[GFS2/DLM] Fix trailing whitespace
[pandora-kernel.git] / drivers / s390 / crypto / z90main.c
1 /*
2  *  linux/drivers/s390/crypto/z90main.c
3  *
4  *  z90crypt 1.3.3
5  *
6  *  Copyright (C)  2001, 2005 IBM Corporation
7  *  Author(s): Robert Burroughs (burrough@us.ibm.com)
8  *             Eric Rossman (edrossma@us.ibm.com)
9  *
10  *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <asm/uaccess.h>       // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h>       // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h>   // for tasklets
33 #include <linux/miscdevice.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/proc_fs.h>
37 #include <linux/syscalls.h>
38 #include "z90crypt.h"
39 #include "z90common.h"
40
41 /**
42  * Defaults that may be modified.
43  */
44
45 /**
46  * You can specify a different minor at compile time.
47  */
48 #ifndef Z90CRYPT_MINOR
49 #define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
50 #endif
51
52 /**
53  * You can specify a different domain at compile time or on the insmod
54  * command line.
55  */
56 #ifndef DOMAIN_INDEX
57 #define DOMAIN_INDEX    -1
58 #endif
59
60 /**
61  * This is the name under which the device is registered in /proc/modules.
62  */
63 #define REG_NAME        "z90crypt"
64
65 /**
66  * Cleanup should run every CLEANUPTIME seconds and should clean up requests
67  * older than CLEANUPTIME seconds in the past.
68  */
69 #ifndef CLEANUPTIME
70 #define CLEANUPTIME 15
71 #endif
72
73 /**
74  * Config should run every CONFIGTIME seconds
75  */
76 #ifndef CONFIGTIME
77 #define CONFIGTIME 30
78 #endif
79
80 /**
81  * The first execution of the config task should take place
82  * immediately after initialization
83  */
84 #ifndef INITIAL_CONFIGTIME
85 #define INITIAL_CONFIGTIME 1
86 #endif
87
88 /**
89  * Reader should run every READERTIME milliseconds
90  * With the 100Hz patch for s390, z90crypt can lock the system solid while
91  * under heavy load. We'll try to avoid that.
92  */
93 #ifndef READERTIME
94 #if HZ > 1000
95 #define READERTIME 2
96 #else
97 #define READERTIME 10
98 #endif
99 #endif
100
101 /**
102  * turn long device array index into device pointer
103  */
104 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
105
106 /**
107  * turn short device array index into long device array index
108  */
109 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
110
111 /**
112  * turn short device array index into device pointer
113  */
114 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
115
116 /**
117  * Status for a work-element
118  */
119 #define STAT_DEFAULT    0x00 // request has not been processed
120
121 #define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
122                              //        else, device is determined each write
123 #define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
124                              //        before being sent to the hardware.
125 #define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
126 //                      0x20 // UNUSED state
127 #define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
128 #define STAT_NOWORK     0x00 // bits off: no work on any queue
129 #define STAT_RDWRMASK   0x30 // mask for bits 5-4
130
131 /**
132  * Macros to check the status RDWRMASK
133  */
134 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
135 #define SET_RDWRMASK(statbyte, newval) \
136         {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
137
138 /**
139  * Audit Trail.  Progress of a Work element
140  * audit[0]: Unless noted otherwise, these bits are all set by the process
141  */
142 #define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
143 #define FP_BUFFREQ      0x40 // Low Level buffer requested
144 #define FP_BUFFGOT      0x20 // Low Level buffer obtained
145 #define FP_SENT         0x10 // Work element sent to a crypto device
146                              // (may be set by process or by reader task)
147 #define FP_PENDING      0x08 // Work element placed on pending queue
148                              // (may be set by process or by reader task)
149 #define FP_REQUEST      0x04 // Work element placed on request queue
150 #define FP_ASLEEP       0x02 // Work element about to sleep
151 #define FP_AWAKE        0x01 // Work element has been awakened
152
153 /**
154  * audit[1]: These bits are set by the reader task and/or the cleanup task
155  */
156 #define FP_NOTPENDING     0x80 // Work element removed from pending queue
157 #define FP_AWAKENING      0x40 // Caller about to be awakened
158 #define FP_TIMEDOUT       0x20 // Caller timed out
159 #define FP_RESPSIZESET    0x10 // Response size copied to work element
160 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
161 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
162 #define FP_REMREQUEST     0x02 // Work element removed from request queue
163 #define FP_SIGNALED       0x01 // Work element was awakened by a signal
164
165 /**
166  * audit[2]: unused
167  */
168
169 /**
170  * state of the file handle in private_data.status
171  */
172 #define STAT_OPEN 0
173 #define STAT_CLOSED 1
174
175 /**
176  * PID() expands to the process ID of the current process
177  */
178 #define PID() (current->pid)
179
180 /**
181  * Selected Constants.  The number of APs and the number of devices
182  */
183 #ifndef Z90CRYPT_NUM_APS
184 #define Z90CRYPT_NUM_APS 64
185 #endif
186 #ifndef Z90CRYPT_NUM_DEVS
187 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
188 #endif
189
190 /**
191  * Buffer size for receiving responses. The maximum Response Size
192  * is actually the maximum request size, since in an error condition
193  * the request itself may be returned unchanged.
194  */
195 #define MAX_RESPONSE_SIZE 0x0000077C
196
197 /**
198  * A count and status-byte mask
199  */
200 struct status {
201         int           st_count;             // # of enabled devices
202         int           disabled_count;       // # of disabled devices
203         int           user_disabled_count;  // # of devices disabled via proc fs
204         unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
205 };
206
207 /**
208  * The array of device indexes is a mechanism for fast indexing into
209  * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
210  * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
211  * z90CDeviceIndex[2] is 47.
212  */
213 struct device_x {
214         int device_index[Z90CRYPT_NUM_DEVS];
215 };
216
217 /**
218  * All devices are arranged in a single array: 64 APs
219  */
220 struct device {
221         int              dev_type;          // PCICA, PCICC, PCIXCC_MCL2,
222                                             // PCIXCC_MCL3, CEX2C, CEX2A
223         enum devstat     dev_stat;          // current device status
224         int              dev_self_x;        // Index in array
225         int              disabled;          // Set when device is in error
226         int              user_disabled;     // Set when device is disabled by user
227         int              dev_q_depth;       // q depth
228         unsigned char *  dev_resp_p;        // Response buffer address
229         int              dev_resp_l;        // Response Buffer length
230         int              dev_caller_count;  // Number of callers
231         int              dev_total_req_cnt; // # requests for device since load
232         struct list_head dev_caller_list;   // List of callers
233 };
234
235 /**
236  * There's a struct status and a struct device_x for each device type.
237  */
238 struct hdware_block {
239         struct status   hdware_mask;
240         struct status   type_mask[Z90CRYPT_NUM_TYPES];
241         struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
242         unsigned char   device_type_array[Z90CRYPT_NUM_APS];
243 };
244
245 /**
246  * z90crypt is the topmost data structure in the hierarchy.
247  */
248 struct z90crypt {
249         int                  max_count;         // Nr of possible crypto devices
250         struct status        mask;
251         int                  q_depth_array[Z90CRYPT_NUM_DEVS];
252         int                  dev_type_array[Z90CRYPT_NUM_DEVS];
253         struct device_x      overall_device_x;  // array device indexes
254         struct device *      device_p[Z90CRYPT_NUM_DEVS];
255         int                  terminating;
256         int                  domain_established;// TRUE:  domain has been found
257         int                  cdx;               // Crypto Domain Index
258         int                  len;               // Length of this data structure
259         struct hdware_block *hdware_info;
260 };
261
262 /**
263  * An array of these structures is pointed to from dev_caller
264  * The length of the array depends on the device type. For APs,
265  * there are 8.
266  *
267  * The caller buffer is allocated to the user at OPEN. At WRITE,
268  * it contains the request; at READ, the response. The function
269  * send_to_crypto_device converts the request to device-dependent
270  * form and use the caller's OPEN-allocated buffer for the response.
271  *
272  * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
273  * because that points to it, see the discussion in z90hardware.c.
274  * Search for "extended request message block".
275  */
276 struct caller {
277         int              caller_buf_l;           // length of original request
278         unsigned char *  caller_buf_p;           // Original request on WRITE
279         int              caller_dev_dep_req_l;   // len device dependent request
280         unsigned char *  caller_dev_dep_req_p;   // Device dependent form
281         unsigned char    caller_id[8];           // caller-supplied message id
282         struct list_head caller_liste;
283         unsigned char    caller_dev_dep_req[MAX_RESPONSE_SIZE];
284 };
285
286 /**
287  * Function prototypes from z90hardware.c
288  */
289 enum hdstat query_online(int deviceNr, int cdx, int resetNr, int *q_depth,
290                          int *dev_type);
291 enum devstat reset_device(int deviceNr, int cdx, int resetNr);
292 enum devstat send_to_AP(int dev_nr, int cdx, int msg_len, unsigned char *msg_ext);
293 enum devstat receive_from_AP(int dev_nr, int cdx, int resplen,
294                              unsigned char *resp, unsigned char *psmid);
295 int convert_request(unsigned char *buffer, int func, unsigned short function,
296                     int cdx, int dev_type, int *msg_l_p, unsigned char *msg_p);
297 int convert_response(unsigned char *response, unsigned char *buffer,
298                      int *respbufflen_p, unsigned char *resp_buff);
299
300 /**
301  * Low level function prototypes
302  */
303 static int create_z90crypt(int *cdx_p);
304 static int refresh_z90crypt(int *cdx_p);
305 static int find_crypto_devices(struct status *deviceMask);
306 static int create_crypto_device(int index);
307 static int destroy_crypto_device(int index);
308 static void destroy_z90crypt(void);
309 static int refresh_index_array(struct status *status_str,
310                                struct device_x *index_array);
311 static int probe_device_type(struct device *devPtr);
312 static int probe_PCIXCC_type(struct device *devPtr);
313
314 /**
315  * proc fs definitions
316  */
317 static struct proc_dir_entry *z90crypt_entry;
318
319 /**
320  * data structures
321  */
322
323 /**
324  * work_element.opener points back to this structure
325  */
326 struct priv_data {
327         pid_t   opener_pid;
328         unsigned char   status;         // 0: open  1: closed
329 };
330
331 /**
332  * A work element is allocated for each request
333  */
334 struct work_element {
335         struct priv_data *priv_data;
336         pid_t             pid;
337         int               devindex;       // index of device processing this w_e
338                                           // (If request did not specify device,
339                                           // -1 until placed onto a queue)
340         int               devtype;
341         struct list_head  liste;          // used for requestq and pendingq
342         char              buffer[128];    // local copy of user request
343         int               buff_size;      // size of the buffer for the request
344         char              resp_buff[RESPBUFFSIZE];
345         int               resp_buff_size;
346         char __user *     resp_addr;      // address of response in user space
347         unsigned int      funccode;       // function code of request
348         wait_queue_head_t waitq;
349         unsigned long     requestsent;    // time at which the request was sent
350         atomic_t          alarmrung;      // wake-up signal
351         unsigned char     caller_id[8];   // pid + counter, for this w_e
352         unsigned char     status[1];      // bits to mark status of the request
353         unsigned char     audit[3];       // record of work element's progress
354         unsigned char *   requestptr;     // address of request buffer
355         int               retcode;        // return code of request
356 };
357
358 /**
359  * High level function prototypes
360  */
361 static int z90crypt_open(struct inode *, struct file *);
362 static int z90crypt_release(struct inode *, struct file *);
363 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
364 static ssize_t z90crypt_write(struct file *, const char __user *,
365                                                         size_t, loff_t *);
366 static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
367 static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
368
369 static void z90crypt_reader_task(unsigned long);
370 static void z90crypt_schedule_reader_task(unsigned long);
371 static void z90crypt_config_task(unsigned long);
372 static void z90crypt_cleanup_task(unsigned long);
373
374 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
375 static int z90crypt_status_write(struct file *, const char __user *,
376                                  unsigned long, void *);
377
378 /**
379  * Storage allocated at initialization and used throughout the life of
380  * this insmod
381  */
382 static int domain = DOMAIN_INDEX;
383 static struct z90crypt z90crypt;
384 static int quiesce_z90crypt;
385 static spinlock_t queuespinlock;
386 static struct list_head request_list;
387 static int requestq_count;
388 static struct list_head pending_list;
389 static int pendingq_count;
390
391 static struct tasklet_struct reader_tasklet;
392 static struct timer_list reader_timer;
393 static struct timer_list config_timer;
394 static struct timer_list cleanup_timer;
395 static atomic_t total_open;
396 static atomic_t z90crypt_step;
397
398 static struct file_operations z90crypt_fops = {
399         .owner          = THIS_MODULE,
400         .read           = z90crypt_read,
401         .write          = z90crypt_write,
402         .unlocked_ioctl = z90crypt_unlocked_ioctl,
403 #ifdef CONFIG_COMPAT
404         .compat_ioctl   = z90crypt_compat_ioctl,
405 #endif
406         .open           = z90crypt_open,
407         .release        = z90crypt_release
408 };
409
410 static struct miscdevice z90crypt_misc_device = {
411         .minor      = Z90CRYPT_MINOR,
412         .name       = DEV_NAME,
413         .fops       = &z90crypt_fops,
414 };
415
416 /**
417  * Documentation values.
418  */
419 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
420               "and Jochen Roehrig");
421 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
422                    "Copyright 2001, 2005 IBM Corporation");
423 MODULE_LICENSE("GPL");
424 module_param(domain, int, 0);
425 MODULE_PARM_DESC(domain, "domain index for device");
426
427 #ifdef CONFIG_COMPAT
428 /**
429  * ioctl32 conversion routines
430  */
431 struct ica_rsa_modexpo_32 { // For 32-bit callers
432         compat_uptr_t   inputdata;
433         unsigned int    inputdatalength;
434         compat_uptr_t   outputdata;
435         unsigned int    outputdatalength;
436         compat_uptr_t   b_key;
437         compat_uptr_t   n_modulus;
438 };
439
440 static long
441 trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
442 {
443         struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
444         struct ica_rsa_modexpo_32  mex32k;
445         struct ica_rsa_modexpo __user *mex64;
446         long ret = 0;
447         unsigned int i;
448
449         if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
450                 return -EFAULT;
451         mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
452         if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
453                 return -EFAULT;
454         if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
455                 return -EFAULT;
456         if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
457             __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
458             __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
459             __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
460             __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
461             __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
462                 return -EFAULT;
463         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
464         if (!ret)
465                 if (__get_user(i, &mex64->outputdatalength) ||
466                     __put_user(i, &mex32u->outputdatalength))
467                         ret = -EFAULT;
468         return ret;
469 }
470
471 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
472         compat_uptr_t   inputdata;
473         unsigned int    inputdatalength;
474         compat_uptr_t   outputdata;
475         unsigned int    outputdatalength;
476         compat_uptr_t   bp_key;
477         compat_uptr_t   bq_key;
478         compat_uptr_t   np_prime;
479         compat_uptr_t   nq_prime;
480         compat_uptr_t   u_mult_inv;
481 };
482
483 static long
484 trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
485 {
486         struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
487         struct ica_rsa_modexpo_crt_32  crt32k;
488         struct ica_rsa_modexpo_crt __user *crt64;
489         long ret = 0;
490         unsigned int i;
491
492         if (!access_ok(VERIFY_WRITE, crt32u,
493                        sizeof(struct ica_rsa_modexpo_crt_32)))
494                 return -EFAULT;
495         crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
496         if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
497                 return -EFAULT;
498         if (copy_from_user(&crt32k, crt32u,
499                            sizeof(struct ica_rsa_modexpo_crt_32)))
500                 return -EFAULT;
501         if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
502             __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
503             __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
504             __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
505             __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
506             __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
507             __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
508             __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
509             __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
510                 return -EFAULT;
511         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
512         if (!ret)
513                 if (__get_user(i, &crt64->outputdatalength) ||
514                     __put_user(i, &crt32u->outputdatalength))
515                         ret = -EFAULT;
516         return ret;
517 }
518
519 static long
520 z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
521 {
522         switch (cmd) {
523         case ICAZ90STATUS:
524         case Z90QUIESCE:
525         case Z90STAT_TOTALCOUNT:
526         case Z90STAT_PCICACOUNT:
527         case Z90STAT_PCICCCOUNT:
528         case Z90STAT_PCIXCCCOUNT:
529         case Z90STAT_PCIXCCMCL2COUNT:
530         case Z90STAT_PCIXCCMCL3COUNT:
531         case Z90STAT_CEX2CCOUNT:
532         case Z90STAT_REQUESTQ_COUNT:
533         case Z90STAT_PENDINGQ_COUNT:
534         case Z90STAT_TOTALOPEN_COUNT:
535         case Z90STAT_DOMAIN_INDEX:
536         case Z90STAT_STATUS_MASK:
537         case Z90STAT_QDEPTH_MASK:
538         case Z90STAT_PERDEV_REQCNT:
539                 return z90crypt_unlocked_ioctl(filp, cmd, arg);
540         case ICARSAMODEXPO:
541                 return trans_modexpo32(filp, cmd, arg);
542         case ICARSACRT:
543                 return trans_modexpo_crt32(filp, cmd, arg);
544         default:
545                 return -ENOIOCTLCMD;
546         }
547 }
548 #endif
549
550 /**
551  * The module initialization code.
552  */
553 static int __init
554 z90crypt_init_module(void)
555 {
556         int result, nresult;
557         struct proc_dir_entry *entry;
558
559         PDEBUG("PID %d\n", PID());
560
561         if ((domain < -1) || (domain > 15)) {
562                 PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
563                 return -EINVAL;
564         }
565
566         /* Register as misc device with given minor (or get a dynamic one). */
567         result = misc_register(&z90crypt_misc_device);
568         if (result < 0) {
569                 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
570                         z90crypt_misc_device.minor, result);
571                 return result;
572         }
573
574         PDEBUG("Registered " DEV_NAME " with result %d\n", result);
575
576         result = create_z90crypt(&domain);
577         if (result != 0) {
578                 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
579                         domain, result);
580                 result = -ENOMEM;
581                 goto init_module_cleanup;
582         }
583
584         if (result == 0) {
585                 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
586                         z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
587                         __DATE__, __TIME__);
588                 PDEBUG("create_z90crypt (domain index %d) successful.\n",
589                        domain);
590         } else
591                 PRINTK("No devices at startup\n");
592
593         /* Initialize globals. */
594         spin_lock_init(&queuespinlock);
595
596         INIT_LIST_HEAD(&pending_list);
597         pendingq_count = 0;
598
599         INIT_LIST_HEAD(&request_list);
600         requestq_count = 0;
601
602         quiesce_z90crypt = 0;
603
604         atomic_set(&total_open, 0);
605         atomic_set(&z90crypt_step, 0);
606
607         /* Set up the cleanup task. */
608         init_timer(&cleanup_timer);
609         cleanup_timer.function = z90crypt_cleanup_task;
610         cleanup_timer.data = 0;
611         cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
612         add_timer(&cleanup_timer);
613
614         /* Set up the proc file system */
615         entry = create_proc_entry("driver/z90crypt", 0644, 0);
616         if (entry) {
617                 entry->nlink = 1;
618                 entry->data = 0;
619                 entry->read_proc = z90crypt_status;
620                 entry->write_proc = z90crypt_status_write;
621         }
622         else
623                 PRINTK("Couldn't create z90crypt proc entry\n");
624         z90crypt_entry = entry;
625
626         /* Set up the configuration task. */
627         init_timer(&config_timer);
628         config_timer.function = z90crypt_config_task;
629         config_timer.data = 0;
630         config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
631         add_timer(&config_timer);
632
633         /* Set up the reader task */
634         tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
635         init_timer(&reader_timer);
636         reader_timer.function = z90crypt_schedule_reader_task;
637         reader_timer.data = 0;
638         reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
639         add_timer(&reader_timer);
640
641         return 0; // success
642
643 init_module_cleanup:
644         if ((nresult = misc_deregister(&z90crypt_misc_device)))
645                 PRINTK("misc_deregister failed with %d.\n", nresult);
646         else
647                 PDEBUG("misc_deregister successful.\n");
648
649         return result; // failure
650 }
651
652 /**
653  * The module termination code
654  */
655 static void __exit
656 z90crypt_cleanup_module(void)
657 {
658         int nresult;
659
660         PDEBUG("PID %d\n", PID());
661
662         remove_proc_entry("driver/z90crypt", 0);
663
664         if ((nresult = misc_deregister(&z90crypt_misc_device)))
665                 PRINTK("misc_deregister failed with %d.\n", nresult);
666         else
667                 PDEBUG("misc_deregister successful.\n");
668
669         /* Remove the tasks */
670         tasklet_kill(&reader_tasklet);
671         del_timer(&reader_timer);
672         del_timer(&config_timer);
673         del_timer(&cleanup_timer);
674
675         destroy_z90crypt();
676
677         PRINTKN("Unloaded.\n");
678 }
679
680 /**
681  * Functions running under a process id
682  *
683  * The I/O functions:
684  *     z90crypt_open
685  *     z90crypt_release
686  *     z90crypt_read
687  *     z90crypt_write
688  *     z90crypt_unlocked_ioctl
689  *     z90crypt_status
690  *     z90crypt_status_write
691  *       disable_card
692  *       enable_card
693  *
694  * Helper functions:
695  *     z90crypt_rsa
696  *       z90crypt_prepare
697  *       z90crypt_send
698  *       z90crypt_process_results
699  *
700  */
701 static int
702 z90crypt_open(struct inode *inode, struct file *filp)
703 {
704         struct priv_data *private_data_p;
705
706         if (quiesce_z90crypt)
707                 return -EQUIESCE;
708
709         private_data_p = kzalloc(sizeof(struct priv_data), GFP_KERNEL);
710         if (!private_data_p) {
711                 PRINTK("Memory allocate failed\n");
712                 return -ENOMEM;
713         }
714
715         private_data_p->status = STAT_OPEN;
716         private_data_p->opener_pid = PID();
717         filp->private_data = private_data_p;
718         atomic_inc(&total_open);
719
720         return 0;
721 }
722
723 static int
724 z90crypt_release(struct inode *inode, struct file *filp)
725 {
726         struct priv_data *private_data_p = filp->private_data;
727
728         PDEBUG("PID %d (filp %p)\n", PID(), filp);
729
730         private_data_p->status = STAT_CLOSED;
731         memset(private_data_p, 0, sizeof(struct priv_data));
732         kfree(private_data_p);
733         atomic_dec(&total_open);
734
735         return 0;
736 }
737
738 /*
739  * there are two read functions, of which compile options will choose one
740  * without USE_GET_RANDOM_BYTES
741  *   => read() always returns -EPERM;
742  * otherwise
743  *   => read() uses get_random_bytes() kernel function
744  */
745 #ifndef USE_GET_RANDOM_BYTES
746 /**
747  * z90crypt_read will not be supported beyond z90crypt 1.3.1
748  */
749 static ssize_t
750 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
751 {
752         PDEBUG("filp %p (PID %d)\n", filp, PID());
753         return -EPERM;
754 }
755 #else // we want to use get_random_bytes
756 /**
757  * read() just returns a string of random bytes.  Since we have no way
758  * to generate these cryptographically, we just execute get_random_bytes
759  * for the length specified.
760  */
761 #include <linux/random.h>
762 static ssize_t
763 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
764 {
765         unsigned char *temp_buff;
766
767         PDEBUG("filp %p (PID %d)\n", filp, PID());
768
769         if (quiesce_z90crypt)
770                 return -EQUIESCE;
771         if (count < 0) {
772                 PRINTK("Requested random byte count negative: %ld\n", count);
773                 return -EINVAL;
774         }
775         if (count > RESPBUFFSIZE) {
776                 PDEBUG("count[%d] > RESPBUFFSIZE", count);
777                 return -EINVAL;
778         }
779         if (count == 0)
780                 return 0;
781         temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
782         if (!temp_buff) {
783                 PRINTK("Memory allocate failed\n");
784                 return -ENOMEM;
785         }
786         get_random_bytes(temp_buff, count);
787
788         if (copy_to_user(buf, temp_buff, count) != 0) {
789                 kfree(temp_buff);
790                 return -EFAULT;
791         }
792         kfree(temp_buff);
793         return count;
794 }
795 #endif
796
797 /**
798  * Write is is not allowed
799  */
800 static ssize_t
801 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
802 {
803         PDEBUG("filp %p (PID %d)\n", filp, PID());
804         return -EPERM;
805 }
806
807 /**
808  * New status functions
809  */
810 static inline int
811 get_status_totalcount(void)
812 {
813         return z90crypt.hdware_info->hdware_mask.st_count;
814 }
815
816 static inline int
817 get_status_PCICAcount(void)
818 {
819         return z90crypt.hdware_info->type_mask[PCICA].st_count;
820 }
821
822 static inline int
823 get_status_PCICCcount(void)
824 {
825         return z90crypt.hdware_info->type_mask[PCICC].st_count;
826 }
827
828 static inline int
829 get_status_PCIXCCcount(void)
830 {
831         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
832                z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
833 }
834
835 static inline int
836 get_status_PCIXCCMCL2count(void)
837 {
838         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
839 }
840
841 static inline int
842 get_status_PCIXCCMCL3count(void)
843 {
844         return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
845 }
846
847 static inline int
848 get_status_CEX2Ccount(void)
849 {
850         return z90crypt.hdware_info->type_mask[CEX2C].st_count;
851 }
852
853 static inline int
854 get_status_CEX2Acount(void)
855 {
856         return z90crypt.hdware_info->type_mask[CEX2A].st_count;
857 }
858
859 static inline int
860 get_status_requestq_count(void)
861 {
862         return requestq_count;
863 }
864
865 static inline int
866 get_status_pendingq_count(void)
867 {
868         return pendingq_count;
869 }
870
871 static inline int
872 get_status_totalopen_count(void)
873 {
874         return atomic_read(&total_open);
875 }
876
877 static inline int
878 get_status_domain_index(void)
879 {
880         return z90crypt.cdx;
881 }
882
883 static inline unsigned char *
884 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
885 {
886         int i, ix;
887
888         memcpy(status, z90crypt.hdware_info->device_type_array,
889                Z90CRYPT_NUM_APS);
890
891         for (i = 0; i < get_status_totalcount(); i++) {
892                 ix = SHRT2LONG(i);
893                 if (LONG2DEVPTR(ix)->user_disabled)
894                         status[ix] = 0x0d;
895         }
896
897         return status;
898 }
899
900 static inline unsigned char *
901 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
902 {
903         int i, ix;
904
905         memset(qdepth, 0, Z90CRYPT_NUM_APS);
906
907         for (i = 0; i < get_status_totalcount(); i++) {
908                 ix = SHRT2LONG(i);
909                 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
910         }
911
912         return qdepth;
913 }
914
915 static inline unsigned int *
916 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
917 {
918         int i, ix;
919
920         memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
921
922         for (i = 0; i < get_status_totalcount(); i++) {
923                 ix = SHRT2LONG(i);
924                 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
925         }
926
927         return reqcnt;
928 }
929
930 static inline void
931 init_work_element(struct work_element *we_p,
932                   struct priv_data *priv_data, pid_t pid)
933 {
934         int step;
935
936         we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
937         /* Come up with a unique id for this caller. */
938         step = atomic_inc_return(&z90crypt_step);
939         memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
940         memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
941         we_p->pid = pid;
942         we_p->priv_data = priv_data;
943         we_p->status[0] = STAT_DEFAULT;
944         we_p->audit[0] = 0x00;
945         we_p->audit[1] = 0x00;
946         we_p->audit[2] = 0x00;
947         we_p->resp_buff_size = 0;
948         we_p->retcode = 0;
949         we_p->devindex = -1;
950         we_p->devtype = -1;
951         atomic_set(&we_p->alarmrung, 0);
952         init_waitqueue_head(&we_p->waitq);
953         INIT_LIST_HEAD(&(we_p->liste));
954 }
955
956 static inline int
957 allocate_work_element(struct work_element **we_pp,
958                       struct priv_data *priv_data_p, pid_t pid)
959 {
960         struct work_element *we_p;
961
962         we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
963         if (!we_p)
964                 return -ENOMEM;
965         init_work_element(we_p, priv_data_p, pid);
966         *we_pp = we_p;
967         return 0;
968 }
969
970 static inline void
971 remove_device(struct device *device_p)
972 {
973         if (!device_p || (device_p->disabled != 0))
974                 return;
975         device_p->disabled = 1;
976         z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
977         z90crypt.hdware_info->hdware_mask.disabled_count++;
978 }
979
980 /**
981  * Bitlength limits for each card
982  *
983  * There are new MCLs which allow more bitlengths. See the table for details.
984  * The MCL must be applied and the newer bitlengths enabled for these to work.
985  *
986  * Card Type    Old limit    New limit
987  * PCICA          ??-2048     same (the lower limit is less than 128 bit...)
988  * PCICC         512-1024     512-2048
989  * PCIXCC_MCL2   512-2048     ----- (applying any GA LIC will make an MCL3 card)
990  * PCIXCC_MCL3   -----        128-2048
991  * CEX2C         512-2048     128-2048
992  * CEX2A          ??-2048     same (the lower limit is less than 128 bit...)
993  *
994  * ext_bitlens (extended bitlengths) is a global, since you should not apply an
995  * MCL to just one card in a machine. We assume, at first, that all cards have
996  * these capabilities.
997  */
998 int ext_bitlens = 1; // This is global
999 #define PCIXCC_MIN_MOD_SIZE      16     //  128 bits
1000 #define OLD_PCIXCC_MIN_MOD_SIZE  64     //  512 bits
1001 #define PCICC_MIN_MOD_SIZE       64     //  512 bits
1002 #define OLD_PCICC_MAX_MOD_SIZE  128     // 1024 bits
1003 #define MAX_MOD_SIZE            256     // 2048 bits
1004
1005 static inline int
1006 select_device_type(int *dev_type_p, int bytelength)
1007 {
1008         static int count = 0;
1009         int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, CEX2A_avail,
1010             index_to_use;
1011         struct status *stat;
1012         if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1013             (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1014             (*dev_type_p != CEX2C) && (*dev_type_p != CEX2A) &&
1015             (*dev_type_p != ANYDEV))
1016                 return -1;
1017         if (*dev_type_p != ANYDEV) {
1018                 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1019                 if (stat->st_count >
1020                     (stat->disabled_count + stat->user_disabled_count))
1021                         return 0;
1022                 return -1;
1023         }
1024
1025         /**
1026          * Assumption: PCICA, PCIXCC_MCL3, CEX2C, and CEX2A are all similar in
1027          * speed.
1028          *
1029          * PCICA and CEX2A do NOT co-exist, so it would be either one or the
1030          * other present.
1031          */
1032         stat = &z90crypt.hdware_info->type_mask[PCICA];
1033         PCICA_avail = stat->st_count -
1034                         (stat->disabled_count + stat->user_disabled_count);
1035         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1036         PCIXCC_MCL3_avail = stat->st_count -
1037                         (stat->disabled_count + stat->user_disabled_count);
1038         stat = &z90crypt.hdware_info->type_mask[CEX2C];
1039         CEX2C_avail = stat->st_count -
1040                         (stat->disabled_count + stat->user_disabled_count);
1041         stat = &z90crypt.hdware_info->type_mask[CEX2A];
1042         CEX2A_avail = stat->st_count -
1043                         (stat->disabled_count + stat->user_disabled_count);
1044         if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail || CEX2A_avail) {
1045                 /**
1046                  * bitlength is a factor, PCICA or CEX2A are the most capable,
1047                  * even with the new MCL for PCIXCC.
1048                  */
1049                 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1050                     (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1051                         if (PCICA_avail) {
1052                                 *dev_type_p = PCICA;
1053                                 return 0;
1054                         }
1055                         if (CEX2A_avail) {
1056                                 *dev_type_p = CEX2A;
1057                                 return 0;
1058                         }
1059                         return -1;
1060                 }
1061
1062                 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1063                                         CEX2C_avail + CEX2A_avail);
1064                 if (index_to_use < PCICA_avail)
1065                         *dev_type_p = PCICA;
1066                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1067                         *dev_type_p = PCIXCC_MCL3;
1068                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail +
1069                                          CEX2C_avail))
1070                         *dev_type_p = CEX2C;
1071                 else
1072                         *dev_type_p = CEX2A;
1073                 count++;
1074                 return 0;
1075         }
1076
1077         /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1078         if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1079                 return -1;
1080         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1081         if (stat->st_count >
1082             (stat->disabled_count + stat->user_disabled_count)) {
1083                 *dev_type_p = PCIXCC_MCL2;
1084                 return 0;
1085         }
1086
1087         /**
1088          * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1089          * (if we don't have the MCL applied and the newer bitlengths enabled)
1090          * cannot go to a PCICC
1091          */
1092         if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1093             (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1094                 return -1;
1095         }
1096         stat = &z90crypt.hdware_info->type_mask[PCICC];
1097         if (stat->st_count >
1098             (stat->disabled_count + stat->user_disabled_count)) {
1099                 *dev_type_p = PCICC;
1100                 return 0;
1101         }
1102
1103         return -1;
1104 }
1105
1106 /**
1107  * Try the selected number, then the selected type (can be ANYDEV)
1108  */
1109 static inline int
1110 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1111 {
1112         int i, indx, devTp, low_count, low_indx;
1113         struct device_x *index_p;
1114         struct device *dev_ptr;
1115
1116         PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1117         if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1118                 PDEBUG("trying index = %d\n", *device_nr_p);
1119                 dev_ptr = z90crypt.device_p[*device_nr_p];
1120
1121                 if (dev_ptr &&
1122                     (dev_ptr->dev_stat != DEV_GONE) &&
1123                     (dev_ptr->disabled == 0) &&
1124                     (dev_ptr->user_disabled == 0)) {
1125                         PDEBUG("selected by number, index = %d\n",
1126                                *device_nr_p);
1127                         *dev_type_p = dev_ptr->dev_type;
1128                         return *device_nr_p;
1129                 }
1130         }
1131         *device_nr_p = -1;
1132         PDEBUG("trying type = %d\n", *dev_type_p);
1133         devTp = *dev_type_p;
1134         if (select_device_type(&devTp, bytelength) == -1) {
1135                 PDEBUG("failed to select by type\n");
1136                 return -1;
1137         }
1138         PDEBUG("selected type = %d\n", devTp);
1139         index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1140         low_count = 0x0000FFFF;
1141         low_indx = -1;
1142         for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1143                 indx = index_p->device_index[i];
1144                 dev_ptr = z90crypt.device_p[indx];
1145                 if (dev_ptr &&
1146                     (dev_ptr->dev_stat != DEV_GONE) &&
1147                     (dev_ptr->disabled == 0) &&
1148                     (dev_ptr->user_disabled == 0) &&
1149                     (devTp == dev_ptr->dev_type) &&
1150                     (low_count > dev_ptr->dev_caller_count)) {
1151                         low_count = dev_ptr->dev_caller_count;
1152                         low_indx = indx;
1153                 }
1154         }
1155         *device_nr_p = low_indx;
1156         return low_indx;
1157 }
1158
1159 static inline int
1160 send_to_crypto_device(struct work_element *we_p)
1161 {
1162         struct caller *caller_p;
1163         struct device *device_p;
1164         int dev_nr;
1165         int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1166
1167         if (!we_p->requestptr)
1168                 return SEN_FATAL_ERROR;
1169         caller_p = (struct caller *)we_p->requestptr;
1170         dev_nr = we_p->devindex;
1171         if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1172                 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1173                         return SEN_RETRY;
1174                 else
1175                         return SEN_NOT_AVAIL;
1176         }
1177         we_p->devindex = dev_nr;
1178         device_p = z90crypt.device_p[dev_nr];
1179         if (!device_p)
1180                 return SEN_NOT_AVAIL;
1181         if (device_p->dev_type != we_p->devtype)
1182                 return SEN_RETRY;
1183         if (device_p->dev_caller_count >= device_p->dev_q_depth)
1184                 return SEN_QUEUE_FULL;
1185         PDEBUG("device number prior to send: %d\n", dev_nr);
1186         switch (send_to_AP(dev_nr, z90crypt.cdx,
1187                            caller_p->caller_dev_dep_req_l,
1188                            caller_p->caller_dev_dep_req_p)) {
1189         case DEV_SEN_EXCEPTION:
1190                 PRINTKC("Exception during send to device %d\n", dev_nr);
1191                 z90crypt.terminating = 1;
1192                 return SEN_FATAL_ERROR;
1193         case DEV_GONE:
1194                 PRINTK("Device %d not available\n", dev_nr);
1195                 remove_device(device_p);
1196                 return SEN_NOT_AVAIL;
1197         case DEV_EMPTY:
1198                 return SEN_NOT_AVAIL;
1199         case DEV_NO_WORK:
1200                 return SEN_FATAL_ERROR;
1201         case DEV_BAD_MESSAGE:
1202                 return SEN_USER_ERROR;
1203         case DEV_QUEUE_FULL:
1204                 return SEN_QUEUE_FULL;
1205         default:
1206         case DEV_ONLINE:
1207                 break;
1208         }
1209         list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1210         device_p->dev_caller_count++;
1211         return 0;
1212 }
1213
1214 /**
1215  * Send puts the user's work on one of two queues:
1216  *   the pending queue if the send was successful
1217  *   the request queue if the send failed because device full or busy
1218  */
1219 static inline int
1220 z90crypt_send(struct work_element *we_p, const char *buf)
1221 {
1222         int rv;
1223
1224         PDEBUG("PID %d\n", PID());
1225
1226         if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1227                 PDEBUG("PID %d tried to send more work but has outstanding "
1228                        "work.\n", PID());
1229                 return -EWORKPEND;
1230         }
1231         we_p->devindex = -1; // Reset device number
1232         spin_lock_irq(&queuespinlock);
1233         rv = send_to_crypto_device(we_p);
1234         switch (rv) {
1235         case 0:
1236                 we_p->requestsent = jiffies;
1237                 we_p->audit[0] |= FP_SENT;
1238                 list_add_tail(&we_p->liste, &pending_list);
1239                 ++pendingq_count;
1240                 we_p->audit[0] |= FP_PENDING;
1241                 break;
1242         case SEN_BUSY:
1243         case SEN_QUEUE_FULL:
1244                 rv = 0;
1245                 we_p->devindex = -1; // any device will do
1246                 we_p->requestsent = jiffies;
1247                 list_add_tail(&we_p->liste, &request_list);
1248                 ++requestq_count;
1249                 we_p->audit[0] |= FP_REQUEST;
1250                 break;
1251         case SEN_RETRY:
1252                 rv = -ERESTARTSYS;
1253                 break;
1254         case SEN_NOT_AVAIL:
1255                 PRINTK("*** No devices available.\n");
1256                 rv = we_p->retcode = -ENODEV;
1257                 we_p->status[0] |= STAT_FAILED;
1258                 break;
1259         case REC_OPERAND_INV:
1260         case REC_OPERAND_SIZE:
1261         case REC_EVEN_MOD:
1262         case REC_INVALID_PAD:
1263                 rv = we_p->retcode = -EINVAL;
1264                 we_p->status[0] |= STAT_FAILED;
1265                 break;
1266         default:
1267                 we_p->retcode = rv;
1268                 we_p->status[0] |= STAT_FAILED;
1269                 break;
1270         }
1271         if (rv != -ERESTARTSYS)
1272                 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1273         spin_unlock_irq(&queuespinlock);
1274         if (rv == 0)
1275                 tasklet_schedule(&reader_tasklet);
1276         return rv;
1277 }
1278
1279 /**
1280  * process_results copies the user's work from kernel space.
1281  */
1282 static inline int
1283 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1284 {
1285         int rv;
1286
1287         PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1288
1289         LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1290         SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1291
1292         rv = 0;
1293         if (!we_p->buffer) {
1294                 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1295                         we_p, PID());
1296                 rv = -ENOBUFF;
1297         }
1298
1299         if (!rv)
1300                 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1301                         PDEBUG("copy_to_user failed: rv = %d\n", rv);
1302                         rv = -EFAULT;
1303                 }
1304
1305         if (!rv)
1306                 rv = we_p->retcode;
1307         if (!rv)
1308                 if (we_p->resp_buff_size
1309                     &&  copy_to_user(we_p->resp_addr, we_p->resp_buff,
1310                                      we_p->resp_buff_size))
1311                         rv = -EFAULT;
1312
1313         SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1314         return rv;
1315 }
1316
1317 static unsigned char NULL_psmid[8] =
1318 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1319
1320 /**
1321  * Used in device configuration functions
1322  */
1323 #define MAX_RESET 90
1324
1325 /**
1326  * This is used only for PCICC support
1327  */
1328 static inline int
1329 is_PKCS11_padded(unsigned char *buffer, int length)
1330 {
1331         int i;
1332         if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1333                 return 0;
1334         for (i = 2; i < length; i++)
1335                 if (buffer[i] != 0xFF)
1336                         break;
1337         if ((i < 10) || (i == length))
1338                 return 0;
1339         if (buffer[i] != 0x00)
1340                 return 0;
1341         return 1;
1342 }
1343
1344 /**
1345  * This is used only for PCICC support
1346  */
1347 static inline int
1348 is_PKCS12_padded(unsigned char *buffer, int length)
1349 {
1350         int i;
1351         if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1352                 return 0;
1353         for (i = 2; i < length; i++)
1354                 if (buffer[i] == 0x00)
1355                         break;
1356         if ((i < 10) || (i == length))
1357                 return 0;
1358         if (buffer[i] != 0x00)
1359                 return 0;
1360         return 1;
1361 }
1362
1363 /**
1364  * builds struct caller and converts message from generic format to
1365  * device-dependent format
1366  * func is ICARSAMODEXPO or ICARSACRT
1367  * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1368  */
1369 static inline int
1370 build_caller(struct work_element *we_p, short function)
1371 {
1372         int rv;
1373         struct caller *caller_p = (struct caller *)we_p->requestptr;
1374
1375         if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1376             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1377             (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A))
1378                 return SEN_NOT_AVAIL;
1379
1380         memcpy(caller_p->caller_id, we_p->caller_id,
1381                sizeof(caller_p->caller_id));
1382         caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1383         caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1384         caller_p->caller_buf_p = we_p->buffer;
1385         INIT_LIST_HEAD(&(caller_p->caller_liste));
1386
1387         rv = convert_request(we_p->buffer, we_p->funccode, function,
1388                              z90crypt.cdx, we_p->devtype,
1389                              &caller_p->caller_dev_dep_req_l,
1390                              caller_p->caller_dev_dep_req_p);
1391         if (rv) {
1392                 if (rv == SEN_NOT_AVAIL)
1393                         PDEBUG("request can't be processed on hdwr avail\n");
1394                 else
1395                         PRINTK("Error from convert_request: %d\n", rv);
1396         }
1397         else
1398                 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1399         return rv;
1400 }
1401
1402 static inline void
1403 unbuild_caller(struct device *device_p, struct caller *caller_p)
1404 {
1405         if (!caller_p)
1406                 return;
1407         if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1408                 if (!list_empty(&caller_p->caller_liste)) {
1409                         list_del_init(&caller_p->caller_liste);
1410                         device_p->dev_caller_count--;
1411                 }
1412         memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1413 }
1414
1415 static inline int
1416 get_crypto_request_buffer(struct work_element *we_p)
1417 {
1418         struct ica_rsa_modexpo *mex_p;
1419         struct ica_rsa_modexpo_crt *crt_p;
1420         unsigned char *temp_buffer;
1421         short function;
1422         int rv;
1423
1424         mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1425         crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1426
1427         PDEBUG("device type input = %d\n", we_p->devtype);
1428
1429         if (z90crypt.terminating)
1430                 return REC_NO_RESPONSE;
1431         if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1432                 PRINTK("psmid zeroes\n");
1433                 return SEN_FATAL_ERROR;
1434         }
1435         if (!we_p->buffer) {
1436                 PRINTK("buffer pointer NULL\n");
1437                 return SEN_USER_ERROR;
1438         }
1439         if (!we_p->requestptr) {
1440                 PRINTK("caller pointer NULL\n");
1441                 return SEN_USER_ERROR;
1442         }
1443
1444         if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1445             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1446             (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A) &&
1447             (we_p->devtype != ANYDEV)) {
1448                 PRINTK("invalid device type\n");
1449                 return SEN_USER_ERROR;
1450         }
1451
1452         if ((mex_p->inputdatalength < 1) ||
1453             (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1454                 PRINTK("inputdatalength[%d] is not valid\n",
1455                        mex_p->inputdatalength);
1456                 return SEN_USER_ERROR;
1457         }
1458
1459         if (mex_p->outputdatalength < mex_p->inputdatalength) {
1460                 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1461                        mex_p->outputdatalength, mex_p->inputdatalength);
1462                 return SEN_USER_ERROR;
1463         }
1464
1465         if (!mex_p->inputdata || !mex_p->outputdata) {
1466                 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1467                        mex_p->outputdata, mex_p->inputdata);
1468                 return SEN_USER_ERROR;
1469         }
1470
1471         /**
1472          * As long as outputdatalength is big enough, we can set the
1473          * outputdatalength equal to the inputdatalength, since that is the
1474          * number of bytes we will copy in any case
1475          */
1476         mex_p->outputdatalength = mex_p->inputdatalength;
1477
1478         rv = 0;
1479         switch (we_p->funccode) {
1480         case ICARSAMODEXPO:
1481                 if (!mex_p->b_key || !mex_p->n_modulus)
1482                         rv = SEN_USER_ERROR;
1483                 break;
1484         case ICARSACRT:
1485                 if (!IS_EVEN(crt_p->inputdatalength)) {
1486                         PRINTK("inputdatalength[%d] is odd, CRT form\n",
1487                                crt_p->inputdatalength);
1488                         rv = SEN_USER_ERROR;
1489                         break;
1490                 }
1491                 if (!crt_p->bp_key ||
1492                     !crt_p->bq_key ||
1493                     !crt_p->np_prime ||
1494                     !crt_p->nq_prime ||
1495                     !crt_p->u_mult_inv) {
1496                         PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1497                                crt_p->bp_key, crt_p->bq_key,
1498                                crt_p->np_prime, crt_p->nq_prime,
1499                                crt_p->u_mult_inv);
1500                         rv = SEN_USER_ERROR;
1501                 }
1502                 break;
1503         default:
1504                 PRINTK("bad func = %d\n", we_p->funccode);
1505                 rv = SEN_USER_ERROR;
1506                 break;
1507         }
1508         if (rv != 0)
1509                 return rv;
1510
1511         if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1512                 return SEN_NOT_AVAIL;
1513
1514         temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1515                       sizeof(struct caller);
1516         if (copy_from_user(temp_buffer, mex_p->inputdata,
1517                            mex_p->inputdatalength) != 0)
1518                 return SEN_RELEASED;
1519
1520         function = PCI_FUNC_KEY_ENCRYPT;
1521         switch (we_p->devtype) {
1522         /* PCICA and CEX2A do everything with a simple RSA mod-expo operation */
1523         case PCICA:
1524         case CEX2A:
1525                 function = PCI_FUNC_KEY_ENCRYPT;
1526                 break;
1527         /**
1528          * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1529          * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1530          * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1531          * mod-expo operation
1532          */
1533         case PCIXCC_MCL2:
1534                 if (we_p->funccode == ICARSAMODEXPO)
1535                         function = PCI_FUNC_KEY_ENCRYPT;
1536                 else
1537                         function = PCI_FUNC_KEY_DECRYPT;
1538                 break;
1539         case PCIXCC_MCL3:
1540         case CEX2C:
1541                 if (we_p->funccode == ICARSAMODEXPO)
1542                         function = PCI_FUNC_KEY_ENCRYPT;
1543                 else
1544                         function = PCI_FUNC_KEY_DECRYPT;
1545                 break;
1546         /**
1547          * PCICC does everything as a PKCS-1.2 format request
1548          */
1549         case PCICC:
1550                 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1551                 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1552                         return SEN_NOT_AVAIL;
1553                 }
1554                 if (we_p->funccode == ICARSAMODEXPO) {
1555                         if (is_PKCS12_padded(temp_buffer,
1556                                              mex_p->inputdatalength))
1557                                 function = PCI_FUNC_KEY_ENCRYPT;
1558                         else
1559                                 function = PCI_FUNC_KEY_DECRYPT;
1560                 } else
1561                         /* all CRT forms are decrypts */
1562                         function = PCI_FUNC_KEY_DECRYPT;
1563                 break;
1564         }
1565         PDEBUG("function: %04x\n", function);
1566         rv = build_caller(we_p, function);
1567         PDEBUG("rv from build_caller = %d\n", rv);
1568         return rv;
1569 }
1570
1571 static inline int
1572 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1573                  const char __user *buffer)
1574 {
1575         int rv;
1576
1577         we_p->devindex = -1;
1578         if (funccode == ICARSAMODEXPO)
1579                 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1580         else
1581                 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1582
1583         if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1584                 return -EFAULT;
1585
1586         we_p->audit[0] |= FP_COPYFROM;
1587         SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1588         we_p->funccode = funccode;
1589         we_p->devtype = -1;
1590         we_p->audit[0] |= FP_BUFFREQ;
1591         rv = get_crypto_request_buffer(we_p);
1592         switch (rv) {
1593         case 0:
1594                 we_p->audit[0] |= FP_BUFFGOT;
1595                 break;
1596         case SEN_USER_ERROR:
1597                 rv = -EINVAL;
1598                 break;
1599         case SEN_QUEUE_FULL:
1600                 rv = 0;
1601                 break;
1602         case SEN_RELEASED:
1603                 rv = -EFAULT;
1604                 break;
1605         case REC_NO_RESPONSE:
1606                 rv = -ENODEV;
1607                 break;
1608         case SEN_NOT_AVAIL:
1609         case EGETBUFF:
1610                 rv = -EGETBUFF;
1611                 break;
1612         default:
1613                 PRINTK("rv = %d\n", rv);
1614                 rv = -EGETBUFF;
1615                 break;
1616         }
1617         if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1618                 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1619         return rv;
1620 }
1621
1622 static inline void
1623 purge_work_element(struct work_element *we_p)
1624 {
1625         struct list_head *lptr;
1626
1627         spin_lock_irq(&queuespinlock);
1628         list_for_each(lptr, &request_list) {
1629                 if (lptr == &we_p->liste) {
1630                         list_del_init(lptr);
1631                         requestq_count--;
1632                         break;
1633                 }
1634         }
1635         list_for_each(lptr, &pending_list) {
1636                 if (lptr == &we_p->liste) {
1637                         list_del_init(lptr);
1638                         pendingq_count--;
1639                         break;
1640                 }
1641         }
1642         spin_unlock_irq(&queuespinlock);
1643 }
1644
1645 /**
1646  * Build the request and send it.
1647  */
1648 static inline int
1649 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1650              unsigned int cmd, unsigned long arg)
1651 {
1652         struct work_element *we_p;
1653         int rv;
1654
1655         if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1656                 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1657                 return rv;
1658         }
1659         if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1660                 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1661         if (!rv)
1662                 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1663                         PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1664         if (!rv) {
1665                 we_p->audit[0] |= FP_ASLEEP;
1666                 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1667                 we_p->audit[0] |= FP_AWAKE;
1668                 rv = we_p->retcode;
1669         }
1670         if (!rv)
1671                 rv = z90crypt_process_results(we_p, (char __user *)arg);
1672
1673         if ((we_p->status[0] & STAT_FAILED)) {
1674                 switch (rv) {
1675                 /**
1676                  * EINVAL *after* receive is almost always a padding error or
1677                  * length error issued by a coprocessor (not an accelerator).
1678                  * We convert this return value to -EGETBUFF which should
1679                  * trigger a fallback to software.
1680                  */
1681                 case -EINVAL:
1682                         if ((we_p->devtype != PCICA) &&
1683                             (we_p->devtype != CEX2A))
1684                                 rv = -EGETBUFF;
1685                         break;
1686                 case -ETIMEOUT:
1687                         if (z90crypt.mask.st_count > 0)
1688                                 rv = -ERESTARTSYS; // retry with another
1689                         else
1690                                 rv = -ENODEV; // no cards left
1691                 /* fall through to clean up request queue */
1692                 case -ERESTARTSYS:
1693                 case -ERELEASED:
1694                         switch (CHK_RDWRMASK(we_p->status[0])) {
1695                         case STAT_WRITTEN:
1696                                 purge_work_element(we_p);
1697                                 break;
1698                         case STAT_READPEND:
1699                         case STAT_NOWORK:
1700                         default:
1701                                 break;
1702                         }
1703                         break;
1704                 default:
1705                         we_p->status[0] ^= STAT_FAILED;
1706                         break;
1707                 }
1708         }
1709         free_page((long)we_p);
1710         return rv;
1711 }
1712
1713 /**
1714  * This function is a little long, but it's really just one large switch
1715  * statement.
1716  */
1717 static long
1718 z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1719 {
1720         struct priv_data *private_data_p = filp->private_data;
1721         unsigned char *status;
1722         unsigned char *qdepth;
1723         unsigned int *reqcnt;
1724         struct ica_z90_status *pstat;
1725         int ret, i, loopLim, tempstat;
1726         static int deprecated_msg_count1 = 0;
1727         static int deprecated_msg_count2 = 0;
1728
1729         PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1730         PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1731                 cmd,
1732                 !_IOC_DIR(cmd) ? "NO"
1733                 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1734                 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1735                 : "WR")),
1736                 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1737
1738         if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1739                 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1740                 return -ENOTTY;
1741         }
1742
1743         ret = 0;
1744         switch (cmd) {
1745         case ICARSAMODEXPO:
1746         case ICARSACRT:
1747                 if (quiesce_z90crypt) {
1748                         ret = -EQUIESCE;
1749                         break;
1750                 }
1751                 ret = -ENODEV; // Default if no devices
1752                 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1753                         (z90crypt.hdware_info->hdware_mask.disabled_count +
1754                          z90crypt.hdware_info->hdware_mask.user_disabled_count);
1755                 for (i = 0; i < loopLim; i++) {
1756                         ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1757                         if (ret != -ERESTARTSYS)
1758                                 break;
1759                 }
1760                 if (ret == -ERESTARTSYS)
1761                         ret = -ENODEV;
1762                 break;
1763
1764         case Z90STAT_TOTALCOUNT:
1765                 tempstat = get_status_totalcount();
1766                 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1767                         ret = -EFAULT;
1768                 break;
1769
1770         case Z90STAT_PCICACOUNT:
1771                 tempstat = get_status_PCICAcount();
1772                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1773                         ret = -EFAULT;
1774                 break;
1775
1776         case Z90STAT_PCICCCOUNT:
1777                 tempstat = get_status_PCICCcount();
1778                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1779                         ret = -EFAULT;
1780                 break;
1781
1782         case Z90STAT_PCIXCCMCL2COUNT:
1783                 tempstat = get_status_PCIXCCMCL2count();
1784                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1785                         ret = -EFAULT;
1786                 break;
1787
1788         case Z90STAT_PCIXCCMCL3COUNT:
1789                 tempstat = get_status_PCIXCCMCL3count();
1790                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1791                         ret = -EFAULT;
1792                 break;
1793
1794         case Z90STAT_CEX2CCOUNT:
1795                 tempstat = get_status_CEX2Ccount();
1796                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1797                         ret = -EFAULT;
1798                 break;
1799
1800         case Z90STAT_CEX2ACOUNT:
1801                 tempstat = get_status_CEX2Acount();
1802                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1803                         ret = -EFAULT;
1804                 break;
1805
1806         case Z90STAT_REQUESTQ_COUNT:
1807                 tempstat = get_status_requestq_count();
1808                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1809                         ret = -EFAULT;
1810                 break;
1811
1812         case Z90STAT_PENDINGQ_COUNT:
1813                 tempstat = get_status_pendingq_count();
1814                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1815                         ret = -EFAULT;
1816                 break;
1817
1818         case Z90STAT_TOTALOPEN_COUNT:
1819                 tempstat = get_status_totalopen_count();
1820                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1821                         ret = -EFAULT;
1822                 break;
1823
1824         case Z90STAT_DOMAIN_INDEX:
1825                 tempstat = get_status_domain_index();
1826                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1827                         ret = -EFAULT;
1828                 break;
1829
1830         case Z90STAT_STATUS_MASK:
1831                 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1832                 if (!status) {
1833                         PRINTK("kmalloc for status failed!\n");
1834                         ret = -ENOMEM;
1835                         break;
1836                 }
1837                 get_status_status_mask(status);
1838                 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1839                                                                         != 0)
1840                         ret = -EFAULT;
1841                 kfree(status);
1842                 break;
1843
1844         case Z90STAT_QDEPTH_MASK:
1845                 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1846                 if (!qdepth) {
1847                         PRINTK("kmalloc for qdepth failed!\n");
1848                         ret = -ENOMEM;
1849                         break;
1850                 }
1851                 get_status_qdepth_mask(qdepth);
1852                 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1853                         ret = -EFAULT;
1854                 kfree(qdepth);
1855                 break;
1856
1857         case Z90STAT_PERDEV_REQCNT:
1858                 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1859                 if (!reqcnt) {
1860                         PRINTK("kmalloc for reqcnt failed!\n");
1861                         ret = -ENOMEM;
1862                         break;
1863                 }
1864                 get_status_perdevice_reqcnt(reqcnt);
1865                 if (copy_to_user((char __user *) arg, reqcnt,
1866                                  Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1867                         ret = -EFAULT;
1868                 kfree(reqcnt);
1869                 break;
1870
1871                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1872         case ICAZ90STATUS:
1873                 if (deprecated_msg_count1 < 20) {
1874                         PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1875                         deprecated_msg_count1++;
1876                         if (deprecated_msg_count1 == 20)
1877                                 PRINTK("No longer issuing messages related to "
1878                                        "deprecated call to ICAZ90STATUS.\n");
1879                 }
1880
1881                 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1882                 if (!pstat) {
1883                         PRINTK("kmalloc for pstat failed!\n");
1884                         ret = -ENOMEM;
1885                         break;
1886                 }
1887
1888                 pstat->totalcount        = get_status_totalcount();
1889                 pstat->leedslitecount    = get_status_PCICAcount();
1890                 pstat->leeds2count       = get_status_PCICCcount();
1891                 pstat->requestqWaitCount = get_status_requestq_count();
1892                 pstat->pendingqWaitCount = get_status_pendingq_count();
1893                 pstat->totalOpenCount    = get_status_totalopen_count();
1894                 pstat->cryptoDomain      = get_status_domain_index();
1895                 get_status_status_mask(pstat->status);
1896                 get_status_qdepth_mask(pstat->qdepth);
1897
1898                 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1899                                  sizeof(struct ica_z90_status)) != 0)
1900                         ret = -EFAULT;
1901                 kfree(pstat);
1902                 break;
1903
1904                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1905         case Z90STAT_PCIXCCCOUNT:
1906                 if (deprecated_msg_count2 < 20) {
1907                         PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1908                         deprecated_msg_count2++;
1909                         if (deprecated_msg_count2 == 20)
1910                                 PRINTK("No longer issuing messages about depre"
1911                                        "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1912                 }
1913
1914                 tempstat = get_status_PCIXCCcount();
1915                 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
1916                         ret = -EFAULT;
1917                 break;
1918
1919         case Z90QUIESCE:
1920                 if (current->euid != 0) {
1921                         PRINTK("QUIESCE fails: euid %d\n",
1922                                current->euid);
1923                         ret = -EACCES;
1924                 } else {
1925                         PRINTK("QUIESCE device from PID %d\n", PID());
1926                         quiesce_z90crypt = 1;
1927                 }
1928                 break;
1929
1930         default:
1931                 /* user passed an invalid IOCTL number */
1932                 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
1933                 ret = -ENOTTY;
1934                 break;
1935         }
1936
1937         return ret;
1938 }
1939
1940 static inline int
1941 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1942 {
1943         int hl, i;
1944
1945         hl = 0;
1946         for (i = 0; i < len; i++)
1947                 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
1948         hl += sprintf(outaddr+hl, " ");
1949
1950         return hl;
1951 }
1952
1953 static inline int
1954 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1955 {
1956         int hl, inl, c, cx;
1957
1958         hl = sprintf(outaddr, "    ");
1959         inl = 0;
1960         for (c = 0; c < (len / 16); c++) {
1961                 hl += sprintcl(outaddr+hl, addr+inl, 16);
1962                 inl += 16;
1963         }
1964
1965         cx = len%16;
1966         if (cx) {
1967                 hl += sprintcl(outaddr+hl, addr+inl, cx);
1968                 inl += cx;
1969         }
1970
1971         hl += sprintf(outaddr+hl, "\n");
1972
1973         return hl;
1974 }
1975
1976 static inline int
1977 sprinthx(unsigned char *title, unsigned char *outaddr,
1978          unsigned char *addr, unsigned int len)
1979 {
1980         int hl, inl, r, rx;
1981
1982         hl = sprintf(outaddr, "\n%s\n", title);
1983         inl = 0;
1984         for (r = 0; r < (len / 64); r++) {
1985                 hl += sprintrw(outaddr+hl, addr+inl, 64);
1986                 inl += 64;
1987         }
1988         rx = len % 64;
1989         if (rx) {
1990                 hl += sprintrw(outaddr+hl, addr+inl, rx);
1991                 inl += rx;
1992         }
1993
1994         hl += sprintf(outaddr+hl, "\n");
1995
1996         return hl;
1997 }
1998
1999 static inline int
2000 sprinthx4(unsigned char *title, unsigned char *outaddr,
2001           unsigned int *array, unsigned int len)
2002 {
2003         int hl, r;
2004
2005         hl = sprintf(outaddr, "\n%s\n", title);
2006
2007         for (r = 0; r < len; r++) {
2008                 if ((r % 8) == 0)
2009                         hl += sprintf(outaddr+hl, "    ");
2010                 hl += sprintf(outaddr+hl, "%08X ", array[r]);
2011                 if ((r % 8) == 7)
2012                         hl += sprintf(outaddr+hl, "\n");
2013         }
2014
2015         hl += sprintf(outaddr+hl, "\n");
2016
2017         return hl;
2018 }
2019
2020 static int
2021 z90crypt_status(char *resp_buff, char **start, off_t offset,
2022                 int count, int *eof, void *data)
2023 {
2024         unsigned char *workarea;
2025         int len;
2026
2027         /* resp_buff is a page. Use the right half for a work area */
2028         workarea = resp_buff+2000;
2029         len = 0;
2030         len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2031                 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2032         len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2033                 get_status_domain_index());
2034         len += sprintf(resp_buff+len, "Total device count: %d\n",
2035                 get_status_totalcount());
2036         len += sprintf(resp_buff+len, "PCICA count: %d\n",
2037                 get_status_PCICAcount());
2038         len += sprintf(resp_buff+len, "PCICC count: %d\n",
2039                 get_status_PCICCcount());
2040         len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2041                 get_status_PCIXCCMCL2count());
2042         len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2043                 get_status_PCIXCCMCL3count());
2044         len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2045                 get_status_CEX2Ccount());
2046         len += sprintf(resp_buff+len, "CEX2A count: %d\n",
2047                 get_status_CEX2Acount());
2048         len += sprintf(resp_buff+len, "requestq count: %d\n",
2049                 get_status_requestq_count());
2050         len += sprintf(resp_buff+len, "pendingq count: %d\n",
2051                 get_status_pendingq_count());
2052         len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2053                 get_status_totalopen_count());
2054         len += sprinthx(
2055                 "Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) "
2056                 "4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A",
2057                 resp_buff+len,
2058                 get_status_status_mask(workarea),
2059                 Z90CRYPT_NUM_APS);
2060         len += sprinthx("Waiting work element counts",
2061                 resp_buff+len,
2062                 get_status_qdepth_mask(workarea),
2063                 Z90CRYPT_NUM_APS);
2064         len += sprinthx4(
2065                 "Per-device successfully completed request counts",
2066                 resp_buff+len,
2067                 get_status_perdevice_reqcnt((unsigned int *)workarea),
2068                 Z90CRYPT_NUM_APS);
2069         *eof = 1;
2070         memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2071         return len;
2072 }
2073
2074 static inline void
2075 disable_card(int card_index)
2076 {
2077         struct device *devp;
2078
2079         devp = LONG2DEVPTR(card_index);
2080         if (!devp || devp->user_disabled)
2081                 return;
2082         devp->user_disabled = 1;
2083         z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2084         if (devp->dev_type == -1)
2085                 return;
2086         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2087 }
2088
2089 static inline void
2090 enable_card(int card_index)
2091 {
2092         struct device *devp;
2093
2094         devp = LONG2DEVPTR(card_index);
2095         if (!devp || !devp->user_disabled)
2096                 return;
2097         devp->user_disabled = 0;
2098         z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2099         if (devp->dev_type == -1)
2100                 return;
2101         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2102 }
2103
2104 static int
2105 z90crypt_status_write(struct file *file, const char __user *buffer,
2106                       unsigned long count, void *data)
2107 {
2108         int j, eol;
2109         unsigned char *lbuf, *ptr;
2110         unsigned int local_count;
2111
2112 #define LBUFSIZE 1200
2113         lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2114         if (!lbuf) {
2115                 PRINTK("kmalloc failed!\n");
2116                 return 0;
2117         }
2118
2119         if (count <= 0)
2120                 return 0;
2121
2122         local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2123
2124         if (copy_from_user(lbuf, buffer, local_count) != 0) {
2125                 kfree(lbuf);
2126                 return -EFAULT;
2127         }
2128
2129         lbuf[local_count] = '\0';
2130
2131         ptr = strstr(lbuf, "Online devices");
2132         if (ptr == 0) {
2133                 PRINTK("Unable to parse data (missing \"Online devices\")\n");
2134                 kfree(lbuf);
2135                 return count;
2136         }
2137
2138         ptr = strstr(ptr, "\n");
2139         if (ptr == 0) {
2140                 PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
2141                 kfree(lbuf);
2142                 return count;
2143         }
2144         ptr++;
2145
2146         if (strstr(ptr, "Waiting work element counts") == NULL) {
2147                 PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
2148                 kfree(lbuf);
2149                 return count;
2150         }
2151
2152         j = 0;
2153         eol = 0;
2154         while ((j < 64) && (*ptr != '\0')) {
2155                 switch (*ptr) {
2156                 case '\t':
2157                 case ' ':
2158                         break;
2159                 case '\n':
2160                 default:
2161                         eol = 1;
2162                         break;
2163                 case '0':       // no device
2164                 case '1':       // PCICA
2165                 case '2':       // PCICC
2166                 case '3':       // PCIXCC_MCL2
2167                 case '4':       // PCIXCC_MCL3
2168                 case '5':       // CEX2C
2169                 case '6':       // CEX2A
2170                         j++;
2171                         break;
2172                 case 'd':
2173                 case 'D':
2174                         disable_card(j);
2175                         j++;
2176                         break;
2177                 case 'e':
2178                 case 'E':
2179                         enable_card(j);
2180                         j++;
2181                         break;
2182                 }
2183                 if (eol)
2184                         break;
2185                 ptr++;
2186         }
2187
2188         kfree(lbuf);
2189         return count;
2190 }
2191
2192 /**
2193  * Functions that run under a timer, with no process id
2194  *
2195  * The task functions:
2196  *     z90crypt_reader_task
2197  *       helper_send_work
2198  *       helper_handle_work_element
2199  *       helper_receive_rc
2200  *     z90crypt_config_task
2201  *     z90crypt_cleanup_task
2202  *
2203  * Helper functions:
2204  *     z90crypt_schedule_reader_timer
2205  *     z90crypt_schedule_reader_task
2206  *     z90crypt_schedule_config_task
2207  *     z90crypt_schedule_cleanup_task
2208  */
2209 static inline int
2210 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2211                            unsigned char *buff, unsigned char __user **dest_p_p)
2212 {
2213         int dv, rv;
2214         struct device *dev_ptr;
2215         struct caller *caller_p;
2216         struct ica_rsa_modexpo *icaMsg_p;
2217         struct list_head *ptr, *tptr;
2218
2219         memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2220
2221         if (z90crypt.terminating)
2222                 return REC_FATAL_ERROR;
2223
2224         caller_p = 0;
2225         dev_ptr = z90crypt.device_p[index];
2226         rv = 0;
2227         do {
2228                 if (!dev_ptr || dev_ptr->disabled) {
2229                         rv = REC_NO_WORK; // a disabled device can't return work
2230                         break;
2231                 }
2232                 if (dev_ptr->dev_self_x != index) {
2233                         PRINTKC("Corrupt dev ptr\n");
2234                         z90crypt.terminating = 1;
2235                         rv = REC_FATAL_ERROR;
2236                         break;
2237                 }
2238                 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2239                         dv = DEV_REC_EXCEPTION;
2240                         PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2241                                dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2242                 } else {
2243                         PDEBUG("Dequeue called for device %d\n", index);
2244                         dv = receive_from_AP(index, z90crypt.cdx,
2245                                              dev_ptr->dev_resp_l,
2246                                              dev_ptr->dev_resp_p, psmid);
2247                 }
2248                 switch (dv) {
2249                 case DEV_REC_EXCEPTION:
2250                         rv = REC_FATAL_ERROR;
2251                         z90crypt.terminating = 1;
2252                         PRINTKC("Exception in receive from device %d\n",
2253                                 index);
2254                         break;
2255                 case DEV_ONLINE:
2256                         rv = 0;
2257                         break;
2258                 case DEV_EMPTY:
2259                         rv = REC_EMPTY;
2260                         break;
2261                 case DEV_NO_WORK:
2262                         rv = REC_NO_WORK;
2263                         break;
2264                 case DEV_BAD_MESSAGE:
2265                 case DEV_GONE:
2266                 case REC_HARDWAR_ERR:
2267                 default:
2268                         rv = REC_NO_RESPONSE;
2269                         break;
2270                 }
2271                 if (rv)
2272                         break;
2273                 if (dev_ptr->dev_caller_count <= 0) {
2274                         rv = REC_USER_GONE;
2275                         break;
2276                 }
2277
2278                 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2279                         caller_p = list_entry(ptr, struct caller, caller_liste);
2280                         if (!memcmp(caller_p->caller_id, psmid,
2281                                     sizeof(caller_p->caller_id))) {
2282                                 if (!list_empty(&caller_p->caller_liste)) {
2283                                         list_del_init(ptr);
2284                                         dev_ptr->dev_caller_count--;
2285                                         break;
2286                                 }
2287                         }
2288                         caller_p = 0;
2289                 }
2290                 if (!caller_p) {
2291                         PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2292                                 "%02X%02X%02X in device list\n",
2293                                 psmid[0], psmid[1], psmid[2], psmid[3],
2294                                 psmid[4], psmid[5], psmid[6], psmid[7]);
2295                         rv = REC_USER_GONE;
2296                         break;
2297                 }
2298
2299                 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2300                 rv = convert_response(dev_ptr->dev_resp_p,
2301                                       caller_p->caller_buf_p, buff_len_p, buff);
2302                 switch (rv) {
2303                 case REC_USE_PCICA:
2304                         break;
2305                 case REC_OPERAND_INV:
2306                 case REC_OPERAND_SIZE:
2307                 case REC_EVEN_MOD:
2308                 case REC_INVALID_PAD:
2309                         PDEBUG("device %d: 'user error' %d\n", index, rv);
2310                         break;
2311                 case WRONG_DEVICE_TYPE:
2312                 case REC_HARDWAR_ERR:
2313                 case REC_BAD_MESSAGE:
2314                         PRINTKW("device %d: hardware error %d\n", index, rv);
2315                         rv = REC_NO_RESPONSE;
2316                         break;
2317                 default:
2318                         PDEBUG("device %d: rv = %d\n", index, rv);
2319                         break;
2320                 }
2321         } while (0);
2322
2323         switch (rv) {
2324         case 0:
2325                 PDEBUG("Successful receive from device %d\n", index);
2326                 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2327                 *dest_p_p = icaMsg_p->outputdata;
2328                 if (*buff_len_p == 0)
2329                         PRINTK("Zero *buff_len_p\n");
2330                 break;
2331         case REC_NO_RESPONSE:
2332                 PRINTKW("Removing device %d from availability\n", index);
2333                 remove_device(dev_ptr);
2334                 break;
2335         }
2336
2337         if (caller_p)
2338                 unbuild_caller(dev_ptr, caller_p);
2339
2340         return rv;
2341 }
2342
2343 static inline void
2344 helper_send_work(int index)
2345 {
2346         struct work_element *rq_p;
2347         int rv;
2348
2349         if (list_empty(&request_list))
2350                 return;
2351         requestq_count--;
2352         rq_p = list_entry(request_list.next, struct work_element, liste);
2353         list_del_init(&rq_p->liste);
2354         rq_p->audit[1] |= FP_REMREQUEST;
2355         if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2356                 rq_p->devindex = SHRT2LONG(index);
2357                 rv = send_to_crypto_device(rq_p);
2358                 if (rv == 0) {
2359                         rq_p->requestsent = jiffies;
2360                         rq_p->audit[0] |= FP_SENT;
2361                         list_add_tail(&rq_p->liste, &pending_list);
2362                         ++pendingq_count;
2363                         rq_p->audit[0] |= FP_PENDING;
2364                 } else {
2365                         switch (rv) {
2366                         case REC_OPERAND_INV:
2367                         case REC_OPERAND_SIZE:
2368                         case REC_EVEN_MOD:
2369                         case REC_INVALID_PAD:
2370                                 rq_p->retcode = -EINVAL;
2371                                 break;
2372                         case SEN_NOT_AVAIL:
2373                         case SEN_RETRY:
2374                         case REC_NO_RESPONSE:
2375                         default:
2376                                 if (z90crypt.mask.st_count > 1)
2377                                         rq_p->retcode =
2378                                                 -ERESTARTSYS;
2379                                 else
2380                                         rq_p->retcode = -ENODEV;
2381                                 break;
2382                         }
2383                         rq_p->status[0] |= STAT_FAILED;
2384                         rq_p->audit[1] |= FP_AWAKENING;
2385                         atomic_set(&rq_p->alarmrung, 1);
2386                         wake_up(&rq_p->waitq);
2387                 }
2388         } else {
2389                 if (z90crypt.mask.st_count > 1)
2390                         rq_p->retcode = -ERESTARTSYS;
2391                 else
2392                         rq_p->retcode = -ENODEV;
2393                 rq_p->status[0] |= STAT_FAILED;
2394                 rq_p->audit[1] |= FP_AWAKENING;
2395                 atomic_set(&rq_p->alarmrung, 1);
2396                 wake_up(&rq_p->waitq);
2397         }
2398 }
2399
2400 static inline void
2401 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2402                            int buff_len, unsigned char *buff,
2403                            unsigned char __user *resp_addr)
2404 {
2405         struct work_element *pq_p;
2406         struct list_head *lptr, *tptr;
2407
2408         pq_p = 0;
2409         list_for_each_safe(lptr, tptr, &pending_list) {
2410                 pq_p = list_entry(lptr, struct work_element, liste);
2411                 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2412                         list_del_init(lptr);
2413                         pendingq_count--;
2414                         pq_p->audit[1] |= FP_NOTPENDING;
2415                         break;
2416                 }
2417                 pq_p = 0;
2418         }
2419
2420         if (!pq_p) {
2421                 PRINTK("device %d has work but no caller exists on pending Q\n",
2422                        SHRT2LONG(index));
2423                 return;
2424         }
2425
2426         switch (rc) {
2427                 case 0:
2428                         pq_p->resp_buff_size = buff_len;
2429                         pq_p->audit[1] |= FP_RESPSIZESET;
2430                         if (buff_len) {
2431                                 pq_p->resp_addr = resp_addr;
2432                                 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2433                                 memcpy(pq_p->resp_buff, buff, buff_len);
2434                                 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2435                         }
2436                         break;
2437                 case REC_OPERAND_INV:
2438                 case REC_OPERAND_SIZE:
2439                 case REC_EVEN_MOD:
2440                 case REC_INVALID_PAD:
2441                         PDEBUG("-EINVAL after application error %d\n", rc);
2442                         pq_p->retcode = -EINVAL;
2443                         pq_p->status[0] |= STAT_FAILED;
2444                         break;
2445                 case REC_USE_PCICA:
2446                         pq_p->retcode = -ERESTARTSYS;
2447                         pq_p->status[0] |= STAT_FAILED;
2448                         break;
2449                 case REC_NO_RESPONSE:
2450                 default:
2451                         if (z90crypt.mask.st_count > 1)
2452                                 pq_p->retcode = -ERESTARTSYS;
2453                         else
2454                                 pq_p->retcode = -ENODEV;
2455                         pq_p->status[0] |= STAT_FAILED;
2456                         break;
2457         }
2458         if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2459                 pq_p->audit[1] |= FP_AWAKENING;
2460                 atomic_set(&pq_p->alarmrung, 1);
2461                 wake_up(&pq_p->waitq);
2462         }
2463 }
2464
2465 /**
2466  * return TRUE if the work element should be removed from the queue
2467  */
2468 static inline int
2469 helper_receive_rc(int index, int *rc_p)
2470 {
2471         switch (*rc_p) {
2472         case 0:
2473         case REC_OPERAND_INV:
2474         case REC_OPERAND_SIZE:
2475         case REC_EVEN_MOD:
2476         case REC_INVALID_PAD:
2477         case REC_USE_PCICA:
2478                 break;
2479
2480         case REC_BUSY:
2481         case REC_NO_WORK:
2482         case REC_EMPTY:
2483         case REC_RETRY_DEV:
2484         case REC_FATAL_ERROR:
2485                 return 0;
2486
2487         case REC_NO_RESPONSE:
2488                 break;
2489
2490         default:
2491                 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2492                        *rc_p, SHRT2LONG(index));
2493                 *rc_p = REC_NO_RESPONSE;
2494                 break;
2495         }
2496         return 1;
2497 }
2498
2499 static inline void
2500 z90crypt_schedule_reader_timer(void)
2501 {
2502         if (timer_pending(&reader_timer))
2503                 return;
2504         if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2505                 PRINTK("Timer pending while modifying reader timer\n");
2506 }
2507
2508 static void
2509 z90crypt_reader_task(unsigned long ptr)
2510 {
2511         int workavail, index, rc, buff_len;
2512         unsigned char   psmid[8];
2513         unsigned char __user *resp_addr;
2514         static unsigned char buff[1024];
2515
2516         /**
2517          * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2518          * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2519          * loop, there is no work remaining on the queues.
2520          */
2521         resp_addr = 0;
2522         workavail = 2;
2523         buff_len = 0;
2524         while (workavail) {
2525                 workavail--;
2526                 rc = 0;
2527                 spin_lock_irq(&queuespinlock);
2528                 memset(buff, 0x00, sizeof(buff));
2529
2530                 /* Dequeue once from each device in round robin. */
2531                 for (index = 0; index < z90crypt.mask.st_count; index++) {
2532                         PDEBUG("About to receive.\n");
2533                         rc = receive_from_crypto_device(SHRT2LONG(index),
2534                                                         psmid,
2535                                                         &buff_len,
2536                                                         buff,
2537                                                         &resp_addr);
2538                         PDEBUG("Dequeued: rc = %d.\n", rc);
2539
2540                         if (helper_receive_rc(index, &rc)) {
2541                                 if (rc != REC_NO_RESPONSE) {
2542                                         helper_send_work(index);
2543                                         workavail = 2;
2544                                 }
2545
2546                                 helper_handle_work_element(index, psmid, rc,
2547                                                            buff_len, buff,
2548                                                            resp_addr);
2549                         }
2550
2551                         if (rc == REC_FATAL_ERROR)
2552                                 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2553                                         SHRT2LONG(index));
2554                 }
2555                 spin_unlock_irq(&queuespinlock);
2556         }
2557
2558         if (pendingq_count + requestq_count)
2559                 z90crypt_schedule_reader_timer();
2560 }
2561
2562 static inline void
2563 z90crypt_schedule_config_task(unsigned int expiration)
2564 {
2565         if (timer_pending(&config_timer))
2566                 return;
2567         if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2568                 PRINTK("Timer pending while modifying config timer\n");
2569 }
2570
2571 static void
2572 z90crypt_config_task(unsigned long ptr)
2573 {
2574         int rc;
2575
2576         PDEBUG("jiffies %ld\n", jiffies);
2577
2578         if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2579                 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2580         /* If return was fatal, don't bother reconfiguring */
2581         if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2582                 z90crypt_schedule_config_task(CONFIGTIME);
2583 }
2584
2585 static inline void
2586 z90crypt_schedule_cleanup_task(void)
2587 {
2588         if (timer_pending(&cleanup_timer))
2589                 return;
2590         if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2591                 PRINTK("Timer pending while modifying cleanup timer\n");
2592 }
2593
2594 static inline void
2595 helper_drain_queues(void)
2596 {
2597         struct work_element *pq_p;
2598         struct list_head *lptr, *tptr;
2599
2600         list_for_each_safe(lptr, tptr, &pending_list) {
2601                 pq_p = list_entry(lptr, struct work_element, liste);
2602                 pq_p->retcode = -ENODEV;
2603                 pq_p->status[0] |= STAT_FAILED;
2604                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2605                                (struct caller *)pq_p->requestptr);
2606                 list_del_init(lptr);
2607                 pendingq_count--;
2608                 pq_p->audit[1] |= FP_NOTPENDING;
2609                 pq_p->audit[1] |= FP_AWAKENING;
2610                 atomic_set(&pq_p->alarmrung, 1);
2611                 wake_up(&pq_p->waitq);
2612         }
2613
2614         list_for_each_safe(lptr, tptr, &request_list) {
2615                 pq_p = list_entry(lptr, struct work_element, liste);
2616                 pq_p->retcode = -ENODEV;
2617                 pq_p->status[0] |= STAT_FAILED;
2618                 list_del_init(lptr);
2619                 requestq_count--;
2620                 pq_p->audit[1] |= FP_REMREQUEST;
2621                 pq_p->audit[1] |= FP_AWAKENING;
2622                 atomic_set(&pq_p->alarmrung, 1);
2623                 wake_up(&pq_p->waitq);
2624         }
2625 }
2626
2627 static inline void
2628 helper_timeout_requests(void)
2629 {
2630         struct work_element *pq_p;
2631         struct list_head *lptr, *tptr;
2632         long timelimit;
2633
2634         timelimit = jiffies - (CLEANUPTIME * HZ);
2635         /* The list is in strict chronological order */
2636         list_for_each_safe(lptr, tptr, &pending_list) {
2637                 pq_p = list_entry(lptr, struct work_element, liste);
2638                 if (pq_p->requestsent >= timelimit)
2639                         break;
2640                 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2641                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2642                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2643                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2644                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2645                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2646                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2647                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2648                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2649                 pq_p->retcode = -ETIMEOUT;
2650                 pq_p->status[0] |= STAT_FAILED;
2651                 /* get this off any caller queue it may be on */
2652                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2653                                (struct caller *) pq_p->requestptr);
2654                 list_del_init(lptr);
2655                 pendingq_count--;
2656                 pq_p->audit[1] |= FP_TIMEDOUT;
2657                 pq_p->audit[1] |= FP_NOTPENDING;
2658                 pq_p->audit[1] |= FP_AWAKENING;
2659                 atomic_set(&pq_p->alarmrung, 1);
2660                 wake_up(&pq_p->waitq);
2661         }
2662
2663         /**
2664          * If pending count is zero, items left on the request queue may
2665          * never be processed.
2666          */
2667         if (pendingq_count <= 0) {
2668                 list_for_each_safe(lptr, tptr, &request_list) {
2669                         pq_p = list_entry(lptr, struct work_element, liste);
2670                         if (pq_p->requestsent >= timelimit)
2671                                 break;
2672                 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2673                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2674                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2675                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2676                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2677                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2678                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2679                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2680                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2681                         pq_p->retcode = -ETIMEOUT;
2682                         pq_p->status[0] |= STAT_FAILED;
2683                         list_del_init(lptr);
2684                         requestq_count--;
2685                         pq_p->audit[1] |= FP_TIMEDOUT;
2686                         pq_p->audit[1] |= FP_REMREQUEST;
2687                         pq_p->audit[1] |= FP_AWAKENING;
2688                         atomic_set(&pq_p->alarmrung, 1);
2689                         wake_up(&pq_p->waitq);
2690                 }
2691         }
2692 }
2693
2694 static void
2695 z90crypt_cleanup_task(unsigned long ptr)
2696 {
2697         PDEBUG("jiffies %ld\n", jiffies);
2698         spin_lock_irq(&queuespinlock);
2699         if (z90crypt.mask.st_count <= 0) // no devices!
2700                 helper_drain_queues();
2701         else
2702                 helper_timeout_requests();
2703         spin_unlock_irq(&queuespinlock);
2704         z90crypt_schedule_cleanup_task();
2705 }
2706
2707 static void
2708 z90crypt_schedule_reader_task(unsigned long ptr)
2709 {
2710         tasklet_schedule(&reader_tasklet);
2711 }
2712
2713 /**
2714  * Lowlevel Functions:
2715  *
2716  *   create_z90crypt:  creates and initializes basic data structures
2717  *   refresh_z90crypt:  re-initializes basic data structures
2718  *   find_crypto_devices: returns a count and mask of hardware status
2719  *   create_crypto_device:  builds the descriptor for a device
2720  *   destroy_crypto_device:  unallocates the descriptor for a device
2721  *   destroy_z90crypt:  drains all work, unallocates structs
2722  */
2723
2724 /**
2725  * build the z90crypt root structure using the given domain index
2726  */
2727 static int
2728 create_z90crypt(int *cdx_p)
2729 {
2730         struct hdware_block *hdware_blk_p;
2731
2732         memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2733         z90crypt.domain_established = 0;
2734         z90crypt.len = sizeof(struct z90crypt);
2735         z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2736         z90crypt.cdx = *cdx_p;
2737
2738         hdware_blk_p = kzalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2739         if (!hdware_blk_p) {
2740                 PDEBUG("kmalloc for hardware block failed\n");
2741                 return ENOMEM;
2742         }
2743         z90crypt.hdware_info = hdware_blk_p;
2744
2745         return 0;
2746 }
2747
2748 static inline int
2749 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2750 {
2751         enum hdstat hd_stat;
2752         int q_depth, dev_type;
2753         int indx, chkdom, numdomains;
2754
2755         q_depth = dev_type = numdomains = 0;
2756         for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2757         for (indx = 0; indx < z90crypt.max_count; indx++) {
2758                 hd_stat = HD_NOT_THERE;
2759                 numdomains = 0;
2760                 for (chkdom = 0; chkdom <= 15; chkdom++) {
2761                         hd_stat = query_online(indx, chkdom, MAX_RESET,
2762                                                &q_depth, &dev_type);
2763                         if (hd_stat == HD_TSQ_EXCEPTION) {
2764                                 z90crypt.terminating = 1;
2765                                 PRINTKC("exception taken!\n");
2766                                 break;
2767                         }
2768                         if (hd_stat == HD_ONLINE) {
2769                                 cdx_array[numdomains++] = chkdom;
2770                                 if (*cdx_p == chkdom) {
2771                                         *correct_cdx_found  = 1;
2772                                         break;
2773                                 }
2774                         }
2775                 }
2776                 if ((*correct_cdx_found == 1) || (numdomains != 0))
2777                         break;
2778                 if (z90crypt.terminating)
2779                         break;
2780         }
2781         return numdomains;
2782 }
2783
2784 static inline int
2785 probe_crypto_domain(int *cdx_p)
2786 {
2787         int cdx_array[16];
2788         char cdx_array_text[53], temp[5];
2789         int correct_cdx_found, numdomains;
2790
2791         correct_cdx_found = 0;
2792         numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2793
2794         if (z90crypt.terminating)
2795                 return TSQ_FATAL_ERROR;
2796
2797         if (correct_cdx_found)
2798                 return 0;
2799
2800         if (numdomains == 0) {
2801                 PRINTKW("Unable to find crypto domain: No devices found\n");
2802                 return Z90C_NO_DEVICES;
2803         }
2804
2805         if (numdomains == 1) {
2806                 if (*cdx_p == -1) {
2807                         *cdx_p = cdx_array[0];
2808                         return 0;
2809                 }
2810                 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2811                        *cdx_p, cdx_array[0]);
2812                 return Z90C_INCORRECT_DOMAIN;
2813         }
2814
2815         numdomains--;
2816         sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2817         while (numdomains) {
2818                 numdomains--;
2819                 sprintf(temp, ", %d", cdx_array[numdomains]);
2820                 strcat(cdx_array_text, temp);
2821         }
2822
2823         PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2824                 *cdx_p, cdx_array_text);
2825         return Z90C_AMBIGUOUS_DOMAIN;
2826 }
2827
2828 static int
2829 refresh_z90crypt(int *cdx_p)
2830 {
2831         int i, j, indx, rv;
2832         static struct status local_mask;
2833         struct device *devPtr;
2834         unsigned char oldStat, newStat;
2835         int return_unchanged;
2836
2837         if (z90crypt.len != sizeof(z90crypt))
2838                 return ENOTINIT;
2839         if (z90crypt.terminating)
2840                 return TSQ_FATAL_ERROR;
2841         rv = 0;
2842         if (!z90crypt.hdware_info->hdware_mask.st_count &&
2843             !z90crypt.domain_established) {
2844                 rv = probe_crypto_domain(cdx_p);
2845                 if (z90crypt.terminating)
2846                         return TSQ_FATAL_ERROR;
2847                 if (rv == Z90C_NO_DEVICES)
2848                         return 0; // try later
2849                 if (rv)
2850                         return rv;
2851                 z90crypt.cdx = *cdx_p;
2852                 z90crypt.domain_established = 1;
2853         }
2854         rv = find_crypto_devices(&local_mask);
2855         if (rv) {
2856                 PRINTK("find crypto devices returned %d\n", rv);
2857                 return rv;
2858         }
2859         if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
2860                     sizeof(struct status))) {
2861                 return_unchanged = 1;
2862                 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
2863                         /**
2864                          * Check for disabled cards.  If any device is marked
2865                          * disabled, destroy it.
2866                          */
2867                         for (j = 0;
2868                              j < z90crypt.hdware_info->type_mask[i].st_count;
2869                              j++) {
2870                                 indx = z90crypt.hdware_info->type_x_addr[i].
2871                                                                 device_index[j];
2872                                 devPtr = z90crypt.device_p[indx];
2873                                 if (devPtr && devPtr->disabled) {
2874                                         local_mask.st_mask[indx] = HD_NOT_THERE;
2875                                         return_unchanged = 0;
2876                                 }
2877                         }
2878                 }
2879                 if (return_unchanged == 1)
2880                         return 0;
2881         }
2882
2883         spin_lock_irq(&queuespinlock);
2884         for (i = 0; i < z90crypt.max_count; i++) {
2885                 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
2886                 newStat = local_mask.st_mask[i];
2887                 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
2888                         destroy_crypto_device(i);
2889                 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
2890                         rv = create_crypto_device(i);
2891                         if (rv >= REC_FATAL_ERROR)
2892                                 return rv;
2893                         if (rv != 0) {
2894                                 local_mask.st_mask[i] = HD_NOT_THERE;
2895                                 local_mask.st_count--;
2896                         }
2897                 }
2898         }
2899         memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
2900                sizeof(local_mask.st_mask));
2901         z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
2902         z90crypt.hdware_info->hdware_mask.disabled_count =
2903                                                       local_mask.disabled_count;
2904         refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
2905         for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
2906                 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
2907                                     &(z90crypt.hdware_info->type_x_addr[i]));
2908         spin_unlock_irq(&queuespinlock);
2909
2910         return rv;
2911 }
2912
2913 static int
2914 find_crypto_devices(struct status *deviceMask)
2915 {
2916         int i, q_depth, dev_type;
2917         enum hdstat hd_stat;
2918
2919         deviceMask->st_count = 0;
2920         deviceMask->disabled_count = 0;
2921         deviceMask->user_disabled_count = 0;
2922
2923         for (i = 0; i < z90crypt.max_count; i++) {
2924                 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
2925                                        &dev_type);
2926                 if (hd_stat == HD_TSQ_EXCEPTION) {
2927                         z90crypt.terminating = 1;
2928                         PRINTKC("Exception during probe for crypto devices\n");
2929                         return TSQ_FATAL_ERROR;
2930                 }
2931                 deviceMask->st_mask[i] = hd_stat;
2932                 if (hd_stat == HD_ONLINE) {
2933                         PDEBUG("Got an online crypto!: %d\n", i);
2934                         PDEBUG("Got a queue depth of %d\n", q_depth);
2935                         PDEBUG("Got a device type of %d\n", dev_type);
2936                         if (q_depth <= 0)
2937                                 return TSQ_FATAL_ERROR;
2938                         deviceMask->st_count++;
2939                         z90crypt.q_depth_array[i] = q_depth;
2940                         z90crypt.dev_type_array[i] = dev_type;
2941                 }
2942         }
2943
2944         return 0;
2945 }
2946
2947 static int
2948 refresh_index_array(struct status *status_str, struct device_x *index_array)
2949 {
2950         int i, count;
2951         enum devstat stat;
2952
2953         i = -1;
2954         count = 0;
2955         do {
2956                 stat = status_str->st_mask[++i];
2957                 if (stat == DEV_ONLINE)
2958                         index_array->device_index[count++] = i;
2959         } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
2960
2961         return count;
2962 }
2963
2964 static int
2965 create_crypto_device(int index)
2966 {
2967         int rv, devstat, total_size;
2968         struct device *dev_ptr;
2969         struct status *type_str_p;
2970         int deviceType;
2971
2972         dev_ptr = z90crypt.device_p[index];
2973         if (!dev_ptr) {
2974                 total_size = sizeof(struct device) +
2975                              z90crypt.q_depth_array[index] * sizeof(int);
2976
2977                 dev_ptr = kzalloc(total_size, GFP_ATOMIC);
2978                 if (!dev_ptr) {
2979                         PRINTK("kmalloc device %d failed\n", index);
2980                         return ENOMEM;
2981                 }
2982                 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
2983                 if (!dev_ptr->dev_resp_p) {
2984                         kfree(dev_ptr);
2985                         PRINTK("kmalloc device %d rec buffer failed\n", index);
2986                         return ENOMEM;
2987                 }
2988                 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
2989                 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
2990         }
2991
2992         devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
2993         if (devstat == DEV_RSQ_EXCEPTION) {
2994                 PRINTK("exception during reset device %d\n", index);
2995                 kfree(dev_ptr->dev_resp_p);
2996                 kfree(dev_ptr);
2997                 return RSQ_FATAL_ERROR;
2998         }
2999         if (devstat == DEV_ONLINE) {
3000                 dev_ptr->dev_self_x = index;
3001                 dev_ptr->dev_type = z90crypt.dev_type_array[index];
3002                 if (dev_ptr->dev_type == NILDEV) {
3003                         rv = probe_device_type(dev_ptr);
3004                         if (rv) {
3005                                 PRINTK("rv = %d from probe_device_type %d\n",
3006                                        rv, index);
3007                                 kfree(dev_ptr->dev_resp_p);
3008                                 kfree(dev_ptr);
3009                                 return rv;
3010                         }
3011                 }
3012                 if (dev_ptr->dev_type == PCIXCC_UNK) {
3013                         rv = probe_PCIXCC_type(dev_ptr);
3014                         if (rv) {
3015                                 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
3016                                        rv, index);
3017                                 kfree(dev_ptr->dev_resp_p);
3018                                 kfree(dev_ptr);
3019                                 return rv;
3020                         }
3021                 }
3022                 deviceType = dev_ptr->dev_type;
3023                 z90crypt.dev_type_array[index] = deviceType;
3024                 if (deviceType == PCICA)
3025                         z90crypt.hdware_info->device_type_array[index] = 1;
3026                 else if (deviceType == PCICC)
3027                         z90crypt.hdware_info->device_type_array[index] = 2;
3028                 else if (deviceType == PCIXCC_MCL2)
3029                         z90crypt.hdware_info->device_type_array[index] = 3;
3030                 else if (deviceType == PCIXCC_MCL3)
3031                         z90crypt.hdware_info->device_type_array[index] = 4;
3032                 else if (deviceType == CEX2C)
3033                         z90crypt.hdware_info->device_type_array[index] = 5;
3034                 else if (deviceType == CEX2A)
3035                         z90crypt.hdware_info->device_type_array[index] = 6;
3036                 else // No idea how this would happen.
3037                         z90crypt.hdware_info->device_type_array[index] = -1;
3038         }
3039
3040         /**
3041          * 'q_depth' returned by the hardware is one less than
3042          * the actual depth
3043          */
3044         dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3045         dev_ptr->dev_type = z90crypt.dev_type_array[index];
3046         dev_ptr->dev_stat = devstat;
3047         dev_ptr->disabled = 0;
3048         z90crypt.device_p[index] = dev_ptr;
3049
3050         if (devstat == DEV_ONLINE) {
3051                 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3052                         z90crypt.mask.st_mask[index] = DEV_ONLINE;
3053                         z90crypt.mask.st_count++;
3054                 }
3055                 deviceType = dev_ptr->dev_type;
3056                 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3057                 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3058                         type_str_p->st_mask[index] = DEV_ONLINE;
3059                         type_str_p->st_count++;
3060                 }
3061         }
3062
3063         return 0;
3064 }
3065
3066 static int
3067 destroy_crypto_device(int index)
3068 {
3069         struct device *dev_ptr;
3070         int t, disabledFlag;
3071
3072         dev_ptr = z90crypt.device_p[index];
3073
3074         /* remember device type; get rid of device struct */
3075         if (dev_ptr) {
3076                 disabledFlag = dev_ptr->disabled;
3077                 t = dev_ptr->dev_type;
3078                 kfree(dev_ptr->dev_resp_p);
3079                 kfree(dev_ptr);
3080         } else {
3081                 disabledFlag = 0;
3082                 t = -1;
3083         }
3084         z90crypt.device_p[index] = 0;
3085
3086         /* if the type is valid, remove the device from the type_mask */
3087         if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3088                   z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3089                   z90crypt.hdware_info->type_mask[t].st_count--;
3090                   if (disabledFlag == 1)
3091                         z90crypt.hdware_info->type_mask[t].disabled_count--;
3092         }
3093         if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3094                 z90crypt.mask.st_mask[index] = DEV_GONE;
3095                 z90crypt.mask.st_count--;
3096         }
3097         z90crypt.hdware_info->device_type_array[index] = 0;
3098
3099         return 0;
3100 }
3101
3102 static void
3103 destroy_z90crypt(void)
3104 {
3105         int i;
3106
3107         for (i = 0; i < z90crypt.max_count; i++)
3108                 if (z90crypt.device_p[i])
3109                         destroy_crypto_device(i);
3110         kfree(z90crypt.hdware_info);
3111         memset((void *)&z90crypt, 0, sizeof(z90crypt));
3112 }
3113
3114 static unsigned char static_testmsg[384] = {
3115 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3116 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3117 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3118 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3119 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3120 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3121 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3122 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3123 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3124 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3125 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3126 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3127 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3128 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3129 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3130 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3131 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3132 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3133 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3134 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3135 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3136 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3137 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3138 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3139 };
3140
3141 static int
3142 probe_device_type(struct device *devPtr)
3143 {
3144         int rv, dv, i, index, length;
3145         unsigned char psmid[8];
3146         static unsigned char loc_testmsg[sizeof(static_testmsg)];
3147
3148         index = devPtr->dev_self_x;
3149         rv = 0;
3150         do {
3151                 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3152                 length = sizeof(static_testmsg) - 24;
3153                 /* the -24 allows for the header */
3154                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3155                 if (dv) {
3156                         PDEBUG("dv returned by send during probe: %d\n", dv);
3157                         if (dv == DEV_SEN_EXCEPTION) {
3158                                 rv = SEN_FATAL_ERROR;
3159                                 PRINTKC("exception in send to AP %d\n", index);
3160                                 break;
3161                         }
3162                         PDEBUG("return value from send_to_AP: %d\n", rv);
3163                         switch (dv) {
3164                         case DEV_GONE:
3165                                 PDEBUG("dev %d not available\n", index);
3166                                 rv = SEN_NOT_AVAIL;
3167                                 break;
3168                         case DEV_ONLINE:
3169                                 rv = 0;
3170                                 break;
3171                         case DEV_EMPTY:
3172                                 rv = SEN_NOT_AVAIL;
3173                                 break;
3174                         case DEV_NO_WORK:
3175                                 rv = SEN_FATAL_ERROR;
3176                                 break;
3177                         case DEV_BAD_MESSAGE:
3178                                 rv = SEN_USER_ERROR;
3179                                 break;
3180                         case DEV_QUEUE_FULL:
3181                                 rv = SEN_QUEUE_FULL;
3182                                 break;
3183                         default:
3184                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3185                                 rv = SEN_NOT_AVAIL;
3186                                 break;
3187                         }
3188                 }
3189
3190                 if (rv)
3191                         break;
3192
3193                 for (i = 0; i < 6; i++) {
3194                         mdelay(300);
3195                         dv = receive_from_AP(index, z90crypt.cdx,
3196                                              devPtr->dev_resp_l,
3197                                              devPtr->dev_resp_p, psmid);
3198                         PDEBUG("dv returned by DQ = %d\n", dv);
3199                         if (dv == DEV_REC_EXCEPTION) {
3200                                 rv = REC_FATAL_ERROR;
3201                                 PRINTKC("exception in dequeue %d\n",
3202                                         index);
3203                                 break;
3204                         }
3205                         switch (dv) {
3206                         case DEV_ONLINE:
3207                                 rv = 0;
3208                                 break;
3209                         case DEV_EMPTY:
3210                                 rv = REC_EMPTY;
3211                                 break;
3212                         case DEV_NO_WORK:
3213                                 rv = REC_NO_WORK;
3214                                 break;
3215                         case DEV_BAD_MESSAGE:
3216                         case DEV_GONE:
3217                         default:
3218                                 rv = REC_NO_RESPONSE;
3219                                 break;
3220                         }
3221                         if ((rv != 0) && (rv != REC_NO_WORK))
3222                                 break;
3223                         if (rv == 0)
3224                                 break;
3225                 }
3226                 if (rv)
3227                         break;
3228                 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3229                      (devPtr->dev_resp_p[1] == 0x86);
3230                 if (rv)
3231                         devPtr->dev_type = PCICC;
3232                 else
3233                         devPtr->dev_type = PCICA;
3234                 rv = 0;
3235         } while (0);
3236         /* In a general error case, the card is not marked online */
3237         return rv;
3238 }
3239
3240 static unsigned char MCL3_testmsg[] = {
3241 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3242 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3243 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3244 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3245 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3246 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3247 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3248 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3249 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3250 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3251 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3252 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3253 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3254 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3255 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3256 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3257 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3258 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3259 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3260 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3261 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3262 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3263 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3264 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3265 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3266 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3267 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3268 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3269 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3270 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3271 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3272 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3273 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3274 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3275 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3276 };
3277
3278 static int
3279 probe_PCIXCC_type(struct device *devPtr)
3280 {
3281         int rv, dv, i, index, length;
3282         unsigned char psmid[8];
3283         static unsigned char loc_testmsg[548];
3284         struct CPRBX *cprbx_p;
3285
3286         index = devPtr->dev_self_x;
3287         rv = 0;
3288         do {
3289                 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3290                 length = sizeof(MCL3_testmsg) - 0x0C;
3291                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3292                 if (dv) {
3293                         PDEBUG("dv returned = %d\n", dv);
3294                         if (dv == DEV_SEN_EXCEPTION) {
3295                                 rv = SEN_FATAL_ERROR;
3296                                 PRINTKC("exception in send to AP %d\n", index);
3297                                 break;
3298                         }
3299                         PDEBUG("return value from send_to_AP: %d\n", rv);
3300                         switch (dv) {
3301                         case DEV_GONE:
3302                                 PDEBUG("dev %d not available\n", index);
3303                                 rv = SEN_NOT_AVAIL;
3304                                 break;
3305                         case DEV_ONLINE:
3306                                 rv = 0;
3307                                 break;
3308                         case DEV_EMPTY:
3309                                 rv = SEN_NOT_AVAIL;
3310                                 break;
3311                         case DEV_NO_WORK:
3312                                 rv = SEN_FATAL_ERROR;
3313                                 break;
3314                         case DEV_BAD_MESSAGE:
3315                                 rv = SEN_USER_ERROR;
3316                                 break;
3317                         case DEV_QUEUE_FULL:
3318                                 rv = SEN_QUEUE_FULL;
3319                                 break;
3320                         default:
3321                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3322                                 rv = SEN_NOT_AVAIL;
3323                                 break;
3324                         }
3325                 }
3326
3327                 if (rv)
3328                         break;
3329
3330                 for (i = 0; i < 6; i++) {
3331                         mdelay(300);
3332                         dv = receive_from_AP(index, z90crypt.cdx,
3333                                              devPtr->dev_resp_l,
3334                                              devPtr->dev_resp_p, psmid);
3335                         PDEBUG("dv returned by DQ = %d\n", dv);
3336                         if (dv == DEV_REC_EXCEPTION) {
3337                                 rv = REC_FATAL_ERROR;
3338                                 PRINTKC("exception in dequeue %d\n",
3339                                         index);
3340                                 break;
3341                         }
3342                         switch (dv) {
3343                         case DEV_ONLINE:
3344                                 rv = 0;
3345                                 break;
3346                         case DEV_EMPTY:
3347                                 rv = REC_EMPTY;
3348                                 break;
3349                         case DEV_NO_WORK:
3350                                 rv = REC_NO_WORK;
3351                                 break;
3352                         case DEV_BAD_MESSAGE:
3353                         case DEV_GONE:
3354                         default:
3355                                 rv = REC_NO_RESPONSE;
3356                                 break;
3357                         }
3358                         if ((rv != 0) && (rv != REC_NO_WORK))
3359                                 break;
3360                         if (rv == 0)
3361                                 break;
3362                 }
3363                 if (rv)
3364                         break;
3365                 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3366                 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3367                         devPtr->dev_type = PCIXCC_MCL2;
3368                         PDEBUG("device %d is MCL2\n", index);
3369                 } else {
3370                         devPtr->dev_type = PCIXCC_MCL3;
3371                         PDEBUG("device %d is MCL3\n", index);
3372                 }
3373         } while (0);
3374         /* In a general error case, the card is not marked online */
3375         return rv;
3376 }
3377
3378 module_init(z90crypt_init_module);
3379 module_exit(z90crypt_cleanup_module);