Merge branch 'next' into for-linus-3.0
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be hard reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 /* List of controllers which cannot even be soft reset */
295 static u32 soft_unresettable_controller[] = {
296         /* Exclude 640x boards.  These are two pci devices in one slot
297          * which share a battery backed cache module.  One controls the
298          * cache, the other accesses the cache through the one that controls
299          * it.  If we reset the one controlling the cache, the other will
300          * likely not be happy.  Just forbid resetting this conjoined mess.
301          * The 640x isn't really supported by hpsa anyway.
302          */
303         0x409C0E11, /* Smart Array 6400 */
304         0x409D0E11, /* Smart Array 6400 EM */
305 };
306
307 static int ctlr_is_hard_resettable(u32 board_id)
308 {
309         int i;
310
311         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
312                 if (unresettable_controller[i] == board_id)
313                         return 0;
314         return 1;
315 }
316
317 static int ctlr_is_soft_resettable(u32 board_id)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
322                 if (soft_unresettable_controller[i] == board_id)
323                         return 0;
324         return 1;
325 }
326
327 static int ctlr_is_resettable(u32 board_id)
328 {
329         return ctlr_is_hard_resettable(board_id) ||
330                 ctlr_is_soft_resettable(board_id);
331 }
332
333 static ssize_t host_show_resettable(struct device *dev,
334         struct device_attribute *attr, char *buf)
335 {
336         struct ctlr_info *h;
337         struct Scsi_Host *shost = class_to_shost(dev);
338
339         h = shost_to_hba(shost);
340         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
341 }
342
343 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
344 {
345         return (scsi3addr[3] & 0xC0) == 0x40;
346 }
347
348 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
349         "UNKNOWN"
350 };
351 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
352
353 static ssize_t raid_level_show(struct device *dev,
354              struct device_attribute *attr, char *buf)
355 {
356         ssize_t l = 0;
357         unsigned char rlevel;
358         struct ctlr_info *h;
359         struct scsi_device *sdev;
360         struct hpsa_scsi_dev_t *hdev;
361         unsigned long flags;
362
363         sdev = to_scsi_device(dev);
364         h = sdev_to_hba(sdev);
365         spin_lock_irqsave(&h->lock, flags);
366         hdev = sdev->hostdata;
367         if (!hdev) {
368                 spin_unlock_irqrestore(&h->lock, flags);
369                 return -ENODEV;
370         }
371
372         /* Is this even a logical drive? */
373         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
376                 return l;
377         }
378
379         rlevel = hdev->raid_level;
380         spin_unlock_irqrestore(&h->lock, flags);
381         if (rlevel > RAID_UNKNOWN)
382                 rlevel = RAID_UNKNOWN;
383         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
384         return l;
385 }
386
387 static ssize_t lunid_show(struct device *dev,
388              struct device_attribute *attr, char *buf)
389 {
390         struct ctlr_info *h;
391         struct scsi_device *sdev;
392         struct hpsa_scsi_dev_t *hdev;
393         unsigned long flags;
394         unsigned char lunid[8];
395
396         sdev = to_scsi_device(dev);
397         h = sdev_to_hba(sdev);
398         spin_lock_irqsave(&h->lock, flags);
399         hdev = sdev->hostdata;
400         if (!hdev) {
401                 spin_unlock_irqrestore(&h->lock, flags);
402                 return -ENODEV;
403         }
404         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
405         spin_unlock_irqrestore(&h->lock, flags);
406         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
407                 lunid[0], lunid[1], lunid[2], lunid[3],
408                 lunid[4], lunid[5], lunid[6], lunid[7]);
409 }
410
411 static ssize_t unique_id_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char sn[16];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(sn, hdev->device_id, sizeof(sn));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 16 * 2 + 2,
431                         "%02X%02X%02X%02X%02X%02X%02X%02X"
432                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
433                         sn[0], sn[1], sn[2], sn[3],
434                         sn[4], sn[5], sn[6], sn[7],
435                         sn[8], sn[9], sn[10], sn[11],
436                         sn[12], sn[13], sn[14], sn[15]);
437 }
438
439 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
440 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
441 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
442 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
443 static DEVICE_ATTR(firmware_revision, S_IRUGO,
444         host_show_firmware_revision, NULL);
445 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
446         host_show_commands_outstanding, NULL);
447 static DEVICE_ATTR(transport_mode, S_IRUGO,
448         host_show_transport_mode, NULL);
449 static DEVICE_ATTR(resettable, S_IRUGO,
450         host_show_resettable, NULL);
451
452 static struct device_attribute *hpsa_sdev_attrs[] = {
453         &dev_attr_raid_level,
454         &dev_attr_lunid,
455         &dev_attr_unique_id,
456         NULL,
457 };
458
459 static struct device_attribute *hpsa_shost_attrs[] = {
460         &dev_attr_rescan,
461         &dev_attr_firmware_revision,
462         &dev_attr_commands_outstanding,
463         &dev_attr_transport_mode,
464         &dev_attr_resettable,
465         NULL,
466 };
467
468 static struct scsi_host_template hpsa_driver_template = {
469         .module                 = THIS_MODULE,
470         .name                   = "hpsa",
471         .proc_name              = "hpsa",
472         .queuecommand           = hpsa_scsi_queue_command,
473         .scan_start             = hpsa_scan_start,
474         .scan_finished          = hpsa_scan_finished,
475         .change_queue_depth     = hpsa_change_queue_depth,
476         .this_id                = -1,
477         .use_clustering         = ENABLE_CLUSTERING,
478         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
479         .ioctl                  = hpsa_ioctl,
480         .slave_alloc            = hpsa_slave_alloc,
481         .slave_destroy          = hpsa_slave_destroy,
482 #ifdef CONFIG_COMPAT
483         .compat_ioctl           = hpsa_compat_ioctl,
484 #endif
485         .sdev_attrs = hpsa_sdev_attrs,
486         .shost_attrs = hpsa_shost_attrs,
487 };
488
489
490 /* Enqueuing and dequeuing functions for cmdlists. */
491 static inline void addQ(struct list_head *list, struct CommandList *c)
492 {
493         list_add_tail(&c->list, list);
494 }
495
496 static inline u32 next_command(struct ctlr_info *h)
497 {
498         u32 a;
499
500         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
501                 return h->access.command_completed(h);
502
503         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
504                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
505                 (h->reply_pool_head)++;
506                 h->commands_outstanding--;
507         } else {
508                 a = FIFO_EMPTY;
509         }
510         /* Check for wraparound */
511         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
512                 h->reply_pool_head = h->reply_pool;
513                 h->reply_pool_wraparound ^= 1;
514         }
515         return a;
516 }
517
518 /* set_performant_mode: Modify the tag for cciss performant
519  * set bit 0 for pull model, bits 3-1 for block fetch
520  * register number
521  */
522 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
523 {
524         if (likely(h->transMethod & CFGTBL_Trans_Performant))
525                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
526 }
527
528 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
529         struct CommandList *c)
530 {
531         unsigned long flags;
532
533         set_performant_mode(h, c);
534         spin_lock_irqsave(&h->lock, flags);
535         addQ(&h->reqQ, c);
536         h->Qdepth++;
537         start_io(h);
538         spin_unlock_irqrestore(&h->lock, flags);
539 }
540
541 static inline void removeQ(struct CommandList *c)
542 {
543         if (WARN_ON(list_empty(&c->list)))
544                 return;
545         list_del_init(&c->list);
546 }
547
548 static inline int is_hba_lunid(unsigned char scsi3addr[])
549 {
550         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
551 }
552
553 static inline int is_scsi_rev_5(struct ctlr_info *h)
554 {
555         if (!h->hba_inquiry_data)
556                 return 0;
557         if ((h->hba_inquiry_data[2] & 0x07) == 5)
558                 return 1;
559         return 0;
560 }
561
562 static int hpsa_find_target_lun(struct ctlr_info *h,
563         unsigned char scsi3addr[], int bus, int *target, int *lun)
564 {
565         /* finds an unused bus, target, lun for a new physical device
566          * assumes h->devlock is held
567          */
568         int i, found = 0;
569         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
570
571         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
572
573         for (i = 0; i < h->ndevices; i++) {
574                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
575                         set_bit(h->dev[i]->target, lun_taken);
576         }
577
578         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
579                 if (!test_bit(i, lun_taken)) {
580                         /* *bus = 1; */
581                         *target = i;
582                         *lun = 0;
583                         found = 1;
584                         break;
585                 }
586         }
587         return !found;
588 }
589
590 /* Add an entry into h->dev[] array. */
591 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
592                 struct hpsa_scsi_dev_t *device,
593                 struct hpsa_scsi_dev_t *added[], int *nadded)
594 {
595         /* assumes h->devlock is held */
596         int n = h->ndevices;
597         int i;
598         unsigned char addr1[8], addr2[8];
599         struct hpsa_scsi_dev_t *sd;
600
601         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
602                 dev_err(&h->pdev->dev, "too many devices, some will be "
603                         "inaccessible.\n");
604                 return -1;
605         }
606
607         /* physical devices do not have lun or target assigned until now. */
608         if (device->lun != -1)
609                 /* Logical device, lun is already assigned. */
610                 goto lun_assigned;
611
612         /* If this device a non-zero lun of a multi-lun device
613          * byte 4 of the 8-byte LUN addr will contain the logical
614          * unit no, zero otherise.
615          */
616         if (device->scsi3addr[4] == 0) {
617                 /* This is not a non-zero lun of a multi-lun device */
618                 if (hpsa_find_target_lun(h, device->scsi3addr,
619                         device->bus, &device->target, &device->lun) != 0)
620                         return -1;
621                 goto lun_assigned;
622         }
623
624         /* This is a non-zero lun of a multi-lun device.
625          * Search through our list and find the device which
626          * has the same 8 byte LUN address, excepting byte 4.
627          * Assign the same bus and target for this new LUN.
628          * Use the logical unit number from the firmware.
629          */
630         memcpy(addr1, device->scsi3addr, 8);
631         addr1[4] = 0;
632         for (i = 0; i < n; i++) {
633                 sd = h->dev[i];
634                 memcpy(addr2, sd->scsi3addr, 8);
635                 addr2[4] = 0;
636                 /* differ only in byte 4? */
637                 if (memcmp(addr1, addr2, 8) == 0) {
638                         device->bus = sd->bus;
639                         device->target = sd->target;
640                         device->lun = device->scsi3addr[4];
641                         break;
642                 }
643         }
644         if (device->lun == -1) {
645                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
646                         " suspect firmware bug or unsupported hardware "
647                         "configuration.\n");
648                         return -1;
649         }
650
651 lun_assigned:
652
653         h->dev[n] = device;
654         h->ndevices++;
655         added[*nadded] = device;
656         (*nadded)++;
657
658         /* initially, (before registering with scsi layer) we don't
659          * know our hostno and we don't want to print anything first
660          * time anyway (the scsi layer's inquiries will show that info)
661          */
662         /* if (hostno != -1) */
663                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
664                         scsi_device_type(device->devtype), hostno,
665                         device->bus, device->target, device->lun);
666         return 0;
667 }
668
669 /* Replace an entry from h->dev[] array. */
670 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
671         int entry, struct hpsa_scsi_dev_t *new_entry,
672         struct hpsa_scsi_dev_t *added[], int *nadded,
673         struct hpsa_scsi_dev_t *removed[], int *nremoved)
674 {
675         /* assumes h->devlock is held */
676         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
677         removed[*nremoved] = h->dev[entry];
678         (*nremoved)++;
679         h->dev[entry] = new_entry;
680         added[*nadded] = new_entry;
681         (*nadded)++;
682         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
683                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
684                         new_entry->target, new_entry->lun);
685 }
686
687 /* Remove an entry from h->dev[] array. */
688 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
689         struct hpsa_scsi_dev_t *removed[], int *nremoved)
690 {
691         /* assumes h->devlock is held */
692         int i;
693         struct hpsa_scsi_dev_t *sd;
694
695         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
696
697         sd = h->dev[entry];
698         removed[*nremoved] = h->dev[entry];
699         (*nremoved)++;
700
701         for (i = entry; i < h->ndevices-1; i++)
702                 h->dev[i] = h->dev[i+1];
703         h->ndevices--;
704         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
705                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
706                 sd->lun);
707 }
708
709 #define SCSI3ADDR_EQ(a, b) ( \
710         (a)[7] == (b)[7] && \
711         (a)[6] == (b)[6] && \
712         (a)[5] == (b)[5] && \
713         (a)[4] == (b)[4] && \
714         (a)[3] == (b)[3] && \
715         (a)[2] == (b)[2] && \
716         (a)[1] == (b)[1] && \
717         (a)[0] == (b)[0])
718
719 static void fixup_botched_add(struct ctlr_info *h,
720         struct hpsa_scsi_dev_t *added)
721 {
722         /* called when scsi_add_device fails in order to re-adjust
723          * h->dev[] to match the mid layer's view.
724          */
725         unsigned long flags;
726         int i, j;
727
728         spin_lock_irqsave(&h->lock, flags);
729         for (i = 0; i < h->ndevices; i++) {
730                 if (h->dev[i] == added) {
731                         for (j = i; j < h->ndevices-1; j++)
732                                 h->dev[j] = h->dev[j+1];
733                         h->ndevices--;
734                         break;
735                 }
736         }
737         spin_unlock_irqrestore(&h->lock, flags);
738         kfree(added);
739 }
740
741 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
742         struct hpsa_scsi_dev_t *dev2)
743 {
744         /* we compare everything except lun and target as these
745          * are not yet assigned.  Compare parts likely
746          * to differ first
747          */
748         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
749                 sizeof(dev1->scsi3addr)) != 0)
750                 return 0;
751         if (memcmp(dev1->device_id, dev2->device_id,
752                 sizeof(dev1->device_id)) != 0)
753                 return 0;
754         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
755                 return 0;
756         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
757                 return 0;
758         if (dev1->devtype != dev2->devtype)
759                 return 0;
760         if (dev1->bus != dev2->bus)
761                 return 0;
762         return 1;
763 }
764
765 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
766  * and return needle location in *index.  If scsi3addr matches, but not
767  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
768  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
769  */
770 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
771         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
772         int *index)
773 {
774         int i;
775 #define DEVICE_NOT_FOUND 0
776 #define DEVICE_CHANGED 1
777 #define DEVICE_SAME 2
778         for (i = 0; i < haystack_size; i++) {
779                 if (haystack[i] == NULL) /* previously removed. */
780                         continue;
781                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
782                         *index = i;
783                         if (device_is_the_same(needle, haystack[i]))
784                                 return DEVICE_SAME;
785                         else
786                                 return DEVICE_CHANGED;
787                 }
788         }
789         *index = -1;
790         return DEVICE_NOT_FOUND;
791 }
792
793 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
794         struct hpsa_scsi_dev_t *sd[], int nsds)
795 {
796         /* sd contains scsi3 addresses and devtypes, and inquiry
797          * data.  This function takes what's in sd to be the current
798          * reality and updates h->dev[] to reflect that reality.
799          */
800         int i, entry, device_change, changes = 0;
801         struct hpsa_scsi_dev_t *csd;
802         unsigned long flags;
803         struct hpsa_scsi_dev_t **added, **removed;
804         int nadded, nremoved;
805         struct Scsi_Host *sh = NULL;
806
807         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
808                 GFP_KERNEL);
809         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
810                 GFP_KERNEL);
811
812         if (!added || !removed) {
813                 dev_warn(&h->pdev->dev, "out of memory in "
814                         "adjust_hpsa_scsi_table\n");
815                 goto free_and_out;
816         }
817
818         spin_lock_irqsave(&h->devlock, flags);
819
820         /* find any devices in h->dev[] that are not in
821          * sd[] and remove them from h->dev[], and for any
822          * devices which have changed, remove the old device
823          * info and add the new device info.
824          */
825         i = 0;
826         nremoved = 0;
827         nadded = 0;
828         while (i < h->ndevices) {
829                 csd = h->dev[i];
830                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
831                 if (device_change == DEVICE_NOT_FOUND) {
832                         changes++;
833                         hpsa_scsi_remove_entry(h, hostno, i,
834                                 removed, &nremoved);
835                         continue; /* remove ^^^, hence i not incremented */
836                 } else if (device_change == DEVICE_CHANGED) {
837                         changes++;
838                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
839                                 added, &nadded, removed, &nremoved);
840                         /* Set it to NULL to prevent it from being freed
841                          * at the bottom of hpsa_update_scsi_devices()
842                          */
843                         sd[entry] = NULL;
844                 }
845                 i++;
846         }
847
848         /* Now, make sure every device listed in sd[] is also
849          * listed in h->dev[], adding them if they aren't found
850          */
851
852         for (i = 0; i < nsds; i++) {
853                 if (!sd[i]) /* if already added above. */
854                         continue;
855                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
856                                         h->ndevices, &entry);
857                 if (device_change == DEVICE_NOT_FOUND) {
858                         changes++;
859                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
860                                 added, &nadded) != 0)
861                                 break;
862                         sd[i] = NULL; /* prevent from being freed later. */
863                 } else if (device_change == DEVICE_CHANGED) {
864                         /* should never happen... */
865                         changes++;
866                         dev_warn(&h->pdev->dev,
867                                 "device unexpectedly changed.\n");
868                         /* but if it does happen, we just ignore that device */
869                 }
870         }
871         spin_unlock_irqrestore(&h->devlock, flags);
872
873         /* Don't notify scsi mid layer of any changes the first time through
874          * (or if there are no changes) scsi_scan_host will do it later the
875          * first time through.
876          */
877         if (hostno == -1 || !changes)
878                 goto free_and_out;
879
880         sh = h->scsi_host;
881         /* Notify scsi mid layer of any removed devices */
882         for (i = 0; i < nremoved; i++) {
883                 struct scsi_device *sdev =
884                         scsi_device_lookup(sh, removed[i]->bus,
885                                 removed[i]->target, removed[i]->lun);
886                 if (sdev != NULL) {
887                         scsi_remove_device(sdev);
888                         scsi_device_put(sdev);
889                 } else {
890                         /* We don't expect to get here.
891                          * future cmds to this device will get selection
892                          * timeout as if the device was gone.
893                          */
894                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
895                                 " for removal.", hostno, removed[i]->bus,
896                                 removed[i]->target, removed[i]->lun);
897                 }
898                 kfree(removed[i]);
899                 removed[i] = NULL;
900         }
901
902         /* Notify scsi mid layer of any added devices */
903         for (i = 0; i < nadded; i++) {
904                 if (scsi_add_device(sh, added[i]->bus,
905                         added[i]->target, added[i]->lun) == 0)
906                         continue;
907                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
908                         "device not added.\n", hostno, added[i]->bus,
909                         added[i]->target, added[i]->lun);
910                 /* now we have to remove it from h->dev,
911                  * since it didn't get added to scsi mid layer
912                  */
913                 fixup_botched_add(h, added[i]);
914         }
915
916 free_and_out:
917         kfree(added);
918         kfree(removed);
919 }
920
921 /*
922  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
923  * Assume's h->devlock is held.
924  */
925 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
926         int bus, int target, int lun)
927 {
928         int i;
929         struct hpsa_scsi_dev_t *sd;
930
931         for (i = 0; i < h->ndevices; i++) {
932                 sd = h->dev[i];
933                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
934                         return sd;
935         }
936         return NULL;
937 }
938
939 /* link sdev->hostdata to our per-device structure. */
940 static int hpsa_slave_alloc(struct scsi_device *sdev)
941 {
942         struct hpsa_scsi_dev_t *sd;
943         unsigned long flags;
944         struct ctlr_info *h;
945
946         h = sdev_to_hba(sdev);
947         spin_lock_irqsave(&h->devlock, flags);
948         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
949                 sdev_id(sdev), sdev->lun);
950         if (sd != NULL)
951                 sdev->hostdata = sd;
952         spin_unlock_irqrestore(&h->devlock, flags);
953         return 0;
954 }
955
956 static void hpsa_slave_destroy(struct scsi_device *sdev)
957 {
958         /* nothing to do. */
959 }
960
961 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
962 {
963         int i;
964
965         if (!h->cmd_sg_list)
966                 return;
967         for (i = 0; i < h->nr_cmds; i++) {
968                 kfree(h->cmd_sg_list[i]);
969                 h->cmd_sg_list[i] = NULL;
970         }
971         kfree(h->cmd_sg_list);
972         h->cmd_sg_list = NULL;
973 }
974
975 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
976 {
977         int i;
978
979         if (h->chainsize <= 0)
980                 return 0;
981
982         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
983                                 GFP_KERNEL);
984         if (!h->cmd_sg_list)
985                 return -ENOMEM;
986         for (i = 0; i < h->nr_cmds; i++) {
987                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
988                                                 h->chainsize, GFP_KERNEL);
989                 if (!h->cmd_sg_list[i])
990                         goto clean;
991         }
992         return 0;
993
994 clean:
995         hpsa_free_sg_chain_blocks(h);
996         return -ENOMEM;
997 }
998
999 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1000         struct CommandList *c)
1001 {
1002         struct SGDescriptor *chain_sg, *chain_block;
1003         u64 temp64;
1004
1005         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1006         chain_block = h->cmd_sg_list[c->cmdindex];
1007         chain_sg->Ext = HPSA_SG_CHAIN;
1008         chain_sg->Len = sizeof(*chain_sg) *
1009                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1010         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1011                                 PCI_DMA_TODEVICE);
1012         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1013         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1014 }
1015
1016 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1017         struct CommandList *c)
1018 {
1019         struct SGDescriptor *chain_sg;
1020         union u64bit temp64;
1021
1022         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1023                 return;
1024
1025         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1026         temp64.val32.lower = chain_sg->Addr.lower;
1027         temp64.val32.upper = chain_sg->Addr.upper;
1028         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1029 }
1030
1031 static void complete_scsi_command(struct CommandList *cp)
1032 {
1033         struct scsi_cmnd *cmd;
1034         struct ctlr_info *h;
1035         struct ErrorInfo *ei;
1036
1037         unsigned char sense_key;
1038         unsigned char asc;      /* additional sense code */
1039         unsigned char ascq;     /* additional sense code qualifier */
1040         unsigned long sense_data_size;
1041
1042         ei = cp->err_info;
1043         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1044         h = cp->h;
1045
1046         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1047         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1048                 hpsa_unmap_sg_chain_block(h, cp);
1049
1050         cmd->result = (DID_OK << 16);           /* host byte */
1051         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1052         cmd->result |= ei->ScsiStatus;
1053
1054         /* copy the sense data whether we need to or not. */
1055         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1056                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1057         else
1058                 sense_data_size = sizeof(ei->SenseInfo);
1059         if (ei->SenseLen < sense_data_size)
1060                 sense_data_size = ei->SenseLen;
1061
1062         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1063         scsi_set_resid(cmd, ei->ResidualCnt);
1064
1065         if (ei->CommandStatus == 0) {
1066                 cmd->scsi_done(cmd);
1067                 cmd_free(h, cp);
1068                 return;
1069         }
1070
1071         /* an error has occurred */
1072         switch (ei->CommandStatus) {
1073
1074         case CMD_TARGET_STATUS:
1075                 if (ei->ScsiStatus) {
1076                         /* Get sense key */
1077                         sense_key = 0xf & ei->SenseInfo[2];
1078                         /* Get additional sense code */
1079                         asc = ei->SenseInfo[12];
1080                         /* Get addition sense code qualifier */
1081                         ascq = ei->SenseInfo[13];
1082                 }
1083
1084                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1085                         if (check_for_unit_attention(h, cp)) {
1086                                 cmd->result = DID_SOFT_ERROR << 16;
1087                                 break;
1088                         }
1089                         if (sense_key == ILLEGAL_REQUEST) {
1090                                 /*
1091                                  * SCSI REPORT_LUNS is commonly unsupported on
1092                                  * Smart Array.  Suppress noisy complaint.
1093                                  */
1094                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1095                                         break;
1096
1097                                 /* If ASC/ASCQ indicate Logical Unit
1098                                  * Not Supported condition,
1099                                  */
1100                                 if ((asc == 0x25) && (ascq == 0x0)) {
1101                                         dev_warn(&h->pdev->dev, "cp %p "
1102                                                 "has check condition\n", cp);
1103                                         break;
1104                                 }
1105                         }
1106
1107                         if (sense_key == NOT_READY) {
1108                                 /* If Sense is Not Ready, Logical Unit
1109                                  * Not ready, Manual Intervention
1110                                  * required
1111                                  */
1112                                 if ((asc == 0x04) && (ascq == 0x03)) {
1113                                         dev_warn(&h->pdev->dev, "cp %p "
1114                                                 "has check condition: unit "
1115                                                 "not ready, manual "
1116                                                 "intervention required\n", cp);
1117                                         break;
1118                                 }
1119                         }
1120                         if (sense_key == ABORTED_COMMAND) {
1121                                 /* Aborted command is retryable */
1122                                 dev_warn(&h->pdev->dev, "cp %p "
1123                                         "has check condition: aborted command: "
1124                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1125                                         cp, asc, ascq);
1126                                 cmd->result = DID_SOFT_ERROR << 16;
1127                                 break;
1128                         }
1129                         /* Must be some other type of check condition */
1130                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1131                                         "unknown type: "
1132                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1133                                         "Returning result: 0x%x, "
1134                                         "cmd=[%02x %02x %02x %02x %02x "
1135                                         "%02x %02x %02x %02x %02x %02x "
1136                                         "%02x %02x %02x %02x %02x]\n",
1137                                         cp, sense_key, asc, ascq,
1138                                         cmd->result,
1139                                         cmd->cmnd[0], cmd->cmnd[1],
1140                                         cmd->cmnd[2], cmd->cmnd[3],
1141                                         cmd->cmnd[4], cmd->cmnd[5],
1142                                         cmd->cmnd[6], cmd->cmnd[7],
1143                                         cmd->cmnd[8], cmd->cmnd[9],
1144                                         cmd->cmnd[10], cmd->cmnd[11],
1145                                         cmd->cmnd[12], cmd->cmnd[13],
1146                                         cmd->cmnd[14], cmd->cmnd[15]);
1147                         break;
1148                 }
1149
1150
1151                 /* Problem was not a check condition
1152                  * Pass it up to the upper layers...
1153                  */
1154                 if (ei->ScsiStatus) {
1155                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1156                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1157                                 "Returning result: 0x%x\n",
1158                                 cp, ei->ScsiStatus,
1159                                 sense_key, asc, ascq,
1160                                 cmd->result);
1161                 } else {  /* scsi status is zero??? How??? */
1162                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1163                                 "Returning no connection.\n", cp),
1164
1165                         /* Ordinarily, this case should never happen,
1166                          * but there is a bug in some released firmware
1167                          * revisions that allows it to happen if, for
1168                          * example, a 4100 backplane loses power and
1169                          * the tape drive is in it.  We assume that
1170                          * it's a fatal error of some kind because we
1171                          * can't show that it wasn't. We will make it
1172                          * look like selection timeout since that is
1173                          * the most common reason for this to occur,
1174                          * and it's severe enough.
1175                          */
1176
1177                         cmd->result = DID_NO_CONNECT << 16;
1178                 }
1179                 break;
1180
1181         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1182                 break;
1183         case CMD_DATA_OVERRUN:
1184                 dev_warn(&h->pdev->dev, "cp %p has"
1185                         " completed with data overrun "
1186                         "reported\n", cp);
1187                 break;
1188         case CMD_INVALID: {
1189                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1190                 print_cmd(cp); */
1191                 /* We get CMD_INVALID if you address a non-existent device
1192                  * instead of a selection timeout (no response).  You will
1193                  * see this if you yank out a drive, then try to access it.
1194                  * This is kind of a shame because it means that any other
1195                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1196                  * missing target. */
1197                 cmd->result = DID_NO_CONNECT << 16;
1198         }
1199                 break;
1200         case CMD_PROTOCOL_ERR:
1201                 dev_warn(&h->pdev->dev, "cp %p has "
1202                         "protocol error \n", cp);
1203                 break;
1204         case CMD_HARDWARE_ERR:
1205                 cmd->result = DID_ERROR << 16;
1206                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1207                 break;
1208         case CMD_CONNECTION_LOST:
1209                 cmd->result = DID_ERROR << 16;
1210                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1211                 break;
1212         case CMD_ABORTED:
1213                 cmd->result = DID_ABORT << 16;
1214                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1215                                 cp, ei->ScsiStatus);
1216                 break;
1217         case CMD_ABORT_FAILED:
1218                 cmd->result = DID_ERROR << 16;
1219                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1220                 break;
1221         case CMD_UNSOLICITED_ABORT:
1222                 cmd->result = DID_RESET << 16;
1223                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1224                         "abort\n", cp);
1225                 break;
1226         case CMD_TIMEOUT:
1227                 cmd->result = DID_TIME_OUT << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1229                 break;
1230         case CMD_UNABORTABLE:
1231                 cmd->result = DID_ERROR << 16;
1232                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1233                 break;
1234         default:
1235                 cmd->result = DID_ERROR << 16;
1236                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1237                                 cp, ei->CommandStatus);
1238         }
1239         cmd->scsi_done(cmd);
1240         cmd_free(h, cp);
1241 }
1242
1243 static int hpsa_scsi_detect(struct ctlr_info *h)
1244 {
1245         struct Scsi_Host *sh;
1246         int error;
1247
1248         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1249         if (sh == NULL)
1250                 goto fail;
1251
1252         sh->io_port = 0;
1253         sh->n_io_port = 0;
1254         sh->this_id = -1;
1255         sh->max_channel = 3;
1256         sh->max_cmd_len = MAX_COMMAND_SIZE;
1257         sh->max_lun = HPSA_MAX_LUN;
1258         sh->max_id = HPSA_MAX_LUN;
1259         sh->can_queue = h->nr_cmds;
1260         sh->cmd_per_lun = h->nr_cmds;
1261         sh->sg_tablesize = h->maxsgentries;
1262         h->scsi_host = sh;
1263         sh->hostdata[0] = (unsigned long) h;
1264         sh->irq = h->intr[h->intr_mode];
1265         sh->unique_id = sh->irq;
1266         error = scsi_add_host(sh, &h->pdev->dev);
1267         if (error)
1268                 goto fail_host_put;
1269         scsi_scan_host(sh);
1270         return 0;
1271
1272  fail_host_put:
1273         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1274                 " failed for controller %d\n", h->ctlr);
1275         scsi_host_put(sh);
1276         return error;
1277  fail:
1278         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1279                 " failed for controller %d\n", h->ctlr);
1280         return -ENOMEM;
1281 }
1282
1283 static void hpsa_pci_unmap(struct pci_dev *pdev,
1284         struct CommandList *c, int sg_used, int data_direction)
1285 {
1286         int i;
1287         union u64bit addr64;
1288
1289         for (i = 0; i < sg_used; i++) {
1290                 addr64.val32.lower = c->SG[i].Addr.lower;
1291                 addr64.val32.upper = c->SG[i].Addr.upper;
1292                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1293                         data_direction);
1294         }
1295 }
1296
1297 static void hpsa_map_one(struct pci_dev *pdev,
1298                 struct CommandList *cp,
1299                 unsigned char *buf,
1300                 size_t buflen,
1301                 int data_direction)
1302 {
1303         u64 addr64;
1304
1305         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1306                 cp->Header.SGList = 0;
1307                 cp->Header.SGTotal = 0;
1308                 return;
1309         }
1310
1311         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1312         cp->SG[0].Addr.lower =
1313           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1314         cp->SG[0].Addr.upper =
1315           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1316         cp->SG[0].Len = buflen;
1317         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1318         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1319 }
1320
1321 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1322         struct CommandList *c)
1323 {
1324         DECLARE_COMPLETION_ONSTACK(wait);
1325
1326         c->waiting = &wait;
1327         enqueue_cmd_and_start_io(h, c);
1328         wait_for_completion(&wait);
1329 }
1330
1331 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1332         struct CommandList *c, int data_direction)
1333 {
1334         int retry_count = 0;
1335
1336         do {
1337                 memset(c->err_info, 0, sizeof(*c->err_info));
1338                 hpsa_scsi_do_simple_cmd_core(h, c);
1339                 retry_count++;
1340         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1341         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1342 }
1343
1344 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1345 {
1346         struct ErrorInfo *ei;
1347         struct device *d = &cp->h->pdev->dev;
1348
1349         ei = cp->err_info;
1350         switch (ei->CommandStatus) {
1351         case CMD_TARGET_STATUS:
1352                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1353                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1354                                 ei->ScsiStatus);
1355                 if (ei->ScsiStatus == 0)
1356                         dev_warn(d, "SCSI status is abnormally zero.  "
1357                         "(probably indicates selection timeout "
1358                         "reported incorrectly due to a known "
1359                         "firmware bug, circa July, 2001.)\n");
1360                 break;
1361         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1362                         dev_info(d, "UNDERRUN\n");
1363                 break;
1364         case CMD_DATA_OVERRUN:
1365                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1366                 break;
1367         case CMD_INVALID: {
1368                 /* controller unfortunately reports SCSI passthru's
1369                  * to non-existent targets as invalid commands.
1370                  */
1371                 dev_warn(d, "cp %p is reported invalid (probably means "
1372                         "target device no longer present)\n", cp);
1373                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1374                 print_cmd(cp);  */
1375                 }
1376                 break;
1377         case CMD_PROTOCOL_ERR:
1378                 dev_warn(d, "cp %p has protocol error \n", cp);
1379                 break;
1380         case CMD_HARDWARE_ERR:
1381                 /* cmd->result = DID_ERROR << 16; */
1382                 dev_warn(d, "cp %p had hardware error\n", cp);
1383                 break;
1384         case CMD_CONNECTION_LOST:
1385                 dev_warn(d, "cp %p had connection lost\n", cp);
1386                 break;
1387         case CMD_ABORTED:
1388                 dev_warn(d, "cp %p was aborted\n", cp);
1389                 break;
1390         case CMD_ABORT_FAILED:
1391                 dev_warn(d, "cp %p reports abort failed\n", cp);
1392                 break;
1393         case CMD_UNSOLICITED_ABORT:
1394                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1395                 break;
1396         case CMD_TIMEOUT:
1397                 dev_warn(d, "cp %p timed out\n", cp);
1398                 break;
1399         case CMD_UNABORTABLE:
1400                 dev_warn(d, "Command unabortable\n");
1401                 break;
1402         default:
1403                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1404                                 ei->CommandStatus);
1405         }
1406 }
1407
1408 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1409                         unsigned char page, unsigned char *buf,
1410                         unsigned char bufsize)
1411 {
1412         int rc = IO_OK;
1413         struct CommandList *c;
1414         struct ErrorInfo *ei;
1415
1416         c = cmd_special_alloc(h);
1417
1418         if (c == NULL) {                        /* trouble... */
1419                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1420                 return -ENOMEM;
1421         }
1422
1423         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1424         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1425         ei = c->err_info;
1426         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1427                 hpsa_scsi_interpret_error(c);
1428                 rc = -1;
1429         }
1430         cmd_special_free(h, c);
1431         return rc;
1432 }
1433
1434 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1435 {
1436         int rc = IO_OK;
1437         struct CommandList *c;
1438         struct ErrorInfo *ei;
1439
1440         c = cmd_special_alloc(h);
1441
1442         if (c == NULL) {                        /* trouble... */
1443                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1444                 return -ENOMEM;
1445         }
1446
1447         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1448         hpsa_scsi_do_simple_cmd_core(h, c);
1449         /* no unmap needed here because no data xfer. */
1450
1451         ei = c->err_info;
1452         if (ei->CommandStatus != 0) {
1453                 hpsa_scsi_interpret_error(c);
1454                 rc = -1;
1455         }
1456         cmd_special_free(h, c);
1457         return rc;
1458 }
1459
1460 static void hpsa_get_raid_level(struct ctlr_info *h,
1461         unsigned char *scsi3addr, unsigned char *raid_level)
1462 {
1463         int rc;
1464         unsigned char *buf;
1465
1466         *raid_level = RAID_UNKNOWN;
1467         buf = kzalloc(64, GFP_KERNEL);
1468         if (!buf)
1469                 return;
1470         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1471         if (rc == 0)
1472                 *raid_level = buf[8];
1473         if (*raid_level > RAID_UNKNOWN)
1474                 *raid_level = RAID_UNKNOWN;
1475         kfree(buf);
1476         return;
1477 }
1478
1479 /* Get the device id from inquiry page 0x83 */
1480 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1481         unsigned char *device_id, int buflen)
1482 {
1483         int rc;
1484         unsigned char *buf;
1485
1486         if (buflen > 16)
1487                 buflen = 16;
1488         buf = kzalloc(64, GFP_KERNEL);
1489         if (!buf)
1490                 return -1;
1491         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1492         if (rc == 0)
1493                 memcpy(device_id, &buf[8], buflen);
1494         kfree(buf);
1495         return rc != 0;
1496 }
1497
1498 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1499                 struct ReportLUNdata *buf, int bufsize,
1500                 int extended_response)
1501 {
1502         int rc = IO_OK;
1503         struct CommandList *c;
1504         unsigned char scsi3addr[8];
1505         struct ErrorInfo *ei;
1506
1507         c = cmd_special_alloc(h);
1508         if (c == NULL) {                        /* trouble... */
1509                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1510                 return -1;
1511         }
1512         /* address the controller */
1513         memset(scsi3addr, 0, sizeof(scsi3addr));
1514         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1515                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1516         if (extended_response)
1517                 c->Request.CDB[1] = extended_response;
1518         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1519         ei = c->err_info;
1520         if (ei->CommandStatus != 0 &&
1521             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1522                 hpsa_scsi_interpret_error(c);
1523                 rc = -1;
1524         }
1525         cmd_special_free(h, c);
1526         return rc;
1527 }
1528
1529 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1530                 struct ReportLUNdata *buf,
1531                 int bufsize, int extended_response)
1532 {
1533         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1534 }
1535
1536 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1537                 struct ReportLUNdata *buf, int bufsize)
1538 {
1539         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1540 }
1541
1542 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1543         int bus, int target, int lun)
1544 {
1545         device->bus = bus;
1546         device->target = target;
1547         device->lun = lun;
1548 }
1549
1550 static int hpsa_update_device_info(struct ctlr_info *h,
1551         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1552 {
1553 #define OBDR_TAPE_INQ_SIZE 49
1554         unsigned char *inq_buff;
1555
1556         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1557         if (!inq_buff)
1558                 goto bail_out;
1559
1560         /* Do an inquiry to the device to see what it is. */
1561         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1562                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1563                 /* Inquiry failed (msg printed already) */
1564                 dev_err(&h->pdev->dev,
1565                         "hpsa_update_device_info: inquiry failed\n");
1566                 goto bail_out;
1567         }
1568
1569         this_device->devtype = (inq_buff[0] & 0x1f);
1570         memcpy(this_device->scsi3addr, scsi3addr, 8);
1571         memcpy(this_device->vendor, &inq_buff[8],
1572                 sizeof(this_device->vendor));
1573         memcpy(this_device->model, &inq_buff[16],
1574                 sizeof(this_device->model));
1575         memset(this_device->device_id, 0,
1576                 sizeof(this_device->device_id));
1577         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1578                 sizeof(this_device->device_id));
1579
1580         if (this_device->devtype == TYPE_DISK &&
1581                 is_logical_dev_addr_mode(scsi3addr))
1582                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1583         else
1584                 this_device->raid_level = RAID_UNKNOWN;
1585
1586         kfree(inq_buff);
1587         return 0;
1588
1589 bail_out:
1590         kfree(inq_buff);
1591         return 1;
1592 }
1593
1594 static unsigned char *msa2xxx_model[] = {
1595         "MSA2012",
1596         "MSA2024",
1597         "MSA2312",
1598         "MSA2324",
1599         "P2000 G3 SAS",
1600         NULL,
1601 };
1602
1603 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1604 {
1605         int i;
1606
1607         for (i = 0; msa2xxx_model[i]; i++)
1608                 if (strncmp(device->model, msa2xxx_model[i],
1609                         strlen(msa2xxx_model[i])) == 0)
1610                         return 1;
1611         return 0;
1612 }
1613
1614 /* Helper function to assign bus, target, lun mapping of devices.
1615  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1616  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1617  * Logical drive target and lun are assigned at this time, but
1618  * physical device lun and target assignment are deferred (assigned
1619  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1620  */
1621 static void figure_bus_target_lun(struct ctlr_info *h,
1622         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1623         struct hpsa_scsi_dev_t *device)
1624 {
1625         u32 lunid;
1626
1627         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1628                 /* logical device */
1629                 if (unlikely(is_scsi_rev_5(h))) {
1630                         /* p1210m, logical drives lun assignments
1631                          * match SCSI REPORT LUNS data.
1632                          */
1633                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1634                         *bus = 0;
1635                         *target = 0;
1636                         *lun = (lunid & 0x3fff) + 1;
1637                 } else {
1638                         /* not p1210m... */
1639                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1640                         if (is_msa2xxx(h, device)) {
1641                                 /* msa2xxx way, put logicals on bus 1
1642                                  * and match target/lun numbers box
1643                                  * reports.
1644                                  */
1645                                 *bus = 1;
1646                                 *target = (lunid >> 16) & 0x3fff;
1647                                 *lun = lunid & 0x00ff;
1648                         } else {
1649                                 /* Traditional smart array way. */
1650                                 *bus = 0;
1651                                 *lun = 0;
1652                                 *target = lunid & 0x3fff;
1653                         }
1654                 }
1655         } else {
1656                 /* physical device */
1657                 if (is_hba_lunid(lunaddrbytes))
1658                         if (unlikely(is_scsi_rev_5(h))) {
1659                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1660                                 *target = 0;
1661                                 *lun = 0;
1662                                 return;
1663                         } else
1664                                 *bus = 3; /* traditional smartarray */
1665                 else
1666                         *bus = 2; /* physical disk */
1667                 *target = -1;
1668                 *lun = -1; /* we will fill these in later. */
1669         }
1670 }
1671
1672 /*
1673  * If there is no lun 0 on a target, linux won't find any devices.
1674  * For the MSA2xxx boxes, we have to manually detect the enclosure
1675  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1676  * it for some reason.  *tmpdevice is the target we're adding,
1677  * this_device is a pointer into the current element of currentsd[]
1678  * that we're building up in update_scsi_devices(), below.
1679  * lunzerobits is a bitmap that tracks which targets already have a
1680  * lun 0 assigned.
1681  * Returns 1 if an enclosure was added, 0 if not.
1682  */
1683 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1684         struct hpsa_scsi_dev_t *tmpdevice,
1685         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1686         int bus, int target, int lun, unsigned long lunzerobits[],
1687         int *nmsa2xxx_enclosures)
1688 {
1689         unsigned char scsi3addr[8];
1690
1691         if (test_bit(target, lunzerobits))
1692                 return 0; /* There is already a lun 0 on this target. */
1693
1694         if (!is_logical_dev_addr_mode(lunaddrbytes))
1695                 return 0; /* It's the logical targets that may lack lun 0. */
1696
1697         if (!is_msa2xxx(h, tmpdevice))
1698                 return 0; /* It's only the MSA2xxx that have this problem. */
1699
1700         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1701                 return 0;
1702
1703         memset(scsi3addr, 0, 8);
1704         scsi3addr[3] = target;
1705         if (is_hba_lunid(scsi3addr))
1706                 return 0; /* Don't add the RAID controller here. */
1707
1708         if (is_scsi_rev_5(h))
1709                 return 0; /* p1210m doesn't need to do this. */
1710
1711 #define MAX_MSA2XXX_ENCLOSURES 32
1712         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1713                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1714                         "enclosures exceeded.  Check your hardware "
1715                         "configuration.");
1716                 return 0;
1717         }
1718
1719         if (hpsa_update_device_info(h, scsi3addr, this_device))
1720                 return 0;
1721         (*nmsa2xxx_enclosures)++;
1722         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1723         set_bit(target, lunzerobits);
1724         return 1;
1725 }
1726
1727 /*
1728  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1729  * logdev.  The number of luns in physdev and logdev are returned in
1730  * *nphysicals and *nlogicals, respectively.
1731  * Returns 0 on success, -1 otherwise.
1732  */
1733 static int hpsa_gather_lun_info(struct ctlr_info *h,
1734         int reportlunsize,
1735         struct ReportLUNdata *physdev, u32 *nphysicals,
1736         struct ReportLUNdata *logdev, u32 *nlogicals)
1737 {
1738         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1739                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1740                 return -1;
1741         }
1742         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1743         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1744                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1745                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1746                         *nphysicals - HPSA_MAX_PHYS_LUN);
1747                 *nphysicals = HPSA_MAX_PHYS_LUN;
1748         }
1749         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1750                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1751                 return -1;
1752         }
1753         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1754         /* Reject Logicals in excess of our max capability. */
1755         if (*nlogicals > HPSA_MAX_LUN) {
1756                 dev_warn(&h->pdev->dev,
1757                         "maximum logical LUNs (%d) exceeded.  "
1758                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1759                         *nlogicals - HPSA_MAX_LUN);
1760                         *nlogicals = HPSA_MAX_LUN;
1761         }
1762         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1763                 dev_warn(&h->pdev->dev,
1764                         "maximum logical + physical LUNs (%d) exceeded. "
1765                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1766                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1767                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1768         }
1769         return 0;
1770 }
1771
1772 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1773         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1774         struct ReportLUNdata *logdev_list)
1775 {
1776         /* Helper function, figure out where the LUN ID info is coming from
1777          * given index i, lists of physical and logical devices, where in
1778          * the list the raid controller is supposed to appear (first or last)
1779          */
1780
1781         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1782         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1783
1784         if (i == raid_ctlr_position)
1785                 return RAID_CTLR_LUNID;
1786
1787         if (i < logicals_start)
1788                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1789
1790         if (i < last_device)
1791                 return &logdev_list->LUN[i - nphysicals -
1792                         (raid_ctlr_position == 0)][0];
1793         BUG();
1794         return NULL;
1795 }
1796
1797 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1798 {
1799         /* the idea here is we could get notified
1800          * that some devices have changed, so we do a report
1801          * physical luns and report logical luns cmd, and adjust
1802          * our list of devices accordingly.
1803          *
1804          * The scsi3addr's of devices won't change so long as the
1805          * adapter is not reset.  That means we can rescan and
1806          * tell which devices we already know about, vs. new
1807          * devices, vs.  disappearing devices.
1808          */
1809         struct ReportLUNdata *physdev_list = NULL;
1810         struct ReportLUNdata *logdev_list = NULL;
1811         unsigned char *inq_buff = NULL;
1812         u32 nphysicals = 0;
1813         u32 nlogicals = 0;
1814         u32 ndev_allocated = 0;
1815         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1816         int ncurrent = 0;
1817         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1818         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1819         int bus, target, lun;
1820         int raid_ctlr_position;
1821         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1822
1823         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1824                 GFP_KERNEL);
1825         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1826         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1827         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1828         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1829
1830         if (!currentsd || !physdev_list || !logdev_list ||
1831                 !inq_buff || !tmpdevice) {
1832                 dev_err(&h->pdev->dev, "out of memory\n");
1833                 goto out;
1834         }
1835         memset(lunzerobits, 0, sizeof(lunzerobits));
1836
1837         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1838                         logdev_list, &nlogicals))
1839                 goto out;
1840
1841         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1842          * but each of them 4 times through different paths.  The plus 1
1843          * is for the RAID controller.
1844          */
1845         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1846
1847         /* Allocate the per device structures */
1848         for (i = 0; i < ndevs_to_allocate; i++) {
1849                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1850                 if (!currentsd[i]) {
1851                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1852                                 __FILE__, __LINE__);
1853                         goto out;
1854                 }
1855                 ndev_allocated++;
1856         }
1857
1858         if (unlikely(is_scsi_rev_5(h)))
1859                 raid_ctlr_position = 0;
1860         else
1861                 raid_ctlr_position = nphysicals + nlogicals;
1862
1863         /* adjust our table of devices */
1864         nmsa2xxx_enclosures = 0;
1865         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1866                 u8 *lunaddrbytes;
1867
1868                 /* Figure out where the LUN ID info is coming from */
1869                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1870                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1871                 /* skip masked physical devices. */
1872                 if (lunaddrbytes[3] & 0xC0 &&
1873                         i < nphysicals + (raid_ctlr_position == 0))
1874                         continue;
1875
1876                 /* Get device type, vendor, model, device id */
1877                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1878                         continue; /* skip it if we can't talk to it. */
1879                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1880                         tmpdevice);
1881                 this_device = currentsd[ncurrent];
1882
1883                 /*
1884                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1885                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1886                  * is nonetheless an enclosure device there.  We have to
1887                  * present that otherwise linux won't find anything if
1888                  * there is no lun 0.
1889                  */
1890                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1891                                 lunaddrbytes, bus, target, lun, lunzerobits,
1892                                 &nmsa2xxx_enclosures)) {
1893                         ncurrent++;
1894                         this_device = currentsd[ncurrent];
1895                 }
1896
1897                 *this_device = *tmpdevice;
1898                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1899
1900                 switch (this_device->devtype) {
1901                 case TYPE_ROM: {
1902                         /* We don't *really* support actual CD-ROM devices,
1903                          * just "One Button Disaster Recovery" tape drive
1904                          * which temporarily pretends to be a CD-ROM drive.
1905                          * So we check that the device is really an OBDR tape
1906                          * device by checking for "$DR-10" in bytes 43-48 of
1907                          * the inquiry data.
1908                          */
1909                                 char obdr_sig[7];
1910 #define OBDR_TAPE_SIG "$DR-10"
1911                                 strncpy(obdr_sig, &inq_buff[43], 6);
1912                                 obdr_sig[6] = '\0';
1913                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1914                                         /* Not OBDR device, ignore it. */
1915                                         break;
1916                         }
1917                         ncurrent++;
1918                         break;
1919                 case TYPE_DISK:
1920                         if (i < nphysicals)
1921                                 break;
1922                         ncurrent++;
1923                         break;
1924                 case TYPE_TAPE:
1925                 case TYPE_MEDIUM_CHANGER:
1926                         ncurrent++;
1927                         break;
1928                 case TYPE_RAID:
1929                         /* Only present the Smartarray HBA as a RAID controller.
1930                          * If it's a RAID controller other than the HBA itself
1931                          * (an external RAID controller, MSA500 or similar)
1932                          * don't present it.
1933                          */
1934                         if (!is_hba_lunid(lunaddrbytes))
1935                                 break;
1936                         ncurrent++;
1937                         break;
1938                 default:
1939                         break;
1940                 }
1941                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1942                         break;
1943         }
1944         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1945 out:
1946         kfree(tmpdevice);
1947         for (i = 0; i < ndev_allocated; i++)
1948                 kfree(currentsd[i]);
1949         kfree(currentsd);
1950         kfree(inq_buff);
1951         kfree(physdev_list);
1952         kfree(logdev_list);
1953 }
1954
1955 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1956  * dma mapping  and fills in the scatter gather entries of the
1957  * hpsa command, cp.
1958  */
1959 static int hpsa_scatter_gather(struct ctlr_info *h,
1960                 struct CommandList *cp,
1961                 struct scsi_cmnd *cmd)
1962 {
1963         unsigned int len;
1964         struct scatterlist *sg;
1965         u64 addr64;
1966         int use_sg, i, sg_index, chained;
1967         struct SGDescriptor *curr_sg;
1968
1969         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1970
1971         use_sg = scsi_dma_map(cmd);
1972         if (use_sg < 0)
1973                 return use_sg;
1974
1975         if (!use_sg)
1976                 goto sglist_finished;
1977
1978         curr_sg = cp->SG;
1979         chained = 0;
1980         sg_index = 0;
1981         scsi_for_each_sg(cmd, sg, use_sg, i) {
1982                 if (i == h->max_cmd_sg_entries - 1 &&
1983                         use_sg > h->max_cmd_sg_entries) {
1984                         chained = 1;
1985                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1986                         sg_index = 0;
1987                 }
1988                 addr64 = (u64) sg_dma_address(sg);
1989                 len  = sg_dma_len(sg);
1990                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1991                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1992                 curr_sg->Len = len;
1993                 curr_sg->Ext = 0;  /* we are not chaining */
1994                 curr_sg++;
1995         }
1996
1997         if (use_sg + chained > h->maxSG)
1998                 h->maxSG = use_sg + chained;
1999
2000         if (chained) {
2001                 cp->Header.SGList = h->max_cmd_sg_entries;
2002                 cp->Header.SGTotal = (u16) (use_sg + 1);
2003                 hpsa_map_sg_chain_block(h, cp);
2004                 return 0;
2005         }
2006
2007 sglist_finished:
2008
2009         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2010         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2011         return 0;
2012 }
2013
2014
2015 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2016         void (*done)(struct scsi_cmnd *))
2017 {
2018         struct ctlr_info *h;
2019         struct hpsa_scsi_dev_t *dev;
2020         unsigned char scsi3addr[8];
2021         struct CommandList *c;
2022         unsigned long flags;
2023
2024         /* Get the ptr to our adapter structure out of cmd->host. */
2025         h = sdev_to_hba(cmd->device);
2026         dev = cmd->device->hostdata;
2027         if (!dev) {
2028                 cmd->result = DID_NO_CONNECT << 16;
2029                 done(cmd);
2030                 return 0;
2031         }
2032         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2033
2034         /* Need a lock as this is being allocated from the pool */
2035         spin_lock_irqsave(&h->lock, flags);
2036         c = cmd_alloc(h);
2037         spin_unlock_irqrestore(&h->lock, flags);
2038         if (c == NULL) {                        /* trouble... */
2039                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2040                 return SCSI_MLQUEUE_HOST_BUSY;
2041         }
2042
2043         /* Fill in the command list header */
2044
2045         cmd->scsi_done = done;    /* save this for use by completion code */
2046
2047         /* save c in case we have to abort it  */
2048         cmd->host_scribble = (unsigned char *) c;
2049
2050         c->cmd_type = CMD_SCSI;
2051         c->scsi_cmd = cmd;
2052         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2053         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2054         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2055         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2056
2057         /* Fill in the request block... */
2058
2059         c->Request.Timeout = 0;
2060         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2061         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2062         c->Request.CDBLen = cmd->cmd_len;
2063         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2064         c->Request.Type.Type = TYPE_CMD;
2065         c->Request.Type.Attribute = ATTR_SIMPLE;
2066         switch (cmd->sc_data_direction) {
2067         case DMA_TO_DEVICE:
2068                 c->Request.Type.Direction = XFER_WRITE;
2069                 break;
2070         case DMA_FROM_DEVICE:
2071                 c->Request.Type.Direction = XFER_READ;
2072                 break;
2073         case DMA_NONE:
2074                 c->Request.Type.Direction = XFER_NONE;
2075                 break;
2076         case DMA_BIDIRECTIONAL:
2077                 /* This can happen if a buggy application does a scsi passthru
2078                  * and sets both inlen and outlen to non-zero. ( see
2079                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2080                  */
2081
2082                 c->Request.Type.Direction = XFER_RSVD;
2083                 /* This is technically wrong, and hpsa controllers should
2084                  * reject it with CMD_INVALID, which is the most correct
2085                  * response, but non-fibre backends appear to let it
2086                  * slide by, and give the same results as if this field
2087                  * were set correctly.  Either way is acceptable for
2088                  * our purposes here.
2089                  */
2090
2091                 break;
2092
2093         default:
2094                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2095                         cmd->sc_data_direction);
2096                 BUG();
2097                 break;
2098         }
2099
2100         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2101                 cmd_free(h, c);
2102                 return SCSI_MLQUEUE_HOST_BUSY;
2103         }
2104         enqueue_cmd_and_start_io(h, c);
2105         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2106         return 0;
2107 }
2108
2109 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2110
2111 static void hpsa_scan_start(struct Scsi_Host *sh)
2112 {
2113         struct ctlr_info *h = shost_to_hba(sh);
2114         unsigned long flags;
2115
2116         /* wait until any scan already in progress is finished. */
2117         while (1) {
2118                 spin_lock_irqsave(&h->scan_lock, flags);
2119                 if (h->scan_finished)
2120                         break;
2121                 spin_unlock_irqrestore(&h->scan_lock, flags);
2122                 wait_event(h->scan_wait_queue, h->scan_finished);
2123                 /* Note: We don't need to worry about a race between this
2124                  * thread and driver unload because the midlayer will
2125                  * have incremented the reference count, so unload won't
2126                  * happen if we're in here.
2127                  */
2128         }
2129         h->scan_finished = 0; /* mark scan as in progress */
2130         spin_unlock_irqrestore(&h->scan_lock, flags);
2131
2132         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2133
2134         spin_lock_irqsave(&h->scan_lock, flags);
2135         h->scan_finished = 1; /* mark scan as finished. */
2136         wake_up_all(&h->scan_wait_queue);
2137         spin_unlock_irqrestore(&h->scan_lock, flags);
2138 }
2139
2140 static int hpsa_scan_finished(struct Scsi_Host *sh,
2141         unsigned long elapsed_time)
2142 {
2143         struct ctlr_info *h = shost_to_hba(sh);
2144         unsigned long flags;
2145         int finished;
2146
2147         spin_lock_irqsave(&h->scan_lock, flags);
2148         finished = h->scan_finished;
2149         spin_unlock_irqrestore(&h->scan_lock, flags);
2150         return finished;
2151 }
2152
2153 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2154         int qdepth, int reason)
2155 {
2156         struct ctlr_info *h = sdev_to_hba(sdev);
2157
2158         if (reason != SCSI_QDEPTH_DEFAULT)
2159                 return -ENOTSUPP;
2160
2161         if (qdepth < 1)
2162                 qdepth = 1;
2163         else
2164                 if (qdepth > h->nr_cmds)
2165                         qdepth = h->nr_cmds;
2166         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2167         return sdev->queue_depth;
2168 }
2169
2170 static void hpsa_unregister_scsi(struct ctlr_info *h)
2171 {
2172         /* we are being forcibly unloaded, and may not refuse. */
2173         scsi_remove_host(h->scsi_host);
2174         scsi_host_put(h->scsi_host);
2175         h->scsi_host = NULL;
2176 }
2177
2178 static int hpsa_register_scsi(struct ctlr_info *h)
2179 {
2180         int rc;
2181
2182         rc = hpsa_scsi_detect(h);
2183         if (rc != 0)
2184                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2185                         " hpsa_scsi_detect(), rc is %d\n", rc);
2186         return rc;
2187 }
2188
2189 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2190         unsigned char lunaddr[])
2191 {
2192         int rc = 0;
2193         int count = 0;
2194         int waittime = 1; /* seconds */
2195         struct CommandList *c;
2196
2197         c = cmd_special_alloc(h);
2198         if (!c) {
2199                 dev_warn(&h->pdev->dev, "out of memory in "
2200                         "wait_for_device_to_become_ready.\n");
2201                 return IO_ERROR;
2202         }
2203
2204         /* Send test unit ready until device ready, or give up. */
2205         while (count < HPSA_TUR_RETRY_LIMIT) {
2206
2207                 /* Wait for a bit.  do this first, because if we send
2208                  * the TUR right away, the reset will just abort it.
2209                  */
2210                 msleep(1000 * waittime);
2211                 count++;
2212
2213                 /* Increase wait time with each try, up to a point. */
2214                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2215                         waittime = waittime * 2;
2216
2217                 /* Send the Test Unit Ready */
2218                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2219                 hpsa_scsi_do_simple_cmd_core(h, c);
2220                 /* no unmap needed here because no data xfer. */
2221
2222                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2223                         break;
2224
2225                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2226                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2227                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2228                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2229                         break;
2230
2231                 dev_warn(&h->pdev->dev, "waiting %d secs "
2232                         "for device to become ready.\n", waittime);
2233                 rc = 1; /* device not ready. */
2234         }
2235
2236         if (rc)
2237                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2238         else
2239                 dev_warn(&h->pdev->dev, "device is ready.\n");
2240
2241         cmd_special_free(h, c);
2242         return rc;
2243 }
2244
2245 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2246  * complaining.  Doing a host- or bus-reset can't do anything good here.
2247  */
2248 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2249 {
2250         int rc;
2251         struct ctlr_info *h;
2252         struct hpsa_scsi_dev_t *dev;
2253
2254         /* find the controller to which the command to be aborted was sent */
2255         h = sdev_to_hba(scsicmd->device);
2256         if (h == NULL) /* paranoia */
2257                 return FAILED;
2258         dev = scsicmd->device->hostdata;
2259         if (!dev) {
2260                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2261                         "device lookup failed.\n");
2262                 return FAILED;
2263         }
2264         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2265                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2266         /* send a reset to the SCSI LUN which the command was sent to */
2267         rc = hpsa_send_reset(h, dev->scsi3addr);
2268         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2269                 return SUCCESS;
2270
2271         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2272         return FAILED;
2273 }
2274
2275 /*
2276  * For operations that cannot sleep, a command block is allocated at init,
2277  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2278  * which ones are free or in use.  Lock must be held when calling this.
2279  * cmd_free() is the complement.
2280  */
2281 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2282 {
2283         struct CommandList *c;
2284         int i;
2285         union u64bit temp64;
2286         dma_addr_t cmd_dma_handle, err_dma_handle;
2287
2288         do {
2289                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2290                 if (i == h->nr_cmds)
2291                         return NULL;
2292         } while (test_and_set_bit
2293                  (i & (BITS_PER_LONG - 1),
2294                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2295         c = h->cmd_pool + i;
2296         memset(c, 0, sizeof(*c));
2297         cmd_dma_handle = h->cmd_pool_dhandle
2298             + i * sizeof(*c);
2299         c->err_info = h->errinfo_pool + i;
2300         memset(c->err_info, 0, sizeof(*c->err_info));
2301         err_dma_handle = h->errinfo_pool_dhandle
2302             + i * sizeof(*c->err_info);
2303         h->nr_allocs++;
2304
2305         c->cmdindex = i;
2306
2307         INIT_LIST_HEAD(&c->list);
2308         c->busaddr = (u32) cmd_dma_handle;
2309         temp64.val = (u64) err_dma_handle;
2310         c->ErrDesc.Addr.lower = temp64.val32.lower;
2311         c->ErrDesc.Addr.upper = temp64.val32.upper;
2312         c->ErrDesc.Len = sizeof(*c->err_info);
2313
2314         c->h = h;
2315         return c;
2316 }
2317
2318 /* For operations that can wait for kmalloc to possibly sleep,
2319  * this routine can be called. Lock need not be held to call
2320  * cmd_special_alloc. cmd_special_free() is the complement.
2321  */
2322 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2323 {
2324         struct CommandList *c;
2325         union u64bit temp64;
2326         dma_addr_t cmd_dma_handle, err_dma_handle;
2327
2328         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2329         if (c == NULL)
2330                 return NULL;
2331         memset(c, 0, sizeof(*c));
2332
2333         c->cmdindex = -1;
2334
2335         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2336                     &err_dma_handle);
2337
2338         if (c->err_info == NULL) {
2339                 pci_free_consistent(h->pdev,
2340                         sizeof(*c), c, cmd_dma_handle);
2341                 return NULL;
2342         }
2343         memset(c->err_info, 0, sizeof(*c->err_info));
2344
2345         INIT_LIST_HEAD(&c->list);
2346         c->busaddr = (u32) cmd_dma_handle;
2347         temp64.val = (u64) err_dma_handle;
2348         c->ErrDesc.Addr.lower = temp64.val32.lower;
2349         c->ErrDesc.Addr.upper = temp64.val32.upper;
2350         c->ErrDesc.Len = sizeof(*c->err_info);
2351
2352         c->h = h;
2353         return c;
2354 }
2355
2356 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2357 {
2358         int i;
2359
2360         i = c - h->cmd_pool;
2361         clear_bit(i & (BITS_PER_LONG - 1),
2362                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2363         h->nr_frees++;
2364 }
2365
2366 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2367 {
2368         union u64bit temp64;
2369
2370         temp64.val32.lower = c->ErrDesc.Addr.lower;
2371         temp64.val32.upper = c->ErrDesc.Addr.upper;
2372         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2373                             c->err_info, (dma_addr_t) temp64.val);
2374         pci_free_consistent(h->pdev, sizeof(*c),
2375                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2376 }
2377
2378 #ifdef CONFIG_COMPAT
2379
2380 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2381 {
2382         IOCTL32_Command_struct __user *arg32 =
2383             (IOCTL32_Command_struct __user *) arg;
2384         IOCTL_Command_struct arg64;
2385         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2386         int err;
2387         u32 cp;
2388
2389         memset(&arg64, 0, sizeof(arg64));
2390         err = 0;
2391         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2392                            sizeof(arg64.LUN_info));
2393         err |= copy_from_user(&arg64.Request, &arg32->Request,
2394                            sizeof(arg64.Request));
2395         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2396                            sizeof(arg64.error_info));
2397         err |= get_user(arg64.buf_size, &arg32->buf_size);
2398         err |= get_user(cp, &arg32->buf);
2399         arg64.buf = compat_ptr(cp);
2400         err |= copy_to_user(p, &arg64, sizeof(arg64));
2401
2402         if (err)
2403                 return -EFAULT;
2404
2405         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2406         if (err)
2407                 return err;
2408         err |= copy_in_user(&arg32->error_info, &p->error_info,
2409                          sizeof(arg32->error_info));
2410         if (err)
2411                 return -EFAULT;
2412         return err;
2413 }
2414
2415 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2416         int cmd, void *arg)
2417 {
2418         BIG_IOCTL32_Command_struct __user *arg32 =
2419             (BIG_IOCTL32_Command_struct __user *) arg;
2420         BIG_IOCTL_Command_struct arg64;
2421         BIG_IOCTL_Command_struct __user *p =
2422             compat_alloc_user_space(sizeof(arg64));
2423         int err;
2424         u32 cp;
2425
2426         memset(&arg64, 0, sizeof(arg64));
2427         err = 0;
2428         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2429                            sizeof(arg64.LUN_info));
2430         err |= copy_from_user(&arg64.Request, &arg32->Request,
2431                            sizeof(arg64.Request));
2432         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2433                            sizeof(arg64.error_info));
2434         err |= get_user(arg64.buf_size, &arg32->buf_size);
2435         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2436         err |= get_user(cp, &arg32->buf);
2437         arg64.buf = compat_ptr(cp);
2438         err |= copy_to_user(p, &arg64, sizeof(arg64));
2439
2440         if (err)
2441                 return -EFAULT;
2442
2443         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2444         if (err)
2445                 return err;
2446         err |= copy_in_user(&arg32->error_info, &p->error_info,
2447                          sizeof(arg32->error_info));
2448         if (err)
2449                 return -EFAULT;
2450         return err;
2451 }
2452
2453 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2454 {
2455         switch (cmd) {
2456         case CCISS_GETPCIINFO:
2457         case CCISS_GETINTINFO:
2458         case CCISS_SETINTINFO:
2459         case CCISS_GETNODENAME:
2460         case CCISS_SETNODENAME:
2461         case CCISS_GETHEARTBEAT:
2462         case CCISS_GETBUSTYPES:
2463         case CCISS_GETFIRMVER:
2464         case CCISS_GETDRIVVER:
2465         case CCISS_REVALIDVOLS:
2466         case CCISS_DEREGDISK:
2467         case CCISS_REGNEWDISK:
2468         case CCISS_REGNEWD:
2469         case CCISS_RESCANDISK:
2470         case CCISS_GETLUNINFO:
2471                 return hpsa_ioctl(dev, cmd, arg);
2472
2473         case CCISS_PASSTHRU32:
2474                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2475         case CCISS_BIG_PASSTHRU32:
2476                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2477
2478         default:
2479                 return -ENOIOCTLCMD;
2480         }
2481 }
2482 #endif
2483
2484 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2485 {
2486         struct hpsa_pci_info pciinfo;
2487
2488         if (!argp)
2489                 return -EINVAL;
2490         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2491         pciinfo.bus = h->pdev->bus->number;
2492         pciinfo.dev_fn = h->pdev->devfn;
2493         pciinfo.board_id = h->board_id;
2494         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2495                 return -EFAULT;
2496         return 0;
2497 }
2498
2499 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2500 {
2501         DriverVer_type DriverVer;
2502         unsigned char vmaj, vmin, vsubmin;
2503         int rc;
2504
2505         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2506                 &vmaj, &vmin, &vsubmin);
2507         if (rc != 3) {
2508                 dev_info(&h->pdev->dev, "driver version string '%s' "
2509                         "unrecognized.", HPSA_DRIVER_VERSION);
2510                 vmaj = 0;
2511                 vmin = 0;
2512                 vsubmin = 0;
2513         }
2514         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2515         if (!argp)
2516                 return -EINVAL;
2517         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2518                 return -EFAULT;
2519         return 0;
2520 }
2521
2522 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2523 {
2524         IOCTL_Command_struct iocommand;
2525         struct CommandList *c;
2526         char *buff = NULL;
2527         union u64bit temp64;
2528
2529         if (!argp)
2530                 return -EINVAL;
2531         if (!capable(CAP_SYS_RAWIO))
2532                 return -EPERM;
2533         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2534                 return -EFAULT;
2535         if ((iocommand.buf_size < 1) &&
2536             (iocommand.Request.Type.Direction != XFER_NONE)) {
2537                 return -EINVAL;
2538         }
2539         if (iocommand.buf_size > 0) {
2540                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2541                 if (buff == NULL)
2542                         return -EFAULT;
2543                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2544                         /* Copy the data into the buffer we created */
2545                         if (copy_from_user(buff, iocommand.buf,
2546                                 iocommand.buf_size)) {
2547                                 kfree(buff);
2548                                 return -EFAULT;
2549                         }
2550                 } else {
2551                         memset(buff, 0, iocommand.buf_size);
2552                 }
2553         }
2554         c = cmd_special_alloc(h);
2555         if (c == NULL) {
2556                 kfree(buff);
2557                 return -ENOMEM;
2558         }
2559         /* Fill in the command type */
2560         c->cmd_type = CMD_IOCTL_PEND;
2561         /* Fill in Command Header */
2562         c->Header.ReplyQueue = 0; /* unused in simple mode */
2563         if (iocommand.buf_size > 0) {   /* buffer to fill */
2564                 c->Header.SGList = 1;
2565                 c->Header.SGTotal = 1;
2566         } else  { /* no buffers to fill */
2567                 c->Header.SGList = 0;
2568                 c->Header.SGTotal = 0;
2569         }
2570         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2571         /* use the kernel address the cmd block for tag */
2572         c->Header.Tag.lower = c->busaddr;
2573
2574         /* Fill in Request block */
2575         memcpy(&c->Request, &iocommand.Request,
2576                 sizeof(c->Request));
2577
2578         /* Fill in the scatter gather information */
2579         if (iocommand.buf_size > 0) {
2580                 temp64.val = pci_map_single(h->pdev, buff,
2581                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2582                 c->SG[0].Addr.lower = temp64.val32.lower;
2583                 c->SG[0].Addr.upper = temp64.val32.upper;
2584                 c->SG[0].Len = iocommand.buf_size;
2585                 c->SG[0].Ext = 0; /* we are not chaining*/
2586         }
2587         hpsa_scsi_do_simple_cmd_core(h, c);
2588         if (iocommand.buf_size > 0)
2589                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2590         check_ioctl_unit_attention(h, c);
2591
2592         /* Copy the error information out */
2593         memcpy(&iocommand.error_info, c->err_info,
2594                 sizeof(iocommand.error_info));
2595         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2596                 kfree(buff);
2597                 cmd_special_free(h, c);
2598                 return -EFAULT;
2599         }
2600         if (iocommand.Request.Type.Direction == XFER_READ &&
2601                 iocommand.buf_size > 0) {
2602                 /* Copy the data out of the buffer we created */
2603                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2604                         kfree(buff);
2605                         cmd_special_free(h, c);
2606                         return -EFAULT;
2607                 }
2608         }
2609         kfree(buff);
2610         cmd_special_free(h, c);
2611         return 0;
2612 }
2613
2614 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2615 {
2616         BIG_IOCTL_Command_struct *ioc;
2617         struct CommandList *c;
2618         unsigned char **buff = NULL;
2619         int *buff_size = NULL;
2620         union u64bit temp64;
2621         BYTE sg_used = 0;
2622         int status = 0;
2623         int i;
2624         u32 left;
2625         u32 sz;
2626         BYTE __user *data_ptr;
2627
2628         if (!argp)
2629                 return -EINVAL;
2630         if (!capable(CAP_SYS_RAWIO))
2631                 return -EPERM;
2632         ioc = (BIG_IOCTL_Command_struct *)
2633             kmalloc(sizeof(*ioc), GFP_KERNEL);
2634         if (!ioc) {
2635                 status = -ENOMEM;
2636                 goto cleanup1;
2637         }
2638         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2639                 status = -EFAULT;
2640                 goto cleanup1;
2641         }
2642         if ((ioc->buf_size < 1) &&
2643             (ioc->Request.Type.Direction != XFER_NONE)) {
2644                 status = -EINVAL;
2645                 goto cleanup1;
2646         }
2647         /* Check kmalloc limits  using all SGs */
2648         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2649                 status = -EINVAL;
2650                 goto cleanup1;
2651         }
2652         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2653                 status = -EINVAL;
2654                 goto cleanup1;
2655         }
2656         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2657         if (!buff) {
2658                 status = -ENOMEM;
2659                 goto cleanup1;
2660         }
2661         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2662         if (!buff_size) {
2663                 status = -ENOMEM;
2664                 goto cleanup1;
2665         }
2666         left = ioc->buf_size;
2667         data_ptr = ioc->buf;
2668         while (left) {
2669                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2670                 buff_size[sg_used] = sz;
2671                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2672                 if (buff[sg_used] == NULL) {
2673                         status = -ENOMEM;
2674                         goto cleanup1;
2675                 }
2676                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2677                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2678                                 status = -ENOMEM;
2679                                 goto cleanup1;
2680                         }
2681                 } else
2682                         memset(buff[sg_used], 0, sz);
2683                 left -= sz;
2684                 data_ptr += sz;
2685                 sg_used++;
2686         }
2687         c = cmd_special_alloc(h);
2688         if (c == NULL) {
2689                 status = -ENOMEM;
2690                 goto cleanup1;
2691         }
2692         c->cmd_type = CMD_IOCTL_PEND;
2693         c->Header.ReplyQueue = 0;
2694         c->Header.SGList = c->Header.SGTotal = sg_used;
2695         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2696         c->Header.Tag.lower = c->busaddr;
2697         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2698         if (ioc->buf_size > 0) {
2699                 int i;
2700                 for (i = 0; i < sg_used; i++) {
2701                         temp64.val = pci_map_single(h->pdev, buff[i],
2702                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2703                         c->SG[i].Addr.lower = temp64.val32.lower;
2704                         c->SG[i].Addr.upper = temp64.val32.upper;
2705                         c->SG[i].Len = buff_size[i];
2706                         /* we are not chaining */
2707                         c->SG[i].Ext = 0;
2708                 }
2709         }
2710         hpsa_scsi_do_simple_cmd_core(h, c);
2711         if (sg_used)
2712                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2713         check_ioctl_unit_attention(h, c);
2714         /* Copy the error information out */
2715         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2716         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2717                 cmd_special_free(h, c);
2718                 status = -EFAULT;
2719                 goto cleanup1;
2720         }
2721         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2722                 /* Copy the data out of the buffer we created */
2723                 BYTE __user *ptr = ioc->buf;
2724                 for (i = 0; i < sg_used; i++) {
2725                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2726                                 cmd_special_free(h, c);
2727                                 status = -EFAULT;
2728                                 goto cleanup1;
2729                         }
2730                         ptr += buff_size[i];
2731                 }
2732         }
2733         cmd_special_free(h, c);
2734         status = 0;
2735 cleanup1:
2736         if (buff) {
2737                 for (i = 0; i < sg_used; i++)
2738                         kfree(buff[i]);
2739                 kfree(buff);
2740         }
2741         kfree(buff_size);
2742         kfree(ioc);
2743         return status;
2744 }
2745
2746 static void check_ioctl_unit_attention(struct ctlr_info *h,
2747         struct CommandList *c)
2748 {
2749         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2750                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2751                 (void) check_for_unit_attention(h, c);
2752 }
2753 /*
2754  * ioctl
2755  */
2756 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2757 {
2758         struct ctlr_info *h;
2759         void __user *argp = (void __user *)arg;
2760
2761         h = sdev_to_hba(dev);
2762
2763         switch (cmd) {
2764         case CCISS_DEREGDISK:
2765         case CCISS_REGNEWDISK:
2766         case CCISS_REGNEWD:
2767                 hpsa_scan_start(h->scsi_host);
2768                 return 0;
2769         case CCISS_GETPCIINFO:
2770                 return hpsa_getpciinfo_ioctl(h, argp);
2771         case CCISS_GETDRIVVER:
2772                 return hpsa_getdrivver_ioctl(h, argp);
2773         case CCISS_PASSTHRU:
2774                 return hpsa_passthru_ioctl(h, argp);
2775         case CCISS_BIG_PASSTHRU:
2776                 return hpsa_big_passthru_ioctl(h, argp);
2777         default:
2778                 return -ENOTTY;
2779         }
2780 }
2781
2782 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2783         unsigned char *scsi3addr, u8 reset_type)
2784 {
2785         struct CommandList *c;
2786
2787         c = cmd_alloc(h);
2788         if (!c)
2789                 return -ENOMEM;
2790         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2791                 RAID_CTLR_LUNID, TYPE_MSG);
2792         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2793         c->waiting = NULL;
2794         enqueue_cmd_and_start_io(h, c);
2795         /* Don't wait for completion, the reset won't complete.  Don't free
2796          * the command either.  This is the last command we will send before
2797          * re-initializing everything, so it doesn't matter and won't leak.
2798          */
2799         return 0;
2800 }
2801
2802 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2803         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2804         int cmd_type)
2805 {
2806         int pci_dir = XFER_NONE;
2807
2808         c->cmd_type = CMD_IOCTL_PEND;
2809         c->Header.ReplyQueue = 0;
2810         if (buff != NULL && size > 0) {
2811                 c->Header.SGList = 1;
2812                 c->Header.SGTotal = 1;
2813         } else {
2814                 c->Header.SGList = 0;
2815                 c->Header.SGTotal = 0;
2816         }
2817         c->Header.Tag.lower = c->busaddr;
2818         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2819
2820         c->Request.Type.Type = cmd_type;
2821         if (cmd_type == TYPE_CMD) {
2822                 switch (cmd) {
2823                 case HPSA_INQUIRY:
2824                         /* are we trying to read a vital product page */
2825                         if (page_code != 0) {
2826                                 c->Request.CDB[1] = 0x01;
2827                                 c->Request.CDB[2] = page_code;
2828                         }
2829                         c->Request.CDBLen = 6;
2830                         c->Request.Type.Attribute = ATTR_SIMPLE;
2831                         c->Request.Type.Direction = XFER_READ;
2832                         c->Request.Timeout = 0;
2833                         c->Request.CDB[0] = HPSA_INQUIRY;
2834                         c->Request.CDB[4] = size & 0xFF;
2835                         break;
2836                 case HPSA_REPORT_LOG:
2837                 case HPSA_REPORT_PHYS:
2838                         /* Talking to controller so It's a physical command
2839                            mode = 00 target = 0.  Nothing to write.
2840                          */
2841                         c->Request.CDBLen = 12;
2842                         c->Request.Type.Attribute = ATTR_SIMPLE;
2843                         c->Request.Type.Direction = XFER_READ;
2844                         c->Request.Timeout = 0;
2845                         c->Request.CDB[0] = cmd;
2846                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2847                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2848                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2849                         c->Request.CDB[9] = size & 0xFF;
2850                         break;
2851                 case HPSA_CACHE_FLUSH:
2852                         c->Request.CDBLen = 12;
2853                         c->Request.Type.Attribute = ATTR_SIMPLE;
2854                         c->Request.Type.Direction = XFER_WRITE;
2855                         c->Request.Timeout = 0;
2856                         c->Request.CDB[0] = BMIC_WRITE;
2857                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2858                         break;
2859                 case TEST_UNIT_READY:
2860                         c->Request.CDBLen = 6;
2861                         c->Request.Type.Attribute = ATTR_SIMPLE;
2862                         c->Request.Type.Direction = XFER_NONE;
2863                         c->Request.Timeout = 0;
2864                         break;
2865                 default:
2866                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2867                         BUG();
2868                         return;
2869                 }
2870         } else if (cmd_type == TYPE_MSG) {
2871                 switch (cmd) {
2872
2873                 case  HPSA_DEVICE_RESET_MSG:
2874                         c->Request.CDBLen = 16;
2875                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2876                         c->Request.Type.Attribute = ATTR_SIMPLE;
2877                         c->Request.Type.Direction = XFER_NONE;
2878                         c->Request.Timeout = 0; /* Don't time out */
2879                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2880                         c->Request.CDB[0] =  cmd;
2881                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2882                         /* If bytes 4-7 are zero, it means reset the */
2883                         /* LunID device */
2884                         c->Request.CDB[4] = 0x00;
2885                         c->Request.CDB[5] = 0x00;
2886                         c->Request.CDB[6] = 0x00;
2887                         c->Request.CDB[7] = 0x00;
2888                 break;
2889
2890                 default:
2891                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2892                                 cmd);
2893                         BUG();
2894                 }
2895         } else {
2896                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2897                 BUG();
2898         }
2899
2900         switch (c->Request.Type.Direction) {
2901         case XFER_READ:
2902                 pci_dir = PCI_DMA_FROMDEVICE;
2903                 break;
2904         case XFER_WRITE:
2905                 pci_dir = PCI_DMA_TODEVICE;
2906                 break;
2907         case XFER_NONE:
2908                 pci_dir = PCI_DMA_NONE;
2909                 break;
2910         default:
2911                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2912         }
2913
2914         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2915
2916         return;
2917 }
2918
2919 /*
2920  * Map (physical) PCI mem into (virtual) kernel space
2921  */
2922 static void __iomem *remap_pci_mem(ulong base, ulong size)
2923 {
2924         ulong page_base = ((ulong) base) & PAGE_MASK;
2925         ulong page_offs = ((ulong) base) - page_base;
2926         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2927
2928         return page_remapped ? (page_remapped + page_offs) : NULL;
2929 }
2930
2931 /* Takes cmds off the submission queue and sends them to the hardware,
2932  * then puts them on the queue of cmds waiting for completion.
2933  */
2934 static void start_io(struct ctlr_info *h)
2935 {
2936         struct CommandList *c;
2937
2938         while (!list_empty(&h->reqQ)) {
2939                 c = list_entry(h->reqQ.next, struct CommandList, list);
2940                 /* can't do anything if fifo is full */
2941                 if ((h->access.fifo_full(h))) {
2942                         dev_warn(&h->pdev->dev, "fifo full\n");
2943                         break;
2944                 }
2945
2946                 /* Get the first entry from the Request Q */
2947                 removeQ(c);
2948                 h->Qdepth--;
2949
2950                 /* Tell the controller execute command */
2951                 h->access.submit_command(h, c);
2952
2953                 /* Put job onto the completed Q */
2954                 addQ(&h->cmpQ, c);
2955         }
2956 }
2957
2958 static inline unsigned long get_next_completion(struct ctlr_info *h)
2959 {
2960         return h->access.command_completed(h);
2961 }
2962
2963 static inline bool interrupt_pending(struct ctlr_info *h)
2964 {
2965         return h->access.intr_pending(h);
2966 }
2967
2968 static inline long interrupt_not_for_us(struct ctlr_info *h)
2969 {
2970         return (h->access.intr_pending(h) == 0) ||
2971                 (h->interrupts_enabled == 0);
2972 }
2973
2974 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2975         u32 raw_tag)
2976 {
2977         if (unlikely(tag_index >= h->nr_cmds)) {
2978                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2979                 return 1;
2980         }
2981         return 0;
2982 }
2983
2984 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2985 {
2986         removeQ(c);
2987         if (likely(c->cmd_type == CMD_SCSI))
2988                 complete_scsi_command(c);
2989         else if (c->cmd_type == CMD_IOCTL_PEND)
2990                 complete(c->waiting);
2991 }
2992
2993 static inline u32 hpsa_tag_contains_index(u32 tag)
2994 {
2995         return tag & DIRECT_LOOKUP_BIT;
2996 }
2997
2998 static inline u32 hpsa_tag_to_index(u32 tag)
2999 {
3000         return tag >> DIRECT_LOOKUP_SHIFT;
3001 }
3002
3003
3004 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3005 {
3006 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3007 #define HPSA_SIMPLE_ERROR_BITS 0x03
3008         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3009                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3010         return tag & ~HPSA_PERF_ERROR_BITS;
3011 }
3012
3013 /* process completion of an indexed ("direct lookup") command */
3014 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3015         u32 raw_tag)
3016 {
3017         u32 tag_index;
3018         struct CommandList *c;
3019
3020         tag_index = hpsa_tag_to_index(raw_tag);
3021         if (bad_tag(h, tag_index, raw_tag))
3022                 return next_command(h);
3023         c = h->cmd_pool + tag_index;
3024         finish_cmd(c, raw_tag);
3025         return next_command(h);
3026 }
3027
3028 /* process completion of a non-indexed command */
3029 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3030         u32 raw_tag)
3031 {
3032         u32 tag;
3033         struct CommandList *c = NULL;
3034
3035         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3036         list_for_each_entry(c, &h->cmpQ, list) {
3037                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3038                         finish_cmd(c, raw_tag);
3039                         return next_command(h);
3040                 }
3041         }
3042         bad_tag(h, h->nr_cmds + 1, raw_tag);
3043         return next_command(h);
3044 }
3045
3046 /* Some controllers, like p400, will give us one interrupt
3047  * after a soft reset, even if we turned interrupts off.
3048  * Only need to check for this in the hpsa_xxx_discard_completions
3049  * functions.
3050  */
3051 static int ignore_bogus_interrupt(struct ctlr_info *h)
3052 {
3053         if (likely(!reset_devices))
3054                 return 0;
3055
3056         if (likely(h->interrupts_enabled))
3057                 return 0;
3058
3059         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3060                 "(known firmware bug.)  Ignoring.\n");
3061
3062         return 1;
3063 }
3064
3065 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3066 {
3067         struct ctlr_info *h = dev_id;
3068         unsigned long flags;
3069         u32 raw_tag;
3070
3071         if (ignore_bogus_interrupt(h))
3072                 return IRQ_NONE;
3073
3074         if (interrupt_not_for_us(h))
3075                 return IRQ_NONE;
3076         spin_lock_irqsave(&h->lock, flags);
3077         while (interrupt_pending(h)) {
3078                 raw_tag = get_next_completion(h);
3079                 while (raw_tag != FIFO_EMPTY)
3080                         raw_tag = next_command(h);
3081         }
3082         spin_unlock_irqrestore(&h->lock, flags);
3083         return IRQ_HANDLED;
3084 }
3085
3086 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3087 {
3088         struct ctlr_info *h = dev_id;
3089         unsigned long flags;
3090         u32 raw_tag;
3091
3092         if (ignore_bogus_interrupt(h))
3093                 return IRQ_NONE;
3094
3095         spin_lock_irqsave(&h->lock, flags);
3096         raw_tag = get_next_completion(h);
3097         while (raw_tag != FIFO_EMPTY)
3098                 raw_tag = next_command(h);
3099         spin_unlock_irqrestore(&h->lock, flags);
3100         return IRQ_HANDLED;
3101 }
3102
3103 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3104 {
3105         struct ctlr_info *h = dev_id;
3106         unsigned long flags;
3107         u32 raw_tag;
3108
3109         if (interrupt_not_for_us(h))
3110                 return IRQ_NONE;
3111         spin_lock_irqsave(&h->lock, flags);
3112         while (interrupt_pending(h)) {
3113                 raw_tag = get_next_completion(h);
3114                 while (raw_tag != FIFO_EMPTY) {
3115                         if (hpsa_tag_contains_index(raw_tag))
3116                                 raw_tag = process_indexed_cmd(h, raw_tag);
3117                         else
3118                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3119                 }
3120         }
3121         spin_unlock_irqrestore(&h->lock, flags);
3122         return IRQ_HANDLED;
3123 }
3124
3125 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3126 {
3127         struct ctlr_info *h = dev_id;
3128         unsigned long flags;
3129         u32 raw_tag;
3130
3131         spin_lock_irqsave(&h->lock, flags);
3132         raw_tag = get_next_completion(h);
3133         while (raw_tag != FIFO_EMPTY) {
3134                 if (hpsa_tag_contains_index(raw_tag))
3135                         raw_tag = process_indexed_cmd(h, raw_tag);
3136                 else
3137                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3138         }
3139         spin_unlock_irqrestore(&h->lock, flags);
3140         return IRQ_HANDLED;
3141 }
3142
3143 /* Send a message CDB to the firmware. Careful, this only works
3144  * in simple mode, not performant mode due to the tag lookup.
3145  * We only ever use this immediately after a controller reset.
3146  */
3147 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3148                                                 unsigned char type)
3149 {
3150         struct Command {
3151                 struct CommandListHeader CommandHeader;
3152                 struct RequestBlock Request;
3153                 struct ErrDescriptor ErrorDescriptor;
3154         };
3155         struct Command *cmd;
3156         static const size_t cmd_sz = sizeof(*cmd) +
3157                                         sizeof(cmd->ErrorDescriptor);
3158         dma_addr_t paddr64;
3159         uint32_t paddr32, tag;
3160         void __iomem *vaddr;
3161         int i, err;
3162
3163         vaddr = pci_ioremap_bar(pdev, 0);
3164         if (vaddr == NULL)
3165                 return -ENOMEM;
3166
3167         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3168          * CCISS commands, so they must be allocated from the lower 4GiB of
3169          * memory.
3170          */
3171         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3172         if (err) {
3173                 iounmap(vaddr);
3174                 return -ENOMEM;
3175         }
3176
3177         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3178         if (cmd == NULL) {
3179                 iounmap(vaddr);
3180                 return -ENOMEM;
3181         }
3182
3183         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3184          * although there's no guarantee, we assume that the address is at
3185          * least 4-byte aligned (most likely, it's page-aligned).
3186          */
3187         paddr32 = paddr64;
3188
3189         cmd->CommandHeader.ReplyQueue = 0;
3190         cmd->CommandHeader.SGList = 0;
3191         cmd->CommandHeader.SGTotal = 0;
3192         cmd->CommandHeader.Tag.lower = paddr32;
3193         cmd->CommandHeader.Tag.upper = 0;
3194         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3195
3196         cmd->Request.CDBLen = 16;
3197         cmd->Request.Type.Type = TYPE_MSG;
3198         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3199         cmd->Request.Type.Direction = XFER_NONE;
3200         cmd->Request.Timeout = 0; /* Don't time out */
3201         cmd->Request.CDB[0] = opcode;
3202         cmd->Request.CDB[1] = type;
3203         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3204         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3205         cmd->ErrorDescriptor.Addr.upper = 0;
3206         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3207
3208         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3209
3210         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3211                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3212                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3213                         break;
3214                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3215         }
3216
3217         iounmap(vaddr);
3218
3219         /* we leak the DMA buffer here ... no choice since the controller could
3220          *  still complete the command.
3221          */
3222         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3223                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3224                         opcode, type);
3225                 return -ETIMEDOUT;
3226         }
3227
3228         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3229
3230         if (tag & HPSA_ERROR_BIT) {
3231                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3232                         opcode, type);
3233                 return -EIO;
3234         }
3235
3236         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3237                 opcode, type);
3238         return 0;
3239 }
3240
3241 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3242
3243 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3244         void * __iomem vaddr, u32 use_doorbell)
3245 {
3246         u16 pmcsr;
3247         int pos;
3248
3249         if (use_doorbell) {
3250                 /* For everything after the P600, the PCI power state method
3251                  * of resetting the controller doesn't work, so we have this
3252                  * other way using the doorbell register.
3253                  */
3254                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3255                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3256         } else { /* Try to do it the PCI power state way */
3257
3258                 /* Quoting from the Open CISS Specification: "The Power
3259                  * Management Control/Status Register (CSR) controls the power
3260                  * state of the device.  The normal operating state is D0,
3261                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3262                  * the controller, place the interface device in D3 then to D0,
3263                  * this causes a secondary PCI reset which will reset the
3264                  * controller." */
3265
3266                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3267                 if (pos == 0) {
3268                         dev_err(&pdev->dev,
3269                                 "hpsa_reset_controller: "
3270                                 "PCI PM not supported\n");
3271                         return -ENODEV;
3272                 }
3273                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3274                 /* enter the D3hot power management state */
3275                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3276                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3277                 pmcsr |= PCI_D3hot;
3278                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3279
3280                 msleep(500);
3281
3282                 /* enter the D0 power management state */
3283                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3284                 pmcsr |= PCI_D0;
3285                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3286         }
3287         return 0;
3288 }
3289
3290 static __devinit void init_driver_version(char *driver_version, int len)
3291 {
3292         memset(driver_version, 0, len);
3293         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3294 }
3295
3296 static __devinit int write_driver_ver_to_cfgtable(
3297         struct CfgTable __iomem *cfgtable)
3298 {
3299         char *driver_version;
3300         int i, size = sizeof(cfgtable->driver_version);
3301
3302         driver_version = kmalloc(size, GFP_KERNEL);
3303         if (!driver_version)
3304                 return -ENOMEM;
3305
3306         init_driver_version(driver_version, size);
3307         for (i = 0; i < size; i++)
3308                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3309         kfree(driver_version);
3310         return 0;
3311 }
3312
3313 static __devinit void read_driver_ver_from_cfgtable(
3314         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3315 {
3316         int i;
3317
3318         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3319                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3320 }
3321
3322 static __devinit int controller_reset_failed(
3323         struct CfgTable __iomem *cfgtable)
3324 {
3325
3326         char *driver_ver, *old_driver_ver;
3327         int rc, size = sizeof(cfgtable->driver_version);
3328
3329         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3330         if (!old_driver_ver)
3331                 return -ENOMEM;
3332         driver_ver = old_driver_ver + size;
3333
3334         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3335          * should have been changed, otherwise we know the reset failed.
3336          */
3337         init_driver_version(old_driver_ver, size);
3338         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3339         rc = !memcmp(driver_ver, old_driver_ver, size);
3340         kfree(old_driver_ver);
3341         return rc;
3342 }
3343 /* This does a hard reset of the controller using PCI power management
3344  * states or the using the doorbell register.
3345  */
3346 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3347 {
3348         u64 cfg_offset;
3349         u32 cfg_base_addr;
3350         u64 cfg_base_addr_index;
3351         void __iomem *vaddr;
3352         unsigned long paddr;
3353         u32 misc_fw_support;
3354         int rc;
3355         struct CfgTable __iomem *cfgtable;
3356         u32 use_doorbell;
3357         u32 board_id;
3358         u16 command_register;
3359
3360         /* For controllers as old as the P600, this is very nearly
3361          * the same thing as
3362          *
3363          * pci_save_state(pci_dev);
3364          * pci_set_power_state(pci_dev, PCI_D3hot);
3365          * pci_set_power_state(pci_dev, PCI_D0);
3366          * pci_restore_state(pci_dev);
3367          *
3368          * For controllers newer than the P600, the pci power state
3369          * method of resetting doesn't work so we have another way
3370          * using the doorbell register.
3371          */
3372
3373         rc = hpsa_lookup_board_id(pdev, &board_id);
3374         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3375                 dev_warn(&pdev->dev, "Not resetting device.\n");
3376                 return -ENODEV;
3377         }
3378
3379         /* if controller is soft- but not hard resettable... */
3380         if (!ctlr_is_hard_resettable(board_id))
3381                 return -ENOTSUPP; /* try soft reset later. */
3382
3383         /* Save the PCI command register */
3384         pci_read_config_word(pdev, 4, &command_register);
3385         /* Turn the board off.  This is so that later pci_restore_state()
3386          * won't turn the board on before the rest of config space is ready.
3387          */
3388         pci_disable_device(pdev);
3389         pci_save_state(pdev);
3390
3391         /* find the first memory BAR, so we can find the cfg table */
3392         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3393         if (rc)
3394                 return rc;
3395         vaddr = remap_pci_mem(paddr, 0x250);
3396         if (!vaddr)
3397                 return -ENOMEM;
3398
3399         /* find cfgtable in order to check if reset via doorbell is supported */
3400         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3401                                         &cfg_base_addr_index, &cfg_offset);
3402         if (rc)
3403                 goto unmap_vaddr;
3404         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3405                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3406         if (!cfgtable) {
3407                 rc = -ENOMEM;
3408                 goto unmap_vaddr;
3409         }
3410         rc = write_driver_ver_to_cfgtable(cfgtable);
3411         if (rc)
3412                 goto unmap_vaddr;
3413
3414         /* If reset via doorbell register is supported, use that.
3415          * There are two such methods.  Favor the newest method.
3416          */
3417         misc_fw_support = readl(&cfgtable->misc_fw_support);
3418         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3419         if (use_doorbell) {
3420                 use_doorbell = DOORBELL_CTLR_RESET2;
3421         } else {
3422                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3423                 if (use_doorbell) {
3424                         dev_warn(&pdev->dev, "Controller claims that "
3425                                 "'Bit 2 doorbell reset' is "
3426                                 "supported, but not 'bit 5 doorbell reset'.  "
3427                                 "Firmware update is recommended.\n");
3428                         rc = -ENOTSUPP; /* try soft reset */
3429                         goto unmap_cfgtable;
3430                 }
3431         }
3432
3433         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3434         if (rc)
3435                 goto unmap_cfgtable;
3436
3437         pci_restore_state(pdev);
3438         rc = pci_enable_device(pdev);
3439         if (rc) {
3440                 dev_warn(&pdev->dev, "failed to enable device.\n");
3441                 goto unmap_cfgtable;
3442         }
3443         pci_write_config_word(pdev, 4, command_register);
3444
3445         /* Some devices (notably the HP Smart Array 5i Controller)
3446            need a little pause here */
3447         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3448
3449         /* Wait for board to become not ready, then ready. */
3450         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3451         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3452         if (rc) {
3453                 dev_warn(&pdev->dev,
3454                         "failed waiting for board to reset."
3455                         " Will try soft reset.\n");
3456                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3457                 goto unmap_cfgtable;
3458         }
3459         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3460         if (rc) {
3461                 dev_warn(&pdev->dev,
3462                         "failed waiting for board to become ready "
3463                         "after hard reset\n");
3464                 goto unmap_cfgtable;
3465         }
3466
3467         rc = controller_reset_failed(vaddr);
3468         if (rc < 0)
3469                 goto unmap_cfgtable;
3470         if (rc) {
3471                 dev_warn(&pdev->dev, "Unable to successfully reset "
3472                         "controller. Will try soft reset.\n");
3473                 rc = -ENOTSUPP;
3474         } else {
3475                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3476         }
3477
3478 unmap_cfgtable:
3479         iounmap(cfgtable);
3480
3481 unmap_vaddr:
3482         iounmap(vaddr);
3483         return rc;
3484 }
3485
3486 /*
3487  *  We cannot read the structure directly, for portability we must use
3488  *   the io functions.
3489  *   This is for debug only.
3490  */
3491 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3492 {
3493 #ifdef HPSA_DEBUG
3494         int i;
3495         char temp_name[17];
3496
3497         dev_info(dev, "Controller Configuration information\n");
3498         dev_info(dev, "------------------------------------\n");
3499         for (i = 0; i < 4; i++)
3500                 temp_name[i] = readb(&(tb->Signature[i]));
3501         temp_name[4] = '\0';
3502         dev_info(dev, "   Signature = %s\n", temp_name);
3503         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3504         dev_info(dev, "   Transport methods supported = 0x%x\n",
3505                readl(&(tb->TransportSupport)));
3506         dev_info(dev, "   Transport methods active = 0x%x\n",
3507                readl(&(tb->TransportActive)));
3508         dev_info(dev, "   Requested transport Method = 0x%x\n",
3509                readl(&(tb->HostWrite.TransportRequest)));
3510         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3511                readl(&(tb->HostWrite.CoalIntDelay)));
3512         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3513                readl(&(tb->HostWrite.CoalIntCount)));
3514         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3515                readl(&(tb->CmdsOutMax)));
3516         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3517         for (i = 0; i < 16; i++)
3518                 temp_name[i] = readb(&(tb->ServerName[i]));
3519         temp_name[16] = '\0';
3520         dev_info(dev, "   Server Name = %s\n", temp_name);
3521         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3522                 readl(&(tb->HeartBeat)));
3523 #endif                          /* HPSA_DEBUG */
3524 }
3525
3526 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3527 {
3528         int i, offset, mem_type, bar_type;
3529
3530         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3531                 return 0;
3532         offset = 0;
3533         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3534                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3535                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3536                         offset += 4;
3537                 else {
3538                         mem_type = pci_resource_flags(pdev, i) &
3539                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3540                         switch (mem_type) {
3541                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3542                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3543                                 offset += 4;    /* 32 bit */
3544                                 break;
3545                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3546                                 offset += 8;
3547                                 break;
3548                         default:        /* reserved in PCI 2.2 */
3549                                 dev_warn(&pdev->dev,
3550                                        "base address is invalid\n");
3551                                 return -1;
3552                                 break;
3553                         }
3554                 }
3555                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3556                         return i + 1;
3557         }
3558         return -1;
3559 }
3560
3561 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3562  * controllers that are capable. If not, we use IO-APIC mode.
3563  */
3564
3565 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3566 {
3567 #ifdef CONFIG_PCI_MSI
3568         int err;
3569         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3570         {0, 2}, {0, 3}
3571         };
3572
3573         /* Some boards advertise MSI but don't really support it */
3574         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3575             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3576                 goto default_int_mode;
3577         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3578                 dev_info(&h->pdev->dev, "MSIX\n");
3579                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3580                 if (!err) {
3581                         h->intr[0] = hpsa_msix_entries[0].vector;
3582                         h->intr[1] = hpsa_msix_entries[1].vector;
3583                         h->intr[2] = hpsa_msix_entries[2].vector;
3584                         h->intr[3] = hpsa_msix_entries[3].vector;
3585                         h->msix_vector = 1;
3586                         return;
3587                 }
3588                 if (err > 0) {
3589                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3590                                "available\n", err);
3591                         goto default_int_mode;
3592                 } else {
3593                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3594                                err);
3595                         goto default_int_mode;
3596                 }
3597         }
3598         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3599                 dev_info(&h->pdev->dev, "MSI\n");
3600                 if (!pci_enable_msi(h->pdev))
3601                         h->msi_vector = 1;
3602                 else
3603                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3604         }
3605 default_int_mode:
3606 #endif                          /* CONFIG_PCI_MSI */
3607         /* if we get here we're going to use the default interrupt mode */
3608         h->intr[h->intr_mode] = h->pdev->irq;
3609 }
3610
3611 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3612 {
3613         int i;
3614         u32 subsystem_vendor_id, subsystem_device_id;
3615
3616         subsystem_vendor_id = pdev->subsystem_vendor;
3617         subsystem_device_id = pdev->subsystem_device;
3618         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3619                     subsystem_vendor_id;
3620
3621         for (i = 0; i < ARRAY_SIZE(products); i++)
3622                 if (*board_id == products[i].board_id)
3623                         return i;
3624
3625         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3626                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3627                 !hpsa_allow_any) {
3628                 dev_warn(&pdev->dev, "unrecognized board ID: "
3629                         "0x%08x, ignoring.\n", *board_id);
3630                         return -ENODEV;
3631         }
3632         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3633 }
3634
3635 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3636 {
3637         u16 command;
3638
3639         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3640         return ((command & PCI_COMMAND_MEMORY) == 0);
3641 }
3642
3643 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3644         unsigned long *memory_bar)
3645 {
3646         int i;
3647
3648         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3649                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3650                         /* addressing mode bits already removed */
3651                         *memory_bar = pci_resource_start(pdev, i);
3652                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3653                                 *memory_bar);
3654                         return 0;
3655                 }
3656         dev_warn(&pdev->dev, "no memory BAR found\n");
3657         return -ENODEV;
3658 }
3659
3660 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3661         void __iomem *vaddr, int wait_for_ready)
3662 {
3663         int i, iterations;
3664         u32 scratchpad;
3665         if (wait_for_ready)
3666                 iterations = HPSA_BOARD_READY_ITERATIONS;
3667         else
3668                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3669
3670         for (i = 0; i < iterations; i++) {
3671                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3672                 if (wait_for_ready) {
3673                         if (scratchpad == HPSA_FIRMWARE_READY)
3674                                 return 0;
3675                 } else {
3676                         if (scratchpad != HPSA_FIRMWARE_READY)
3677                                 return 0;
3678                 }
3679                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3680         }
3681         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3682         return -ENODEV;
3683 }
3684
3685 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3686         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3687         u64 *cfg_offset)
3688 {
3689         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3690         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3691         *cfg_base_addr &= (u32) 0x0000ffff;
3692         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3693         if (*cfg_base_addr_index == -1) {
3694                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3695                 return -ENODEV;
3696         }
3697         return 0;
3698 }
3699
3700 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3701 {
3702         u64 cfg_offset;
3703         u32 cfg_base_addr;
3704         u64 cfg_base_addr_index;
3705         u32 trans_offset;
3706         int rc;
3707
3708         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3709                 &cfg_base_addr_index, &cfg_offset);
3710         if (rc)
3711                 return rc;
3712         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3713                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3714         if (!h->cfgtable)
3715                 return -ENOMEM;
3716         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3717         if (rc)
3718                 return rc;
3719         /* Find performant mode table. */
3720         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3721         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3722                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3723                                 sizeof(*h->transtable));
3724         if (!h->transtable)
3725                 return -ENOMEM;
3726         return 0;
3727 }
3728
3729 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3730 {
3731         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3732
3733         /* Limit commands in memory limited kdump scenario. */
3734         if (reset_devices && h->max_commands > 32)
3735                 h->max_commands = 32;
3736
3737         if (h->max_commands < 16) {
3738                 dev_warn(&h->pdev->dev, "Controller reports "
3739                         "max supported commands of %d, an obvious lie. "
3740                         "Using 16.  Ensure that firmware is up to date.\n",
3741                         h->max_commands);
3742                 h->max_commands = 16;
3743         }
3744 }
3745
3746 /* Interrogate the hardware for some limits:
3747  * max commands, max SG elements without chaining, and with chaining,
3748  * SG chain block size, etc.
3749  */
3750 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3751 {
3752         hpsa_get_max_perf_mode_cmds(h);
3753         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3754         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3755         /*
3756          * Limit in-command s/g elements to 32 save dma'able memory.
3757          * Howvever spec says if 0, use 31
3758          */
3759         h->max_cmd_sg_entries = 31;
3760         if (h->maxsgentries > 512) {
3761                 h->max_cmd_sg_entries = 32;
3762                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3763                 h->maxsgentries--; /* save one for chain pointer */
3764         } else {
3765                 h->maxsgentries = 31; /* default to traditional values */
3766                 h->chainsize = 0;
3767         }
3768 }
3769
3770 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3771 {
3772         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3773             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3774             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3775             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3776                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3777                 return false;
3778         }
3779         return true;
3780 }
3781
3782 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3783 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3784 {
3785 #ifdef CONFIG_X86
3786         u32 prefetch;
3787
3788         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3789         prefetch |= 0x100;
3790         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3791 #endif
3792 }
3793
3794 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3795  * in a prefetch beyond physical memory.
3796  */
3797 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3798 {
3799         u32 dma_prefetch;
3800
3801         if (h->board_id != 0x3225103C)
3802                 return;
3803         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3804         dma_prefetch |= 0x8000;
3805         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3806 }
3807
3808 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3809 {
3810         int i;
3811         u32 doorbell_value;
3812         unsigned long flags;
3813
3814         /* under certain very rare conditions, this can take awhile.
3815          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3816          * as we enter this code.)
3817          */
3818         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3819                 spin_lock_irqsave(&h->lock, flags);
3820                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3821                 spin_unlock_irqrestore(&h->lock, flags);
3822                 if (!(doorbell_value & CFGTBL_ChangeReq))
3823                         break;
3824                 /* delay and try again */
3825                 usleep_range(10000, 20000);
3826         }
3827 }
3828
3829 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3830 {
3831         u32 trans_support;
3832
3833         trans_support = readl(&(h->cfgtable->TransportSupport));
3834         if (!(trans_support & SIMPLE_MODE))
3835                 return -ENOTSUPP;
3836
3837         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3838         /* Update the field, and then ring the doorbell */
3839         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3840         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3841         hpsa_wait_for_mode_change_ack(h);
3842         print_cfg_table(&h->pdev->dev, h->cfgtable);
3843         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3844                 dev_warn(&h->pdev->dev,
3845                         "unable to get board into simple mode\n");
3846                 return -ENODEV;
3847         }
3848         h->transMethod = CFGTBL_Trans_Simple;
3849         return 0;
3850 }
3851
3852 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3853 {
3854         int prod_index, err;
3855
3856         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3857         if (prod_index < 0)
3858                 return -ENODEV;
3859         h->product_name = products[prod_index].product_name;
3860         h->access = *(products[prod_index].access);
3861
3862         if (hpsa_board_disabled(h->pdev)) {
3863                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3864                 return -ENODEV;
3865         }
3866         err = pci_enable_device(h->pdev);
3867         if (err) {
3868                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3869                 return err;
3870         }
3871
3872         err = pci_request_regions(h->pdev, "hpsa");
3873         if (err) {
3874                 dev_err(&h->pdev->dev,
3875                         "cannot obtain PCI resources, aborting\n");
3876                 return err;
3877         }
3878         hpsa_interrupt_mode(h);
3879         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3880         if (err)
3881                 goto err_out_free_res;
3882         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3883         if (!h->vaddr) {
3884                 err = -ENOMEM;
3885                 goto err_out_free_res;
3886         }
3887         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3888         if (err)
3889                 goto err_out_free_res;
3890         err = hpsa_find_cfgtables(h);
3891         if (err)
3892                 goto err_out_free_res;
3893         hpsa_find_board_params(h);
3894
3895         if (!hpsa_CISS_signature_present(h)) {
3896                 err = -ENODEV;
3897                 goto err_out_free_res;
3898         }
3899         hpsa_enable_scsi_prefetch(h);
3900         hpsa_p600_dma_prefetch_quirk(h);
3901         err = hpsa_enter_simple_mode(h);
3902         if (err)
3903                 goto err_out_free_res;
3904         return 0;
3905
3906 err_out_free_res:
3907         if (h->transtable)
3908                 iounmap(h->transtable);
3909         if (h->cfgtable)
3910                 iounmap(h->cfgtable);
3911         if (h->vaddr)
3912                 iounmap(h->vaddr);
3913         /*
3914          * Deliberately omit pci_disable_device(): it does something nasty to
3915          * Smart Array controllers that pci_enable_device does not undo
3916          */
3917         pci_release_regions(h->pdev);
3918         return err;
3919 }
3920
3921 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3922 {
3923         int rc;
3924
3925 #define HBA_INQUIRY_BYTE_COUNT 64
3926         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3927         if (!h->hba_inquiry_data)
3928                 return;
3929         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3930                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3931         if (rc != 0) {
3932                 kfree(h->hba_inquiry_data);
3933                 h->hba_inquiry_data = NULL;
3934         }
3935 }
3936
3937 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3938 {
3939         int rc, i;
3940
3941         if (!reset_devices)
3942                 return 0;
3943
3944         /* Reset the controller with a PCI power-cycle or via doorbell */
3945         rc = hpsa_kdump_hard_reset_controller(pdev);
3946
3947         /* -ENOTSUPP here means we cannot reset the controller
3948          * but it's already (and still) up and running in
3949          * "performant mode".  Or, it might be 640x, which can't reset
3950          * due to concerns about shared bbwc between 6402/6404 pair.
3951          */
3952         if (rc == -ENOTSUPP)
3953                 return rc; /* just try to do the kdump anyhow. */
3954         if (rc)
3955                 return -ENODEV;
3956
3957         /* Now try to get the controller to respond to a no-op */
3958         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
3959         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3960                 if (hpsa_noop(pdev) == 0)
3961                         break;
3962                 else
3963                         dev_warn(&pdev->dev, "no-op failed%s\n",
3964                                         (i < 11 ? "; re-trying" : ""));
3965         }
3966         return 0;
3967 }
3968
3969 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
3970 {
3971         h->cmd_pool_bits = kzalloc(
3972                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
3973                 sizeof(unsigned long), GFP_KERNEL);
3974         h->cmd_pool = pci_alloc_consistent(h->pdev,
3975                     h->nr_cmds * sizeof(*h->cmd_pool),
3976                     &(h->cmd_pool_dhandle));
3977         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3978                     h->nr_cmds * sizeof(*h->errinfo_pool),
3979                     &(h->errinfo_pool_dhandle));
3980         if ((h->cmd_pool_bits == NULL)
3981             || (h->cmd_pool == NULL)
3982             || (h->errinfo_pool == NULL)) {
3983                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
3984                 return -ENOMEM;
3985         }
3986         return 0;
3987 }
3988
3989 static void hpsa_free_cmd_pool(struct ctlr_info *h)
3990 {
3991         kfree(h->cmd_pool_bits);
3992         if (h->cmd_pool)
3993                 pci_free_consistent(h->pdev,
3994                             h->nr_cmds * sizeof(struct CommandList),
3995                             h->cmd_pool, h->cmd_pool_dhandle);
3996         if (h->errinfo_pool)
3997                 pci_free_consistent(h->pdev,
3998                             h->nr_cmds * sizeof(struct ErrorInfo),
3999                             h->errinfo_pool,
4000                             h->errinfo_pool_dhandle);
4001 }
4002
4003 static int hpsa_request_irq(struct ctlr_info *h,
4004         irqreturn_t (*msixhandler)(int, void *),
4005         irqreturn_t (*intxhandler)(int, void *))
4006 {
4007         int rc;
4008
4009         if (h->msix_vector || h->msi_vector)
4010                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4011                                 IRQF_DISABLED, h->devname, h);
4012         else
4013                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4014                                 IRQF_DISABLED, h->devname, h);
4015         if (rc) {
4016                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4017                        h->intr[h->intr_mode], h->devname);
4018                 return -ENODEV;
4019         }
4020         return 0;
4021 }
4022
4023 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4024 {
4025         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4026                 HPSA_RESET_TYPE_CONTROLLER)) {
4027                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4028                 return -EIO;
4029         }
4030
4031         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4032         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4033                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4034                 return -1;
4035         }
4036
4037         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4038         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4039                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4040                         "after soft reset.\n");
4041                 return -1;
4042         }
4043
4044         return 0;
4045 }
4046
4047 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4048 {
4049         free_irq(h->intr[h->intr_mode], h);
4050 #ifdef CONFIG_PCI_MSI
4051         if (h->msix_vector)
4052                 pci_disable_msix(h->pdev);
4053         else if (h->msi_vector)
4054                 pci_disable_msi(h->pdev);
4055 #endif /* CONFIG_PCI_MSI */
4056         hpsa_free_sg_chain_blocks(h);
4057         hpsa_free_cmd_pool(h);
4058         kfree(h->blockFetchTable);
4059         pci_free_consistent(h->pdev, h->reply_pool_size,
4060                 h->reply_pool, h->reply_pool_dhandle);
4061         if (h->vaddr)
4062                 iounmap(h->vaddr);
4063         if (h->transtable)
4064                 iounmap(h->transtable);
4065         if (h->cfgtable)
4066                 iounmap(h->cfgtable);
4067         pci_release_regions(h->pdev);
4068         kfree(h);
4069 }
4070
4071 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4072                                     const struct pci_device_id *ent)
4073 {
4074         int dac, rc;
4075         struct ctlr_info *h;
4076         int try_soft_reset = 0;
4077         unsigned long flags;
4078
4079         if (number_of_controllers == 0)
4080                 printk(KERN_INFO DRIVER_NAME "\n");
4081
4082         rc = hpsa_init_reset_devices(pdev);
4083         if (rc) {
4084                 if (rc != -ENOTSUPP)
4085                         return rc;
4086                 /* If the reset fails in a particular way (it has no way to do
4087                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4088                  * a soft reset once we get the controller configured up to the
4089                  * point that it can accept a command.
4090                  */
4091                 try_soft_reset = 1;
4092                 rc = 0;
4093         }
4094
4095 reinit_after_soft_reset:
4096
4097         /* Command structures must be aligned on a 32-byte boundary because
4098          * the 5 lower bits of the address are used by the hardware. and by
4099          * the driver.  See comments in hpsa.h for more info.
4100          */
4101 #define COMMANDLIST_ALIGNMENT 32
4102         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4103         h = kzalloc(sizeof(*h), GFP_KERNEL);
4104         if (!h)
4105                 return -ENOMEM;
4106
4107         h->pdev = pdev;
4108         h->busy_initializing = 1;
4109         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4110         INIT_LIST_HEAD(&h->cmpQ);
4111         INIT_LIST_HEAD(&h->reqQ);
4112         spin_lock_init(&h->lock);
4113         spin_lock_init(&h->scan_lock);
4114         rc = hpsa_pci_init(h);
4115         if (rc != 0)
4116                 goto clean1;
4117
4118         sprintf(h->devname, "hpsa%d", number_of_controllers);
4119         h->ctlr = number_of_controllers;
4120         number_of_controllers++;
4121
4122         /* configure PCI DMA stuff */
4123         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4124         if (rc == 0) {
4125                 dac = 1;
4126         } else {
4127                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4128                 if (rc == 0) {
4129                         dac = 0;
4130                 } else {
4131                         dev_err(&pdev->dev, "no suitable DMA available\n");
4132                         goto clean1;
4133                 }
4134         }
4135
4136         /* make sure the board interrupts are off */
4137         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4138
4139         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4140                 goto clean2;
4141         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4142                h->devname, pdev->device,
4143                h->intr[h->intr_mode], dac ? "" : " not");
4144         if (hpsa_allocate_cmd_pool(h))
4145                 goto clean4;
4146         if (hpsa_allocate_sg_chain_blocks(h))
4147                 goto clean4;
4148         init_waitqueue_head(&h->scan_wait_queue);
4149         h->scan_finished = 1; /* no scan currently in progress */
4150
4151         pci_set_drvdata(pdev, h);
4152         h->ndevices = 0;
4153         h->scsi_host = NULL;
4154         spin_lock_init(&h->devlock);
4155         hpsa_put_ctlr_into_performant_mode(h);
4156
4157         /* At this point, the controller is ready to take commands.
4158          * Now, if reset_devices and the hard reset didn't work, try
4159          * the soft reset and see if that works.
4160          */
4161         if (try_soft_reset) {
4162
4163                 /* This is kind of gross.  We may or may not get a completion
4164                  * from the soft reset command, and if we do, then the value
4165                  * from the fifo may or may not be valid.  So, we wait 10 secs
4166                  * after the reset throwing away any completions we get during
4167                  * that time.  Unregister the interrupt handler and register
4168                  * fake ones to scoop up any residual completions.
4169                  */
4170                 spin_lock_irqsave(&h->lock, flags);
4171                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4172                 spin_unlock_irqrestore(&h->lock, flags);
4173                 free_irq(h->intr[h->intr_mode], h);
4174                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4175                                         hpsa_intx_discard_completions);
4176                 if (rc) {
4177                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4178                                 "soft reset.\n");
4179                         goto clean4;
4180                 }
4181
4182                 rc = hpsa_kdump_soft_reset(h);
4183                 if (rc)
4184                         /* Neither hard nor soft reset worked, we're hosed. */
4185                         goto clean4;
4186
4187                 dev_info(&h->pdev->dev, "Board READY.\n");
4188                 dev_info(&h->pdev->dev,
4189                         "Waiting for stale completions to drain.\n");
4190                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4191                 msleep(10000);
4192                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4193
4194                 rc = controller_reset_failed(h->cfgtable);
4195                 if (rc)
4196                         dev_info(&h->pdev->dev,
4197                                 "Soft reset appears to have failed.\n");
4198
4199                 /* since the controller's reset, we have to go back and re-init
4200                  * everything.  Easiest to just forget what we've done and do it
4201                  * all over again.
4202                  */
4203                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4204                 try_soft_reset = 0;
4205                 if (rc)
4206                         /* don't go to clean4, we already unallocated */
4207                         return -ENODEV;
4208
4209                 goto reinit_after_soft_reset;
4210         }
4211
4212         /* Turn the interrupts on so we can service requests */
4213         h->access.set_intr_mask(h, HPSA_INTR_ON);
4214
4215         hpsa_hba_inquiry(h);
4216         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4217         h->busy_initializing = 0;
4218         return 1;
4219
4220 clean4:
4221         hpsa_free_sg_chain_blocks(h);
4222         hpsa_free_cmd_pool(h);
4223         free_irq(h->intr[h->intr_mode], h);
4224 clean2:
4225 clean1:
4226         h->busy_initializing = 0;
4227         kfree(h);
4228         return rc;
4229 }
4230
4231 static void hpsa_flush_cache(struct ctlr_info *h)
4232 {
4233         char *flush_buf;
4234         struct CommandList *c;
4235
4236         flush_buf = kzalloc(4, GFP_KERNEL);
4237         if (!flush_buf)
4238                 return;
4239
4240         c = cmd_special_alloc(h);
4241         if (!c) {
4242                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4243                 goto out_of_memory;
4244         }
4245         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4246                 RAID_CTLR_LUNID, TYPE_CMD);
4247         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4248         if (c->err_info->CommandStatus != 0)
4249                 dev_warn(&h->pdev->dev,
4250                         "error flushing cache on controller\n");
4251         cmd_special_free(h, c);
4252 out_of_memory:
4253         kfree(flush_buf);
4254 }
4255
4256 static void hpsa_shutdown(struct pci_dev *pdev)
4257 {
4258         struct ctlr_info *h;
4259
4260         h = pci_get_drvdata(pdev);
4261         /* Turn board interrupts off  and send the flush cache command
4262          * sendcmd will turn off interrupt, and send the flush...
4263          * To write all data in the battery backed cache to disks
4264          */
4265         hpsa_flush_cache(h);
4266         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4267         free_irq(h->intr[h->intr_mode], h);
4268 #ifdef CONFIG_PCI_MSI
4269         if (h->msix_vector)
4270                 pci_disable_msix(h->pdev);
4271         else if (h->msi_vector)
4272                 pci_disable_msi(h->pdev);
4273 #endif                          /* CONFIG_PCI_MSI */
4274 }
4275
4276 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4277 {
4278         struct ctlr_info *h;
4279
4280         if (pci_get_drvdata(pdev) == NULL) {
4281                 dev_err(&pdev->dev, "unable to remove device \n");
4282                 return;
4283         }
4284         h = pci_get_drvdata(pdev);
4285         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4286         hpsa_shutdown(pdev);
4287         iounmap(h->vaddr);
4288         iounmap(h->transtable);
4289         iounmap(h->cfgtable);
4290         hpsa_free_sg_chain_blocks(h);
4291         pci_free_consistent(h->pdev,
4292                 h->nr_cmds * sizeof(struct CommandList),
4293                 h->cmd_pool, h->cmd_pool_dhandle);
4294         pci_free_consistent(h->pdev,
4295                 h->nr_cmds * sizeof(struct ErrorInfo),
4296                 h->errinfo_pool, h->errinfo_pool_dhandle);
4297         pci_free_consistent(h->pdev, h->reply_pool_size,
4298                 h->reply_pool, h->reply_pool_dhandle);
4299         kfree(h->cmd_pool_bits);
4300         kfree(h->blockFetchTable);
4301         kfree(h->hba_inquiry_data);
4302         /*
4303          * Deliberately omit pci_disable_device(): it does something nasty to
4304          * Smart Array controllers that pci_enable_device does not undo
4305          */
4306         pci_release_regions(pdev);
4307         pci_set_drvdata(pdev, NULL);
4308         kfree(h);
4309 }
4310
4311 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4312         __attribute__((unused)) pm_message_t state)
4313 {
4314         return -ENOSYS;
4315 }
4316
4317 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4318 {
4319         return -ENOSYS;
4320 }
4321
4322 static struct pci_driver hpsa_pci_driver = {
4323         .name = "hpsa",
4324         .probe = hpsa_init_one,
4325         .remove = __devexit_p(hpsa_remove_one),
4326         .id_table = hpsa_pci_device_id, /* id_table */
4327         .shutdown = hpsa_shutdown,
4328         .suspend = hpsa_suspend,
4329         .resume = hpsa_resume,
4330 };
4331
4332 /* Fill in bucket_map[], given nsgs (the max number of
4333  * scatter gather elements supported) and bucket[],
4334  * which is an array of 8 integers.  The bucket[] array
4335  * contains 8 different DMA transfer sizes (in 16
4336  * byte increments) which the controller uses to fetch
4337  * commands.  This function fills in bucket_map[], which
4338  * maps a given number of scatter gather elements to one of
4339  * the 8 DMA transfer sizes.  The point of it is to allow the
4340  * controller to only do as much DMA as needed to fetch the
4341  * command, with the DMA transfer size encoded in the lower
4342  * bits of the command address.
4343  */
4344 static void  calc_bucket_map(int bucket[], int num_buckets,
4345         int nsgs, int *bucket_map)
4346 {
4347         int i, j, b, size;
4348
4349         /* even a command with 0 SGs requires 4 blocks */
4350 #define MINIMUM_TRANSFER_BLOCKS 4
4351 #define NUM_BUCKETS 8
4352         /* Note, bucket_map must have nsgs+1 entries. */
4353         for (i = 0; i <= nsgs; i++) {
4354                 /* Compute size of a command with i SG entries */
4355                 size = i + MINIMUM_TRANSFER_BLOCKS;
4356                 b = num_buckets; /* Assume the biggest bucket */
4357                 /* Find the bucket that is just big enough */
4358                 for (j = 0; j < 8; j++) {
4359                         if (bucket[j] >= size) {
4360                                 b = j;
4361                                 break;
4362                         }
4363                 }
4364                 /* for a command with i SG entries, use bucket b. */
4365                 bucket_map[i] = b;
4366         }
4367 }
4368
4369 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4370         u32 use_short_tags)
4371 {
4372         int i;
4373         unsigned long register_value;
4374
4375         /* This is a bit complicated.  There are 8 registers on
4376          * the controller which we write to to tell it 8 different
4377          * sizes of commands which there may be.  It's a way of
4378          * reducing the DMA done to fetch each command.  Encoded into
4379          * each command's tag are 3 bits which communicate to the controller
4380          * which of the eight sizes that command fits within.  The size of
4381          * each command depends on how many scatter gather entries there are.
4382          * Each SG entry requires 16 bytes.  The eight registers are programmed
4383          * with the number of 16-byte blocks a command of that size requires.
4384          * The smallest command possible requires 5 such 16 byte blocks.
4385          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4386          * blocks.  Note, this only extends to the SG entries contained
4387          * within the command block, and does not extend to chained blocks
4388          * of SG elements.   bft[] contains the eight values we write to
4389          * the registers.  They are not evenly distributed, but have more
4390          * sizes for small commands, and fewer sizes for larger commands.
4391          */
4392         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4393         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4394         /*  5 = 1 s/g entry or 4k
4395          *  6 = 2 s/g entry or 8k
4396          *  8 = 4 s/g entry or 16k
4397          * 10 = 6 s/g entry or 24k
4398          */
4399
4400         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4401
4402         /* Controller spec: zero out this buffer. */
4403         memset(h->reply_pool, 0, h->reply_pool_size);
4404         h->reply_pool_head = h->reply_pool;
4405
4406         bft[7] = h->max_sg_entries + 4;
4407         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4408         for (i = 0; i < 8; i++)
4409                 writel(bft[i], &h->transtable->BlockFetch[i]);
4410
4411         /* size of controller ring buffer */
4412         writel(h->max_commands, &h->transtable->RepQSize);
4413         writel(1, &h->transtable->RepQCount);
4414         writel(0, &h->transtable->RepQCtrAddrLow32);
4415         writel(0, &h->transtable->RepQCtrAddrHigh32);
4416         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4417         writel(0, &h->transtable->RepQAddr0High32);
4418         writel(CFGTBL_Trans_Performant | use_short_tags,
4419                 &(h->cfgtable->HostWrite.TransportRequest));
4420         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4421         hpsa_wait_for_mode_change_ack(h);
4422         register_value = readl(&(h->cfgtable->TransportActive));
4423         if (!(register_value & CFGTBL_Trans_Performant)) {
4424                 dev_warn(&h->pdev->dev, "unable to get board into"
4425                                         " performant mode\n");
4426                 return;
4427         }
4428         /* Change the access methods to the performant access methods */
4429         h->access = SA5_performant_access;
4430         h->transMethod = CFGTBL_Trans_Performant;
4431 }
4432
4433 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4434 {
4435         u32 trans_support;
4436
4437         if (hpsa_simple_mode)
4438                 return;
4439
4440         trans_support = readl(&(h->cfgtable->TransportSupport));
4441         if (!(trans_support & PERFORMANT_MODE))
4442                 return;
4443
4444         hpsa_get_max_perf_mode_cmds(h);
4445         h->max_sg_entries = 32;
4446         /* Performant mode ring buffer and supporting data structures */
4447         h->reply_pool_size = h->max_commands * sizeof(u64);
4448         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4449                                 &(h->reply_pool_dhandle));
4450
4451         /* Need a block fetch table for performant mode */
4452         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4453                                 sizeof(u32)), GFP_KERNEL);
4454
4455         if ((h->reply_pool == NULL)
4456                 || (h->blockFetchTable == NULL))
4457                 goto clean_up;
4458
4459         hpsa_enter_performant_mode(h,
4460                 trans_support & CFGTBL_Trans_use_short_tags);
4461
4462         return;
4463
4464 clean_up:
4465         if (h->reply_pool)
4466                 pci_free_consistent(h->pdev, h->reply_pool_size,
4467                         h->reply_pool, h->reply_pool_dhandle);
4468         kfree(h->blockFetchTable);
4469 }
4470
4471 /*
4472  *  This is it.  Register the PCI driver information for the cards we control
4473  *  the OS will call our registered routines when it finds one of our cards.
4474  */
4475 static int __init hpsa_init(void)
4476 {
4477         return pci_register_driver(&hpsa_pci_driver);
4478 }
4479
4480 static void __exit hpsa_cleanup(void)
4481 {
4482         pci_unregister_driver(&hpsa_pci_driver);
4483 }
4484
4485 module_init(hpsa_init);
4486 module_exit(hpsa_cleanup);