Merge branch 'stable/swiotlb-0.9' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / platform / x86 / intel_ips.c
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *      Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78
79 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
80
81 /*
82  * Package level MSRs for monitor/control
83  */
84 #define PLATFORM_INFO   0xce
85 #define   PLATFORM_TDP          (1<<29)
86 #define   PLATFORM_RATIO        (1<<28)
87
88 #define IA32_MISC_ENABLE        0x1a0
89 #define   IA32_MISC_TURBO_EN    (1ULL<<38)
90
91 #define TURBO_POWER_CURRENT_LIMIT       0x1ac
92 #define   TURBO_TDC_OVR_EN      (1UL<<31)
93 #define   TURBO_TDC_MASK        (0x000000007fff0000UL)
94 #define   TURBO_TDC_SHIFT       (16)
95 #define   TURBO_TDP_OVR_EN      (1UL<<15)
96 #define   TURBO_TDP_MASK        (0x0000000000003fffUL)
97
98 /*
99  * Core/thread MSRs for monitoring
100  */
101 #define IA32_PERF_CTL           0x199
102 #define   IA32_PERF_TURBO_DIS   (1ULL<<32)
103
104 /*
105  * Thermal PCI device regs
106  */
107 #define THM_CFG_TBAR    0x10
108 #define THM_CFG_TBAR_HI 0x14
109
110 #define THM_TSIU        0x00
111 #define THM_TSE         0x01
112 #define   TSE_EN        0xb8
113 #define THM_TSS         0x02
114 #define THM_TSTR        0x03
115 #define THM_TSTTP       0x04
116 #define THM_TSCO        0x08
117 #define THM_TSES        0x0c
118 #define THM_TSGPEN      0x0d
119 #define   TSGPEN_HOT_LOHI       (1<<1)
120 #define   TSGPEN_CRIT_LOHI      (1<<2)
121 #define THM_TSPC        0x0e
122 #define THM_PPEC        0x10
123 #define THM_CTA         0x12
124 #define THM_PTA         0x14
125 #define   PTA_SLOPE_MASK        (0xff00)
126 #define   PTA_SLOPE_SHIFT       8
127 #define   PTA_OFFSET_MASK       (0x00ff)
128 #define THM_MGTA        0x16
129 #define   MGTA_SLOPE_MASK       (0xff00)
130 #define   MGTA_SLOPE_SHIFT      8
131 #define   MGTA_OFFSET_MASK      (0x00ff)
132 #define THM_TRC         0x1a
133 #define   TRC_CORE2_EN  (1<<15)
134 #define   TRC_THM_EN    (1<<12)
135 #define   TRC_C6_WAR    (1<<8)
136 #define   TRC_CORE1_EN  (1<<7)
137 #define   TRC_CORE_PWR  (1<<6)
138 #define   TRC_PCH_EN    (1<<5)
139 #define   TRC_MCH_EN    (1<<4)
140 #define   TRC_DIMM4     (1<<3)
141 #define   TRC_DIMM3     (1<<2)
142 #define   TRC_DIMM2     (1<<1)
143 #define   TRC_DIMM1     (1<<0)
144 #define THM_TES         0x20
145 #define THM_TEN         0x21
146 #define   TEN_UPDATE_EN 1
147 #define THM_PSC         0x24
148 #define   PSC_NTG       (1<<0) /* No GFX turbo support */
149 #define   PSC_NTPC      (1<<1) /* No CPU turbo support */
150 #define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
151 #define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
152 #define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
153 #define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
154 #define   PSP_PBRT      (1<<4) /* BIOS run time support */
155 #define THM_CTV1        0x30
156 #define   CTV_TEMP_ERROR (1<<15)
157 #define   CTV_TEMP_MASK 0x3f
158 #define   CTV_
159 #define THM_CTV2        0x32
160 #define THM_CEC         0x34 /* undocumented power accumulator in joules */
161 #define THM_AE          0x3f
162 #define THM_HTS         0x50 /* 32 bits */
163 #define   HTS_PCPL_MASK (0x7fe00000)
164 #define   HTS_PCPL_SHIFT 21
165 #define   HTS_GPL_MASK  (0x001ff000)
166 #define   HTS_GPL_SHIFT 12
167 #define   HTS_PP_MASK   (0x00000c00)
168 #define   HTS_PP_SHIFT  10
169 #define   HTS_PP_DEF    0
170 #define   HTS_PP_PROC   1
171 #define   HTS_PP_BAL    2
172 #define   HTS_PP_GFX    3
173 #define   HTS_PCTD_DIS  (1<<9)
174 #define   HTS_GTD_DIS   (1<<8)
175 #define   HTS_PTL_MASK  (0x000000fe)
176 #define   HTS_PTL_SHIFT 1
177 #define   HTS_NVV       (1<<0)
178 #define THM_HTSHI       0x54 /* 16 bits */
179 #define   HTS2_PPL_MASK         (0x03ff)
180 #define   HTS2_PRST_MASK        (0x3c00)
181 #define   HTS2_PRST_SHIFT       10
182 #define   HTS2_PRST_UNLOADED    0
183 #define   HTS2_PRST_RUNNING     1
184 #define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
185 #define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
186 #define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
187 #define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
188 #define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
189 #define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
190 #define THM_PTL         0x56
191 #define THM_MGTV        0x58
192 #define   TV_MASK       0x000000000000ff00
193 #define   TV_SHIFT      8
194 #define THM_PTV         0x60
195 #define   PTV_MASK      0x00ff
196 #define THM_MMGPC       0x64
197 #define THM_MPPC        0x66
198 #define THM_MPCPC       0x68
199 #define THM_TSPIEN      0x82
200 #define   TSPIEN_AUX_LOHI       (1<<0)
201 #define   TSPIEN_HOT_LOHI       (1<<1)
202 #define   TSPIEN_CRIT_LOHI      (1<<2)
203 #define   TSPIEN_AUX2_LOHI      (1<<3)
204 #define THM_TSLOCK      0x83
205 #define THM_ATR         0x84
206 #define THM_TOF         0x87
207 #define THM_STS         0x98
208 #define   STS_PCPL_MASK         (0x7fe00000)
209 #define   STS_PCPL_SHIFT        21
210 #define   STS_GPL_MASK          (0x001ff000)
211 #define   STS_GPL_SHIFT         12
212 #define   STS_PP_MASK           (0x00000c00)
213 #define   STS_PP_SHIFT          10
214 #define   STS_PP_DEF            0
215 #define   STS_PP_PROC           1
216 #define   STS_PP_BAL            2
217 #define   STS_PP_GFX            3
218 #define   STS_PCTD_DIS          (1<<9)
219 #define   STS_GTD_DIS           (1<<8)
220 #define   STS_PTL_MASK          (0x000000fe)
221 #define   STS_PTL_SHIFT         1
222 #define   STS_NVV               (1<<0)
223 #define THM_SEC         0x9c
224 #define   SEC_ACK       (1<<0)
225 #define THM_TC3         0xa4
226 #define THM_TC1         0xa8
227 #define   STS_PPL_MASK          (0x0003ff00)
228 #define   STS_PPL_SHIFT         16
229 #define THM_TC2         0xac
230 #define THM_DTV         0xb0
231 #define THM_ITV         0xd8
232 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
233 #define   ITV_ME_SEQNO_SHIFT (16)
234 #define   ITV_MCH_TEMP_MASK 0x0000ff00
235 #define   ITV_MCH_TEMP_SHIFT (8)
236 #define   ITV_PCH_TEMP_MASK 0x000000ff
237
238 #define thm_readb(off) readb(ips->regmap + (off))
239 #define thm_readw(off) readw(ips->regmap + (off))
240 #define thm_readl(off) readl(ips->regmap + (off))
241 #define thm_readq(off) readq(ips->regmap + (off))
242
243 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
244 #define thm_writew(off, val) writew((val), ips->regmap + (off))
245 #define thm_writel(off, val) writel((val), ips->regmap + (off))
246
247 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
248
249 /* For initial average collection */
250 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
251 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
252 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
253
254 /* Per-SKU limits */
255 struct ips_mcp_limits {
256         int cpu_family;
257         int cpu_model; /* includes extended model... */
258         int mcp_power_limit; /* mW units */
259         int core_power_limit;
260         int mch_power_limit;
261         int core_temp_limit; /* degrees C */
262         int mch_temp_limit;
263 };
264
265 /* Max temps are -10 degrees C to avoid PROCHOT# */
266
267 struct ips_mcp_limits ips_sv_limits = {
268         .mcp_power_limit = 35000,
269         .core_power_limit = 29000,
270         .mch_power_limit = 20000,
271         .core_temp_limit = 95,
272         .mch_temp_limit = 90
273 };
274
275 struct ips_mcp_limits ips_lv_limits = {
276         .mcp_power_limit = 25000,
277         .core_power_limit = 21000,
278         .mch_power_limit = 13000,
279         .core_temp_limit = 95,
280         .mch_temp_limit = 90
281 };
282
283 struct ips_mcp_limits ips_ulv_limits = {
284         .mcp_power_limit = 18000,
285         .core_power_limit = 14000,
286         .mch_power_limit = 11000,
287         .core_temp_limit = 95,
288         .mch_temp_limit = 90
289 };
290
291 struct ips_driver {
292         struct pci_dev *dev;
293         void *regmap;
294         struct task_struct *monitor;
295         struct task_struct *adjust;
296         struct dentry *debug_root;
297
298         /* Average CPU core temps (all averages in .01 degrees C for precision) */
299         u16 ctv1_avg_temp;
300         u16 ctv2_avg_temp;
301         /* GMCH average */
302         u16 mch_avg_temp;
303         /* Average for the CPU (both cores?) */
304         u16 mcp_avg_temp;
305         /* Average power consumption (in mW) */
306         u32 cpu_avg_power;
307         u32 mch_avg_power;
308
309         /* Offset values */
310         u16 cta_val;
311         u16 pta_val;
312         u16 mgta_val;
313
314         /* Maximums & prefs, protected by turbo status lock */
315         spinlock_t turbo_status_lock;
316         u16 mcp_temp_limit;
317         u16 mcp_power_limit;
318         u16 core_power_limit;
319         u16 mch_power_limit;
320         bool cpu_turbo_enabled;
321         bool __cpu_turbo_on;
322         bool gpu_turbo_enabled;
323         bool __gpu_turbo_on;
324         bool gpu_preferred;
325         bool poll_turbo_status;
326         bool second_cpu;
327         bool turbo_toggle_allowed;
328         struct ips_mcp_limits *limits;
329
330         /* Optional MCH interfaces for if i915 is in use */
331         unsigned long (*read_mch_val)(void);
332         bool (*gpu_raise)(void);
333         bool (*gpu_lower)(void);
334         bool (*gpu_busy)(void);
335         bool (*gpu_turbo_disable)(void);
336
337         /* For restoration at unload */
338         u64 orig_turbo_limit;
339         u64 orig_turbo_ratios;
340 };
341
342 /**
343  * ips_cpu_busy - is CPU busy?
344  * @ips: IPS driver struct
345  *
346  * Check CPU for load to see whether we should increase its thermal budget.
347  *
348  * RETURNS:
349  * True if the CPU could use more power, false otherwise.
350  */
351 static bool ips_cpu_busy(struct ips_driver *ips)
352 {
353         if ((avenrun[0] >> FSHIFT) > 1)
354                 return true;
355
356         return false;
357 }
358
359 /**
360  * ips_cpu_raise - raise CPU power clamp
361  * @ips: IPS driver struct
362  *
363  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
364  * this platform.
365  *
366  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
367  * long as we haven't hit the TDP limit for the SKU).
368  */
369 static void ips_cpu_raise(struct ips_driver *ips)
370 {
371         u64 turbo_override;
372         u16 cur_tdp_limit, new_tdp_limit;
373
374         if (!ips->cpu_turbo_enabled)
375                 return;
376
377         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
378
379         cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
380         new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
381
382         /* Clamp to SKU TDP limit */
383         if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
384                 new_tdp_limit = cur_tdp_limit;
385
386         thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
387
388         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
389         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
390
391         turbo_override &= ~TURBO_TDP_MASK;
392         turbo_override |= new_tdp_limit;
393
394         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395 }
396
397 /**
398  * ips_cpu_lower - lower CPU power clamp
399  * @ips: IPS driver struct
400  *
401  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
402  *
403  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
404  * as low as the platform limits will allow (though we could go lower there
405  * wouldn't be much point).
406  */
407 static void ips_cpu_lower(struct ips_driver *ips)
408 {
409         u64 turbo_override;
410         u16 cur_limit, new_limit;
411
412         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
413
414         cur_limit = turbo_override & TURBO_TDP_MASK;
415         new_limit = cur_limit - 8; /* 1W decrease */
416
417         /* Clamp to SKU TDP limit */
418         if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
419                 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
420
421         thm_writew(THM_MPCPC, (new_limit * 10) / 8);
422
423         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
424         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
425
426         turbo_override &= ~TURBO_TDP_MASK;
427         turbo_override |= new_limit;
428
429         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430 }
431
432 /**
433  * do_enable_cpu_turbo - internal turbo enable function
434  * @data: unused
435  *
436  * Internal function for actually updating MSRs.  When we enable/disable
437  * turbo, we need to do it on each CPU; this function is the one called
438  * by on_each_cpu() when needed.
439  */
440 static void do_enable_cpu_turbo(void *data)
441 {
442         u64 perf_ctl;
443
444         rdmsrl(IA32_PERF_CTL, perf_ctl);
445         if (perf_ctl & IA32_PERF_TURBO_DIS) {
446                 perf_ctl &= ~IA32_PERF_TURBO_DIS;
447                 wrmsrl(IA32_PERF_CTL, perf_ctl);
448         }
449 }
450
451 /**
452  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
453  * @ips: IPS driver struct
454  *
455  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
456  * all logical threads.
457  */
458 static void ips_enable_cpu_turbo(struct ips_driver *ips)
459 {
460         /* Already on, no need to mess with MSRs */
461         if (ips->__cpu_turbo_on)
462                 return;
463
464         if (ips->turbo_toggle_allowed)
465                 on_each_cpu(do_enable_cpu_turbo, ips, 1);
466
467         ips->__cpu_turbo_on = true;
468 }
469
470 /**
471  * do_disable_cpu_turbo - internal turbo disable function
472  * @data: unused
473  *
474  * Internal function for actually updating MSRs.  When we enable/disable
475  * turbo, we need to do it on each CPU; this function is the one called
476  * by on_each_cpu() when needed.
477  */
478 static void do_disable_cpu_turbo(void *data)
479 {
480         u64 perf_ctl;
481
482         rdmsrl(IA32_PERF_CTL, perf_ctl);
483         if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
484                 perf_ctl |= IA32_PERF_TURBO_DIS;
485                 wrmsrl(IA32_PERF_CTL, perf_ctl);
486         }
487 }
488
489 /**
490  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
491  * @ips: IPS driver struct
492  *
493  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
494  * all logical threads.
495  */
496 static void ips_disable_cpu_turbo(struct ips_driver *ips)
497 {
498         /* Already off, leave it */
499         if (!ips->__cpu_turbo_on)
500                 return;
501
502         if (ips->turbo_toggle_allowed)
503                 on_each_cpu(do_disable_cpu_turbo, ips, 1);
504
505         ips->__cpu_turbo_on = false;
506 }
507
508 /**
509  * ips_gpu_busy - is GPU busy?
510  * @ips: IPS driver struct
511  *
512  * Check GPU for load to see whether we should increase its thermal budget.
513  * We need to call into the i915 driver in this case.
514  *
515  * RETURNS:
516  * True if the GPU could use more power, false otherwise.
517  */
518 static bool ips_gpu_busy(struct ips_driver *ips)
519 {
520         if (!ips->gpu_turbo_enabled)
521                 return false;
522
523         return ips->gpu_busy();
524 }
525
526 /**
527  * ips_gpu_raise - raise GPU power clamp
528  * @ips: IPS driver struct
529  *
530  * Raise the GPU frequency/power if possible.  We need to call into the
531  * i915 driver in this case.
532  */
533 static void ips_gpu_raise(struct ips_driver *ips)
534 {
535         if (!ips->gpu_turbo_enabled)
536                 return;
537
538         if (!ips->gpu_raise())
539                 ips->gpu_turbo_enabled = false;
540
541         return;
542 }
543
544 /**
545  * ips_gpu_lower - lower GPU power clamp
546  * @ips: IPS driver struct
547  *
548  * Lower GPU frequency/power if possible.  Need to call i915.
549  */
550 static void ips_gpu_lower(struct ips_driver *ips)
551 {
552         if (!ips->gpu_turbo_enabled)
553                 return;
554
555         if (!ips->gpu_lower())
556                 ips->gpu_turbo_enabled = false;
557
558         return;
559 }
560
561 /**
562  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
563  * @ips: IPS driver struct
564  *
565  * Call into the graphics driver indicating that it can safely use
566  * turbo mode.
567  */
568 static void ips_enable_gpu_turbo(struct ips_driver *ips)
569 {
570         if (ips->__gpu_turbo_on)
571                 return;
572         ips->__gpu_turbo_on = true;
573 }
574
575 /**
576  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
577  * @ips: IPS driver struct
578  *
579  * Request that the graphics driver disable turbo mode.
580  */
581 static void ips_disable_gpu_turbo(struct ips_driver *ips)
582 {
583         /* Avoid calling i915 if turbo is already disabled */
584         if (!ips->__gpu_turbo_on)
585                 return;
586
587         if (!ips->gpu_turbo_disable())
588                 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
589         else
590                 ips->__gpu_turbo_on = false;
591 }
592
593 /**
594  * mcp_exceeded - check whether we're outside our thermal & power limits
595  * @ips: IPS driver struct
596  *
597  * Check whether the MCP is over its thermal or power budget.
598  */
599 static bool mcp_exceeded(struct ips_driver *ips)
600 {
601         unsigned long flags;
602         bool ret = false;
603         u32 temp_limit;
604         u32 avg_power;
605         const char *msg = "MCP limit exceeded: ";
606
607         spin_lock_irqsave(&ips->turbo_status_lock, flags);
608
609         temp_limit = ips->mcp_temp_limit * 100;
610         if (ips->mcp_avg_temp > temp_limit) {
611                 dev_info(&ips->dev->dev,
612                         "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
613                         temp_limit);
614                 ret = true;
615         }
616
617         avg_power = ips->cpu_avg_power + ips->mch_avg_power;
618         if (avg_power > ips->mcp_power_limit) {
619                 dev_info(&ips->dev->dev,
620                         "%sAvg power %u, limit %u\n", msg, avg_power,
621                         ips->mcp_power_limit);
622                 ret = true;
623         }
624
625         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
626
627         return ret;
628 }
629
630 /**
631  * cpu_exceeded - check whether a CPU core is outside its limits
632  * @ips: IPS driver struct
633  * @cpu: CPU number to check
634  *
635  * Check a given CPU's average temp or power is over its limit.
636  */
637 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
638 {
639         unsigned long flags;
640         int avg;
641         bool ret = false;
642
643         spin_lock_irqsave(&ips->turbo_status_lock, flags);
644         avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
645         if (avg > (ips->limits->core_temp_limit * 100))
646                 ret = true;
647         if (ips->cpu_avg_power > ips->core_power_limit * 100)
648                 ret = true;
649         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
650
651         if (ret)
652                 dev_info(&ips->dev->dev,
653                          "CPU power or thermal limit exceeded\n");
654
655         return ret;
656 }
657
658 /**
659  * mch_exceeded - check whether the GPU is over budget
660  * @ips: IPS driver struct
661  *
662  * Check the MCH temp & power against their maximums.
663  */
664 static bool mch_exceeded(struct ips_driver *ips)
665 {
666         unsigned long flags;
667         bool ret = false;
668
669         spin_lock_irqsave(&ips->turbo_status_lock, flags);
670         if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
671                 ret = true;
672         if (ips->mch_avg_power > ips->mch_power_limit)
673                 ret = true;
674         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
675
676         return ret;
677 }
678
679 /**
680  * verify_limits - verify BIOS provided limits
681  * @ips: IPS structure
682  *
683  * BIOS can optionally provide non-default limits for power and temp.  Check
684  * them here and use the defaults if the BIOS values are not provided or
685  * are otherwise unusable.
686  */
687 static void verify_limits(struct ips_driver *ips)
688 {
689         if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
690             ips->mcp_power_limit > 35000)
691                 ips->mcp_power_limit = ips->limits->mcp_power_limit;
692
693         if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
694             ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
695             ips->mcp_temp_limit > 150)
696                 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
697                                           ips->limits->mch_temp_limit);
698 }
699
700 /**
701  * update_turbo_limits - get various limits & settings from regs
702  * @ips: IPS driver struct
703  *
704  * Update the IPS power & temp limits, along with turbo enable flags,
705  * based on latest register contents.
706  *
707  * Used at init time and for runtime BIOS support, which requires polling
708  * the regs for updates (as a result of AC->DC transition for example).
709  *
710  * LOCKING:
711  * Caller must hold turbo_status_lock (outside of init)
712  */
713 static void update_turbo_limits(struct ips_driver *ips)
714 {
715         u32 hts = thm_readl(THM_HTS);
716
717         ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
718         /* 
719          * Disable turbo for now, until we can figure out why the power figures
720          * are wrong
721          */
722         ips->cpu_turbo_enabled = false;
723
724         if (ips->gpu_busy)
725                 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
726
727         ips->core_power_limit = thm_readw(THM_MPCPC);
728         ips->mch_power_limit = thm_readw(THM_MMGPC);
729         ips->mcp_temp_limit = thm_readw(THM_PTL);
730         ips->mcp_power_limit = thm_readw(THM_MPPC);
731
732         verify_limits(ips);
733         /* Ignore BIOS CPU vs GPU pref */
734 }
735
736 /**
737  * ips_adjust - adjust power clamp based on thermal state
738  * @data: ips driver structure
739  *
740  * Wake up every 5s or so and check whether we should adjust the power clamp.
741  * Check CPU and GPU load to determine which needs adjustment.  There are
742  * several things to consider here:
743  *   - do we need to adjust up or down?
744  *   - is CPU busy?
745  *   - is GPU busy?
746  *   - is CPU in turbo?
747  *   - is GPU in turbo?
748  *   - is CPU or GPU preferred? (CPU is default)
749  *
750  * So, given the above, we do the following:
751  *   - up (TDP available)
752  *     - CPU not busy, GPU not busy - nothing
753  *     - CPU busy, GPU not busy - adjust CPU up
754  *     - CPU not busy, GPU busy - adjust GPU up
755  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
756  *       non-preferred unit if necessary
757  *   - down (at TDP limit)
758  *     - adjust both CPU and GPU down if possible
759  *
760                 cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
761 cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
762 cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
763 cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
764 cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
765  *
766  */
767 static int ips_adjust(void *data)
768 {
769         struct ips_driver *ips = data;
770         unsigned long flags;
771
772         dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
773
774         /*
775          * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
776          * often isn't recommended due to ME interaction.
777          */
778         do {
779                 bool cpu_busy = ips_cpu_busy(ips);
780                 bool gpu_busy = ips_gpu_busy(ips);
781
782                 spin_lock_irqsave(&ips->turbo_status_lock, flags);
783                 if (ips->poll_turbo_status)
784                         update_turbo_limits(ips);
785                 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
786
787                 /* Update turbo status if necessary */
788                 if (ips->cpu_turbo_enabled)
789                         ips_enable_cpu_turbo(ips);
790                 else
791                         ips_disable_cpu_turbo(ips);
792
793                 if (ips->gpu_turbo_enabled)
794                         ips_enable_gpu_turbo(ips);
795                 else
796                         ips_disable_gpu_turbo(ips);
797
798                 /* We're outside our comfort zone, crank them down */
799                 if (mcp_exceeded(ips)) {
800                         ips_cpu_lower(ips);
801                         ips_gpu_lower(ips);
802                         goto sleep;
803                 }
804
805                 if (!cpu_exceeded(ips, 0) && cpu_busy)
806                         ips_cpu_raise(ips);
807                 else
808                         ips_cpu_lower(ips);
809
810                 if (!mch_exceeded(ips) && gpu_busy)
811                         ips_gpu_raise(ips);
812                 else
813                         ips_gpu_lower(ips);
814
815 sleep:
816                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
817         } while (!kthread_should_stop());
818
819         dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
820
821         return 0;
822 }
823
824 /*
825  * Helpers for reading out temp/power values and calculating their
826  * averages for the decision making and monitoring functions.
827  */
828
829 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
830 {
831         u64 total = 0;
832         int i;
833         u16 avg;
834
835         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
836                 total += (u64)(array[i] * 100);
837
838         do_div(total, IPS_SAMPLE_COUNT);
839
840         avg = (u16)total;
841
842         return avg;
843 }
844
845 static u16 read_mgtv(struct ips_driver *ips)
846 {
847         u16 ret;
848         u64 slope, offset;
849         u64 val;
850
851         val = thm_readq(THM_MGTV);
852         val = (val & TV_MASK) >> TV_SHIFT;
853
854         slope = offset = thm_readw(THM_MGTA);
855         slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
856         offset = offset & MGTA_OFFSET_MASK;
857
858         ret = ((val * slope + 0x40) >> 7) + offset;
859
860         return 0; /* MCH temp reporting buggy */
861 }
862
863 static u16 read_ptv(struct ips_driver *ips)
864 {
865         u16 val, slope, offset;
866
867         slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
868         offset = ips->pta_val & PTA_OFFSET_MASK;
869
870         val = thm_readw(THM_PTV) & PTV_MASK;
871
872         return val;
873 }
874
875 static u16 read_ctv(struct ips_driver *ips, int cpu)
876 {
877         int reg = cpu ? THM_CTV2 : THM_CTV1;
878         u16 val;
879
880         val = thm_readw(reg);
881         if (!(val & CTV_TEMP_ERROR))
882                 val = (val) >> 6; /* discard fractional component */
883         else
884                 val = 0;
885
886         return val;
887 }
888
889 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
890 {
891         u32 val;
892         u32 ret;
893
894         /*
895          * CEC is in joules/65535.  Take difference over time to
896          * get watts.
897          */
898         val = thm_readl(THM_CEC);
899
900         /* period is in ms and we want mW */
901         ret = (((val - *last) * 1000) / period);
902         ret = (ret * 1000) / 65535;
903         *last = val;
904
905         return 0;
906 }
907
908 static const u16 temp_decay_factor = 2;
909 static u16 update_average_temp(u16 avg, u16 val)
910 {
911         u16 ret;
912
913         /* Multiply by 100 for extra precision */
914         ret = (val * 100 / temp_decay_factor) +
915                 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
916         return ret;
917 }
918
919 static const u16 power_decay_factor = 2;
920 static u16 update_average_power(u32 avg, u32 val)
921 {
922         u32 ret;
923
924         ret = (val / power_decay_factor) +
925                 (((power_decay_factor - 1) * avg) / power_decay_factor);
926
927         return ret;
928 }
929
930 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
931 {
932         u64 total = 0;
933         u32 avg;
934         int i;
935
936         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
937                 total += array[i];
938
939         do_div(total, IPS_SAMPLE_COUNT);
940         avg = (u32)total;
941
942         return avg;
943 }
944
945 static void monitor_timeout(unsigned long arg)
946 {
947         wake_up_process((struct task_struct *)arg);
948 }
949
950 /**
951  * ips_monitor - temp/power monitoring thread
952  * @data: ips driver structure
953  *
954  * This is the main function for the IPS driver.  It monitors power and
955  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
956  *
957  * We keep a 5s moving average of power consumption and tempurature.  Using
958  * that data, along with CPU vs GPU preference, we adjust the power clamps
959  * up or down.
960  */
961 static int ips_monitor(void *data)
962 {
963         struct ips_driver *ips = data;
964         struct timer_list timer;
965         unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
966         int i;
967         u32 *cpu_samples, *mchp_samples, old_cpu_power;
968         u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
969         u8 cur_seqno, last_seqno;
970
971         mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972         ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973         ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974         mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975         cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976         mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
977         if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
978                         !cpu_samples || !mchp_samples) {
979                 dev_err(&ips->dev->dev,
980                         "failed to allocate sample array, ips disabled\n");
981                 kfree(mcp_samples);
982                 kfree(ctv1_samples);
983                 kfree(ctv2_samples);
984                 kfree(mch_samples);
985                 kfree(cpu_samples);
986                 kfree(mchp_samples);
987                 return -ENOMEM;
988         }
989
990         last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
991                 ITV_ME_SEQNO_SHIFT;
992         seqno_timestamp = get_jiffies_64();
993
994         old_cpu_power = thm_readl(THM_CEC);
995         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
996
997         /* Collect an initial average */
998         for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
999                 u32 mchp, cpu_power;
1000                 u16 val;
1001
1002                 mcp_samples[i] = read_ptv(ips);
1003
1004                 val = read_ctv(ips, 0);
1005                 ctv1_samples[i] = val;
1006
1007                 val = read_ctv(ips, 1);
1008                 ctv2_samples[i] = val;
1009
1010                 val = read_mgtv(ips);
1011                 mch_samples[i] = val;
1012
1013                 cpu_power = get_cpu_power(ips, &old_cpu_power,
1014                                           IPS_SAMPLE_PERIOD);
1015                 cpu_samples[i] = cpu_power;
1016
1017                 if (ips->read_mch_val) {
1018                         mchp = ips->read_mch_val();
1019                         mchp_samples[i] = mchp;
1020                 }
1021
1022                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1023                 if (kthread_should_stop())
1024                         break;
1025         }
1026
1027         ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1028         ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1029         ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1030         ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1031         ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1032         ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1033         kfree(mcp_samples);
1034         kfree(ctv1_samples);
1035         kfree(ctv2_samples);
1036         kfree(mch_samples);
1037         kfree(cpu_samples);
1038         kfree(mchp_samples);
1039
1040         /* Start the adjustment thread now that we have data */
1041         wake_up_process(ips->adjust);
1042
1043         /*
1044          * Ok, now we have an initial avg.  From here on out, we track the
1045          * running avg using a decaying average calculation.  This allows
1046          * us to reduce the sample frequency if the CPU and GPU are idle.
1047          */
1048         old_cpu_power = thm_readl(THM_CEC);
1049         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1050         last_sample_period = IPS_SAMPLE_PERIOD;
1051
1052         setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1053                                         (unsigned long)current);
1054         do {
1055                 u32 cpu_val, mch_val;
1056                 u16 val;
1057
1058                 /* MCP itself */
1059                 val = read_ptv(ips);
1060                 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1061
1062                 /* Processor 0 */
1063                 val = read_ctv(ips, 0);
1064                 ips->ctv1_avg_temp =
1065                         update_average_temp(ips->ctv1_avg_temp, val);
1066                 /* Power */
1067                 cpu_val = get_cpu_power(ips, &old_cpu_power,
1068                                         last_sample_period);
1069                 ips->cpu_avg_power =
1070                         update_average_power(ips->cpu_avg_power, cpu_val);
1071
1072                 if (ips->second_cpu) {
1073                         /* Processor 1 */
1074                         val = read_ctv(ips, 1);
1075                         ips->ctv2_avg_temp =
1076                                 update_average_temp(ips->ctv2_avg_temp, val);
1077                 }
1078
1079                 /* MCH */
1080                 val = read_mgtv(ips);
1081                 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1082                 /* Power */
1083                 if (ips->read_mch_val) {
1084                         mch_val = ips->read_mch_val();
1085                         ips->mch_avg_power =
1086                                 update_average_power(ips->mch_avg_power,
1087                                                      mch_val);
1088                 }
1089
1090                 /*
1091                  * Make sure ME is updating thermal regs.
1092                  * Note:
1093                  * If it's been more than a second since the last update,
1094                  * the ME is probably hung.
1095                  */
1096                 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1097                         ITV_ME_SEQNO_SHIFT;
1098                 if (cur_seqno == last_seqno &&
1099                     time_after(jiffies, seqno_timestamp + HZ)) {
1100                         dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1101                 } else {
1102                         seqno_timestamp = get_jiffies_64();
1103                         last_seqno = cur_seqno;
1104                 }
1105
1106                 last_msecs = jiffies_to_msecs(jiffies);
1107                 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1108
1109                 __set_current_state(TASK_UNINTERRUPTIBLE);
1110                 mod_timer(&timer, expire);
1111                 schedule();
1112
1113                 /* Calculate actual sample period for power averaging */
1114                 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1115                 if (!last_sample_period)
1116                         last_sample_period = 1;
1117         } while (!kthread_should_stop());
1118
1119         del_timer_sync(&timer);
1120         destroy_timer_on_stack(&timer);
1121
1122         dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1123
1124         return 0;
1125 }
1126
1127 #if 0
1128 #define THM_DUMPW(reg) \
1129         { \
1130         u16 val = thm_readw(reg); \
1131         dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1132         }
1133 #define THM_DUMPL(reg) \
1134         { \
1135         u32 val = thm_readl(reg); \
1136         dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1137         }
1138 #define THM_DUMPQ(reg) \
1139         { \
1140         u64 val = thm_readq(reg); \
1141         dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1142         }
1143
1144 static void dump_thermal_info(struct ips_driver *ips)
1145 {
1146         u16 ptl;
1147
1148         ptl = thm_readw(THM_PTL);
1149         dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1150
1151         THM_DUMPW(THM_CTA);
1152         THM_DUMPW(THM_TRC);
1153         THM_DUMPW(THM_CTV1);
1154         THM_DUMPL(THM_STS);
1155         THM_DUMPW(THM_PTV);
1156         THM_DUMPQ(THM_MGTV);
1157 }
1158 #endif
1159
1160 /**
1161  * ips_irq_handler - handle temperature triggers and other IPS events
1162  * @irq: irq number
1163  * @arg: unused
1164  *
1165  * Handle temperature limit trigger events, generally by lowering the clamps.
1166  * If we're at a critical limit, we clamp back to the lowest possible value
1167  * to prevent emergency shutdown.
1168  */
1169 static irqreturn_t ips_irq_handler(int irq, void *arg)
1170 {
1171         struct ips_driver *ips = arg;
1172         u8 tses = thm_readb(THM_TSES);
1173         u8 tes = thm_readb(THM_TES);
1174
1175         if (!tses && !tes)
1176                 return IRQ_NONE;
1177
1178         dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1179         dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1180
1181         /* STS update from EC? */
1182         if (tes & 1) {
1183                 u32 sts, tc1;
1184
1185                 sts = thm_readl(THM_STS);
1186                 tc1 = thm_readl(THM_TC1);
1187
1188                 if (sts & STS_NVV) {
1189                         spin_lock(&ips->turbo_status_lock);
1190                         ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1191                                 STS_PCPL_SHIFT;
1192                         ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1193                                 STS_GPL_SHIFT;
1194                         /* ignore EC CPU vs GPU pref */
1195                         ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1196                         /* 
1197                          * Disable turbo for now, until we can figure
1198                          * out why the power figures are wrong
1199                          */
1200                         ips->cpu_turbo_enabled = false;
1201                         if (ips->gpu_busy)
1202                                 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1203                         ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1204                                 STS_PTL_SHIFT;
1205                         ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1206                                 STS_PPL_SHIFT;
1207                         verify_limits(ips);
1208                         spin_unlock(&ips->turbo_status_lock);
1209
1210                         thm_writeb(THM_SEC, SEC_ACK);
1211                 }
1212                 thm_writeb(THM_TES, tes);
1213         }
1214
1215         /* Thermal trip */
1216         if (tses) {
1217                 dev_warn(&ips->dev->dev,
1218                          "thermal trip occurred, tses: 0x%04x\n", tses);
1219                 thm_writeb(THM_TSES, tses);
1220         }
1221
1222         return IRQ_HANDLED;
1223 }
1224
1225 #ifndef CONFIG_DEBUG_FS
1226 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1227 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1228 #else
1229
1230 /* Expose current state and limits in debugfs if possible */
1231
1232 struct ips_debugfs_node {
1233         struct ips_driver *ips;
1234         char *name;
1235         int (*show)(struct seq_file *m, void *data);
1236 };
1237
1238 static int show_cpu_temp(struct seq_file *m, void *data)
1239 {
1240         struct ips_driver *ips = m->private;
1241
1242         seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1243                    ips->ctv1_avg_temp % 100);
1244
1245         return 0;
1246 }
1247
1248 static int show_cpu_power(struct seq_file *m, void *data)
1249 {
1250         struct ips_driver *ips = m->private;
1251
1252         seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1253
1254         return 0;
1255 }
1256
1257 static int show_cpu_clamp(struct seq_file *m, void *data)
1258 {
1259         u64 turbo_override;
1260         int tdp, tdc;
1261
1262         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1263
1264         tdp = (int)(turbo_override & TURBO_TDP_MASK);
1265         tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1266
1267         /* Convert to .1W/A units */
1268         tdp = tdp * 10 / 8;
1269         tdc = tdc * 10 / 8;
1270
1271         /* Watts Amperes */
1272         seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1273                    tdc / 10, tdc % 10);
1274
1275         return 0;
1276 }
1277
1278 static int show_mch_temp(struct seq_file *m, void *data)
1279 {
1280         struct ips_driver *ips = m->private;
1281
1282         seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1283                    ips->mch_avg_temp % 100);
1284
1285         return 0;
1286 }
1287
1288 static int show_mch_power(struct seq_file *m, void *data)
1289 {
1290         struct ips_driver *ips = m->private;
1291
1292         seq_printf(m, "%dmW\n", ips->mch_avg_power);
1293
1294         return 0;
1295 }
1296
1297 static struct ips_debugfs_node ips_debug_files[] = {
1298         { NULL, "cpu_temp", show_cpu_temp },
1299         { NULL, "cpu_power", show_cpu_power },
1300         { NULL, "cpu_clamp", show_cpu_clamp },
1301         { NULL, "mch_temp", show_mch_temp },
1302         { NULL, "mch_power", show_mch_power },
1303 };
1304
1305 static int ips_debugfs_open(struct inode *inode, struct file *file)
1306 {
1307         struct ips_debugfs_node *node = inode->i_private;
1308
1309         return single_open(file, node->show, node->ips);
1310 }
1311
1312 static const struct file_operations ips_debugfs_ops = {
1313         .owner = THIS_MODULE,
1314         .open = ips_debugfs_open,
1315         .read = seq_read,
1316         .llseek = seq_lseek,
1317         .release = single_release,
1318 };
1319
1320 static void ips_debugfs_cleanup(struct ips_driver *ips)
1321 {
1322         if (ips->debug_root)
1323                 debugfs_remove_recursive(ips->debug_root);
1324         return;
1325 }
1326
1327 static void ips_debugfs_init(struct ips_driver *ips)
1328 {
1329         int i;
1330
1331         ips->debug_root = debugfs_create_dir("ips", NULL);
1332         if (!ips->debug_root) {
1333                 dev_err(&ips->dev->dev,
1334                         "failed to create debugfs entries: %ld\n",
1335                         PTR_ERR(ips->debug_root));
1336                 return;
1337         }
1338
1339         for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1340                 struct dentry *ent;
1341                 struct ips_debugfs_node *node = &ips_debug_files[i];
1342
1343                 node->ips = ips;
1344                 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1345                                           ips->debug_root, node,
1346                                           &ips_debugfs_ops);
1347                 if (!ent) {
1348                         dev_err(&ips->dev->dev,
1349                                 "failed to create debug file: %ld\n",
1350                                 PTR_ERR(ent));
1351                         goto err_cleanup;
1352                 }
1353         }
1354
1355         return;
1356
1357 err_cleanup:
1358         ips_debugfs_cleanup(ips);
1359         return;
1360 }
1361 #endif /* CONFIG_DEBUG_FS */
1362
1363 /**
1364  * ips_detect_cpu - detect whether CPU supports IPS
1365  *
1366  * Walk our list and see if we're on a supported CPU.  If we find one,
1367  * return the limits for it.
1368  */
1369 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1370 {
1371         u64 turbo_power, misc_en;
1372         struct ips_mcp_limits *limits = NULL;
1373         u16 tdp;
1374
1375         if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1376                 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1377                 goto out;
1378         }
1379
1380         rdmsrl(IA32_MISC_ENABLE, misc_en);
1381         /*
1382          * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1383          * turbo manually or we'll get an illegal MSR access, even though
1384          * turbo will still be available.
1385          */
1386         if (misc_en & IA32_MISC_TURBO_EN)
1387                 ips->turbo_toggle_allowed = true;
1388         else
1389                 ips->turbo_toggle_allowed = false;
1390
1391         if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1392                 limits = &ips_sv_limits;
1393         else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1394                 limits = &ips_lv_limits;
1395         else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1396                 limits = &ips_ulv_limits;
1397         else {
1398                 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1399                 goto out;
1400         }
1401
1402         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1403         tdp = turbo_power & TURBO_TDP_MASK;
1404
1405         /* Sanity check TDP against CPU */
1406         if (limits->core_power_limit != (tdp / 8) * 1000) {
1407                 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1408                          tdp / 8, limits->core_power_limit / 1000);
1409                 limits->core_power_limit = (tdp / 8) * 1000;
1410         }
1411
1412 out:
1413         return limits;
1414 }
1415
1416 /**
1417  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1418  * @ips: IPS driver
1419  *
1420  * The i915 driver exports several interfaces to allow the IPS driver to
1421  * monitor and control graphics turbo mode.  If we can find them, we can
1422  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1423  * thermal and power limits in the MCP.
1424  */
1425 static bool ips_get_i915_syms(struct ips_driver *ips)
1426 {
1427         ips->read_mch_val = symbol_get(i915_read_mch_val);
1428         if (!ips->read_mch_val)
1429                 goto out_err;
1430         ips->gpu_raise = symbol_get(i915_gpu_raise);
1431         if (!ips->gpu_raise)
1432                 goto out_put_mch;
1433         ips->gpu_lower = symbol_get(i915_gpu_lower);
1434         if (!ips->gpu_lower)
1435                 goto out_put_raise;
1436         ips->gpu_busy = symbol_get(i915_gpu_busy);
1437         if (!ips->gpu_busy)
1438                 goto out_put_lower;
1439         ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1440         if (!ips->gpu_turbo_disable)
1441                 goto out_put_busy;
1442
1443         return true;
1444
1445 out_put_busy:
1446         symbol_put(i915_gpu_busy);
1447 out_put_lower:
1448         symbol_put(i915_gpu_lower);
1449 out_put_raise:
1450         symbol_put(i915_gpu_raise);
1451 out_put_mch:
1452         symbol_put(i915_read_mch_val);
1453 out_err:
1454         return false;
1455 }
1456
1457 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1458         { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1459                      PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1460         { 0, }
1461 };
1462
1463 MODULE_DEVICE_TABLE(pci, ips_id_table);
1464
1465 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1466 {
1467         u64 platform_info;
1468         struct ips_driver *ips;
1469         u32 hts;
1470         int ret = 0;
1471         u16 htshi, trc, trc_required_mask;
1472         u8 tse;
1473
1474         ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1475         if (!ips)
1476                 return -ENOMEM;
1477
1478         pci_set_drvdata(dev, ips);
1479         ips->dev = dev;
1480
1481         ips->limits = ips_detect_cpu(ips);
1482         if (!ips->limits) {
1483                 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1484                 ret = -ENXIO;
1485                 goto error_free;
1486         }
1487
1488         spin_lock_init(&ips->turbo_status_lock);
1489
1490         ret = pci_enable_device(dev);
1491         if (ret) {
1492                 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1493                 goto error_free;
1494         }
1495
1496         if (!pci_resource_start(dev, 0)) {
1497                 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1498                 ret = -ENXIO;
1499                 goto error_free;
1500         }
1501
1502         ret = pci_request_regions(dev, "ips thermal sensor");
1503         if (ret) {
1504                 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1505                 goto error_free;
1506         }
1507
1508
1509         ips->regmap = ioremap(pci_resource_start(dev, 0),
1510                               pci_resource_len(dev, 0));
1511         if (!ips->regmap) {
1512                 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1513                 ret = -EBUSY;
1514                 goto error_release;
1515         }
1516
1517         tse = thm_readb(THM_TSE);
1518         if (tse != TSE_EN) {
1519                 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1520                 ret = -ENXIO;
1521                 goto error_unmap;
1522         }
1523
1524         trc = thm_readw(THM_TRC);
1525         trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1526         if ((trc & trc_required_mask) != trc_required_mask) {
1527                 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1528                 ret = -ENXIO;
1529                 goto error_unmap;
1530         }
1531
1532         if (trc & TRC_CORE2_EN)
1533                 ips->second_cpu = true;
1534
1535         update_turbo_limits(ips);
1536         dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1537                 ips->mcp_power_limit / 10);
1538         dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1539                 ips->core_power_limit / 10);
1540         /* BIOS may update limits at runtime */
1541         if (thm_readl(THM_PSC) & PSP_PBRT)
1542                 ips->poll_turbo_status = true;
1543
1544         if (!ips_get_i915_syms(ips)) {
1545                 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1546                 ips->gpu_turbo_enabled = false;
1547         } else {
1548                 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1549                 ips->gpu_turbo_enabled = true;
1550         }
1551
1552         /*
1553          * Check PLATFORM_INFO MSR to make sure this chip is
1554          * turbo capable.
1555          */
1556         rdmsrl(PLATFORM_INFO, platform_info);
1557         if (!(platform_info & PLATFORM_TDP)) {
1558                 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1559                 ret = -ENODEV;
1560                 goto error_unmap;
1561         }
1562
1563         /*
1564          * IRQ handler for ME interaction
1565          * Note: don't use MSI here as the PCH has bugs.
1566          */
1567         pci_disable_msi(dev);
1568         ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1569                           ips);
1570         if (ret) {
1571                 dev_err(&dev->dev, "request irq failed, aborting\n");
1572                 goto error_unmap;
1573         }
1574
1575         /* Enable aux, hot & critical interrupts */
1576         thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1577                    TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1578         thm_writeb(THM_TEN, TEN_UPDATE_EN);
1579
1580         /* Collect adjustment values */
1581         ips->cta_val = thm_readw(THM_CTA);
1582         ips->pta_val = thm_readw(THM_PTA);
1583         ips->mgta_val = thm_readw(THM_MGTA);
1584
1585         /* Save turbo limits & ratios */
1586         rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1587
1588         ips_disable_cpu_turbo(ips);
1589         ips->cpu_turbo_enabled = false;
1590
1591         /* Create thermal adjust thread */
1592         ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1593         if (IS_ERR(ips->adjust)) {
1594                 dev_err(&dev->dev,
1595                         "failed to create thermal adjust thread, aborting\n");
1596                 ret = -ENOMEM;
1597                 goto error_free_irq;
1598
1599         }
1600
1601         /*
1602          * Set up the work queue and monitor thread. The monitor thread
1603          * will wake up ips_adjust thread.
1604          */
1605         ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1606         if (IS_ERR(ips->monitor)) {
1607                 dev_err(&dev->dev,
1608                         "failed to create thermal monitor thread, aborting\n");
1609                 ret = -ENOMEM;
1610                 goto error_thread_cleanup;
1611         }
1612
1613         hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1614                 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1615         htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1616
1617         thm_writew(THM_HTSHI, htshi);
1618         thm_writel(THM_HTS, hts);
1619
1620         ips_debugfs_init(ips);
1621
1622         dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1623                  ips->mcp_temp_limit);
1624         return ret;
1625
1626 error_thread_cleanup:
1627         kthread_stop(ips->adjust);
1628 error_free_irq:
1629         free_irq(ips->dev->irq, ips);
1630 error_unmap:
1631         iounmap(ips->regmap);
1632 error_release:
1633         pci_release_regions(dev);
1634 error_free:
1635         kfree(ips);
1636         return ret;
1637 }
1638
1639 static void ips_remove(struct pci_dev *dev)
1640 {
1641         struct ips_driver *ips = pci_get_drvdata(dev);
1642         u64 turbo_override;
1643
1644         if (!ips)
1645                 return;
1646
1647         ips_debugfs_cleanup(ips);
1648
1649         /* Release i915 driver */
1650         if (ips->read_mch_val)
1651                 symbol_put(i915_read_mch_val);
1652         if (ips->gpu_raise)
1653                 symbol_put(i915_gpu_raise);
1654         if (ips->gpu_lower)
1655                 symbol_put(i915_gpu_lower);
1656         if (ips->gpu_busy)
1657                 symbol_put(i915_gpu_busy);
1658         if (ips->gpu_turbo_disable)
1659                 symbol_put(i915_gpu_turbo_disable);
1660
1661         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1662         turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1663         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1664         wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1665
1666         free_irq(ips->dev->irq, ips);
1667         if (ips->adjust)
1668                 kthread_stop(ips->adjust);
1669         if (ips->monitor)
1670                 kthread_stop(ips->monitor);
1671         iounmap(ips->regmap);
1672         pci_release_regions(dev);
1673         kfree(ips);
1674         dev_dbg(&dev->dev, "IPS driver removed\n");
1675 }
1676
1677 #ifdef CONFIG_PM
1678 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1679 {
1680         return 0;
1681 }
1682
1683 static int ips_resume(struct pci_dev *dev)
1684 {
1685         return 0;
1686 }
1687 #else
1688 #define ips_suspend NULL
1689 #define ips_resume NULL
1690 #endif /* CONFIG_PM */
1691
1692 static void ips_shutdown(struct pci_dev *dev)
1693 {
1694 }
1695
1696 static struct pci_driver ips_pci_driver = {
1697         .name = "intel ips",
1698         .id_table = ips_id_table,
1699         .probe = ips_probe,
1700         .remove = ips_remove,
1701         .suspend = ips_suspend,
1702         .resume = ips_resume,
1703         .shutdown = ips_shutdown,
1704 };
1705
1706 static int __init ips_init(void)
1707 {
1708         return pci_register_driver(&ips_pci_driver);
1709 }
1710 module_init(ips_init);
1711
1712 static void ips_exit(void)
1713 {
1714         pci_unregister_driver(&ips_pci_driver);
1715         return;
1716 }
1717 module_exit(ips_exit);
1718
1719 MODULE_LICENSE("GPL");
1720 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1721 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");