Merge branch 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspe...
[pandora-kernel.git] / drivers / platform / x86 / intel_ips.c
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *      Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *
55  * Related documents:
56  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57  *   - CDI 401376 - Ibex Peak EDS
58  *   - ref 26037, 26641 - IPS BIOS spec
59  *   - ref 26489 - Nehalem BIOS writer's guide
60  *   - ref 26921 - Ibex Peak BIOS Specification
61  */
62
63 #include <linux/debugfs.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/kernel.h>
67 #include <linux/kthread.h>
68 #include <linux/module.h>
69 #include <linux/pci.h>
70 #include <linux/sched.h>
71 #include <linux/seq_file.h>
72 #include <linux/string.h>
73 #include <linux/tick.h>
74 #include <linux/timer.h>
75 #include <drm/i915_drm.h>
76 #include <asm/msr.h>
77 #include <asm/processor.h>
78 #include "intel_ips.h"
79
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81
82 /*
83  * Package level MSRs for monitor/control
84  */
85 #define PLATFORM_INFO   0xce
86 #define   PLATFORM_TDP          (1<<29)
87 #define   PLATFORM_RATIO        (1<<28)
88
89 #define IA32_MISC_ENABLE        0x1a0
90 #define   IA32_MISC_TURBO_EN    (1ULL<<38)
91
92 #define TURBO_POWER_CURRENT_LIMIT       0x1ac
93 #define   TURBO_TDC_OVR_EN      (1UL<<31)
94 #define   TURBO_TDC_MASK        (0x000000007fff0000UL)
95 #define   TURBO_TDC_SHIFT       (16)
96 #define   TURBO_TDP_OVR_EN      (1UL<<15)
97 #define   TURBO_TDP_MASK        (0x0000000000003fffUL)
98
99 /*
100  * Core/thread MSRs for monitoring
101  */
102 #define IA32_PERF_CTL           0x199
103 #define   IA32_PERF_TURBO_DIS   (1ULL<<32)
104
105 /*
106  * Thermal PCI device regs
107  */
108 #define THM_CFG_TBAR    0x10
109 #define THM_CFG_TBAR_HI 0x14
110
111 #define THM_TSIU        0x00
112 #define THM_TSE         0x01
113 #define   TSE_EN        0xb8
114 #define THM_TSS         0x02
115 #define THM_TSTR        0x03
116 #define THM_TSTTP       0x04
117 #define THM_TSCO        0x08
118 #define THM_TSES        0x0c
119 #define THM_TSGPEN      0x0d
120 #define   TSGPEN_HOT_LOHI       (1<<1)
121 #define   TSGPEN_CRIT_LOHI      (1<<2)
122 #define THM_TSPC        0x0e
123 #define THM_PPEC        0x10
124 #define THM_CTA         0x12
125 #define THM_PTA         0x14
126 #define   PTA_SLOPE_MASK        (0xff00)
127 #define   PTA_SLOPE_SHIFT       8
128 #define   PTA_OFFSET_MASK       (0x00ff)
129 #define THM_MGTA        0x16
130 #define   MGTA_SLOPE_MASK       (0xff00)
131 #define   MGTA_SLOPE_SHIFT      8
132 #define   MGTA_OFFSET_MASK      (0x00ff)
133 #define THM_TRC         0x1a
134 #define   TRC_CORE2_EN  (1<<15)
135 #define   TRC_THM_EN    (1<<12)
136 #define   TRC_C6_WAR    (1<<8)
137 #define   TRC_CORE1_EN  (1<<7)
138 #define   TRC_CORE_PWR  (1<<6)
139 #define   TRC_PCH_EN    (1<<5)
140 #define   TRC_MCH_EN    (1<<4)
141 #define   TRC_DIMM4     (1<<3)
142 #define   TRC_DIMM3     (1<<2)
143 #define   TRC_DIMM2     (1<<1)
144 #define   TRC_DIMM1     (1<<0)
145 #define THM_TES         0x20
146 #define THM_TEN         0x21
147 #define   TEN_UPDATE_EN 1
148 #define THM_PSC         0x24
149 #define   PSC_NTG       (1<<0) /* No GFX turbo support */
150 #define   PSC_NTPC      (1<<1) /* No CPU turbo support */
151 #define   PSC_PP_DEF    (0<<2) /* Perf policy up to driver */
152 #define   PSP_PP_PC     (1<<2) /* BIOS prefers CPU perf */
153 #define   PSP_PP_BAL    (2<<2) /* BIOS wants balanced perf */
154 #define   PSP_PP_GFX    (3<<2) /* BIOS prefers GFX perf */
155 #define   PSP_PBRT      (1<<4) /* BIOS run time support */
156 #define THM_CTV1        0x30
157 #define   CTV_TEMP_ERROR (1<<15)
158 #define   CTV_TEMP_MASK 0x3f
159 #define   CTV_
160 #define THM_CTV2        0x32
161 #define THM_CEC         0x34 /* undocumented power accumulator in joules */
162 #define THM_AE          0x3f
163 #define THM_HTS         0x50 /* 32 bits */
164 #define   HTS_PCPL_MASK (0x7fe00000)
165 #define   HTS_PCPL_SHIFT 21
166 #define   HTS_GPL_MASK  (0x001ff000)
167 #define   HTS_GPL_SHIFT 12
168 #define   HTS_PP_MASK   (0x00000c00)
169 #define   HTS_PP_SHIFT  10
170 #define   HTS_PP_DEF    0
171 #define   HTS_PP_PROC   1
172 #define   HTS_PP_BAL    2
173 #define   HTS_PP_GFX    3
174 #define   HTS_PCTD_DIS  (1<<9)
175 #define   HTS_GTD_DIS   (1<<8)
176 #define   HTS_PTL_MASK  (0x000000fe)
177 #define   HTS_PTL_SHIFT 1
178 #define   HTS_NVV       (1<<0)
179 #define THM_HTSHI       0x54 /* 16 bits */
180 #define   HTS2_PPL_MASK         (0x03ff)
181 #define   HTS2_PRST_MASK        (0x3c00)
182 #define   HTS2_PRST_SHIFT       10
183 #define   HTS2_PRST_UNLOADED    0
184 #define   HTS2_PRST_RUNNING     1
185 #define   HTS2_PRST_TDISOP      2 /* turbo disabled due to power */
186 #define   HTS2_PRST_TDISHT      3 /* turbo disabled due to high temp */
187 #define   HTS2_PRST_TDISUSR     4 /* user disabled turbo */
188 #define   HTS2_PRST_TDISPLAT    5 /* platform disabled turbo */
189 #define   HTS2_PRST_TDISPM      6 /* power management disabled turbo */
190 #define   HTS2_PRST_TDISERR     7 /* some kind of error disabled turbo */
191 #define THM_PTL         0x56
192 #define THM_MGTV        0x58
193 #define   TV_MASK       0x000000000000ff00
194 #define   TV_SHIFT      8
195 #define THM_PTV         0x60
196 #define   PTV_MASK      0x00ff
197 #define THM_MMGPC       0x64
198 #define THM_MPPC        0x66
199 #define THM_MPCPC       0x68
200 #define THM_TSPIEN      0x82
201 #define   TSPIEN_AUX_LOHI       (1<<0)
202 #define   TSPIEN_HOT_LOHI       (1<<1)
203 #define   TSPIEN_CRIT_LOHI      (1<<2)
204 #define   TSPIEN_AUX2_LOHI      (1<<3)
205 #define THM_TSLOCK      0x83
206 #define THM_ATR         0x84
207 #define THM_TOF         0x87
208 #define THM_STS         0x98
209 #define   STS_PCPL_MASK         (0x7fe00000)
210 #define   STS_PCPL_SHIFT        21
211 #define   STS_GPL_MASK          (0x001ff000)
212 #define   STS_GPL_SHIFT         12
213 #define   STS_PP_MASK           (0x00000c00)
214 #define   STS_PP_SHIFT          10
215 #define   STS_PP_DEF            0
216 #define   STS_PP_PROC           1
217 #define   STS_PP_BAL            2
218 #define   STS_PP_GFX            3
219 #define   STS_PCTD_DIS          (1<<9)
220 #define   STS_GTD_DIS           (1<<8)
221 #define   STS_PTL_MASK          (0x000000fe)
222 #define   STS_PTL_SHIFT         1
223 #define   STS_NVV               (1<<0)
224 #define THM_SEC         0x9c
225 #define   SEC_ACK       (1<<0)
226 #define THM_TC3         0xa4
227 #define THM_TC1         0xa8
228 #define   STS_PPL_MASK          (0x0003ff00)
229 #define   STS_PPL_SHIFT         16
230 #define THM_TC2         0xac
231 #define THM_DTV         0xb0
232 #define THM_ITV         0xd8
233 #define   ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
234 #define   ITV_ME_SEQNO_SHIFT (16)
235 #define   ITV_MCH_TEMP_MASK 0x0000ff00
236 #define   ITV_MCH_TEMP_SHIFT (8)
237 #define   ITV_PCH_TEMP_MASK 0x000000ff
238
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 static bool late_i915_load = false;
250
251 /* For initial average collection */
252 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
253 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
254 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
255
256 /* Per-SKU limits */
257 struct ips_mcp_limits {
258         int cpu_family;
259         int cpu_model; /* includes extended model... */
260         int mcp_power_limit; /* mW units */
261         int core_power_limit;
262         int mch_power_limit;
263         int core_temp_limit; /* degrees C */
264         int mch_temp_limit;
265 };
266
267 /* Max temps are -10 degrees C to avoid PROCHOT# */
268
269 struct ips_mcp_limits ips_sv_limits = {
270         .mcp_power_limit = 35000,
271         .core_power_limit = 29000,
272         .mch_power_limit = 20000,
273         .core_temp_limit = 95,
274         .mch_temp_limit = 90
275 };
276
277 struct ips_mcp_limits ips_lv_limits = {
278         .mcp_power_limit = 25000,
279         .core_power_limit = 21000,
280         .mch_power_limit = 13000,
281         .core_temp_limit = 95,
282         .mch_temp_limit = 90
283 };
284
285 struct ips_mcp_limits ips_ulv_limits = {
286         .mcp_power_limit = 18000,
287         .core_power_limit = 14000,
288         .mch_power_limit = 11000,
289         .core_temp_limit = 95,
290         .mch_temp_limit = 90
291 };
292
293 struct ips_driver {
294         struct pci_dev *dev;
295         void *regmap;
296         struct task_struct *monitor;
297         struct task_struct *adjust;
298         struct dentry *debug_root;
299
300         /* Average CPU core temps (all averages in .01 degrees C for precision) */
301         u16 ctv1_avg_temp;
302         u16 ctv2_avg_temp;
303         /* GMCH average */
304         u16 mch_avg_temp;
305         /* Average for the CPU (both cores?) */
306         u16 mcp_avg_temp;
307         /* Average power consumption (in mW) */
308         u32 cpu_avg_power;
309         u32 mch_avg_power;
310
311         /* Offset values */
312         u16 cta_val;
313         u16 pta_val;
314         u16 mgta_val;
315
316         /* Maximums & prefs, protected by turbo status lock */
317         spinlock_t turbo_status_lock;
318         u16 mcp_temp_limit;
319         u16 mcp_power_limit;
320         u16 core_power_limit;
321         u16 mch_power_limit;
322         bool cpu_turbo_enabled;
323         bool __cpu_turbo_on;
324         bool gpu_turbo_enabled;
325         bool __gpu_turbo_on;
326         bool gpu_preferred;
327         bool poll_turbo_status;
328         bool second_cpu;
329         bool turbo_toggle_allowed;
330         struct ips_mcp_limits *limits;
331
332         /* Optional MCH interfaces for if i915 is in use */
333         unsigned long (*read_mch_val)(void);
334         bool (*gpu_raise)(void);
335         bool (*gpu_lower)(void);
336         bool (*gpu_busy)(void);
337         bool (*gpu_turbo_disable)(void);
338
339         /* For restoration at unload */
340         u64 orig_turbo_limit;
341         u64 orig_turbo_ratios;
342 };
343
344 static bool
345 ips_gpu_turbo_enabled(struct ips_driver *ips);
346
347 #ifndef readq
348 static inline __u64 readq(const volatile void __iomem *addr)
349 {
350         const volatile u32 __iomem *p = addr;
351         u32 low, high;
352
353         low = readl(p);
354         high = readl(p + 1);
355
356         return low + ((u64)high << 32);
357 }
358 #endif
359
360 /**
361  * ips_cpu_busy - is CPU busy?
362  * @ips: IPS driver struct
363  *
364  * Check CPU for load to see whether we should increase its thermal budget.
365  *
366  * RETURNS:
367  * True if the CPU could use more power, false otherwise.
368  */
369 static bool ips_cpu_busy(struct ips_driver *ips)
370 {
371         if ((avenrun[0] >> FSHIFT) > 1)
372                 return true;
373
374         return false;
375 }
376
377 /**
378  * ips_cpu_raise - raise CPU power clamp
379  * @ips: IPS driver struct
380  *
381  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
382  * this platform.
383  *
384  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
385  * long as we haven't hit the TDP limit for the SKU).
386  */
387 static void ips_cpu_raise(struct ips_driver *ips)
388 {
389         u64 turbo_override;
390         u16 cur_tdp_limit, new_tdp_limit;
391
392         if (!ips->cpu_turbo_enabled)
393                 return;
394
395         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
396
397         cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
398         new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
399
400         /* Clamp to SKU TDP limit */
401         if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
402                 new_tdp_limit = cur_tdp_limit;
403
404         thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
405
406         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
407         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
408
409         turbo_override &= ~TURBO_TDP_MASK;
410         turbo_override |= new_tdp_limit;
411
412         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
413 }
414
415 /**
416  * ips_cpu_lower - lower CPU power clamp
417  * @ips: IPS driver struct
418  *
419  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
420  *
421  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
422  * as low as the platform limits will allow (though we could go lower there
423  * wouldn't be much point).
424  */
425 static void ips_cpu_lower(struct ips_driver *ips)
426 {
427         u64 turbo_override;
428         u16 cur_limit, new_limit;
429
430         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
431
432         cur_limit = turbo_override & TURBO_TDP_MASK;
433         new_limit = cur_limit - 8; /* 1W decrease */
434
435         /* Clamp to SKU TDP limit */
436         if (new_limit  < (ips->orig_turbo_limit & TURBO_TDP_MASK))
437                 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
438
439         thm_writew(THM_MPCPC, (new_limit * 10) / 8);
440
441         turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
442         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
443
444         turbo_override &= ~TURBO_TDP_MASK;
445         turbo_override |= new_limit;
446
447         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
448 }
449
450 /**
451  * do_enable_cpu_turbo - internal turbo enable function
452  * @data: unused
453  *
454  * Internal function for actually updating MSRs.  When we enable/disable
455  * turbo, we need to do it on each CPU; this function is the one called
456  * by on_each_cpu() when needed.
457  */
458 static void do_enable_cpu_turbo(void *data)
459 {
460         u64 perf_ctl;
461
462         rdmsrl(IA32_PERF_CTL, perf_ctl);
463         if (perf_ctl & IA32_PERF_TURBO_DIS) {
464                 perf_ctl &= ~IA32_PERF_TURBO_DIS;
465                 wrmsrl(IA32_PERF_CTL, perf_ctl);
466         }
467 }
468
469 /**
470  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
471  * @ips: IPS driver struct
472  *
473  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
474  * all logical threads.
475  */
476 static void ips_enable_cpu_turbo(struct ips_driver *ips)
477 {
478         /* Already on, no need to mess with MSRs */
479         if (ips->__cpu_turbo_on)
480                 return;
481
482         if (ips->turbo_toggle_allowed)
483                 on_each_cpu(do_enable_cpu_turbo, ips, 1);
484
485         ips->__cpu_turbo_on = true;
486 }
487
488 /**
489  * do_disable_cpu_turbo - internal turbo disable function
490  * @data: unused
491  *
492  * Internal function for actually updating MSRs.  When we enable/disable
493  * turbo, we need to do it on each CPU; this function is the one called
494  * by on_each_cpu() when needed.
495  */
496 static void do_disable_cpu_turbo(void *data)
497 {
498         u64 perf_ctl;
499
500         rdmsrl(IA32_PERF_CTL, perf_ctl);
501         if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
502                 perf_ctl |= IA32_PERF_TURBO_DIS;
503                 wrmsrl(IA32_PERF_CTL, perf_ctl);
504         }
505 }
506
507 /**
508  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
509  * @ips: IPS driver struct
510  *
511  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
512  * all logical threads.
513  */
514 static void ips_disable_cpu_turbo(struct ips_driver *ips)
515 {
516         /* Already off, leave it */
517         if (!ips->__cpu_turbo_on)
518                 return;
519
520         if (ips->turbo_toggle_allowed)
521                 on_each_cpu(do_disable_cpu_turbo, ips, 1);
522
523         ips->__cpu_turbo_on = false;
524 }
525
526 /**
527  * ips_gpu_busy - is GPU busy?
528  * @ips: IPS driver struct
529  *
530  * Check GPU for load to see whether we should increase its thermal budget.
531  * We need to call into the i915 driver in this case.
532  *
533  * RETURNS:
534  * True if the GPU could use more power, false otherwise.
535  */
536 static bool ips_gpu_busy(struct ips_driver *ips)
537 {
538         if (!ips_gpu_turbo_enabled(ips))
539                 return false;
540
541         return ips->gpu_busy();
542 }
543
544 /**
545  * ips_gpu_raise - raise GPU power clamp
546  * @ips: IPS driver struct
547  *
548  * Raise the GPU frequency/power if possible.  We need to call into the
549  * i915 driver in this case.
550  */
551 static void ips_gpu_raise(struct ips_driver *ips)
552 {
553         if (!ips_gpu_turbo_enabled(ips))
554                 return;
555
556         if (!ips->gpu_raise())
557                 ips->gpu_turbo_enabled = false;
558
559         return;
560 }
561
562 /**
563  * ips_gpu_lower - lower GPU power clamp
564  * @ips: IPS driver struct
565  *
566  * Lower GPU frequency/power if possible.  Need to call i915.
567  */
568 static void ips_gpu_lower(struct ips_driver *ips)
569 {
570         if (!ips_gpu_turbo_enabled(ips))
571                 return;
572
573         if (!ips->gpu_lower())
574                 ips->gpu_turbo_enabled = false;
575
576         return;
577 }
578
579 /**
580  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
581  * @ips: IPS driver struct
582  *
583  * Call into the graphics driver indicating that it can safely use
584  * turbo mode.
585  */
586 static void ips_enable_gpu_turbo(struct ips_driver *ips)
587 {
588         if (ips->__gpu_turbo_on)
589                 return;
590         ips->__gpu_turbo_on = true;
591 }
592
593 /**
594  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
595  * @ips: IPS driver struct
596  *
597  * Request that the graphics driver disable turbo mode.
598  */
599 static void ips_disable_gpu_turbo(struct ips_driver *ips)
600 {
601         /* Avoid calling i915 if turbo is already disabled */
602         if (!ips->__gpu_turbo_on)
603                 return;
604
605         if (!ips->gpu_turbo_disable())
606                 dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
607         else
608                 ips->__gpu_turbo_on = false;
609 }
610
611 /**
612  * mcp_exceeded - check whether we're outside our thermal & power limits
613  * @ips: IPS driver struct
614  *
615  * Check whether the MCP is over its thermal or power budget.
616  */
617 static bool mcp_exceeded(struct ips_driver *ips)
618 {
619         unsigned long flags;
620         bool ret = false;
621         u32 temp_limit;
622         u32 avg_power;
623         const char *msg = "MCP limit exceeded: ";
624
625         spin_lock_irqsave(&ips->turbo_status_lock, flags);
626
627         temp_limit = ips->mcp_temp_limit * 100;
628         if (ips->mcp_avg_temp > temp_limit) {
629                 dev_info(&ips->dev->dev,
630                         "%sAvg temp %u, limit %u\n", msg, ips->mcp_avg_temp,
631                         temp_limit);
632                 ret = true;
633         }
634
635         avg_power = ips->cpu_avg_power + ips->mch_avg_power;
636         if (avg_power > ips->mcp_power_limit) {
637                 dev_info(&ips->dev->dev,
638                         "%sAvg power %u, limit %u\n", msg, avg_power,
639                         ips->mcp_power_limit);
640                 ret = true;
641         }
642
643         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
644
645         return ret;
646 }
647
648 /**
649  * cpu_exceeded - check whether a CPU core is outside its limits
650  * @ips: IPS driver struct
651  * @cpu: CPU number to check
652  *
653  * Check a given CPU's average temp or power is over its limit.
654  */
655 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
656 {
657         unsigned long flags;
658         int avg;
659         bool ret = false;
660
661         spin_lock_irqsave(&ips->turbo_status_lock, flags);
662         avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
663         if (avg > (ips->limits->core_temp_limit * 100))
664                 ret = true;
665         if (ips->cpu_avg_power > ips->core_power_limit * 100)
666                 ret = true;
667         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
668
669         if (ret)
670                 dev_info(&ips->dev->dev,
671                          "CPU power or thermal limit exceeded\n");
672
673         return ret;
674 }
675
676 /**
677  * mch_exceeded - check whether the GPU is over budget
678  * @ips: IPS driver struct
679  *
680  * Check the MCH temp & power against their maximums.
681  */
682 static bool mch_exceeded(struct ips_driver *ips)
683 {
684         unsigned long flags;
685         bool ret = false;
686
687         spin_lock_irqsave(&ips->turbo_status_lock, flags);
688         if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
689                 ret = true;
690         if (ips->mch_avg_power > ips->mch_power_limit)
691                 ret = true;
692         spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
693
694         return ret;
695 }
696
697 /**
698  * verify_limits - verify BIOS provided limits
699  * @ips: IPS structure
700  *
701  * BIOS can optionally provide non-default limits for power and temp.  Check
702  * them here and use the defaults if the BIOS values are not provided or
703  * are otherwise unusable.
704  */
705 static void verify_limits(struct ips_driver *ips)
706 {
707         if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
708             ips->mcp_power_limit > 35000)
709                 ips->mcp_power_limit = ips->limits->mcp_power_limit;
710
711         if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
712             ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
713             ips->mcp_temp_limit > 150)
714                 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
715                                           ips->limits->mch_temp_limit);
716 }
717
718 /**
719  * update_turbo_limits - get various limits & settings from regs
720  * @ips: IPS driver struct
721  *
722  * Update the IPS power & temp limits, along with turbo enable flags,
723  * based on latest register contents.
724  *
725  * Used at init time and for runtime BIOS support, which requires polling
726  * the regs for updates (as a result of AC->DC transition for example).
727  *
728  * LOCKING:
729  * Caller must hold turbo_status_lock (outside of init)
730  */
731 static void update_turbo_limits(struct ips_driver *ips)
732 {
733         u32 hts = thm_readl(THM_HTS);
734
735         ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
736         /* 
737          * Disable turbo for now, until we can figure out why the power figures
738          * are wrong
739          */
740         ips->cpu_turbo_enabled = false;
741
742         if (ips->gpu_busy)
743                 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
744
745         ips->core_power_limit = thm_readw(THM_MPCPC);
746         ips->mch_power_limit = thm_readw(THM_MMGPC);
747         ips->mcp_temp_limit = thm_readw(THM_PTL);
748         ips->mcp_power_limit = thm_readw(THM_MPPC);
749
750         verify_limits(ips);
751         /* Ignore BIOS CPU vs GPU pref */
752 }
753
754 /**
755  * ips_adjust - adjust power clamp based on thermal state
756  * @data: ips driver structure
757  *
758  * Wake up every 5s or so and check whether we should adjust the power clamp.
759  * Check CPU and GPU load to determine which needs adjustment.  There are
760  * several things to consider here:
761  *   - do we need to adjust up or down?
762  *   - is CPU busy?
763  *   - is GPU busy?
764  *   - is CPU in turbo?
765  *   - is GPU in turbo?
766  *   - is CPU or GPU preferred? (CPU is default)
767  *
768  * So, given the above, we do the following:
769  *   - up (TDP available)
770  *     - CPU not busy, GPU not busy - nothing
771  *     - CPU busy, GPU not busy - adjust CPU up
772  *     - CPU not busy, GPU busy - adjust GPU up
773  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
774  *       non-preferred unit if necessary
775  *   - down (at TDP limit)
776  *     - adjust both CPU and GPU down if possible
777  *
778                 cpu+ gpu+       cpu+gpu-        cpu-gpu+        cpu-gpu-
779 cpu < gpu <     cpu+gpu+        cpu+            gpu+            nothing
780 cpu < gpu >=    cpu+gpu-(mcp<)  cpu+gpu-(mcp<)  gpu-            gpu-
781 cpu >= gpu <    cpu-gpu+(mcp<)  cpu-            cpu-gpu+(mcp<)  cpu-
782 cpu >= gpu >=   cpu-gpu-        cpu-gpu-        cpu-gpu-        cpu-gpu-
783  *
784  */
785 static int ips_adjust(void *data)
786 {
787         struct ips_driver *ips = data;
788         unsigned long flags;
789
790         dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
791
792         /*
793          * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
794          * often isn't recommended due to ME interaction.
795          */
796         do {
797                 bool cpu_busy = ips_cpu_busy(ips);
798                 bool gpu_busy = ips_gpu_busy(ips);
799
800                 spin_lock_irqsave(&ips->turbo_status_lock, flags);
801                 if (ips->poll_turbo_status)
802                         update_turbo_limits(ips);
803                 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
804
805                 /* Update turbo status if necessary */
806                 if (ips->cpu_turbo_enabled)
807                         ips_enable_cpu_turbo(ips);
808                 else
809                         ips_disable_cpu_turbo(ips);
810
811                 if (ips->gpu_turbo_enabled)
812                         ips_enable_gpu_turbo(ips);
813                 else
814                         ips_disable_gpu_turbo(ips);
815
816                 /* We're outside our comfort zone, crank them down */
817                 if (mcp_exceeded(ips)) {
818                         ips_cpu_lower(ips);
819                         ips_gpu_lower(ips);
820                         goto sleep;
821                 }
822
823                 if (!cpu_exceeded(ips, 0) && cpu_busy)
824                         ips_cpu_raise(ips);
825                 else
826                         ips_cpu_lower(ips);
827
828                 if (!mch_exceeded(ips) && gpu_busy)
829                         ips_gpu_raise(ips);
830                 else
831                         ips_gpu_lower(ips);
832
833 sleep:
834                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
835         } while (!kthread_should_stop());
836
837         dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
838
839         return 0;
840 }
841
842 /*
843  * Helpers for reading out temp/power values and calculating their
844  * averages for the decision making and monitoring functions.
845  */
846
847 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
848 {
849         u64 total = 0;
850         int i;
851         u16 avg;
852
853         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
854                 total += (u64)(array[i] * 100);
855
856         do_div(total, IPS_SAMPLE_COUNT);
857
858         avg = (u16)total;
859
860         return avg;
861 }
862
863 static u16 read_mgtv(struct ips_driver *ips)
864 {
865         u16 ret;
866         u64 slope, offset;
867         u64 val;
868
869         val = thm_readq(THM_MGTV);
870         val = (val & TV_MASK) >> TV_SHIFT;
871
872         slope = offset = thm_readw(THM_MGTA);
873         slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
874         offset = offset & MGTA_OFFSET_MASK;
875
876         ret = ((val * slope + 0x40) >> 7) + offset;
877
878         return 0; /* MCH temp reporting buggy */
879 }
880
881 static u16 read_ptv(struct ips_driver *ips)
882 {
883         u16 val, slope, offset;
884
885         slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
886         offset = ips->pta_val & PTA_OFFSET_MASK;
887
888         val = thm_readw(THM_PTV) & PTV_MASK;
889
890         return val;
891 }
892
893 static u16 read_ctv(struct ips_driver *ips, int cpu)
894 {
895         int reg = cpu ? THM_CTV2 : THM_CTV1;
896         u16 val;
897
898         val = thm_readw(reg);
899         if (!(val & CTV_TEMP_ERROR))
900                 val = (val) >> 6; /* discard fractional component */
901         else
902                 val = 0;
903
904         return val;
905 }
906
907 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
908 {
909         u32 val;
910         u32 ret;
911
912         /*
913          * CEC is in joules/65535.  Take difference over time to
914          * get watts.
915          */
916         val = thm_readl(THM_CEC);
917
918         /* period is in ms and we want mW */
919         ret = (((val - *last) * 1000) / period);
920         ret = (ret * 1000) / 65535;
921         *last = val;
922
923         return 0;
924 }
925
926 static const u16 temp_decay_factor = 2;
927 static u16 update_average_temp(u16 avg, u16 val)
928 {
929         u16 ret;
930
931         /* Multiply by 100 for extra precision */
932         ret = (val * 100 / temp_decay_factor) +
933                 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
934         return ret;
935 }
936
937 static const u16 power_decay_factor = 2;
938 static u16 update_average_power(u32 avg, u32 val)
939 {
940         u32 ret;
941
942         ret = (val / power_decay_factor) +
943                 (((power_decay_factor - 1) * avg) / power_decay_factor);
944
945         return ret;
946 }
947
948 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
949 {
950         u64 total = 0;
951         u32 avg;
952         int i;
953
954         for (i = 0; i < IPS_SAMPLE_COUNT; i++)
955                 total += array[i];
956
957         do_div(total, IPS_SAMPLE_COUNT);
958         avg = (u32)total;
959
960         return avg;
961 }
962
963 static void monitor_timeout(unsigned long arg)
964 {
965         wake_up_process((struct task_struct *)arg);
966 }
967
968 /**
969  * ips_monitor - temp/power monitoring thread
970  * @data: ips driver structure
971  *
972  * This is the main function for the IPS driver.  It monitors power and
973  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
974  *
975  * We keep a 5s moving average of power consumption and tempurature.  Using
976  * that data, along with CPU vs GPU preference, we adjust the power clamps
977  * up or down.
978  */
979 static int ips_monitor(void *data)
980 {
981         struct ips_driver *ips = data;
982         struct timer_list timer;
983         unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
984         int i;
985         u32 *cpu_samples, *mchp_samples, old_cpu_power;
986         u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
987         u8 cur_seqno, last_seqno;
988
989         mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
990         ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
991         ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
992         mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
993         cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
994         mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
995         if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
996                         !cpu_samples || !mchp_samples) {
997                 dev_err(&ips->dev->dev,
998                         "failed to allocate sample array, ips disabled\n");
999                 kfree(mcp_samples);
1000                 kfree(ctv1_samples);
1001                 kfree(ctv2_samples);
1002                 kfree(mch_samples);
1003                 kfree(cpu_samples);
1004                 kfree(mchp_samples);
1005                 return -ENOMEM;
1006         }
1007
1008         last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1009                 ITV_ME_SEQNO_SHIFT;
1010         seqno_timestamp = get_jiffies_64();
1011
1012         old_cpu_power = thm_readl(THM_CEC);
1013         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1014
1015         /* Collect an initial average */
1016         for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
1017                 u32 mchp, cpu_power;
1018                 u16 val;
1019
1020                 mcp_samples[i] = read_ptv(ips);
1021
1022                 val = read_ctv(ips, 0);
1023                 ctv1_samples[i] = val;
1024
1025                 val = read_ctv(ips, 1);
1026                 ctv2_samples[i] = val;
1027
1028                 val = read_mgtv(ips);
1029                 mch_samples[i] = val;
1030
1031                 cpu_power = get_cpu_power(ips, &old_cpu_power,
1032                                           IPS_SAMPLE_PERIOD);
1033                 cpu_samples[i] = cpu_power;
1034
1035                 if (ips->read_mch_val) {
1036                         mchp = ips->read_mch_val();
1037                         mchp_samples[i] = mchp;
1038                 }
1039
1040                 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1041                 if (kthread_should_stop())
1042                         break;
1043         }
1044
1045         ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1046         ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1047         ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1048         ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1049         ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1050         ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1051         kfree(mcp_samples);
1052         kfree(ctv1_samples);
1053         kfree(ctv2_samples);
1054         kfree(mch_samples);
1055         kfree(cpu_samples);
1056         kfree(mchp_samples);
1057
1058         /* Start the adjustment thread now that we have data */
1059         wake_up_process(ips->adjust);
1060
1061         /*
1062          * Ok, now we have an initial avg.  From here on out, we track the
1063          * running avg using a decaying average calculation.  This allows
1064          * us to reduce the sample frequency if the CPU and GPU are idle.
1065          */
1066         old_cpu_power = thm_readl(THM_CEC);
1067         schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1068         last_sample_period = IPS_SAMPLE_PERIOD;
1069
1070         setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1071                                         (unsigned long)current);
1072         do {
1073                 u32 cpu_val, mch_val;
1074                 u16 val;
1075
1076                 /* MCP itself */
1077                 val = read_ptv(ips);
1078                 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1079
1080                 /* Processor 0 */
1081                 val = read_ctv(ips, 0);
1082                 ips->ctv1_avg_temp =
1083                         update_average_temp(ips->ctv1_avg_temp, val);
1084                 /* Power */
1085                 cpu_val = get_cpu_power(ips, &old_cpu_power,
1086                                         last_sample_period);
1087                 ips->cpu_avg_power =
1088                         update_average_power(ips->cpu_avg_power, cpu_val);
1089
1090                 if (ips->second_cpu) {
1091                         /* Processor 1 */
1092                         val = read_ctv(ips, 1);
1093                         ips->ctv2_avg_temp =
1094                                 update_average_temp(ips->ctv2_avg_temp, val);
1095                 }
1096
1097                 /* MCH */
1098                 val = read_mgtv(ips);
1099                 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1100                 /* Power */
1101                 if (ips->read_mch_val) {
1102                         mch_val = ips->read_mch_val();
1103                         ips->mch_avg_power =
1104                                 update_average_power(ips->mch_avg_power,
1105                                                      mch_val);
1106                 }
1107
1108                 /*
1109                  * Make sure ME is updating thermal regs.
1110                  * Note:
1111                  * If it's been more than a second since the last update,
1112                  * the ME is probably hung.
1113                  */
1114                 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1115                         ITV_ME_SEQNO_SHIFT;
1116                 if (cur_seqno == last_seqno &&
1117                     time_after(jiffies, seqno_timestamp + HZ)) {
1118                         dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1119                 } else {
1120                         seqno_timestamp = get_jiffies_64();
1121                         last_seqno = cur_seqno;
1122                 }
1123
1124                 last_msecs = jiffies_to_msecs(jiffies);
1125                 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1126
1127                 __set_current_state(TASK_INTERRUPTIBLE);
1128                 mod_timer(&timer, expire);
1129                 schedule();
1130
1131                 /* Calculate actual sample period for power averaging */
1132                 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1133                 if (!last_sample_period)
1134                         last_sample_period = 1;
1135         } while (!kthread_should_stop());
1136
1137         del_timer_sync(&timer);
1138         destroy_timer_on_stack(&timer);
1139
1140         dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1141
1142         return 0;
1143 }
1144
1145 #if 0
1146 #define THM_DUMPW(reg) \
1147         { \
1148         u16 val = thm_readw(reg); \
1149         dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1150         }
1151 #define THM_DUMPL(reg) \
1152         { \
1153         u32 val = thm_readl(reg); \
1154         dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1155         }
1156 #define THM_DUMPQ(reg) \
1157         { \
1158         u64 val = thm_readq(reg); \
1159         dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1160         }
1161
1162 static void dump_thermal_info(struct ips_driver *ips)
1163 {
1164         u16 ptl;
1165
1166         ptl = thm_readw(THM_PTL);
1167         dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1168
1169         THM_DUMPW(THM_CTA);
1170         THM_DUMPW(THM_TRC);
1171         THM_DUMPW(THM_CTV1);
1172         THM_DUMPL(THM_STS);
1173         THM_DUMPW(THM_PTV);
1174         THM_DUMPQ(THM_MGTV);
1175 }
1176 #endif
1177
1178 /**
1179  * ips_irq_handler - handle temperature triggers and other IPS events
1180  * @irq: irq number
1181  * @arg: unused
1182  *
1183  * Handle temperature limit trigger events, generally by lowering the clamps.
1184  * If we're at a critical limit, we clamp back to the lowest possible value
1185  * to prevent emergency shutdown.
1186  */
1187 static irqreturn_t ips_irq_handler(int irq, void *arg)
1188 {
1189         struct ips_driver *ips = arg;
1190         u8 tses = thm_readb(THM_TSES);
1191         u8 tes = thm_readb(THM_TES);
1192
1193         if (!tses && !tes)
1194                 return IRQ_NONE;
1195
1196         dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1197         dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1198
1199         /* STS update from EC? */
1200         if (tes & 1) {
1201                 u32 sts, tc1;
1202
1203                 sts = thm_readl(THM_STS);
1204                 tc1 = thm_readl(THM_TC1);
1205
1206                 if (sts & STS_NVV) {
1207                         spin_lock(&ips->turbo_status_lock);
1208                         ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1209                                 STS_PCPL_SHIFT;
1210                         ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1211                                 STS_GPL_SHIFT;
1212                         /* ignore EC CPU vs GPU pref */
1213                         ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1214                         /* 
1215                          * Disable turbo for now, until we can figure
1216                          * out why the power figures are wrong
1217                          */
1218                         ips->cpu_turbo_enabled = false;
1219                         if (ips->gpu_busy)
1220                                 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1221                         ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1222                                 STS_PTL_SHIFT;
1223                         ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1224                                 STS_PPL_SHIFT;
1225                         verify_limits(ips);
1226                         spin_unlock(&ips->turbo_status_lock);
1227
1228                         thm_writeb(THM_SEC, SEC_ACK);
1229                 }
1230                 thm_writeb(THM_TES, tes);
1231         }
1232
1233         /* Thermal trip */
1234         if (tses) {
1235                 dev_warn(&ips->dev->dev,
1236                          "thermal trip occurred, tses: 0x%04x\n", tses);
1237                 thm_writeb(THM_TSES, tses);
1238         }
1239
1240         return IRQ_HANDLED;
1241 }
1242
1243 #ifndef CONFIG_DEBUG_FS
1244 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1245 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1246 #else
1247
1248 /* Expose current state and limits in debugfs if possible */
1249
1250 struct ips_debugfs_node {
1251         struct ips_driver *ips;
1252         char *name;
1253         int (*show)(struct seq_file *m, void *data);
1254 };
1255
1256 static int show_cpu_temp(struct seq_file *m, void *data)
1257 {
1258         struct ips_driver *ips = m->private;
1259
1260         seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1261                    ips->ctv1_avg_temp % 100);
1262
1263         return 0;
1264 }
1265
1266 static int show_cpu_power(struct seq_file *m, void *data)
1267 {
1268         struct ips_driver *ips = m->private;
1269
1270         seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1271
1272         return 0;
1273 }
1274
1275 static int show_cpu_clamp(struct seq_file *m, void *data)
1276 {
1277         u64 turbo_override;
1278         int tdp, tdc;
1279
1280         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1281
1282         tdp = (int)(turbo_override & TURBO_TDP_MASK);
1283         tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1284
1285         /* Convert to .1W/A units */
1286         tdp = tdp * 10 / 8;
1287         tdc = tdc * 10 / 8;
1288
1289         /* Watts Amperes */
1290         seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1291                    tdc / 10, tdc % 10);
1292
1293         return 0;
1294 }
1295
1296 static int show_mch_temp(struct seq_file *m, void *data)
1297 {
1298         struct ips_driver *ips = m->private;
1299
1300         seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1301                    ips->mch_avg_temp % 100);
1302
1303         return 0;
1304 }
1305
1306 static int show_mch_power(struct seq_file *m, void *data)
1307 {
1308         struct ips_driver *ips = m->private;
1309
1310         seq_printf(m, "%dmW\n", ips->mch_avg_power);
1311
1312         return 0;
1313 }
1314
1315 static struct ips_debugfs_node ips_debug_files[] = {
1316         { NULL, "cpu_temp", show_cpu_temp },
1317         { NULL, "cpu_power", show_cpu_power },
1318         { NULL, "cpu_clamp", show_cpu_clamp },
1319         { NULL, "mch_temp", show_mch_temp },
1320         { NULL, "mch_power", show_mch_power },
1321 };
1322
1323 static int ips_debugfs_open(struct inode *inode, struct file *file)
1324 {
1325         struct ips_debugfs_node *node = inode->i_private;
1326
1327         return single_open(file, node->show, node->ips);
1328 }
1329
1330 static const struct file_operations ips_debugfs_ops = {
1331         .owner = THIS_MODULE,
1332         .open = ips_debugfs_open,
1333         .read = seq_read,
1334         .llseek = seq_lseek,
1335         .release = single_release,
1336 };
1337
1338 static void ips_debugfs_cleanup(struct ips_driver *ips)
1339 {
1340         if (ips->debug_root)
1341                 debugfs_remove_recursive(ips->debug_root);
1342         return;
1343 }
1344
1345 static void ips_debugfs_init(struct ips_driver *ips)
1346 {
1347         int i;
1348
1349         ips->debug_root = debugfs_create_dir("ips", NULL);
1350         if (!ips->debug_root) {
1351                 dev_err(&ips->dev->dev,
1352                         "failed to create debugfs entries: %ld\n",
1353                         PTR_ERR(ips->debug_root));
1354                 return;
1355         }
1356
1357         for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1358                 struct dentry *ent;
1359                 struct ips_debugfs_node *node = &ips_debug_files[i];
1360
1361                 node->ips = ips;
1362                 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1363                                           ips->debug_root, node,
1364                                           &ips_debugfs_ops);
1365                 if (!ent) {
1366                         dev_err(&ips->dev->dev,
1367                                 "failed to create debug file: %ld\n",
1368                                 PTR_ERR(ent));
1369                         goto err_cleanup;
1370                 }
1371         }
1372
1373         return;
1374
1375 err_cleanup:
1376         ips_debugfs_cleanup(ips);
1377         return;
1378 }
1379 #endif /* CONFIG_DEBUG_FS */
1380
1381 /**
1382  * ips_detect_cpu - detect whether CPU supports IPS
1383  *
1384  * Walk our list and see if we're on a supported CPU.  If we find one,
1385  * return the limits for it.
1386  */
1387 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1388 {
1389         u64 turbo_power, misc_en;
1390         struct ips_mcp_limits *limits = NULL;
1391         u16 tdp;
1392
1393         if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1394                 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1395                 goto out;
1396         }
1397
1398         rdmsrl(IA32_MISC_ENABLE, misc_en);
1399         /*
1400          * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1401          * turbo manually or we'll get an illegal MSR access, even though
1402          * turbo will still be available.
1403          */
1404         if (misc_en & IA32_MISC_TURBO_EN)
1405                 ips->turbo_toggle_allowed = true;
1406         else
1407                 ips->turbo_toggle_allowed = false;
1408
1409         if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1410                 limits = &ips_sv_limits;
1411         else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1412                 limits = &ips_lv_limits;
1413         else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1414                 limits = &ips_ulv_limits;
1415         else {
1416                 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1417                 goto out;
1418         }
1419
1420         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1421         tdp = turbo_power & TURBO_TDP_MASK;
1422
1423         /* Sanity check TDP against CPU */
1424         if (limits->core_power_limit != (tdp / 8) * 1000) {
1425                 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1426                          tdp / 8, limits->core_power_limit / 1000);
1427                 limits->core_power_limit = (tdp / 8) * 1000;
1428         }
1429
1430 out:
1431         return limits;
1432 }
1433
1434 /**
1435  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1436  * @ips: IPS driver
1437  *
1438  * The i915 driver exports several interfaces to allow the IPS driver to
1439  * monitor and control graphics turbo mode.  If we can find them, we can
1440  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1441  * thermal and power limits in the MCP.
1442  */
1443 static bool ips_get_i915_syms(struct ips_driver *ips)
1444 {
1445         ips->read_mch_val = symbol_get(i915_read_mch_val);
1446         if (!ips->read_mch_val)
1447                 goto out_err;
1448         ips->gpu_raise = symbol_get(i915_gpu_raise);
1449         if (!ips->gpu_raise)
1450                 goto out_put_mch;
1451         ips->gpu_lower = symbol_get(i915_gpu_lower);
1452         if (!ips->gpu_lower)
1453                 goto out_put_raise;
1454         ips->gpu_busy = symbol_get(i915_gpu_busy);
1455         if (!ips->gpu_busy)
1456                 goto out_put_lower;
1457         ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1458         if (!ips->gpu_turbo_disable)
1459                 goto out_put_busy;
1460
1461         return true;
1462
1463 out_put_busy:
1464         symbol_put(i915_gpu_busy);
1465 out_put_lower:
1466         symbol_put(i915_gpu_lower);
1467 out_put_raise:
1468         symbol_put(i915_gpu_raise);
1469 out_put_mch:
1470         symbol_put(i915_read_mch_val);
1471 out_err:
1472         return false;
1473 }
1474
1475 static bool
1476 ips_gpu_turbo_enabled(struct ips_driver *ips)
1477 {
1478         if (!ips->gpu_busy && late_i915_load) {
1479                 if (ips_get_i915_syms(ips)) {
1480                         dev_info(&ips->dev->dev,
1481                                  "i915 driver attached, reenabling gpu turbo\n");
1482                         ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1483                 }
1484         }
1485
1486         return ips->gpu_turbo_enabled;
1487 }
1488
1489 void
1490 ips_link_to_i915_driver(void)
1491 {
1492         /* We can't cleanly get at the various ips_driver structs from
1493          * this caller (the i915 driver), so just set a flag saying
1494          * that it's time to try getting the symbols again.
1495          */
1496         late_i915_load = true;
1497 }
1498 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1499
1500 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1501         { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1502                      PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1503         { 0, }
1504 };
1505
1506 MODULE_DEVICE_TABLE(pci, ips_id_table);
1507
1508 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1509 {
1510         u64 platform_info;
1511         struct ips_driver *ips;
1512         u32 hts;
1513         int ret = 0;
1514         u16 htshi, trc, trc_required_mask;
1515         u8 tse;
1516
1517         ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1518         if (!ips)
1519                 return -ENOMEM;
1520
1521         pci_set_drvdata(dev, ips);
1522         ips->dev = dev;
1523
1524         ips->limits = ips_detect_cpu(ips);
1525         if (!ips->limits) {
1526                 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1527                 ret = -ENXIO;
1528                 goto error_free;
1529         }
1530
1531         spin_lock_init(&ips->turbo_status_lock);
1532
1533         ret = pci_enable_device(dev);
1534         if (ret) {
1535                 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1536                 goto error_free;
1537         }
1538
1539         if (!pci_resource_start(dev, 0)) {
1540                 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1541                 ret = -ENXIO;
1542                 goto error_free;
1543         }
1544
1545         ret = pci_request_regions(dev, "ips thermal sensor");
1546         if (ret) {
1547                 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1548                 goto error_free;
1549         }
1550
1551
1552         ips->regmap = ioremap(pci_resource_start(dev, 0),
1553                               pci_resource_len(dev, 0));
1554         if (!ips->regmap) {
1555                 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1556                 ret = -EBUSY;
1557                 goto error_release;
1558         }
1559
1560         tse = thm_readb(THM_TSE);
1561         if (tse != TSE_EN) {
1562                 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1563                 ret = -ENXIO;
1564                 goto error_unmap;
1565         }
1566
1567         trc = thm_readw(THM_TRC);
1568         trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1569         if ((trc & trc_required_mask) != trc_required_mask) {
1570                 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1571                 ret = -ENXIO;
1572                 goto error_unmap;
1573         }
1574
1575         if (trc & TRC_CORE2_EN)
1576                 ips->second_cpu = true;
1577
1578         update_turbo_limits(ips);
1579         dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1580                 ips->mcp_power_limit / 10);
1581         dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1582                 ips->core_power_limit / 10);
1583         /* BIOS may update limits at runtime */
1584         if (thm_readl(THM_PSC) & PSP_PBRT)
1585                 ips->poll_turbo_status = true;
1586
1587         if (!ips_get_i915_syms(ips)) {
1588                 dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1589                 ips->gpu_turbo_enabled = false;
1590         } else {
1591                 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1592                 ips->gpu_turbo_enabled = true;
1593         }
1594
1595         /*
1596          * Check PLATFORM_INFO MSR to make sure this chip is
1597          * turbo capable.
1598          */
1599         rdmsrl(PLATFORM_INFO, platform_info);
1600         if (!(platform_info & PLATFORM_TDP)) {
1601                 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1602                 ret = -ENODEV;
1603                 goto error_unmap;
1604         }
1605
1606         /*
1607          * IRQ handler for ME interaction
1608          * Note: don't use MSI here as the PCH has bugs.
1609          */
1610         pci_disable_msi(dev);
1611         ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1612                           ips);
1613         if (ret) {
1614                 dev_err(&dev->dev, "request irq failed, aborting\n");
1615                 goto error_unmap;
1616         }
1617
1618         /* Enable aux, hot & critical interrupts */
1619         thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1620                    TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1621         thm_writeb(THM_TEN, TEN_UPDATE_EN);
1622
1623         /* Collect adjustment values */
1624         ips->cta_val = thm_readw(THM_CTA);
1625         ips->pta_val = thm_readw(THM_PTA);
1626         ips->mgta_val = thm_readw(THM_MGTA);
1627
1628         /* Save turbo limits & ratios */
1629         rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1630
1631         ips_disable_cpu_turbo(ips);
1632         ips->cpu_turbo_enabled = false;
1633
1634         /* Create thermal adjust thread */
1635         ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1636         if (IS_ERR(ips->adjust)) {
1637                 dev_err(&dev->dev,
1638                         "failed to create thermal adjust thread, aborting\n");
1639                 ret = -ENOMEM;
1640                 goto error_free_irq;
1641
1642         }
1643
1644         /*
1645          * Set up the work queue and monitor thread. The monitor thread
1646          * will wake up ips_adjust thread.
1647          */
1648         ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1649         if (IS_ERR(ips->monitor)) {
1650                 dev_err(&dev->dev,
1651                         "failed to create thermal monitor thread, aborting\n");
1652                 ret = -ENOMEM;
1653                 goto error_thread_cleanup;
1654         }
1655
1656         hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1657                 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1658         htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1659
1660         thm_writew(THM_HTSHI, htshi);
1661         thm_writel(THM_HTS, hts);
1662
1663         ips_debugfs_init(ips);
1664
1665         dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1666                  ips->mcp_temp_limit);
1667         return ret;
1668
1669 error_thread_cleanup:
1670         kthread_stop(ips->adjust);
1671 error_free_irq:
1672         free_irq(ips->dev->irq, ips);
1673 error_unmap:
1674         iounmap(ips->regmap);
1675 error_release:
1676         pci_release_regions(dev);
1677 error_free:
1678         kfree(ips);
1679         return ret;
1680 }
1681
1682 static void ips_remove(struct pci_dev *dev)
1683 {
1684         struct ips_driver *ips = pci_get_drvdata(dev);
1685         u64 turbo_override;
1686
1687         if (!ips)
1688                 return;
1689
1690         ips_debugfs_cleanup(ips);
1691
1692         /* Release i915 driver */
1693         if (ips->read_mch_val)
1694                 symbol_put(i915_read_mch_val);
1695         if (ips->gpu_raise)
1696                 symbol_put(i915_gpu_raise);
1697         if (ips->gpu_lower)
1698                 symbol_put(i915_gpu_lower);
1699         if (ips->gpu_busy)
1700                 symbol_put(i915_gpu_busy);
1701         if (ips->gpu_turbo_disable)
1702                 symbol_put(i915_gpu_turbo_disable);
1703
1704         rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1705         turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1706         wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707         wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1708
1709         free_irq(ips->dev->irq, ips);
1710         if (ips->adjust)
1711                 kthread_stop(ips->adjust);
1712         if (ips->monitor)
1713                 kthread_stop(ips->monitor);
1714         iounmap(ips->regmap);
1715         pci_release_regions(dev);
1716         kfree(ips);
1717         dev_dbg(&dev->dev, "IPS driver removed\n");
1718 }
1719
1720 #ifdef CONFIG_PM
1721 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1722 {
1723         return 0;
1724 }
1725
1726 static int ips_resume(struct pci_dev *dev)
1727 {
1728         return 0;
1729 }
1730 #else
1731 #define ips_suspend NULL
1732 #define ips_resume NULL
1733 #endif /* CONFIG_PM */
1734
1735 static void ips_shutdown(struct pci_dev *dev)
1736 {
1737 }
1738
1739 static struct pci_driver ips_pci_driver = {
1740         .name = "intel ips",
1741         .id_table = ips_id_table,
1742         .probe = ips_probe,
1743         .remove = ips_remove,
1744         .suspend = ips_suspend,
1745         .resume = ips_resume,
1746         .shutdown = ips_shutdown,
1747 };
1748
1749 static int __init ips_init(void)
1750 {
1751         return pci_register_driver(&ips_pci_driver);
1752 }
1753 module_init(ips_init);
1754
1755 static void ips_exit(void)
1756 {
1757         pci_unregister_driver(&ips_pci_driver);
1758         return;
1759 }
1760 module_exit(ips_exit);
1761
1762 MODULE_LICENSE("GPL");
1763 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1764 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");