Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[pandora-kernel.git] / drivers / rtc / rtc-vr41xx.c
1 /*
2  *  Driver for NEC VR4100 series Real Time Clock unit.
3  *
4  *  Copyright (C) 2003-2006  Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  */
20 #include <linux/fs.h>
21 #include <linux/init.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/rtc.h>
27 #include <linux/spinlock.h>
28 #include <linux/types.h>
29
30 #include <asm/div64.h>
31 #include <asm/io.h>
32 #include <asm/uaccess.h>
33 #include <asm/vr41xx/vr41xx.h>
34
35 MODULE_AUTHOR("Yoichi Yuasa <yoichi_yuasa@tripeaks.co.jp>");
36 MODULE_DESCRIPTION("NEC VR4100 series RTC driver");
37 MODULE_LICENSE("GPL");
38
39 #define RTC1_TYPE1_START        0x0b0000c0UL
40 #define RTC1_TYPE1_END          0x0b0000dfUL
41 #define RTC2_TYPE1_START        0x0b0001c0UL
42 #define RTC2_TYPE1_END          0x0b0001dfUL
43
44 #define RTC1_TYPE2_START        0x0f000100UL
45 #define RTC1_TYPE2_END          0x0f00011fUL
46 #define RTC2_TYPE2_START        0x0f000120UL
47 #define RTC2_TYPE2_END          0x0f00013fUL
48
49 #define RTC1_SIZE               0x20
50 #define RTC2_SIZE               0x20
51
52 /* RTC 1 registers */
53 #define ETIMELREG               0x00
54 #define ETIMEMREG               0x02
55 #define ETIMEHREG               0x04
56 /* RFU */
57 #define ECMPLREG                0x08
58 #define ECMPMREG                0x0a
59 #define ECMPHREG                0x0c
60 /* RFU */
61 #define RTCL1LREG               0x10
62 #define RTCL1HREG               0x12
63 #define RTCL1CNTLREG            0x14
64 #define RTCL1CNTHREG            0x16
65 #define RTCL2LREG               0x18
66 #define RTCL2HREG               0x1a
67 #define RTCL2CNTLREG            0x1c
68 #define RTCL2CNTHREG            0x1e
69
70 /* RTC 2 registers */
71 #define TCLKLREG                0x00
72 #define TCLKHREG                0x02
73 #define TCLKCNTLREG             0x04
74 #define TCLKCNTHREG             0x06
75 /* RFU */
76 #define RTCINTREG               0x1e
77  #define TCLOCK_INT             0x08
78  #define RTCLONG2_INT           0x04
79  #define RTCLONG1_INT           0x02
80  #define ELAPSEDTIME_INT        0x01
81
82 #define RTC_FREQUENCY           32768
83 #define MAX_PERIODIC_RATE       6553
84 #define MAX_USER_PERIODIC_RATE  64
85
86 static void __iomem *rtc1_base;
87 static void __iomem *rtc2_base;
88
89 #define rtc1_read(offset)               readw(rtc1_base + (offset))
90 #define rtc1_write(offset, value)       writew((value), rtc1_base + (offset))
91
92 #define rtc2_read(offset)               readw(rtc2_base + (offset))
93 #define rtc2_write(offset, value)       writew((value), rtc2_base + (offset))
94
95 static unsigned long epoch = 1970;      /* Jan 1 1970 00:00:00 */
96
97 static spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED;
98 static char rtc_name[] = "RTC";
99 static unsigned long periodic_frequency;
100 static unsigned long periodic_count;
101
102 struct resource rtc_resource[2] = {
103         {       .name   = rtc_name,
104                 .flags  = IORESOURCE_MEM,       },
105         {       .name   = rtc_name,
106                 .flags  = IORESOURCE_MEM,       },
107 };
108
109 static inline unsigned long read_elapsed_second(void)
110 {
111
112         unsigned long first_low, first_mid, first_high;
113
114         unsigned long second_low, second_mid, second_high;
115
116         do {
117                 first_low = rtc1_read(ETIMELREG);
118                 first_mid = rtc1_read(ETIMEMREG);
119                 first_high = rtc1_read(ETIMEHREG);
120                 second_low = rtc1_read(ETIMELREG);
121                 second_mid = rtc1_read(ETIMEMREG);
122                 second_high = rtc1_read(ETIMEHREG);
123         } while (first_low != second_low || first_mid != second_mid ||
124                  first_high != second_high);
125
126         return (first_high << 17) | (first_mid << 1) | (first_low >> 15);
127 }
128
129 static inline void write_elapsed_second(unsigned long sec)
130 {
131         spin_lock_irq(&rtc_lock);
132
133         rtc1_write(ETIMELREG, (uint16_t)(sec << 15));
134         rtc1_write(ETIMEMREG, (uint16_t)(sec >> 1));
135         rtc1_write(ETIMEHREG, (uint16_t)(sec >> 17));
136
137         spin_unlock_irq(&rtc_lock);
138 }
139
140 static void vr41xx_rtc_release(struct device *dev)
141 {
142
143         spin_lock_irq(&rtc_lock);
144
145         rtc1_write(ECMPLREG, 0);
146         rtc1_write(ECMPMREG, 0);
147         rtc1_write(ECMPHREG, 0);
148         rtc1_write(RTCL1LREG, 0);
149         rtc1_write(RTCL1HREG, 0);
150
151         spin_unlock_irq(&rtc_lock);
152
153         disable_irq(ELAPSEDTIME_IRQ);
154         disable_irq(RTCLONG1_IRQ);
155 }
156
157 static int vr41xx_rtc_read_time(struct device *dev, struct rtc_time *time)
158 {
159         unsigned long epoch_sec, elapsed_sec;
160
161         epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
162         elapsed_sec = read_elapsed_second();
163
164         rtc_time_to_tm(epoch_sec + elapsed_sec, time);
165
166         return 0;
167 }
168
169 static int vr41xx_rtc_set_time(struct device *dev, struct rtc_time *time)
170 {
171         unsigned long epoch_sec, current_sec;
172
173         epoch_sec = mktime(epoch, 1, 1, 0, 0, 0);
174         current_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
175                              time->tm_hour, time->tm_min, time->tm_sec);
176
177         write_elapsed_second(current_sec - epoch_sec);
178
179         return 0;
180 }
181
182 static int vr41xx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
183 {
184         unsigned long low, mid, high;
185         struct rtc_time *time = &wkalrm->time;
186
187         spin_lock_irq(&rtc_lock);
188
189         low = rtc1_read(ECMPLREG);
190         mid = rtc1_read(ECMPMREG);
191         high = rtc1_read(ECMPHREG);
192
193         spin_unlock_irq(&rtc_lock);
194
195         rtc_time_to_tm((high << 17) | (mid << 1) | (low >> 15), time);
196
197         return 0;
198 }
199
200 static int vr41xx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
201 {
202         unsigned long alarm_sec;
203         struct rtc_time *time = &wkalrm->time;
204
205         alarm_sec = mktime(time->tm_year + 1900, time->tm_mon + 1, time->tm_mday,
206                            time->tm_hour, time->tm_min, time->tm_sec);
207
208         spin_lock_irq(&rtc_lock);
209
210         rtc1_write(ECMPLREG, (uint16_t)(alarm_sec << 15));
211         rtc1_write(ECMPMREG, (uint16_t)(alarm_sec >> 1));
212         rtc1_write(ECMPHREG, (uint16_t)(alarm_sec >> 17));
213
214         spin_unlock_irq(&rtc_lock);
215
216         return 0;
217 }
218
219 static int vr41xx_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
220 {
221         unsigned long count;
222
223         switch (cmd) {
224         case RTC_AIE_ON:
225                 enable_irq(ELAPSEDTIME_IRQ);
226                 break;
227         case RTC_AIE_OFF:
228                 disable_irq(ELAPSEDTIME_IRQ);
229                 break;
230         case RTC_PIE_ON:
231                 enable_irq(RTCLONG1_IRQ);
232                 break;
233         case RTC_PIE_OFF:
234                 disable_irq(RTCLONG1_IRQ);
235                 break;
236         case RTC_IRQP_READ:
237                 return put_user(periodic_frequency, (unsigned long __user *)arg);
238                 break;
239         case RTC_IRQP_SET:
240                 if (arg > MAX_PERIODIC_RATE)
241                         return -EINVAL;
242
243                 if (arg > MAX_USER_PERIODIC_RATE && capable(CAP_SYS_RESOURCE) == 0)
244                         return -EACCES;
245
246                 periodic_frequency = arg;
247
248                 count = RTC_FREQUENCY;
249                 do_div(count, arg);
250
251                 periodic_count = count;
252
253                 spin_lock_irq(&rtc_lock);
254
255                 rtc1_write(RTCL1LREG, count);
256                 rtc1_write(RTCL1HREG, count >> 16);
257
258                 spin_unlock_irq(&rtc_lock);
259                 break;
260         case RTC_EPOCH_READ:
261                 return put_user(epoch, (unsigned long __user *)arg);
262         case RTC_EPOCH_SET:
263                 /* Doesn't support before 1900 */
264                 if (arg < 1900)
265                         return -EINVAL;
266
267                 if (capable(CAP_SYS_TIME) == 0)
268                         return -EACCES;
269
270                 epoch = arg;
271                 break;
272         default:
273                 return -EINVAL;
274         }
275
276         return 0;
277 }
278
279 static irqreturn_t elapsedtime_interrupt(int irq, void *dev_id, struct pt_regs *regs)
280 {
281         struct platform_device *pdev = (struct platform_device *)dev_id;
282         struct rtc_device *rtc = platform_get_drvdata(pdev);
283
284         rtc2_write(RTCINTREG, ELAPSEDTIME_INT);
285
286         rtc_update_irq(&rtc->class_dev, 1, RTC_AF);
287
288         return IRQ_HANDLED;
289 }
290
291 static irqreturn_t rtclong1_interrupt(int irq, void *dev_id, struct pt_regs *regs)
292 {
293         struct platform_device *pdev = (struct platform_device *)dev_id;
294         struct rtc_device *rtc = platform_get_drvdata(pdev);
295         unsigned long count = periodic_count;
296
297         rtc2_write(RTCINTREG, RTCLONG1_INT);
298
299         rtc1_write(RTCL1LREG, count);
300         rtc1_write(RTCL1HREG, count >> 16);
301
302         rtc_update_irq(&rtc->class_dev, 1, RTC_PF);
303
304         return IRQ_HANDLED;
305 }
306
307 static struct rtc_class_ops vr41xx_rtc_ops = {
308         .release        = vr41xx_rtc_release,
309         .ioctl          = vr41xx_rtc_ioctl,
310         .read_time      = vr41xx_rtc_read_time,
311         .set_time       = vr41xx_rtc_set_time,
312         .read_alarm     = vr41xx_rtc_read_alarm,
313         .set_alarm      = vr41xx_rtc_set_alarm,
314 };
315
316 static int __devinit rtc_probe(struct platform_device *pdev)
317 {
318         struct rtc_device *rtc;
319         unsigned int irq;
320         int retval;
321
322         if (pdev->num_resources != 2)
323                 return -EBUSY;
324
325         rtc1_base = ioremap(pdev->resource[0].start, RTC1_SIZE);
326         if (rtc1_base == NULL)
327                 return -EBUSY;
328
329         rtc2_base = ioremap(pdev->resource[1].start, RTC2_SIZE);
330         if (rtc2_base == NULL) {
331                 iounmap(rtc1_base);
332                 rtc1_base = NULL;
333                 return -EBUSY;
334         }
335
336         rtc = rtc_device_register(rtc_name, &pdev->dev, &vr41xx_rtc_ops, THIS_MODULE);
337         if (IS_ERR(rtc)) {
338                 iounmap(rtc1_base);
339                 iounmap(rtc2_base);
340                 rtc1_base = NULL;
341                 rtc2_base = NULL;
342                 return PTR_ERR(rtc);
343         }
344
345         spin_lock_irq(&rtc_lock);
346
347         rtc1_write(ECMPLREG, 0);
348         rtc1_write(ECMPMREG, 0);
349         rtc1_write(ECMPHREG, 0);
350         rtc1_write(RTCL1LREG, 0);
351         rtc1_write(RTCL1HREG, 0);
352
353         spin_unlock_irq(&rtc_lock);
354
355         irq = ELAPSEDTIME_IRQ;
356         retval = request_irq(irq, elapsedtime_interrupt, SA_INTERRUPT,
357                              "elapsed_time", pdev);
358         if (retval == 0) {
359                 irq = RTCLONG1_IRQ;
360                 retval = request_irq(irq, rtclong1_interrupt, SA_INTERRUPT,
361                                      "rtclong1", pdev);
362         }
363
364         if (retval < 0) {
365                 printk(KERN_ERR "rtc: IRQ%d is busy\n", irq);
366                 rtc_device_unregister(rtc);
367                 if (irq == RTCLONG1_IRQ)
368                         free_irq(ELAPSEDTIME_IRQ, NULL);
369                 iounmap(rtc1_base);
370                 iounmap(rtc2_base);
371                 rtc1_base = NULL;
372                 rtc2_base = NULL;
373                 return retval;
374         }
375
376         platform_set_drvdata(pdev, rtc);
377
378         disable_irq(ELAPSEDTIME_IRQ);
379         disable_irq(RTCLONG1_IRQ);
380
381         printk(KERN_INFO "rtc: Real Time Clock of NEC VR4100 series\n");
382
383         return 0;
384 }
385
386 static int __devexit rtc_remove(struct platform_device *pdev)
387 {
388         struct rtc_device *rtc;
389
390         rtc = platform_get_drvdata(pdev);
391         if (rtc != NULL)
392                 rtc_device_unregister(rtc);
393
394         platform_set_drvdata(pdev, NULL);
395
396         free_irq(ELAPSEDTIME_IRQ, NULL);
397         free_irq(RTCLONG1_IRQ, NULL);
398         if (rtc1_base != NULL)
399                 iounmap(rtc1_base);
400         if (rtc2_base != NULL)
401                 iounmap(rtc2_base);
402
403         return 0;
404 }
405
406 static struct platform_device *rtc_platform_device;
407
408 static struct platform_driver rtc_platform_driver = {
409         .probe          = rtc_probe,
410         .remove         = __devexit_p(rtc_remove),
411         .driver         = {
412                 .name   = rtc_name,
413                 .owner  = THIS_MODULE,
414         },
415 };
416
417 static int __init vr41xx_rtc_init(void)
418 {
419         int retval;
420
421         switch (current_cpu_data.cputype) {
422         case CPU_VR4111:
423         case CPU_VR4121:
424                 rtc_resource[0].start = RTC1_TYPE1_START;
425                 rtc_resource[0].end = RTC1_TYPE1_END;
426                 rtc_resource[1].start = RTC2_TYPE1_START;
427                 rtc_resource[1].end = RTC2_TYPE1_END;
428                 break;
429         case CPU_VR4122:
430         case CPU_VR4131:
431         case CPU_VR4133:
432                 rtc_resource[0].start = RTC1_TYPE2_START;
433                 rtc_resource[0].end = RTC1_TYPE2_END;
434                 rtc_resource[1].start = RTC2_TYPE2_START;
435                 rtc_resource[1].end = RTC2_TYPE2_END;
436                 break;
437         default:
438                 return -ENODEV;
439                 break;
440         }
441
442         rtc_platform_device = platform_device_alloc("RTC", -1);
443         if (rtc_platform_device == NULL)
444                 return -ENOMEM;
445
446         retval = platform_device_add_resources(rtc_platform_device,
447                                 rtc_resource, ARRAY_SIZE(rtc_resource));
448
449         if (retval == 0)
450                 retval = platform_device_add(rtc_platform_device);
451
452         if (retval < 0) {
453                 platform_device_put(rtc_platform_device);
454                 return retval;
455         }
456
457         retval = platform_driver_register(&rtc_platform_driver);
458         if (retval < 0)
459                 platform_device_unregister(rtc_platform_device);
460
461         return retval;
462 }
463
464 static void __exit vr41xx_rtc_exit(void)
465 {
466         platform_driver_unregister(&rtc_platform_driver);
467         platform_device_unregister(rtc_platform_device);
468 }
469
470 module_init(vr41xx_rtc_init);
471 module_exit(vr41xx_rtc_exit);