Merge mulgrave-w:git/scsi-misc-2.6
[pandora-kernel.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <asm/semaphore.h>
48
49 #include "aacraid.h"
50
51 /**
52  *      fib_map_alloc           -       allocate the fib objects
53  *      @dev: Adapter to allocate for
54  *
55  *      Allocate and map the shared PCI space for the FIB blocks used to
56  *      talk to the Adaptec firmware.
57  */
58  
59 static int fib_map_alloc(struct aac_dev *dev)
60 {
61         dprintk((KERN_INFO
62           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
63           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
64           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
66           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
67           &dev->hw_fib_pa))==NULL)
68                 return -ENOMEM;
69         return 0;
70 }
71
72 /**
73  *      aac_fib_map_free                -       free the fib objects
74  *      @dev: Adapter to free
75  *
76  *      Free the PCI mappings and the memory allocated for FIB blocks
77  *      on this adapter.
78  */
79
80 void aac_fib_map_free(struct aac_dev *dev)
81 {
82         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
83 }
84
85 /**
86  *      aac_fib_setup   -       setup the fibs
87  *      @dev: Adapter to set up
88  *
89  *      Allocate the PCI space for the fibs, map it and then intialise the
90  *      fib area, the unmapped fib data and also the free list
91  */
92
93 int aac_fib_setup(struct aac_dev * dev)
94 {
95         struct fib *fibptr;
96         struct hw_fib *hw_fib_va;
97         dma_addr_t hw_fib_pa;
98         int i;
99
100         while (((i = fib_map_alloc(dev)) == -ENOMEM)
101          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
102                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
103                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
104         }
105         if (i<0)
106                 return -ENOMEM;
107                 
108         hw_fib_va = dev->hw_fib_va;
109         hw_fib_pa = dev->hw_fib_pa;
110         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
111         /*
112          *      Initialise the fibs
113          */
114         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
115         {
116                 fibptr->dev = dev;
117                 fibptr->hw_fib = hw_fib_va;
118                 fibptr->data = (void *) fibptr->hw_fib->data;
119                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
120                 init_MUTEX_LOCKED(&fibptr->event_wait);
121                 spin_lock_init(&fibptr->event_lock);
122                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
123                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
124                 fibptr->hw_fib_pa = hw_fib_pa;
125                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
126                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
127         }
128         /*
129          *      Add the fib chain to the free list
130          */
131         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
132         /*
133          *      Enable this to debug out of queue space
134          */
135         dev->free_fib = &dev->fibs[0];
136         return 0;
137 }
138
139 /**
140  *      aac_fib_alloc   -       allocate a fib
141  *      @dev: Adapter to allocate the fib for
142  *
143  *      Allocate a fib from the adapter fib pool. If the pool is empty we
144  *      return NULL.
145  */
146  
147 struct fib *aac_fib_alloc(struct aac_dev *dev)
148 {
149         struct fib * fibptr;
150         unsigned long flags;
151         spin_lock_irqsave(&dev->fib_lock, flags);
152         fibptr = dev->free_fib; 
153         if(!fibptr){
154                 spin_unlock_irqrestore(&dev->fib_lock, flags);
155                 return fibptr;
156         }
157         dev->free_fib = fibptr->next;
158         spin_unlock_irqrestore(&dev->fib_lock, flags);
159         /*
160          *      Set the proper node type code and node byte size
161          */
162         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
163         fibptr->size = sizeof(struct fib);
164         /*
165          *      Null out fields that depend on being zero at the start of
166          *      each I/O
167          */
168         fibptr->hw_fib->header.XferState = 0;
169         fibptr->callback = NULL;
170         fibptr->callback_data = NULL;
171
172         return fibptr;
173 }
174
175 /**
176  *      aac_fib_free    -       free a fib
177  *      @fibptr: fib to free up
178  *
179  *      Frees up a fib and places it on the appropriate queue
180  *      (either free or timed out)
181  */
182  
183 void aac_fib_free(struct fib *fibptr)
184 {
185         unsigned long flags;
186
187         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
189                 aac_config.fib_timeouts++;
190                 fibptr->next = fibptr->dev->timeout_fib;
191                 fibptr->dev->timeout_fib = fibptr;
192         } else {
193                 if (fibptr->hw_fib->header.XferState != 0) {
194                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
195                                  (void*)fibptr, 
196                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
197                 }
198                 fibptr->next = fibptr->dev->free_fib;
199                 fibptr->dev->free_fib = fibptr;
200         }       
201         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202 }
203
204 /**
205  *      aac_fib_init    -       initialise a fib
206  *      @fibptr: The fib to initialize
207  *      
208  *      Set up the generic fib fields ready for use
209  */
210  
211 void aac_fib_init(struct fib *fibptr)
212 {
213         struct hw_fib *hw_fib = fibptr->hw_fib;
214
215         hw_fib->header.StructType = FIB_MAGIC;
216         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
217         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
218         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
219         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
220         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221 }
222
223 /**
224  *      fib_deallocate          -       deallocate a fib
225  *      @fibptr: fib to deallocate
226  *
227  *      Will deallocate and return to the free pool the FIB pointed to by the
228  *      caller.
229  */
230  
231 static void fib_dealloc(struct fib * fibptr)
232 {
233         struct hw_fib *hw_fib = fibptr->hw_fib;
234         BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
235         hw_fib->header.XferState = 0;        
236 }
237
238 /*
239  *      Commuication primitives define and support the queuing method we use to
240  *      support host to adapter commuication. All queue accesses happen through
241  *      these routines and are the only routines which have a knowledge of the
242  *       how these queues are implemented.
243  */
244  
245 /**
246  *      aac_get_entry           -       get a queue entry
247  *      @dev: Adapter
248  *      @qid: Queue Number
249  *      @entry: Entry return
250  *      @index: Index return
251  *      @nonotify: notification control
252  *
253  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
254  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
255  *      returned.
256  */
257  
258 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
259 {
260         struct aac_queue * q;
261         unsigned long idx;
262
263         /*
264          *      All of the queues wrap when they reach the end, so we check
265          *      to see if they have reached the end and if they have we just
266          *      set the index back to zero. This is a wrap. You could or off
267          *      the high bits in all updates but this is a bit faster I think.
268          */
269
270         q = &dev->queues->queue[qid];
271
272         idx = *index = le32_to_cpu(*(q->headers.producer));
273         /* Interrupt Moderation, only interrupt for first two entries */
274         if (idx != le32_to_cpu(*(q->headers.consumer))) {
275                 if (--idx == 0) {
276                         if (qid == AdapNormCmdQueue)
277                                 idx = ADAP_NORM_CMD_ENTRIES;
278                         else
279                                 idx = ADAP_NORM_RESP_ENTRIES;
280                 }
281                 if (idx != le32_to_cpu(*(q->headers.consumer)))
282                         *nonotify = 1; 
283         }
284
285         if (qid == AdapNormCmdQueue) {
286                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
287                         *index = 0; /* Wrap to front of the Producer Queue. */
288         } else {
289                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
290                         *index = 0; /* Wrap to front of the Producer Queue. */
291         }
292
293         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
294                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
295                                 qid, q->numpending);
296                 return 0;
297         } else {
298                 *entry = q->base + *index;
299                 return 1;
300         }
301 }   
302
303 /**
304  *      aac_queue_get           -       get the next free QE
305  *      @dev: Adapter
306  *      @index: Returned index
307  *      @priority: Priority of fib
308  *      @fib: Fib to associate with the queue entry
309  *      @wait: Wait if queue full
310  *      @fibptr: Driver fib object to go with fib
311  *      @nonotify: Don't notify the adapter
312  *
313  *      Gets the next free QE off the requested priorty adapter command
314  *      queue and associates the Fib with the QE. The QE represented by
315  *      index is ready to insert on the queue when this routine returns
316  *      success.
317  */
318
319 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
320 {
321         struct aac_entry * entry = NULL;
322         int map = 0;
323             
324         if (qid == AdapNormCmdQueue) {
325                 /*  if no entries wait for some if caller wants to */
326                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
327                 {
328                         printk(KERN_ERR "GetEntries failed\n");
329                 }
330                 /*
331                  *      Setup queue entry with a command, status and fib mapped
332                  */
333                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334                 map = 1;
335         } else {
336                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
337                 {
338                         /* if no entries wait for some if caller wants to */
339                 }
340                 /*
341                  *      Setup queue entry with command, status and fib mapped
342                  */
343                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
344                 entry->addr = hw_fib->header.SenderFibAddress;
345                         /* Restore adapters pointer to the FIB */
346                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
347                 map = 0;
348         }
349         /*
350          *      If MapFib is true than we need to map the Fib and put pointers
351          *      in the queue entry.
352          */
353         if (map)
354                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
355         return 0;
356 }
357
358 /*
359  *      Define the highest level of host to adapter communication routines. 
360  *      These routines will support host to adapter FS commuication. These 
361  *      routines have no knowledge of the commuication method used. This level
362  *      sends and receives FIBs. This level has no knowledge of how these FIBs
363  *      get passed back and forth.
364  */
365
366 /**
367  *      aac_fib_send    -       send a fib to the adapter
368  *      @command: Command to send
369  *      @fibptr: The fib
370  *      @size: Size of fib data area
371  *      @priority: Priority of Fib
372  *      @wait: Async/sync select
373  *      @reply: True if a reply is wanted
374  *      @callback: Called with reply
375  *      @callback_data: Passed to callback
376  *
377  *      Sends the requested FIB to the adapter and optionally will wait for a
378  *      response FIB. If the caller does not wish to wait for a response than
379  *      an event to wait on must be supplied. This event will be set when a
380  *      response FIB is received from the adapter.
381  */
382  
383 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
384                 int priority, int wait, int reply, fib_callback callback,
385                 void *callback_data)
386 {
387         struct aac_dev * dev = fibptr->dev;
388         struct hw_fib * hw_fib = fibptr->hw_fib;
389         struct aac_queue * q;
390         unsigned long flags = 0;
391         unsigned long qflags;
392
393         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
394                 return -EBUSY;
395         /*
396          *      There are 5 cases with the wait and reponse requested flags. 
397          *      The only invalid cases are if the caller requests to wait and
398          *      does not request a response and if the caller does not want a
399          *      response and the Fib is not allocated from pool. If a response
400          *      is not requesed the Fib will just be deallocaed by the DPC
401          *      routine when the response comes back from the adapter. No
402          *      further processing will be done besides deleting the Fib. We 
403          *      will have a debug mode where the adapter can notify the host
404          *      it had a problem and the host can log that fact.
405          */
406         if (wait && !reply) {
407                 return -EINVAL;
408         } else if (!wait && reply) {
409                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
410                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
411         } else if (!wait && !reply) {
412                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
413                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
414         } else if (wait && reply) {
415                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
416                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
417         } 
418         /*
419          *      Map the fib into 32bits by using the fib number
420          */
421
422         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
423         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
424         /*
425          *      Set FIB state to indicate where it came from and if we want a
426          *      response from the adapter. Also load the command from the
427          *      caller.
428          *
429          *      Map the hw fib pointer as a 32bit value
430          */
431         hw_fib->header.Command = cpu_to_le16(command);
432         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
433         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
434         /*
435          *      Set the size of the Fib we want to send to the adapter
436          */
437         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
438         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
439                 return -EMSGSIZE;
440         }                
441         /*
442          *      Get a queue entry connect the FIB to it and send an notify
443          *      the adapter a command is ready.
444          */
445         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
446
447         /*
448          *      Fill in the Callback and CallbackContext if we are not
449          *      going to wait.
450          */
451         if (!wait) {
452                 fibptr->callback = callback;
453                 fibptr->callback_data = callback_data;
454         }
455
456         fibptr->done = 0;
457         fibptr->flags = 0;
458
459         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
460
461         dprintk((KERN_DEBUG "Fib contents:.\n"));
462         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
463         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
464         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
465         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
466         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
467         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
468
469         if (!dev->queues)
470                 return -ENODEV;
471         q = &dev->queues->queue[AdapNormCmdQueue];
472
473         if(wait)
474                 spin_lock_irqsave(&fibptr->event_lock, flags);
475         spin_lock_irqsave(q->lock, qflags);
476         if (dev->new_comm_interface) {
477                 unsigned long count = 10000000L; /* 50 seconds */
478                 q->numpending++;
479                 spin_unlock_irqrestore(q->lock, qflags);
480                 while (aac_adapter_send(fibptr) != 0) {
481                         if (--count == 0) {
482                                 if (wait)
483                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
484                                 spin_lock_irqsave(q->lock, qflags);
485                                 q->numpending--;
486                                 spin_unlock_irqrestore(q->lock, qflags);
487                                 return -ETIMEDOUT;
488                         }
489                         udelay(5);
490                 }
491         } else {
492                 u32 index;
493                 unsigned long nointr = 0;
494                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
495
496                 q->numpending++;
497                 *(q->headers.producer) = cpu_to_le32(index + 1);
498                 spin_unlock_irqrestore(q->lock, qflags);
499                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
500                 if (!(nointr & aac_config.irq_mod))
501                         aac_adapter_notify(dev, AdapNormCmdQueue);
502         }
503
504         /*
505          *      If the caller wanted us to wait for response wait now. 
506          */
507     
508         if (wait) {
509                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
510                 /* Only set for first known interruptable command */
511                 if (wait < 0) {
512                         /*
513                          * *VERY* Dangerous to time out a command, the
514                          * assumption is made that we have no hope of
515                          * functioning because an interrupt routing or other
516                          * hardware failure has occurred.
517                          */
518                         unsigned long count = 36000000L; /* 3 minutes */
519                         while (down_trylock(&fibptr->event_wait)) {
520                                 if (--count == 0) {
521                                         spin_lock_irqsave(q->lock, qflags);
522                                         q->numpending--;
523                                         spin_unlock_irqrestore(q->lock, qflags);
524                                         if (wait == -1) {
525                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
526                                                   "Usually a result of a PCI interrupt routing problem;\n"
527                                                   "update mother board BIOS or consider utilizing one of\n"
528                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
529                                         }
530                                         return -ETIMEDOUT;
531                                 }
532                                 udelay(5);
533                         }
534                 } else if (down_interruptible(&fibptr->event_wait)) {
535                         spin_lock_irqsave(&fibptr->event_lock, flags);
536                         if (fibptr->done == 0) {
537                                 fibptr->done = 2; /* Tell interrupt we aborted */
538                                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
539                                 return -EINTR;
540                         }
541                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
542                 }
543                 BUG_ON(fibptr->done == 0);
544                         
545                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
546                         return -ETIMEDOUT;
547                 } else {
548                         return 0;
549                 }
550         }
551         /*
552          *      If the user does not want a response than return success otherwise
553          *      return pending
554          */
555         if (reply)
556                 return -EINPROGRESS;
557         else
558                 return 0;
559 }
560
561 /** 
562  *      aac_consumer_get        -       get the top of the queue
563  *      @dev: Adapter
564  *      @q: Queue
565  *      @entry: Return entry
566  *
567  *      Will return a pointer to the entry on the top of the queue requested that
568  *      we are a consumer of, and return the address of the queue entry. It does
569  *      not change the state of the queue. 
570  */
571
572 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
573 {
574         u32 index;
575         int status;
576         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
577                 status = 0;
578         } else {
579                 /*
580                  *      The consumer index must be wrapped if we have reached
581                  *      the end of the queue, else we just use the entry
582                  *      pointed to by the header index
583                  */
584                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
585                         index = 0;              
586                 else
587                         index = le32_to_cpu(*q->headers.consumer);
588                 *entry = q->base + index;
589                 status = 1;
590         }
591         return(status);
592 }
593
594 /**
595  *      aac_consumer_free       -       free consumer entry
596  *      @dev: Adapter
597  *      @q: Queue
598  *      @qid: Queue ident
599  *
600  *      Frees up the current top of the queue we are a consumer of. If the
601  *      queue was full notify the producer that the queue is no longer full.
602  */
603
604 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
605 {
606         int wasfull = 0;
607         u32 notify;
608
609         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
610                 wasfull = 1;
611         
612         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
613                 *q->headers.consumer = cpu_to_le32(1);
614         else
615                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
616         
617         if (wasfull) {
618                 switch (qid) {
619
620                 case HostNormCmdQueue:
621                         notify = HostNormCmdNotFull;
622                         break;
623                 case HostNormRespQueue:
624                         notify = HostNormRespNotFull;
625                         break;
626                 default:
627                         BUG();
628                         return;
629                 }
630                 aac_adapter_notify(dev, notify);
631         }
632 }        
633
634 /**
635  *      aac_fib_adapter_complete        -       complete adapter issued fib
636  *      @fibptr: fib to complete
637  *      @size: size of fib
638  *
639  *      Will do all necessary work to complete a FIB that was sent from
640  *      the adapter.
641  */
642
643 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
644 {
645         struct hw_fib * hw_fib = fibptr->hw_fib;
646         struct aac_dev * dev = fibptr->dev;
647         struct aac_queue * q;
648         unsigned long nointr = 0;
649         unsigned long qflags;
650
651         if (hw_fib->header.XferState == 0) {
652                 if (dev->new_comm_interface)
653                         kfree (hw_fib);
654                 return 0;
655         }
656         /*
657          *      If we plan to do anything check the structure type first.
658          */ 
659         if ( hw_fib->header.StructType != FIB_MAGIC ) {
660                 if (dev->new_comm_interface)
661                         kfree (hw_fib);
662                 return -EINVAL;
663         }
664         /*
665          *      This block handles the case where the adapter had sent us a
666          *      command and we have finished processing the command. We
667          *      call completeFib when we are done processing the command 
668          *      and want to send a response back to the adapter. This will 
669          *      send the completed cdb to the adapter.
670          */
671         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
672                 if (dev->new_comm_interface) {
673                         kfree (hw_fib);
674                 } else {
675                         u32 index;
676                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
677                         if (size) {
678                                 size += sizeof(struct aac_fibhdr);
679                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
680                                         return -EMSGSIZE;
681                                 hw_fib->header.Size = cpu_to_le16(size);
682                         }
683                         q = &dev->queues->queue[AdapNormRespQueue];
684                         spin_lock_irqsave(q->lock, qflags);
685                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
686                         *(q->headers.producer) = cpu_to_le32(index + 1);
687                         spin_unlock_irqrestore(q->lock, qflags);
688                         if (!(nointr & (int)aac_config.irq_mod))
689                                 aac_adapter_notify(dev, AdapNormRespQueue);
690                 }
691         }
692         else 
693         {
694                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
695                 BUG();
696         }   
697         return 0;
698 }
699
700 /**
701  *      aac_fib_complete        -       fib completion handler
702  *      @fib: FIB to complete
703  *
704  *      Will do all necessary work to complete a FIB.
705  */
706  
707 int aac_fib_complete(struct fib *fibptr)
708 {
709         struct hw_fib * hw_fib = fibptr->hw_fib;
710
711         /*
712          *      Check for a fib which has already been completed
713          */
714
715         if (hw_fib->header.XferState == 0)
716                 return 0;
717         /*
718          *      If we plan to do anything check the structure type first.
719          */ 
720
721         if (hw_fib->header.StructType != FIB_MAGIC)
722                 return -EINVAL;
723         /*
724          *      This block completes a cdb which orginated on the host and we 
725          *      just need to deallocate the cdb or reinit it. At this point the
726          *      command is complete that we had sent to the adapter and this
727          *      cdb could be reused.
728          */
729         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
730                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
731         {
732                 fib_dealloc(fibptr);
733         }
734         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
735         {
736                 /*
737                  *      This handles the case when the host has aborted the I/O
738                  *      to the adapter because the adapter is not responding
739                  */
740                 fib_dealloc(fibptr);
741         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
742                 fib_dealloc(fibptr);
743         } else {
744                 BUG();
745         }   
746         return 0;
747 }
748
749 /**
750  *      aac_printf      -       handle printf from firmware
751  *      @dev: Adapter
752  *      @val: Message info
753  *
754  *      Print a message passed to us by the controller firmware on the
755  *      Adaptec board
756  */
757
758 void aac_printf(struct aac_dev *dev, u32 val)
759 {
760         char *cp = dev->printfbuf;
761         if (dev->printf_enabled)
762         {
763                 int length = val & 0xffff;
764                 int level = (val >> 16) & 0xffff;
765                 
766                 /*
767                  *      The size of the printfbuf is set in port.c
768                  *      There is no variable or define for it
769                  */
770                 if (length > 255)
771                         length = 255;
772                 if (cp[length] != 0)
773                         cp[length] = 0;
774                 if (level == LOG_AAC_HIGH_ERROR)
775                         printk(KERN_WARNING "%s:%s", dev->name, cp);
776                 else
777                         printk(KERN_INFO "%s:%s", dev->name, cp);
778         }
779         memset(cp, 0,  256);
780 }
781
782
783 /**
784  *      aac_handle_aif          -       Handle a message from the firmware
785  *      @dev: Which adapter this fib is from
786  *      @fibptr: Pointer to fibptr from adapter
787  *
788  *      This routine handles a driver notify fib from the adapter and
789  *      dispatches it to the appropriate routine for handling.
790  */
791
792 #define AIF_SNIFF_TIMEOUT       (30*HZ)
793 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
794 {
795         struct hw_fib * hw_fib = fibptr->hw_fib;
796         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
797         int busy;
798         u32 container;
799         struct scsi_device *device;
800         enum {
801                 NOTHING,
802                 DELETE,
803                 ADD,
804                 CHANGE
805         } device_config_needed;
806
807         /* Sniff for container changes */
808
809         if (!dev || !dev->fsa_dev)
810                 return;
811         container = (u32)-1;
812
813         /*
814          *      We have set this up to try and minimize the number of
815          * re-configures that take place. As a result of this when
816          * certain AIF's come in we will set a flag waiting for another
817          * type of AIF before setting the re-config flag.
818          */
819         switch (le32_to_cpu(aifcmd->command)) {
820         case AifCmdDriverNotify:
821                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
822                 /*
823                  *      Morph or Expand complete
824                  */
825                 case AifDenMorphComplete:
826                 case AifDenVolumeExtendComplete:
827                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
828                         if (container >= dev->maximum_num_containers)
829                                 break;
830
831                         /*
832                          *      Find the scsi_device associated with the SCSI
833                          * address. Make sure we have the right array, and if
834                          * so set the flag to initiate a new re-config once we
835                          * see an AifEnConfigChange AIF come through.
836                          */
837
838                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
839                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
840                                         CONTAINER_TO_CHANNEL(container), 
841                                         CONTAINER_TO_ID(container), 
842                                         CONTAINER_TO_LUN(container));
843                                 if (device) {
844                                         dev->fsa_dev[container].config_needed = CHANGE;
845                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
846                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
847                                         scsi_device_put(device);
848                                 }
849                         }
850                 }
851
852                 /*
853                  *      If we are waiting on something and this happens to be
854                  * that thing then set the re-configure flag.
855                  */
856                 if (container != (u32)-1) {
857                         if (container >= dev->maximum_num_containers)
858                                 break;
859                         if ((dev->fsa_dev[container].config_waiting_on ==
860                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
861                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
862                                 dev->fsa_dev[container].config_waiting_on = 0;
863                 } else for (container = 0;
864                     container < dev->maximum_num_containers; ++container) {
865                         if ((dev->fsa_dev[container].config_waiting_on ==
866                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
867                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
868                                 dev->fsa_dev[container].config_waiting_on = 0;
869                 }
870                 break;
871
872         case AifCmdEventNotify:
873                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
874                 /*
875                  *      Add an Array.
876                  */
877                 case AifEnAddContainer:
878                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
879                         if (container >= dev->maximum_num_containers)
880                                 break;
881                         dev->fsa_dev[container].config_needed = ADD;
882                         dev->fsa_dev[container].config_waiting_on =
883                                 AifEnConfigChange;
884                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
885                         break;
886
887                 /*
888                  *      Delete an Array.
889                  */
890                 case AifEnDeleteContainer:
891                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
892                         if (container >= dev->maximum_num_containers)
893                                 break;
894                         dev->fsa_dev[container].config_needed = DELETE;
895                         dev->fsa_dev[container].config_waiting_on =
896                                 AifEnConfigChange;
897                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
898                         break;
899
900                 /*
901                  *      Container change detected. If we currently are not
902                  * waiting on something else, setup to wait on a Config Change.
903                  */
904                 case AifEnContainerChange:
905                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
906                         if (container >= dev->maximum_num_containers)
907                                 break;
908                         if (dev->fsa_dev[container].config_waiting_on &&
909                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
910                                 break;
911                         dev->fsa_dev[container].config_needed = CHANGE;
912                         dev->fsa_dev[container].config_waiting_on =
913                                 AifEnConfigChange;
914                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
915                         break;
916
917                 case AifEnConfigChange:
918                         break;
919
920                 }
921
922                 /*
923                  *      If we are waiting on something and this happens to be
924                  * that thing then set the re-configure flag.
925                  */
926                 if (container != (u32)-1) {
927                         if (container >= dev->maximum_num_containers)
928                                 break;
929                         if ((dev->fsa_dev[container].config_waiting_on ==
930                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
931                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
932                                 dev->fsa_dev[container].config_waiting_on = 0;
933                 } else for (container = 0;
934                     container < dev->maximum_num_containers; ++container) {
935                         if ((dev->fsa_dev[container].config_waiting_on ==
936                             le32_to_cpu(*(u32 *)aifcmd->data)) &&
937                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
938                                 dev->fsa_dev[container].config_waiting_on = 0;
939                 }
940                 break;
941
942         case AifCmdJobProgress:
943                 /*
944                  *      These are job progress AIF's. When a Clear is being
945                  * done on a container it is initially created then hidden from
946                  * the OS. When the clear completes we don't get a config
947                  * change so we monitor the job status complete on a clear then
948                  * wait for a container change.
949                  */
950
951                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
952                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
953                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
954                         for (container = 0;
955                             container < dev->maximum_num_containers;
956                             ++container) {
957                                 /*
958                                  * Stomp on all config sequencing for all
959                                  * containers?
960                                  */
961                                 dev->fsa_dev[container].config_waiting_on =
962                                         AifEnContainerChange;
963                                 dev->fsa_dev[container].config_needed = ADD;
964                                 dev->fsa_dev[container].config_waiting_stamp =
965                                         jiffies;
966                         }
967                 }
968                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
969                  && (((u32 *)aifcmd->data)[6] == 0)
970                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
971                         for (container = 0;
972                             container < dev->maximum_num_containers;
973                             ++container) {
974                                 /*
975                                  * Stomp on all config sequencing for all
976                                  * containers?
977                                  */
978                                 dev->fsa_dev[container].config_waiting_on =
979                                         AifEnContainerChange;
980                                 dev->fsa_dev[container].config_needed = DELETE;
981                                 dev->fsa_dev[container].config_waiting_stamp =
982                                         jiffies;
983                         }
984                 }
985                 break;
986         }
987
988         device_config_needed = NOTHING;
989         for (container = 0; container < dev->maximum_num_containers;
990             ++container) {
991                 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
992                         (dev->fsa_dev[container].config_needed != NOTHING) &&
993                         time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
994                         device_config_needed =
995                                 dev->fsa_dev[container].config_needed;
996                         dev->fsa_dev[container].config_needed = NOTHING;
997                         break;
998                 }
999         }
1000         if (device_config_needed == NOTHING)
1001                 return;
1002
1003         /*
1004          *      If we decided that a re-configuration needs to be done,
1005          * schedule it here on the way out the door, please close the door
1006          * behind you.
1007          */
1008
1009         busy = 0;
1010
1011
1012         /*
1013          *      Find the scsi_device associated with the SCSI address,
1014          * and mark it as changed, invalidating the cache. This deals
1015          * with changes to existing device IDs.
1016          */
1017
1018         if (!dev || !dev->scsi_host_ptr)
1019                 return;
1020         /*
1021          * force reload of disk info via aac_probe_container
1022          */
1023         if ((device_config_needed == CHANGE)
1024          && (dev->fsa_dev[container].valid == 1))
1025                 dev->fsa_dev[container].valid = 2;
1026         if ((device_config_needed == CHANGE) ||
1027                         (device_config_needed == ADD))
1028                 aac_probe_container(dev, container);
1029         device = scsi_device_lookup(dev->scsi_host_ptr, 
1030                 CONTAINER_TO_CHANNEL(container), 
1031                 CONTAINER_TO_ID(container), 
1032                 CONTAINER_TO_LUN(container));
1033         if (device) {
1034                 switch (device_config_needed) {
1035                 case DELETE:
1036                         scsi_remove_device(device);
1037                         break;
1038                 case CHANGE:
1039                         if (!dev->fsa_dev[container].valid) {
1040                                 scsi_remove_device(device);
1041                                 break;
1042                         }
1043                         scsi_rescan_device(&device->sdev_gendev);
1044
1045                 default:
1046                         break;
1047                 }
1048                 scsi_device_put(device);
1049         }
1050         if (device_config_needed == ADD) {
1051                 scsi_add_device(dev->scsi_host_ptr,
1052                   CONTAINER_TO_CHANNEL(container),
1053                   CONTAINER_TO_ID(container),
1054                   CONTAINER_TO_LUN(container));
1055         }
1056
1057 }
1058
1059 static int _aac_reset_adapter(struct aac_dev *aac)
1060 {
1061         int index, quirks;
1062         u32 ret;
1063         int retval;
1064         struct Scsi_Host *host;
1065         struct scsi_device *dev;
1066         struct scsi_cmnd *command;
1067         struct scsi_cmnd *command_list;
1068
1069         /*
1070          * Assumptions:
1071          *      - host is locked.
1072          *      - in_reset is asserted, so no new i/o is getting to the
1073          *        card.
1074          *      - The card is dead.
1075          */
1076         host = aac->scsi_host_ptr;
1077         scsi_block_requests(host);
1078         aac_adapter_disable_int(aac);
1079         spin_unlock_irq(host->host_lock);
1080         kthread_stop(aac->thread);
1081
1082         /*
1083          *      If a positive health, means in a known DEAD PANIC
1084          * state and the adapter could be reset to `try again'.
1085          */
1086         retval = aac_adapter_check_health(aac);
1087         if (retval == 0)
1088                 retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
1089                   0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1090         if (retval)
1091                 retval = aac_adapter_sync_cmd(aac, IOP_RESET,
1092                   0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
1093
1094         if (retval)
1095                 goto out;
1096         if (ret != 0x00000001) {
1097                 retval = -ENODEV;
1098                 goto out;
1099         }
1100
1101         index = aac->cardtype;
1102
1103         /*
1104          * Re-initialize the adapter, first free resources, then carefully
1105          * apply the initialization sequence to come back again. Only risk
1106          * is a change in Firmware dropping cache, it is assumed the caller
1107          * will ensure that i/o is queisced and the card is flushed in that
1108          * case.
1109          */
1110         aac_fib_map_free(aac);
1111         aac->hw_fib_va = NULL;
1112         aac->hw_fib_pa = 0;
1113         pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1114         aac->comm_addr = NULL;
1115         aac->comm_phys = 0;
1116         kfree(aac->queues);
1117         aac->queues = NULL;
1118         free_irq(aac->pdev->irq, aac);
1119         kfree(aac->fsa_dev);
1120         aac->fsa_dev = NULL;
1121         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1122                 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1123                   ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1124                         goto out;
1125         } else {
1126                 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1127                   ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1128                         goto out;
1129         }
1130         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1131                 goto out;
1132         if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1133                 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1134                         goto out;
1135         aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1136         if (IS_ERR(aac->thread)) {
1137                 retval = PTR_ERR(aac->thread);
1138                 goto out;
1139         }
1140         (void)aac_get_adapter_info(aac);
1141         quirks = aac_get_driver_ident(index)->quirks;
1142         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1143                 host->sg_tablesize = 34;
1144                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1145         }
1146         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1147                 host->sg_tablesize = 17;
1148                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1149         }
1150         aac_get_config_status(aac, 1);
1151         aac_get_containers(aac);
1152         /*
1153          * This is where the assumption that the Adapter is quiesced
1154          * is important.
1155          */
1156         command_list = NULL;
1157         __shost_for_each_device(dev, host) {
1158                 unsigned long flags;
1159                 spin_lock_irqsave(&dev->list_lock, flags);
1160                 list_for_each_entry(command, &dev->cmd_list, list)
1161                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1162                                 command->SCp.buffer = (struct scatterlist *)command_list;
1163                                 command_list = command;
1164                         }
1165                 spin_unlock_irqrestore(&dev->list_lock, flags);
1166         }
1167         while ((command = command_list)) {
1168                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1169                 command->SCp.buffer = NULL;
1170                 command->result = DID_OK << 16
1171                   | COMMAND_COMPLETE << 8
1172                   | SAM_STAT_TASK_SET_FULL;
1173                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1174                 command->scsi_done(command);
1175         }
1176         retval = 0;
1177
1178 out:
1179         aac->in_reset = 0;
1180         scsi_unblock_requests(host);
1181         spin_lock_irq(host->host_lock);
1182         return retval;
1183 }
1184
1185 int aac_check_health(struct aac_dev * aac)
1186 {
1187         int BlinkLED;
1188         unsigned long time_now, flagv = 0;
1189         struct list_head * entry;
1190         struct Scsi_Host * host;
1191
1192         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1193         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1194                 return 0;
1195
1196         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1197                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1198                 return 0; /* OK */
1199         }
1200
1201         aac->in_reset = 1;
1202
1203         /* Fake up an AIF:
1204          *      aac_aifcmd.command = AifCmdEventNotify = 1
1205          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1206          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1207          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1208          *      aac.aifcmd.data[2] = AifHighPriority = 3
1209          *      aac.aifcmd.data[3] = BlinkLED
1210          */
1211
1212         time_now = jiffies/HZ;
1213         entry = aac->fib_list.next;
1214
1215         /*
1216          * For each Context that is on the
1217          * fibctxList, make a copy of the
1218          * fib, and then set the event to wake up the
1219          * thread that is waiting for it.
1220          */
1221         while (entry != &aac->fib_list) {
1222                 /*
1223                  * Extract the fibctx
1224                  */
1225                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1226                 struct hw_fib * hw_fib;
1227                 struct fib * fib;
1228                 /*
1229                  * Check if the queue is getting
1230                  * backlogged
1231                  */
1232                 if (fibctx->count > 20) {
1233                         /*
1234                          * It's *not* jiffies folks,
1235                          * but jiffies / HZ, so do not
1236                          * panic ...
1237                          */
1238                         u32 time_last = fibctx->jiffies;
1239                         /*
1240                          * Has it been > 2 minutes
1241                          * since the last read off
1242                          * the queue?
1243                          */
1244                         if ((time_now - time_last) > aif_timeout) {
1245                                 entry = entry->next;
1246                                 aac_close_fib_context(aac, fibctx);
1247                                 continue;
1248                         }
1249                 }
1250                 /*
1251                  * Warning: no sleep allowed while
1252                  * holding spinlock
1253                  */
1254                 hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1255                 fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1256                 if (fib && hw_fib) {
1257                         struct aac_aifcmd * aif;
1258
1259                         memset(hw_fib, 0, sizeof(struct hw_fib));
1260                         memset(fib, 0, sizeof(struct fib));
1261                         fib->hw_fib = hw_fib;
1262                         fib->dev = aac;
1263                         aac_fib_init(fib);
1264                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1265                         fib->size = sizeof (struct fib);
1266                         fib->data = hw_fib->data;
1267                         aif = (struct aac_aifcmd *)hw_fib->data;
1268                         aif->command = cpu_to_le32(AifCmdEventNotify);
1269                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1270                         aif->data[0] = cpu_to_le32(AifEnExpEvent);
1271                         aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1272                         aif->data[2] = cpu_to_le32(AifHighPriority);
1273                         aif->data[3] = cpu_to_le32(BlinkLED);
1274
1275                         /*
1276                          * Put the FIB onto the
1277                          * fibctx's fibs
1278                          */
1279                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1280                         fibctx->count++;
1281                         /*
1282                          * Set the event to wake up the
1283                          * thread that will waiting.
1284                          */
1285                         up(&fibctx->wait_sem);
1286                 } else {
1287                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1288                         kfree(fib);
1289                         kfree(hw_fib);
1290                 }
1291                 entry = entry->next;
1292         }
1293
1294         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1295
1296         if (BlinkLED < 0) {
1297                 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1298                 goto out;
1299         }
1300
1301         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1302
1303         host = aac->scsi_host_ptr;
1304         spin_lock_irqsave(host->host_lock, flagv);
1305         BlinkLED = _aac_reset_adapter(aac);
1306         spin_unlock_irqrestore(host->host_lock, flagv);
1307         return BlinkLED;
1308
1309 out:
1310         aac->in_reset = 0;
1311         return BlinkLED;
1312 }
1313
1314
1315 /**
1316  *      aac_command_thread      -       command processing thread
1317  *      @dev: Adapter to monitor
1318  *
1319  *      Waits on the commandready event in it's queue. When the event gets set
1320  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1321  *      until the queue is empty. When the queue is empty it will wait for
1322  *      more FIBs.
1323  */
1324  
1325 int aac_command_thread(void *data)
1326 {
1327         struct aac_dev *dev = data;
1328         struct hw_fib *hw_fib, *hw_newfib;
1329         struct fib *fib, *newfib;
1330         struct aac_fib_context *fibctx;
1331         unsigned long flags;
1332         DECLARE_WAITQUEUE(wait, current);
1333
1334         /*
1335          *      We can only have one thread per adapter for AIF's.
1336          */
1337         if (dev->aif_thread)
1338                 return -EINVAL;
1339
1340         /*
1341          *      Let the DPC know it has a place to send the AIF's to.
1342          */
1343         dev->aif_thread = 1;
1344         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1345         set_current_state(TASK_INTERRUPTIBLE);
1346         dprintk ((KERN_INFO "aac_command_thread start\n"));
1347         while(1) 
1348         {
1349                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1350                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1351                         struct list_head *entry;
1352                         struct aac_aifcmd * aifcmd;
1353
1354                         set_current_state(TASK_RUNNING);
1355         
1356                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1357                         list_del(entry);
1358                 
1359                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1360                         fib = list_entry(entry, struct fib, fiblink);
1361                         /*
1362                          *      We will process the FIB here or pass it to a 
1363                          *      worker thread that is TBD. We Really can't 
1364                          *      do anything at this point since we don't have
1365                          *      anything defined for this thread to do.
1366                          */
1367                         hw_fib = fib->hw_fib;
1368                         memset(fib, 0, sizeof(struct fib));
1369                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1370                         fib->size = sizeof( struct fib );
1371                         fib->hw_fib = hw_fib;
1372                         fib->data = hw_fib->data;
1373                         fib->dev = dev;
1374                         /*
1375                          *      We only handle AifRequest fibs from the adapter.
1376                          */
1377                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1378                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1379                                 /* Handle Driver Notify Events */
1380                                 aac_handle_aif(dev, fib);
1381                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1382                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1383                         } else {
1384                                 struct list_head *entry;
1385                                 /* The u32 here is important and intended. We are using
1386                                    32bit wrapping time to fit the adapter field */
1387                                    
1388                                 u32 time_now, time_last;
1389                                 unsigned long flagv;
1390                                 unsigned num;
1391                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1392                                 struct fib ** fib_pool, ** fib_p;
1393                         
1394                                 /* Sniff events */
1395                                 if ((aifcmd->command == 
1396                                      cpu_to_le32(AifCmdEventNotify)) ||
1397                                     (aifcmd->command == 
1398                                      cpu_to_le32(AifCmdJobProgress))) {
1399                                         aac_handle_aif(dev, fib);
1400                                 }
1401                                 
1402                                 time_now = jiffies/HZ;
1403
1404                                 /*
1405                                  * Warning: no sleep allowed while
1406                                  * holding spinlock. We take the estimate
1407                                  * and pre-allocate a set of fibs outside the
1408                                  * lock.
1409                                  */
1410                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1411                                     / sizeof(struct hw_fib); /* some extra */
1412                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1413                                 entry = dev->fib_list.next;
1414                                 while (entry != &dev->fib_list) {
1415                                         entry = entry->next;
1416                                         ++num;
1417                                 }
1418                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1419                                 hw_fib_pool = NULL;
1420                                 fib_pool = NULL;
1421                                 if (num
1422                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1423                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1424                                         hw_fib_p = hw_fib_pool;
1425                                         fib_p = fib_pool;
1426                                         while (hw_fib_p < &hw_fib_pool[num]) {
1427                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1428                                                         --hw_fib_p;
1429                                                         break;
1430                                                 }
1431                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1432                                                         kfree(*(--hw_fib_p));
1433                                                         break;
1434                                                 }
1435                                         }
1436                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1437                                                 kfree(fib_pool);
1438                                                 fib_pool = NULL;
1439                                                 kfree(hw_fib_pool);
1440                                                 hw_fib_pool = NULL;
1441                                         }
1442                                 } else {
1443                                         kfree(hw_fib_pool);
1444                                         hw_fib_pool = NULL;
1445                                 }
1446                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1447                                 entry = dev->fib_list.next;
1448                                 /*
1449                                  * For each Context that is on the 
1450                                  * fibctxList, make a copy of the
1451                                  * fib, and then set the event to wake up the
1452                                  * thread that is waiting for it.
1453                                  */
1454                                 hw_fib_p = hw_fib_pool;
1455                                 fib_p = fib_pool;
1456                                 while (entry != &dev->fib_list) {
1457                                         /*
1458                                          * Extract the fibctx
1459                                          */
1460                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1461                                         /*
1462                                          * Check if the queue is getting
1463                                          * backlogged
1464                                          */
1465                                         if (fibctx->count > 20)
1466                                         {
1467                                                 /*
1468                                                  * It's *not* jiffies folks,
1469                                                  * but jiffies / HZ so do not
1470                                                  * panic ...
1471                                                  */
1472                                                 time_last = fibctx->jiffies;
1473                                                 /*
1474                                                  * Has it been > 2 minutes 
1475                                                  * since the last read off
1476                                                  * the queue?
1477                                                  */
1478                                                 if ((time_now - time_last) > aif_timeout) {
1479                                                         entry = entry->next;
1480                                                         aac_close_fib_context(dev, fibctx);
1481                                                         continue;
1482                                                 }
1483                                         }
1484                                         /*
1485                                          * Warning: no sleep allowed while
1486                                          * holding spinlock
1487                                          */
1488                                         if (hw_fib_p < &hw_fib_pool[num]) {
1489                                                 hw_newfib = *hw_fib_p;
1490                                                 *(hw_fib_p++) = NULL;
1491                                                 newfib = *fib_p;
1492                                                 *(fib_p++) = NULL;
1493                                                 /*
1494                                                  * Make the copy of the FIB
1495                                                  */
1496                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1497                                                 memcpy(newfib, fib, sizeof(struct fib));
1498                                                 newfib->hw_fib = hw_newfib;
1499                                                 /*
1500                                                  * Put the FIB onto the
1501                                                  * fibctx's fibs
1502                                                  */
1503                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1504                                                 fibctx->count++;
1505                                                 /* 
1506                                                  * Set the event to wake up the
1507                                                  * thread that is waiting.
1508                                                  */
1509                                                 up(&fibctx->wait_sem);
1510                                         } else {
1511                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1512                                         }
1513                                         entry = entry->next;
1514                                 }
1515                                 /*
1516                                  *      Set the status of this FIB
1517                                  */
1518                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1519                                 aac_fib_adapter_complete(fib, sizeof(u32));
1520                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1521                                 /* Free up the remaining resources */
1522                                 hw_fib_p = hw_fib_pool;
1523                                 fib_p = fib_pool;
1524                                 while (hw_fib_p < &hw_fib_pool[num]) {
1525                                         kfree(*hw_fib_p);
1526                                         kfree(*fib_p);
1527                                         ++fib_p;
1528                                         ++hw_fib_p;
1529                                 }
1530                                 kfree(hw_fib_pool);
1531                                 kfree(fib_pool);
1532                         }
1533                         kfree(fib);
1534                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1535                 }
1536                 /*
1537                  *      There are no more AIF's
1538                  */
1539                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1540                 schedule();
1541
1542                 if (kthread_should_stop())
1543                         break;
1544                 set_current_state(TASK_INTERRUPTIBLE);
1545         }
1546         if (dev->queues)
1547                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1548         dev->aif_thread = 0;
1549         return 0;
1550 }