cmd->result = DID_NO_CONNECT << 16;
1193                 }
1194                 break;
1195
1196         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1197                 break;
1198         case CMD_DATA_OVERRUN:
1199                 dev_warn(&h->pdev->dev, "cp %p has"
1200                         " completed with data overrun "
1201                         "reported\n", cp);
1202                 break;
1203         case CMD_INVALID: {
1204                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1205                 print_cmd(cp); */
1206                 /* We get CMD_INVALID if you address a non-existent device
1207                  * instead of a selection timeout (no response).  You will
1208                  * see this if you yank out a drive, then try to access it.
1209                  * This is kind of a shame because it means that any other
1210                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1211                  * missing target. */
1212                 cmd->result = DID_NO_CONNECT << 16;
1213         }
1214                 break;
1215         case CMD_PROTOCOL_ERR:
1216                 dev_warn(&h->pdev->dev, "cp %p has "
1217                         "protocol error \n", cp);
1218                 break;
1219         case CMD_HARDWARE_ERR:
1220                 cmd->result = DID_ERROR << 16;
1221                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1222                 break;
1223         case CMD_CONNECTION_LOST:
1224                 cmd->result = DID_ERROR << 16;
1225                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1226                 break;
1227         case CMD_ABORTED:
1228                 cmd->result = DID_ABORT << 16;
1229                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1230                                 cp, ei->ScsiStatus);
1231                 break;
1232         case CMD_ABORT_FAILED:
1233                 cmd->result = DID_ERROR << 16;
1234                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1235                 break;
1236         case CMD_UNSOLICITED_ABORT:
1237                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1238                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1239                         "abort\n", cp);
1240                 break;
1241         case CMD_TIMEOUT:
1242                 cmd->result = DID_TIME_OUT << 16;
1243                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1244                 break;
1245         case CMD_UNABORTABLE:
1246                 cmd->result = DID_ERROR << 16;
1247                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1248                 break;
1249         default:
1250                 cmd->result = DID_ERROR << 16;
1251                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1252                                 cp, ei->CommandStatus);
1253         }
1254         cmd->scsi_done(cmd);
1255         cmd_free(h, cp);
1256 }
1257
1258 static int hpsa_scsi_detect(struct ctlr_info *h)
1259 {
1260         struct Scsi_Host *sh;
1261         int error;
1262
1263         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1264         if (sh == NULL)
1265                 goto fail;
1266
1267         sh->io_port = 0;
1268         sh->n_io_port = 0;
1269         sh->this_id = -1;
1270         sh->max_channel = 3;
1271         sh->max_cmd_len = MAX_COMMAND_SIZE;
1272         sh->max_lun = HPSA_MAX_LUN;
1273         sh->max_id = HPSA_MAX_LUN;
1274         sh->can_queue = h->nr_cmds;
1275         sh->cmd_per_lun = h->nr_cmds;
1276         sh->sg_tablesize = h->maxsgentries;
1277         h->scsi_host = sh;
1278         sh->hostdata[0] = (unsigned long) h;
1279         sh->irq = h->intr[h->intr_mode];
1280         sh->unique_id = sh->irq;
1281         error = scsi_add_host(sh, &h->pdev->dev);
1282         if (error)
1283                 goto fail_host_put;
1284         scsi_scan_host(sh);
1285         return 0;
1286
1287  fail_host_put:
1288         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1289                 " failed for controller %d\n", h->ctlr);
1290         scsi_host_put(sh);
1291         return error;
1292  fail:
1293         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1294                 " failed for controller %d\n", h->ctlr);
1295         return -ENOMEM;
1296 }
1297
1298 static void hpsa_pci_unmap(struct pci_dev *pdev,
1299         struct CommandList *c, int sg_used, int data_direction)
1300 {
1301         int i;
1302         union u64bit addr64;
1303
1304         for (i = 0; i < sg_used; i++) {
1305                 addr64.val32.lower = c->SG[i].Addr.lower;
1306                 addr64.val32.upper = c->SG[i].Addr.upper;
1307                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1308                         data_direction);
1309         }
1310 }
1311
1312 static void hpsa_map_one(struct pci_dev *pdev,
1313                 struct CommandList *cp,
1314                 unsigned char *buf,
1315                 size_t buflen,
1316                 int data_direction)
1317 {
1318         u64 addr64;
1319
1320         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1321                 cp->Header.SGList = 0;
1322                 cp->Header.SGTotal = 0;
1323                 return;
1324         }
1325
1326         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1327         cp->SG[0].Addr.lower =
1328           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1329         cp->SG[0].Addr.upper =
1330           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1331         cp->SG[0].Len = buflen;
1332         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1333         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1334 }
1335
1336 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1337         struct CommandList *c)
1338 {
1339         DECLARE_COMPLETION_ONSTACK(wait);
1340
1341         c->waiting = &wait;
1342         enqueue_cmd_and_start_io(h, c);
1343         wait_for_completion(&wait);
1344 }
1345
1346 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1347         struct CommandList *c)
1348 {
1349         unsigned long flags;
1350
1351         /* If controller lockup detected, fake a hardware error. */
1352         spin_lock_irqsave(&h->lock, flags);
1353         if (unlikely(h->lockup_detected)) {
1354                 spin_unlock_irqrestore(&h->lock, flags);
1355                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1356         } else {
1357                 spin_unlock_irqrestore(&h->lock, flags);
1358                 hpsa_scsi_do_simple_cmd_core(h, c);
1359         }
1360 }
1361
1362 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1363         struct CommandList *c, int data_direction)
1364 {
1365         int retry_count = 0;
1366
1367         do {
1368                 memset(c->err_info, 0, sizeof(*c->err_info));
1369                 hpsa_scsi_do_simple_cmd_core(h, c);
1370                 retry_count++;
1371         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1372         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1373 }
1374
1375 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1376 {
1377         struct ErrorInfo *ei;
1378         struct device *d = &cp->h->pdev->dev;
1379
1380         ei = cp->err_info;
1381         switch (ei->CommandStatus) {
1382         case CMD_TARGET_STATUS:
1383                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1384                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1385                                 ei->ScsiStatus);
1386                 if (ei->ScsiStatus == 0)
1387                         dev_warn(d, "SCSI status is abnormally zero.  "
1388                         "(probably indicates selection timeout "
1389                         "reported incorrectly due to a known "
1390                         "firmware bug, circa July, 2001.)\n");
1391                 break;
1392         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1393                         dev_info(d, "UNDERRUN\n");
1394                 break;
1395         case CMD_DATA_OVERRUN:
1396                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1397                 break;
1398         case CMD_INVALID: {
1399                 /* controller unfortunately reports SCSI passthru's
1400                  * to non-existent targets as invalid commands.
1401                  */
1402                 dev_warn(d, "cp %p is reported invalid (probably means "
1403                         "target device no longer present)\n", cp);
1404                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1405                 print_cmd(cp);  */
1406                 }
1407                 break;
1408         case CMD_PROTOCOL_ERR:
1409                 dev_warn(d, "cp %p has protocol error \n", cp);
1410                 break;
1411         case CMD_HARDWARE_ERR:
1412                 /* cmd->result = DID_ERROR << 16; */
1413                 dev_warn(d, "cp %p had hardware error\n", cp);
1414                 break;
1415         case CMD_CONNECTION_LOST:
1416                 dev_warn(d, "cp %p had connection lost\n", cp);
1417                 break;
1418         case CMD_ABORTED:
1419                 dev_warn(d, "cp %p was aborted\n", cp);
1420                 break;
1421         case CMD_ABORT_FAILED:
1422                 dev_warn(d, "cp %p reports abort failed\n", cp);
1423                 break;
1424         case CMD_UNSOLICITED_ABORT:
1425                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1426                 break;
1427         case CMD_TIMEOUT:
1428                 dev_warn(d, "cp %p timed out\n", cp);
1429                 break;
1430         case CMD_UNABORTABLE:
1431                 dev_warn(d, "Command unabortable\n");
1432                 break;
1433         default:
1434                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1435                                 ei->CommandStatus);
1436         }
1437 }
1438
1439 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1440                         unsigned char page, unsigned char *buf,
1441                         unsigned char bufsize)
1442 {
1443         int rc = IO_OK;
1444         struct CommandList *c;
1445         struct ErrorInfo *ei;
1446
1447         c = cmd_special_alloc(h);
1448
1449         if (c == NULL) {                        /* trouble... */
1450                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451                 return -ENOMEM;
1452         }
1453
1454         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1455         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1456         ei = c->err_info;
1457         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1458                 hpsa_scsi_interpret_error(c);
1459                 rc = -1;
1460         }
1461         cmd_special_free(h, c);
1462         return rc;
1463 }
1464
1465 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1466 {
1467         int rc = IO_OK;
1468         struct CommandList *c;
1469         struct ErrorInfo *ei;
1470
1471         c = cmd_special_alloc(h);
1472
1473         if (c == NULL) {                        /* trouble... */
1474                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1475                 return -ENOMEM;
1476         }
1477
1478         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1479         hpsa_scsi_do_simple_cmd_core(h, c);
1480         /* no unmap needed here because no data xfer. */
1481
1482         ei = c->err_info;
1483         if (ei->CommandStatus != 0) {
1484                 hpsa_scsi_interpret_error(c);
1485                 rc = -1;
1486         }
1487         cmd_special_free(h, c);
1488         return rc;
1489 }
1490
1491 static void hpsa_get_raid_level(struct ctlr_info *h,
1492         unsigned char *scsi3addr, unsigned char *raid_level)
1493 {
1494         int rc;
1495         unsigned char *buf;
1496
1497         *raid_level = RAID_UNKNOWN;
1498         buf = kzalloc(64, GFP_KERNEL);
1499         if (!buf)
1500                 return;
1501         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1502         if (rc == 0)
1503                 *raid_level = buf[8];
1504         if (*raid_level > RAID_UNKNOWN)
1505                 *raid_level = RAID_UNKNOWN;
1506         kfree(buf);
1507         return;
1508 }
1509
1510 /* Get the device id from inquiry page 0x83 */
1511 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1512         unsigned char *device_id, int buflen)
1513 {
1514         int rc;
1515         unsigned char *buf;
1516
1517         if (buflen > 16)
1518                 buflen = 16;
1519         buf = kzalloc(64, GFP_KERNEL);
1520         if (!buf)
1521                 return -1;
1522         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1523         if (rc == 0)
1524                 memcpy(device_id, &buf[8], buflen);
1525         kfree(buf);
1526         return rc != 0;
1527 }
1528
1529 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1530                 struct ReportLUNdata *buf, int bufsize,
1531                 int extended_response)
1532 {
1533         int rc = IO_OK;
1534         struct CommandList *c;
1535         unsigned char scsi3addr[8];
1536         struct ErrorInfo *ei;
1537
1538         c = cmd_special_alloc(h);
1539         if (c == NULL) {                        /* trouble... */
1540                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1541                 return -1;
1542         }
1543         /* address the controller */
1544         memset(scsi3addr, 0, sizeof(scsi3addr));
1545         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1546                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1547         if (extended_response)
1548                 c->Request.CDB[1] = extended_response;
1549         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1550         ei = c->err_info;
1551         if (ei->CommandStatus != 0 &&
1552             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1553                 hpsa_scsi_interpret_error(c);
1554                 rc = -1;
1555         }
1556         cmd_special_free(h, c);
1557         return rc;
1558 }
1559
1560 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1561                 struct ReportLUNdata *buf,
1562                 int bufsize, int extended_response)
1563 {
1564         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1565 }
1566
1567 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1568                 struct ReportLUNdata *buf, int bufsize)
1569 {
1570         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1571 }
1572
1573 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1574         int bus, int target, int lun)
1575 {
1576         device->bus = bus;
1577         device->target = target;
1578         device->lun = lun;
1579 }
1580
1581 static int hpsa_update_device_info(struct ctlr_info *h,
1582         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1583         unsigned char *is_OBDR_device)
1584 {
1585
1586 #define OBDR_SIG_OFFSET 43
1587 #define OBDR_TAPE_SIG "$DR-10"
1588 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1589 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1590
1591         unsigned char *inq_buff;
1592         unsigned char *obdr_sig;
1593
1594         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1595         if (!inq_buff)
1596                 goto bail_out;
1597
1598         /* Do an inquiry to the device to see what it is. */
1599         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1600                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1601                 /* Inquiry failed (msg printed already) */
1602                 dev_err(&h->pdev->dev,
1603                         "hpsa_update_device_info: inquiry failed\n");
1604                 goto bail_out;
1605         }
1606
1607         this_device->devtype = (inq_buff[0] & 0x1f);
1608         memcpy(this_device->scsi3addr, scsi3addr, 8);
1609         memcpy(this_device->vendor, &inq_buff[8],
1610                 sizeof(this_device->vendor));
1611         memcpy(this_device->model, &inq_buff[16],
1612                 sizeof(this_device->model));
1613         memset(this_device->device_id, 0,
1614                 sizeof(this_device->device_id));
1615         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1616                 sizeof(this_device->device_id));
1617
1618         if (this_device->devtype == TYPE_DISK &&
1619                 is_logical_dev_addr_mode(scsi3addr))
1620                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1621         else
1622                 this_device->raid_level = RAID_UNKNOWN;
1623
1624         if (is_OBDR_device) {
1625                 /* See if this is a One-Button-Disaster-Recovery device
1626                  * by looking for "$DR-10" at offset 43 in inquiry data.
1627                  */
1628                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1629                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1630                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1631                                                 OBDR_SIG_LEN) == 0);
1632         }
1633
1634         kfree(inq_buff);
1635         return 0;
1636
1637 bail_out:
1638         kfree(inq_buff);
1639         return 1;
1640 }
1641
1642 static unsigned char *msa2xxx_model[] = {
1643         "MSA2012",
1644         "MSA2024",
1645         "MSA2312",
1646         "MSA2324",
1647         "P2000 G3 SAS",
1648         NULL,
1649 };
1650
1651 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1652 {
1653         int i;
1654
1655         for (i = 0; msa2xxx_model[i]; i++)
1656                 if (strncmp(device->model, msa2xxx_model[i],
1657                         strlen(msa2xxx_model[i])) == 0)
1658                         return 1;
1659         return 0;
1660 }
1661
1662 /* Helper function to assign bus, target, lun mapping of devices.
1663  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1664  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1665  * Logical drive target and lun are assigned at this time, but
1666  * physical device lun and target assignment are deferred (assigned
1667  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1668  */
1669 static void figure_bus_target_lun(struct ctlr_info *h,
1670         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1671         struct hpsa_scsi_dev_t *device)
1672 {
1673         u32 lunid;
1674
1675         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1676                 /* logical device */
1677                 if (unlikely(is_scsi_rev_5(h))) {
1678                         /* p1210m, logical drives lun assignments
1679                          * match SCSI REPORT LUNS data.
1680                          */
1681                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1682                         *bus = 0;
1683                         *target = 0;
1684                         *lun = (lunid & 0x3fff) + 1;
1685                 } else {
1686                         /* not p1210m... */
1687                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1688                         if (is_msa2xxx(h, device)) {
1689                                 /* msa2xxx way, put logicals on bus 1
1690                                  * and match target/lun numbers box
1691                                  * reports.
1692                                  */
1693                                 *bus = 1;
1694                                 *target = (lunid >> 16) & 0x3fff;
1695                                 *lun = lunid & 0x00ff;
1696                         } else {
1697                                 /* Traditional smart array way. */
1698                                 *bus = 0;
1699                                 *lun = 0;
1700                                 *target = lunid & 0x3fff;
1701                         }
1702                 }
1703         } else {
1704                 /* physical device */
1705                 if (is_hba_lunid(lunaddrbytes))
1706                         if (unlikely(is_scsi_rev_5(h))) {
1707                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1708                                 *target = 0;
1709                                 *lun = 0;
1710                                 return;
1711                         } else
1712                                 *bus = 3; /* traditional smartarray */
1713                 else
1714                         *bus = 2; /* physical disk */
1715                 *target = -1;
1716                 *lun = -1; /* we will fill these in later. */
1717         }
1718 }
1719
1720 /*
1721  * If there is no lun 0 on a target, linux won't find any devices.
1722  * For the MSA2xxx boxes, we have to manually detect the enclosure
1723  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1724  * it for some reason.  *tmpdevice is the target we're adding,
1725  * this_device is a pointer into the current element of currentsd[]
1726  * that we're building up in update_scsi_devices(), below.
1727  * lunzerobits is a bitmap that tracks which targets already have a
1728  * lun 0 assigned.
1729  * Returns 1 if an enclosure was added, 0 if not.
1730  */
1731 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1732         struct hpsa_scsi_dev_t *tmpdevice,
1733         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1734         int bus, int target, int lun, unsigned long lunzerobits[],
1735         int *nmsa2xxx_enclosures)
1736 {
1737         unsigned char scsi3addr[8];
1738
1739         if (test_bit(target, lunzerobits))
1740                 return 0; /* There is already a lun 0 on this target. */
1741
1742         if (!is_logical_dev_addr_mode(lunaddrbytes))
1743                 return 0; /* It's the logical targets that may lack lun 0. */
1744
1745         if (!is_msa2xxx(h, tmpdevice))
1746                 return 0; /* It's only the MSA2xxx that have this problem. */
1747
1748         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1749                 return 0;
1750
1751         memset(scsi3addr, 0, 8);
1752         scsi3addr[3] = target;
1753         if (is_hba_lunid(scsi3addr))
1754                 return 0; /* Don't add the RAID controller here. */
1755
1756         if (is_scsi_rev_5(h))
1757                 return 0; /* p1210m doesn't need to do this. */
1758
1759         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1760                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1761                         "enclosures exceeded.  Check your hardware "
1762                         "configuration.");
1763                 return 0;
1764         }
1765
1766         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1767                 return 0;
1768         (*nmsa2xxx_enclosures)++;
1769         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1770         set_bit(target, lunzerobits);
1771         return 1;
1772 }
1773
1774 /*
1775  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1776  * logdev.  The number of luns in physdev and logdev are returned in
1777  * *nphysicals and *nlogicals, respectively.
1778  * Returns 0 on success, -1 otherwise.
1779  */
1780 static int hpsa_gather_lun_info(struct ctlr_info *h,
1781         int reportlunsize,
1782         struct ReportLUNdata *physdev, u32 *nphysicals,
1783         struct ReportLUNdata *logdev, u32 *nlogicals)
1784 {
1785         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1786                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1787                 return -1;
1788         }
1789         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1790         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1791                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1792                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1793                         *nphysicals - HPSA_MAX_PHYS_LUN);
1794                 *nphysicals = HPSA_MAX_PHYS_LUN;
1795         }
1796         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1797                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1798                 return -1;
1799         }
1800         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1801         /* Reject Logicals in excess of our max capability. */
1802         if (*nlogicals > HPSA_MAX_LUN) {
1803                 dev_warn(&h->pdev->dev,
1804                         "maximum logical LUNs (%d) exceeded.  "
1805                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1806                         *nlogicals - HPSA_MAX_LUN);
1807                         *nlogicals = HPSA_MAX_LUN;
1808         }
1809         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1810                 dev_warn(&h->pdev->dev,
1811                         "maximum logical + physical LUNs (%d) exceeded. "
1812                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1813                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1814                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1815         }
1816         return 0;
1817 }
1818
1819 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1820         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1821         struct ReportLUNdata *logdev_list)
1822 {
1823         /* Helper function, figure out where the LUN ID info is coming from
1824          * given index i, lists of physical and logical devices, where in
1825          * the list the raid controller is supposed to appear (first or last)
1826          */
1827
1828         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1829         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1830
1831         if (i == raid_ctlr_position)
1832                 return RAID_CTLR_LUNID;
1833
1834         if (i < logicals_start)
1835                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1836
1837         if (i < last_device)
1838                 return &logdev_list->LUN[i - nphysicals -
1839                         (raid_ctlr_position == 0)][0];
1840         BUG();
1841         return NULL;
1842 }
1843
1844 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1845 {
1846         /* the idea here is we could get notified
1847          * that some devices have changed, so we do a report
1848          * physical luns and report logical luns cmd, and adjust
1849          * our list of devices accordingly.
1850          *
1851          * The scsi3addr's of devices won't change so long as the
1852          * adapter is not reset.  That means we can rescan and
1853          * tell which devices we already know about, vs. new
1854          * devices, vs.  disappearing devices.
1855          */
1856         struct ReportLUNdata *physdev_list = NULL;
1857         struct ReportLUNdata *logdev_list = NULL;
1858         u32 nphysicals = 0;
1859         u32 nlogicals = 0;
1860         u32 ndev_allocated = 0;
1861         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1862         int ncurrent = 0;
1863         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1864         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1865         int bus, target, lun;
1866         int raid_ctlr_position;
1867         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1868
1869         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1870         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1871         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1872         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1873
1874         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1875                 dev_err(&h->pdev->dev, "out of memory\n");
1876                 goto out;
1877         }
1878         memset(lunzerobits, 0, sizeof(lunzerobits));
1879
1880         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1881                         logdev_list, &nlogicals))
1882                 goto out;
1883
1884         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1885          * but each of them 4 times through different paths.  The plus 1
1886          * is for the RAID controller.
1887          */
1888         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1889
1890         /* Allocate the per device structures */
1891         for (i = 0; i < ndevs_to_allocate; i++) {
1892                 if (i >= HPSA_MAX_DEVICES) {
1893                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1894                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1895                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1896                         break;
1897                 }
1898
1899                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1900                 if (!currentsd[i]) {
1901                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1902                                 __FILE__, __LINE__);
1903                         goto out;
1904                 }
1905                 ndev_allocated++;
1906         }
1907
1908         if (unlikely(is_scsi_rev_5(h)))
1909                 raid_ctlr_position = 0;
1910         else
1911                 raid_ctlr_position = nphysicals + nlogicals;
1912
1913         /* adjust our table of devices */
1914         nmsa2xxx_enclosures = 0;
1915         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1916                 u8 *lunaddrbytes, is_OBDR = 0;
1917
1918                 /* Figure out where the LUN ID info is coming from */
1919                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1920                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1921                 /* skip masked physical devices. */
1922                 if (lunaddrbytes[3] & 0xC0 &&
1923                         i < nphysicals + (raid_ctlr_position == 0))
1924                         continue;
1925
1926                 /* Get device type, vendor, model, device id */
1927                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1928                                                         &is_OBDR))
1929                         continue; /* skip it if we can't talk to it. */
1930                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1931                         tmpdevice);
1932                 this_device = currentsd[ncurrent];
1933
1934                 /*
1935                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1936                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1937                  * is nonetheless an enclosure device there.  We have to
1938                  * present that otherwise linux won't find anything if
1939                  * there is no lun 0.
1940                  */
1941                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1942                                 lunaddrbytes, bus, target, lun, lunzerobits,
1943                                 &nmsa2xxx_enclosures)) {
1944                         ncurrent++;
1945                         this_device = currentsd[ncurrent];
1946                 }
1947
1948                 *this_device = *tmpdevice;
1949                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1950
1951                 switch (this_device->devtype) {
1952                 case TYPE_ROM:
1953                         /* We don't *really* support actual CD-ROM devices,
1954                          * just "One Button Disaster Recovery" tape drive
1955                          * which temporarily pretends to be a CD-ROM drive.
1956                          * So we check that the device is really an OBDR tape
1957                          * device by checking for "$DR-10" in bytes 43-48 of
1958                          * the inquiry data.
1959                          */
1960                         if (is_OBDR)
1961                                 ncurrent++;
1962                         break;
1963                 case TYPE_DISK:
1964                         if (i < nphysicals)
1965                                 break;
1966                         ncurrent++;
1967                         break;
1968                 case TYPE_TAPE:
1969                 case TYPE_MEDIUM_CHANGER:
1970                         ncurrent++;
1971                         break;
1972                 case TYPE_RAID:
1973                         /* Only present the Smartarray HBA as a RAID controller.
1974                          * If it's a RAID controller other than the HBA itself
1975                          * (an external RAID controller, MSA500 or similar)
1976                          * don't present it.
1977                          */
1978                         if (!is_hba_lunid(lunaddrbytes))
1979                                 break;
1980                         ncurrent++;
1981                         break;
1982                 default:
1983                         break;
1984                 }
1985                 if (ncurrent >= HPSA_MAX_DEVICES)
1986                         break;
1987         }
1988         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1989 out:
1990         kfree(tmpdevice);
1991         for (i = 0; i < ndev_allocated; i++)
1992                 kfree(currentsd[i]);
1993         kfree(currentsd);
1994         kfree(physdev_list);
1995         kfree(logdev_list);
1996 }
1997
1998 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1999  * dma mapping  and fills in the scatter gather entries of the
2000  * hpsa command, cp.
2001  */
2002 static int hpsa_scatter_gather(struct ctlr_info *h,
2003                 struct CommandList *cp,
2004                 struct scsi_cmnd *cmd)
2005 {
2006         unsigned int len;
2007         struct scatterlist *sg;
2008         u64 addr64;
2009         int use_sg, i, sg_index, chained;
2010         struct SGDescriptor *curr_sg;
2011
2012         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2013
2014         use_sg = scsi_dma_map(cmd);
2015         if (use_sg < 0)
2016                 return use_sg;
2017
2018         if (!use_sg)
2019                 goto sglist_finished;
2020
2021         curr_sg = cp->SG;
2022         chained = 0;
2023         sg_index = 0;
2024         scsi_for_each_sg(cmd, sg, use_sg, i) {
2025                 if (i == h->max_cmd_sg_entries - 1 &&
2026                         use_sg > h->max_cmd_sg_entries) {
2027                         chained = 1;
2028                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2029                         sg_index = 0;
2030                 }
2031                 addr64 = (u64) sg_dma_address(sg);
2032                 len  = sg_dma_len(sg);
2033                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2034                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2035                 curr_sg->Len = len;
2036                 curr_sg->Ext = 0;  /* we are not chaining */
2037                 curr_sg++;
2038         }
2039
2040         if (use_sg + chained > h->maxSG)
2041                 h->maxSG = use_sg + chained;
2042
2043         if (chained) {
2044                 cp->Header.SGList = h->max_cmd_sg_entries;
2045                 cp->Header.SGTotal = (u16) (use_sg + 1);
2046                 hpsa_map_sg_chain_block(h, cp);
2047                 return 0;
2048         }
2049
2050 sglist_finished:
2051
2052         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2053         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2054         return 0;
2055 }
2056
2057
2058 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2059         void (*done)(struct scsi_cmnd *))
2060 {
2061         struct ctlr_info *h;
2062         struct hpsa_scsi_dev_t *dev;
2063         unsigned char scsi3addr[8];
2064         struct CommandList *c;
2065         unsigned long flags;
2066
2067         /* Get the ptr to our adapter structure out of cmd->host. */
2068         h = sdev_to_hba(cmd->device);
2069         dev = cmd->device->hostdata;
2070         if (!dev) {
2071                 cmd->result = DID_NO_CONNECT << 16;
2072                 done(cmd);
2073                 return 0;
2074         }
2075         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2076
2077         spin_lock_irqsave(&h->lock, flags);
2078         if (unlikely(h->lockup_detected)) {
2079                 spin_unlock_irqrestore(&h->lock, flags);
2080                 cmd->result = DID_ERROR << 16;
2081                 done(cmd);
2082                 return 0;
2083         }
2084         /* Need a lock as this is being allocated from the pool */
2085         c = cmd_alloc(h);
2086         spin_unlock_irqrestore(&h->lock, flags);
2087         if (c == NULL) {                        /* trouble... */
2088                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2089                 return SCSI_MLQUEUE_HOST_BUSY;
2090         }
2091
2092         /* Fill in the command list header */
2093
2094         cmd->scsi_done = done;    /* save this for use by completion code */
2095
2096         /* save c in case we have to abort it  */
2097         cmd->host_scribble = (unsigned char *) c;
2098
2099         c->cmd_type = CMD_SCSI;
2100         c->scsi_cmd = cmd;
2101         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2102         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2103         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2104         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2105
2106         /* Fill in the request block... */
2107
2108         c->Request.Timeout = 0;
2109         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2110         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2111         c->Request.CDBLen = cmd->cmd_len;
2112         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2113         c->Request.Type.Type = TYPE_CMD;
2114         c->Request.Type.Attribute = ATTR_SIMPLE;
2115         switch (cmd->sc_data_direction) {
2116         case DMA_TO_DEVICE:
2117                 c->Request.Type.Direction = XFER_WRITE;
2118                 break;
2119         case DMA_FROM_DEVICE:
2120                 c->Request.Type.Direction = XFER_READ;
2121                 break;
2122         case DMA_NONE:
2123                 c->Request.Type.Direction = XFER_NONE;
2124                 break;
2125         case DMA_BIDIRECTIONAL:
2126                 /* This can happen if a buggy application does a scsi passthru
2127                  * and sets both inlen and outlen to non-zero. ( see
2128                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2129                  */
2130
2131                 c->Request.Type.Direction = XFER_RSVD;
2132                 /* This is technically wrong, and hpsa controllers should
2133                  * reject it with CMD_INVALID, which is the most correct
2134                  * response, but non-fibre backends appear to let it
2135                  * slide by, and give the same results as if this field
2136                  * were set correctly.  Either way is acceptable for
2137                  * our purposes here.
2138                  */
2139
2140                 break;
2141
2142         default:
2143                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2144                         cmd->sc_data_direction);
2145                 BUG();
2146                 break;
2147         }
2148
2149         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2150                 cmd_free(h, c);
2151                 return SCSI_MLQUEUE_HOST_BUSY;
2152         }
2153         enqueue_cmd_and_start_io(h, c);
2154         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2155         return 0;
2156 }
2157
2158 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2159
2160 static void hpsa_scan_start(struct Scsi_Host *sh)
2161 {
2162         struct ctlr_info *h = shost_to_hba(sh);
2163         unsigned long flags;
2164
2165         /* wait until any scan already in progress is finished. */
2166         while (1) {
2167                 spin_lock_irqsave(&h->scan_lock, flags);
2168                 if (h->scan_finished)
2169                         break;
2170                 spin_unlock_irqrestore(&h->scan_lock, flags);
2171                 wait_event(h->scan_wait_queue, h->scan_finished);
2172                 /* Note: We don't need to worry about a race between this
2173                  * thread and driver unload because the midlayer will
2174                  * have incremented the reference count, so unload won't
2175                  * happen if we're in here.
2176                  */
2177         }
2178         h->scan_finished = 0; /* mark scan as in progress */
2179         spin_unlock_irqrestore(&h->scan_lock, flags);
2180
2181         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2182
2183         spin_lock_irqsave(&h->scan_lock, flags);
2184         h->scan_finished = 1; /* mark scan as finished. */
2185         wake_up_all(&h->scan_wait_queue);
2186         spin_unlock_irqrestore(&h->scan_lock, flags);
2187 }
2188
2189 static int hpsa_scan_finished(struct Scsi_Host *sh,
2190         unsigned long elapsed_time)
2191 {
2192         struct ctlr_info *h = shost_to_hba(sh);
2193         unsigned long flags;
2194         int finished;
2195
2196         spin_lock_irqsave(&h->scan_lock, flags);
2197         finished = h->scan_finished;
2198         spin_unlock_irqrestore(&h->scan_lock, flags);
2199         return finished;
2200 }
2201
2202 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2203         int qdepth, int reason)
2204 {
2205         struct ctlr_info *h = sdev_to_hba(sdev);
2206
2207         if (reason != SCSI_QDEPTH_DEFAULT)
2208                 return -ENOTSUPP;
2209
2210         if (qdepth < 1)
2211                 qdepth = 1;
2212         else
2213                 if (qdepth > h->nr_cmds)
2214                         qdepth = h->nr_cmds;
2215         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2216         return sdev->queue_depth;
2217 }
2218
2219 static void hpsa_unregister_scsi(struct ctlr_info *h)
2220 {
2221         /* we are being forcibly unloaded, and may not refuse. */
2222         scsi_remove_host(h->scsi_host);
2223         scsi_host_put(h->scsi_host);
2224         h->scsi_host = NULL;
2225 }
2226
2227 static int hpsa_register_scsi(struct ctlr_info *h)
2228 {
2229         int rc;
2230
2231         rc = hpsa_scsi_detect(h);
2232         if (rc != 0)
2233                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2234                         " hpsa_scsi_detect(), rc is %d\n", rc);
2235         return rc;
2236 }
2237
2238 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2239         unsigned char lunaddr[])
2240 {
2241         int rc = 0;
2242         int count = 0;
2243         int waittime = 1; /* seconds */
2244         struct CommandList *c;
2245
2246         c = cmd_special_alloc(h);
2247         if (!c) {
2248                 dev_warn(&h->pdev->dev, "out of memory in "
2249                         "wait_for_device_to_become_ready.\n");
2250                 return IO_ERROR;
2251         }
2252
2253         /* Send test unit ready until device ready, or give up. */
2254         while (count < HPSA_TUR_RETRY_LIMIT) {
2255
2256                 /* Wait for a bit.  do this first, because if we send
2257                  * the TUR right away, the reset will just abort it.
2258                  */
2259                 msleep(1000 * waittime);
2260                 count++;
2261
2262                 /* Increase wait time with each try, up to a point. */
2263                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2264                         waittime = waittime * 2;
2265
2266                 /* Send the Test Unit Ready */
2267                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2268                 hpsa_scsi_do_simple_cmd_core(h, c);
2269                 /* no unmap needed here because no data xfer. */
2270
2271                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2272                         break;
2273
2274                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2275                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2276                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2277                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2278                         break;
2279
2280                 dev_warn(&h->pdev->dev, "waiting %d secs "
2281                         "for device to become ready.\n", waittime);
2282                 rc = 1; /* device not ready. */
2283         }
2284
2285         if (rc)
2286                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2287         else
2288                 dev_warn(&h->pdev->dev, "device is ready.\n");
2289
2290         cmd_special_free(h, c);
2291         return rc;
2292 }
2293
2294 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2295  * complaining.  Doing a host- or bus-reset can't do anything good here.
2296  */
2297 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2298 {
2299         int rc;
2300         struct ctlr_info *h;
2301         struct hpsa_scsi_dev_t *dev;
2302
2303         /* find the controller to which the command to be aborted was sent */
2304         h = sdev_to_hba(scsicmd->device);
2305         if (h == NULL) /* paranoia */
2306                 return FAILED;
2307         dev = scsicmd->device->hostdata;
2308         if (!dev) {
2309                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2310                         "device lookup failed.\n");
2311                 return FAILED;
2312         }
2313         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2314                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2315         /* send a reset to the SCSI LUN which the command was sent to */
2316         rc = hpsa_send_reset(h, dev->scsi3addr);
2317         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2318                 return SUCCESS;
2319
2320         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2321         return FAILED;
2322 }
2323
2324 /*
2325  * For operations that cannot sleep, a command block is allocated at init,
2326  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2327  * which ones are free or in use.  Lock must be held when calling this.
2328  * cmd_free() is the complement.
2329  */
2330 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2331 {
2332         struct CommandList *c;
2333         int i;
2334         union u64bit temp64;
2335         dma_addr_t cmd_dma_handle, err_dma_handle;
2336
2337         do {
2338                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2339                 if (i == h->nr_cmds)
2340                         return NULL;
2341         } while (test_and_set_bit
2342                  (i & (BITS_PER_LONG - 1),
2343                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2344         c = h->cmd_pool + i;
2345         memset(c, 0, sizeof(*c));
2346         cmd_dma_handle = h->cmd_pool_dhandle
2347             + i * sizeof(*c);
2348         c->err_info = h->errinfo_pool + i;
2349         memset(c->err_info, 0, sizeof(*c->err_info));
2350         err_dma_handle = h->errinfo_pool_dhandle
2351             + i * sizeof(*c->err_info);
2352         h->nr_allocs++;
2353
2354         c->cmdindex = i;
2355
2356         INIT_LIST_HEAD(&c->list);
2357         c->busaddr = (u32) cmd_dma_handle;
2358         temp64.val = (u64) err_dma_handle;
2359         c->ErrDesc.Addr.lower = temp64.val32.lower;
2360         c->ErrDesc.Addr.upper = temp64.val32.upper;
2361         c->ErrDesc.Len = sizeof(*c->err_info);
2362
2363         c->h = h;
2364         return c;
2365 }
2366
2367 /* For operations that can wait for kmalloc to possibly sleep,
2368  * this routine can be called. Lock need not be held to call
2369  * cmd_special_alloc. cmd_special_free() is the complement.
2370  */
2371 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2372 {
2373         struct CommandList *c;
2374         union u64bit temp64;
2375         dma_addr_t cmd_dma_handle, err_dma_handle;
2376
2377         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2378         if (c == NULL)
2379                 return NULL;
2380         memset(c, 0, sizeof(*c));
2381
2382         c->cmdindex = -1;
2383
2384         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2385                     &err_dma_handle);
2386
2387         if (c->err_info == NULL) {
2388                 pci_free_consistent(h->pdev,
2389                         sizeof(*c), c, cmd_dma_handle);
2390                 return NULL;
2391         }
2392         memset(c->err_info, 0, sizeof(*c->err_info));
2393
2394         INIT_LIST_HEAD(&c->list);
2395         c->busaddr = (u32) cmd_dma_handle;
2396         temp64.val = (u64) err_dma_handle;
2397         c->ErrDesc.Addr.lower = temp64.val32.lower;
2398         c->ErrDesc.Addr.upper = temp64.val32.upper;
2399         c->ErrDesc.Len = sizeof(*c->err_info);
2400
2401         c->h = h;
2402         return c;
2403 }
2404
2405 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2406 {
2407         int i;
2408
2409         i = c - h->cmd_pool;
2410         clear_bit(i & (BITS_PER_LONG - 1),
2411                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2412         h->nr_frees++;
2413 }
2414
2415 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2416 {
2417         union u64bit temp64;
2418
2419         temp64.val32.lower = c->ErrDesc.Addr.lower;
2420         temp64.val32.upper = c->ErrDesc.Addr.upper;
2421         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2422                             c->err_info, (dma_addr_t) temp64.val);
2423         pci_free_consistent(h->pdev, sizeof(*c),
2424                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2425 }
2426
2427 #ifdef CONFIG_COMPAT
2428
2429 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2430 {
2431         IOCTL32_Command_struct __user *arg32 =
2432             (IOCTL32_Command_struct __user *) arg;
2433         IOCTL_Command_struct arg64;
2434         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2435         int err;
2436         u32 cp;
2437
2438         memset(&arg64, 0, sizeof(arg64));
2439         err = 0;
2440         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2441                            sizeof(arg64.LUN_info));
2442         err |= copy_from_user(&arg64.Request, &arg32->Request,
2443                            sizeof(arg64.Request));
2444         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2445                            sizeof(arg64.error_info));
2446         err |= get_user(arg64.buf_size, &arg32->buf_size);
2447         err |= get_user(cp, &arg32->buf);
2448         arg64.buf = compat_ptr(cp);
2449         err |= copy_to_user(p, &arg64, sizeof(arg64));
2450
2451         if (err)
2452                 return -EFAULT;
2453
2454         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2455         if (err)
2456                 return err;
2457         err |= copy_in_user(&arg32->error_info, &p->error_info,
2458                          sizeof(arg32->error_info));
2459         if (err)
2460                 return -EFAULT;
2461         return err;
2462 }
2463
2464 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2465         int cmd, void *arg)
2466 {
2467         BIG_IOCTL32_Command_struct __user *arg32 =
2468             (BIG_IOCTL32_Command_struct __user *) arg;
2469         BIG_IOCTL_Command_struct arg64;
2470         BIG_IOCTL_Command_struct __user *p =
2471             compat_alloc_user_space(sizeof(arg64));
2472         int err;
2473         u32 cp;
2474
2475         memset(&arg64, 0, sizeof(arg64));
2476         err = 0;
2477         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2478                            sizeof(arg64.LUN_info));
2479         err |= copy_from_user(&arg64.Request, &arg32->Request,
2480                            sizeof(arg64.Request));
2481         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2482                            sizeof(arg64.error_info));
2483         err |= get_user(arg64.buf_size, &arg32->buf_size);
2484         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2485         err |= get_user(cp, &arg32->buf);
2486         arg64.buf = compat_ptr(cp);
2487         err |= copy_to_user(p, &arg64, sizeof(arg64));
2488
2489         if (err)
2490                 return -EFAULT;
2491
2492         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2493         if (err)
2494                 return err;
2495         err |= copy_in_user(&arg32->error_info, &p->error_info,
2496                          sizeof(arg32->error_info));
2497         if (err)
2498                 return -EFAULT;
2499         return err;
2500 }
2501
2502 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2503 {
2504         switch (cmd) {
2505         case CCISS_GETPCIINFO:
2506         case CCISS_GETINTINFO:
2507         case CCISS_SETINTINFO:
2508         case CCISS_GETNODENAME:
2509         case CCISS_SETNODENAME:
2510         case CCISS_GETHEARTBEAT:
2511         case CCISS_GETBUSTYPES:
2512         case CCISS_GETFIRMVER:
2513         case CCISS_GETDRIVVER:
2514         case CCISS_REVALIDVOLS:
2515         case CCISS_DEREGDISK:
2516         case CCISS_REGNEWDISK:
2517         case CCISS_REGNEWD:
2518         case CCISS_RESCANDISK:
2519         case CCISS_GETLUNINFO:
2520                 return hpsa_ioctl(dev, cmd, arg);
2521
2522         case CCISS_PASSTHRU32:
2523                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2524         case CCISS_BIG_PASSTHRU32:
2525                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2526
2527         default:
2528                 return -ENOIOCTLCMD;
2529         }
2530 }
2531 #endif
2532
2533 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2534 {
2535         struct hpsa_pci_info pciinfo;
2536
2537         if (!argp)
2538                 return -EINVAL;
2539         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2540         pciinfo.bus = h->pdev->bus->number;
2541         pciinfo.dev_fn = h->pdev->devfn;
2542         pciinfo.board_id = h->board_id;
2543         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2544                 return -EFAULT;
2545         return 0;
2546 }
2547
2548 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2549 {
2550         DriverVer_type DriverVer;
2551         unsigned char vmaj, vmin, vsubmin;
2552         int rc;
2553
2554         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2555                 &vmaj, &vmin, &vsubmin);
2556         if (rc != 3) {
2557                 dev_info(&h->pdev->dev, "driver version string '%s' "
2558                         "unrecognized.", HPSA_DRIVER_VERSION);
2559                 vmaj = 0;
2560                 vmin = 0;
2561                 vsubmin = 0;
2562         }
2563         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2564         if (!argp)
2565                 return -EINVAL;
2566         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2567                 return -EFAULT;
2568         return 0;
2569 }
2570
2571 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2572 {
2573         IOCTL_Command_struct iocommand;
2574         struct CommandList *c;
2575         char *buff = NULL;
2576         union u64bit temp64;
2577
2578         if (!argp)
2579                 return -EINVAL;
2580         if (!capable(CAP_SYS_RAWIO))
2581                 return -EPERM;
2582         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2583                 return -EFAULT;
2584         if ((iocommand.buf_size < 1) &&
2585             (iocommand.Request.Type.Direction != XFER_NONE)) {
2586                 return -EINVAL;
2587         }
2588         if (iocommand.buf_size > 0) {
2589                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2590                 if (buff == NULL)
2591                         return -EFAULT;
2592                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2593                         /* Copy the data into the buffer we created */
2594                         if (copy_from_user(buff, iocommand.buf,
2595                                 iocommand.buf_size)) {
2596                                 kfree(buff);
2597                                 return -EFAULT;
2598                         }
2599                 } else {
2600                         memset(buff, 0, iocommand.buf_size);
2601                 }
2602         }
2603         c = cmd_special_alloc(h);
2604         if (c == NULL) {
2605                 kfree(buff);
2606                 return -ENOMEM;
2607         }
2608         /* Fill in the command type */
2609         c->cmd_type = CMD_IOCTL_PEND;
2610         /* Fill in Command Header */
2611         c->Header.ReplyQueue = 0; /* unused in simple mode */
2612         if (iocommand.buf_size > 0) {   /* buffer to fill */
2613                 c->Header.SGList = 1;
2614                 c->Header.SGTotal = 1;
2615         } else  { /* no buffers to fill */
2616                 c->Header.SGList = 0;
2617                 c->Header.SGTotal = 0;
2618         }
2619         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2620         /* use the kernel address the cmd block for tag */
2621         c->Header.Tag.lower = c->busaddr;
2622
2623         /* Fill in Request block */
2624         memcpy(&c->Request, &iocommand.Request,
2625                 sizeof(c->Request));
2626
2627         /* Fill in the scatter gather information */
2628         if (iocommand.buf_size > 0) {
2629                 temp64.val = pci_map_single(h->pdev, buff,
2630                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2631                 c->SG[0].Addr.lower = temp64.val32.lower;
2632                 c->SG[0].Addr.upper = temp64.val32.upper;
2633                 c->SG[0].Len = iocommand.buf_size;
2634                 c->SG[0].Ext = 0; /* we are not chaining*/
2635         }
2636         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2637         if (iocommand.buf_size > 0)
2638                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2639         check_ioctl_unit_attention(h, c);
2640
2641         /* Copy the error information out */
2642         memcpy(&iocommand.error_info, c->err_info,
2643                 sizeof(iocommand.error_info));
2644         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2645                 kfree(buff);
2646                 cmd_special_free(h, c);
2647                 return -EFAULT;
2648         }
2649         if (iocommand.Request.Type.Direction == XFER_READ &&
2650                 iocommand.buf_size > 0) {
2651                 /* Copy the data out of the buffer we created */
2652                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2653                         kfree(buff);
2654                         cmd_special_free(h, c);
2655                         return -EFAULT;
2656                 }
2657         }
2658         kfree(buff);
2659         cmd_special_free(h, c);
2660         return 0;
2661 }
2662
2663 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2664 {
2665         BIG_IOCTL_Command_struct *ioc;
2666         struct CommandList *c;
2667         unsigned char **buff = NULL;
2668         int *buff_size = NULL;
2669         union u64bit temp64;
2670         BYTE sg_used = 0;
2671         int status = 0;
2672         int i;
2673         u32 left;
2674         u32 sz;
2675         BYTE __user *data_ptr;
2676
2677         if (!argp)
2678                 return -EINVAL;
2679         if (!capable(CAP_SYS_RAWIO))
2680                 return -EPERM;
2681         ioc = (BIG_IOCTL_Command_struct *)
2682             kmalloc(sizeof(*ioc), GFP_KERNEL);
2683         if (!ioc) {
2684                 status = -ENOMEM;
2685                 goto cleanup1;
2686         }
2687         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2688                 status = -EFAULT;
2689                 goto cleanup1;
2690         }
2691         if ((ioc->buf_size < 1) &&
2692             (ioc->Request.Type.Direction != XFER_NONE)) {
2693                 status = -EINVAL;
2694                 goto cleanup1;
2695         }
2696         /* Check kmalloc limits  using all SGs */
2697         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2698                 status = -EINVAL;
2699                 goto cleanup1;
2700         }
2701         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2702                 status = -EINVAL;
2703                 goto cleanup1;
2704         }
2705         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2706         if (!buff) {
2707                 status = -ENOMEM;
2708                 goto cleanup1;
2709         }
2710         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2711         if (!buff_size) {
2712                 status = -ENOMEM;
2713                 goto cleanup1;
2714         }
2715         left = ioc->buf_size;
2716         data_ptr = ioc->buf;
2717         while (left) {
2718                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2719                 buff_size[sg_used] = sz;
2720                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2721                 if (buff[sg_used] == NULL) {
2722                         status = -ENOMEM;
2723                         goto cleanup1;
2724                 }
2725                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2726                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2727                                 status = -ENOMEM;
2728                                 goto cleanup1;
2729                         }
2730                 } else
2731                         memset(buff[sg_used], 0, sz);
2732                 left -= sz;
2733                 data_ptr += sz;
2734                 sg_used++;
2735         }
2736         c = cmd_special_alloc(h);
2737         if (c == NULL) {
2738                 status = -ENOMEM;
2739                 goto cleanup1;
2740         }
2741         c->cmd_type = CMD_IOCTL_PEND;
2742         c->Header.ReplyQueue = 0;
2743         c->Header.SGList = c->Header.SGTotal = sg_used;
2744         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2745         c->Header.Tag.lower = c->busaddr;
2746         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2747         if (ioc->buf_size > 0) {
2748                 int i;
2749                 for (i = 0; i < sg_used; i++) {
2750                         temp64.val = pci_map_single(h->pdev, buff[i],
2751                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2752                         c->SG[i].Addr.lower = temp64.val32.lower;
2753                         c->SG[i].Addr.upper = temp64.val32.upper;
2754                         c->SG[i].Len = buff_size[i];
2755                         /* we are not chaining */
2756                         c->SG[i].Ext = 0;
2757                 }
2758         }
2759         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2760         if (sg_used)
2761                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2762         check_ioctl_unit_attention(h, c);
2763         /* Copy the error information out */
2764         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2765         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2766                 cmd_special_free(h, c);
2767                 status = -EFAULT;
2768                 goto cleanup1;
2769         }
2770         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2771                 /* Copy the data out of the buffer we created */
2772                 BYTE __user *ptr = ioc->buf;
2773                 for (i = 0; i < sg_used; i++) {
2774                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2775                                 cmd_special_free(h, c);
2776                                 status = -EFAULT;
2777                                 goto cleanup1;
2778                         }
2779                         ptr += buff_size[i];
2780                 }
2781         }
2782         cmd_special_free(h, c);
2783         status = 0;
2784 cleanup1:
2785         if (buff) {
2786                 for (i = 0; i < sg_used; i++)
2787                         kfree(buff[i]);
2788                 kfree(buff);
2789         }
2790         kfree(buff_size);
2791         kfree(ioc);
2792         return status;
2793 }
2794
2795 static void check_ioctl_unit_attention(struct ctlr_info *h,
2796         struct CommandList *c)
2797 {
2798         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2799                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2800                 (void) check_for_unit_attention(h, c);
2801 }
2802 /*
2803  * ioctl
2804  */
2805 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2806 {
2807         struct ctlr_info *h;
2808         void __user *argp = (void __user *)arg;
2809
2810         h = sdev_to_hba(dev);
2811
2812         switch (cmd) {
2813         case CCISS_DEREGDISK:
2814         case CCISS_REGNEWDISK:
2815         case CCISS_REGNEWD:
2816                 hpsa_scan_start(h->scsi_host);
2817                 return 0;
2818         case CCISS_GETPCIINFO:
2819                 return hpsa_getpciinfo_ioctl(h, argp);
2820         case CCISS_GETDRIVVER:
2821                 return hpsa_getdrivver_ioctl(h, argp);
2822         case CCISS_PASSTHRU:
2823                 return hpsa_passthru_ioctl(h, argp);
2824         case CCISS_BIG_PASSTHRU:
2825                 return hpsa_big_passthru_ioctl(h, argp);
2826         default:
2827                 return -ENOTTY;
2828         }
2829 }
2830
2831 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2832         unsigned char *scsi3addr, u8 reset_type)
2833 {
2834         struct CommandList *c;
2835
2836         c = cmd_alloc(h);
2837         if (!c)
2838                 return -ENOMEM;
2839         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2840                 RAID_CTLR_LUNID, TYPE_MSG);
2841         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2842         c->waiting = NULL;
2843         enqueue_cmd_and_start_io(h, c);
2844         /* Don't wait for completion, the reset won't complete.  Don't free
2845          * the command either.  This is the last command we will send before
2846          * re-initializing everything, so it doesn't matter and won't leak.
2847          */
2848         return 0;
2849 }
2850
2851 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2852         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2853         int cmd_type)
2854 {
2855         int pci_dir = XFER_NONE;
2856
2857         c->cmd_type = CMD_IOCTL_PEND;
2858         c->Header.ReplyQueue = 0;
2859         if (buff != NULL && size > 0) {
2860                 c->Header.SGList = 1;
2861                 c->Header.SGTotal = 1;
2862         } else {
2863                 c->Header.SGList = 0;
2864                 c->Header.SGTotal = 0;
2865         }
2866         c->Header.Tag.lower = c->busaddr;
2867         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2868
2869         c->Request.Type.Type = cmd_type;
2870         if (cmd_type == TYPE_CMD) {
2871                 switch (cmd) {
2872                 case HPSA_INQUIRY:
2873                         /* are we trying to read a vital product page */
2874                         if (page_code != 0) {
2875                                 c->Request.CDB[1] = 0x01;
2876                                 c->Request.CDB[2] = page_code;
2877                         }
2878                         c->Request.CDBLen = 6;
2879                         c->Request.Type.Attribute = ATTR_SIMPLE;
2880                         c->Request.Type.Direction = XFER_READ;
2881                         c->Request.Timeout = 0;
2882                         c->Request.CDB[0] = HPSA_INQUIRY;
2883                         c->Request.CDB[4] = size & 0xFF;
2884                         break;
2885                 case HPSA_REPORT_LOG:
2886                 case HPSA_REPORT_PHYS:
2887                         /* Talking to controller so It's a physical command
2888                            mode = 00 target = 0.  Nothing to write.
2889                          */
2890                         c->Request.CDBLen = 12;
2891                         c->Request.Type.Attribute = ATTR_SIMPLE;
2892                         c->Request.Type.Direction = XFER_READ;
2893                         c->Request.Timeout = 0;
2894                         c->Request.CDB[0] = cmd;
2895                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2896                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2897                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2898                         c->Request.CDB[9] = size & 0xFF;
2899                         break;
2900                 case HPSA_CACHE_FLUSH:
2901                         c->Request.CDBLen = 12;
2902                         c->Request.Type.Attribute = ATTR_SIMPLE;
2903                         c->Request.Type.Direction = XFER_WRITE;
2904                         c->Request.Timeout = 0;
2905                         c->Request.CDB[0] = BMIC_WRITE;
2906                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2907                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2908                         c->Request.CDB[8] = size & 0xFF;
2909                         break;
2910                 case TEST_UNIT_READY:
2911                         c->Request.CDBLen = 6;
2912                         c->Request.Type.Attribute = ATTR_SIMPLE;
2913                         c->Request.Type.Direction = XFER_NONE;
2914                         c->Request.Timeout = 0;
2915                         break;
2916                 default:
2917                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2918                         BUG();
2919                         return;
2920                 }
2921         } else if (cmd_type == TYPE_MSG) {
2922                 switch (cmd) {
2923
2924                 case  HPSA_DEVICE_RESET_MSG:
2925                         c->Request.CDBLen = 16;
2926                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2927                         c->Request.Type.Attribute = ATTR_SIMPLE;
2928                         c->Request.Type.Direction = XFER_NONE;
2929                         c->Request.Timeout = 0; /* Don't time out */
2930                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2931                         c->Request.CDB[0] =  cmd;
2932                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2933                         /* If bytes 4-7 are zero, it means reset the */
2934                         /* LunID device */
2935                         c->Request.CDB[4] = 0x00;
2936                         c->Request.CDB[5] = 0x00;
2937                         c->Request.CDB[6] = 0x00;
2938                         c->Request.CDB[7] = 0x00;
2939                 break;
2940
2941                 default:
2942                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2943                                 cmd);
2944                         BUG();
2945                 }
2946         } else {
2947                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2948                 BUG();
2949         }
2950
2951         switch (c->Request.Type.Direction) {
2952         case XFER_READ:
2953                 pci_dir = PCI_DMA_FROMDEVICE;
2954                 break;
2955         case XFER_WRITE:
2956                 pci_dir = PCI_DMA_TODEVICE;
2957                 break;
2958         case XFER_NONE:
2959                 pci_dir = PCI_DMA_NONE;
2960                 break;
2961         default:
2962                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2963         }
2964
2965         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2966
2967         return;
2968 }
2969
2970 /*
2971  * Map (physical) PCI mem into (virtual) kernel space
2972  */
2973 static void __iomem *remap_pci_mem(ulong base, ulong size)
2974 {
2975         ulong page_base = ((ulong) base) & PAGE_MASK;
2976         ulong page_offs = ((ulong) base) - page_base;
2977         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2978
2979         return page_remapped ? (page_remapped + page_offs) : NULL;
2980 }
2981
2982 /* Takes cmds off the submission queue and sends them to the hardware,
2983  * then puts them on the queue of cmds waiting for completion.
2984  */
2985 static void start_io(struct ctlr_info *h)
2986 {
2987         struct CommandList *c;
2988
2989         while (!list_empty(&h->reqQ)) {
2990                 c = list_entry(h->reqQ.next, struct CommandList, list);
2991                 /* can't do anything if fifo is full */
2992                 if ((h->access.fifo_full(h))) {
2993                         dev_warn(&h->pdev->dev, "fifo full\n");
2994                         break;
2995                 }
2996
2997                 /* Get the first entry from the Request Q */
2998                 removeQ(c);
2999                 h->Qdepth--;
3000
3001                 /* Tell the controller execute command */
3002                 h->access.submit_command(h, c);
3003
3004                 /* Put job onto the completed Q */
3005                 addQ(&h->cmpQ, c);
3006         }
3007 }
3008
3009 static inline unsigned long get_next_completion(struct ctlr_info *h)
3010 {
3011         return h->access.command_completed(h);
3012 }
3013
3014 static inline bool interrupt_pending(struct ctlr_info *h)
3015 {
3016         return h->access.intr_pending(h);
3017 }
3018
3019 static inline long interrupt_not_for_us(struct ctlr_info *h)
3020 {
3021         return (h->access.intr_pending(h) == 0) ||
3022                 (h->interrupts_enabled == 0);
3023 }
3024
3025 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3026         u32 raw_tag)
3027 {
3028         if (unlikely(tag_index >= h->nr_cmds)) {
3029                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3030                 return 1;
3031         }
3032         return 0;
3033 }
3034
3035 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3036 {
3037         removeQ(c);
3038         if (likely(c->cmd_type == CMD_SCSI))
3039                 complete_scsi_command(c);
3040         else if (c->cmd_type == CMD_IOCTL_PEND)
3041                 complete(c->waiting);
3042 }
3043
3044 static inline u32 hpsa_tag_contains_index(u32 tag)
3045 {
3046         return tag & DIRECT_LOOKUP_BIT;
3047 }
3048
3049 static inline u32 hpsa_tag_to_index(u32 tag)
3050 {
3051         return tag >> DIRECT_LOOKUP_SHIFT;
3052 }
3053
3054
3055 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3056 {
3057 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3058 #define HPSA_SIMPLE_ERROR_BITS 0x03
3059         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3060                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3061         return tag & ~HPSA_PERF_ERROR_BITS;
3062 }
3063
3064 /* process completion of an indexed ("direct lookup") command */
3065 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3066         u32 raw_tag)
3067 {
3068         u32 tag_index;
3069         struct CommandList *c;
3070
3071         tag_index = hpsa_tag_to_index(raw_tag);
3072         if (bad_tag(h, tag_index, raw_tag))
3073                 return next_command(h);
3074         c = h->cmd_pool + tag_index;
3075         finish_cmd(c, raw_tag);
3076         return next_command(h);
3077 }
3078
3079 /* process completion of a non-indexed command */
3080 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3081         u32 raw_tag)
3082 {
3083         u32 tag;
3084         struct CommandList *c = NULL;
3085
3086         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3087         list_for_each_entry(c, &h->cmpQ, list) {
3088                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3089                         finish_cmd(c, raw_tag);
3090                         return next_command(h);
3091                 }
3092         }
3093         bad_tag(h, h->nr_cmds + 1, raw_tag);
3094         return next_command(h);
3095 }
3096
3097 /* Some controllers, like p400, will give us one interrupt
3098  * after a soft reset, even if we turned interrupts off.
3099  * Only need to check for this in the hpsa_xxx_discard_completions
3100  * functions.
3101  */
3102 static int ignore_bogus_interrupt(struct ctlr_info *h)
3103 {
3104         if (likely(!reset_devices))
3105                 return 0;
3106
3107         if (likely(h->interrupts_enabled))
3108                 return 0;
3109
3110         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3111                 "(known firmware bug.)  Ignoring.\n");
3112
3113         return 1;
3114 }
3115
3116 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3117 {
3118         struct ctlr_info *h = dev_id;
3119         unsigned long flags;
3120         u32 raw_tag;
3121
3122         if (ignore_bogus_interrupt(h))
3123                 return IRQ_NONE;
3124
3125         if (interrupt_not_for_us(h))
3126                 return IRQ_NONE;
3127         spin_lock_irqsave(&h->lock, flags);
3128         h->last_intr_timestamp = get_jiffies_64();
3129         while (interrupt_pending(h)) {
3130                 raw_tag = get_next_completion(h);
3131                 while (raw_tag != FIFO_EMPTY)
3132                         raw_tag = next_command(h);
3133         }
3134         spin_unlock_irqrestore(&h->lock, flags);
3135         return IRQ_HANDLED;
3136 }
3137
3138 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3139 {
3140         struct ctlr_info *h = dev_id;
3141         unsigned long flags;
3142         u32 raw_tag;
3143
3144         if (ignore_bogus_interrupt(h))
3145                 return IRQ_NONE;
3146
3147         spin_lock_irqsave(&h->lock, flags);
3148         h->last_intr_timestamp = get_jiffies_64();
3149         raw_tag = get_next_completion(h);
3150         while (raw_tag != FIFO_EMPTY)
3151                 raw_tag = next_command(h);
3152         spin_unlock_irqrestore(&h->lock, flags);
3153         return IRQ_HANDLED;
3154 }
3155
3156 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3157 {
3158         struct ctlr_info *h = dev_id;
3159         unsigned long flags;
3160         u32 raw_tag;
3161
3162         if (interrupt_not_for_us(h))
3163                 return IRQ_NONE;
3164         spin_lock_irqsave(&h->lock, flags);
3165         h->last_intr_timestamp = get_jiffies_64();
3166         while (interrupt_pending(h)) {
3167                 raw_tag = get_next_completion(h);
3168                 while (raw_tag != FIFO_EMPTY) {
3169                         if (hpsa_tag_contains_index(raw_tag))
3170                                 raw_tag = process_indexed_cmd(h, raw_tag);
3171                         else
3172                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3173                 }
3174         }
3175         spin_unlock_irqrestore(&h->lock, flags);
3176         return IRQ_HANDLED;
3177 }
3178
3179 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3180 {
3181         struct ctlr_info *h = dev_id;
3182         unsigned long flags;
3183         u32 raw_tag;
3184
3185         spin_lock_irqsave(&h->lock, flags);
3186         h->last_intr_timestamp = get_jiffies_64();
3187         raw_tag = get_next_completion(h);
3188         while (raw_tag != FIFO_EMPTY) {
3189                 if (hpsa_tag_contains_index(raw_tag))
3190                         raw_tag = process_indexed_cmd(h, raw_tag);
3191                 else
3192                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3193         }
3194         spin_unlock_irqrestore(&h->lock, flags);
3195         return IRQ_HANDLED;
3196 }
3197
3198 /* Send a message CDB to the firmware. Careful, this only works
3199  * in simple mode, not performant mode due to the tag lookup.
3200  * We only ever use this immediately after a controller reset.
3201  */
3202 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3203                                                 unsigned char type)
3204 {
3205         struct Command {
3206                 struct CommandListHeader CommandHeader;
3207                 struct RequestBlock Request;
3208                 struct ErrDescriptor ErrorDescriptor;
3209         };
3210         struct Command *cmd;
3211         static const size_t cmd_sz = sizeof(*cmd) +
3212                                         sizeof(cmd->ErrorDescriptor);
3213         dma_addr_t paddr64;
3214         uint32_t paddr32, tag;
3215         void __iomem *vaddr;
3216         int i, err;
3217
3218         vaddr = pci_ioremap_bar(pdev, 0);
3219         if (vaddr == NULL)
3220                 return -ENOMEM;
3221
3222         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3223          * CCISS commands, so they must be allocated from the lower 4GiB of
3224          * memory.
3225          */
3226         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3227         if (err) {
3228                 iounmap(vaddr);
3229                 return -ENOMEM;
3230         }
3231
3232         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3233         if (cmd == NULL) {
3234                 iounmap(vaddr);
3235                 return -ENOMEM;
3236         }
3237
3238         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3239          * although there's no guarantee, we assume that the address is at
3240          * least 4-byte aligned (most likely, it's page-aligned).
3241          */
3242         paddr32 = paddr64;
3243
3244         cmd->CommandHeader.ReplyQueue = 0;
3245         cmd->CommandHeader.SGList = 0;
3246         cmd->CommandHeader.SGTotal = 0;
3247         cmd->CommandHeader.Tag.lower = paddr32;
3248         cmd->CommandHeader.Tag.upper = 0;
3249         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3250
3251         cmd->Request.CDBLen = 16;
3252         cmd->Request.Type.Type = TYPE_MSG;
3253         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3254         cmd->Request.Type.Direction = XFER_NONE;
3255         cmd->Request.Timeout = 0; /* Don't time out */
3256         cmd->Request.CDB[0] = opcode;
3257         cmd->Request.CDB[1] = type;
3258         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3259         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3260         cmd->ErrorDescriptor.Addr.upper = 0;
3261         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3262
3263         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3264
3265         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3266                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3267                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3268                         break;
3269                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3270         }
3271
3272         iounmap(vaddr);
3273
3274         /* we leak the DMA buffer here ... no choice since the controller could
3275          *  still complete the command.
3276          */
3277         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3278                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3279                         opcode, type);
3280                 return -ETIMEDOUT;
3281         }
3282
3283         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3284
3285         if (tag & HPSA_ERROR_BIT) {
3286                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3287                         opcode, type);
3288                 return -EIO;
3289         }
3290
3291         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3292                 opcode, type);
3293         return 0;
3294 }
3295
3296 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3297
3298 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3299         void * __iomem vaddr, u32 use_doorbell)
3300 {
3301         u16 pmcsr;
3302         int pos;
3303
3304         if (use_doorbell) {
3305                 /* For everything after the P600, the PCI power state method
3306                  * of resetting the controller doesn't work, so we have this
3307                  * other way using the doorbell register.
3308                  */
3309                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3310                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3311         } else { /* Try to do it the PCI power state way */
3312
3313                 /* Quoting from the Open CISS Specification: "The Power
3314                  * Management Control/Status Register (CSR) controls the power
3315                  * state of the device.  The normal operating state is D0,
3316                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3317                  * the controller, place the interface device in D3 then to D0,
3318                  * this causes a secondary PCI reset which will reset the
3319                  * controller." */
3320
3321                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3322                 if (pos == 0) {
3323                         dev_err(&pdev->dev,
3324                                 "hpsa_reset_controller: "
3325                                 "PCI PM not supported\n");
3326                         return -ENODEV;
3327                 }
3328                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3329                 /* enter the D3hot power management state */
3330                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3331                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3332                 pmcsr |= PCI_D3hot;
3333                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3334
3335                 msleep(500);
3336
3337                 /* enter the D0 power management state */
3338                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3339                 pmcsr |= PCI_D0;
3340                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3341
3342                 /*
3343                  * The P600 requires a small delay when changing states.
3344                  * Otherwise we may think the board did not reset and we bail.
3345                  * This for kdump only and is particular to the P600.
3346                  */
3347                 msleep(500);
3348         }
3349         return 0;
3350 }
3351
3352 static __devinit void init_driver_version(char *driver_version, int len)
3353 {
3354         memset(driver_version, 0, len);
3355         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3356 }
3357
3358 static __devinit int write_driver_ver_to_cfgtable(
3359         struct CfgTable __iomem *cfgtable)
3360 {
3361         char *driver_version;
3362         int i, size = sizeof(cfgtable->driver_version);
3363
3364         driver_version = kmalloc(size, GFP_KERNEL);
3365         if (!driver_version)
3366                 return -ENOMEM;
3367
3368         init_driver_version(driver_version, size);
3369         for (i = 0; i < size; i++)
3370                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3371         kfree(driver_version);
3372         return 0;
3373 }
3374
3375 static __devinit void read_driver_ver_from_cfgtable(
3376         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3377 {
3378         int i;
3379
3380         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3381                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3382 }
3383
3384 static __devinit int controller_reset_failed(
3385         struct CfgTable __iomem *cfgtable)
3386 {
3387
3388         char *driver_ver, *old_driver_ver;
3389         int rc, size = sizeof(cfgtable->driver_version);
3390
3391         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3392         if (!old_driver_ver)
3393                 return -ENOMEM;
3394         driver_ver = old_driver_ver + size;
3395
3396         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3397          * should have been changed, otherwise we know the reset failed.
3398          */
3399         init_driver_version(old_driver_ver, size);
3400         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3401         rc = !memcmp(driver_ver, old_driver_ver, size);
3402         kfree(old_driver_ver);
3403         return rc;
3404 }
3405 /* This does a hard reset of the controller using PCI power management
3406  * states or the using the doorbell register.
3407  */
3408 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3409 {
3410         u64 cfg_offset;
3411         u32 cfg_base_addr;
3412         u64 cfg_base_addr_index;
3413         void __iomem *vaddr;
3414         unsigned long paddr;
3415         u32 misc_fw_support;
3416         int rc;
3417         struct CfgTable __iomem *cfgtable;
3418         u32 use_doorbell;
3419         u32 board_id;
3420         u16 command_register;
3421
3422         /* For controllers as old as the P600, this is very nearly
3423          * the same thing as
3424          *
3425          * pci_save_state(pci_dev);
3426          * pci_set_power_state(pci_dev, PCI_D3hot);
3427          * pci_set_power_state(pci_dev, PCI_D0);
3428          * pci_restore_state(pci_dev);
3429          *
3430          * For controllers newer than the P600, the pci power state
3431          * method of resetting doesn't work so we have another way
3432          * using the doorbell register.
3433          */
3434
3435         rc = hpsa_lookup_board_id(pdev, &board_id);
3436         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3437                 dev_warn(&pdev->dev, "Not resetting device.\n");
3438                 return -ENODEV;
3439         }
3440
3441         /* if controller is soft- but not hard resettable... */
3442         if (!ctlr_is_hard_resettable(board_id))
3443                 return -ENOTSUPP; /* try soft reset later. */
3444
3445         /* Save the PCI command register */
3446         pci_read_config_word(pdev, 4, &command_register);
3447         /* Turn the board off.  This is so that later pci_restore_state()
3448          * won't turn the board on before the rest of config space is ready.
3449          */
3450         pci_disable_device(pdev);
3451         pci_save_state(pdev);
3452
3453         /* find the first memory BAR, so we can find the cfg table */
3454         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3455         if (rc)
3456                 return rc;
3457         vaddr = remap_pci_mem(paddr, 0x250);
3458         if (!vaddr)
3459                 return -ENOMEM;
3460
3461         /* find cfgtable in order to check if reset via doorbell is supported */
3462         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3463                                         &cfg_base_addr_index, &cfg_offset);
3464         if (rc)
3465                 goto unmap_vaddr;
3466         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3467                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3468         if (!cfgtable) {
3469                 rc = -ENOMEM;
3470                 goto unmap_vaddr;
3471         }
3472         rc = write_driver_ver_to_cfgtable(cfgtable);
3473         if (rc)
3474                 goto unmap_vaddr;
3475
3476         /* If reset via doorbell register is supported, use that.
3477          * There are two such methods.  Favor the newest method.
3478          */
3479         misc_fw_support = readl(&cfgtable->misc_fw_support);
3480         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3481         if (use_doorbell) {
3482                 use_doorbell = DOORBELL_CTLR_RESET2;
3483         } else {
3484                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3485                 if (use_doorbell) {
3486                         dev_warn(&pdev->dev, "Soft reset not supported. "
3487                                 "Firmware update is required.\n");
3488                         rc = -ENOTSUPP; /* try soft reset */
3489                         goto unmap_cfgtable;
3490                 }
3491         }
3492
3493         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3494         if (rc)
3495                 goto unmap_cfgtable;
3496
3497         pci_restore_state(pdev);
3498         rc = pci_enable_device(pdev);
3499         if (rc) {
3500                 dev_warn(&pdev->dev, "failed to enable device.\n");
3501                 goto unmap_cfgtable;
3502         }
3503         pci_write_config_word(pdev, 4, command_register);
3504
3505         /* Some devices (notably the HP Smart Array 5i Controller)
3506            need a little pause here */
3507         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3508
3509         /* Wait for board to become not ready, then ready. */
3510         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3511         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3512         if (rc) {
3513                 dev_warn(&pdev->dev,
3514                         "failed waiting for board to reset."
3515                         " Will try soft reset.\n");
3516                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3517                 goto unmap_cfgtable;
3518         }
3519         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3520         if (rc) {
3521                 dev_warn(&pdev->dev,
3522                         "failed waiting for board to become ready "
3523                         "after hard reset\n");
3524                 goto unmap_cfgtable;
3525         }
3526
3527         rc = controller_reset_failed(vaddr);
3528         if (rc < 0)
3529                 goto unmap_cfgtable;
3530         if (rc) {
3531                 dev_warn(&pdev->dev, "Unable to successfully reset "
3532                         "controller. Will try soft reset.\n");
3533                 rc = -ENOTSUPP;
3534         } else {
3535                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3536         }
3537
3538 unmap_cfgtable:
3539         iounmap(cfgtable);
3540
3541 unmap_vaddr:
3542         iounmap(vaddr);
3543         return rc;
3544 }
3545
3546 /*
3547  *  We cannot read the structure directly, for portability we must use
3548  *   the io functions.
3549  *   This is for debug only.
3550  */
3551 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3552 {
3553 #ifdef HPSA_DEBUG
3554         int i;
3555         char temp_name[17];
3556
3557         dev_info(dev, "Controller Configuration information\n");
3558         dev_info(dev, "------------------------------------\n");
3559         for (i = 0; i < 4; i++)
3560                 temp_name[i] = readb(&(tb->Signature[i]));
3561         temp_name[4] = '\0';
3562         dev_info(dev, "   Signature = %s\n", temp_name);
3563         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3564         dev_info(dev, "   Transport methods supported = 0x%x\n",
3565                readl(&(tb->TransportSupport)));
3566         dev_info(dev, "   Transport methods active = 0x%x\n",
3567                readl(&(tb->TransportActive)));
3568         dev_info(dev, "   Requested transport Method = 0x%x\n",
3569                readl(&(tb->HostWrite.TransportRequest)));
3570         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3571                readl(&(tb->HostWrite.CoalIntDelay)));
3572         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3573                readl(&(tb->HostWrite.CoalIntCount)));
3574         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3575                readl(&(tb->CmdsOutMax)));
3576         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3577         for (i = 0; i < 16; i++)
3578                 temp_name[i] = readb(&(tb->ServerName[i]));
3579         temp_name[16] = '\0';
3580         dev_info(dev, "   Server Name = %s\n", temp_name);
3581         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3582                 readl(&(tb->HeartBeat)));
3583 #endif                          /* HPSA_DEBUG */
3584 }
3585
3586 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3587 {
3588         int i, offset, mem_type, bar_type;
3589
3590         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3591                 return 0;
3592         offset = 0;
3593         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3594                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3595                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3596                         offset += 4;
3597                 else {
3598                         mem_type = pci_resource_flags(pdev, i) &
3599                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3600                         switch (mem_type) {
3601                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3602                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3603                                 offset += 4;    /* 32 bit */
3604                                 break;
3605                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3606                                 offset += 8;
3607                                 break;
3608                         default:        /* reserved in PCI 2.2 */
3609                                 dev_warn(&pdev->dev,
3610                                        "base address is invalid\n");
3611                                 return -1;
3612                                 break;
3613                         }
3614                 }
3615                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3616                         return i + 1;
3617         }
3618         return -1;
3619 }
3620
3621 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3622  * controllers that are capable. If not, we use IO-APIC mode.
3623  */
3624
3625 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3626 {
3627 #ifdef CONFIG_PCI_MSI
3628         int err;
3629         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3630         {0, 2}, {0, 3}
3631         };
3632
3633         /* Some boards advertise MSI but don't really support it */
3634         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3635             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3636                 goto default_int_mode;
3637         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3638                 dev_info(&h->pdev->dev, "MSIX\n");
3639                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3640                 if (!err) {
3641                         h->intr[0] = hpsa_msix_entries[0].vector;
3642                         h->intr[1] = hpsa_msix_entries[1].vector;
3643                         h->intr[2] = hpsa_msix_entries[2].vector;
3644                         h->intr[3] = hpsa_msix_entries[3].vector;
3645                         h->msix_vector = 1;
3646                         return;
3647                 }
3648                 if (err > 0) {
3649                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3650                                "available\n", err);
3651                         goto default_int_mode;
3652                 } else {
3653                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3654                                err);
3655                         goto default_int_mode;
3656                 }
3657         }
3658         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3659                 dev_info(&h->pdev->dev, "MSI\n");
3660                 if (!pci_enable_msi(h->pdev))
3661                         h->msi_vector = 1;
3662                 else
3663                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3664         }
3665 default_int_mode:
3666 #endif                          /* CONFIG_PCI_MSI */
3667         /* if we get here we're going to use the default interrupt mode */
3668         h->intr[h->intr_mode] = h->pdev->irq;
3669 }
3670
3671 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3672 {
3673         int i;
3674         u32 subsystem_vendor_id, subsystem_device_id;
3675
3676         subsystem_vendor_id = pdev->subsystem_vendor;
3677         subsystem_device_id = pdev->subsystem_device;
3678         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3679                     subsystem_vendor_id;
3680
3681         for (i = 0; i < ARRAY_SIZE(products); i++)
3682                 if (*board_id == products[i].board_id)
3683                         return i;
3684
3685         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3686                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3687                 !hpsa_allow_any) {
3688                 dev_warn(&pdev->dev, "unrecognized board ID: "
3689                         "0x%08x, ignoring.\n", *board_id);
3690                         return -ENODEV;
3691         }
3692         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3693 }
3694
3695 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3696 {
3697         u16 command;
3698
3699         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3700         return ((command & PCI_COMMAND_MEMORY) == 0);
3701 }
3702
3703 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3704         unsigned long *memory_bar)
3705 {
3706         int i;
3707
3708         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3709                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3710                         /* addressing mode bits already removed */
3711                         *memory_bar = pci_resource_start(pdev, i);
3712                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3713                                 *memory_bar);
3714                         return 0;
3715                 }
3716         dev_warn(&pdev->dev, "no memory BAR found\n");
3717         return -ENODEV;
3718 }
3719
3720 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3721         void __iomem *vaddr, int wait_for_ready)
3722 {
3723         int i, iterations;
3724         u32 scratchpad;
3725         if (wait_for_ready)
3726                 iterations = HPSA_BOARD_READY_ITERATIONS;
3727         else
3728                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3729
3730         for (i = 0; i < iterations; i++) {
3731                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3732                 if (wait_for_ready) {
3733                         if (scratchpad == HPSA_FIRMWARE_READY)
3734                                 return 0;
3735                 } else {
3736                         if (scratchpad != HPSA_FIRMWARE_READY)
3737                                 return 0;
3738                 }
3739                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3740         }
3741         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3742         return -ENODEV;
3743 }
3744
3745 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3746         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3747         u64 *cfg_offset)
3748 {
3749         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3750         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3751         *cfg_base_addr &= (u32) 0x0000ffff;
3752         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3753         if (*cfg_base_addr_index == -1) {
3754                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3755                 return -ENODEV;
3756         }
3757         return 0;
3758 }
3759
3760 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3761 {
3762         u64 cfg_offset;
3763         u32 cfg_base_addr;
3764         u64 cfg_base_addr_index;
3765         u32 trans_offset;
3766         int rc;
3767
3768         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3769                 &cfg_base_addr_index, &cfg_offset);
3770         if (rc)
3771                 return rc;
3772         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3773                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3774         if (!h->cfgtable)
3775                 return -ENOMEM;
3776         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3777         if (rc)
3778                 return rc;
3779         /* Find performant mode table. */
3780         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3781         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3782                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3783                                 sizeof(*h->transtable));
3784         if (!h->transtable)
3785                 return -ENOMEM;
3786         return 0;
3787 }
3788
3789 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3790 {
3791         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3792
3793         /* Limit commands in memory limited kdump scenario. */
3794         if (reset_devices && h->max_commands > 32)
3795                 h->max_commands = 32;
3796
3797         if (h->max_commands < 16) {
3798                 dev_warn(&h->pdev->dev, "Controller reports "
3799                         "max supported commands of %d, an obvious lie. "
3800                         "Using 16.  Ensure that firmware is up to date.\n",
3801                         h->max_commands);
3802                 h->max_commands = 16;
3803         }
3804 }
3805
3806 /* Interrogate the hardware for some limits:
3807  * max commands, max SG elements without chaining, and with chaining,
3808  * SG chain block size, etc.
3809  */
3810 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3811 {
3812         hpsa_get_max_perf_mode_cmds(h);
3813         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3814         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3815         /*
3816          * Limit in-command s/g elements to 32 save dma'able memory.
3817          * Howvever spec says if 0, use 31
3818          */
3819         h->max_cmd_sg_entries = 31;
3820         if (h->maxsgentries > 512) {
3821                 h->max_cmd_sg_entries = 32;
3822                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3823                 h->maxsgentries--; /* save one for chain pointer */
3824         } else {
3825                 h->maxsgentries = 31; /* default to traditional values */
3826                 h->chainsize = 0;
3827         }
3828 }
3829
3830 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3831 {
3832         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3833             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3834             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3835             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3836                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3837                 return false;
3838         }
3839         return true;
3840 }
3841
3842 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3843 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3844 {
3845 #ifdef CONFIG_X86
3846         u32 prefetch;
3847
3848         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3849         prefetch |= 0x100;
3850         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3851 #endif
3852 }
3853
3854 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3855  * in a prefetch beyond physical memory.
3856  */
3857 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3858 {
3859         u32 dma_prefetch;
3860
3861         if (h->board_id != 0x3225103C)
3862                 return;
3863         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3864         dma_prefetch |= 0x8000;
3865         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3866 }
3867
3868 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3869 {
3870         int i;
3871         u32 doorbell_value;
3872         unsigned long flags;
3873
3874         /* under certain very rare conditions, this can take awhile.
3875          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3876          * as we enter this code.)
3877          */
3878         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3879                 spin_lock_irqsave(&h->lock, flags);
3880                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3881                 spin_unlock_irqrestore(&h->lock, flags);
3882                 if (!(doorbell_value & CFGTBL_ChangeReq))
3883                         break;
3884                 /* delay and try again */
3885                 usleep_range(10000, 20000);
3886         }
3887 }
3888
3889 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3890 {
3891         u32 trans_support;
3892
3893         trans_support = readl(&(h->cfgtable->TransportSupport));
3894         if (!(trans_support & SIMPLE_MODE))
3895                 return -ENOTSUPP;
3896
3897         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3898         /* Update the field, and then ring the doorbell */
3899         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3900         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3901         hpsa_wait_for_mode_change_ack(h);
3902         print_cfg_table(&h->pdev->dev, h->cfgtable);
3903         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3904                 dev_warn(&h->pdev->dev,
3905                         "unable to get board into simple mode\n");
3906                 return -ENODEV;
3907         }
3908         h->transMethod = CFGTBL_Trans_Simple;
3909         return 0;
3910 }
3911
3912 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3913 {
3914         int prod_index, err;
3915
3916         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3917         if (prod_index < 0)
3918                 return -ENODEV;
3919         h->product_name = products[prod_index].product_name;
3920         h->access = *(products[prod_index].access);
3921
3922         if (hpsa_board_disabled(h->pdev)) {
3923                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3924                 return -ENODEV;
3925         }
3926
3927         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3928                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3929
3930         err = pci_enable_device(h->pdev);
3931         if (err) {
3932                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3933                 return err;
3934         }
3935
3936         err = pci_request_regions(h->pdev, "hpsa");
3937         if (err) {
3938                 dev_err(&h->pdev->dev,
3939                         "cannot obtain PCI resources, aborting\n");
3940                 return err;
3941         }
3942         hpsa_interrupt_mode(h);
3943         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3944         if (err)
3945                 goto err_out_free_res;
3946         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3947         if (!h->vaddr) {
3948                 err = -ENOMEM;
3949                 goto err_out_free_res;
3950         }
3951         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3952         if (err)
3953                 goto err_out_free_res;
3954         err = hpsa_find_cfgtables(h);
3955         if (err)
3956                 goto err_out_free_res;
3957         hpsa_find_board_params(h);
3958
3959         if (!hpsa_CISS_signature_present(h)) {
3960                 err = -ENODEV;
3961                 goto err_out_free_res;
3962         }
3963         hpsa_enable_scsi_prefetch(h);
3964         hpsa_p600_dma_prefetch_quirk(h);
3965         err = hpsa_enter_simple_mode(h);
3966         if (err)
3967                 goto err_out_free_res;
3968         return 0;
3969
3970 err_out_free_res:
3971         if (h->transtable)
3972                 iounmap(h->transtable);
3973         if (h->cfgtable)
3974                 iounmap(h->cfgtable);
3975         if (h->vaddr)
3976                 iounmap(h->vaddr);
3977         /*
3978          * Deliberately omit pci_disable_device(): it does something nasty to
3979          * Smart Array controllers that pci_enable_device does not undo
3980          */
3981         pci_release_regions(h->pdev);
3982         return err;
3983 }
3984
3985 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3986 {
3987         int rc;
3988
3989 #define HBA_INQUIRY_BYTE_COUNT 64
3990         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3991         if (!h->hba_inquiry_data)
3992                 return;
3993         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3994                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3995         if (rc != 0) {
3996                 kfree(h->hba_inquiry_data);
3997                 h->hba_inquiry_data = NULL;
3998         }
3999 }
4000
4001 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4002 {
4003         int rc, i;
4004
4005         if (!reset_devices)
4006                 return 0;
4007
4008         /* Reset the controller with a PCI power-cycle or via doorbell */
4009         rc = hpsa_kdump_hard_reset_controller(pdev);
4010
4011         /* -ENOTSUPP here means we cannot reset the controller
4012          * but it's already (and still) up and running in
4013          * "performant mode".  Or, it might be 640x, which can't reset
4014          * due to concerns about shared bbwc between 6402/6404 pair.
4015          */
4016         if (rc == -ENOTSUPP)
4017                 return rc; /* just try to do the kdump anyhow. */
4018         if (rc)
4019                 return -ENODEV;
4020
4021         /* Now try to get the controller to respond to a no-op */
4022         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4023         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4024                 if (hpsa_noop(pdev) == 0)
4025                         break;
4026                 else
4027                         dev_warn(&pdev->dev, "no-op failed%s\n",
4028                                         (i < 11 ? "; re-trying" : ""));
4029         }
4030         return 0;
4031 }
4032
4033 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4034 {
4035         h->cmd_pool_bits = kzalloc(
4036                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4037                 sizeof(unsigned long), GFP_KERNEL);
4038         h->cmd_pool = pci_alloc_consistent(h->pdev,
4039                     h->nr_cmds * sizeof(*h->cmd_pool),
4040                     &(h->cmd_pool_dhandle));
4041         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4042                     h->nr_cmds * sizeof(*h->errinfo_pool),
4043                     &(h->errinfo_pool_dhandle));
4044         if ((h->cmd_pool_bits == NULL)
4045             || (h->cmd_pool == NULL)
4046             || (h->errinfo_pool == NULL)) {
4047                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4048                 return -ENOMEM;
4049         }
4050         return 0;
4051 }
4052
4053 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4054 {
4055         kfree(h->cmd_pool_bits);
4056         if (h->cmd_pool)
4057                 pci_free_consistent(h->pdev,
4058                             h->nr_cmds * sizeof(struct CommandList),
4059                             h->cmd_pool, h->cmd_pool_dhandle);
4060         if (h->errinfo_pool)
4061                 pci_free_consistent(h->pdev,
4062                             h->nr_cmds * sizeof(struct ErrorInfo),
4063                             h->errinfo_pool,
4064                             h->errinfo_pool_dhandle);
4065 }
4066
4067 static int hpsa_request_irq(struct ctlr_info *h,
4068         irqreturn_t (*msixhandler)(int, void *),
4069         irqreturn_t (*intxhandler)(int, void *))
4070 {
4071         int rc;
4072
4073         if (h->msix_vector || h->msi_vector)
4074                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4075                                 IRQF_DISABLED, h->devname, h);
4076         else
4077                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4078                                 IRQF_DISABLED, h->devname, h);
4079         if (rc) {
4080                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4081                        h->intr[h->intr_mode], h->devname);
4082                 return -ENODEV;
4083         }
4084         return 0;
4085 }
4086
4087 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4088 {
4089         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4090                 HPSA_RESET_TYPE_CONTROLLER)) {
4091                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4092                 return -EIO;
4093         }
4094
4095         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4096         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4097                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4098                 return -1;
4099         }
4100
4101         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4102         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4103                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4104                         "after soft reset.\n");
4105                 return -1;
4106         }
4107
4108         return 0;
4109 }
4110
4111 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4112 {
4113         free_irq(h->intr[h->intr_mode], h);
4114 #ifdef CONFIG_PCI_MSI
4115         if (h->msix_vector)
4116                 pci_disable_msix(h->pdev);
4117         else if (h->msi_vector)
4118                 pci_disable_msi(h->pdev);
4119 #endif /* CONFIG_PCI_MSI */
4120         hpsa_free_sg_chain_blocks(h);
4121         hpsa_free_cmd_pool(h);
4122         kfree(h->blockFetchTable);
4123         pci_free_consistent(h->pdev, h->reply_pool_size,
4124                 h->reply_pool, h->reply_pool_dhandle);
4125         if (h->vaddr)
4126                 iounmap(h->vaddr);
4127         if (h->transtable)
4128                 iounmap(h->transtable);
4129         if (h->cfgtable)
4130                 iounmap(h->cfgtable);
4131         pci_release_regions(h->pdev);
4132         kfree(h);
4133 }
4134
4135 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4136 {
4137         assert_spin_locked(&lockup_detector_lock);
4138         if (!hpsa_lockup_detector)
4139                 return;
4140         if (h->lockup_detected)
4141                 return; /* already stopped the lockup detector */
4142         list_del(&h->lockup_list);
4143 }
4144
4145 /* Called when controller lockup detected. */
4146 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4147 {
4148         struct CommandList *c = NULL;
4149
4150         assert_spin_locked(&h->lock);
4151         /* Mark all outstanding commands as failed and complete them. */
4152         while (!list_empty(list)) {
4153                 c = list_entry(list->next, struct CommandList, list);
4154                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4155                 finish_cmd(c, c->Header.Tag.lower);
4156         }
4157 }
4158
4159 static void controller_lockup_detected(struct ctlr_info *h)
4160 {
4161         unsigned long flags;
4162
4163         assert_spin_locked(&lockup_detector_lock);
4164         remove_ctlr_from_lockup_detector_list(h);
4165         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4166         spin_lock_irqsave(&h->lock, flags);
4167         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4168         spin_unlock_irqrestore(&h->lock, flags);
4169         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4170                         h->lockup_detected);
4171         pci_disable_device(h->pdev);
4172         spin_lock_irqsave(&h->lock, flags);
4173         fail_all_cmds_on_list(h, &h->cmpQ);
4174         fail_all_cmds_on_list(h, &h->reqQ);
4175         spin_unlock_irqrestore(&h->lock, flags);
4176 }
4177
4178 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4179 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4180
4181 static void detect_controller_lockup(struct ctlr_info *h)
4182 {
4183         u64 now;
4184         u32 heartbeat;
4185         unsigned long flags;
4186
4187         assert_spin_locked(&lockup_detector_lock);
4188         now = get_jiffies_64();
4189         /* If we've received an interrupt recently, we're ok. */
4190         if (time_after64(h->last_intr_timestamp +
4191                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4192                 return;
4193
4194         /*
4195          * If we've already checked the heartbeat recently, we're ok.
4196          * This could happen if someone sends us a signal. We
4197          * otherwise don't care about signals in this thread.
4198          */
4199         if (time_after64(h->last_heartbeat_timestamp +
4200                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4201                 return;
4202
4203         /* If heartbeat has not changed since we last looked, we're not ok. */
4204         spin_lock_irqsave(&h->lock, flags);
4205         heartbeat = readl(&h->cfgtable->HeartBeat);
4206         spin_unlock_irqrestore(&h->lock, flags);
4207         if (h->last_heartbeat == heartbeat) {
4208                 controller_lockup_detected(h);
4209                 return;
4210         }
4211
4212         /* We're ok. */
4213         h->last_heartbeat = heartbeat;
4214         h->last_heartbeat_timestamp = now;
4215 }
4216
4217 static int detect_controller_lockup_thread(void *notused)
4218 {
4219         struct ctlr_info *h;
4220         unsigned long flags;
4221
4222         while (1) {
4223                 struct list_head *this, *tmp;
4224
4225                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4226                 if (kthread_should_stop())
4227                         break;
4228                 spin_lock_irqsave(&lockup_detector_lock, flags);
4229                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4230                         h = list_entry(this, struct ctlr_info, lockup_list);
4231                         detect_controller_lockup(h);
4232                 }
4233                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4234         }
4235         return 0;
4236 }
4237
4238 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4239 {
4240         unsigned long flags;
4241
4242         spin_lock_irqsave(&lockup_detector_lock, flags);
4243         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4244         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4245 }
4246
4247 static void start_controller_lockup_detector(struct ctlr_info *h)
4248 {
4249         /* Start the lockup detector thread if not already started */
4250         if (!hpsa_lockup_detector) {
4251                 spin_lock_init(&lockup_detector_lock);
4252                 hpsa_lockup_detector =
4253                         kthread_run(detect_controller_lockup_thread,
4254                                                 NULL, "hpsa");
4255         }
4256         if (!hpsa_lockup_detector) {
4257                 dev_warn(&h->pdev->dev,
4258                         "Could not start lockup detector thread\n");
4259                 return;
4260         }
4261         add_ctlr_to_lockup_detector_list(h);
4262 }
4263
4264 static void stop_controller_lockup_detector(struct ctlr_info *h)
4265 {
4266         unsigned long flags;
4267
4268         spin_lock_irqsave(&lockup_detector_lock, flags);
4269         remove_ctlr_from_lockup_detector_list(h);
4270         /* If the list of ctlr's to monitor is empty, stop the thread */
4271         if (list_empty(&hpsa_ctlr_list)) {
4272                 kthread_stop(hpsa_lockup_detector);
4273                 hpsa_lockup_detector = NULL;
4274         }
4275         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4276 }
4277
4278 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4279                                     const struct pci_device_id *ent)
4280 {
4281         int dac, rc;
4282         struct ctlr_info *h;
4283         int try_soft_reset = 0;
4284         unsigned long flags;
4285
4286         if (number_of_controllers == 0)
4287                 printk(KERN_INFO DRIVER_NAME "\n");
4288
4289         rc = hpsa_init_reset_devices(pdev);
4290         if (rc) {
4291                 if (rc != -ENOTSUPP)
4292                         return rc;
4293                 /* If the reset fails in a particular way (it has no way to do
4294                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4295                  * a soft reset once we get the controller configured up to the
4296                  * point that it can accept a command.
4297                  */
4298                 try_soft_reset = 1;
4299                 rc = 0;
4300         }
4301
4302 reinit_after_soft_reset:
4303
4304         /* Command structures must be aligned on a 32-byte boundary because
4305          * the 5 lower bits of the address are used by the hardware. and by
4306          * the driver.  See comments in hpsa.h for more info.
4307          */
4308 #define COMMANDLIST_ALIGNMENT 32
4309         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4310         h = kzalloc(sizeof(*h), GFP_KERNEL);
4311         if (!h)
4312                 return -ENOMEM;
4313
4314         h->pdev = pdev;
4315         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4316         INIT_LIST_HEAD(&h->cmpQ);
4317         INIT_LIST_HEAD(&h->reqQ);
4318         spin_lock_init(&h->lock);
4319         spin_lock_init(&h->scan_lock);
4320         rc = hpsa_pci_init(h);
4321         if (rc != 0)
4322                 goto clean1;
4323
4324         sprintf(h->devname, "hpsa%d", number_of_controllers);
4325         h->ctlr = number_of_controllers;
4326         number_of_controllers++;
4327
4328         /* configure PCI DMA stuff */
4329         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4330         if (rc == 0) {
4331                 dac = 1;
4332         } else {
4333                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4334                 if (rc == 0) {
4335                         dac = 0;
4336                 } else {
4337                         dev_err(&pdev->dev, "no suitable DMA available\n");
4338                         goto clean1;
4339                 }
4340         }
4341
4342         /* make sure the board interrupts are off */
4343         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4344
4345         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4346                 goto clean2;
4347         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4348                h->devname, pdev->device,
4349                h->intr[h->intr_mode], dac ? "" : " not");
4350         if (hpsa_allocate_cmd_pool(h))
4351                 goto clean4;
4352         if (hpsa_allocate_sg_chain_blocks(h))
4353                 goto clean4;
4354         init_waitqueue_head(&h->scan_wait_queue);
4355         h->scan_finished = 1; /* no scan currently in progress */
4356
4357         pci_set_drvdata(pdev, h);
4358         h->ndevices = 0;
4359         h->scsi_host = NULL;
4360         spin_lock_init(&h->devlock);
4361         hpsa_put_ctlr_into_performant_mode(h);
4362
4363         /* At this point, the controller is ready to take commands.
4364          * Now, if reset_devices and the hard reset didn't work, try
4365          * the soft reset and see if that works.
4366          */
4367         if (try_soft_reset) {
4368
4369                 /* This is kind of gross.  We may or may not get a completion
4370                  * from the soft reset command, and if we do, then the value
4371                  * from the fifo may or may not be valid.  So, we wait 10 secs
4372                  * after the reset throwing away any completions we get during
4373                  * that time.  Unregister the interrupt handler and register
4374                  * fake ones to scoop up any residual completions.
4375                  */
4376                 spin_lock_irqsave(&h->lock, flags);
4377                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4378                 spin_unlock_irqrestore(&h->lock, flags);
4379                 free_irq(h->intr[h->intr_mode], h);
4380                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4381                                         hpsa_intx_discard_completions);
4382                 if (rc) {
4383                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4384                                 "soft reset.\n");
4385                         goto clean4;
4386                 }
4387
4388                 rc = hpsa_kdump_soft_reset(h);
4389                 if (rc)
4390                         /* Neither hard nor soft reset worked, we're hosed. */
4391                         goto clean4;
4392
4393                 dev_info(&h->pdev->dev, "Board READY.\n");
4394                 dev_info(&h->pdev->dev,
4395                         "Waiting for stale completions to drain.\n");
4396                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4397                 msleep(10000);
4398                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4399
4400                 rc = controller_reset_failed(h->cfgtable);
4401                 if (rc)
4402                         dev_info(&h->pdev->dev,
4403                                 "Soft reset appears to have failed.\n");
4404
4405                 /* since the controller's reset, we have to go back and re-init
4406                  * everything.  Easiest to just forget what we've done and do it
4407                  * all over again.
4408                  */
4409                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4410                 try_soft_reset = 0;
4411                 if (rc)
4412                         /* don't go to clean4, we already unallocated */
4413                         return -ENODEV;
4414
4415                 goto reinit_after_soft_reset;
4416         }
4417
4418         /* Turn the interrupts on so we can service requests */
4419         h->access.set_intr_mask(h, HPSA_INTR_ON);
4420
4421         hpsa_hba_inquiry(h);
4422         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4423         start_controller_lockup_detector(h);
4424         return 1;
4425
4426 clean4:
4427         hpsa_free_sg_chain_blocks(h);
4428         hpsa_free_cmd_pool(h);
4429         free_irq(h->intr[h->intr_mode], h);
4430 clean2:
4431 clean1:
4432         kfree(h);
4433         return rc;
4434 }
4435
4436 static void hpsa_flush_cache(struct ctlr_info *h)
4437 {
4438         char *flush_buf;
4439         struct CommandList *c;
4440
4441         flush_buf = kzalloc(4, GFP_KERNEL);
4442         if (!flush_buf)
4443                 return;
4444
4445         c = cmd_special_alloc(h);
4446         if (!c) {
4447                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4448                 goto out_of_memory;
4449         }
4450         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4451                 RAID_CTLR_LUNID, TYPE_CMD);
4452         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4453         if (c->err_info->CommandStatus != 0)
4454                 dev_warn(&h->pdev->dev,
4455                         "error flushing cache on controller\n");
4456         cmd_special_free(h, c);
4457 out_of_memory:
4458         kfree(flush_buf);
4459 }
4460
4461 static void hpsa_shutdown(struct pci_dev *pdev)
4462 {
4463         struct ctlr_info *h;
4464
4465         h = pci_get_drvdata(pdev);
4466         /* Turn board interrupts off  and send the flush cache command
4467          * sendcmd will turn off interrupt, and send the flush...
4468          * To write all data in the battery backed cache to disks
4469          */
4470         hpsa_flush_cache(h);
4471         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4472         free_irq(h->intr[h->intr_mode], h);
4473 #ifdef CONFIG_PCI_MSI
4474         if (h->msix_vector)
4475                 pci_disable_msix(h->pdev);
4476         else if (h->msi_vector)
4477                 pci_disable_msi(h->pdev);
4478 #endif                          /* CONFIG_PCI_MSI */
4479 }
4480
4481 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4482 {
4483         struct ctlr_info *h;
4484
4485         if (pci_get_drvdata(pdev) == NULL) {
4486                 dev_err(&pdev->dev, "unable to remove device\n");
4487                 return;
4488         }
4489         h = pci_get_drvdata(pdev);
4490         stop_controller_lockup_detector(h);
4491         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4492         hpsa_shutdown(pdev);
4493         iounmap(h->vaddr);
4494         iounmap(h->transtable);
4495         iounmap(h->cfgtable);
4496         hpsa_free_sg_chain_blocks(h);
4497         pci_free_consistent(h->pdev,
4498                 h->nr_cmds * sizeof(struct CommandList),
4499                 h->cmd_pool, h->cmd_pool_dhandle);
4500         pci_free_consistent(h->pdev,
4501                 h->nr_cmds * sizeof(struct ErrorInfo),
4502                 h->errinfo_pool, h->errinfo_pool_dhandle);
4503         pci_free_consistent(h->pdev, h->reply_pool_size,
4504                 h->reply_pool, h->reply_pool_dhandle);
4505         kfree(h->cmd_pool_bits);
4506         kfree(h->blockFetchTable);
4507         kfree(h->hba_inquiry_data);
4508         /*
4509          * Deliberately omit pci_disable_device(): it does something nasty to
4510          * Smart Array controllers that pci_enable_device does not undo
4511          */
4512         pci_release_regions(pdev);
4513         pci_set_drvdata(pdev, NULL);
4514         kfree(h);
4515 }
4516
4517 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4518         __attribute__((unused)) pm_message_t state)
4519 {
4520         return -ENOSYS;
4521 }
4522
4523 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4524 {
4525         return -ENOSYS;
4526 }
4527
4528 static struct pci_driver hpsa_pci_driver = {
4529         .name = "hpsa",
4530         .probe = hpsa_init_one,
4531         .remove = __devexit_p(hpsa_remove_one),
4532         .id_table = hpsa_pci_device_id, /* id_table */
4533         .shutdown = hpsa_shutdown,
4534         .suspend = hpsa_suspend,
4535         .resume = hpsa_resume,
4536 };
4537
4538 /* Fill in bucket_map[], given nsgs (the max number of
4539  * scatter gather elements supported) and bucket[],
4540  * which is an array of 8 integers.  The bucket[] array
4541  * contains 8 different DMA transfer sizes (in 16
4542  * byte increments) which the controller uses to fetch
4543  * commands.  This function fills in bucket_map[], which
4544  * maps a given number of scatter gather elements to one of
4545  * the 8 DMA transfer sizes.  The point of it is to allow the
4546  * controller to only do as much DMA as needed to fetch the
4547  * command, with the DMA transfer size encoded in the lower
4548  * bits of the command address.
4549  */
4550 static void  calc_bucket_map(int bucket[], int num_buckets,
4551         int nsgs, int *bucket_map)
4552 {
4553         int i, j, b, size;
4554
4555         /* even a command with 0 SGs requires 4 blocks */
4556 #define MINIMUM_TRANSFER_BLOCKS 4
4557 #define NUM_BUCKETS 8
4558         /* Note, bucket_map must have nsgs+1 entries. */
4559         for (i = 0; i <= nsgs; i++) {
4560                 /* Compute size of a command with i SG entries */
4561                 size = i + MINIMUM_TRANSFER_BLOCKS;
4562                 b = num_buckets; /* Assume the biggest bucket */
4563                 /* Find the bucket that is just big enough */
4564                 for (j = 0; j < 8; j++) {
4565                         if (bucket[j] >= size) {
4566                                 b = j;
4567                                 break;
4568                         }
4569                 }
4570                 /* for a command with i SG entries, use bucket b. */
4571                 bucket_map[i] = b;
4572         }
4573 }
4574
4575 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4576         u32 use_short_tags)
4577 {
4578         int i;
4579         unsigned long register_value;
4580
4581         /* This is a bit complicated.  There are 8 registers on
4582          * the controller which we write to to tell it 8 different
4583          * sizes of commands which there may be.  It's a way of
4584          * reducing the DMA done to fetch each command.  Encoded into
4585          * each command's tag are 3 bits which communicate to the controller
4586          * which of the eight sizes that command fits within.  The size of
4587          * each command depends on how many scatter gather entries there are.
4588          * Each SG entry requires 16 bytes.  The eight registers are programmed
4589          * with the number of 16-byte blocks a command of that size requires.
4590          * The smallest command possible requires 5 such 16 byte blocks.
4591          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4592          * blocks.  Note, this only extends to the SG entries contained
4593          * within the command block, and does not extend to chained blocks
4594          * of SG elements.   bft[] contains the eight values we write to
4595          * the registers.  They are not evenly distributed, but have more
4596          * sizes for small commands, and fewer sizes for larger commands.
4597          */
4598         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4599         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4600         /*  5 = 1 s/g entry or 4k
4601          *  6 = 2 s/g entry or 8k
4602          *  8 = 4 s/g entry or 16k
4603          * 10 = 6 s/g entry or 24k
4604          */
4605
4606         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4607
4608         /* Controller spec: zero out this buffer. */
4609         memset(h->reply_pool, 0, h->reply_pool_size);
4610         h->reply_pool_head = h->reply_pool;
4611
4612         bft[7] = h->max_sg_entries + 4;
4613         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4614         for (i = 0; i < 8; i++)
4615                 writel(bft[i], &h->transtable->BlockFetch[i]);
4616
4617         /* size of controller ring buffer */
4618         writel(h->max_commands, &h->transtable->RepQSize);
4619         writel(1, &h->transtable->RepQCount);
4620         writel(0, &h->transtable->RepQCtrAddrLow32);
4621         writel(0, &h->transtable->RepQCtrAddrHigh32);
4622         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4623         writel(0, &h->transtable->RepQAddr0High32);
4624         writel(CFGTBL_Trans_Performant | use_short_tags,
4625                 &(h->cfgtable->HostWrite.TransportRequest));
4626         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4627         hpsa_wait_for_mode_change_ack(h);
4628         register_value = readl(&(h->cfgtable->TransportActive));
4629         if (!(register_value & CFGTBL_Trans_Performant)) {
4630                 dev_warn(&h->pdev->dev, "unable to get board into"
4631                                         " performant mode\n");
4632                 return;
4633         }
4634         /* Change the access methods to the performant access methods */
4635         h->access = SA5_performant_access;
4636         h->transMethod = CFGTBL_Trans_Performant;
4637 }
4638
4639 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4640 {
4641         u32 trans_support;
4642
4643         if (hpsa_simple_mode)
4644                 return;
4645
4646         trans_support = readl(&(h->cfgtable->TransportSupport));
4647         if (!(trans_support & PERFORMANT_MODE))
4648                 return;
4649
4650         hpsa_get_max_perf_mode_cmds(h);
4651         h->max_sg_entries = 32;
4652         /* Performant mode ring buffer and supporting data structures */
4653         h->reply_pool_size = h->max_commands * sizeof(u64);
4654         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4655                                 &(h->reply_pool_dhandle));
4656
4657         /* Need a block fetch table for performant mode */
4658         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4659                                 sizeof(u32)), GFP_KERNEL);
4660
4661         if ((h->reply_pool == NULL)
4662                 || (h->blockFetchTable == NULL))
4663                 goto clean_up;
4664
4665         hpsa_enter_performant_mode(h,
4666                 trans_support & CFGTBL_Trans_use_short_tags);
4667
4668         return;
4669
4670 clean_up:
4671         if (h->reply_pool)
4672                 pci_free_consistent(h->pdev, h->reply_pool_size,
4673                         h->reply_pool, h->reply_pool_dhandle);
4674         kfree(h->blockFetchTable);
4675 }
4676
4677 /*
4678  *  This is it.  Register the PCI driver information for the cards we control
4679  *  the OS will call our registered routines when it finds one of our cards.
4680  */
4681 static int __init hpsa_init(void)
4682 {
4683         return pci_register_driver(&hpsa_pci_driver);
4684 }
4685
4686 static void __exit hpsa_cleanup(void)
4687 {
4688         pci_unregister_driver(&hpsa_pci_driver);
4689 }
4690
4691 module_init(hpsa_init);
4692 module_exit(hpsa_cleanup);