Merge branch 'kvm-updates/2.6.39' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
99         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
100                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
101         {0,}
102 };
103
104 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
105
106 /*  board_id = Subsystem Device ID & Vendor ID
107  *  product = Marketing Name for the board
108  *  access = Address of the struct of function pointers
109  */
110 static struct board_type products[] = {
111         {0x3241103C, "Smart Array P212", &SA5_access},
112         {0x3243103C, "Smart Array P410", &SA5_access},
113         {0x3245103C, "Smart Array P410i", &SA5_access},
114         {0x3247103C, "Smart Array P411", &SA5_access},
115         {0x3249103C, "Smart Array P812", &SA5_access},
116         {0x324a103C, "Smart Array P712m", &SA5_access},
117         {0x324b103C, "Smart Array P711m", &SA5_access},
118         {0x3350103C, "Smart Array", &SA5_access},
119         {0x3351103C, "Smart Array", &SA5_access},
120         {0x3352103C, "Smart Array", &SA5_access},
121         {0x3353103C, "Smart Array", &SA5_access},
122         {0x3354103C, "Smart Array", &SA5_access},
123         {0x3355103C, "Smart Array", &SA5_access},
124         {0x3356103C, "Smart Array", &SA5_access},
125         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
126 };
127
128 static int number_of_controllers;
129
130 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
131 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
132 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 static void start_io(struct ctlr_info *h);
134
135 #ifdef CONFIG_COMPAT
136 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
137 #endif
138
139 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
140 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
141 static struct CommandList *cmd_alloc(struct ctlr_info *h);
142 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
143 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
144         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
145         int cmd_type);
146
147 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
148 static void hpsa_scan_start(struct Scsi_Host *);
149 static int hpsa_scan_finished(struct Scsi_Host *sh,
150         unsigned long elapsed_time);
151 static int hpsa_change_queue_depth(struct scsi_device *sdev,
152         int qdepth, int reason);
153
154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
155 static int hpsa_slave_alloc(struct scsi_device *sdev);
156 static void hpsa_slave_destroy(struct scsi_device *sdev);
157
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static int check_for_unit_attention(struct ctlr_info *h,
160         struct CommandList *c);
161 static void check_ioctl_unit_attention(struct ctlr_info *h,
162         struct CommandList *c);
163 /* performant mode helper functions */
164 static void calc_bucket_map(int *bucket, int num_buckets,
165         int nsgs, int *bucket_map);
166 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
167 static inline u32 next_command(struct ctlr_info *h);
168 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
169         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
170         u64 *cfg_offset);
171 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
172         unsigned long *memory_bar);
173 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
174 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
175         void __iomem *vaddr, int wait_for_ready);
176 #define BOARD_NOT_READY 0
177 #define BOARD_READY 1
178
179 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
180 {
181         unsigned long *priv = shost_priv(sdev->host);
182         return (struct ctlr_info *) *priv;
183 }
184
185 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
186 {
187         unsigned long *priv = shost_priv(sh);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static int check_for_unit_attention(struct ctlr_info *h,
192         struct CommandList *c)
193 {
194         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
195                 return 0;
196
197         switch (c->err_info->SenseInfo[12]) {
198         case STATE_CHANGED:
199                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
200                         "detected, command retried\n", h->ctlr);
201                 break;
202         case LUN_FAILED:
203                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
204                         "detected, action required\n", h->ctlr);
205                 break;
206         case REPORT_LUNS_CHANGED:
207                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
208                         "changed, action required\n", h->ctlr);
209         /*
210          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
211          */
212                 break;
213         case POWER_OR_RESET:
214                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
215                         "or device reset detected\n", h->ctlr);
216                 break;
217         case UNIT_ATTENTION_CLEARED:
218                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
219                     "cleared by another initiator\n", h->ctlr);
220                 break;
221         default:
222                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
223                         "unit attention detected\n", h->ctlr);
224                 break;
225         }
226         return 1;
227 }
228
229 static ssize_t host_store_rescan(struct device *dev,
230                                  struct device_attribute *attr,
231                                  const char *buf, size_t count)
232 {
233         struct ctlr_info *h;
234         struct Scsi_Host *shost = class_to_shost(dev);
235         h = shost_to_hba(shost);
236         hpsa_scan_start(h->scsi_host);
237         return count;
238 }
239
240 static ssize_t host_show_firmware_revision(struct device *dev,
241              struct device_attribute *attr, char *buf)
242 {
243         struct ctlr_info *h;
244         struct Scsi_Host *shost = class_to_shost(dev);
245         unsigned char *fwrev;
246
247         h = shost_to_hba(shost);
248         if (!h->hba_inquiry_data)
249                 return 0;
250         fwrev = &h->hba_inquiry_data[32];
251         return snprintf(buf, 20, "%c%c%c%c\n",
252                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
253 }
254
255 static ssize_t host_show_commands_outstanding(struct device *dev,
256              struct device_attribute *attr, char *buf)
257 {
258         struct Scsi_Host *shost = class_to_shost(dev);
259         struct ctlr_info *h = shost_to_hba(shost);
260
261         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
262 }
263
264 static ssize_t host_show_transport_mode(struct device *dev,
265         struct device_attribute *attr, char *buf)
266 {
267         struct ctlr_info *h;
268         struct Scsi_Host *shost = class_to_shost(dev);
269
270         h = shost_to_hba(shost);
271         return snprintf(buf, 20, "%s\n",
272                 h->transMethod & CFGTBL_Trans_Performant ?
273                         "performant" : "simple");
274 }
275
276 /* List of controllers which cannot be reset on kexec with reset_devices */
277 static u32 unresettable_controller[] = {
278         0x324a103C, /* Smart Array P712m */
279         0x324b103C, /* SmartArray P711m */
280         0x3223103C, /* Smart Array P800 */
281         0x3234103C, /* Smart Array P400 */
282         0x3235103C, /* Smart Array P400i */
283         0x3211103C, /* Smart Array E200i */
284         0x3212103C, /* Smart Array E200 */
285         0x3213103C, /* Smart Array E200i */
286         0x3214103C, /* Smart Array E200i */
287         0x3215103C, /* Smart Array E200i */
288         0x3237103C, /* Smart Array E500 */
289         0x323D103C, /* Smart Array P700m */
290         0x409C0E11, /* Smart Array 6400 */
291         0x409D0E11, /* Smart Array 6400 EM */
292 };
293
294 static int ctlr_is_resettable(struct ctlr_info *h)
295 {
296         int i;
297
298         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
299                 if (unresettable_controller[i] == h->board_id)
300                         return 0;
301         return 1;
302 }
303
304 static ssize_t host_show_resettable(struct device *dev,
305         struct device_attribute *attr, char *buf)
306 {
307         struct ctlr_info *h;
308         struct Scsi_Host *shost = class_to_shost(dev);
309
310         h = shost_to_hba(shost);
311         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h));
312 }
313
314 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
315 {
316         return (scsi3addr[3] & 0xC0) == 0x40;
317 }
318
319 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
320         "UNKNOWN"
321 };
322 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
323
324 static ssize_t raid_level_show(struct device *dev,
325              struct device_attribute *attr, char *buf)
326 {
327         ssize_t l = 0;
328         unsigned char rlevel;
329         struct ctlr_info *h;
330         struct scsi_device *sdev;
331         struct hpsa_scsi_dev_t *hdev;
332         unsigned long flags;
333
334         sdev = to_scsi_device(dev);
335         h = sdev_to_hba(sdev);
336         spin_lock_irqsave(&h->lock, flags);
337         hdev = sdev->hostdata;
338         if (!hdev) {
339                 spin_unlock_irqrestore(&h->lock, flags);
340                 return -ENODEV;
341         }
342
343         /* Is this even a logical drive? */
344         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
345                 spin_unlock_irqrestore(&h->lock, flags);
346                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
347                 return l;
348         }
349
350         rlevel = hdev->raid_level;
351         spin_unlock_irqrestore(&h->lock, flags);
352         if (rlevel > RAID_UNKNOWN)
353                 rlevel = RAID_UNKNOWN;
354         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
355         return l;
356 }
357
358 static ssize_t lunid_show(struct device *dev,
359              struct device_attribute *attr, char *buf)
360 {
361         struct ctlr_info *h;
362         struct scsi_device *sdev;
363         struct hpsa_scsi_dev_t *hdev;
364         unsigned long flags;
365         unsigned char lunid[8];
366
367         sdev = to_scsi_device(dev);
368         h = sdev_to_hba(sdev);
369         spin_lock_irqsave(&h->lock, flags);
370         hdev = sdev->hostdata;
371         if (!hdev) {
372                 spin_unlock_irqrestore(&h->lock, flags);
373                 return -ENODEV;
374         }
375         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
376         spin_unlock_irqrestore(&h->lock, flags);
377         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
378                 lunid[0], lunid[1], lunid[2], lunid[3],
379                 lunid[4], lunid[5], lunid[6], lunid[7]);
380 }
381
382 static ssize_t unique_id_show(struct device *dev,
383              struct device_attribute *attr, char *buf)
384 {
385         struct ctlr_info *h;
386         struct scsi_device *sdev;
387         struct hpsa_scsi_dev_t *hdev;
388         unsigned long flags;
389         unsigned char sn[16];
390
391         sdev = to_scsi_device(dev);
392         h = sdev_to_hba(sdev);
393         spin_lock_irqsave(&h->lock, flags);
394         hdev = sdev->hostdata;
395         if (!hdev) {
396                 spin_unlock_irqrestore(&h->lock, flags);
397                 return -ENODEV;
398         }
399         memcpy(sn, hdev->device_id, sizeof(sn));
400         spin_unlock_irqrestore(&h->lock, flags);
401         return snprintf(buf, 16 * 2 + 2,
402                         "%02X%02X%02X%02X%02X%02X%02X%02X"
403                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
404                         sn[0], sn[1], sn[2], sn[3],
405                         sn[4], sn[5], sn[6], sn[7],
406                         sn[8], sn[9], sn[10], sn[11],
407                         sn[12], sn[13], sn[14], sn[15]);
408 }
409
410 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
411 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
412 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
413 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
414 static DEVICE_ATTR(firmware_revision, S_IRUGO,
415         host_show_firmware_revision, NULL);
416 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
417         host_show_commands_outstanding, NULL);
418 static DEVICE_ATTR(transport_mode, S_IRUGO,
419         host_show_transport_mode, NULL);
420 static DEVICE_ATTR(resettable, S_IRUGO,
421         host_show_resettable, NULL);
422
423 static struct device_attribute *hpsa_sdev_attrs[] = {
424         &dev_attr_raid_level,
425         &dev_attr_lunid,
426         &dev_attr_unique_id,
427         NULL,
428 };
429
430 static struct device_attribute *hpsa_shost_attrs[] = {
431         &dev_attr_rescan,
432         &dev_attr_firmware_revision,
433         &dev_attr_commands_outstanding,
434         &dev_attr_transport_mode,
435         &dev_attr_resettable,
436         NULL,
437 };
438
439 static struct scsi_host_template hpsa_driver_template = {
440         .module                 = THIS_MODULE,
441         .name                   = "hpsa",
442         .proc_name              = "hpsa",
443         .queuecommand           = hpsa_scsi_queue_command,
444         .scan_start             = hpsa_scan_start,
445         .scan_finished          = hpsa_scan_finished,
446         .change_queue_depth     = hpsa_change_queue_depth,
447         .this_id                = -1,
448         .use_clustering         = ENABLE_CLUSTERING,
449         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
450         .ioctl                  = hpsa_ioctl,
451         .slave_alloc            = hpsa_slave_alloc,
452         .slave_destroy          = hpsa_slave_destroy,
453 #ifdef CONFIG_COMPAT
454         .compat_ioctl           = hpsa_compat_ioctl,
455 #endif
456         .sdev_attrs = hpsa_sdev_attrs,
457         .shost_attrs = hpsa_shost_attrs,
458 };
459
460
461 /* Enqueuing and dequeuing functions for cmdlists. */
462 static inline void addQ(struct list_head *list, struct CommandList *c)
463 {
464         list_add_tail(&c->list, list);
465 }
466
467 static inline u32 next_command(struct ctlr_info *h)
468 {
469         u32 a;
470
471         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
472                 return h->access.command_completed(h);
473
474         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
475                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
476                 (h->reply_pool_head)++;
477                 h->commands_outstanding--;
478         } else {
479                 a = FIFO_EMPTY;
480         }
481         /* Check for wraparound */
482         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
483                 h->reply_pool_head = h->reply_pool;
484                 h->reply_pool_wraparound ^= 1;
485         }
486         return a;
487 }
488
489 /* set_performant_mode: Modify the tag for cciss performant
490  * set bit 0 for pull model, bits 3-1 for block fetch
491  * register number
492  */
493 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
494 {
495         if (likely(h->transMethod & CFGTBL_Trans_Performant))
496                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
497 }
498
499 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
500         struct CommandList *c)
501 {
502         unsigned long flags;
503
504         set_performant_mode(h, c);
505         spin_lock_irqsave(&h->lock, flags);
506         addQ(&h->reqQ, c);
507         h->Qdepth++;
508         start_io(h);
509         spin_unlock_irqrestore(&h->lock, flags);
510 }
511
512 static inline void removeQ(struct CommandList *c)
513 {
514         if (WARN_ON(list_empty(&c->list)))
515                 return;
516         list_del_init(&c->list);
517 }
518
519 static inline int is_hba_lunid(unsigned char scsi3addr[])
520 {
521         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
522 }
523
524 static inline int is_scsi_rev_5(struct ctlr_info *h)
525 {
526         if (!h->hba_inquiry_data)
527                 return 0;
528         if ((h->hba_inquiry_data[2] & 0x07) == 5)
529                 return 1;
530         return 0;
531 }
532
533 static int hpsa_find_target_lun(struct ctlr_info *h,
534         unsigned char scsi3addr[], int bus, int *target, int *lun)
535 {
536         /* finds an unused bus, target, lun for a new physical device
537          * assumes h->devlock is held
538          */
539         int i, found = 0;
540         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
541
542         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
543
544         for (i = 0; i < h->ndevices; i++) {
545                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
546                         set_bit(h->dev[i]->target, lun_taken);
547         }
548
549         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
550                 if (!test_bit(i, lun_taken)) {
551                         /* *bus = 1; */
552                         *target = i;
553                         *lun = 0;
554                         found = 1;
555                         break;
556                 }
557         }
558         return !found;
559 }
560
561 /* Add an entry into h->dev[] array. */
562 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
563                 struct hpsa_scsi_dev_t *device,
564                 struct hpsa_scsi_dev_t *added[], int *nadded)
565 {
566         /* assumes h->devlock is held */
567         int n = h->ndevices;
568         int i;
569         unsigned char addr1[8], addr2[8];
570         struct hpsa_scsi_dev_t *sd;
571
572         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
573                 dev_err(&h->pdev->dev, "too many devices, some will be "
574                         "inaccessible.\n");
575                 return -1;
576         }
577
578         /* physical devices do not have lun or target assigned until now. */
579         if (device->lun != -1)
580                 /* Logical device, lun is already assigned. */
581                 goto lun_assigned;
582
583         /* If this device a non-zero lun of a multi-lun device
584          * byte 4 of the 8-byte LUN addr will contain the logical
585          * unit no, zero otherise.
586          */
587         if (device->scsi3addr[4] == 0) {
588                 /* This is not a non-zero lun of a multi-lun device */
589                 if (hpsa_find_target_lun(h, device->scsi3addr,
590                         device->bus, &device->target, &device->lun) != 0)
591                         return -1;
592                 goto lun_assigned;
593         }
594
595         /* This is a non-zero lun of a multi-lun device.
596          * Search through our list and find the device which
597          * has the same 8 byte LUN address, excepting byte 4.
598          * Assign the same bus and target for this new LUN.
599          * Use the logical unit number from the firmware.
600          */
601         memcpy(addr1, device->scsi3addr, 8);
602         addr1[4] = 0;
603         for (i = 0; i < n; i++) {
604                 sd = h->dev[i];
605                 memcpy(addr2, sd->scsi3addr, 8);
606                 addr2[4] = 0;
607                 /* differ only in byte 4? */
608                 if (memcmp(addr1, addr2, 8) == 0) {
609                         device->bus = sd->bus;
610                         device->target = sd->target;
611                         device->lun = device->scsi3addr[4];
612                         break;
613                 }
614         }
615         if (device->lun == -1) {
616                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
617                         " suspect firmware bug or unsupported hardware "
618                         "configuration.\n");
619                         return -1;
620         }
621
622 lun_assigned:
623
624         h->dev[n] = device;
625         h->ndevices++;
626         added[*nadded] = device;
627         (*nadded)++;
628
629         /* initially, (before registering with scsi layer) we don't
630          * know our hostno and we don't want to print anything first
631          * time anyway (the scsi layer's inquiries will show that info)
632          */
633         /* if (hostno != -1) */
634                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
635                         scsi_device_type(device->devtype), hostno,
636                         device->bus, device->target, device->lun);
637         return 0;
638 }
639
640 /* Replace an entry from h->dev[] array. */
641 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
642         int entry, struct hpsa_scsi_dev_t *new_entry,
643         struct hpsa_scsi_dev_t *added[], int *nadded,
644         struct hpsa_scsi_dev_t *removed[], int *nremoved)
645 {
646         /* assumes h->devlock is held */
647         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
648         removed[*nremoved] = h->dev[entry];
649         (*nremoved)++;
650         h->dev[entry] = new_entry;
651         added[*nadded] = new_entry;
652         (*nadded)++;
653         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
654                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
655                         new_entry->target, new_entry->lun);
656 }
657
658 /* Remove an entry from h->dev[] array. */
659 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
660         struct hpsa_scsi_dev_t *removed[], int *nremoved)
661 {
662         /* assumes h->devlock is held */
663         int i;
664         struct hpsa_scsi_dev_t *sd;
665
666         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
667
668         sd = h->dev[entry];
669         removed[*nremoved] = h->dev[entry];
670         (*nremoved)++;
671
672         for (i = entry; i < h->ndevices-1; i++)
673                 h->dev[i] = h->dev[i+1];
674         h->ndevices--;
675         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
676                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
677                 sd->lun);
678 }
679
680 #define SCSI3ADDR_EQ(a, b) ( \
681         (a)[7] == (b)[7] && \
682         (a)[6] == (b)[6] && \
683         (a)[5] == (b)[5] && \
684         (a)[4] == (b)[4] && \
685         (a)[3] == (b)[3] && \
686         (a)[2] == (b)[2] && \
687         (a)[1] == (b)[1] && \
688         (a)[0] == (b)[0])
689
690 static void fixup_botched_add(struct ctlr_info *h,
691         struct hpsa_scsi_dev_t *added)
692 {
693         /* called when scsi_add_device fails in order to re-adjust
694          * h->dev[] to match the mid layer's view.
695          */
696         unsigned long flags;
697         int i, j;
698
699         spin_lock_irqsave(&h->lock, flags);
700         for (i = 0; i < h->ndevices; i++) {
701                 if (h->dev[i] == added) {
702                         for (j = i; j < h->ndevices-1; j++)
703                                 h->dev[j] = h->dev[j+1];
704                         h->ndevices--;
705                         break;
706                 }
707         }
708         spin_unlock_irqrestore(&h->lock, flags);
709         kfree(added);
710 }
711
712 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
713         struct hpsa_scsi_dev_t *dev2)
714 {
715         /* we compare everything except lun and target as these
716          * are not yet assigned.  Compare parts likely
717          * to differ first
718          */
719         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
720                 sizeof(dev1->scsi3addr)) != 0)
721                 return 0;
722         if (memcmp(dev1->device_id, dev2->device_id,
723                 sizeof(dev1->device_id)) != 0)
724                 return 0;
725         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
726                 return 0;
727         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
728                 return 0;
729         if (dev1->devtype != dev2->devtype)
730                 return 0;
731         if (dev1->bus != dev2->bus)
732                 return 0;
733         return 1;
734 }
735
736 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
737  * and return needle location in *index.  If scsi3addr matches, but not
738  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
739  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
740  */
741 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
742         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
743         int *index)
744 {
745         int i;
746 #define DEVICE_NOT_FOUND 0
747 #define DEVICE_CHANGED 1
748 #define DEVICE_SAME 2
749         for (i = 0; i < haystack_size; i++) {
750                 if (haystack[i] == NULL) /* previously removed. */
751                         continue;
752                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
753                         *index = i;
754                         if (device_is_the_same(needle, haystack[i]))
755                                 return DEVICE_SAME;
756                         else
757                                 return DEVICE_CHANGED;
758                 }
759         }
760         *index = -1;
761         return DEVICE_NOT_FOUND;
762 }
763
764 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
765         struct hpsa_scsi_dev_t *sd[], int nsds)
766 {
767         /* sd contains scsi3 addresses and devtypes, and inquiry
768          * data.  This function takes what's in sd to be the current
769          * reality and updates h->dev[] to reflect that reality.
770          */
771         int i, entry, device_change, changes = 0;
772         struct hpsa_scsi_dev_t *csd;
773         unsigned long flags;
774         struct hpsa_scsi_dev_t **added, **removed;
775         int nadded, nremoved;
776         struct Scsi_Host *sh = NULL;
777
778         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
779                 GFP_KERNEL);
780         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
781                 GFP_KERNEL);
782
783         if (!added || !removed) {
784                 dev_warn(&h->pdev->dev, "out of memory in "
785                         "adjust_hpsa_scsi_table\n");
786                 goto free_and_out;
787         }
788
789         spin_lock_irqsave(&h->devlock, flags);
790
791         /* find any devices in h->dev[] that are not in
792          * sd[] and remove them from h->dev[], and for any
793          * devices which have changed, remove the old device
794          * info and add the new device info.
795          */
796         i = 0;
797         nremoved = 0;
798         nadded = 0;
799         while (i < h->ndevices) {
800                 csd = h->dev[i];
801                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
802                 if (device_change == DEVICE_NOT_FOUND) {
803                         changes++;
804                         hpsa_scsi_remove_entry(h, hostno, i,
805                                 removed, &nremoved);
806                         continue; /* remove ^^^, hence i not incremented */
807                 } else if (device_change == DEVICE_CHANGED) {
808                         changes++;
809                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
810                                 added, &nadded, removed, &nremoved);
811                         /* Set it to NULL to prevent it from being freed
812                          * at the bottom of hpsa_update_scsi_devices()
813                          */
814                         sd[entry] = NULL;
815                 }
816                 i++;
817         }
818
819         /* Now, make sure every device listed in sd[] is also
820          * listed in h->dev[], adding them if they aren't found
821          */
822
823         for (i = 0; i < nsds; i++) {
824                 if (!sd[i]) /* if already added above. */
825                         continue;
826                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
827                                         h->ndevices, &entry);
828                 if (device_change == DEVICE_NOT_FOUND) {
829                         changes++;
830                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
831                                 added, &nadded) != 0)
832                                 break;
833                         sd[i] = NULL; /* prevent from being freed later. */
834                 } else if (device_change == DEVICE_CHANGED) {
835                         /* should never happen... */
836                         changes++;
837                         dev_warn(&h->pdev->dev,
838                                 "device unexpectedly changed.\n");
839                         /* but if it does happen, we just ignore that device */
840                 }
841         }
842         spin_unlock_irqrestore(&h->devlock, flags);
843
844         /* Don't notify scsi mid layer of any changes the first time through
845          * (or if there are no changes) scsi_scan_host will do it later the
846          * first time through.
847          */
848         if (hostno == -1 || !changes)
849                 goto free_and_out;
850
851         sh = h->scsi_host;
852         /* Notify scsi mid layer of any removed devices */
853         for (i = 0; i < nremoved; i++) {
854                 struct scsi_device *sdev =
855                         scsi_device_lookup(sh, removed[i]->bus,
856                                 removed[i]->target, removed[i]->lun);
857                 if (sdev != NULL) {
858                         scsi_remove_device(sdev);
859                         scsi_device_put(sdev);
860                 } else {
861                         /* We don't expect to get here.
862                          * future cmds to this device will get selection
863                          * timeout as if the device was gone.
864                          */
865                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
866                                 " for removal.", hostno, removed[i]->bus,
867                                 removed[i]->target, removed[i]->lun);
868                 }
869                 kfree(removed[i]);
870                 removed[i] = NULL;
871         }
872
873         /* Notify scsi mid layer of any added devices */
874         for (i = 0; i < nadded; i++) {
875                 if (scsi_add_device(sh, added[i]->bus,
876                         added[i]->target, added[i]->lun) == 0)
877                         continue;
878                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
879                         "device not added.\n", hostno, added[i]->bus,
880                         added[i]->target, added[i]->lun);
881                 /* now we have to remove it from h->dev,
882                  * since it didn't get added to scsi mid layer
883                  */
884                 fixup_botched_add(h, added[i]);
885         }
886
887 free_and_out:
888         kfree(added);
889         kfree(removed);
890 }
891
892 /*
893  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
894  * Assume's h->devlock is held.
895  */
896 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
897         int bus, int target, int lun)
898 {
899         int i;
900         struct hpsa_scsi_dev_t *sd;
901
902         for (i = 0; i < h->ndevices; i++) {
903                 sd = h->dev[i];
904                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
905                         return sd;
906         }
907         return NULL;
908 }
909
910 /* link sdev->hostdata to our per-device structure. */
911 static int hpsa_slave_alloc(struct scsi_device *sdev)
912 {
913         struct hpsa_scsi_dev_t *sd;
914         unsigned long flags;
915         struct ctlr_info *h;
916
917         h = sdev_to_hba(sdev);
918         spin_lock_irqsave(&h->devlock, flags);
919         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
920                 sdev_id(sdev), sdev->lun);
921         if (sd != NULL)
922                 sdev->hostdata = sd;
923         spin_unlock_irqrestore(&h->devlock, flags);
924         return 0;
925 }
926
927 static void hpsa_slave_destroy(struct scsi_device *sdev)
928 {
929         /* nothing to do. */
930 }
931
932 static void hpsa_scsi_setup(struct ctlr_info *h)
933 {
934         h->ndevices = 0;
935         h->scsi_host = NULL;
936         spin_lock_init(&h->devlock);
937 }
938
939 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
940 {
941         int i;
942
943         if (!h->cmd_sg_list)
944                 return;
945         for (i = 0; i < h->nr_cmds; i++) {
946                 kfree(h->cmd_sg_list[i]);
947                 h->cmd_sg_list[i] = NULL;
948         }
949         kfree(h->cmd_sg_list);
950         h->cmd_sg_list = NULL;
951 }
952
953 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
954 {
955         int i;
956
957         if (h->chainsize <= 0)
958                 return 0;
959
960         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
961                                 GFP_KERNEL);
962         if (!h->cmd_sg_list)
963                 return -ENOMEM;
964         for (i = 0; i < h->nr_cmds; i++) {
965                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
966                                                 h->chainsize, GFP_KERNEL);
967                 if (!h->cmd_sg_list[i])
968                         goto clean;
969         }
970         return 0;
971
972 clean:
973         hpsa_free_sg_chain_blocks(h);
974         return -ENOMEM;
975 }
976
977 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
978         struct CommandList *c)
979 {
980         struct SGDescriptor *chain_sg, *chain_block;
981         u64 temp64;
982
983         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
984         chain_block = h->cmd_sg_list[c->cmdindex];
985         chain_sg->Ext = HPSA_SG_CHAIN;
986         chain_sg->Len = sizeof(*chain_sg) *
987                 (c->Header.SGTotal - h->max_cmd_sg_entries);
988         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
989                                 PCI_DMA_TODEVICE);
990         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
991         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
992 }
993
994 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
995         struct CommandList *c)
996 {
997         struct SGDescriptor *chain_sg;
998         union u64bit temp64;
999
1000         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1001                 return;
1002
1003         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1004         temp64.val32.lower = chain_sg->Addr.lower;
1005         temp64.val32.upper = chain_sg->Addr.upper;
1006         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1007 }
1008
1009 static void complete_scsi_command(struct CommandList *cp,
1010         int timeout, u32 tag)
1011 {
1012         struct scsi_cmnd *cmd;
1013         struct ctlr_info *h;
1014         struct ErrorInfo *ei;
1015
1016         unsigned char sense_key;
1017         unsigned char asc;      /* additional sense code */
1018         unsigned char ascq;     /* additional sense code qualifier */
1019
1020         ei = cp->err_info;
1021         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1022         h = cp->h;
1023
1024         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1025         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1026                 hpsa_unmap_sg_chain_block(h, cp);
1027
1028         cmd->result = (DID_OK << 16);           /* host byte */
1029         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1030         cmd->result |= ei->ScsiStatus;
1031
1032         /* copy the sense data whether we need to or not. */
1033         memcpy(cmd->sense_buffer, ei->SenseInfo,
1034                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1035                         SCSI_SENSE_BUFFERSIZE :
1036                         ei->SenseLen);
1037         scsi_set_resid(cmd, ei->ResidualCnt);
1038
1039         if (ei->CommandStatus == 0) {
1040                 cmd->scsi_done(cmd);
1041                 cmd_free(h, cp);
1042                 return;
1043         }
1044
1045         /* an error has occurred */
1046         switch (ei->CommandStatus) {
1047
1048         case CMD_TARGET_STATUS:
1049                 if (ei->ScsiStatus) {
1050                         /* Get sense key */
1051                         sense_key = 0xf & ei->SenseInfo[2];
1052                         /* Get additional sense code */
1053                         asc = ei->SenseInfo[12];
1054                         /* Get addition sense code qualifier */
1055                         ascq = ei->SenseInfo[13];
1056                 }
1057
1058                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1059                         if (check_for_unit_attention(h, cp)) {
1060                                 cmd->result = DID_SOFT_ERROR << 16;
1061                                 break;
1062                         }
1063                         if (sense_key == ILLEGAL_REQUEST) {
1064                                 /*
1065                                  * SCSI REPORT_LUNS is commonly unsupported on
1066                                  * Smart Array.  Suppress noisy complaint.
1067                                  */
1068                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1069                                         break;
1070
1071                                 /* If ASC/ASCQ indicate Logical Unit
1072                                  * Not Supported condition,
1073                                  */
1074                                 if ((asc == 0x25) && (ascq == 0x0)) {
1075                                         dev_warn(&h->pdev->dev, "cp %p "
1076                                                 "has check condition\n", cp);
1077                                         break;
1078                                 }
1079                         }
1080
1081                         if (sense_key == NOT_READY) {
1082                                 /* If Sense is Not Ready, Logical Unit
1083                                  * Not ready, Manual Intervention
1084                                  * required
1085                                  */
1086                                 if ((asc == 0x04) && (ascq == 0x03)) {
1087                                         dev_warn(&h->pdev->dev, "cp %p "
1088                                                 "has check condition: unit "
1089                                                 "not ready, manual "
1090                                                 "intervention required\n", cp);
1091                                         break;
1092                                 }
1093                         }
1094                         if (sense_key == ABORTED_COMMAND) {
1095                                 /* Aborted command is retryable */
1096                                 dev_warn(&h->pdev->dev, "cp %p "
1097                                         "has check condition: aborted command: "
1098                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1099                                         cp, asc, ascq);
1100                                 cmd->result = DID_SOFT_ERROR << 16;
1101                                 break;
1102                         }
1103                         /* Must be some other type of check condition */
1104                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1105                                         "unknown type: "
1106                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1107                                         "Returning result: 0x%x, "
1108                                         "cmd=[%02x %02x %02x %02x %02x "
1109                                         "%02x %02x %02x %02x %02x %02x "
1110                                         "%02x %02x %02x %02x %02x]\n",
1111                                         cp, sense_key, asc, ascq,
1112                                         cmd->result,
1113                                         cmd->cmnd[0], cmd->cmnd[1],
1114                                         cmd->cmnd[2], cmd->cmnd[3],
1115                                         cmd->cmnd[4], cmd->cmnd[5],
1116                                         cmd->cmnd[6], cmd->cmnd[7],
1117                                         cmd->cmnd[8], cmd->cmnd[9],
1118                                         cmd->cmnd[10], cmd->cmnd[11],
1119                                         cmd->cmnd[12], cmd->cmnd[13],
1120                                         cmd->cmnd[14], cmd->cmnd[15]);
1121                         break;
1122                 }
1123
1124
1125                 /* Problem was not a check condition
1126                  * Pass it up to the upper layers...
1127                  */
1128                 if (ei->ScsiStatus) {
1129                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1130                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1131                                 "Returning result: 0x%x\n",
1132                                 cp, ei->ScsiStatus,
1133                                 sense_key, asc, ascq,
1134                                 cmd->result);
1135                 } else {  /* scsi status is zero??? How??? */
1136                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1137                                 "Returning no connection.\n", cp),
1138
1139                         /* Ordinarily, this case should never happen,
1140                          * but there is a bug in some released firmware
1141                          * revisions that allows it to happen if, for
1142                          * example, a 4100 backplane loses power and
1143                          * the tape drive is in it.  We assume that
1144                          * it's a fatal error of some kind because we
1145                          * can't show that it wasn't. We will make it
1146                          * look like selection timeout since that is
1147                          * the most common reason for this to occur,
1148                          * and it's severe enough.
1149                          */
1150
1151                         cmd->result = DID_NO_CONNECT << 16;
1152                 }
1153                 break;
1154
1155         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1156                 break;
1157         case CMD_DATA_OVERRUN:
1158                 dev_warn(&h->pdev->dev, "cp %p has"
1159                         " completed with data overrun "
1160                         "reported\n", cp);
1161                 break;
1162         case CMD_INVALID: {
1163                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1164                 print_cmd(cp); */
1165                 /* We get CMD_INVALID if you address a non-existent device
1166                  * instead of a selection timeout (no response).  You will
1167                  * see this if you yank out a drive, then try to access it.
1168                  * This is kind of a shame because it means that any other
1169                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1170                  * missing target. */
1171                 cmd->result = DID_NO_CONNECT << 16;
1172         }
1173                 break;
1174         case CMD_PROTOCOL_ERR:
1175                 dev_warn(&h->pdev->dev, "cp %p has "
1176                         "protocol error \n", cp);
1177                 break;
1178         case CMD_HARDWARE_ERR:
1179                 cmd->result = DID_ERROR << 16;
1180                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1181                 break;
1182         case CMD_CONNECTION_LOST:
1183                 cmd->result = DID_ERROR << 16;
1184                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1185                 break;
1186         case CMD_ABORTED:
1187                 cmd->result = DID_ABORT << 16;
1188                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1189                                 cp, ei->ScsiStatus);
1190                 break;
1191         case CMD_ABORT_FAILED:
1192                 cmd->result = DID_ERROR << 16;
1193                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1194                 break;
1195         case CMD_UNSOLICITED_ABORT:
1196                 cmd->result = DID_RESET << 16;
1197                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1198                         "abort\n", cp);
1199                 break;
1200         case CMD_TIMEOUT:
1201                 cmd->result = DID_TIME_OUT << 16;
1202                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1203                 break;
1204         case CMD_UNABORTABLE:
1205                 cmd->result = DID_ERROR << 16;
1206                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1207                 break;
1208         default:
1209                 cmd->result = DID_ERROR << 16;
1210                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1211                                 cp, ei->CommandStatus);
1212         }
1213         cmd->scsi_done(cmd);
1214         cmd_free(h, cp);
1215 }
1216
1217 static int hpsa_scsi_detect(struct ctlr_info *h)
1218 {
1219         struct Scsi_Host *sh;
1220         int error;
1221
1222         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1223         if (sh == NULL)
1224                 goto fail;
1225
1226         sh->io_port = 0;
1227         sh->n_io_port = 0;
1228         sh->this_id = -1;
1229         sh->max_channel = 3;
1230         sh->max_cmd_len = MAX_COMMAND_SIZE;
1231         sh->max_lun = HPSA_MAX_LUN;
1232         sh->max_id = HPSA_MAX_LUN;
1233         sh->can_queue = h->nr_cmds;
1234         sh->cmd_per_lun = h->nr_cmds;
1235         sh->sg_tablesize = h->maxsgentries;
1236         h->scsi_host = sh;
1237         sh->hostdata[0] = (unsigned long) h;
1238         sh->irq = h->intr[h->intr_mode];
1239         sh->unique_id = sh->irq;
1240         error = scsi_add_host(sh, &h->pdev->dev);
1241         if (error)
1242                 goto fail_host_put;
1243         scsi_scan_host(sh);
1244         return 0;
1245
1246  fail_host_put:
1247         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1248                 " failed for controller %d\n", h->ctlr);
1249         scsi_host_put(sh);
1250         return error;
1251  fail:
1252         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1253                 " failed for controller %d\n", h->ctlr);
1254         return -ENOMEM;
1255 }
1256
1257 static void hpsa_pci_unmap(struct pci_dev *pdev,
1258         struct CommandList *c, int sg_used, int data_direction)
1259 {
1260         int i;
1261         union u64bit addr64;
1262
1263         for (i = 0; i < sg_used; i++) {
1264                 addr64.val32.lower = c->SG[i].Addr.lower;
1265                 addr64.val32.upper = c->SG[i].Addr.upper;
1266                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1267                         data_direction);
1268         }
1269 }
1270
1271 static void hpsa_map_one(struct pci_dev *pdev,
1272                 struct CommandList *cp,
1273                 unsigned char *buf,
1274                 size_t buflen,
1275                 int data_direction)
1276 {
1277         u64 addr64;
1278
1279         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1280                 cp->Header.SGList = 0;
1281                 cp->Header.SGTotal = 0;
1282                 return;
1283         }
1284
1285         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1286         cp->SG[0].Addr.lower =
1287           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1288         cp->SG[0].Addr.upper =
1289           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1290         cp->SG[0].Len = buflen;
1291         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1292         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1293 }
1294
1295 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1296         struct CommandList *c)
1297 {
1298         DECLARE_COMPLETION_ONSTACK(wait);
1299
1300         c->waiting = &wait;
1301         enqueue_cmd_and_start_io(h, c);
1302         wait_for_completion(&wait);
1303 }
1304
1305 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1306         struct CommandList *c, int data_direction)
1307 {
1308         int retry_count = 0;
1309
1310         do {
1311                 memset(c->err_info, 0, sizeof(c->err_info));
1312                 hpsa_scsi_do_simple_cmd_core(h, c);
1313                 retry_count++;
1314         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1315         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1316 }
1317
1318 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1319 {
1320         struct ErrorInfo *ei;
1321         struct device *d = &cp->h->pdev->dev;
1322
1323         ei = cp->err_info;
1324         switch (ei->CommandStatus) {
1325         case CMD_TARGET_STATUS:
1326                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1327                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1328                                 ei->ScsiStatus);
1329                 if (ei->ScsiStatus == 0)
1330                         dev_warn(d, "SCSI status is abnormally zero.  "
1331                         "(probably indicates selection timeout "
1332                         "reported incorrectly due to a known "
1333                         "firmware bug, circa July, 2001.)\n");
1334                 break;
1335         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1336                         dev_info(d, "UNDERRUN\n");
1337                 break;
1338         case CMD_DATA_OVERRUN:
1339                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1340                 break;
1341         case CMD_INVALID: {
1342                 /* controller unfortunately reports SCSI passthru's
1343                  * to non-existent targets as invalid commands.
1344                  */
1345                 dev_warn(d, "cp %p is reported invalid (probably means "
1346                         "target device no longer present)\n", cp);
1347                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1348                 print_cmd(cp);  */
1349                 }
1350                 break;
1351         case CMD_PROTOCOL_ERR:
1352                 dev_warn(d, "cp %p has protocol error \n", cp);
1353                 break;
1354         case CMD_HARDWARE_ERR:
1355                 /* cmd->result = DID_ERROR << 16; */
1356                 dev_warn(d, "cp %p had hardware error\n", cp);
1357                 break;
1358         case CMD_CONNECTION_LOST:
1359                 dev_warn(d, "cp %p had connection lost\n", cp);
1360                 break;
1361         case CMD_ABORTED:
1362                 dev_warn(d, "cp %p was aborted\n", cp);
1363                 break;
1364         case CMD_ABORT_FAILED:
1365                 dev_warn(d, "cp %p reports abort failed\n", cp);
1366                 break;
1367         case CMD_UNSOLICITED_ABORT:
1368                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1369                 break;
1370         case CMD_TIMEOUT:
1371                 dev_warn(d, "cp %p timed out\n", cp);
1372                 break;
1373         case CMD_UNABORTABLE:
1374                 dev_warn(d, "Command unabortable\n");
1375                 break;
1376         default:
1377                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1378                                 ei->CommandStatus);
1379         }
1380 }
1381
1382 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1383                         unsigned char page, unsigned char *buf,
1384                         unsigned char bufsize)
1385 {
1386         int rc = IO_OK;
1387         struct CommandList *c;
1388         struct ErrorInfo *ei;
1389
1390         c = cmd_special_alloc(h);
1391
1392         if (c == NULL) {                        /* trouble... */
1393                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1394                 return -ENOMEM;
1395         }
1396
1397         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1398         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1399         ei = c->err_info;
1400         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1401                 hpsa_scsi_interpret_error(c);
1402                 rc = -1;
1403         }
1404         cmd_special_free(h, c);
1405         return rc;
1406 }
1407
1408 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1409 {
1410         int rc = IO_OK;
1411         struct CommandList *c;
1412         struct ErrorInfo *ei;
1413
1414         c = cmd_special_alloc(h);
1415
1416         if (c == NULL) {                        /* trouble... */
1417                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1418                 return -ENOMEM;
1419         }
1420
1421         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1422         hpsa_scsi_do_simple_cmd_core(h, c);
1423         /* no unmap needed here because no data xfer. */
1424
1425         ei = c->err_info;
1426         if (ei->CommandStatus != 0) {
1427                 hpsa_scsi_interpret_error(c);
1428                 rc = -1;
1429         }
1430         cmd_special_free(h, c);
1431         return rc;
1432 }
1433
1434 static void hpsa_get_raid_level(struct ctlr_info *h,
1435         unsigned char *scsi3addr, unsigned char *raid_level)
1436 {
1437         int rc;
1438         unsigned char *buf;
1439
1440         *raid_level = RAID_UNKNOWN;
1441         buf = kzalloc(64, GFP_KERNEL);
1442         if (!buf)
1443                 return;
1444         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1445         if (rc == 0)
1446                 *raid_level = buf[8];
1447         if (*raid_level > RAID_UNKNOWN)
1448                 *raid_level = RAID_UNKNOWN;
1449         kfree(buf);
1450         return;
1451 }
1452
1453 /* Get the device id from inquiry page 0x83 */
1454 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1455         unsigned char *device_id, int buflen)
1456 {
1457         int rc;
1458         unsigned char *buf;
1459
1460         if (buflen > 16)
1461                 buflen = 16;
1462         buf = kzalloc(64, GFP_KERNEL);
1463         if (!buf)
1464                 return -1;
1465         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1466         if (rc == 0)
1467                 memcpy(device_id, &buf[8], buflen);
1468         kfree(buf);
1469         return rc != 0;
1470 }
1471
1472 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1473                 struct ReportLUNdata *buf, int bufsize,
1474                 int extended_response)
1475 {
1476         int rc = IO_OK;
1477         struct CommandList *c;
1478         unsigned char scsi3addr[8];
1479         struct ErrorInfo *ei;
1480
1481         c = cmd_special_alloc(h);
1482         if (c == NULL) {                        /* trouble... */
1483                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1484                 return -1;
1485         }
1486         /* address the controller */
1487         memset(scsi3addr, 0, sizeof(scsi3addr));
1488         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1489                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1490         if (extended_response)
1491                 c->Request.CDB[1] = extended_response;
1492         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1493         ei = c->err_info;
1494         if (ei->CommandStatus != 0 &&
1495             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1496                 hpsa_scsi_interpret_error(c);
1497                 rc = -1;
1498         }
1499         cmd_special_free(h, c);
1500         return rc;
1501 }
1502
1503 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1504                 struct ReportLUNdata *buf,
1505                 int bufsize, int extended_response)
1506 {
1507         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1508 }
1509
1510 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1511                 struct ReportLUNdata *buf, int bufsize)
1512 {
1513         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1514 }
1515
1516 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1517         int bus, int target, int lun)
1518 {
1519         device->bus = bus;
1520         device->target = target;
1521         device->lun = lun;
1522 }
1523
1524 static int hpsa_update_device_info(struct ctlr_info *h,
1525         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1526 {
1527 #define OBDR_TAPE_INQ_SIZE 49
1528         unsigned char *inq_buff;
1529
1530         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1531         if (!inq_buff)
1532                 goto bail_out;
1533
1534         /* Do an inquiry to the device to see what it is. */
1535         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1536                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1537                 /* Inquiry failed (msg printed already) */
1538                 dev_err(&h->pdev->dev,
1539                         "hpsa_update_device_info: inquiry failed\n");
1540                 goto bail_out;
1541         }
1542
1543         this_device->devtype = (inq_buff[0] & 0x1f);
1544         memcpy(this_device->scsi3addr, scsi3addr, 8);
1545         memcpy(this_device->vendor, &inq_buff[8],
1546                 sizeof(this_device->vendor));
1547         memcpy(this_device->model, &inq_buff[16],
1548                 sizeof(this_device->model));
1549         memset(this_device->device_id, 0,
1550                 sizeof(this_device->device_id));
1551         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1552                 sizeof(this_device->device_id));
1553
1554         if (this_device->devtype == TYPE_DISK &&
1555                 is_logical_dev_addr_mode(scsi3addr))
1556                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1557         else
1558                 this_device->raid_level = RAID_UNKNOWN;
1559
1560         kfree(inq_buff);
1561         return 0;
1562
1563 bail_out:
1564         kfree(inq_buff);
1565         return 1;
1566 }
1567
1568 static unsigned char *msa2xxx_model[] = {
1569         "MSA2012",
1570         "MSA2024",
1571         "MSA2312",
1572         "MSA2324",
1573         NULL,
1574 };
1575
1576 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1577 {
1578         int i;
1579
1580         for (i = 0; msa2xxx_model[i]; i++)
1581                 if (strncmp(device->model, msa2xxx_model[i],
1582                         strlen(msa2xxx_model[i])) == 0)
1583                         return 1;
1584         return 0;
1585 }
1586
1587 /* Helper function to assign bus, target, lun mapping of devices.
1588  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1589  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1590  * Logical drive target and lun are assigned at this time, but
1591  * physical device lun and target assignment are deferred (assigned
1592  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1593  */
1594 static void figure_bus_target_lun(struct ctlr_info *h,
1595         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1596         struct hpsa_scsi_dev_t *device)
1597 {
1598         u32 lunid;
1599
1600         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1601                 /* logical device */
1602                 if (unlikely(is_scsi_rev_5(h))) {
1603                         /* p1210m, logical drives lun assignments
1604                          * match SCSI REPORT LUNS data.
1605                          */
1606                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1607                         *bus = 0;
1608                         *target = 0;
1609                         *lun = (lunid & 0x3fff) + 1;
1610                 } else {
1611                         /* not p1210m... */
1612                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1613                         if (is_msa2xxx(h, device)) {
1614                                 /* msa2xxx way, put logicals on bus 1
1615                                  * and match target/lun numbers box
1616                                  * reports.
1617                                  */
1618                                 *bus = 1;
1619                                 *target = (lunid >> 16) & 0x3fff;
1620                                 *lun = lunid & 0x00ff;
1621                         } else {
1622                                 /* Traditional smart array way. */
1623                                 *bus = 0;
1624                                 *lun = 0;
1625                                 *target = lunid & 0x3fff;
1626                         }
1627                 }
1628         } else {
1629                 /* physical device */
1630                 if (is_hba_lunid(lunaddrbytes))
1631                         if (unlikely(is_scsi_rev_5(h))) {
1632                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1633                                 *target = 0;
1634                                 *lun = 0;
1635                                 return;
1636                         } else
1637                                 *bus = 3; /* traditional smartarray */
1638                 else
1639                         *bus = 2; /* physical disk */
1640                 *target = -1;
1641                 *lun = -1; /* we will fill these in later. */
1642         }
1643 }
1644
1645 /*
1646  * If there is no lun 0 on a target, linux won't find any devices.
1647  * For the MSA2xxx boxes, we have to manually detect the enclosure
1648  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1649  * it for some reason.  *tmpdevice is the target we're adding,
1650  * this_device is a pointer into the current element of currentsd[]
1651  * that we're building up in update_scsi_devices(), below.
1652  * lunzerobits is a bitmap that tracks which targets already have a
1653  * lun 0 assigned.
1654  * Returns 1 if an enclosure was added, 0 if not.
1655  */
1656 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1657         struct hpsa_scsi_dev_t *tmpdevice,
1658         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1659         int bus, int target, int lun, unsigned long lunzerobits[],
1660         int *nmsa2xxx_enclosures)
1661 {
1662         unsigned char scsi3addr[8];
1663
1664         if (test_bit(target, lunzerobits))
1665                 return 0; /* There is already a lun 0 on this target. */
1666
1667         if (!is_logical_dev_addr_mode(lunaddrbytes))
1668                 return 0; /* It's the logical targets that may lack lun 0. */
1669
1670         if (!is_msa2xxx(h, tmpdevice))
1671                 return 0; /* It's only the MSA2xxx that have this problem. */
1672
1673         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1674                 return 0;
1675
1676         memset(scsi3addr, 0, 8);
1677         scsi3addr[3] = target;
1678         if (is_hba_lunid(scsi3addr))
1679                 return 0; /* Don't add the RAID controller here. */
1680
1681         if (is_scsi_rev_5(h))
1682                 return 0; /* p1210m doesn't need to do this. */
1683
1684 #define MAX_MSA2XXX_ENCLOSURES 32
1685         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1686                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1687                         "enclosures exceeded.  Check your hardware "
1688                         "configuration.");
1689                 return 0;
1690         }
1691
1692         if (hpsa_update_device_info(h, scsi3addr, this_device))
1693                 return 0;
1694         (*nmsa2xxx_enclosures)++;
1695         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1696         set_bit(target, lunzerobits);
1697         return 1;
1698 }
1699
1700 /*
1701  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1702  * logdev.  The number of luns in physdev and logdev are returned in
1703  * *nphysicals and *nlogicals, respectively.
1704  * Returns 0 on success, -1 otherwise.
1705  */
1706 static int hpsa_gather_lun_info(struct ctlr_info *h,
1707         int reportlunsize,
1708         struct ReportLUNdata *physdev, u32 *nphysicals,
1709         struct ReportLUNdata *logdev, u32 *nlogicals)
1710 {
1711         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1712                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1713                 return -1;
1714         }
1715         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1716         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1717                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1718                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1719                         *nphysicals - HPSA_MAX_PHYS_LUN);
1720                 *nphysicals = HPSA_MAX_PHYS_LUN;
1721         }
1722         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1723                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1724                 return -1;
1725         }
1726         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1727         /* Reject Logicals in excess of our max capability. */
1728         if (*nlogicals > HPSA_MAX_LUN) {
1729                 dev_warn(&h->pdev->dev,
1730                         "maximum logical LUNs (%d) exceeded.  "
1731                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1732                         *nlogicals - HPSA_MAX_LUN);
1733                         *nlogicals = HPSA_MAX_LUN;
1734         }
1735         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1736                 dev_warn(&h->pdev->dev,
1737                         "maximum logical + physical LUNs (%d) exceeded. "
1738                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1739                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1740                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1741         }
1742         return 0;
1743 }
1744
1745 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1746         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1747         struct ReportLUNdata *logdev_list)
1748 {
1749         /* Helper function, figure out where the LUN ID info is coming from
1750          * given index i, lists of physical and logical devices, where in
1751          * the list the raid controller is supposed to appear (first or last)
1752          */
1753
1754         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1755         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1756
1757         if (i == raid_ctlr_position)
1758                 return RAID_CTLR_LUNID;
1759
1760         if (i < logicals_start)
1761                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1762
1763         if (i < last_device)
1764                 return &logdev_list->LUN[i - nphysicals -
1765                         (raid_ctlr_position == 0)][0];
1766         BUG();
1767         return NULL;
1768 }
1769
1770 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1771 {
1772         /* the idea here is we could get notified
1773          * that some devices have changed, so we do a report
1774          * physical luns and report logical luns cmd, and adjust
1775          * our list of devices accordingly.
1776          *
1777          * The scsi3addr's of devices won't change so long as the
1778          * adapter is not reset.  That means we can rescan and
1779          * tell which devices we already know about, vs. new
1780          * devices, vs.  disappearing devices.
1781          */
1782         struct ReportLUNdata *physdev_list = NULL;
1783         struct ReportLUNdata *logdev_list = NULL;
1784         unsigned char *inq_buff = NULL;
1785         u32 nphysicals = 0;
1786         u32 nlogicals = 0;
1787         u32 ndev_allocated = 0;
1788         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1789         int ncurrent = 0;
1790         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1791         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1792         int bus, target, lun;
1793         int raid_ctlr_position;
1794         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1795
1796         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1797                 GFP_KERNEL);
1798         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1799         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1800         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1801         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1802
1803         if (!currentsd || !physdev_list || !logdev_list ||
1804                 !inq_buff || !tmpdevice) {
1805                 dev_err(&h->pdev->dev, "out of memory\n");
1806                 goto out;
1807         }
1808         memset(lunzerobits, 0, sizeof(lunzerobits));
1809
1810         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1811                         logdev_list, &nlogicals))
1812                 goto out;
1813
1814         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1815          * but each of them 4 times through different paths.  The plus 1
1816          * is for the RAID controller.
1817          */
1818         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1819
1820         /* Allocate the per device structures */
1821         for (i = 0; i < ndevs_to_allocate; i++) {
1822                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1823                 if (!currentsd[i]) {
1824                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1825                                 __FILE__, __LINE__);
1826                         goto out;
1827                 }
1828                 ndev_allocated++;
1829         }
1830
1831         if (unlikely(is_scsi_rev_5(h)))
1832                 raid_ctlr_position = 0;
1833         else
1834                 raid_ctlr_position = nphysicals + nlogicals;
1835
1836         /* adjust our table of devices */
1837         nmsa2xxx_enclosures = 0;
1838         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1839                 u8 *lunaddrbytes;
1840
1841                 /* Figure out where the LUN ID info is coming from */
1842                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1843                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1844                 /* skip masked physical devices. */
1845                 if (lunaddrbytes[3] & 0xC0 &&
1846                         i < nphysicals + (raid_ctlr_position == 0))
1847                         continue;
1848
1849                 /* Get device type, vendor, model, device id */
1850                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1851                         continue; /* skip it if we can't talk to it. */
1852                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1853                         tmpdevice);
1854                 this_device = currentsd[ncurrent];
1855
1856                 /*
1857                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1858                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1859                  * is nonetheless an enclosure device there.  We have to
1860                  * present that otherwise linux won't find anything if
1861                  * there is no lun 0.
1862                  */
1863                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1864                                 lunaddrbytes, bus, target, lun, lunzerobits,
1865                                 &nmsa2xxx_enclosures)) {
1866                         ncurrent++;
1867                         this_device = currentsd[ncurrent];
1868                 }
1869
1870                 *this_device = *tmpdevice;
1871                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1872
1873                 switch (this_device->devtype) {
1874                 case TYPE_ROM: {
1875                         /* We don't *really* support actual CD-ROM devices,
1876                          * just "One Button Disaster Recovery" tape drive
1877                          * which temporarily pretends to be a CD-ROM drive.
1878                          * So we check that the device is really an OBDR tape
1879                          * device by checking for "$DR-10" in bytes 43-48 of
1880                          * the inquiry data.
1881                          */
1882                                 char obdr_sig[7];
1883 #define OBDR_TAPE_SIG "$DR-10"
1884                                 strncpy(obdr_sig, &inq_buff[43], 6);
1885                                 obdr_sig[6] = '\0';
1886                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1887                                         /* Not OBDR device, ignore it. */
1888                                         break;
1889                         }
1890                         ncurrent++;
1891                         break;
1892                 case TYPE_DISK:
1893                         if (i < nphysicals)
1894                                 break;
1895                         ncurrent++;
1896                         break;
1897                 case TYPE_TAPE:
1898                 case TYPE_MEDIUM_CHANGER:
1899                         ncurrent++;
1900                         break;
1901                 case TYPE_RAID:
1902                         /* Only present the Smartarray HBA as a RAID controller.
1903                          * If it's a RAID controller other than the HBA itself
1904                          * (an external RAID controller, MSA500 or similar)
1905                          * don't present it.
1906                          */
1907                         if (!is_hba_lunid(lunaddrbytes))
1908                                 break;
1909                         ncurrent++;
1910                         break;
1911                 default:
1912                         break;
1913                 }
1914                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1915                         break;
1916         }
1917         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1918 out:
1919         kfree(tmpdevice);
1920         for (i = 0; i < ndev_allocated; i++)
1921                 kfree(currentsd[i]);
1922         kfree(currentsd);
1923         kfree(inq_buff);
1924         kfree(physdev_list);
1925         kfree(logdev_list);
1926 }
1927
1928 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1929  * dma mapping  and fills in the scatter gather entries of the
1930  * hpsa command, cp.
1931  */
1932 static int hpsa_scatter_gather(struct ctlr_info *h,
1933                 struct CommandList *cp,
1934                 struct scsi_cmnd *cmd)
1935 {
1936         unsigned int len;
1937         struct scatterlist *sg;
1938         u64 addr64;
1939         int use_sg, i, sg_index, chained;
1940         struct SGDescriptor *curr_sg;
1941
1942         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1943
1944         use_sg = scsi_dma_map(cmd);
1945         if (use_sg < 0)
1946                 return use_sg;
1947
1948         if (!use_sg)
1949                 goto sglist_finished;
1950
1951         curr_sg = cp->SG;
1952         chained = 0;
1953         sg_index = 0;
1954         scsi_for_each_sg(cmd, sg, use_sg, i) {
1955                 if (i == h->max_cmd_sg_entries - 1 &&
1956                         use_sg > h->max_cmd_sg_entries) {
1957                         chained = 1;
1958                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1959                         sg_index = 0;
1960                 }
1961                 addr64 = (u64) sg_dma_address(sg);
1962                 len  = sg_dma_len(sg);
1963                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1964                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1965                 curr_sg->Len = len;
1966                 curr_sg->Ext = 0;  /* we are not chaining */
1967                 curr_sg++;
1968         }
1969
1970         if (use_sg + chained > h->maxSG)
1971                 h->maxSG = use_sg + chained;
1972
1973         if (chained) {
1974                 cp->Header.SGList = h->max_cmd_sg_entries;
1975                 cp->Header.SGTotal = (u16) (use_sg + 1);
1976                 hpsa_map_sg_chain_block(h, cp);
1977                 return 0;
1978         }
1979
1980 sglist_finished:
1981
1982         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1983         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1984         return 0;
1985 }
1986
1987
1988 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1989         void (*done)(struct scsi_cmnd *))
1990 {
1991         struct ctlr_info *h;
1992         struct hpsa_scsi_dev_t *dev;
1993         unsigned char scsi3addr[8];
1994         struct CommandList *c;
1995         unsigned long flags;
1996
1997         /* Get the ptr to our adapter structure out of cmd->host. */
1998         h = sdev_to_hba(cmd->device);
1999         dev = cmd->device->hostdata;
2000         if (!dev) {
2001                 cmd->result = DID_NO_CONNECT << 16;
2002                 done(cmd);
2003                 return 0;
2004         }
2005         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2006
2007         /* Need a lock as this is being allocated from the pool */
2008         spin_lock_irqsave(&h->lock, flags);
2009         c = cmd_alloc(h);
2010         spin_unlock_irqrestore(&h->lock, flags);
2011         if (c == NULL) {                        /* trouble... */
2012                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2013                 return SCSI_MLQUEUE_HOST_BUSY;
2014         }
2015
2016         /* Fill in the command list header */
2017
2018         cmd->scsi_done = done;    /* save this for use by completion code */
2019
2020         /* save c in case we have to abort it  */
2021         cmd->host_scribble = (unsigned char *) c;
2022
2023         c->cmd_type = CMD_SCSI;
2024         c->scsi_cmd = cmd;
2025         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2026         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2027         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2028         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2029
2030         /* Fill in the request block... */
2031
2032         c->Request.Timeout = 0;
2033         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2034         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2035         c->Request.CDBLen = cmd->cmd_len;
2036         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2037         c->Request.Type.Type = TYPE_CMD;
2038         c->Request.Type.Attribute = ATTR_SIMPLE;
2039         switch (cmd->sc_data_direction) {
2040         case DMA_TO_DEVICE:
2041                 c->Request.Type.Direction = XFER_WRITE;
2042                 break;
2043         case DMA_FROM_DEVICE:
2044                 c->Request.Type.Direction = XFER_READ;
2045                 break;
2046         case DMA_NONE:
2047                 c->Request.Type.Direction = XFER_NONE;
2048                 break;
2049         case DMA_BIDIRECTIONAL:
2050                 /* This can happen if a buggy application does a scsi passthru
2051                  * and sets both inlen and outlen to non-zero. ( see
2052                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2053                  */
2054
2055                 c->Request.Type.Direction = XFER_RSVD;
2056                 /* This is technically wrong, and hpsa controllers should
2057                  * reject it with CMD_INVALID, which is the most correct
2058                  * response, but non-fibre backends appear to let it
2059                  * slide by, and give the same results as if this field
2060                  * were set correctly.  Either way is acceptable for
2061                  * our purposes here.
2062                  */
2063
2064                 break;
2065
2066         default:
2067                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2068                         cmd->sc_data_direction);
2069                 BUG();
2070                 break;
2071         }
2072
2073         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2074                 cmd_free(h, c);
2075                 return SCSI_MLQUEUE_HOST_BUSY;
2076         }
2077         enqueue_cmd_and_start_io(h, c);
2078         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2079         return 0;
2080 }
2081
2082 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2083
2084 static void hpsa_scan_start(struct Scsi_Host *sh)
2085 {
2086         struct ctlr_info *h = shost_to_hba(sh);
2087         unsigned long flags;
2088
2089         /* wait until any scan already in progress is finished. */
2090         while (1) {
2091                 spin_lock_irqsave(&h->scan_lock, flags);
2092                 if (h->scan_finished)
2093                         break;
2094                 spin_unlock_irqrestore(&h->scan_lock, flags);
2095                 wait_event(h->scan_wait_queue, h->scan_finished);
2096                 /* Note: We don't need to worry about a race between this
2097                  * thread and driver unload because the midlayer will
2098                  * have incremented the reference count, so unload won't
2099                  * happen if we're in here.
2100                  */
2101         }
2102         h->scan_finished = 0; /* mark scan as in progress */
2103         spin_unlock_irqrestore(&h->scan_lock, flags);
2104
2105         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2106
2107         spin_lock_irqsave(&h->scan_lock, flags);
2108         h->scan_finished = 1; /* mark scan as finished. */
2109         wake_up_all(&h->scan_wait_queue);
2110         spin_unlock_irqrestore(&h->scan_lock, flags);
2111 }
2112
2113 static int hpsa_scan_finished(struct Scsi_Host *sh,
2114         unsigned long elapsed_time)
2115 {
2116         struct ctlr_info *h = shost_to_hba(sh);
2117         unsigned long flags;
2118         int finished;
2119
2120         spin_lock_irqsave(&h->scan_lock, flags);
2121         finished = h->scan_finished;
2122         spin_unlock_irqrestore(&h->scan_lock, flags);
2123         return finished;
2124 }
2125
2126 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2127         int qdepth, int reason)
2128 {
2129         struct ctlr_info *h = sdev_to_hba(sdev);
2130
2131         if (reason != SCSI_QDEPTH_DEFAULT)
2132                 return -ENOTSUPP;
2133
2134         if (qdepth < 1)
2135                 qdepth = 1;
2136         else
2137                 if (qdepth > h->nr_cmds)
2138                         qdepth = h->nr_cmds;
2139         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2140         return sdev->queue_depth;
2141 }
2142
2143 static void hpsa_unregister_scsi(struct ctlr_info *h)
2144 {
2145         /* we are being forcibly unloaded, and may not refuse. */
2146         scsi_remove_host(h->scsi_host);
2147         scsi_host_put(h->scsi_host);
2148         h->scsi_host = NULL;
2149 }
2150
2151 static int hpsa_register_scsi(struct ctlr_info *h)
2152 {
2153         int rc;
2154
2155         rc = hpsa_scsi_detect(h);
2156         if (rc != 0)
2157                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2158                         " hpsa_scsi_detect(), rc is %d\n", rc);
2159         return rc;
2160 }
2161
2162 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2163         unsigned char lunaddr[])
2164 {
2165         int rc = 0;
2166         int count = 0;
2167         int waittime = 1; /* seconds */
2168         struct CommandList *c;
2169
2170         c = cmd_special_alloc(h);
2171         if (!c) {
2172                 dev_warn(&h->pdev->dev, "out of memory in "
2173                         "wait_for_device_to_become_ready.\n");
2174                 return IO_ERROR;
2175         }
2176
2177         /* Send test unit ready until device ready, or give up. */
2178         while (count < HPSA_TUR_RETRY_LIMIT) {
2179
2180                 /* Wait for a bit.  do this first, because if we send
2181                  * the TUR right away, the reset will just abort it.
2182                  */
2183                 msleep(1000 * waittime);
2184                 count++;
2185
2186                 /* Increase wait time with each try, up to a point. */
2187                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2188                         waittime = waittime * 2;
2189
2190                 /* Send the Test Unit Ready */
2191                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2192                 hpsa_scsi_do_simple_cmd_core(h, c);
2193                 /* no unmap needed here because no data xfer. */
2194
2195                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2196                         break;
2197
2198                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2199                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2200                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2201                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2202                         break;
2203
2204                 dev_warn(&h->pdev->dev, "waiting %d secs "
2205                         "for device to become ready.\n", waittime);
2206                 rc = 1; /* device not ready. */
2207         }
2208
2209         if (rc)
2210                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2211         else
2212                 dev_warn(&h->pdev->dev, "device is ready.\n");
2213
2214         cmd_special_free(h, c);
2215         return rc;
2216 }
2217
2218 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2219  * complaining.  Doing a host- or bus-reset can't do anything good here.
2220  */
2221 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2222 {
2223         int rc;
2224         struct ctlr_info *h;
2225         struct hpsa_scsi_dev_t *dev;
2226
2227         /* find the controller to which the command to be aborted was sent */
2228         h = sdev_to_hba(scsicmd->device);
2229         if (h == NULL) /* paranoia */
2230                 return FAILED;
2231         dev = scsicmd->device->hostdata;
2232         if (!dev) {
2233                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2234                         "device lookup failed.\n");
2235                 return FAILED;
2236         }
2237         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2238                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2239         /* send a reset to the SCSI LUN which the command was sent to */
2240         rc = hpsa_send_reset(h, dev->scsi3addr);
2241         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2242                 return SUCCESS;
2243
2244         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2245         return FAILED;
2246 }
2247
2248 /*
2249  * For operations that cannot sleep, a command block is allocated at init,
2250  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2251  * which ones are free or in use.  Lock must be held when calling this.
2252  * cmd_free() is the complement.
2253  */
2254 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2255 {
2256         struct CommandList *c;
2257         int i;
2258         union u64bit temp64;
2259         dma_addr_t cmd_dma_handle, err_dma_handle;
2260
2261         do {
2262                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2263                 if (i == h->nr_cmds)
2264                         return NULL;
2265         } while (test_and_set_bit
2266                  (i & (BITS_PER_LONG - 1),
2267                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2268         c = h->cmd_pool + i;
2269         memset(c, 0, sizeof(*c));
2270         cmd_dma_handle = h->cmd_pool_dhandle
2271             + i * sizeof(*c);
2272         c->err_info = h->errinfo_pool + i;
2273         memset(c->err_info, 0, sizeof(*c->err_info));
2274         err_dma_handle = h->errinfo_pool_dhandle
2275             + i * sizeof(*c->err_info);
2276         h->nr_allocs++;
2277
2278         c->cmdindex = i;
2279
2280         INIT_LIST_HEAD(&c->list);
2281         c->busaddr = (u32) cmd_dma_handle;
2282         temp64.val = (u64) err_dma_handle;
2283         c->ErrDesc.Addr.lower = temp64.val32.lower;
2284         c->ErrDesc.Addr.upper = temp64.val32.upper;
2285         c->ErrDesc.Len = sizeof(*c->err_info);
2286
2287         c->h = h;
2288         return c;
2289 }
2290
2291 /* For operations that can wait for kmalloc to possibly sleep,
2292  * this routine can be called. Lock need not be held to call
2293  * cmd_special_alloc. cmd_special_free() is the complement.
2294  */
2295 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2296 {
2297         struct CommandList *c;
2298         union u64bit temp64;
2299         dma_addr_t cmd_dma_handle, err_dma_handle;
2300
2301         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2302         if (c == NULL)
2303                 return NULL;
2304         memset(c, 0, sizeof(*c));
2305
2306         c->cmdindex = -1;
2307
2308         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2309                     &err_dma_handle);
2310
2311         if (c->err_info == NULL) {
2312                 pci_free_consistent(h->pdev,
2313                         sizeof(*c), c, cmd_dma_handle);
2314                 return NULL;
2315         }
2316         memset(c->err_info, 0, sizeof(*c->err_info));
2317
2318         INIT_LIST_HEAD(&c->list);
2319         c->busaddr = (u32) cmd_dma_handle;
2320         temp64.val = (u64) err_dma_handle;
2321         c->ErrDesc.Addr.lower = temp64.val32.lower;
2322         c->ErrDesc.Addr.upper = temp64.val32.upper;
2323         c->ErrDesc.Len = sizeof(*c->err_info);
2324
2325         c->h = h;
2326         return c;
2327 }
2328
2329 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2330 {
2331         int i;
2332
2333         i = c - h->cmd_pool;
2334         clear_bit(i & (BITS_PER_LONG - 1),
2335                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2336         h->nr_frees++;
2337 }
2338
2339 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2340 {
2341         union u64bit temp64;
2342
2343         temp64.val32.lower = c->ErrDesc.Addr.lower;
2344         temp64.val32.upper = c->ErrDesc.Addr.upper;
2345         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2346                             c->err_info, (dma_addr_t) temp64.val);
2347         pci_free_consistent(h->pdev, sizeof(*c),
2348                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2349 }
2350
2351 #ifdef CONFIG_COMPAT
2352
2353 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2354 {
2355         IOCTL32_Command_struct __user *arg32 =
2356             (IOCTL32_Command_struct __user *) arg;
2357         IOCTL_Command_struct arg64;
2358         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2359         int err;
2360         u32 cp;
2361
2362         memset(&arg64, 0, sizeof(arg64));
2363         err = 0;
2364         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2365                            sizeof(arg64.LUN_info));
2366         err |= copy_from_user(&arg64.Request, &arg32->Request,
2367                            sizeof(arg64.Request));
2368         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2369                            sizeof(arg64.error_info));
2370         err |= get_user(arg64.buf_size, &arg32->buf_size);
2371         err |= get_user(cp, &arg32->buf);
2372         arg64.buf = compat_ptr(cp);
2373         err |= copy_to_user(p, &arg64, sizeof(arg64));
2374
2375         if (err)
2376                 return -EFAULT;
2377
2378         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2379         if (err)
2380                 return err;
2381         err |= copy_in_user(&arg32->error_info, &p->error_info,
2382                          sizeof(arg32->error_info));
2383         if (err)
2384                 return -EFAULT;
2385         return err;
2386 }
2387
2388 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2389         int cmd, void *arg)
2390 {
2391         BIG_IOCTL32_Command_struct __user *arg32 =
2392             (BIG_IOCTL32_Command_struct __user *) arg;
2393         BIG_IOCTL_Command_struct arg64;
2394         BIG_IOCTL_Command_struct __user *p =
2395             compat_alloc_user_space(sizeof(arg64));
2396         int err;
2397         u32 cp;
2398
2399         memset(&arg64, 0, sizeof(arg64));
2400         err = 0;
2401         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2402                            sizeof(arg64.LUN_info));
2403         err |= copy_from_user(&arg64.Request, &arg32->Request,
2404                            sizeof(arg64.Request));
2405         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2406                            sizeof(arg64.error_info));
2407         err |= get_user(arg64.buf_size, &arg32->buf_size);
2408         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2409         err |= get_user(cp, &arg32->buf);
2410         arg64.buf = compat_ptr(cp);
2411         err |= copy_to_user(p, &arg64, sizeof(arg64));
2412
2413         if (err)
2414                 return -EFAULT;
2415
2416         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2417         if (err)
2418                 return err;
2419         err |= copy_in_user(&arg32->error_info, &p->error_info,
2420                          sizeof(arg32->error_info));
2421         if (err)
2422                 return -EFAULT;
2423         return err;
2424 }
2425
2426 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2427 {
2428         switch (cmd) {
2429         case CCISS_GETPCIINFO:
2430         case CCISS_GETINTINFO:
2431         case CCISS_SETINTINFO:
2432         case CCISS_GETNODENAME:
2433         case CCISS_SETNODENAME:
2434         case CCISS_GETHEARTBEAT:
2435         case CCISS_GETBUSTYPES:
2436         case CCISS_GETFIRMVER:
2437         case CCISS_GETDRIVVER:
2438         case CCISS_REVALIDVOLS:
2439         case CCISS_DEREGDISK:
2440         case CCISS_REGNEWDISK:
2441         case CCISS_REGNEWD:
2442         case CCISS_RESCANDISK:
2443         case CCISS_GETLUNINFO:
2444                 return hpsa_ioctl(dev, cmd, arg);
2445
2446         case CCISS_PASSTHRU32:
2447                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2448         case CCISS_BIG_PASSTHRU32:
2449                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2450
2451         default:
2452                 return -ENOIOCTLCMD;
2453         }
2454 }
2455 #endif
2456
2457 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2458 {
2459         struct hpsa_pci_info pciinfo;
2460
2461         if (!argp)
2462                 return -EINVAL;
2463         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2464         pciinfo.bus = h->pdev->bus->number;
2465         pciinfo.dev_fn = h->pdev->devfn;
2466         pciinfo.board_id = h->board_id;
2467         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2468                 return -EFAULT;
2469         return 0;
2470 }
2471
2472 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2473 {
2474         DriverVer_type DriverVer;
2475         unsigned char vmaj, vmin, vsubmin;
2476         int rc;
2477
2478         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2479                 &vmaj, &vmin, &vsubmin);
2480         if (rc != 3) {
2481                 dev_info(&h->pdev->dev, "driver version string '%s' "
2482                         "unrecognized.", HPSA_DRIVER_VERSION);
2483                 vmaj = 0;
2484                 vmin = 0;
2485                 vsubmin = 0;
2486         }
2487         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2488         if (!argp)
2489                 return -EINVAL;
2490         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2491                 return -EFAULT;
2492         return 0;
2493 }
2494
2495 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2496 {
2497         IOCTL_Command_struct iocommand;
2498         struct CommandList *c;
2499         char *buff = NULL;
2500         union u64bit temp64;
2501
2502         if (!argp)
2503                 return -EINVAL;
2504         if (!capable(CAP_SYS_RAWIO))
2505                 return -EPERM;
2506         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2507                 return -EFAULT;
2508         if ((iocommand.buf_size < 1) &&
2509             (iocommand.Request.Type.Direction != XFER_NONE)) {
2510                 return -EINVAL;
2511         }
2512         if (iocommand.buf_size > 0) {
2513                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2514                 if (buff == NULL)
2515                         return -EFAULT;
2516                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2517                         /* Copy the data into the buffer we created */
2518                         if (copy_from_user(buff, iocommand.buf,
2519                                 iocommand.buf_size)) {
2520                                 kfree(buff);
2521                                 return -EFAULT;
2522                         }
2523                 } else {
2524                         memset(buff, 0, iocommand.buf_size);
2525                 }
2526         }
2527         c = cmd_special_alloc(h);
2528         if (c == NULL) {
2529                 kfree(buff);
2530                 return -ENOMEM;
2531         }
2532         /* Fill in the command type */
2533         c->cmd_type = CMD_IOCTL_PEND;
2534         /* Fill in Command Header */
2535         c->Header.ReplyQueue = 0; /* unused in simple mode */
2536         if (iocommand.buf_size > 0) {   /* buffer to fill */
2537                 c->Header.SGList = 1;
2538                 c->Header.SGTotal = 1;
2539         } else  { /* no buffers to fill */
2540                 c->Header.SGList = 0;
2541                 c->Header.SGTotal = 0;
2542         }
2543         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2544         /* use the kernel address the cmd block for tag */
2545         c->Header.Tag.lower = c->busaddr;
2546
2547         /* Fill in Request block */
2548         memcpy(&c->Request, &iocommand.Request,
2549                 sizeof(c->Request));
2550
2551         /* Fill in the scatter gather information */
2552         if (iocommand.buf_size > 0) {
2553                 temp64.val = pci_map_single(h->pdev, buff,
2554                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2555                 c->SG[0].Addr.lower = temp64.val32.lower;
2556                 c->SG[0].Addr.upper = temp64.val32.upper;
2557                 c->SG[0].Len = iocommand.buf_size;
2558                 c->SG[0].Ext = 0; /* we are not chaining*/
2559         }
2560         hpsa_scsi_do_simple_cmd_core(h, c);
2561         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2562         check_ioctl_unit_attention(h, c);
2563
2564         /* Copy the error information out */
2565         memcpy(&iocommand.error_info, c->err_info,
2566                 sizeof(iocommand.error_info));
2567         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2568                 kfree(buff);
2569                 cmd_special_free(h, c);
2570                 return -EFAULT;
2571         }
2572         if (iocommand.Request.Type.Direction == XFER_READ &&
2573                 iocommand.buf_size > 0) {
2574                 /* Copy the data out of the buffer we created */
2575                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2576                         kfree(buff);
2577                         cmd_special_free(h, c);
2578                         return -EFAULT;
2579                 }
2580         }
2581         kfree(buff);
2582         cmd_special_free(h, c);
2583         return 0;
2584 }
2585
2586 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2587 {
2588         BIG_IOCTL_Command_struct *ioc;
2589         struct CommandList *c;
2590         unsigned char **buff = NULL;
2591         int *buff_size = NULL;
2592         union u64bit temp64;
2593         BYTE sg_used = 0;
2594         int status = 0;
2595         int i;
2596         u32 left;
2597         u32 sz;
2598         BYTE __user *data_ptr;
2599
2600         if (!argp)
2601                 return -EINVAL;
2602         if (!capable(CAP_SYS_RAWIO))
2603                 return -EPERM;
2604         ioc = (BIG_IOCTL_Command_struct *)
2605             kmalloc(sizeof(*ioc), GFP_KERNEL);
2606         if (!ioc) {
2607                 status = -ENOMEM;
2608                 goto cleanup1;
2609         }
2610         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2611                 status = -EFAULT;
2612                 goto cleanup1;
2613         }
2614         if ((ioc->buf_size < 1) &&
2615             (ioc->Request.Type.Direction != XFER_NONE)) {
2616                 status = -EINVAL;
2617                 goto cleanup1;
2618         }
2619         /* Check kmalloc limits  using all SGs */
2620         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2621                 status = -EINVAL;
2622                 goto cleanup1;
2623         }
2624         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2625                 status = -EINVAL;
2626                 goto cleanup1;
2627         }
2628         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2629         if (!buff) {
2630                 status = -ENOMEM;
2631                 goto cleanup1;
2632         }
2633         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2634         if (!buff_size) {
2635                 status = -ENOMEM;
2636                 goto cleanup1;
2637         }
2638         left = ioc->buf_size;
2639         data_ptr = ioc->buf;
2640         while (left) {
2641                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2642                 buff_size[sg_used] = sz;
2643                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2644                 if (buff[sg_used] == NULL) {
2645                         status = -ENOMEM;
2646                         goto cleanup1;
2647                 }
2648                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2649                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2650                                 status = -ENOMEM;
2651                                 goto cleanup1;
2652                         }
2653                 } else
2654                         memset(buff[sg_used], 0, sz);
2655                 left -= sz;
2656                 data_ptr += sz;
2657                 sg_used++;
2658         }
2659         c = cmd_special_alloc(h);
2660         if (c == NULL) {
2661                 status = -ENOMEM;
2662                 goto cleanup1;
2663         }
2664         c->cmd_type = CMD_IOCTL_PEND;
2665         c->Header.ReplyQueue = 0;
2666         c->Header.SGList = c->Header.SGTotal = sg_used;
2667         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2668         c->Header.Tag.lower = c->busaddr;
2669         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2670         if (ioc->buf_size > 0) {
2671                 int i;
2672                 for (i = 0; i < sg_used; i++) {
2673                         temp64.val = pci_map_single(h->pdev, buff[i],
2674                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2675                         c->SG[i].Addr.lower = temp64.val32.lower;
2676                         c->SG[i].Addr.upper = temp64.val32.upper;
2677                         c->SG[i].Len = buff_size[i];
2678                         /* we are not chaining */
2679                         c->SG[i].Ext = 0;
2680                 }
2681         }
2682         hpsa_scsi_do_simple_cmd_core(h, c);
2683         if (sg_used)
2684                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2685         check_ioctl_unit_attention(h, c);
2686         /* Copy the error information out */
2687         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2688         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2689                 cmd_special_free(h, c);
2690                 status = -EFAULT;
2691                 goto cleanup1;
2692         }
2693         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2694                 /* Copy the data out of the buffer we created */
2695                 BYTE __user *ptr = ioc->buf;
2696                 for (i = 0; i < sg_used; i++) {
2697                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2698                                 cmd_special_free(h, c);
2699                                 status = -EFAULT;
2700                                 goto cleanup1;
2701                         }
2702                         ptr += buff_size[i];
2703                 }
2704         }
2705         cmd_special_free(h, c);
2706         status = 0;
2707 cleanup1:
2708         if (buff) {
2709                 for (i = 0; i < sg_used; i++)
2710                         kfree(buff[i]);
2711                 kfree(buff);
2712         }
2713         kfree(buff_size);
2714         kfree(ioc);
2715         return status;
2716 }
2717
2718 static void check_ioctl_unit_attention(struct ctlr_info *h,
2719         struct CommandList *c)
2720 {
2721         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2722                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2723                 (void) check_for_unit_attention(h, c);
2724 }
2725 /*
2726  * ioctl
2727  */
2728 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2729 {
2730         struct ctlr_info *h;
2731         void __user *argp = (void __user *)arg;
2732
2733         h = sdev_to_hba(dev);
2734
2735         switch (cmd) {
2736         case CCISS_DEREGDISK:
2737         case CCISS_REGNEWDISK:
2738         case CCISS_REGNEWD:
2739                 hpsa_scan_start(h->scsi_host);
2740                 return 0;
2741         case CCISS_GETPCIINFO:
2742                 return hpsa_getpciinfo_ioctl(h, argp);
2743         case CCISS_GETDRIVVER:
2744                 return hpsa_getdrivver_ioctl(h, argp);
2745         case CCISS_PASSTHRU:
2746                 return hpsa_passthru_ioctl(h, argp);
2747         case CCISS_BIG_PASSTHRU:
2748                 return hpsa_big_passthru_ioctl(h, argp);
2749         default:
2750                 return -ENOTTY;
2751         }
2752 }
2753
2754 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2755         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2756         int cmd_type)
2757 {
2758         int pci_dir = XFER_NONE;
2759
2760         c->cmd_type = CMD_IOCTL_PEND;
2761         c->Header.ReplyQueue = 0;
2762         if (buff != NULL && size > 0) {
2763                 c->Header.SGList = 1;
2764                 c->Header.SGTotal = 1;
2765         } else {
2766                 c->Header.SGList = 0;
2767                 c->Header.SGTotal = 0;
2768         }
2769         c->Header.Tag.lower = c->busaddr;
2770         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2771
2772         c->Request.Type.Type = cmd_type;
2773         if (cmd_type == TYPE_CMD) {
2774                 switch (cmd) {
2775                 case HPSA_INQUIRY:
2776                         /* are we trying to read a vital product page */
2777                         if (page_code != 0) {
2778                                 c->Request.CDB[1] = 0x01;
2779                                 c->Request.CDB[2] = page_code;
2780                         }
2781                         c->Request.CDBLen = 6;
2782                         c->Request.Type.Attribute = ATTR_SIMPLE;
2783                         c->Request.Type.Direction = XFER_READ;
2784                         c->Request.Timeout = 0;
2785                         c->Request.CDB[0] = HPSA_INQUIRY;
2786                         c->Request.CDB[4] = size & 0xFF;
2787                         break;
2788                 case HPSA_REPORT_LOG:
2789                 case HPSA_REPORT_PHYS:
2790                         /* Talking to controller so It's a physical command
2791                            mode = 00 target = 0.  Nothing to write.
2792                          */
2793                         c->Request.CDBLen = 12;
2794                         c->Request.Type.Attribute = ATTR_SIMPLE;
2795                         c->Request.Type.Direction = XFER_READ;
2796                         c->Request.Timeout = 0;
2797                         c->Request.CDB[0] = cmd;
2798                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2799                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2800                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2801                         c->Request.CDB[9] = size & 0xFF;
2802                         break;
2803                 case HPSA_CACHE_FLUSH:
2804                         c->Request.CDBLen = 12;
2805                         c->Request.Type.Attribute = ATTR_SIMPLE;
2806                         c->Request.Type.Direction = XFER_WRITE;
2807                         c->Request.Timeout = 0;
2808                         c->Request.CDB[0] = BMIC_WRITE;
2809                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2810                         break;
2811                 case TEST_UNIT_READY:
2812                         c->Request.CDBLen = 6;
2813                         c->Request.Type.Attribute = ATTR_SIMPLE;
2814                         c->Request.Type.Direction = XFER_NONE;
2815                         c->Request.Timeout = 0;
2816                         break;
2817                 default:
2818                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2819                         BUG();
2820                         return;
2821                 }
2822         } else if (cmd_type == TYPE_MSG) {
2823                 switch (cmd) {
2824
2825                 case  HPSA_DEVICE_RESET_MSG:
2826                         c->Request.CDBLen = 16;
2827                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2828                         c->Request.Type.Attribute = ATTR_SIMPLE;
2829                         c->Request.Type.Direction = XFER_NONE;
2830                         c->Request.Timeout = 0; /* Don't time out */
2831                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2832                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2833                         /* If bytes 4-7 are zero, it means reset the */
2834                         /* LunID device */
2835                         c->Request.CDB[4] = 0x00;
2836                         c->Request.CDB[5] = 0x00;
2837                         c->Request.CDB[6] = 0x00;
2838                         c->Request.CDB[7] = 0x00;
2839                 break;
2840
2841                 default:
2842                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2843                                 cmd);
2844                         BUG();
2845                 }
2846         } else {
2847                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2848                 BUG();
2849         }
2850
2851         switch (c->Request.Type.Direction) {
2852         case XFER_READ:
2853                 pci_dir = PCI_DMA_FROMDEVICE;
2854                 break;
2855         case XFER_WRITE:
2856                 pci_dir = PCI_DMA_TODEVICE;
2857                 break;
2858         case XFER_NONE:
2859                 pci_dir = PCI_DMA_NONE;
2860                 break;
2861         default:
2862                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2863         }
2864
2865         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2866
2867         return;
2868 }
2869
2870 /*
2871  * Map (physical) PCI mem into (virtual) kernel space
2872  */
2873 static void __iomem *remap_pci_mem(ulong base, ulong size)
2874 {
2875         ulong page_base = ((ulong) base) & PAGE_MASK;
2876         ulong page_offs = ((ulong) base) - page_base;
2877         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2878
2879         return page_remapped ? (page_remapped + page_offs) : NULL;
2880 }
2881
2882 /* Takes cmds off the submission queue and sends them to the hardware,
2883  * then puts them on the queue of cmds waiting for completion.
2884  */
2885 static void start_io(struct ctlr_info *h)
2886 {
2887         struct CommandList *c;
2888
2889         while (!list_empty(&h->reqQ)) {
2890                 c = list_entry(h->reqQ.next, struct CommandList, list);
2891                 /* can't do anything if fifo is full */
2892                 if ((h->access.fifo_full(h))) {
2893                         dev_warn(&h->pdev->dev, "fifo full\n");
2894                         break;
2895                 }
2896
2897                 /* Get the first entry from the Request Q */
2898                 removeQ(c);
2899                 h->Qdepth--;
2900
2901                 /* Tell the controller execute command */
2902                 h->access.submit_command(h, c);
2903
2904                 /* Put job onto the completed Q */
2905                 addQ(&h->cmpQ, c);
2906         }
2907 }
2908
2909 static inline unsigned long get_next_completion(struct ctlr_info *h)
2910 {
2911         return h->access.command_completed(h);
2912 }
2913
2914 static inline bool interrupt_pending(struct ctlr_info *h)
2915 {
2916         return h->access.intr_pending(h);
2917 }
2918
2919 static inline long interrupt_not_for_us(struct ctlr_info *h)
2920 {
2921         return (h->access.intr_pending(h) == 0) ||
2922                 (h->interrupts_enabled == 0);
2923 }
2924
2925 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2926         u32 raw_tag)
2927 {
2928         if (unlikely(tag_index >= h->nr_cmds)) {
2929                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2930                 return 1;
2931         }
2932         return 0;
2933 }
2934
2935 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2936 {
2937         removeQ(c);
2938         if (likely(c->cmd_type == CMD_SCSI))
2939                 complete_scsi_command(c, 0, raw_tag);
2940         else if (c->cmd_type == CMD_IOCTL_PEND)
2941                 complete(c->waiting);
2942 }
2943
2944 static inline u32 hpsa_tag_contains_index(u32 tag)
2945 {
2946         return tag & DIRECT_LOOKUP_BIT;
2947 }
2948
2949 static inline u32 hpsa_tag_to_index(u32 tag)
2950 {
2951         return tag >> DIRECT_LOOKUP_SHIFT;
2952 }
2953
2954
2955 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
2956 {
2957 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
2958 #define HPSA_SIMPLE_ERROR_BITS 0x03
2959         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
2960                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
2961         return tag & ~HPSA_PERF_ERROR_BITS;
2962 }
2963
2964 /* process completion of an indexed ("direct lookup") command */
2965 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2966         u32 raw_tag)
2967 {
2968         u32 tag_index;
2969         struct CommandList *c;
2970
2971         tag_index = hpsa_tag_to_index(raw_tag);
2972         if (bad_tag(h, tag_index, raw_tag))
2973                 return next_command(h);
2974         c = h->cmd_pool + tag_index;
2975         finish_cmd(c, raw_tag);
2976         return next_command(h);
2977 }
2978
2979 /* process completion of a non-indexed command */
2980 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2981         u32 raw_tag)
2982 {
2983         u32 tag;
2984         struct CommandList *c = NULL;
2985
2986         tag = hpsa_tag_discard_error_bits(h, raw_tag);
2987         list_for_each_entry(c, &h->cmpQ, list) {
2988                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2989                         finish_cmd(c, raw_tag);
2990                         return next_command(h);
2991                 }
2992         }
2993         bad_tag(h, h->nr_cmds + 1, raw_tag);
2994         return next_command(h);
2995 }
2996
2997 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2998 {
2999         struct ctlr_info *h = dev_id;
3000         unsigned long flags;
3001         u32 raw_tag;
3002
3003         if (interrupt_not_for_us(h))
3004                 return IRQ_NONE;
3005         spin_lock_irqsave(&h->lock, flags);
3006         while (interrupt_pending(h)) {
3007                 raw_tag = get_next_completion(h);
3008                 while (raw_tag != FIFO_EMPTY) {
3009                         if (hpsa_tag_contains_index(raw_tag))
3010                                 raw_tag = process_indexed_cmd(h, raw_tag);
3011                         else
3012                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3013                 }
3014         }
3015         spin_unlock_irqrestore(&h->lock, flags);
3016         return IRQ_HANDLED;
3017 }
3018
3019 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3020 {
3021         struct ctlr_info *h = dev_id;
3022         unsigned long flags;
3023         u32 raw_tag;
3024
3025         spin_lock_irqsave(&h->lock, flags);
3026         raw_tag = get_next_completion(h);
3027         while (raw_tag != FIFO_EMPTY) {
3028                 if (hpsa_tag_contains_index(raw_tag))
3029                         raw_tag = process_indexed_cmd(h, raw_tag);
3030                 else
3031                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3032         }
3033         spin_unlock_irqrestore(&h->lock, flags);
3034         return IRQ_HANDLED;
3035 }
3036
3037 /* Send a message CDB to the firmware. Careful, this only works
3038  * in simple mode, not performant mode due to the tag lookup.
3039  * We only ever use this immediately after a controller reset.
3040  */
3041 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3042                                                 unsigned char type)
3043 {
3044         struct Command {
3045                 struct CommandListHeader CommandHeader;
3046                 struct RequestBlock Request;
3047                 struct ErrDescriptor ErrorDescriptor;
3048         };
3049         struct Command *cmd;
3050         static const size_t cmd_sz = sizeof(*cmd) +
3051                                         sizeof(cmd->ErrorDescriptor);
3052         dma_addr_t paddr64;
3053         uint32_t paddr32, tag;
3054         void __iomem *vaddr;
3055         int i, err;
3056
3057         vaddr = pci_ioremap_bar(pdev, 0);
3058         if (vaddr == NULL)
3059                 return -ENOMEM;
3060
3061         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3062          * CCISS commands, so they must be allocated from the lower 4GiB of
3063          * memory.
3064          */
3065         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3066         if (err) {
3067                 iounmap(vaddr);
3068                 return -ENOMEM;
3069         }
3070
3071         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3072         if (cmd == NULL) {
3073                 iounmap(vaddr);
3074                 return -ENOMEM;
3075         }
3076
3077         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3078          * although there's no guarantee, we assume that the address is at
3079          * least 4-byte aligned (most likely, it's page-aligned).
3080          */
3081         paddr32 = paddr64;
3082
3083         cmd->CommandHeader.ReplyQueue = 0;
3084         cmd->CommandHeader.SGList = 0;
3085         cmd->CommandHeader.SGTotal = 0;
3086         cmd->CommandHeader.Tag.lower = paddr32;
3087         cmd->CommandHeader.Tag.upper = 0;
3088         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3089
3090         cmd->Request.CDBLen = 16;
3091         cmd->Request.Type.Type = TYPE_MSG;
3092         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3093         cmd->Request.Type.Direction = XFER_NONE;
3094         cmd->Request.Timeout = 0; /* Don't time out */
3095         cmd->Request.CDB[0] = opcode;
3096         cmd->Request.CDB[1] = type;
3097         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3098         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3099         cmd->ErrorDescriptor.Addr.upper = 0;
3100         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3101
3102         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3103
3104         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3105                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3106                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3107                         break;
3108                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3109         }
3110
3111         iounmap(vaddr);
3112
3113         /* we leak the DMA buffer here ... no choice since the controller could
3114          *  still complete the command.
3115          */
3116         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3117                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3118                         opcode, type);
3119                 return -ETIMEDOUT;
3120         }
3121
3122         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3123
3124         if (tag & HPSA_ERROR_BIT) {
3125                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3126                         opcode, type);
3127                 return -EIO;
3128         }
3129
3130         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3131                 opcode, type);
3132         return 0;
3133 }
3134
3135 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3136 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3137
3138 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3139         void * __iomem vaddr, bool use_doorbell)
3140 {
3141         u16 pmcsr;
3142         int pos;
3143
3144         if (use_doorbell) {
3145                 /* For everything after the P600, the PCI power state method
3146                  * of resetting the controller doesn't work, so we have this
3147                  * other way using the doorbell register.
3148                  */
3149                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3150                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3151                 msleep(1000);
3152         } else { /* Try to do it the PCI power state way */
3153
3154                 /* Quoting from the Open CISS Specification: "The Power
3155                  * Management Control/Status Register (CSR) controls the power
3156                  * state of the device.  The normal operating state is D0,
3157                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3158                  * the controller, place the interface device in D3 then to D0,
3159                  * this causes a secondary PCI reset which will reset the
3160                  * controller." */
3161
3162                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3163                 if (pos == 0) {
3164                         dev_err(&pdev->dev,
3165                                 "hpsa_reset_controller: "
3166                                 "PCI PM not supported\n");
3167                         return -ENODEV;
3168                 }
3169                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3170                 /* enter the D3hot power management state */
3171                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3172                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3173                 pmcsr |= PCI_D3hot;
3174                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3175
3176                 msleep(500);
3177
3178                 /* enter the D0 power management state */
3179                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3180                 pmcsr |= PCI_D0;
3181                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3182
3183                 msleep(500);
3184         }
3185         return 0;
3186 }
3187
3188 /* This does a hard reset of the controller using PCI power management
3189  * states or the using the doorbell register.
3190  */
3191 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3192 {
3193         u64 cfg_offset;
3194         u32 cfg_base_addr;
3195         u64 cfg_base_addr_index;
3196         void __iomem *vaddr;
3197         unsigned long paddr;
3198         u32 misc_fw_support, active_transport;
3199         int rc;
3200         struct CfgTable __iomem *cfgtable;
3201         bool use_doorbell;
3202         u32 board_id;
3203         u16 command_register;
3204
3205         /* For controllers as old as the P600, this is very nearly
3206          * the same thing as
3207          *
3208          * pci_save_state(pci_dev);
3209          * pci_set_power_state(pci_dev, PCI_D3hot);
3210          * pci_set_power_state(pci_dev, PCI_D0);
3211          * pci_restore_state(pci_dev);
3212          *
3213          * For controllers newer than the P600, the pci power state
3214          * method of resetting doesn't work so we have another way
3215          * using the doorbell register.
3216          */
3217
3218         /* Exclude 640x boards.  These are two pci devices in one slot
3219          * which share a battery backed cache module.  One controls the
3220          * cache, the other accesses the cache through the one that controls
3221          * it.  If we reset the one controlling the cache, the other will
3222          * likely not be happy.  Just forbid resetting this conjoined mess.
3223          * The 640x isn't really supported by hpsa anyway.
3224          */
3225         rc = hpsa_lookup_board_id(pdev, &board_id);
3226         if (rc < 0) {
3227                 dev_warn(&pdev->dev, "Not resetting device.\n");
3228                 return -ENODEV;
3229         }
3230         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3231                 return -ENOTSUPP;
3232
3233         /* Save the PCI command register */
3234         pci_read_config_word(pdev, 4, &command_register);
3235         /* Turn the board off.  This is so that later pci_restore_state()
3236          * won't turn the board on before the rest of config space is ready.
3237          */
3238         pci_disable_device(pdev);
3239         pci_save_state(pdev);
3240
3241         /* find the first memory BAR, so we can find the cfg table */
3242         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3243         if (rc)
3244                 return rc;
3245         vaddr = remap_pci_mem(paddr, 0x250);
3246         if (!vaddr)
3247                 return -ENOMEM;
3248
3249         /* find cfgtable in order to check if reset via doorbell is supported */
3250         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3251                                         &cfg_base_addr_index, &cfg_offset);
3252         if (rc)
3253                 goto unmap_vaddr;
3254         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3255                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3256         if (!cfgtable) {
3257                 rc = -ENOMEM;
3258                 goto unmap_vaddr;
3259         }
3260
3261         /* If reset via doorbell register is supported, use that. */
3262         misc_fw_support = readl(&cfgtable->misc_fw_support);
3263         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3264
3265         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3266         if (rc)
3267                 goto unmap_cfgtable;
3268
3269         pci_restore_state(pdev);
3270         rc = pci_enable_device(pdev);
3271         if (rc) {
3272                 dev_warn(&pdev->dev, "failed to enable device.\n");
3273                 goto unmap_cfgtable;
3274         }
3275         pci_write_config_word(pdev, 4, command_register);
3276
3277         /* Some devices (notably the HP Smart Array 5i Controller)
3278            need a little pause here */
3279         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3280
3281         /* Wait for board to become not ready, then ready. */
3282         dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3283         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3284         if (rc)
3285                 dev_warn(&pdev->dev,
3286                         "failed waiting for board to become not ready\n");
3287         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3288         if (rc) {
3289                 dev_warn(&pdev->dev,
3290                         "failed waiting for board to become ready\n");
3291                 goto unmap_cfgtable;
3292         }
3293         dev_info(&pdev->dev, "board ready.\n");
3294
3295         /* Controller should be in simple mode at this point.  If it's not,
3296          * It means we're on one of those controllers which doesn't support
3297          * the doorbell reset method and on which the PCI power management reset
3298          * method doesn't work (P800, for example.)
3299          * In those cases, don't try to proceed, as it generally doesn't work.
3300          */
3301         active_transport = readl(&cfgtable->TransportActive);
3302         if (active_transport & PERFORMANT_MODE) {
3303                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3304                         " Ignoring controller.\n");
3305                 rc = -ENODEV;
3306         }
3307
3308 unmap_cfgtable:
3309         iounmap(cfgtable);
3310
3311 unmap_vaddr:
3312         iounmap(vaddr);
3313         return rc;
3314 }
3315
3316 /*
3317  *  We cannot read the structure directly, for portability we must use
3318  *   the io functions.
3319  *   This is for debug only.
3320  */
3321 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3322 {
3323 #ifdef HPSA_DEBUG
3324         int i;
3325         char temp_name[17];
3326
3327         dev_info(dev, "Controller Configuration information\n");
3328         dev_info(dev, "------------------------------------\n");
3329         for (i = 0; i < 4; i++)
3330                 temp_name[i] = readb(&(tb->Signature[i]));
3331         temp_name[4] = '\0';
3332         dev_info(dev, "   Signature = %s\n", temp_name);
3333         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3334         dev_info(dev, "   Transport methods supported = 0x%x\n",
3335                readl(&(tb->TransportSupport)));
3336         dev_info(dev, "   Transport methods active = 0x%x\n",
3337                readl(&(tb->TransportActive)));
3338         dev_info(dev, "   Requested transport Method = 0x%x\n",
3339                readl(&(tb->HostWrite.TransportRequest)));
3340         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3341                readl(&(tb->HostWrite.CoalIntDelay)));
3342         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3343                readl(&(tb->HostWrite.CoalIntCount)));
3344         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3345                readl(&(tb->CmdsOutMax)));
3346         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3347         for (i = 0; i < 16; i++)
3348                 temp_name[i] = readb(&(tb->ServerName[i]));
3349         temp_name[16] = '\0';
3350         dev_info(dev, "   Server Name = %s\n", temp_name);
3351         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3352                 readl(&(tb->HeartBeat)));
3353 #endif                          /* HPSA_DEBUG */
3354 }
3355
3356 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3357 {
3358         int i, offset, mem_type, bar_type;
3359
3360         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3361                 return 0;
3362         offset = 0;
3363         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3364                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3365                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3366                         offset += 4;
3367                 else {
3368                         mem_type = pci_resource_flags(pdev, i) &
3369                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3370                         switch (mem_type) {
3371                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3372                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3373                                 offset += 4;    /* 32 bit */
3374                                 break;
3375                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3376                                 offset += 8;
3377                                 break;
3378                         default:        /* reserved in PCI 2.2 */
3379                                 dev_warn(&pdev->dev,
3380                                        "base address is invalid\n");
3381                                 return -1;
3382                                 break;
3383                         }
3384                 }
3385                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3386                         return i + 1;
3387         }
3388         return -1;
3389 }
3390
3391 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3392  * controllers that are capable. If not, we use IO-APIC mode.
3393  */
3394
3395 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3396 {
3397 #ifdef CONFIG_PCI_MSI
3398         int err;
3399         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3400         {0, 2}, {0, 3}
3401         };
3402
3403         /* Some boards advertise MSI but don't really support it */
3404         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3405             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3406                 goto default_int_mode;
3407         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3408                 dev_info(&h->pdev->dev, "MSIX\n");
3409                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3410                 if (!err) {
3411                         h->intr[0] = hpsa_msix_entries[0].vector;
3412                         h->intr[1] = hpsa_msix_entries[1].vector;
3413                         h->intr[2] = hpsa_msix_entries[2].vector;
3414                         h->intr[3] = hpsa_msix_entries[3].vector;
3415                         h->msix_vector = 1;
3416                         return;
3417                 }
3418                 if (err > 0) {
3419                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3420                                "available\n", err);
3421                         goto default_int_mode;
3422                 } else {
3423                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3424                                err);
3425                         goto default_int_mode;
3426                 }
3427         }
3428         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3429                 dev_info(&h->pdev->dev, "MSI\n");
3430                 if (!pci_enable_msi(h->pdev))
3431                         h->msi_vector = 1;
3432                 else
3433                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3434         }
3435 default_int_mode:
3436 #endif                          /* CONFIG_PCI_MSI */
3437         /* if we get here we're going to use the default interrupt mode */
3438         h->intr[h->intr_mode] = h->pdev->irq;
3439 }
3440
3441 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3442 {
3443         int i;
3444         u32 subsystem_vendor_id, subsystem_device_id;
3445
3446         subsystem_vendor_id = pdev->subsystem_vendor;
3447         subsystem_device_id = pdev->subsystem_device;
3448         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3449                     subsystem_vendor_id;
3450
3451         for (i = 0; i < ARRAY_SIZE(products); i++)
3452                 if (*board_id == products[i].board_id)
3453                         return i;
3454
3455         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3456                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3457                 !hpsa_allow_any) {
3458                 dev_warn(&pdev->dev, "unrecognized board ID: "
3459                         "0x%08x, ignoring.\n", *board_id);
3460                         return -ENODEV;
3461         }
3462         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3463 }
3464
3465 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3466 {
3467         u16 command;
3468
3469         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3470         return ((command & PCI_COMMAND_MEMORY) == 0);
3471 }
3472
3473 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3474         unsigned long *memory_bar)
3475 {
3476         int i;
3477
3478         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3479                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3480                         /* addressing mode bits already removed */
3481                         *memory_bar = pci_resource_start(pdev, i);
3482                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3483                                 *memory_bar);
3484                         return 0;
3485                 }
3486         dev_warn(&pdev->dev, "no memory BAR found\n");
3487         return -ENODEV;
3488 }
3489
3490 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3491         void __iomem *vaddr, int wait_for_ready)
3492 {
3493         int i, iterations;
3494         u32 scratchpad;
3495         if (wait_for_ready)
3496                 iterations = HPSA_BOARD_READY_ITERATIONS;
3497         else
3498                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3499
3500         for (i = 0; i < iterations; i++) {
3501                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3502                 if (wait_for_ready) {
3503                         if (scratchpad == HPSA_FIRMWARE_READY)
3504                                 return 0;
3505                 } else {
3506                         if (scratchpad != HPSA_FIRMWARE_READY)
3507                                 return 0;
3508                 }
3509                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3510         }
3511         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3512         return -ENODEV;
3513 }
3514
3515 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3516         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3517         u64 *cfg_offset)
3518 {
3519         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3520         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3521         *cfg_base_addr &= (u32) 0x0000ffff;
3522         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3523         if (*cfg_base_addr_index == -1) {
3524                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3525                 return -ENODEV;
3526         }
3527         return 0;
3528 }
3529
3530 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3531 {
3532         u64 cfg_offset;
3533         u32 cfg_base_addr;
3534         u64 cfg_base_addr_index;
3535         u32 trans_offset;
3536         int rc;
3537
3538         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3539                 &cfg_base_addr_index, &cfg_offset);
3540         if (rc)
3541                 return rc;
3542         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3543                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3544         if (!h->cfgtable)
3545                 return -ENOMEM;
3546         /* Find performant mode table. */
3547         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3548         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3549                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3550                                 sizeof(*h->transtable));
3551         if (!h->transtable)
3552                 return -ENOMEM;
3553         return 0;
3554 }
3555
3556 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3557 {
3558         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3559
3560         /* Limit commands in memory limited kdump scenario. */
3561         if (reset_devices && h->max_commands > 32)
3562                 h->max_commands = 32;
3563
3564         if (h->max_commands < 16) {
3565                 dev_warn(&h->pdev->dev, "Controller reports "
3566                         "max supported commands of %d, an obvious lie. "
3567                         "Using 16.  Ensure that firmware is up to date.\n",
3568                         h->max_commands);
3569                 h->max_commands = 16;
3570         }
3571 }
3572
3573 /* Interrogate the hardware for some limits:
3574  * max commands, max SG elements without chaining, and with chaining,
3575  * SG chain block size, etc.
3576  */
3577 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3578 {
3579         hpsa_get_max_perf_mode_cmds(h);
3580         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3581         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3582         /*
3583          * Limit in-command s/g elements to 32 save dma'able memory.
3584          * Howvever spec says if 0, use 31
3585          */
3586         h->max_cmd_sg_entries = 31;
3587         if (h->maxsgentries > 512) {
3588                 h->max_cmd_sg_entries = 32;
3589                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3590                 h->maxsgentries--; /* save one for chain pointer */
3591         } else {
3592                 h->maxsgentries = 31; /* default to traditional values */
3593                 h->chainsize = 0;
3594         }
3595 }
3596
3597 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3598 {
3599         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3600             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3601             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3602             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3603                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3604                 return false;
3605         }
3606         return true;
3607 }
3608
3609 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3610 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3611 {
3612 #ifdef CONFIG_X86
3613         u32 prefetch;
3614
3615         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3616         prefetch |= 0x100;
3617         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3618 #endif
3619 }
3620
3621 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3622  * in a prefetch beyond physical memory.
3623  */
3624 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3625 {
3626         u32 dma_prefetch;
3627
3628         if (h->board_id != 0x3225103C)
3629                 return;
3630         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3631         dma_prefetch |= 0x8000;
3632         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3633 }
3634
3635 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3636 {
3637         int i;
3638         u32 doorbell_value;
3639         unsigned long flags;
3640
3641         /* under certain very rare conditions, this can take awhile.
3642          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3643          * as we enter this code.)
3644          */
3645         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3646                 spin_lock_irqsave(&h->lock, flags);
3647                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3648                 spin_unlock_irqrestore(&h->lock, flags);
3649                 if (!(doorbell_value & CFGTBL_ChangeReq))
3650                         break;
3651                 /* delay and try again */
3652                 usleep_range(10000, 20000);
3653         }
3654 }
3655
3656 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3657 {
3658         u32 trans_support;
3659
3660         trans_support = readl(&(h->cfgtable->TransportSupport));
3661         if (!(trans_support & SIMPLE_MODE))
3662                 return -ENOTSUPP;
3663
3664         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3665         /* Update the field, and then ring the doorbell */
3666         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3667         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3668         hpsa_wait_for_mode_change_ack(h);
3669         print_cfg_table(&h->pdev->dev, h->cfgtable);
3670         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3671                 dev_warn(&h->pdev->dev,
3672                         "unable to get board into simple mode\n");
3673                 return -ENODEV;
3674         }
3675         h->transMethod = CFGTBL_Trans_Simple;
3676         return 0;
3677 }
3678
3679 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3680 {
3681         int prod_index, err;
3682
3683         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3684         if (prod_index < 0)
3685                 return -ENODEV;
3686         h->product_name = products[prod_index].product_name;
3687         h->access = *(products[prod_index].access);
3688
3689         if (hpsa_board_disabled(h->pdev)) {
3690                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3691                 return -ENODEV;
3692         }
3693         err = pci_enable_device(h->pdev);
3694         if (err) {
3695                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3696                 return err;
3697         }
3698
3699         err = pci_request_regions(h->pdev, "hpsa");
3700         if (err) {
3701                 dev_err(&h->pdev->dev,
3702                         "cannot obtain PCI resources, aborting\n");
3703                 return err;
3704         }
3705         hpsa_interrupt_mode(h);
3706         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3707         if (err)
3708                 goto err_out_free_res;
3709         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3710         if (!h->vaddr) {
3711                 err = -ENOMEM;
3712                 goto err_out_free_res;
3713         }
3714         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3715         if (err)
3716                 goto err_out_free_res;
3717         err = hpsa_find_cfgtables(h);
3718         if (err)
3719                 goto err_out_free_res;
3720         hpsa_find_board_params(h);
3721
3722         if (!hpsa_CISS_signature_present(h)) {
3723                 err = -ENODEV;
3724                 goto err_out_free_res;
3725         }
3726         hpsa_enable_scsi_prefetch(h);
3727         hpsa_p600_dma_prefetch_quirk(h);
3728         err = hpsa_enter_simple_mode(h);
3729         if (err)
3730                 goto err_out_free_res;
3731         return 0;
3732
3733 err_out_free_res:
3734         if (h->transtable)
3735                 iounmap(h->transtable);
3736         if (h->cfgtable)
3737                 iounmap(h->cfgtable);
3738         if (h->vaddr)
3739                 iounmap(h->vaddr);
3740         /*
3741          * Deliberately omit pci_disable_device(): it does something nasty to
3742          * Smart Array controllers that pci_enable_device does not undo
3743          */
3744         pci_release_regions(h->pdev);
3745         return err;
3746 }
3747
3748 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3749 {
3750         int rc;
3751
3752 #define HBA_INQUIRY_BYTE_COUNT 64
3753         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3754         if (!h->hba_inquiry_data)
3755                 return;
3756         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3757                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3758         if (rc != 0) {
3759                 kfree(h->hba_inquiry_data);
3760                 h->hba_inquiry_data = NULL;
3761         }
3762 }
3763
3764 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3765 {
3766         int rc, i;
3767
3768         if (!reset_devices)
3769                 return 0;
3770
3771         /* Reset the controller with a PCI power-cycle or via doorbell */
3772         rc = hpsa_kdump_hard_reset_controller(pdev);
3773
3774         /* -ENOTSUPP here means we cannot reset the controller
3775          * but it's already (and still) up and running in
3776          * "performant mode".  Or, it might be 640x, which can't reset
3777          * due to concerns about shared bbwc between 6402/6404 pair.
3778          */
3779         if (rc == -ENOTSUPP)
3780                 return 0; /* just try to do the kdump anyhow. */
3781         if (rc)
3782                 return -ENODEV;
3783
3784         /* Now try to get the controller to respond to a no-op */
3785         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3786                 if (hpsa_noop(pdev) == 0)
3787                         break;
3788                 else
3789                         dev_warn(&pdev->dev, "no-op failed%s\n",
3790                                         (i < 11 ? "; re-trying" : ""));
3791         }
3792         return 0;
3793 }
3794
3795 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3796                                     const struct pci_device_id *ent)
3797 {
3798         int dac, rc;
3799         struct ctlr_info *h;
3800
3801         if (number_of_controllers == 0)
3802                 printk(KERN_INFO DRIVER_NAME "\n");
3803
3804         rc = hpsa_init_reset_devices(pdev);
3805         if (rc)
3806                 return rc;
3807
3808         /* Command structures must be aligned on a 32-byte boundary because
3809          * the 5 lower bits of the address are used by the hardware. and by
3810          * the driver.  See comments in hpsa.h for more info.
3811          */
3812 #define COMMANDLIST_ALIGNMENT 32
3813         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3814         h = kzalloc(sizeof(*h), GFP_KERNEL);
3815         if (!h)
3816                 return -ENOMEM;
3817
3818         h->pdev = pdev;
3819         h->busy_initializing = 1;
3820         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
3821         INIT_LIST_HEAD(&h->cmpQ);
3822         INIT_LIST_HEAD(&h->reqQ);
3823         spin_lock_init(&h->lock);
3824         spin_lock_init(&h->scan_lock);
3825         rc = hpsa_pci_init(h);
3826         if (rc != 0)
3827                 goto clean1;
3828
3829         sprintf(h->devname, "hpsa%d", number_of_controllers);
3830         h->ctlr = number_of_controllers;
3831         number_of_controllers++;
3832
3833         /* configure PCI DMA stuff */
3834         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3835         if (rc == 0) {
3836                 dac = 1;
3837         } else {
3838                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3839                 if (rc == 0) {
3840                         dac = 0;
3841                 } else {
3842                         dev_err(&pdev->dev, "no suitable DMA available\n");
3843                         goto clean1;
3844                 }
3845         }
3846
3847         /* make sure the board interrupts are off */
3848         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3849
3850         if (h->msix_vector || h->msi_vector)
3851                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_msi,
3852                                 IRQF_DISABLED, h->devname, h);
3853         else
3854                 rc = request_irq(h->intr[h->intr_mode], do_hpsa_intr_intx,
3855                                 IRQF_DISABLED, h->devname, h);
3856         if (rc) {
3857                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3858                        h->intr[h->intr_mode], h->devname);
3859                 goto clean2;
3860         }
3861
3862         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3863                h->devname, pdev->device,
3864                h->intr[h->intr_mode], dac ? "" : " not");
3865
3866         h->cmd_pool_bits =
3867             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3868                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3869         h->cmd_pool = pci_alloc_consistent(h->pdev,
3870                     h->nr_cmds * sizeof(*h->cmd_pool),
3871                     &(h->cmd_pool_dhandle));
3872         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3873                     h->nr_cmds * sizeof(*h->errinfo_pool),
3874                     &(h->errinfo_pool_dhandle));
3875         if ((h->cmd_pool_bits == NULL)
3876             || (h->cmd_pool == NULL)
3877             || (h->errinfo_pool == NULL)) {
3878                 dev_err(&pdev->dev, "out of memory");
3879                 rc = -ENOMEM;
3880                 goto clean4;
3881         }
3882         if (hpsa_allocate_sg_chain_blocks(h))
3883                 goto clean4;
3884         init_waitqueue_head(&h->scan_wait_queue);
3885         h->scan_finished = 1; /* no scan currently in progress */
3886
3887         pci_set_drvdata(pdev, h);
3888         memset(h->cmd_pool_bits, 0,
3889                ((h->nr_cmds + BITS_PER_LONG -
3890                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3891
3892         hpsa_scsi_setup(h);
3893
3894         /* Turn the interrupts on so we can service requests */
3895         h->access.set_intr_mask(h, HPSA_INTR_ON);
3896
3897         hpsa_put_ctlr_into_performant_mode(h);
3898         hpsa_hba_inquiry(h);
3899         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3900         h->busy_initializing = 0;
3901         return 1;
3902
3903 clean4:
3904         hpsa_free_sg_chain_blocks(h);
3905         kfree(h->cmd_pool_bits);
3906         if (h->cmd_pool)
3907                 pci_free_consistent(h->pdev,
3908                             h->nr_cmds * sizeof(struct CommandList),
3909                             h->cmd_pool, h->cmd_pool_dhandle);
3910         if (h->errinfo_pool)
3911                 pci_free_consistent(h->pdev,
3912                             h->nr_cmds * sizeof(struct ErrorInfo),
3913                             h->errinfo_pool,
3914                             h->errinfo_pool_dhandle);
3915         free_irq(h->intr[h->intr_mode], h);
3916 clean2:
3917 clean1:
3918         h->busy_initializing = 0;
3919         kfree(h);
3920         return rc;
3921 }
3922
3923 static void hpsa_flush_cache(struct ctlr_info *h)
3924 {
3925         char *flush_buf;
3926         struct CommandList *c;
3927
3928         flush_buf = kzalloc(4, GFP_KERNEL);
3929         if (!flush_buf)
3930                 return;
3931
3932         c = cmd_special_alloc(h);
3933         if (!c) {
3934                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3935                 goto out_of_memory;
3936         }
3937         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3938                 RAID_CTLR_LUNID, TYPE_CMD);
3939         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3940         if (c->err_info->CommandStatus != 0)
3941                 dev_warn(&h->pdev->dev,
3942                         "error flushing cache on controller\n");
3943         cmd_special_free(h, c);
3944 out_of_memory:
3945         kfree(flush_buf);
3946 }
3947
3948 static void hpsa_shutdown(struct pci_dev *pdev)
3949 {
3950         struct ctlr_info *h;
3951
3952         h = pci_get_drvdata(pdev);
3953         /* Turn board interrupts off  and send the flush cache command
3954          * sendcmd will turn off interrupt, and send the flush...
3955          * To write all data in the battery backed cache to disks
3956          */
3957         hpsa_flush_cache(h);
3958         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3959         free_irq(h->intr[h->intr_mode], h);
3960 #ifdef CONFIG_PCI_MSI
3961         if (h->msix_vector)
3962                 pci_disable_msix(h->pdev);
3963         else if (h->msi_vector)
3964                 pci_disable_msi(h->pdev);
3965 #endif                          /* CONFIG_PCI_MSI */
3966 }
3967
3968 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3969 {
3970         struct ctlr_info *h;
3971
3972         if (pci_get_drvdata(pdev) == NULL) {
3973                 dev_err(&pdev->dev, "unable to remove device \n");
3974                 return;
3975         }
3976         h = pci_get_drvdata(pdev);
3977         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3978         hpsa_shutdown(pdev);
3979         iounmap(h->vaddr);
3980         iounmap(h->transtable);
3981         iounmap(h->cfgtable);
3982         hpsa_free_sg_chain_blocks(h);
3983         pci_free_consistent(h->pdev,
3984                 h->nr_cmds * sizeof(struct CommandList),
3985                 h->cmd_pool, h->cmd_pool_dhandle);
3986         pci_free_consistent(h->pdev,
3987                 h->nr_cmds * sizeof(struct ErrorInfo),
3988                 h->errinfo_pool, h->errinfo_pool_dhandle);
3989         pci_free_consistent(h->pdev, h->reply_pool_size,
3990                 h->reply_pool, h->reply_pool_dhandle);
3991         kfree(h->cmd_pool_bits);
3992         kfree(h->blockFetchTable);
3993         kfree(h->hba_inquiry_data);
3994         /*
3995          * Deliberately omit pci_disable_device(): it does something nasty to
3996          * Smart Array controllers that pci_enable_device does not undo
3997          */
3998         pci_release_regions(pdev);
3999         pci_set_drvdata(pdev, NULL);
4000         kfree(h);
4001 }
4002
4003 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4004         __attribute__((unused)) pm_message_t state)
4005 {
4006         return -ENOSYS;
4007 }
4008
4009 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4010 {
4011         return -ENOSYS;
4012 }
4013
4014 static struct pci_driver hpsa_pci_driver = {
4015         .name = "hpsa",
4016         .probe = hpsa_init_one,
4017         .remove = __devexit_p(hpsa_remove_one),
4018         .id_table = hpsa_pci_device_id, /* id_table */
4019         .shutdown = hpsa_shutdown,
4020         .suspend = hpsa_suspend,
4021         .resume = hpsa_resume,
4022 };
4023
4024 /* Fill in bucket_map[], given nsgs (the max number of
4025  * scatter gather elements supported) and bucket[],
4026  * which is an array of 8 integers.  The bucket[] array
4027  * contains 8 different DMA transfer sizes (in 16
4028  * byte increments) which the controller uses to fetch
4029  * commands.  This function fills in bucket_map[], which
4030  * maps a given number of scatter gather elements to one of
4031  * the 8 DMA transfer sizes.  The point of it is to allow the
4032  * controller to only do as much DMA as needed to fetch the
4033  * command, with the DMA transfer size encoded in the lower
4034  * bits of the command address.
4035  */
4036 static void  calc_bucket_map(int bucket[], int num_buckets,
4037         int nsgs, int *bucket_map)
4038 {
4039         int i, j, b, size;
4040
4041         /* even a command with 0 SGs requires 4 blocks */
4042 #define MINIMUM_TRANSFER_BLOCKS 4
4043 #define NUM_BUCKETS 8
4044         /* Note, bucket_map must have nsgs+1 entries. */
4045         for (i = 0; i <= nsgs; i++) {
4046                 /* Compute size of a command with i SG entries */
4047                 size = i + MINIMUM_TRANSFER_BLOCKS;
4048                 b = num_buckets; /* Assume the biggest bucket */
4049                 /* Find the bucket that is just big enough */
4050                 for (j = 0; j < 8; j++) {
4051                         if (bucket[j] >= size) {
4052                                 b = j;
4053                                 break;
4054                         }
4055                 }
4056                 /* for a command with i SG entries, use bucket b. */
4057                 bucket_map[i] = b;
4058         }
4059 }
4060
4061 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4062         u32 use_short_tags)
4063 {
4064         int i;
4065         unsigned long register_value;
4066
4067         /* This is a bit complicated.  There are 8 registers on
4068          * the controller which we write to to tell it 8 different
4069          * sizes of commands which there may be.  It's a way of
4070          * reducing the DMA done to fetch each command.  Encoded into
4071          * each command's tag are 3 bits which communicate to the controller
4072          * which of the eight sizes that command fits within.  The size of
4073          * each command depends on how many scatter gather entries there are.
4074          * Each SG entry requires 16 bytes.  The eight registers are programmed
4075          * with the number of 16-byte blocks a command of that size requires.
4076          * The smallest command possible requires 5 such 16 byte blocks.
4077          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4078          * blocks.  Note, this only extends to the SG entries contained
4079          * within the command block, and does not extend to chained blocks
4080          * of SG elements.   bft[] contains the eight values we write to
4081          * the registers.  They are not evenly distributed, but have more
4082          * sizes for small commands, and fewer sizes for larger commands.
4083          */
4084         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4085         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4086         /*  5 = 1 s/g entry or 4k
4087          *  6 = 2 s/g entry or 8k
4088          *  8 = 4 s/g entry or 16k
4089          * 10 = 6 s/g entry or 24k
4090          */
4091
4092         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4093
4094         /* Controller spec: zero out this buffer. */
4095         memset(h->reply_pool, 0, h->reply_pool_size);
4096         h->reply_pool_head = h->reply_pool;
4097
4098         bft[7] = h->max_sg_entries + 4;
4099         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4100         for (i = 0; i < 8; i++)
4101                 writel(bft[i], &h->transtable->BlockFetch[i]);
4102
4103         /* size of controller ring buffer */
4104         writel(h->max_commands, &h->transtable->RepQSize);
4105         writel(1, &h->transtable->RepQCount);
4106         writel(0, &h->transtable->RepQCtrAddrLow32);
4107         writel(0, &h->transtable->RepQCtrAddrHigh32);
4108         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4109         writel(0, &h->transtable->RepQAddr0High32);
4110         writel(CFGTBL_Trans_Performant | use_short_tags,
4111                 &(h->cfgtable->HostWrite.TransportRequest));
4112         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4113         hpsa_wait_for_mode_change_ack(h);
4114         register_value = readl(&(h->cfgtable->TransportActive));
4115         if (!(register_value & CFGTBL_Trans_Performant)) {
4116                 dev_warn(&h->pdev->dev, "unable to get board into"
4117                                         " performant mode\n");
4118                 return;
4119         }
4120         /* Change the access methods to the performant access methods */
4121         h->access = SA5_performant_access;
4122         h->transMethod = CFGTBL_Trans_Performant;
4123 }
4124
4125 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4126 {
4127         u32 trans_support;
4128
4129         if (hpsa_simple_mode)
4130                 return;
4131
4132         trans_support = readl(&(h->cfgtable->TransportSupport));
4133         if (!(trans_support & PERFORMANT_MODE))
4134                 return;
4135
4136         hpsa_get_max_perf_mode_cmds(h);
4137         h->max_sg_entries = 32;
4138         /* Performant mode ring buffer and supporting data structures */
4139         h->reply_pool_size = h->max_commands * sizeof(u64);
4140         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4141                                 &(h->reply_pool_dhandle));
4142
4143         /* Need a block fetch table for performant mode */
4144         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4145                                 sizeof(u32)), GFP_KERNEL);
4146
4147         if ((h->reply_pool == NULL)
4148                 || (h->blockFetchTable == NULL))
4149                 goto clean_up;
4150
4151         hpsa_enter_performant_mode(h,
4152                 trans_support & CFGTBL_Trans_use_short_tags);
4153
4154         return;
4155
4156 clean_up:
4157         if (h->reply_pool)
4158                 pci_free_consistent(h->pdev, h->reply_pool_size,
4159                         h->reply_pool, h->reply_pool_dhandle);
4160         kfree(h->blockFetchTable);
4161 }
4162
4163 /*
4164  *  This is it.  Register the PCI driver information for the cards we control
4165  *  the OS will call our registered routines when it finds one of our cards.
4166  */
4167 static int __init hpsa_init(void)
4168 {
4169         return pci_register_driver(&hpsa_pci_driver);
4170 }
4171
4172 static void __exit hpsa_cleanup(void)
4173 {
4174         pci_unregister_driver(&hpsa_pci_driver);
4175 }
4176
4177 module_init(hpsa_init);
4178 module_exit(hpsa_cleanup);