Merge git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / drivers / scsi / aacraid / dpcsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  dpcsup.c
27  *
28  * Abstract: All DPC processing routines for the cyclone board occur here.
29  *
30  *
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/blkdev.h>
40 #include <linux/semaphore.h>
41
42 #include "aacraid.h"
43
44 /**
45  *      aac_response_normal     -       Handle command replies
46  *      @q: Queue to read from
47  *
48  *      This DPC routine will be run when the adapter interrupts us to let us
49  *      know there is a response on our normal priority queue. We will pull off
50  *      all QE there are and wake up all the waiters before exiting. We will
51  *      take a spinlock out on the queue before operating on it.
52  */
53
54 unsigned int aac_response_normal(struct aac_queue * q)
55 {
56         struct aac_dev * dev = q->dev;
57         struct aac_entry *entry;
58         struct hw_fib * hwfib;
59         struct fib * fib;
60         int consumed = 0;
61         unsigned long flags, mflags;
62
63         spin_lock_irqsave(q->lock, flags);
64         /*
65          *      Keep pulling response QEs off the response queue and waking
66          *      up the waiters until there are no more QEs. We then return
67          *      back to the system. If no response was requesed we just
68          *      deallocate the Fib here and continue.
69          */
70         while(aac_consumer_get(dev, q, &entry))
71         {
72                 int fast;
73                 u32 index = le32_to_cpu(entry->addr);
74                 fast = index & 0x01;
75                 fib = &dev->fibs[index >> 2];
76                 hwfib = fib->hw_fib_va;
77                 
78                 aac_consumer_free(dev, q, HostNormRespQueue);
79                 /*
80                  *      Remove this fib from the Outstanding I/O queue.
81                  *      But only if it has not already been timed out.
82                  *
83                  *      If the fib has been timed out already, then just 
84                  *      continue. The caller has already been notified that
85                  *      the fib timed out.
86                  */
87                 dev->queues->queue[AdapNormCmdQueue].numpending--;
88
89                 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90                         spin_unlock_irqrestore(q->lock, flags);
91                         aac_fib_complete(fib);
92                         aac_fib_free(fib);
93                         spin_lock_irqsave(q->lock, flags);
94                         continue;
95                 }
96                 spin_unlock_irqrestore(q->lock, flags);
97
98                 if (fast) {
99                         /*
100                          *      Doctor the fib
101                          */
102                         *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103                         hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104                 }
105
106                 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
107
108                 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
109                 {
110                         __le32 *pstatus = (__le32 *)hwfib->data;
111                         if (*pstatus & cpu_to_le32(0xffff0000))
112                                 *pstatus = cpu_to_le32(ST_OK);
113                 }
114                 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
115                 {
116                         if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
117                                 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
118                         else 
119                                 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
120                         /*
121                          *      NOTE:  we cannot touch the fib after this
122                          *          call, because it may have been deallocated.
123                          */
124                         fib->flags = 0;
125                         fib->callback(fib->callback_data, fib);
126                 } else {
127                         unsigned long flagv;
128                         spin_lock_irqsave(&fib->event_lock, flagv);
129                         if (!fib->done) {
130                                 fib->done = 1;
131                                 up(&fib->event_wait);
132                         }
133                         spin_unlock_irqrestore(&fib->event_lock, flagv);
134
135                         spin_lock_irqsave(&dev->manage_lock, mflags);
136                         dev->management_fib_count--;
137                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
138
139                         FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
140                         if (fib->done == 2) {
141                                 spin_lock_irqsave(&fib->event_lock, flagv);
142                                 fib->done = 0;
143                                 spin_unlock_irqrestore(&fib->event_lock, flagv);
144                                 aac_fib_complete(fib);
145                                 aac_fib_free(fib);
146                         }
147                 }
148                 consumed++;
149                 spin_lock_irqsave(q->lock, flags);
150         }
151
152         if (consumed > aac_config.peak_fibs)
153                 aac_config.peak_fibs = consumed;
154         if (consumed == 0) 
155                 aac_config.zero_fibs++;
156
157         spin_unlock_irqrestore(q->lock, flags);
158         return 0;
159 }
160
161
162 /**
163  *      aac_command_normal      -       handle commands
164  *      @q: queue to process
165  *
166  *      This DPC routine will be queued when the adapter interrupts us to 
167  *      let us know there is a command on our normal priority queue. We will 
168  *      pull off all QE there are and wake up all the waiters before exiting.
169  *      We will take a spinlock out on the queue before operating on it.
170  */
171  
172 unsigned int aac_command_normal(struct aac_queue *q)
173 {
174         struct aac_dev * dev = q->dev;
175         struct aac_entry *entry;
176         unsigned long flags;
177
178         spin_lock_irqsave(q->lock, flags);
179
180         /*
181          *      Keep pulling response QEs off the response queue and waking
182          *      up the waiters until there are no more QEs. We then return
183          *      back to the system.
184          */
185         while(aac_consumer_get(dev, q, &entry))
186         {
187                 struct fib fibctx;
188                 struct hw_fib * hw_fib;
189                 u32 index;
190                 struct fib *fib = &fibctx;
191                 
192                 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
193                 hw_fib = &dev->aif_base_va[index];
194                 
195                 /*
196                  *      Allocate a FIB at all costs. For non queued stuff
197                  *      we can just use the stack so we are happy. We need
198                  *      a fib object in order to manage the linked lists
199                  */
200                 if (dev->aif_thread)
201                         if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
202                                 fib = &fibctx;
203                 
204                 memset(fib, 0, sizeof(struct fib));
205                 INIT_LIST_HEAD(&fib->fiblink);
206                 fib->type = FSAFS_NTC_FIB_CONTEXT;
207                 fib->size = sizeof(struct fib);
208                 fib->hw_fib_va = hw_fib;
209                 fib->data = hw_fib->data;
210                 fib->dev = dev;
211                 
212                                 
213                 if (dev->aif_thread && fib != &fibctx) {
214                         list_add_tail(&fib->fiblink, &q->cmdq);
215                         aac_consumer_free(dev, q, HostNormCmdQueue);
216                         wake_up_interruptible(&q->cmdready);
217                 } else {
218                         aac_consumer_free(dev, q, HostNormCmdQueue);
219                         spin_unlock_irqrestore(q->lock, flags);
220                         /*
221                          *      Set the status of this FIB
222                          */
223                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
224                         aac_fib_adapter_complete(fib, sizeof(u32));
225                         spin_lock_irqsave(q->lock, flags);
226                 }               
227         }
228         spin_unlock_irqrestore(q->lock, flags);
229         return 0;
230 }
231
232 /*
233  *
234  * aac_aif_callback
235  * @context: the context set in the fib - here it is scsi cmd
236  * @fibptr: pointer to the fib
237  *
238  * Handles the AIFs - new method (SRC)
239  *
240  */
241
242 static void aac_aif_callback(void *context, struct fib * fibptr)
243 {
244         struct fib *fibctx;
245         struct aac_dev *dev;
246         struct aac_aifcmd *cmd;
247         int status;
248
249         fibctx = (struct fib *)context;
250         BUG_ON(fibptr == NULL);
251         dev = fibptr->dev;
252
253         if (fibptr->hw_fib_va->header.XferState &
254             cpu_to_le32(NoMoreAifDataAvailable)) {
255                 aac_fib_complete(fibptr);
256                 aac_fib_free(fibptr);
257                 return;
258         }
259
260         aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
261
262         aac_fib_init(fibctx);
263         cmd = (struct aac_aifcmd *) fib_data(fibctx);
264         cmd->command = cpu_to_le32(AifReqEvent);
265
266         status = aac_fib_send(AifRequest,
267                 fibctx,
268                 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
269                 FsaNormal,
270                 0, 1,
271                 (fib_callback)aac_aif_callback, fibctx);
272 }
273
274
275 /**
276  *      aac_intr_normal -       Handle command replies
277  *      @dev: Device
278  *      @index: completion reference
279  *
280  *      This DPC routine will be run when the adapter interrupts us to let us
281  *      know there is a response on our normal priority queue. We will pull off
282  *      all QE there are and wake up all the waiters before exiting.
283  */
284 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
285                         int isAif, int isFastResponse, struct hw_fib *aif_fib)
286 {
287         unsigned long mflags;
288         dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
289         if (isAif == 1) {       /* AIF - common */
290                 struct hw_fib * hw_fib;
291                 struct fib * fib;
292                 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
293                 unsigned long flags;
294
295                 /*
296                  *      Allocate a FIB. For non queued stuff we can just use
297                  * the stack so we are happy. We need a fib object in order to
298                  * manage the linked lists.
299                  */
300                 if ((!dev->aif_thread)
301                  || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
302                         return 1;
303                 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
304                         kfree (fib);
305                         return 1;
306                 }
307                 if (aif_fib != NULL) {
308                         memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
309                 } else {
310                         memcpy(hw_fib,
311                                 (struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
312                                 index), sizeof(struct hw_fib));
313                 }
314                 INIT_LIST_HEAD(&fib->fiblink);
315                 fib->type = FSAFS_NTC_FIB_CONTEXT;
316                 fib->size = sizeof(struct fib);
317                 fib->hw_fib_va = hw_fib;
318                 fib->data = hw_fib->data;
319                 fib->dev = dev;
320         
321                 spin_lock_irqsave(q->lock, flags);
322                 list_add_tail(&fib->fiblink, &q->cmdq);
323                 wake_up_interruptible(&q->cmdready);
324                 spin_unlock_irqrestore(q->lock, flags);
325                 return 1;
326         } else if (isAif == 2) {        /* AIF - new (SRC) */
327                 struct fib *fibctx;
328                 struct aac_aifcmd *cmd;
329
330                 fibctx = aac_fib_alloc(dev);
331                 if (!fibctx)
332                         return 1;
333                 aac_fib_init(fibctx);
334
335                 cmd = (struct aac_aifcmd *) fib_data(fibctx);
336                 cmd->command = cpu_to_le32(AifReqEvent);
337
338                 return aac_fib_send(AifRequest,
339                         fibctx,
340                         sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
341                         FsaNormal,
342                         0, 1,
343                         (fib_callback)aac_aif_callback, fibctx);
344         } else {
345                 struct fib *fib = &dev->fibs[index];
346                 struct hw_fib * hwfib = fib->hw_fib_va;
347
348                 /*
349                  *      Remove this fib from the Outstanding I/O queue.
350                  *      But only if it has not already been timed out.
351                  *
352                  *      If the fib has been timed out already, then just 
353                  *      continue. The caller has already been notified that
354                  *      the fib timed out.
355                  */
356                 dev->queues->queue[AdapNormCmdQueue].numpending--;
357
358                 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
359                         aac_fib_complete(fib);
360                         aac_fib_free(fib);
361                         return 0;
362                 }
363
364                 if (isFastResponse) {
365                         /*
366                          *      Doctor the fib
367                          */
368                         *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
369                         hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
370                 }
371
372                 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
373
374                 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
375                 {
376                         __le32 *pstatus = (__le32 *)hwfib->data;
377                         if (*pstatus & cpu_to_le32(0xffff0000))
378                                 *pstatus = cpu_to_le32(ST_OK);
379                 }
380                 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 
381                 {
382                         if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
383                                 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
384                         else 
385                                 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
386                         /*
387                          *      NOTE:  we cannot touch the fib after this
388                          *          call, because it may have been deallocated.
389                          */
390                         fib->flags = 0;
391                         fib->callback(fib->callback_data, fib);
392                 } else {
393                         unsigned long flagv;
394                         dprintk((KERN_INFO "event_wait up\n"));
395                         spin_lock_irqsave(&fib->event_lock, flagv);
396                         if (!fib->done) {
397                                 fib->done = 1;
398                                 up(&fib->event_wait);
399                         }
400                         spin_unlock_irqrestore(&fib->event_lock, flagv);
401
402                         spin_lock_irqsave(&dev->manage_lock, mflags);
403                         dev->management_fib_count--;
404                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
405
406                         FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
407                         if (fib->done == 2) {
408                                 spin_lock_irqsave(&fib->event_lock, flagv);
409                                 fib->done = 0;
410                                 spin_unlock_irqrestore(&fib->event_lock, flagv);
411                                 aac_fib_complete(fib);
412                                 aac_fib_free(fib);
413                         }
414
415                 }
416                 return 0;
417         }
418 }