Merge branch 'topic/hda' into for-linus
[pandora-kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/regulator.h>
34
35 #include "dummy.h"
36
37 #define rdev_crit(rdev, fmt, ...)                                       \
38         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_err(rdev, fmt, ...)                                        \
40         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_warn(rdev, fmt, ...)                                       \
42         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_info(rdev, fmt, ...)                                       \
44         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_dbg(rdev, fmt, ...)                                        \
46         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48 static DEFINE_MUTEX(regulator_list_mutex);
49 static LIST_HEAD(regulator_list);
50 static LIST_HEAD(regulator_map_list);
51 static bool has_full_constraints;
52 static bool board_wants_dummy_regulator;
53
54 #ifdef CONFIG_DEBUG_FS
55 static struct dentry *debugfs_root;
56 #endif
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator
72  *
73  * One for each consumer device.
74  */
75 struct regulator {
76         struct device *dev;
77         struct list_head list;
78         int uA_load;
79         int min_uV;
80         int max_uV;
81         char *supply_name;
82         struct device_attribute dev_attr;
83         struct regulator_dev *rdev;
84 #ifdef CONFIG_DEBUG_FS
85         struct dentry *debugfs;
86 #endif
87 };
88
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95                                   unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97                                      int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99                                           struct device *dev,
100                                           const char *supply_name);
101
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104         if (rdev->constraints && rdev->constraints->name)
105                 return rdev->constraints->name;
106         else if (rdev->desc->name)
107                 return rdev->desc->name;
108         else
109                 return "";
110 }
111
112 /* gets the regulator for a given consumer device */
113 static struct regulator *get_device_regulator(struct device *dev)
114 {
115         struct regulator *regulator = NULL;
116         struct regulator_dev *rdev;
117
118         mutex_lock(&regulator_list_mutex);
119         list_for_each_entry(rdev, &regulator_list, list) {
120                 mutex_lock(&rdev->mutex);
121                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122                         if (regulator->dev == dev) {
123                                 mutex_unlock(&rdev->mutex);
124                                 mutex_unlock(&regulator_list_mutex);
125                                 return regulator;
126                         }
127                 }
128                 mutex_unlock(&rdev->mutex);
129         }
130         mutex_unlock(&regulator_list_mutex);
131         return NULL;
132 }
133
134 /* Platform voltage constraint check */
135 static int regulator_check_voltage(struct regulator_dev *rdev,
136                                    int *min_uV, int *max_uV)
137 {
138         BUG_ON(*min_uV > *max_uV);
139
140         if (!rdev->constraints) {
141                 rdev_err(rdev, "no constraints\n");
142                 return -ENODEV;
143         }
144         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145                 rdev_err(rdev, "operation not allowed\n");
146                 return -EPERM;
147         }
148
149         if (*max_uV > rdev->constraints->max_uV)
150                 *max_uV = rdev->constraints->max_uV;
151         if (*min_uV < rdev->constraints->min_uV)
152                 *min_uV = rdev->constraints->min_uV;
153
154         if (*min_uV > *max_uV) {
155                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156                          *min_uV, *max_uV);
157                 return -EINVAL;
158         }
159
160         return 0;
161 }
162
163 /* Make sure we select a voltage that suits the needs of all
164  * regulator consumers
165  */
166 static int regulator_check_consumers(struct regulator_dev *rdev,
167                                      int *min_uV, int *max_uV)
168 {
169         struct regulator *regulator;
170
171         list_for_each_entry(regulator, &rdev->consumer_list, list) {
172                 /*
173                  * Assume consumers that didn't say anything are OK
174                  * with anything in the constraint range.
175                  */
176                 if (!regulator->min_uV && !regulator->max_uV)
177                         continue;
178
179                 if (*max_uV > regulator->max_uV)
180                         *max_uV = regulator->max_uV;
181                 if (*min_uV < regulator->min_uV)
182                         *min_uV = regulator->min_uV;
183         }
184
185         if (*min_uV > *max_uV)
186                 return -EINVAL;
187
188         return 0;
189 }
190
191 /* current constraint check */
192 static int regulator_check_current_limit(struct regulator_dev *rdev,
193                                         int *min_uA, int *max_uA)
194 {
195         BUG_ON(*min_uA > *max_uA);
196
197         if (!rdev->constraints) {
198                 rdev_err(rdev, "no constraints\n");
199                 return -ENODEV;
200         }
201         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202                 rdev_err(rdev, "operation not allowed\n");
203                 return -EPERM;
204         }
205
206         if (*max_uA > rdev->constraints->max_uA)
207                 *max_uA = rdev->constraints->max_uA;
208         if (*min_uA < rdev->constraints->min_uA)
209                 *min_uA = rdev->constraints->min_uA;
210
211         if (*min_uA > *max_uA) {
212                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213                          *min_uA, *max_uA);
214                 return -EINVAL;
215         }
216
217         return 0;
218 }
219
220 /* operating mode constraint check */
221 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222 {
223         switch (*mode) {
224         case REGULATOR_MODE_FAST:
225         case REGULATOR_MODE_NORMAL:
226         case REGULATOR_MODE_IDLE:
227         case REGULATOR_MODE_STANDBY:
228                 break;
229         default:
230                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231                 return -EINVAL;
232         }
233
234         if (!rdev->constraints) {
235                 rdev_err(rdev, "no constraints\n");
236                 return -ENODEV;
237         }
238         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239                 rdev_err(rdev, "operation not allowed\n");
240                 return -EPERM;
241         }
242
243         /* The modes are bitmasks, the most power hungry modes having
244          * the lowest values. If the requested mode isn't supported
245          * try higher modes. */
246         while (*mode) {
247                 if (rdev->constraints->valid_modes_mask & *mode)
248                         return 0;
249                 *mode /= 2;
250         }
251
252         return -EINVAL;
253 }
254
255 /* dynamic regulator mode switching constraint check */
256 static int regulator_check_drms(struct regulator_dev *rdev)
257 {
258         if (!rdev->constraints) {
259                 rdev_err(rdev, "no constraints\n");
260                 return -ENODEV;
261         }
262         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263                 rdev_err(rdev, "operation not allowed\n");
264                 return -EPERM;
265         }
266         return 0;
267 }
268
269 static ssize_t device_requested_uA_show(struct device *dev,
270                              struct device_attribute *attr, char *buf)
271 {
272         struct regulator *regulator;
273
274         regulator = get_device_regulator(dev);
275         if (regulator == NULL)
276                 return 0;
277
278         return sprintf(buf, "%d\n", regulator->uA_load);
279 }
280
281 static ssize_t regulator_uV_show(struct device *dev,
282                                 struct device_attribute *attr, char *buf)
283 {
284         struct regulator_dev *rdev = dev_get_drvdata(dev);
285         ssize_t ret;
286
287         mutex_lock(&rdev->mutex);
288         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289         mutex_unlock(&rdev->mutex);
290
291         return ret;
292 }
293 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295 static ssize_t regulator_uA_show(struct device *dev,
296                                 struct device_attribute *attr, char *buf)
297 {
298         struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301 }
302 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304 static ssize_t regulator_name_show(struct device *dev,
305                              struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309         return sprintf(buf, "%s\n", rdev_get_name(rdev));
310 }
311
312 static ssize_t regulator_print_opmode(char *buf, int mode)
313 {
314         switch (mode) {
315         case REGULATOR_MODE_FAST:
316                 return sprintf(buf, "fast\n");
317         case REGULATOR_MODE_NORMAL:
318                 return sprintf(buf, "normal\n");
319         case REGULATOR_MODE_IDLE:
320                 return sprintf(buf, "idle\n");
321         case REGULATOR_MODE_STANDBY:
322                 return sprintf(buf, "standby\n");
323         }
324         return sprintf(buf, "unknown\n");
325 }
326
327 static ssize_t regulator_opmode_show(struct device *dev,
328                                     struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333 }
334 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336 static ssize_t regulator_print_state(char *buf, int state)
337 {
338         if (state > 0)
339                 return sprintf(buf, "enabled\n");
340         else if (state == 0)
341                 return sprintf(buf, "disabled\n");
342         else
343                 return sprintf(buf, "unknown\n");
344 }
345
346 static ssize_t regulator_state_show(struct device *dev,
347                                    struct device_attribute *attr, char *buf)
348 {
349         struct regulator_dev *rdev = dev_get_drvdata(dev);
350         ssize_t ret;
351
352         mutex_lock(&rdev->mutex);
353         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354         mutex_unlock(&rdev->mutex);
355
356         return ret;
357 }
358 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360 static ssize_t regulator_status_show(struct device *dev,
361                                    struct device_attribute *attr, char *buf)
362 {
363         struct regulator_dev *rdev = dev_get_drvdata(dev);
364         int status;
365         char *label;
366
367         status = rdev->desc->ops->get_status(rdev);
368         if (status < 0)
369                 return status;
370
371         switch (status) {
372         case REGULATOR_STATUS_OFF:
373                 label = "off";
374                 break;
375         case REGULATOR_STATUS_ON:
376                 label = "on";
377                 break;
378         case REGULATOR_STATUS_ERROR:
379                 label = "error";
380                 break;
381         case REGULATOR_STATUS_FAST:
382                 label = "fast";
383                 break;
384         case REGULATOR_STATUS_NORMAL:
385                 label = "normal";
386                 break;
387         case REGULATOR_STATUS_IDLE:
388                 label = "idle";
389                 break;
390         case REGULATOR_STATUS_STANDBY:
391                 label = "standby";
392                 break;
393         default:
394                 return -ERANGE;
395         }
396
397         return sprintf(buf, "%s\n", label);
398 }
399 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401 static ssize_t regulator_min_uA_show(struct device *dev,
402                                     struct device_attribute *attr, char *buf)
403 {
404         struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406         if (!rdev->constraints)
407                 return sprintf(buf, "constraint not defined\n");
408
409         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410 }
411 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413 static ssize_t regulator_max_uA_show(struct device *dev,
414                                     struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         if (!rdev->constraints)
419                 return sprintf(buf, "constraint not defined\n");
420
421         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422 }
423 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425 static ssize_t regulator_min_uV_show(struct device *dev,
426                                     struct device_attribute *attr, char *buf)
427 {
428         struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430         if (!rdev->constraints)
431                 return sprintf(buf, "constraint not defined\n");
432
433         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434 }
435 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437 static ssize_t regulator_max_uV_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446 }
447 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449 static ssize_t regulator_total_uA_show(struct device *dev,
450                                       struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453         struct regulator *regulator;
454         int uA = 0;
455
456         mutex_lock(&rdev->mutex);
457         list_for_each_entry(regulator, &rdev->consumer_list, list)
458                 uA += regulator->uA_load;
459         mutex_unlock(&rdev->mutex);
460         return sprintf(buf, "%d\n", uA);
461 }
462 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464 static ssize_t regulator_num_users_show(struct device *dev,
465                                       struct device_attribute *attr, char *buf)
466 {
467         struct regulator_dev *rdev = dev_get_drvdata(dev);
468         return sprintf(buf, "%d\n", rdev->use_count);
469 }
470
471 static ssize_t regulator_type_show(struct device *dev,
472                                   struct device_attribute *attr, char *buf)
473 {
474         struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476         switch (rdev->desc->type) {
477         case REGULATOR_VOLTAGE:
478                 return sprintf(buf, "voltage\n");
479         case REGULATOR_CURRENT:
480                 return sprintf(buf, "current\n");
481         }
482         return sprintf(buf, "unknown\n");
483 }
484
485 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486                                 struct device_attribute *attr, char *buf)
487 {
488         struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491 }
492 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493                 regulator_suspend_mem_uV_show, NULL);
494
495 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496                                 struct device_attribute *attr, char *buf)
497 {
498         struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501 }
502 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503                 regulator_suspend_disk_uV_show, NULL);
504
505 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506                                 struct device_attribute *attr, char *buf)
507 {
508         struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511 }
512 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513                 regulator_suspend_standby_uV_show, NULL);
514
515 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return regulator_print_opmode(buf,
521                 rdev->constraints->state_mem.mode);
522 }
523 static DEVICE_ATTR(suspend_mem_mode, 0444,
524                 regulator_suspend_mem_mode_show, NULL);
525
526 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return regulator_print_opmode(buf,
532                 rdev->constraints->state_disk.mode);
533 }
534 static DEVICE_ATTR(suspend_disk_mode, 0444,
535                 regulator_suspend_disk_mode_show, NULL);
536
537 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return regulator_print_opmode(buf,
543                 rdev->constraints->state_standby.mode);
544 }
545 static DEVICE_ATTR(suspend_standby_mode, 0444,
546                 regulator_suspend_standby_mode_show, NULL);
547
548 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549                                    struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         return regulator_print_state(buf,
554                         rdev->constraints->state_mem.enabled);
555 }
556 static DEVICE_ATTR(suspend_mem_state, 0444,
557                 regulator_suspend_mem_state_show, NULL);
558
559 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560                                    struct device_attribute *attr, char *buf)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564         return regulator_print_state(buf,
565                         rdev->constraints->state_disk.enabled);
566 }
567 static DEVICE_ATTR(suspend_disk_state, 0444,
568                 regulator_suspend_disk_state_show, NULL);
569
570 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571                                    struct device_attribute *attr, char *buf)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575         return regulator_print_state(buf,
576                         rdev->constraints->state_standby.enabled);
577 }
578 static DEVICE_ATTR(suspend_standby_state, 0444,
579                 regulator_suspend_standby_state_show, NULL);
580
581
582 /*
583  * These are the only attributes are present for all regulators.
584  * Other attributes are a function of regulator functionality.
585  */
586 static struct device_attribute regulator_dev_attrs[] = {
587         __ATTR(name, 0444, regulator_name_show, NULL),
588         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589         __ATTR(type, 0444, regulator_type_show, NULL),
590         __ATTR_NULL,
591 };
592
593 static void regulator_dev_release(struct device *dev)
594 {
595         struct regulator_dev *rdev = dev_get_drvdata(dev);
596         kfree(rdev);
597 }
598
599 static struct class regulator_class = {
600         .name = "regulator",
601         .dev_release = regulator_dev_release,
602         .dev_attrs = regulator_dev_attrs,
603 };
604
605 /* Calculate the new optimum regulator operating mode based on the new total
606  * consumer load. All locks held by caller */
607 static void drms_uA_update(struct regulator_dev *rdev)
608 {
609         struct regulator *sibling;
610         int current_uA = 0, output_uV, input_uV, err;
611         unsigned int mode;
612
613         err = regulator_check_drms(rdev);
614         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615             (!rdev->desc->ops->get_voltage &&
616              !rdev->desc->ops->get_voltage_sel) ||
617             !rdev->desc->ops->set_mode)
618                 return;
619
620         /* get output voltage */
621         output_uV = _regulator_get_voltage(rdev);
622         if (output_uV <= 0)
623                 return;
624
625         /* get input voltage */
626         input_uV = 0;
627         if (rdev->supply)
628                 input_uV = _regulator_get_voltage(rdev);
629         if (input_uV <= 0)
630                 input_uV = rdev->constraints->input_uV;
631         if (input_uV <= 0)
632                 return;
633
634         /* calc total requested load */
635         list_for_each_entry(sibling, &rdev->consumer_list, list)
636                 current_uA += sibling->uA_load;
637
638         /* now get the optimum mode for our new total regulator load */
639         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640                                                   output_uV, current_uA);
641
642         /* check the new mode is allowed */
643         err = regulator_mode_constrain(rdev, &mode);
644         if (err == 0)
645                 rdev->desc->ops->set_mode(rdev, mode);
646 }
647
648 static int suspend_set_state(struct regulator_dev *rdev,
649         struct regulator_state *rstate)
650 {
651         int ret = 0;
652         bool can_set_state;
653
654         can_set_state = rdev->desc->ops->set_suspend_enable &&
655                 rdev->desc->ops->set_suspend_disable;
656
657         /* If we have no suspend mode configration don't set anything;
658          * only warn if the driver actually makes the suspend mode
659          * configurable.
660          */
661         if (!rstate->enabled && !rstate->disabled) {
662                 if (can_set_state)
663                         rdev_warn(rdev, "No configuration\n");
664                 return 0;
665         }
666
667         if (rstate->enabled && rstate->disabled) {
668                 rdev_err(rdev, "invalid configuration\n");
669                 return -EINVAL;
670         }
671
672         if (!can_set_state) {
673                 rdev_err(rdev, "no way to set suspend state\n");
674                 return -EINVAL;
675         }
676
677         if (rstate->enabled)
678                 ret = rdev->desc->ops->set_suspend_enable(rdev);
679         else
680                 ret = rdev->desc->ops->set_suspend_disable(rdev);
681         if (ret < 0) {
682                 rdev_err(rdev, "failed to enabled/disable\n");
683                 return ret;
684         }
685
686         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688                 if (ret < 0) {
689                         rdev_err(rdev, "failed to set voltage\n");
690                         return ret;
691                 }
692         }
693
694         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696                 if (ret < 0) {
697                         rdev_err(rdev, "failed to set mode\n");
698                         return ret;
699                 }
700         }
701         return ret;
702 }
703
704 /* locks held by caller */
705 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706 {
707         if (!rdev->constraints)
708                 return -EINVAL;
709
710         switch (state) {
711         case PM_SUSPEND_STANDBY:
712                 return suspend_set_state(rdev,
713                         &rdev->constraints->state_standby);
714         case PM_SUSPEND_MEM:
715                 return suspend_set_state(rdev,
716                         &rdev->constraints->state_mem);
717         case PM_SUSPEND_MAX:
718                 return suspend_set_state(rdev,
719                         &rdev->constraints->state_disk);
720         default:
721                 return -EINVAL;
722         }
723 }
724
725 static void print_constraints(struct regulator_dev *rdev)
726 {
727         struct regulation_constraints *constraints = rdev->constraints;
728         char buf[80] = "";
729         int count = 0;
730         int ret;
731
732         if (constraints->min_uV && constraints->max_uV) {
733                 if (constraints->min_uV == constraints->max_uV)
734                         count += sprintf(buf + count, "%d mV ",
735                                          constraints->min_uV / 1000);
736                 else
737                         count += sprintf(buf + count, "%d <--> %d mV ",
738                                          constraints->min_uV / 1000,
739                                          constraints->max_uV / 1000);
740         }
741
742         if (!constraints->min_uV ||
743             constraints->min_uV != constraints->max_uV) {
744                 ret = _regulator_get_voltage(rdev);
745                 if (ret > 0)
746                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
747         }
748
749         if (constraints->uV_offset)
750                 count += sprintf(buf, "%dmV offset ",
751                                  constraints->uV_offset / 1000);
752
753         if (constraints->min_uA && constraints->max_uA) {
754                 if (constraints->min_uA == constraints->max_uA)
755                         count += sprintf(buf + count, "%d mA ",
756                                          constraints->min_uA / 1000);
757                 else
758                         count += sprintf(buf + count, "%d <--> %d mA ",
759                                          constraints->min_uA / 1000,
760                                          constraints->max_uA / 1000);
761         }
762
763         if (!constraints->min_uA ||
764             constraints->min_uA != constraints->max_uA) {
765                 ret = _regulator_get_current_limit(rdev);
766                 if (ret > 0)
767                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
768         }
769
770         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771                 count += sprintf(buf + count, "fast ");
772         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773                 count += sprintf(buf + count, "normal ");
774         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775                 count += sprintf(buf + count, "idle ");
776         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777                 count += sprintf(buf + count, "standby");
778
779         rdev_info(rdev, "%s\n", buf);
780 }
781
782 static int machine_constraints_voltage(struct regulator_dev *rdev,
783         struct regulation_constraints *constraints)
784 {
785         struct regulator_ops *ops = rdev->desc->ops;
786         int ret;
787
788         /* do we need to apply the constraint voltage */
789         if (rdev->constraints->apply_uV &&
790             rdev->constraints->min_uV == rdev->constraints->max_uV) {
791                 ret = _regulator_do_set_voltage(rdev,
792                                                 rdev->constraints->min_uV,
793                                                 rdev->constraints->max_uV);
794                 if (ret < 0) {
795                         rdev_err(rdev, "failed to apply %duV constraint\n",
796                                  rdev->constraints->min_uV);
797                         return ret;
798                 }
799         }
800
801         /* constrain machine-level voltage specs to fit
802          * the actual range supported by this regulator.
803          */
804         if (ops->list_voltage && rdev->desc->n_voltages) {
805                 int     count = rdev->desc->n_voltages;
806                 int     i;
807                 int     min_uV = INT_MAX;
808                 int     max_uV = INT_MIN;
809                 int     cmin = constraints->min_uV;
810                 int     cmax = constraints->max_uV;
811
812                 /* it's safe to autoconfigure fixed-voltage supplies
813                    and the constraints are used by list_voltage. */
814                 if (count == 1 && !cmin) {
815                         cmin = 1;
816                         cmax = INT_MAX;
817                         constraints->min_uV = cmin;
818                         constraints->max_uV = cmax;
819                 }
820
821                 /* voltage constraints are optional */
822                 if ((cmin == 0) && (cmax == 0))
823                         return 0;
824
825                 /* else require explicit machine-level constraints */
826                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827                         rdev_err(rdev, "invalid voltage constraints\n");
828                         return -EINVAL;
829                 }
830
831                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832                 for (i = 0; i < count; i++) {
833                         int     value;
834
835                         value = ops->list_voltage(rdev, i);
836                         if (value <= 0)
837                                 continue;
838
839                         /* maybe adjust [min_uV..max_uV] */
840                         if (value >= cmin && value < min_uV)
841                                 min_uV = value;
842                         if (value <= cmax && value > max_uV)
843                                 max_uV = value;
844                 }
845
846                 /* final: [min_uV..max_uV] valid iff constraints valid */
847                 if (max_uV < min_uV) {
848                         rdev_err(rdev, "unsupportable voltage constraints\n");
849                         return -EINVAL;
850                 }
851
852                 /* use regulator's subset of machine constraints */
853                 if (constraints->min_uV < min_uV) {
854                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855                                  constraints->min_uV, min_uV);
856                         constraints->min_uV = min_uV;
857                 }
858                 if (constraints->max_uV > max_uV) {
859                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860                                  constraints->max_uV, max_uV);
861                         constraints->max_uV = max_uV;
862                 }
863         }
864
865         return 0;
866 }
867
868 /**
869  * set_machine_constraints - sets regulator constraints
870  * @rdev: regulator source
871  * @constraints: constraints to apply
872  *
873  * Allows platform initialisation code to define and constrain
874  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
875  * Constraints *must* be set by platform code in order for some
876  * regulator operations to proceed i.e. set_voltage, set_current_limit,
877  * set_mode.
878  */
879 static int set_machine_constraints(struct regulator_dev *rdev,
880         const struct regulation_constraints *constraints)
881 {
882         int ret = 0;
883         struct regulator_ops *ops = rdev->desc->ops;
884
885         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886                                     GFP_KERNEL);
887         if (!rdev->constraints)
888                 return -ENOMEM;
889
890         ret = machine_constraints_voltage(rdev, rdev->constraints);
891         if (ret != 0)
892                 goto out;
893
894         /* do we need to setup our suspend state */
895         if (constraints->initial_state) {
896                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897                 if (ret < 0) {
898                         rdev_err(rdev, "failed to set suspend state\n");
899                         goto out;
900                 }
901         }
902
903         if (constraints->initial_mode) {
904                 if (!ops->set_mode) {
905                         rdev_err(rdev, "no set_mode operation\n");
906                         ret = -EINVAL;
907                         goto out;
908                 }
909
910                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911                 if (ret < 0) {
912                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913                         goto out;
914                 }
915         }
916
917         /* If the constraints say the regulator should be on at this point
918          * and we have control then make sure it is enabled.
919          */
920         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921             ops->enable) {
922                 ret = ops->enable(rdev);
923                 if (ret < 0) {
924                         rdev_err(rdev, "failed to enable\n");
925                         goto out;
926                 }
927         }
928
929         print_constraints(rdev);
930         return 0;
931 out:
932         kfree(rdev->constraints);
933         rdev->constraints = NULL;
934         return ret;
935 }
936
937 /**
938  * set_supply - set regulator supply regulator
939  * @rdev: regulator name
940  * @supply_rdev: supply regulator name
941  *
942  * Called by platform initialisation code to set the supply regulator for this
943  * regulator. This ensures that a regulators supply will also be enabled by the
944  * core if it's child is enabled.
945  */
946 static int set_supply(struct regulator_dev *rdev,
947                       struct regulator_dev *supply_rdev)
948 {
949         int err;
950
951         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954         if (IS_ERR(rdev->supply)) {
955                 err = PTR_ERR(rdev->supply);
956                 rdev->supply = NULL;
957                 return err;
958         }
959
960         return 0;
961 }
962
963 /**
964  * set_consumer_device_supply - Bind a regulator to a symbolic supply
965  * @rdev:         regulator source
966  * @consumer_dev: device the supply applies to
967  * @consumer_dev_name: dev_name() string for device supply applies to
968  * @supply:       symbolic name for supply
969  *
970  * Allows platform initialisation code to map physical regulator
971  * sources to symbolic names for supplies for use by devices.  Devices
972  * should use these symbolic names to request regulators, avoiding the
973  * need to provide board-specific regulator names as platform data.
974  *
975  * Only one of consumer_dev and consumer_dev_name may be specified.
976  */
977 static int set_consumer_device_supply(struct regulator_dev *rdev,
978         struct device *consumer_dev, const char *consumer_dev_name,
979         const char *supply)
980 {
981         struct regulator_map *node;
982         int has_dev;
983
984         if (consumer_dev && consumer_dev_name)
985                 return -EINVAL;
986
987         if (!consumer_dev_name && consumer_dev)
988                 consumer_dev_name = dev_name(consumer_dev);
989
990         if (supply == NULL)
991                 return -EINVAL;
992
993         if (consumer_dev_name != NULL)
994                 has_dev = 1;
995         else
996                 has_dev = 0;
997
998         list_for_each_entry(node, &regulator_map_list, list) {
999                 if (node->dev_name && consumer_dev_name) {
1000                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001                                 continue;
1002                 } else if (node->dev_name || consumer_dev_name) {
1003                         continue;
1004                 }
1005
1006                 if (strcmp(node->supply, supply) != 0)
1007                         continue;
1008
1009                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010                         dev_name(&node->regulator->dev),
1011                         node->regulator->desc->name,
1012                         supply,
1013                         dev_name(&rdev->dev), rdev_get_name(rdev));
1014                 return -EBUSY;
1015         }
1016
1017         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018         if (node == NULL)
1019                 return -ENOMEM;
1020
1021         node->regulator = rdev;
1022         node->supply = supply;
1023
1024         if (has_dev) {
1025                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026                 if (node->dev_name == NULL) {
1027                         kfree(node);
1028                         return -ENOMEM;
1029                 }
1030         }
1031
1032         list_add(&node->list, &regulator_map_list);
1033         return 0;
1034 }
1035
1036 static void unset_regulator_supplies(struct regulator_dev *rdev)
1037 {
1038         struct regulator_map *node, *n;
1039
1040         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041                 if (rdev == node->regulator) {
1042                         list_del(&node->list);
1043                         kfree(node->dev_name);
1044                         kfree(node);
1045                 }
1046         }
1047 }
1048
1049 #define REG_STR_SIZE    64
1050
1051 static struct regulator *create_regulator(struct regulator_dev *rdev,
1052                                           struct device *dev,
1053                                           const char *supply_name)
1054 {
1055         struct regulator *regulator;
1056         char buf[REG_STR_SIZE];
1057         int err, size;
1058
1059         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060         if (regulator == NULL)
1061                 return NULL;
1062
1063         mutex_lock(&rdev->mutex);
1064         regulator->rdev = rdev;
1065         list_add(&regulator->list, &rdev->consumer_list);
1066
1067         if (dev) {
1068                 /* create a 'requested_microamps_name' sysfs entry */
1069                 size = scnprintf(buf, REG_STR_SIZE,
1070                                  "microamps_requested_%s-%s",
1071                                  dev_name(dev), supply_name);
1072                 if (size >= REG_STR_SIZE)
1073                         goto overflow_err;
1074
1075                 regulator->dev = dev;
1076                 sysfs_attr_init(&regulator->dev_attr.attr);
1077                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078                 if (regulator->dev_attr.attr.name == NULL)
1079                         goto attr_name_err;
1080
1081                 regulator->dev_attr.attr.mode = 0444;
1082                 regulator->dev_attr.show = device_requested_uA_show;
1083                 err = device_create_file(dev, &regulator->dev_attr);
1084                 if (err < 0) {
1085                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086                         goto attr_name_err;
1087                 }
1088
1089                 /* also add a link to the device sysfs entry */
1090                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091                                  dev->kobj.name, supply_name);
1092                 if (size >= REG_STR_SIZE)
1093                         goto attr_err;
1094
1095                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096                 if (regulator->supply_name == NULL)
1097                         goto attr_err;
1098
1099                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100                                         buf);
1101                 if (err) {
1102                         rdev_warn(rdev, "could not add device link %s err %d\n",
1103                                   dev->kobj.name, err);
1104                         goto link_name_err;
1105                 }
1106         } else {
1107                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108                 if (regulator->supply_name == NULL)
1109                         goto attr_err;
1110         }
1111
1112 #ifdef CONFIG_DEBUG_FS
1113         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114                                                 rdev->debugfs);
1115         if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117                 regulator->debugfs = NULL;
1118         } else {
1119                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120                                    &regulator->uA_load);
1121                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122                                    &regulator->min_uV);
1123                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124                                    &regulator->max_uV);
1125         }
1126 #endif
1127
1128         mutex_unlock(&rdev->mutex);
1129         return regulator;
1130 link_name_err:
1131         kfree(regulator->supply_name);
1132 attr_err:
1133         device_remove_file(regulator->dev, &regulator->dev_attr);
1134 attr_name_err:
1135         kfree(regulator->dev_attr.attr.name);
1136 overflow_err:
1137         list_del(&regulator->list);
1138         kfree(regulator);
1139         mutex_unlock(&rdev->mutex);
1140         return NULL;
1141 }
1142
1143 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144 {
1145         if (!rdev->desc->ops->enable_time)
1146                 return 0;
1147         return rdev->desc->ops->enable_time(rdev);
1148 }
1149
1150 /* Internal regulator request function */
1151 static struct regulator *_regulator_get(struct device *dev, const char *id,
1152                                         int exclusive)
1153 {
1154         struct regulator_dev *rdev;
1155         struct regulator_map *map;
1156         struct regulator *regulator = ERR_PTR(-ENODEV);
1157         const char *devname = NULL;
1158         int ret;
1159
1160         if (id == NULL) {
1161                 pr_err("get() with no identifier\n");
1162                 return regulator;
1163         }
1164
1165         if (dev)
1166                 devname = dev_name(dev);
1167
1168         mutex_lock(&regulator_list_mutex);
1169
1170         list_for_each_entry(map, &regulator_map_list, list) {
1171                 /* If the mapping has a device set up it must match */
1172                 if (map->dev_name &&
1173                     (!devname || strcmp(map->dev_name, devname)))
1174                         continue;
1175
1176                 if (strcmp(map->supply, id) == 0) {
1177                         rdev = map->regulator;
1178                         goto found;
1179                 }
1180         }
1181
1182         if (board_wants_dummy_regulator) {
1183                 rdev = dummy_regulator_rdev;
1184                 goto found;
1185         }
1186
1187 #ifdef CONFIG_REGULATOR_DUMMY
1188         if (!devname)
1189                 devname = "deviceless";
1190
1191         /* If the board didn't flag that it was fully constrained then
1192          * substitute in a dummy regulator so consumers can continue.
1193          */
1194         if (!has_full_constraints) {
1195                 pr_warn("%s supply %s not found, using dummy regulator\n",
1196                         devname, id);
1197                 rdev = dummy_regulator_rdev;
1198                 goto found;
1199         }
1200 #endif
1201
1202         mutex_unlock(&regulator_list_mutex);
1203         return regulator;
1204
1205 found:
1206         if (rdev->exclusive) {
1207                 regulator = ERR_PTR(-EPERM);
1208                 goto out;
1209         }
1210
1211         if (exclusive && rdev->open_count) {
1212                 regulator = ERR_PTR(-EBUSY);
1213                 goto out;
1214         }
1215
1216         if (!try_module_get(rdev->owner))
1217                 goto out;
1218
1219         regulator = create_regulator(rdev, dev, id);
1220         if (regulator == NULL) {
1221                 regulator = ERR_PTR(-ENOMEM);
1222                 module_put(rdev->owner);
1223         }
1224
1225         rdev->open_count++;
1226         if (exclusive) {
1227                 rdev->exclusive = 1;
1228
1229                 ret = _regulator_is_enabled(rdev);
1230                 if (ret > 0)
1231                         rdev->use_count = 1;
1232                 else
1233                         rdev->use_count = 0;
1234         }
1235
1236 out:
1237         mutex_unlock(&regulator_list_mutex);
1238
1239         return regulator;
1240 }
1241
1242 /**
1243  * regulator_get - lookup and obtain a reference to a regulator.
1244  * @dev: device for regulator "consumer"
1245  * @id: Supply name or regulator ID.
1246  *
1247  * Returns a struct regulator corresponding to the regulator producer,
1248  * or IS_ERR() condition containing errno.
1249  *
1250  * Use of supply names configured via regulator_set_device_supply() is
1251  * strongly encouraged.  It is recommended that the supply name used
1252  * should match the name used for the supply and/or the relevant
1253  * device pins in the datasheet.
1254  */
1255 struct regulator *regulator_get(struct device *dev, const char *id)
1256 {
1257         return _regulator_get(dev, id, 0);
1258 }
1259 EXPORT_SYMBOL_GPL(regulator_get);
1260
1261 /**
1262  * regulator_get_exclusive - obtain exclusive access to a regulator.
1263  * @dev: device for regulator "consumer"
1264  * @id: Supply name or regulator ID.
1265  *
1266  * Returns a struct regulator corresponding to the regulator producer,
1267  * or IS_ERR() condition containing errno.  Other consumers will be
1268  * unable to obtain this reference is held and the use count for the
1269  * regulator will be initialised to reflect the current state of the
1270  * regulator.
1271  *
1272  * This is intended for use by consumers which cannot tolerate shared
1273  * use of the regulator such as those which need to force the
1274  * regulator off for correct operation of the hardware they are
1275  * controlling.
1276  *
1277  * Use of supply names configured via regulator_set_device_supply() is
1278  * strongly encouraged.  It is recommended that the supply name used
1279  * should match the name used for the supply and/or the relevant
1280  * device pins in the datasheet.
1281  */
1282 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283 {
1284         return _regulator_get(dev, id, 1);
1285 }
1286 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288 /**
1289  * regulator_put - "free" the regulator source
1290  * @regulator: regulator source
1291  *
1292  * Note: drivers must ensure that all regulator_enable calls made on this
1293  * regulator source are balanced by regulator_disable calls prior to calling
1294  * this function.
1295  */
1296 void regulator_put(struct regulator *regulator)
1297 {
1298         struct regulator_dev *rdev;
1299
1300         if (regulator == NULL || IS_ERR(regulator))
1301                 return;
1302
1303         mutex_lock(&regulator_list_mutex);
1304         rdev = regulator->rdev;
1305
1306 #ifdef CONFIG_DEBUG_FS
1307         debugfs_remove_recursive(regulator->debugfs);
1308 #endif
1309
1310         /* remove any sysfs entries */
1311         if (regulator->dev) {
1312                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313                 device_remove_file(regulator->dev, &regulator->dev_attr);
1314                 kfree(regulator->dev_attr.attr.name);
1315         }
1316         kfree(regulator->supply_name);
1317         list_del(&regulator->list);
1318         kfree(regulator);
1319
1320         rdev->open_count--;
1321         rdev->exclusive = 0;
1322
1323         module_put(rdev->owner);
1324         mutex_unlock(&regulator_list_mutex);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_put);
1327
1328 static int _regulator_can_change_status(struct regulator_dev *rdev)
1329 {
1330         if (!rdev->constraints)
1331                 return 0;
1332
1333         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334                 return 1;
1335         else
1336                 return 0;
1337 }
1338
1339 /* locks held by regulator_enable() */
1340 static int _regulator_enable(struct regulator_dev *rdev)
1341 {
1342         int ret, delay;
1343
1344         /* check voltage and requested load before enabling */
1345         if (rdev->constraints &&
1346             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347                 drms_uA_update(rdev);
1348
1349         if (rdev->use_count == 0) {
1350                 /* The regulator may on if it's not switchable or left on */
1351                 ret = _regulator_is_enabled(rdev);
1352                 if (ret == -EINVAL || ret == 0) {
1353                         if (!_regulator_can_change_status(rdev))
1354                                 return -EPERM;
1355
1356                         if (!rdev->desc->ops->enable)
1357                                 return -EINVAL;
1358
1359                         /* Query before enabling in case configuration
1360                          * dependent.  */
1361                         ret = _regulator_get_enable_time(rdev);
1362                         if (ret >= 0) {
1363                                 delay = ret;
1364                         } else {
1365                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1366                                            ret);
1367                                 delay = 0;
1368                         }
1369
1370                         trace_regulator_enable(rdev_get_name(rdev));
1371
1372                         /* Allow the regulator to ramp; it would be useful
1373                          * to extend this for bulk operations so that the
1374                          * regulators can ramp together.  */
1375                         ret = rdev->desc->ops->enable(rdev);
1376                         if (ret < 0)
1377                                 return ret;
1378
1379                         trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381                         if (delay >= 1000) {
1382                                 mdelay(delay / 1000);
1383                                 udelay(delay % 1000);
1384                         } else if (delay) {
1385                                 udelay(delay);
1386                         }
1387
1388                         trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390                 } else if (ret < 0) {
1391                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392                         return ret;
1393                 }
1394                 /* Fallthrough on positive return values - already enabled */
1395         }
1396
1397         rdev->use_count++;
1398
1399         return 0;
1400 }
1401
1402 /**
1403  * regulator_enable - enable regulator output
1404  * @regulator: regulator source
1405  *
1406  * Request that the regulator be enabled with the regulator output at
1407  * the predefined voltage or current value.  Calls to regulator_enable()
1408  * must be balanced with calls to regulator_disable().
1409  *
1410  * NOTE: the output value can be set by other drivers, boot loader or may be
1411  * hardwired in the regulator.
1412  */
1413 int regulator_enable(struct regulator *regulator)
1414 {
1415         struct regulator_dev *rdev = regulator->rdev;
1416         int ret = 0;
1417
1418         if (rdev->supply) {
1419                 ret = regulator_enable(rdev->supply);
1420                 if (ret != 0)
1421                         return ret;
1422         }
1423
1424         mutex_lock(&rdev->mutex);
1425         ret = _regulator_enable(rdev);
1426         mutex_unlock(&rdev->mutex);
1427
1428         if (ret != 0)
1429                 regulator_disable(rdev->supply);
1430
1431         return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435 /* locks held by regulator_disable() */
1436 static int _regulator_disable(struct regulator_dev *rdev)
1437 {
1438         int ret = 0;
1439
1440         if (WARN(rdev->use_count <= 0,
1441                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442                 return -EIO;
1443
1444         /* are we the last user and permitted to disable ? */
1445         if (rdev->use_count == 1 &&
1446             (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448                 /* we are last user */
1449                 if (_regulator_can_change_status(rdev) &&
1450                     rdev->desc->ops->disable) {
1451                         trace_regulator_disable(rdev_get_name(rdev));
1452
1453                         ret = rdev->desc->ops->disable(rdev);
1454                         if (ret < 0) {
1455                                 rdev_err(rdev, "failed to disable\n");
1456                                 return ret;
1457                         }
1458
1459                         trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462                                              NULL);
1463                 }
1464
1465                 rdev->use_count = 0;
1466         } else if (rdev->use_count > 1) {
1467
1468                 if (rdev->constraints &&
1469                         (rdev->constraints->valid_ops_mask &
1470                         REGULATOR_CHANGE_DRMS))
1471                         drms_uA_update(rdev);
1472
1473                 rdev->use_count--;
1474         }
1475
1476         return ret;
1477 }
1478
1479 /**
1480  * regulator_disable - disable regulator output
1481  * @regulator: regulator source
1482  *
1483  * Disable the regulator output voltage or current.  Calls to
1484  * regulator_enable() must be balanced with calls to
1485  * regulator_disable().
1486  *
1487  * NOTE: this will only disable the regulator output if no other consumer
1488  * devices have it enabled, the regulator device supports disabling and
1489  * machine constraints permit this operation.
1490  */
1491 int regulator_disable(struct regulator *regulator)
1492 {
1493         struct regulator_dev *rdev = regulator->rdev;
1494         int ret = 0;
1495
1496         mutex_lock(&rdev->mutex);
1497         ret = _regulator_disable(rdev);
1498         mutex_unlock(&rdev->mutex);
1499
1500         if (ret == 0 && rdev->supply)
1501                 regulator_disable(rdev->supply);
1502
1503         return ret;
1504 }
1505 EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507 /* locks held by regulator_force_disable() */
1508 static int _regulator_force_disable(struct regulator_dev *rdev)
1509 {
1510         int ret = 0;
1511
1512         /* force disable */
1513         if (rdev->desc->ops->disable) {
1514                 /* ah well, who wants to live forever... */
1515                 ret = rdev->desc->ops->disable(rdev);
1516                 if (ret < 0) {
1517                         rdev_err(rdev, "failed to force disable\n");
1518                         return ret;
1519                 }
1520                 /* notify other consumers that power has been forced off */
1521                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522                         REGULATOR_EVENT_DISABLE, NULL);
1523         }
1524
1525         return ret;
1526 }
1527
1528 /**
1529  * regulator_force_disable - force disable regulator output
1530  * @regulator: regulator source
1531  *
1532  * Forcibly disable the regulator output voltage or current.
1533  * NOTE: this *will* disable the regulator output even if other consumer
1534  * devices have it enabled. This should be used for situations when device
1535  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536  */
1537 int regulator_force_disable(struct regulator *regulator)
1538 {
1539         struct regulator_dev *rdev = regulator->rdev;
1540         int ret;
1541
1542         mutex_lock(&rdev->mutex);
1543         regulator->uA_load = 0;
1544         ret = _regulator_force_disable(regulator->rdev);
1545         mutex_unlock(&rdev->mutex);
1546
1547         if (rdev->supply)
1548                 while (rdev->open_count--)
1549                         regulator_disable(rdev->supply);
1550
1551         return ret;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555 static void regulator_disable_work(struct work_struct *work)
1556 {
1557         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1558                                                   disable_work.work);
1559         int count, i, ret;
1560
1561         mutex_lock(&rdev->mutex);
1562
1563         BUG_ON(!rdev->deferred_disables);
1564
1565         count = rdev->deferred_disables;
1566         rdev->deferred_disables = 0;
1567
1568         for (i = 0; i < count; i++) {
1569                 ret = _regulator_disable(rdev);
1570                 if (ret != 0)
1571                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1572         }
1573
1574         mutex_unlock(&rdev->mutex);
1575
1576         if (rdev->supply) {
1577                 for (i = 0; i < count; i++) {
1578                         ret = regulator_disable(rdev->supply);
1579                         if (ret != 0) {
1580                                 rdev_err(rdev,
1581                                          "Supply disable failed: %d\n", ret);
1582                         }
1583                 }
1584         }
1585 }
1586
1587 /**
1588  * regulator_disable_deferred - disable regulator output with delay
1589  * @regulator: regulator source
1590  * @ms: miliseconds until the regulator is disabled
1591  *
1592  * Execute regulator_disable() on the regulator after a delay.  This
1593  * is intended for use with devices that require some time to quiesce.
1594  *
1595  * NOTE: this will only disable the regulator output if no other consumer
1596  * devices have it enabled, the regulator device supports disabling and
1597  * machine constraints permit this operation.
1598  */
1599 int regulator_disable_deferred(struct regulator *regulator, int ms)
1600 {
1601         struct regulator_dev *rdev = regulator->rdev;
1602         int ret;
1603
1604         mutex_lock(&rdev->mutex);
1605         rdev->deferred_disables++;
1606         mutex_unlock(&rdev->mutex);
1607
1608         ret = schedule_delayed_work(&rdev->disable_work,
1609                                     msecs_to_jiffies(ms));
1610         if (ret < 0)
1611                 return ret;
1612         else
1613                 return 0;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1616
1617 static int _regulator_is_enabled(struct regulator_dev *rdev)
1618 {
1619         /* If we don't know then assume that the regulator is always on */
1620         if (!rdev->desc->ops->is_enabled)
1621                 return 1;
1622
1623         return rdev->desc->ops->is_enabled(rdev);
1624 }
1625
1626 /**
1627  * regulator_is_enabled - is the regulator output enabled
1628  * @regulator: regulator source
1629  *
1630  * Returns positive if the regulator driver backing the source/client
1631  * has requested that the device be enabled, zero if it hasn't, else a
1632  * negative errno code.
1633  *
1634  * Note that the device backing this regulator handle can have multiple
1635  * users, so it might be enabled even if regulator_enable() was never
1636  * called for this particular source.
1637  */
1638 int regulator_is_enabled(struct regulator *regulator)
1639 {
1640         int ret;
1641
1642         mutex_lock(&regulator->rdev->mutex);
1643         ret = _regulator_is_enabled(regulator->rdev);
1644         mutex_unlock(&regulator->rdev->mutex);
1645
1646         return ret;
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1649
1650 /**
1651  * regulator_count_voltages - count regulator_list_voltage() selectors
1652  * @regulator: regulator source
1653  *
1654  * Returns number of selectors, or negative errno.  Selectors are
1655  * numbered starting at zero, and typically correspond to bitfields
1656  * in hardware registers.
1657  */
1658 int regulator_count_voltages(struct regulator *regulator)
1659 {
1660         struct regulator_dev    *rdev = regulator->rdev;
1661
1662         return rdev->desc->n_voltages ? : -EINVAL;
1663 }
1664 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1665
1666 /**
1667  * regulator_list_voltage - enumerate supported voltages
1668  * @regulator: regulator source
1669  * @selector: identify voltage to list
1670  * Context: can sleep
1671  *
1672  * Returns a voltage that can be passed to @regulator_set_voltage(),
1673  * zero if this selector code can't be used on this system, or a
1674  * negative errno.
1675  */
1676 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1677 {
1678         struct regulator_dev    *rdev = regulator->rdev;
1679         struct regulator_ops    *ops = rdev->desc->ops;
1680         int                     ret;
1681
1682         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1683                 return -EINVAL;
1684
1685         mutex_lock(&rdev->mutex);
1686         ret = ops->list_voltage(rdev, selector);
1687         mutex_unlock(&rdev->mutex);
1688
1689         if (ret > 0) {
1690                 if (ret < rdev->constraints->min_uV)
1691                         ret = 0;
1692                 else if (ret > rdev->constraints->max_uV)
1693                         ret = 0;
1694         }
1695
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1699
1700 /**
1701  * regulator_is_supported_voltage - check if a voltage range can be supported
1702  *
1703  * @regulator: Regulator to check.
1704  * @min_uV: Minimum required voltage in uV.
1705  * @max_uV: Maximum required voltage in uV.
1706  *
1707  * Returns a boolean or a negative error code.
1708  */
1709 int regulator_is_supported_voltage(struct regulator *regulator,
1710                                    int min_uV, int max_uV)
1711 {
1712         int i, voltages, ret;
1713
1714         ret = regulator_count_voltages(regulator);
1715         if (ret < 0)
1716                 return ret;
1717         voltages = ret;
1718
1719         for (i = 0; i < voltages; i++) {
1720                 ret = regulator_list_voltage(regulator, i);
1721
1722                 if (ret >= min_uV && ret <= max_uV)
1723                         return 1;
1724         }
1725
1726         return 0;
1727 }
1728
1729 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1730                                      int min_uV, int max_uV)
1731 {
1732         int ret;
1733         int delay = 0;
1734         unsigned int selector;
1735
1736         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1737
1738         min_uV += rdev->constraints->uV_offset;
1739         max_uV += rdev->constraints->uV_offset;
1740
1741         if (rdev->desc->ops->set_voltage) {
1742                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1743                                                    &selector);
1744
1745                 if (rdev->desc->ops->list_voltage)
1746                         selector = rdev->desc->ops->list_voltage(rdev,
1747                                                                  selector);
1748                 else
1749                         selector = -1;
1750         } else if (rdev->desc->ops->set_voltage_sel) {
1751                 int best_val = INT_MAX;
1752                 int i;
1753
1754                 selector = 0;
1755
1756                 /* Find the smallest voltage that falls within the specified
1757                  * range.
1758                  */
1759                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1760                         ret = rdev->desc->ops->list_voltage(rdev, i);
1761                         if (ret < 0)
1762                                 continue;
1763
1764                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1765                                 best_val = ret;
1766                                 selector = i;
1767                         }
1768                 }
1769
1770                 /*
1771                  * If we can't obtain the old selector there is not enough
1772                  * info to call set_voltage_time_sel().
1773                  */
1774                 if (rdev->desc->ops->set_voltage_time_sel &&
1775                     rdev->desc->ops->get_voltage_sel) {
1776                         unsigned int old_selector = 0;
1777
1778                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1779                         if (ret < 0)
1780                                 return ret;
1781                         old_selector = ret;
1782                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1783                                                 old_selector, selector);
1784                 }
1785
1786                 if (best_val != INT_MAX) {
1787                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1788                         selector = best_val;
1789                 } else {
1790                         ret = -EINVAL;
1791                 }
1792         } else {
1793                 ret = -EINVAL;
1794         }
1795
1796         /* Insert any necessary delays */
1797         if (delay >= 1000) {
1798                 mdelay(delay / 1000);
1799                 udelay(delay % 1000);
1800         } else if (delay) {
1801                 udelay(delay);
1802         }
1803
1804         if (ret == 0)
1805                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1806                                      NULL);
1807
1808         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1809
1810         return ret;
1811 }
1812
1813 /**
1814  * regulator_set_voltage - set regulator output voltage
1815  * @regulator: regulator source
1816  * @min_uV: Minimum required voltage in uV
1817  * @max_uV: Maximum acceptable voltage in uV
1818  *
1819  * Sets a voltage regulator to the desired output voltage. This can be set
1820  * during any regulator state. IOW, regulator can be disabled or enabled.
1821  *
1822  * If the regulator is enabled then the voltage will change to the new value
1823  * immediately otherwise if the regulator is disabled the regulator will
1824  * output at the new voltage when enabled.
1825  *
1826  * NOTE: If the regulator is shared between several devices then the lowest
1827  * request voltage that meets the system constraints will be used.
1828  * Regulator system constraints must be set for this regulator before
1829  * calling this function otherwise this call will fail.
1830  */
1831 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1832 {
1833         struct regulator_dev *rdev = regulator->rdev;
1834         int ret = 0;
1835
1836         mutex_lock(&rdev->mutex);
1837
1838         /* If we're setting the same range as last time the change
1839          * should be a noop (some cpufreq implementations use the same
1840          * voltage for multiple frequencies, for example).
1841          */
1842         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1843                 goto out;
1844
1845         /* sanity check */
1846         if (!rdev->desc->ops->set_voltage &&
1847             !rdev->desc->ops->set_voltage_sel) {
1848                 ret = -EINVAL;
1849                 goto out;
1850         }
1851
1852         /* constraints check */
1853         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1854         if (ret < 0)
1855                 goto out;
1856         regulator->min_uV = min_uV;
1857         regulator->max_uV = max_uV;
1858
1859         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1860         if (ret < 0)
1861                 goto out;
1862
1863         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1864
1865 out:
1866         mutex_unlock(&rdev->mutex);
1867         return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1870
1871 /**
1872  * regulator_set_voltage_time - get raise/fall time
1873  * @regulator: regulator source
1874  * @old_uV: starting voltage in microvolts
1875  * @new_uV: target voltage in microvolts
1876  *
1877  * Provided with the starting and ending voltage, this function attempts to
1878  * calculate the time in microseconds required to rise or fall to this new
1879  * voltage.
1880  */
1881 int regulator_set_voltage_time(struct regulator *regulator,
1882                                int old_uV, int new_uV)
1883 {
1884         struct regulator_dev    *rdev = regulator->rdev;
1885         struct regulator_ops    *ops = rdev->desc->ops;
1886         int old_sel = -1;
1887         int new_sel = -1;
1888         int voltage;
1889         int i;
1890
1891         /* Currently requires operations to do this */
1892         if (!ops->list_voltage || !ops->set_voltage_time_sel
1893             || !rdev->desc->n_voltages)
1894                 return -EINVAL;
1895
1896         for (i = 0; i < rdev->desc->n_voltages; i++) {
1897                 /* We only look for exact voltage matches here */
1898                 voltage = regulator_list_voltage(regulator, i);
1899                 if (voltage < 0)
1900                         return -EINVAL;
1901                 if (voltage == 0)
1902                         continue;
1903                 if (voltage == old_uV)
1904                         old_sel = i;
1905                 if (voltage == new_uV)
1906                         new_sel = i;
1907         }
1908
1909         if (old_sel < 0 || new_sel < 0)
1910                 return -EINVAL;
1911
1912         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1913 }
1914 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1915
1916 /**
1917  * regulator_sync_voltage - re-apply last regulator output voltage
1918  * @regulator: regulator source
1919  *
1920  * Re-apply the last configured voltage.  This is intended to be used
1921  * where some external control source the consumer is cooperating with
1922  * has caused the configured voltage to change.
1923  */
1924 int regulator_sync_voltage(struct regulator *regulator)
1925 {
1926         struct regulator_dev *rdev = regulator->rdev;
1927         int ret, min_uV, max_uV;
1928
1929         mutex_lock(&rdev->mutex);
1930
1931         if (!rdev->desc->ops->set_voltage &&
1932             !rdev->desc->ops->set_voltage_sel) {
1933                 ret = -EINVAL;
1934                 goto out;
1935         }
1936
1937         /* This is only going to work if we've had a voltage configured. */
1938         if (!regulator->min_uV && !regulator->max_uV) {
1939                 ret = -EINVAL;
1940                 goto out;
1941         }
1942
1943         min_uV = regulator->min_uV;
1944         max_uV = regulator->max_uV;
1945
1946         /* This should be a paranoia check... */
1947         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1948         if (ret < 0)
1949                 goto out;
1950
1951         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1952         if (ret < 0)
1953                 goto out;
1954
1955         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1956
1957 out:
1958         mutex_unlock(&rdev->mutex);
1959         return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1962
1963 static int _regulator_get_voltage(struct regulator_dev *rdev)
1964 {
1965         int sel, ret;
1966
1967         if (rdev->desc->ops->get_voltage_sel) {
1968                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1969                 if (sel < 0)
1970                         return sel;
1971                 ret = rdev->desc->ops->list_voltage(rdev, sel);
1972         } else if (rdev->desc->ops->get_voltage) {
1973                 ret = rdev->desc->ops->get_voltage(rdev);
1974         } else {
1975                 return -EINVAL;
1976         }
1977
1978         if (ret < 0)
1979                 return ret;
1980         return ret - rdev->constraints->uV_offset;
1981 }
1982
1983 /**
1984  * regulator_get_voltage - get regulator output voltage
1985  * @regulator: regulator source
1986  *
1987  * This returns the current regulator voltage in uV.
1988  *
1989  * NOTE: If the regulator is disabled it will return the voltage value. This
1990  * function should not be used to determine regulator state.
1991  */
1992 int regulator_get_voltage(struct regulator *regulator)
1993 {
1994         int ret;
1995
1996         mutex_lock(&regulator->rdev->mutex);
1997
1998         ret = _regulator_get_voltage(regulator->rdev);
1999
2000         mutex_unlock(&regulator->rdev->mutex);
2001
2002         return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2005
2006 /**
2007  * regulator_set_current_limit - set regulator output current limit
2008  * @regulator: regulator source
2009  * @min_uA: Minimuum supported current in uA
2010  * @max_uA: Maximum supported current in uA
2011  *
2012  * Sets current sink to the desired output current. This can be set during
2013  * any regulator state. IOW, regulator can be disabled or enabled.
2014  *
2015  * If the regulator is enabled then the current will change to the new value
2016  * immediately otherwise if the regulator is disabled the regulator will
2017  * output at the new current when enabled.
2018  *
2019  * NOTE: Regulator system constraints must be set for this regulator before
2020  * calling this function otherwise this call will fail.
2021  */
2022 int regulator_set_current_limit(struct regulator *regulator,
2023                                int min_uA, int max_uA)
2024 {
2025         struct regulator_dev *rdev = regulator->rdev;
2026         int ret;
2027
2028         mutex_lock(&rdev->mutex);
2029
2030         /* sanity check */
2031         if (!rdev->desc->ops->set_current_limit) {
2032                 ret = -EINVAL;
2033                 goto out;
2034         }
2035
2036         /* constraints check */
2037         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2038         if (ret < 0)
2039                 goto out;
2040
2041         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2042 out:
2043         mutex_unlock(&rdev->mutex);
2044         return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2047
2048 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2049 {
2050         int ret;
2051
2052         mutex_lock(&rdev->mutex);
2053
2054         /* sanity check */
2055         if (!rdev->desc->ops->get_current_limit) {
2056                 ret = -EINVAL;
2057                 goto out;
2058         }
2059
2060         ret = rdev->desc->ops->get_current_limit(rdev);
2061 out:
2062         mutex_unlock(&rdev->mutex);
2063         return ret;
2064 }
2065
2066 /**
2067  * regulator_get_current_limit - get regulator output current
2068  * @regulator: regulator source
2069  *
2070  * This returns the current supplied by the specified current sink in uA.
2071  *
2072  * NOTE: If the regulator is disabled it will return the current value. This
2073  * function should not be used to determine regulator state.
2074  */
2075 int regulator_get_current_limit(struct regulator *regulator)
2076 {
2077         return _regulator_get_current_limit(regulator->rdev);
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2080
2081 /**
2082  * regulator_set_mode - set regulator operating mode
2083  * @regulator: regulator source
2084  * @mode: operating mode - one of the REGULATOR_MODE constants
2085  *
2086  * Set regulator operating mode to increase regulator efficiency or improve
2087  * regulation performance.
2088  *
2089  * NOTE: Regulator system constraints must be set for this regulator before
2090  * calling this function otherwise this call will fail.
2091  */
2092 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2093 {
2094         struct regulator_dev *rdev = regulator->rdev;
2095         int ret;
2096         int regulator_curr_mode;
2097
2098         mutex_lock(&rdev->mutex);
2099
2100         /* sanity check */
2101         if (!rdev->desc->ops->set_mode) {
2102                 ret = -EINVAL;
2103                 goto out;
2104         }
2105
2106         /* return if the same mode is requested */
2107         if (rdev->desc->ops->get_mode) {
2108                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2109                 if (regulator_curr_mode == mode) {
2110                         ret = 0;
2111                         goto out;
2112                 }
2113         }
2114
2115         /* constraints check */
2116         ret = regulator_mode_constrain(rdev, &mode);
2117         if (ret < 0)
2118                 goto out;
2119
2120         ret = rdev->desc->ops->set_mode(rdev, mode);
2121 out:
2122         mutex_unlock(&rdev->mutex);
2123         return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_set_mode);
2126
2127 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2128 {
2129         int ret;
2130
2131         mutex_lock(&rdev->mutex);
2132
2133         /* sanity check */
2134         if (!rdev->desc->ops->get_mode) {
2135                 ret = -EINVAL;
2136                 goto out;
2137         }
2138
2139         ret = rdev->desc->ops->get_mode(rdev);
2140 out:
2141         mutex_unlock(&rdev->mutex);
2142         return ret;
2143 }
2144
2145 /**
2146  * regulator_get_mode - get regulator operating mode
2147  * @regulator: regulator source
2148  *
2149  * Get the current regulator operating mode.
2150  */
2151 unsigned int regulator_get_mode(struct regulator *regulator)
2152 {
2153         return _regulator_get_mode(regulator->rdev);
2154 }
2155 EXPORT_SYMBOL_GPL(regulator_get_mode);
2156
2157 /**
2158  * regulator_set_optimum_mode - set regulator optimum operating mode
2159  * @regulator: regulator source
2160  * @uA_load: load current
2161  *
2162  * Notifies the regulator core of a new device load. This is then used by
2163  * DRMS (if enabled by constraints) to set the most efficient regulator
2164  * operating mode for the new regulator loading.
2165  *
2166  * Consumer devices notify their supply regulator of the maximum power
2167  * they will require (can be taken from device datasheet in the power
2168  * consumption tables) when they change operational status and hence power
2169  * state. Examples of operational state changes that can affect power
2170  * consumption are :-
2171  *
2172  *    o Device is opened / closed.
2173  *    o Device I/O is about to begin or has just finished.
2174  *    o Device is idling in between work.
2175  *
2176  * This information is also exported via sysfs to userspace.
2177  *
2178  * DRMS will sum the total requested load on the regulator and change
2179  * to the most efficient operating mode if platform constraints allow.
2180  *
2181  * Returns the new regulator mode or error.
2182  */
2183 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2184 {
2185         struct regulator_dev *rdev = regulator->rdev;
2186         struct regulator *consumer;
2187         int ret, output_uV, input_uV, total_uA_load = 0;
2188         unsigned int mode;
2189
2190         mutex_lock(&rdev->mutex);
2191
2192         /*
2193          * first check to see if we can set modes at all, otherwise just
2194          * tell the consumer everything is OK.
2195          */
2196         regulator->uA_load = uA_load;
2197         ret = regulator_check_drms(rdev);
2198         if (ret < 0) {
2199                 ret = 0;
2200                 goto out;
2201         }
2202
2203         if (!rdev->desc->ops->get_optimum_mode)
2204                 goto out;
2205
2206         /*
2207          * we can actually do this so any errors are indicators of
2208          * potential real failure.
2209          */
2210         ret = -EINVAL;
2211
2212         /* get output voltage */
2213         output_uV = _regulator_get_voltage(rdev);
2214         if (output_uV <= 0) {
2215                 rdev_err(rdev, "invalid output voltage found\n");
2216                 goto out;
2217         }
2218
2219         /* get input voltage */
2220         input_uV = 0;
2221         if (rdev->supply)
2222                 input_uV = regulator_get_voltage(rdev->supply);
2223         if (input_uV <= 0)
2224                 input_uV = rdev->constraints->input_uV;
2225         if (input_uV <= 0) {
2226                 rdev_err(rdev, "invalid input voltage found\n");
2227                 goto out;
2228         }
2229
2230         /* calc total requested load for this regulator */
2231         list_for_each_entry(consumer, &rdev->consumer_list, list)
2232                 total_uA_load += consumer->uA_load;
2233
2234         mode = rdev->desc->ops->get_optimum_mode(rdev,
2235                                                  input_uV, output_uV,
2236                                                  total_uA_load);
2237         ret = regulator_mode_constrain(rdev, &mode);
2238         if (ret < 0) {
2239                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2240                          total_uA_load, input_uV, output_uV);
2241                 goto out;
2242         }
2243
2244         ret = rdev->desc->ops->set_mode(rdev, mode);
2245         if (ret < 0) {
2246                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2247                 goto out;
2248         }
2249         ret = mode;
2250 out:
2251         mutex_unlock(&rdev->mutex);
2252         return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2255
2256 /**
2257  * regulator_register_notifier - register regulator event notifier
2258  * @regulator: regulator source
2259  * @nb: notifier block
2260  *
2261  * Register notifier block to receive regulator events.
2262  */
2263 int regulator_register_notifier(struct regulator *regulator,
2264                               struct notifier_block *nb)
2265 {
2266         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2267                                                 nb);
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2270
2271 /**
2272  * regulator_unregister_notifier - unregister regulator event notifier
2273  * @regulator: regulator source
2274  * @nb: notifier block
2275  *
2276  * Unregister regulator event notifier block.
2277  */
2278 int regulator_unregister_notifier(struct regulator *regulator,
2279                                 struct notifier_block *nb)
2280 {
2281         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2282                                                   nb);
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2285
2286 /* notify regulator consumers and downstream regulator consumers.
2287  * Note mutex must be held by caller.
2288  */
2289 static void _notifier_call_chain(struct regulator_dev *rdev,
2290                                   unsigned long event, void *data)
2291 {
2292         /* call rdev chain first */
2293         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2294 }
2295
2296 /**
2297  * regulator_bulk_get - get multiple regulator consumers
2298  *
2299  * @dev:           Device to supply
2300  * @num_consumers: Number of consumers to register
2301  * @consumers:     Configuration of consumers; clients are stored here.
2302  *
2303  * @return 0 on success, an errno on failure.
2304  *
2305  * This helper function allows drivers to get several regulator
2306  * consumers in one operation.  If any of the regulators cannot be
2307  * acquired then any regulators that were allocated will be freed
2308  * before returning to the caller.
2309  */
2310 int regulator_bulk_get(struct device *dev, int num_consumers,
2311                        struct regulator_bulk_data *consumers)
2312 {
2313         int i;
2314         int ret;
2315
2316         for (i = 0; i < num_consumers; i++)
2317                 consumers[i].consumer = NULL;
2318
2319         for (i = 0; i < num_consumers; i++) {
2320                 consumers[i].consumer = regulator_get(dev,
2321                                                       consumers[i].supply);
2322                 if (IS_ERR(consumers[i].consumer)) {
2323                         ret = PTR_ERR(consumers[i].consumer);
2324                         dev_err(dev, "Failed to get supply '%s': %d\n",
2325                                 consumers[i].supply, ret);
2326                         consumers[i].consumer = NULL;
2327                         goto err;
2328                 }
2329         }
2330
2331         return 0;
2332
2333 err:
2334         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2335                 regulator_put(consumers[i].consumer);
2336
2337         return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2340
2341 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2342 {
2343         struct regulator_bulk_data *bulk = data;
2344
2345         bulk->ret = regulator_enable(bulk->consumer);
2346 }
2347
2348 /**
2349  * regulator_bulk_enable - enable multiple regulator consumers
2350  *
2351  * @num_consumers: Number of consumers
2352  * @consumers:     Consumer data; clients are stored here.
2353  * @return         0 on success, an errno on failure
2354  *
2355  * This convenience API allows consumers to enable multiple regulator
2356  * clients in a single API call.  If any consumers cannot be enabled
2357  * then any others that were enabled will be disabled again prior to
2358  * return.
2359  */
2360 int regulator_bulk_enable(int num_consumers,
2361                           struct regulator_bulk_data *consumers)
2362 {
2363         LIST_HEAD(async_domain);
2364         int i;
2365         int ret = 0;
2366
2367         for (i = 0; i < num_consumers; i++)
2368                 async_schedule_domain(regulator_bulk_enable_async,
2369                                       &consumers[i], &async_domain);
2370
2371         async_synchronize_full_domain(&async_domain);
2372
2373         /* If any consumer failed we need to unwind any that succeeded */
2374         for (i = 0; i < num_consumers; i++) {
2375                 if (consumers[i].ret != 0) {
2376                         ret = consumers[i].ret;
2377                         goto err;
2378                 }
2379         }
2380
2381         return 0;
2382
2383 err:
2384         for (i = 0; i < num_consumers; i++)
2385                 if (consumers[i].ret == 0)
2386                         regulator_disable(consumers[i].consumer);
2387                 else
2388                         pr_err("Failed to enable %s: %d\n",
2389                                consumers[i].supply, consumers[i].ret);
2390
2391         return ret;
2392 }
2393 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2394
2395 /**
2396  * regulator_bulk_disable - disable multiple regulator consumers
2397  *
2398  * @num_consumers: Number of consumers
2399  * @consumers:     Consumer data; clients are stored here.
2400  * @return         0 on success, an errno on failure
2401  *
2402  * This convenience API allows consumers to disable multiple regulator
2403  * clients in a single API call.  If any consumers cannot be enabled
2404  * then any others that were disabled will be disabled again prior to
2405  * return.
2406  */
2407 int regulator_bulk_disable(int num_consumers,
2408                            struct regulator_bulk_data *consumers)
2409 {
2410         int i;
2411         int ret;
2412
2413         for (i = 0; i < num_consumers; i++) {
2414                 ret = regulator_disable(consumers[i].consumer);
2415                 if (ret != 0)
2416                         goto err;
2417         }
2418
2419         return 0;
2420
2421 err:
2422         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2423         for (--i; i >= 0; --i)
2424                 regulator_enable(consumers[i].consumer);
2425
2426         return ret;
2427 }
2428 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2429
2430 /**
2431  * regulator_bulk_free - free multiple regulator consumers
2432  *
2433  * @num_consumers: Number of consumers
2434  * @consumers:     Consumer data; clients are stored here.
2435  *
2436  * This convenience API allows consumers to free multiple regulator
2437  * clients in a single API call.
2438  */
2439 void regulator_bulk_free(int num_consumers,
2440                          struct regulator_bulk_data *consumers)
2441 {
2442         int i;
2443
2444         for (i = 0; i < num_consumers; i++) {
2445                 regulator_put(consumers[i].consumer);
2446                 consumers[i].consumer = NULL;
2447         }
2448 }
2449 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2450
2451 /**
2452  * regulator_notifier_call_chain - call regulator event notifier
2453  * @rdev: regulator source
2454  * @event: notifier block
2455  * @data: callback-specific data.
2456  *
2457  * Called by regulator drivers to notify clients a regulator event has
2458  * occurred. We also notify regulator clients downstream.
2459  * Note lock must be held by caller.
2460  */
2461 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2462                                   unsigned long event, void *data)
2463 {
2464         _notifier_call_chain(rdev, event, data);
2465         return NOTIFY_DONE;
2466
2467 }
2468 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2469
2470 /**
2471  * regulator_mode_to_status - convert a regulator mode into a status
2472  *
2473  * @mode: Mode to convert
2474  *
2475  * Convert a regulator mode into a status.
2476  */
2477 int regulator_mode_to_status(unsigned int mode)
2478 {
2479         switch (mode) {
2480         case REGULATOR_MODE_FAST:
2481                 return REGULATOR_STATUS_FAST;
2482         case REGULATOR_MODE_NORMAL:
2483                 return REGULATOR_STATUS_NORMAL;
2484         case REGULATOR_MODE_IDLE:
2485                 return REGULATOR_STATUS_IDLE;
2486         case REGULATOR_STATUS_STANDBY:
2487                 return REGULATOR_STATUS_STANDBY;
2488         default:
2489                 return 0;
2490         }
2491 }
2492 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2493
2494 /*
2495  * To avoid cluttering sysfs (and memory) with useless state, only
2496  * create attributes that can be meaningfully displayed.
2497  */
2498 static int add_regulator_attributes(struct regulator_dev *rdev)
2499 {
2500         struct device           *dev = &rdev->dev;
2501         struct regulator_ops    *ops = rdev->desc->ops;
2502         int                     status = 0;
2503
2504         /* some attributes need specific methods to be displayed */
2505         if (ops->get_voltage || ops->get_voltage_sel) {
2506                 status = device_create_file(dev, &dev_attr_microvolts);
2507                 if (status < 0)
2508                         return status;
2509         }
2510         if (ops->get_current_limit) {
2511                 status = device_create_file(dev, &dev_attr_microamps);
2512                 if (status < 0)
2513                         return status;
2514         }
2515         if (ops->get_mode) {
2516                 status = device_create_file(dev, &dev_attr_opmode);
2517                 if (status < 0)
2518                         return status;
2519         }
2520         if (ops->is_enabled) {
2521                 status = device_create_file(dev, &dev_attr_state);
2522                 if (status < 0)
2523                         return status;
2524         }
2525         if (ops->get_status) {
2526                 status = device_create_file(dev, &dev_attr_status);
2527                 if (status < 0)
2528                         return status;
2529         }
2530
2531         /* some attributes are type-specific */
2532         if (rdev->desc->type == REGULATOR_CURRENT) {
2533                 status = device_create_file(dev, &dev_attr_requested_microamps);
2534                 if (status < 0)
2535                         return status;
2536         }
2537
2538         /* all the other attributes exist to support constraints;
2539          * don't show them if there are no constraints, or if the
2540          * relevant supporting methods are missing.
2541          */
2542         if (!rdev->constraints)
2543                 return status;
2544
2545         /* constraints need specific supporting methods */
2546         if (ops->set_voltage || ops->set_voltage_sel) {
2547                 status = device_create_file(dev, &dev_attr_min_microvolts);
2548                 if (status < 0)
2549                         return status;
2550                 status = device_create_file(dev, &dev_attr_max_microvolts);
2551                 if (status < 0)
2552                         return status;
2553         }
2554         if (ops->set_current_limit) {
2555                 status = device_create_file(dev, &dev_attr_min_microamps);
2556                 if (status < 0)
2557                         return status;
2558                 status = device_create_file(dev, &dev_attr_max_microamps);
2559                 if (status < 0)
2560                         return status;
2561         }
2562
2563         /* suspend mode constraints need multiple supporting methods */
2564         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2565                 return status;
2566
2567         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2568         if (status < 0)
2569                 return status;
2570         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2571         if (status < 0)
2572                 return status;
2573         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2574         if (status < 0)
2575                 return status;
2576
2577         if (ops->set_suspend_voltage) {
2578                 status = device_create_file(dev,
2579                                 &dev_attr_suspend_standby_microvolts);
2580                 if (status < 0)
2581                         return status;
2582                 status = device_create_file(dev,
2583                                 &dev_attr_suspend_mem_microvolts);
2584                 if (status < 0)
2585                         return status;
2586                 status = device_create_file(dev,
2587                                 &dev_attr_suspend_disk_microvolts);
2588                 if (status < 0)
2589                         return status;
2590         }
2591
2592         if (ops->set_suspend_mode) {
2593                 status = device_create_file(dev,
2594                                 &dev_attr_suspend_standby_mode);
2595                 if (status < 0)
2596                         return status;
2597                 status = device_create_file(dev,
2598                                 &dev_attr_suspend_mem_mode);
2599                 if (status < 0)
2600                         return status;
2601                 status = device_create_file(dev,
2602                                 &dev_attr_suspend_disk_mode);
2603                 if (status < 0)
2604                         return status;
2605         }
2606
2607         return status;
2608 }
2609
2610 static void rdev_init_debugfs(struct regulator_dev *rdev)
2611 {
2612 #ifdef CONFIG_DEBUG_FS
2613         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2614         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2615                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2616                 rdev->debugfs = NULL;
2617                 return;
2618         }
2619
2620         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2621                            &rdev->use_count);
2622         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2623                            &rdev->open_count);
2624 #endif
2625 }
2626
2627 /**
2628  * regulator_register - register regulator
2629  * @regulator_desc: regulator to register
2630  * @dev: struct device for the regulator
2631  * @init_data: platform provided init data, passed through by driver
2632  * @driver_data: private regulator data
2633  *
2634  * Called by regulator drivers to register a regulator.
2635  * Returns 0 on success.
2636  */
2637 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2638         struct device *dev, const struct regulator_init_data *init_data,
2639         void *driver_data)
2640 {
2641         static atomic_t regulator_no = ATOMIC_INIT(0);
2642         struct regulator_dev *rdev;
2643         int ret, i;
2644
2645         if (regulator_desc == NULL)
2646                 return ERR_PTR(-EINVAL);
2647
2648         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2649                 return ERR_PTR(-EINVAL);
2650
2651         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2652             regulator_desc->type != REGULATOR_CURRENT)
2653                 return ERR_PTR(-EINVAL);
2654
2655         if (!init_data)
2656                 return ERR_PTR(-EINVAL);
2657
2658         /* Only one of each should be implemented */
2659         WARN_ON(regulator_desc->ops->get_voltage &&
2660                 regulator_desc->ops->get_voltage_sel);
2661         WARN_ON(regulator_desc->ops->set_voltage &&
2662                 regulator_desc->ops->set_voltage_sel);
2663
2664         /* If we're using selectors we must implement list_voltage. */
2665         if (regulator_desc->ops->get_voltage_sel &&
2666             !regulator_desc->ops->list_voltage) {
2667                 return ERR_PTR(-EINVAL);
2668         }
2669         if (regulator_desc->ops->set_voltage_sel &&
2670             !regulator_desc->ops->list_voltage) {
2671                 return ERR_PTR(-EINVAL);
2672         }
2673
2674         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2675         if (rdev == NULL)
2676                 return ERR_PTR(-ENOMEM);
2677
2678         mutex_lock(&regulator_list_mutex);
2679
2680         mutex_init(&rdev->mutex);
2681         rdev->reg_data = driver_data;
2682         rdev->owner = regulator_desc->owner;
2683         rdev->desc = regulator_desc;
2684         INIT_LIST_HEAD(&rdev->consumer_list);
2685         INIT_LIST_HEAD(&rdev->list);
2686         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2687         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2688
2689         /* preform any regulator specific init */
2690         if (init_data->regulator_init) {
2691                 ret = init_data->regulator_init(rdev->reg_data);
2692                 if (ret < 0)
2693                         goto clean;
2694         }
2695
2696         /* register with sysfs */
2697         rdev->dev.class = &regulator_class;
2698         rdev->dev.parent = dev;
2699         dev_set_name(&rdev->dev, "regulator.%d",
2700                      atomic_inc_return(&regulator_no) - 1);
2701         ret = device_register(&rdev->dev);
2702         if (ret != 0) {
2703                 put_device(&rdev->dev);
2704                 goto clean;
2705         }
2706
2707         dev_set_drvdata(&rdev->dev, rdev);
2708
2709         /* set regulator constraints */
2710         ret = set_machine_constraints(rdev, &init_data->constraints);
2711         if (ret < 0)
2712                 goto scrub;
2713
2714         /* add attributes supported by this regulator */
2715         ret = add_regulator_attributes(rdev);
2716         if (ret < 0)
2717                 goto scrub;
2718
2719         if (init_data->supply_regulator) {
2720                 struct regulator_dev *r;
2721                 int found = 0;
2722
2723                 list_for_each_entry(r, &regulator_list, list) {
2724                         if (strcmp(rdev_get_name(r),
2725                                    init_data->supply_regulator) == 0) {
2726                                 found = 1;
2727                                 break;
2728                         }
2729                 }
2730
2731                 if (!found) {
2732                         dev_err(dev, "Failed to find supply %s\n",
2733                                 init_data->supply_regulator);
2734                         ret = -ENODEV;
2735                         goto scrub;
2736                 }
2737
2738                 ret = set_supply(rdev, r);
2739                 if (ret < 0)
2740                         goto scrub;
2741         }
2742
2743         /* add consumers devices */
2744         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2745                 ret = set_consumer_device_supply(rdev,
2746                         init_data->consumer_supplies[i].dev,
2747                         init_data->consumer_supplies[i].dev_name,
2748                         init_data->consumer_supplies[i].supply);
2749                 if (ret < 0) {
2750                         dev_err(dev, "Failed to set supply %s\n",
2751                                 init_data->consumer_supplies[i].supply);
2752                         goto unset_supplies;
2753                 }
2754         }
2755
2756         list_add(&rdev->list, &regulator_list);
2757
2758         rdev_init_debugfs(rdev);
2759 out:
2760         mutex_unlock(&regulator_list_mutex);
2761         return rdev;
2762
2763 unset_supplies:
2764         unset_regulator_supplies(rdev);
2765
2766 scrub:
2767         kfree(rdev->constraints);
2768         device_unregister(&rdev->dev);
2769         /* device core frees rdev */
2770         rdev = ERR_PTR(ret);
2771         goto out;
2772
2773 clean:
2774         kfree(rdev);
2775         rdev = ERR_PTR(ret);
2776         goto out;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_register);
2779
2780 /**
2781  * regulator_unregister - unregister regulator
2782  * @rdev: regulator to unregister
2783  *
2784  * Called by regulator drivers to unregister a regulator.
2785  */
2786 void regulator_unregister(struct regulator_dev *rdev)
2787 {
2788         if (rdev == NULL)
2789                 return;
2790
2791         mutex_lock(&regulator_list_mutex);
2792 #ifdef CONFIG_DEBUG_FS
2793         debugfs_remove_recursive(rdev->debugfs);
2794 #endif
2795         flush_work_sync(&rdev->disable_work.work);
2796         WARN_ON(rdev->open_count);
2797         unset_regulator_supplies(rdev);
2798         list_del(&rdev->list);
2799         if (rdev->supply)
2800                 regulator_put(rdev->supply);
2801         device_unregister(&rdev->dev);
2802         kfree(rdev->constraints);
2803         mutex_unlock(&regulator_list_mutex);
2804 }
2805 EXPORT_SYMBOL_GPL(regulator_unregister);
2806
2807 /**
2808  * regulator_suspend_prepare - prepare regulators for system wide suspend
2809  * @state: system suspend state
2810  *
2811  * Configure each regulator with it's suspend operating parameters for state.
2812  * This will usually be called by machine suspend code prior to supending.
2813  */
2814 int regulator_suspend_prepare(suspend_state_t state)
2815 {
2816         struct regulator_dev *rdev;
2817         int ret = 0;
2818
2819         /* ON is handled by regulator active state */
2820         if (state == PM_SUSPEND_ON)
2821                 return -EINVAL;
2822
2823         mutex_lock(&regulator_list_mutex);
2824         list_for_each_entry(rdev, &regulator_list, list) {
2825
2826                 mutex_lock(&rdev->mutex);
2827                 ret = suspend_prepare(rdev, state);
2828                 mutex_unlock(&rdev->mutex);
2829
2830                 if (ret < 0) {
2831                         rdev_err(rdev, "failed to prepare\n");
2832                         goto out;
2833                 }
2834         }
2835 out:
2836         mutex_unlock(&regulator_list_mutex);
2837         return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2840
2841 /**
2842  * regulator_suspend_finish - resume regulators from system wide suspend
2843  *
2844  * Turn on regulators that might be turned off by regulator_suspend_prepare
2845  * and that should be turned on according to the regulators properties.
2846  */
2847 int regulator_suspend_finish(void)
2848 {
2849         struct regulator_dev *rdev;
2850         int ret = 0, error;
2851
2852         mutex_lock(&regulator_list_mutex);
2853         list_for_each_entry(rdev, &regulator_list, list) {
2854                 struct regulator_ops *ops = rdev->desc->ops;
2855
2856                 mutex_lock(&rdev->mutex);
2857                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2858                                 ops->enable) {
2859                         error = ops->enable(rdev);
2860                         if (error)
2861                                 ret = error;
2862                 } else {
2863                         if (!has_full_constraints)
2864                                 goto unlock;
2865                         if (!ops->disable)
2866                                 goto unlock;
2867                         if (ops->is_enabled && !ops->is_enabled(rdev))
2868                                 goto unlock;
2869
2870                         error = ops->disable(rdev);
2871                         if (error)
2872                                 ret = error;
2873                 }
2874 unlock:
2875                 mutex_unlock(&rdev->mutex);
2876         }
2877         mutex_unlock(&regulator_list_mutex);
2878         return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2881
2882 /**
2883  * regulator_has_full_constraints - the system has fully specified constraints
2884  *
2885  * Calling this function will cause the regulator API to disable all
2886  * regulators which have a zero use count and don't have an always_on
2887  * constraint in a late_initcall.
2888  *
2889  * The intention is that this will become the default behaviour in a
2890  * future kernel release so users are encouraged to use this facility
2891  * now.
2892  */
2893 void regulator_has_full_constraints(void)
2894 {
2895         has_full_constraints = 1;
2896 }
2897 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2898
2899 /**
2900  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2901  *
2902  * Calling this function will cause the regulator API to provide a
2903  * dummy regulator to consumers if no physical regulator is found,
2904  * allowing most consumers to proceed as though a regulator were
2905  * configured.  This allows systems such as those with software
2906  * controllable regulators for the CPU core only to be brought up more
2907  * readily.
2908  */
2909 void regulator_use_dummy_regulator(void)
2910 {
2911         board_wants_dummy_regulator = true;
2912 }
2913 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2914
2915 /**
2916  * rdev_get_drvdata - get rdev regulator driver data
2917  * @rdev: regulator
2918  *
2919  * Get rdev regulator driver private data. This call can be used in the
2920  * regulator driver context.
2921  */
2922 void *rdev_get_drvdata(struct regulator_dev *rdev)
2923 {
2924         return rdev->reg_data;
2925 }
2926 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2927
2928 /**
2929  * regulator_get_drvdata - get regulator driver data
2930  * @regulator: regulator
2931  *
2932  * Get regulator driver private data. This call can be used in the consumer
2933  * driver context when non API regulator specific functions need to be called.
2934  */
2935 void *regulator_get_drvdata(struct regulator *regulator)
2936 {
2937         return regulator->rdev->reg_data;
2938 }
2939 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2940
2941 /**
2942  * regulator_set_drvdata - set regulator driver data
2943  * @regulator: regulator
2944  * @data: data
2945  */
2946 void regulator_set_drvdata(struct regulator *regulator, void *data)
2947 {
2948         regulator->rdev->reg_data = data;
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2951
2952 /**
2953  * regulator_get_id - get regulator ID
2954  * @rdev: regulator
2955  */
2956 int rdev_get_id(struct regulator_dev *rdev)
2957 {
2958         return rdev->desc->id;
2959 }
2960 EXPORT_SYMBOL_GPL(rdev_get_id);
2961
2962 struct device *rdev_get_dev(struct regulator_dev *rdev)
2963 {
2964         return &rdev->dev;
2965 }
2966 EXPORT_SYMBOL_GPL(rdev_get_dev);
2967
2968 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2969 {
2970         return reg_init_data->driver_data;
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2973
2974 static int __init regulator_init(void)
2975 {
2976         int ret;
2977
2978         ret = class_register(&regulator_class);
2979
2980 #ifdef CONFIG_DEBUG_FS
2981         debugfs_root = debugfs_create_dir("regulator", NULL);
2982         if (IS_ERR(debugfs_root) || !debugfs_root) {
2983                 pr_warn("regulator: Failed to create debugfs directory\n");
2984                 debugfs_root = NULL;
2985         }
2986 #endif
2987
2988         regulator_dummy_init();
2989
2990         return ret;
2991 }
2992
2993 /* init early to allow our consumers to complete system booting */
2994 core_initcall(regulator_init);
2995
2996 static int __init regulator_init_complete(void)
2997 {
2998         struct regulator_dev *rdev;
2999         struct regulator_ops *ops;
3000         struct regulation_constraints *c;
3001         int enabled, ret;
3002
3003         mutex_lock(&regulator_list_mutex);
3004
3005         /* If we have a full configuration then disable any regulators
3006          * which are not in use or always_on.  This will become the
3007          * default behaviour in the future.
3008          */
3009         list_for_each_entry(rdev, &regulator_list, list) {
3010                 ops = rdev->desc->ops;
3011                 c = rdev->constraints;
3012
3013                 if (!ops->disable || (c && c->always_on))
3014                         continue;
3015
3016                 mutex_lock(&rdev->mutex);
3017
3018                 if (rdev->use_count)
3019                         goto unlock;
3020
3021                 /* If we can't read the status assume it's on. */
3022                 if (ops->is_enabled)
3023                         enabled = ops->is_enabled(rdev);
3024                 else
3025                         enabled = 1;
3026
3027                 if (!enabled)
3028                         goto unlock;
3029
3030                 if (has_full_constraints) {
3031                         /* We log since this may kill the system if it
3032                          * goes wrong. */
3033                         rdev_info(rdev, "disabling\n");
3034                         ret = ops->disable(rdev);
3035                         if (ret != 0) {
3036                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3037                         }
3038                 } else {
3039                         /* The intention is that in future we will
3040                          * assume that full constraints are provided
3041                          * so warn even if we aren't going to do
3042                          * anything here.
3043                          */
3044                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3045                 }
3046
3047 unlock:
3048                 mutex_unlock(&rdev->mutex);
3049         }
3050
3051         mutex_unlock(&regulator_list_mutex);
3052
3053         return 0;
3054 }
3055 late_initcall(regulator_init_complete);