Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38         /* ZD1211 */
39         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
63         /* ZD1211B */
64         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
93         /* "Driverless" devices that need ejecting */
94         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
95         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
96         {}
97 };
98
99 MODULE_LICENSE("GPL");
100 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
101 MODULE_AUTHOR("Ulrich Kunitz");
102 MODULE_AUTHOR("Daniel Drake");
103 MODULE_VERSION("1.0");
104 MODULE_DEVICE_TABLE(usb, usb_ids);
105
106 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
107 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
108
109 /* USB device initialization */
110 static void int_urb_complete(struct urb *urb);
111
112 static int request_fw_file(
113         const struct firmware **fw, const char *name, struct device *device)
114 {
115         int r;
116
117         dev_dbg_f(device, "fw name %s\n", name);
118
119         r = request_firmware(fw, name, device);
120         if (r)
121                 dev_err(device,
122                        "Could not load firmware file %s. Error number %d\n",
123                        name, r);
124         return r;
125 }
126
127 static inline u16 get_bcdDevice(const struct usb_device *udev)
128 {
129         return le16_to_cpu(udev->descriptor.bcdDevice);
130 }
131
132 enum upload_code_flags {
133         REBOOT = 1,
134 };
135
136 /* Ensures that MAX_TRANSFER_SIZE is even. */
137 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
138
139 static int upload_code(struct usb_device *udev,
140         const u8 *data, size_t size, u16 code_offset, int flags)
141 {
142         u8 *p;
143         int r;
144
145         /* USB request blocks need "kmalloced" buffers.
146          */
147         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
148         if (!p) {
149                 dev_err(&udev->dev, "out of memory\n");
150                 r = -ENOMEM;
151                 goto error;
152         }
153
154         size &= ~1;
155         while (size > 0) {
156                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
157                         size : MAX_TRANSFER_SIZE;
158
159                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
160
161                 memcpy(p, data, transfer_size);
162                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
163                         USB_REQ_FIRMWARE_DOWNLOAD,
164                         USB_DIR_OUT | USB_TYPE_VENDOR,
165                         code_offset, 0, p, transfer_size, 1000 /* ms */);
166                 if (r < 0) {
167                         dev_err(&udev->dev,
168                                "USB control request for firmware upload"
169                                " failed. Error number %d\n", r);
170                         goto error;
171                 }
172                 transfer_size = r & ~1;
173
174                 size -= transfer_size;
175                 data += transfer_size;
176                 code_offset += transfer_size/sizeof(u16);
177         }
178
179         if (flags & REBOOT) {
180                 u8 ret;
181
182                 /* Use "DMA-aware" buffer. */
183                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
184                         USB_REQ_FIRMWARE_CONFIRM,
185                         USB_DIR_IN | USB_TYPE_VENDOR,
186                         0, 0, p, sizeof(ret), 5000 /* ms */);
187                 if (r != sizeof(ret)) {
188                         dev_err(&udev->dev,
189                                 "control request firmeware confirmation failed."
190                                 " Return value %d\n", r);
191                         if (r >= 0)
192                                 r = -ENODEV;
193                         goto error;
194                 }
195                 ret = p[0];
196                 if (ret & 0x80) {
197                         dev_err(&udev->dev,
198                                 "Internal error while downloading."
199                                 " Firmware confirm return value %#04x\n",
200                                 (unsigned int)ret);
201                         r = -ENODEV;
202                         goto error;
203                 }
204                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
205                         (unsigned int)ret);
206         }
207
208         r = 0;
209 error:
210         kfree(p);
211         return r;
212 }
213
214 static u16 get_word(const void *data, u16 offset)
215 {
216         const __le16 *p = data;
217         return le16_to_cpu(p[offset]);
218 }
219
220 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
221                        const char* postfix)
222 {
223         scnprintf(buffer, size, "%s%s",
224                 usb->is_zd1211b ?
225                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
226                 postfix);
227         return buffer;
228 }
229
230 static int handle_version_mismatch(struct zd_usb *usb,
231         const struct firmware *ub_fw)
232 {
233         struct usb_device *udev = zd_usb_to_usbdev(usb);
234         const struct firmware *ur_fw = NULL;
235         int offset;
236         int r = 0;
237         char fw_name[128];
238
239         r = request_fw_file(&ur_fw,
240                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
241                 &udev->dev);
242         if (r)
243                 goto error;
244
245         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
246         if (r)
247                 goto error;
248
249         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
250         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
251                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
252
253         /* At this point, the vendor driver downloads the whole firmware
254          * image, hacks around with version IDs, and uploads it again,
255          * completely overwriting the boot code. We do not do this here as
256          * it is not required on any tested devices, and it is suspected to
257          * cause problems. */
258 error:
259         release_firmware(ur_fw);
260         return r;
261 }
262
263 static int upload_firmware(struct zd_usb *usb)
264 {
265         int r;
266         u16 fw_bcdDevice;
267         u16 bcdDevice;
268         struct usb_device *udev = zd_usb_to_usbdev(usb);
269         const struct firmware *ub_fw = NULL;
270         const struct firmware *uph_fw = NULL;
271         char fw_name[128];
272
273         bcdDevice = get_bcdDevice(udev);
274
275         r = request_fw_file(&ub_fw,
276                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
277                 &udev->dev);
278         if (r)
279                 goto error;
280
281         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
282
283         if (fw_bcdDevice != bcdDevice) {
284                 dev_info(&udev->dev,
285                         "firmware version %#06x and device bootcode version "
286                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
287                 if (bcdDevice <= 0x4313)
288                         dev_warn(&udev->dev, "device has old bootcode, please "
289                                 "report success or failure\n");
290
291                 r = handle_version_mismatch(usb, ub_fw);
292                 if (r)
293                         goto error;
294         } else {
295                 dev_dbg_f(&udev->dev,
296                         "firmware device id %#06x is equal to the "
297                         "actual device id\n", fw_bcdDevice);
298         }
299
300
301         r = request_fw_file(&uph_fw,
302                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
303                 &udev->dev);
304         if (r)
305                 goto error;
306
307         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
308         if (r) {
309                 dev_err(&udev->dev,
310                         "Could not upload firmware code uph. Error number %d\n",
311                         r);
312         }
313
314         /* FALL-THROUGH */
315 error:
316         release_firmware(ub_fw);
317         release_firmware(uph_fw);
318         return r;
319 }
320
321 /* Read data from device address space using "firmware interface" which does
322  * not require firmware to be loaded. */
323 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
324 {
325         int r;
326         struct usb_device *udev = zd_usb_to_usbdev(usb);
327         u8 *buf;
328
329         /* Use "DMA-aware" buffer. */
330         buf = kmalloc(len, GFP_KERNEL);
331         if (!buf)
332                 return -ENOMEM;
333         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
334                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
335                 buf, len, 5000);
336         if (r < 0) {
337                 dev_err(&udev->dev,
338                         "read over firmware interface failed: %d\n", r);
339                 goto exit;
340         } else if (r != len) {
341                 dev_err(&udev->dev,
342                         "incomplete read over firmware interface: %d/%d\n",
343                         r, len);
344                 r = -EIO;
345                 goto exit;
346         }
347         r = 0;
348         memcpy(data, buf, len);
349 exit:
350         kfree(buf);
351         return r;
352 }
353
354 #define urb_dev(urb) (&(urb)->dev->dev)
355
356 static inline void handle_regs_int(struct urb *urb)
357 {
358         struct zd_usb *usb = urb->context;
359         struct zd_usb_interrupt *intr = &usb->intr;
360         int len;
361         u16 int_num;
362
363         ZD_ASSERT(in_interrupt());
364         spin_lock(&intr->lock);
365
366         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
367         if (int_num == CR_INTERRUPT) {
368                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
369                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
370                                 USB_MAX_EP_INT_BUFFER);
371                 schedule_work(&mac->process_intr);
372         } else if (intr->read_regs_enabled) {
373                 intr->read_regs.length = len = urb->actual_length;
374
375                 if (len > sizeof(intr->read_regs.buffer))
376                         len = sizeof(intr->read_regs.buffer);
377                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
378                 intr->read_regs_enabled = 0;
379                 complete(&intr->read_regs.completion);
380                 goto out;
381         }
382
383 out:
384         spin_unlock(&intr->lock);
385 }
386
387 static void int_urb_complete(struct urb *urb)
388 {
389         int r;
390         struct usb_int_header *hdr;
391
392         switch (urb->status) {
393         case 0:
394                 break;
395         case -ESHUTDOWN:
396         case -EINVAL:
397         case -ENODEV:
398         case -ENOENT:
399         case -ECONNRESET:
400         case -EPIPE:
401                 goto kfree;
402         default:
403                 goto resubmit;
404         }
405
406         if (urb->actual_length < sizeof(hdr)) {
407                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
408                 goto resubmit;
409         }
410
411         hdr = urb->transfer_buffer;
412         if (hdr->type != USB_INT_TYPE) {
413                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
414                 goto resubmit;
415         }
416
417         switch (hdr->id) {
418         case USB_INT_ID_REGS:
419                 handle_regs_int(urb);
420                 break;
421         case USB_INT_ID_RETRY_FAILED:
422                 zd_mac_tx_failed(zd_usb_to_hw(urb->context));
423                 break;
424         default:
425                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
426                         (unsigned int)hdr->id);
427                 goto resubmit;
428         }
429
430 resubmit:
431         r = usb_submit_urb(urb, GFP_ATOMIC);
432         if (r) {
433                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
434                 goto kfree;
435         }
436         return;
437 kfree:
438         kfree(urb->transfer_buffer);
439 }
440
441 static inline int int_urb_interval(struct usb_device *udev)
442 {
443         switch (udev->speed) {
444         case USB_SPEED_HIGH:
445                 return 4;
446         case USB_SPEED_LOW:
447                 return 10;
448         case USB_SPEED_FULL:
449         default:
450                 return 1;
451         }
452 }
453
454 static inline int usb_int_enabled(struct zd_usb *usb)
455 {
456         unsigned long flags;
457         struct zd_usb_interrupt *intr = &usb->intr;
458         struct urb *urb;
459
460         spin_lock_irqsave(&intr->lock, flags);
461         urb = intr->urb;
462         spin_unlock_irqrestore(&intr->lock, flags);
463         return urb != NULL;
464 }
465
466 int zd_usb_enable_int(struct zd_usb *usb)
467 {
468         int r;
469         struct usb_device *udev;
470         struct zd_usb_interrupt *intr = &usb->intr;
471         void *transfer_buffer = NULL;
472         struct urb *urb;
473
474         dev_dbg_f(zd_usb_dev(usb), "\n");
475
476         urb = usb_alloc_urb(0, GFP_KERNEL);
477         if (!urb) {
478                 r = -ENOMEM;
479                 goto out;
480         }
481
482         ZD_ASSERT(!irqs_disabled());
483         spin_lock_irq(&intr->lock);
484         if (intr->urb) {
485                 spin_unlock_irq(&intr->lock);
486                 r = 0;
487                 goto error_free_urb;
488         }
489         intr->urb = urb;
490         spin_unlock_irq(&intr->lock);
491
492         /* TODO: make it a DMA buffer */
493         r = -ENOMEM;
494         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
495         if (!transfer_buffer) {
496                 dev_dbg_f(zd_usb_dev(usb),
497                         "couldn't allocate transfer_buffer\n");
498                 goto error_set_urb_null;
499         }
500
501         udev = zd_usb_to_usbdev(usb);
502         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
503                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
504                          int_urb_complete, usb,
505                          intr->interval);
506
507         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
508         r = usb_submit_urb(urb, GFP_KERNEL);
509         if (r) {
510                 dev_dbg_f(zd_usb_dev(usb),
511                          "Couldn't submit urb. Error number %d\n", r);
512                 goto error;
513         }
514
515         return 0;
516 error:
517         kfree(transfer_buffer);
518 error_set_urb_null:
519         spin_lock_irq(&intr->lock);
520         intr->urb = NULL;
521         spin_unlock_irq(&intr->lock);
522 error_free_urb:
523         usb_free_urb(urb);
524 out:
525         return r;
526 }
527
528 void zd_usb_disable_int(struct zd_usb *usb)
529 {
530         unsigned long flags;
531         struct zd_usb_interrupt *intr = &usb->intr;
532         struct urb *urb;
533
534         spin_lock_irqsave(&intr->lock, flags);
535         urb = intr->urb;
536         if (!urb) {
537                 spin_unlock_irqrestore(&intr->lock, flags);
538                 return;
539         }
540         intr->urb = NULL;
541         spin_unlock_irqrestore(&intr->lock, flags);
542
543         usb_kill_urb(urb);
544         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
545         usb_free_urb(urb);
546 }
547
548 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
549                              unsigned int length)
550 {
551         int i;
552         const struct rx_length_info *length_info;
553
554         if (length < sizeof(struct rx_length_info)) {
555                 /* It's not a complete packet anyhow. */
556                 return;
557         }
558         length_info = (struct rx_length_info *)
559                 (buffer + length - sizeof(struct rx_length_info));
560
561         /* It might be that three frames are merged into a single URB
562          * transaction. We have to check for the length info tag.
563          *
564          * While testing we discovered that length_info might be unaligned,
565          * because if USB transactions are merged, the last packet will not
566          * be padded. Unaligned access might also happen if the length_info
567          * structure is not present.
568          */
569         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
570         {
571                 unsigned int l, k, n;
572                 for (i = 0, l = 0;; i++) {
573                         k = get_unaligned_le16(&length_info->length[i]);
574                         if (k == 0)
575                                 return;
576                         n = l+k;
577                         if (n > length)
578                                 return;
579                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
580                         if (i >= 2)
581                                 return;
582                         l = (n+3) & ~3;
583                 }
584         } else {
585                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
586         }
587 }
588
589 static void rx_urb_complete(struct urb *urb)
590 {
591         struct zd_usb *usb;
592         struct zd_usb_rx *rx;
593         const u8 *buffer;
594         unsigned int length;
595
596         switch (urb->status) {
597         case 0:
598                 break;
599         case -ESHUTDOWN:
600         case -EINVAL:
601         case -ENODEV:
602         case -ENOENT:
603         case -ECONNRESET:
604         case -EPIPE:
605                 return;
606         default:
607                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
608                 goto resubmit;
609         }
610
611         buffer = urb->transfer_buffer;
612         length = urb->actual_length;
613         usb = urb->context;
614         rx = &usb->rx;
615
616         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
617                 /* If there is an old first fragment, we don't care. */
618                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
619                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
620                 spin_lock(&rx->lock);
621                 memcpy(rx->fragment, buffer, length);
622                 rx->fragment_length = length;
623                 spin_unlock(&rx->lock);
624                 goto resubmit;
625         }
626
627         spin_lock(&rx->lock);
628         if (rx->fragment_length > 0) {
629                 /* We are on a second fragment, we believe */
630                 ZD_ASSERT(length + rx->fragment_length <=
631                           ARRAY_SIZE(rx->fragment));
632                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
633                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
634                 handle_rx_packet(usb, rx->fragment,
635                                  rx->fragment_length + length);
636                 rx->fragment_length = 0;
637                 spin_unlock(&rx->lock);
638         } else {
639                 spin_unlock(&rx->lock);
640                 handle_rx_packet(usb, buffer, length);
641         }
642
643 resubmit:
644         usb_submit_urb(urb, GFP_ATOMIC);
645 }
646
647 static struct urb *alloc_rx_urb(struct zd_usb *usb)
648 {
649         struct usb_device *udev = zd_usb_to_usbdev(usb);
650         struct urb *urb;
651         void *buffer;
652
653         urb = usb_alloc_urb(0, GFP_KERNEL);
654         if (!urb)
655                 return NULL;
656         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
657                                   &urb->transfer_dma);
658         if (!buffer) {
659                 usb_free_urb(urb);
660                 return NULL;
661         }
662
663         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
664                           buffer, USB_MAX_RX_SIZE,
665                           rx_urb_complete, usb);
666         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
667
668         return urb;
669 }
670
671 static void free_rx_urb(struct urb *urb)
672 {
673         if (!urb)
674                 return;
675         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
676                         urb->transfer_buffer, urb->transfer_dma);
677         usb_free_urb(urb);
678 }
679
680 int zd_usb_enable_rx(struct zd_usb *usb)
681 {
682         int i, r;
683         struct zd_usb_rx *rx = &usb->rx;
684         struct urb **urbs;
685
686         dev_dbg_f(zd_usb_dev(usb), "\n");
687
688         r = -ENOMEM;
689         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
690         if (!urbs)
691                 goto error;
692         for (i = 0; i < RX_URBS_COUNT; i++) {
693                 urbs[i] = alloc_rx_urb(usb);
694                 if (!urbs[i])
695                         goto error;
696         }
697
698         ZD_ASSERT(!irqs_disabled());
699         spin_lock_irq(&rx->lock);
700         if (rx->urbs) {
701                 spin_unlock_irq(&rx->lock);
702                 r = 0;
703                 goto error;
704         }
705         rx->urbs = urbs;
706         rx->urbs_count = RX_URBS_COUNT;
707         spin_unlock_irq(&rx->lock);
708
709         for (i = 0; i < RX_URBS_COUNT; i++) {
710                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
711                 if (r)
712                         goto error_submit;
713         }
714
715         return 0;
716 error_submit:
717         for (i = 0; i < RX_URBS_COUNT; i++) {
718                 usb_kill_urb(urbs[i]);
719         }
720         spin_lock_irq(&rx->lock);
721         rx->urbs = NULL;
722         rx->urbs_count = 0;
723         spin_unlock_irq(&rx->lock);
724 error:
725         if (urbs) {
726                 for (i = 0; i < RX_URBS_COUNT; i++)
727                         free_rx_urb(urbs[i]);
728         }
729         return r;
730 }
731
732 void zd_usb_disable_rx(struct zd_usb *usb)
733 {
734         int i;
735         unsigned long flags;
736         struct urb **urbs;
737         unsigned int count;
738         struct zd_usb_rx *rx = &usb->rx;
739
740         spin_lock_irqsave(&rx->lock, flags);
741         urbs = rx->urbs;
742         count = rx->urbs_count;
743         spin_unlock_irqrestore(&rx->lock, flags);
744         if (!urbs)
745                 return;
746
747         for (i = 0; i < count; i++) {
748                 usb_kill_urb(urbs[i]);
749                 free_rx_urb(urbs[i]);
750         }
751         kfree(urbs);
752
753         spin_lock_irqsave(&rx->lock, flags);
754         rx->urbs = NULL;
755         rx->urbs_count = 0;
756         spin_unlock_irqrestore(&rx->lock, flags);
757 }
758
759 /**
760  * zd_usb_disable_tx - disable transmission
761  * @usb: the zd1211rw-private USB structure
762  *
763  * Frees all URBs in the free list and marks the transmission as disabled.
764  */
765 void zd_usb_disable_tx(struct zd_usb *usb)
766 {
767         struct zd_usb_tx *tx = &usb->tx;
768         unsigned long flags;
769         struct list_head *pos, *n;
770
771         spin_lock_irqsave(&tx->lock, flags);
772         list_for_each_safe(pos, n, &tx->free_urb_list) {
773                 list_del(pos);
774                 usb_free_urb(list_entry(pos, struct urb, urb_list));
775         }
776         tx->enabled = 0;
777         tx->submitted_urbs = 0;
778         /* The stopped state is ignored, relying on ieee80211_wake_queues()
779          * in a potentionally following zd_usb_enable_tx().
780          */
781         spin_unlock_irqrestore(&tx->lock, flags);
782 }
783
784 /**
785  * zd_usb_enable_tx - enables transmission
786  * @usb: a &struct zd_usb pointer
787  *
788  * This function enables transmission and prepares the &zd_usb_tx data
789  * structure.
790  */
791 void zd_usb_enable_tx(struct zd_usb *usb)
792 {
793         unsigned long flags;
794         struct zd_usb_tx *tx = &usb->tx;
795
796         spin_lock_irqsave(&tx->lock, flags);
797         tx->enabled = 1;
798         tx->submitted_urbs = 0;
799         ieee80211_wake_queues(zd_usb_to_hw(usb));
800         tx->stopped = 0;
801         spin_unlock_irqrestore(&tx->lock, flags);
802 }
803
804 /**
805  * alloc_tx_urb - provides an tx URB
806  * @usb: a &struct zd_usb pointer
807  *
808  * Allocates a new URB. If possible takes the urb from the free list in
809  * usb->tx.
810  */
811 static struct urb *alloc_tx_urb(struct zd_usb *usb)
812 {
813         struct zd_usb_tx *tx = &usb->tx;
814         unsigned long flags;
815         struct list_head *entry;
816         struct urb *urb;
817
818         spin_lock_irqsave(&tx->lock, flags);
819         if (list_empty(&tx->free_urb_list)) {
820                 urb = usb_alloc_urb(0, GFP_ATOMIC);
821                 goto out;
822         }
823         entry = tx->free_urb_list.next;
824         list_del(entry);
825         urb = list_entry(entry, struct urb, urb_list);
826 out:
827         spin_unlock_irqrestore(&tx->lock, flags);
828         return urb;
829 }
830
831 /**
832  * free_tx_urb - frees a used tx URB
833  * @usb: a &struct zd_usb pointer
834  * @urb: URB to be freed
835  *
836  * Frees the the transmission URB, which means to put it on the free URB
837  * list.
838  */
839 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
840 {
841         struct zd_usb_tx *tx = &usb->tx;
842         unsigned long flags;
843
844         spin_lock_irqsave(&tx->lock, flags);
845         if (!tx->enabled) {
846                 usb_free_urb(urb);
847                 goto out;
848         }
849         list_add(&urb->urb_list, &tx->free_urb_list);
850 out:
851         spin_unlock_irqrestore(&tx->lock, flags);
852 }
853
854 static void tx_dec_submitted_urbs(struct zd_usb *usb)
855 {
856         struct zd_usb_tx *tx = &usb->tx;
857         unsigned long flags;
858
859         spin_lock_irqsave(&tx->lock, flags);
860         --tx->submitted_urbs;
861         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
862                 ieee80211_wake_queues(zd_usb_to_hw(usb));
863                 tx->stopped = 0;
864         }
865         spin_unlock_irqrestore(&tx->lock, flags);
866 }
867
868 static void tx_inc_submitted_urbs(struct zd_usb *usb)
869 {
870         struct zd_usb_tx *tx = &usb->tx;
871         unsigned long flags;
872
873         spin_lock_irqsave(&tx->lock, flags);
874         ++tx->submitted_urbs;
875         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
876                 ieee80211_stop_queues(zd_usb_to_hw(usb));
877                 tx->stopped = 1;
878         }
879         spin_unlock_irqrestore(&tx->lock, flags);
880 }
881
882 /**
883  * tx_urb_complete - completes the execution of an URB
884  * @urb: a URB
885  *
886  * This function is called if the URB has been transferred to a device or an
887  * error has happened.
888  */
889 static void tx_urb_complete(struct urb *urb)
890 {
891         int r;
892         struct sk_buff *skb;
893         struct ieee80211_tx_info *info;
894         struct zd_usb *usb;
895
896         switch (urb->status) {
897         case 0:
898                 break;
899         case -ESHUTDOWN:
900         case -EINVAL:
901         case -ENODEV:
902         case -ENOENT:
903         case -ECONNRESET:
904         case -EPIPE:
905                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
906                 break;
907         default:
908                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
909                 goto resubmit;
910         }
911 free_urb:
912         skb = (struct sk_buff *)urb->context;
913         /*
914          * grab 'usb' pointer before handing off the skb (since
915          * it might be freed by zd_mac_tx_to_dev or mac80211)
916          */
917         info = IEEE80211_SKB_CB(skb);
918         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
919         zd_mac_tx_to_dev(skb, urb->status);
920         free_tx_urb(usb, urb);
921         tx_dec_submitted_urbs(usb);
922         return;
923 resubmit:
924         r = usb_submit_urb(urb, GFP_ATOMIC);
925         if (r) {
926                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
927                 goto free_urb;
928         }
929 }
930
931 /**
932  * zd_usb_tx: initiates transfer of a frame of the device
933  *
934  * @usb: the zd1211rw-private USB structure
935  * @skb: a &struct sk_buff pointer
936  *
937  * This function tranmits a frame to the device. It doesn't wait for
938  * completion. The frame must contain the control set and have all the
939  * control set information available.
940  *
941  * The function returns 0 if the transfer has been successfully initiated.
942  */
943 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
944 {
945         int r;
946         struct usb_device *udev = zd_usb_to_usbdev(usb);
947         struct urb *urb;
948
949         urb = alloc_tx_urb(usb);
950         if (!urb) {
951                 r = -ENOMEM;
952                 goto out;
953         }
954
955         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
956                           skb->data, skb->len, tx_urb_complete, skb);
957
958         r = usb_submit_urb(urb, GFP_ATOMIC);
959         if (r)
960                 goto error;
961         tx_inc_submitted_urbs(usb);
962         return 0;
963 error:
964         free_tx_urb(usb, urb);
965 out:
966         return r;
967 }
968
969 static inline void init_usb_interrupt(struct zd_usb *usb)
970 {
971         struct zd_usb_interrupt *intr = &usb->intr;
972
973         spin_lock_init(&intr->lock);
974         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
975         init_completion(&intr->read_regs.completion);
976         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
977 }
978
979 static inline void init_usb_rx(struct zd_usb *usb)
980 {
981         struct zd_usb_rx *rx = &usb->rx;
982         spin_lock_init(&rx->lock);
983         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
984                 rx->usb_packet_size = 512;
985         } else {
986                 rx->usb_packet_size = 64;
987         }
988         ZD_ASSERT(rx->fragment_length == 0);
989 }
990
991 static inline void init_usb_tx(struct zd_usb *usb)
992 {
993         struct zd_usb_tx *tx = &usb->tx;
994         spin_lock_init(&tx->lock);
995         tx->enabled = 0;
996         tx->stopped = 0;
997         INIT_LIST_HEAD(&tx->free_urb_list);
998         tx->submitted_urbs = 0;
999 }
1000
1001 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1002                  struct usb_interface *intf)
1003 {
1004         memset(usb, 0, sizeof(*usb));
1005         usb->intf = usb_get_intf(intf);
1006         usb_set_intfdata(usb->intf, hw);
1007         init_usb_interrupt(usb);
1008         init_usb_tx(usb);
1009         init_usb_rx(usb);
1010 }
1011
1012 void zd_usb_clear(struct zd_usb *usb)
1013 {
1014         usb_set_intfdata(usb->intf, NULL);
1015         usb_put_intf(usb->intf);
1016         ZD_MEMCLEAR(usb, sizeof(*usb));
1017         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1018 }
1019
1020 static const char *speed(enum usb_device_speed speed)
1021 {
1022         switch (speed) {
1023         case USB_SPEED_LOW:
1024                 return "low";
1025         case USB_SPEED_FULL:
1026                 return "full";
1027         case USB_SPEED_HIGH:
1028                 return "high";
1029         default:
1030                 return "unknown speed";
1031         }
1032 }
1033
1034 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1035 {
1036         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1037                 le16_to_cpu(udev->descriptor.idVendor),
1038                 le16_to_cpu(udev->descriptor.idProduct),
1039                 get_bcdDevice(udev),
1040                 speed(udev->speed));
1041 }
1042
1043 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1044 {
1045         struct usb_device *udev = interface_to_usbdev(usb->intf);
1046         return scnprint_id(udev, buffer, size);
1047 }
1048
1049 #ifdef DEBUG
1050 static void print_id(struct usb_device *udev)
1051 {
1052         char buffer[40];
1053
1054         scnprint_id(udev, buffer, sizeof(buffer));
1055         buffer[sizeof(buffer)-1] = 0;
1056         dev_dbg_f(&udev->dev, "%s\n", buffer);
1057 }
1058 #else
1059 #define print_id(udev) do { } while (0)
1060 #endif
1061
1062 static int eject_installer(struct usb_interface *intf)
1063 {
1064         struct usb_device *udev = interface_to_usbdev(intf);
1065         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1066         struct usb_endpoint_descriptor *endpoint;
1067         unsigned char *cmd;
1068         u8 bulk_out_ep;
1069         int r;
1070
1071         /* Find bulk out endpoint */
1072         endpoint = &iface_desc->endpoint[1].desc;
1073         if (usb_endpoint_dir_out(endpoint) &&
1074             usb_endpoint_xfer_bulk(endpoint)) {
1075                 bulk_out_ep = endpoint->bEndpointAddress;
1076         } else {
1077                 dev_err(&udev->dev,
1078                         "zd1211rw: Could not find bulk out endpoint\n");
1079                 return -ENODEV;
1080         }
1081
1082         cmd = kzalloc(31, GFP_KERNEL);
1083         if (cmd == NULL)
1084                 return -ENODEV;
1085
1086         /* USB bulk command block */
1087         cmd[0] = 0x55;  /* bulk command signature */
1088         cmd[1] = 0x53;  /* bulk command signature */
1089         cmd[2] = 0x42;  /* bulk command signature */
1090         cmd[3] = 0x43;  /* bulk command signature */
1091         cmd[14] = 6;    /* command length */
1092
1093         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1094         cmd[19] = 0x2;  /* eject disc */
1095
1096         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1097         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1098                 cmd, 31, NULL, 2000);
1099         kfree(cmd);
1100         if (r)
1101                 return r;
1102
1103         /* At this point, the device disconnects and reconnects with the real
1104          * ID numbers. */
1105
1106         usb_set_intfdata(intf, NULL);
1107         return 0;
1108 }
1109
1110 int zd_usb_init_hw(struct zd_usb *usb)
1111 {
1112         int r;
1113         struct zd_mac *mac = zd_usb_to_mac(usb);
1114
1115         dev_dbg_f(zd_usb_dev(usb), "\n");
1116
1117         r = upload_firmware(usb);
1118         if (r) {
1119                 dev_err(zd_usb_dev(usb),
1120                        "couldn't load firmware. Error number %d\n", r);
1121                 return r;
1122         }
1123
1124         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1125         if (r) {
1126                 dev_dbg_f(zd_usb_dev(usb),
1127                         "couldn't reset configuration. Error number %d\n", r);
1128                 return r;
1129         }
1130
1131         r = zd_mac_init_hw(mac->hw);
1132         if (r) {
1133                 dev_dbg_f(zd_usb_dev(usb),
1134                          "couldn't initialize mac. Error number %d\n", r);
1135                 return r;
1136         }
1137
1138         usb->initialized = 1;
1139         return 0;
1140 }
1141
1142 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1143 {
1144         int r;
1145         struct usb_device *udev = interface_to_usbdev(intf);
1146         struct zd_usb *usb;
1147         struct ieee80211_hw *hw = NULL;
1148
1149         print_id(udev);
1150
1151         if (id->driver_info & DEVICE_INSTALLER)
1152                 return eject_installer(intf);
1153
1154         switch (udev->speed) {
1155         case USB_SPEED_LOW:
1156         case USB_SPEED_FULL:
1157         case USB_SPEED_HIGH:
1158                 break;
1159         default:
1160                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1161                 r = -ENODEV;
1162                 goto error;
1163         }
1164
1165         r = usb_reset_device(udev);
1166         if (r) {
1167                 dev_err(&intf->dev,
1168                         "couldn't reset usb device. Error number %d\n", r);
1169                 goto error;
1170         }
1171
1172         hw = zd_mac_alloc_hw(intf);
1173         if (hw == NULL) {
1174                 r = -ENOMEM;
1175                 goto error;
1176         }
1177
1178         usb = &zd_hw_mac(hw)->chip.usb;
1179         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1180
1181         r = zd_mac_preinit_hw(hw);
1182         if (r) {
1183                 dev_dbg_f(&intf->dev,
1184                          "couldn't initialize mac. Error number %d\n", r);
1185                 goto error;
1186         }
1187
1188         r = ieee80211_register_hw(hw);
1189         if (r) {
1190                 dev_dbg_f(&intf->dev,
1191                          "couldn't register device. Error number %d\n", r);
1192                 goto error;
1193         }
1194
1195         dev_dbg_f(&intf->dev, "successful\n");
1196         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1197         return 0;
1198 error:
1199         usb_reset_device(interface_to_usbdev(intf));
1200         if (hw) {
1201                 zd_mac_clear(zd_hw_mac(hw));
1202                 ieee80211_free_hw(hw);
1203         }
1204         return r;
1205 }
1206
1207 static void disconnect(struct usb_interface *intf)
1208 {
1209         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1210         struct zd_mac *mac;
1211         struct zd_usb *usb;
1212
1213         /* Either something really bad happened, or we're just dealing with
1214          * a DEVICE_INSTALLER. */
1215         if (hw == NULL)
1216                 return;
1217
1218         mac = zd_hw_mac(hw);
1219         usb = &mac->chip.usb;
1220
1221         dev_dbg_f(zd_usb_dev(usb), "\n");
1222
1223         ieee80211_unregister_hw(hw);
1224
1225         /* Just in case something has gone wrong! */
1226         zd_usb_disable_rx(usb);
1227         zd_usb_disable_int(usb);
1228
1229         /* If the disconnect has been caused by a removal of the
1230          * driver module, the reset allows reloading of the driver. If the
1231          * reset will not be executed here, the upload of the firmware in the
1232          * probe function caused by the reloading of the driver will fail.
1233          */
1234         usb_reset_device(interface_to_usbdev(intf));
1235
1236         zd_mac_clear(mac);
1237         ieee80211_free_hw(hw);
1238         dev_dbg(&intf->dev, "disconnected\n");
1239 }
1240
1241 static struct usb_driver driver = {
1242         .name           = KBUILD_MODNAME,
1243         .id_table       = usb_ids,
1244         .probe          = probe,
1245         .disconnect     = disconnect,
1246 };
1247
1248 struct workqueue_struct *zd_workqueue;
1249
1250 static int __init usb_init(void)
1251 {
1252         int r;
1253
1254         pr_debug("%s usb_init()\n", driver.name);
1255
1256         zd_workqueue = create_singlethread_workqueue(driver.name);
1257         if (zd_workqueue == NULL) {
1258                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1259                 return -ENOMEM;
1260         }
1261
1262         r = usb_register(&driver);
1263         if (r) {
1264                 destroy_workqueue(zd_workqueue);
1265                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1266                        driver.name, r);
1267                 return r;
1268         }
1269
1270         pr_debug("%s initialized\n", driver.name);
1271         return 0;
1272 }
1273
1274 static void __exit usb_exit(void)
1275 {
1276         pr_debug("%s usb_exit()\n", driver.name);
1277         usb_deregister(&driver);
1278         destroy_workqueue(zd_workqueue);
1279 }
1280
1281 module_init(usb_init);
1282 module_exit(usb_exit);
1283
1284 static int usb_int_regs_length(unsigned int count)
1285 {
1286         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1287 }
1288
1289 static void prepare_read_regs_int(struct zd_usb *usb)
1290 {
1291         struct zd_usb_interrupt *intr = &usb->intr;
1292
1293         spin_lock_irq(&intr->lock);
1294         intr->read_regs_enabled = 1;
1295         INIT_COMPLETION(intr->read_regs.completion);
1296         spin_unlock_irq(&intr->lock);
1297 }
1298
1299 static void disable_read_regs_int(struct zd_usb *usb)
1300 {
1301         struct zd_usb_interrupt *intr = &usb->intr;
1302
1303         spin_lock_irq(&intr->lock);
1304         intr->read_regs_enabled = 0;
1305         spin_unlock_irq(&intr->lock);
1306 }
1307
1308 static int get_results(struct zd_usb *usb, u16 *values,
1309                        struct usb_req_read_regs *req, unsigned int count)
1310 {
1311         int r;
1312         int i;
1313         struct zd_usb_interrupt *intr = &usb->intr;
1314         struct read_regs_int *rr = &intr->read_regs;
1315         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1316
1317         spin_lock_irq(&intr->lock);
1318
1319         r = -EIO;
1320         /* The created block size seems to be larger than expected.
1321          * However results appear to be correct.
1322          */
1323         if (rr->length < usb_int_regs_length(count)) {
1324                 dev_dbg_f(zd_usb_dev(usb),
1325                          "error: actual length %d less than expected %d\n",
1326                          rr->length, usb_int_regs_length(count));
1327                 goto error_unlock;
1328         }
1329         if (rr->length > sizeof(rr->buffer)) {
1330                 dev_dbg_f(zd_usb_dev(usb),
1331                          "error: actual length %d exceeds buffer size %zu\n",
1332                          rr->length, sizeof(rr->buffer));
1333                 goto error_unlock;
1334         }
1335
1336         for (i = 0; i < count; i++) {
1337                 struct reg_data *rd = &regs->regs[i];
1338                 if (rd->addr != req->addr[i]) {
1339                         dev_dbg_f(zd_usb_dev(usb),
1340                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1341                                  le16_to_cpu(rd->addr),
1342                                  le16_to_cpu(req->addr[i]));
1343                         goto error_unlock;
1344                 }
1345                 values[i] = le16_to_cpu(rd->value);
1346         }
1347
1348         r = 0;
1349 error_unlock:
1350         spin_unlock_irq(&intr->lock);
1351         return r;
1352 }
1353
1354 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1355                      const zd_addr_t *addresses, unsigned int count)
1356 {
1357         int r;
1358         int i, req_len, actual_req_len;
1359         struct usb_device *udev;
1360         struct usb_req_read_regs *req = NULL;
1361         unsigned long timeout;
1362
1363         if (count < 1) {
1364                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1365                 return -EINVAL;
1366         }
1367         if (count > USB_MAX_IOREAD16_COUNT) {
1368                 dev_dbg_f(zd_usb_dev(usb),
1369                          "error: count %u exceeds possible max %u\n",
1370                          count, USB_MAX_IOREAD16_COUNT);
1371                 return -EINVAL;
1372         }
1373         if (in_atomic()) {
1374                 dev_dbg_f(zd_usb_dev(usb),
1375                          "error: io in atomic context not supported\n");
1376                 return -EWOULDBLOCK;
1377         }
1378         if (!usb_int_enabled(usb)) {
1379                  dev_dbg_f(zd_usb_dev(usb),
1380                           "error: usb interrupt not enabled\n");
1381                 return -EWOULDBLOCK;
1382         }
1383
1384         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1385         req = kmalloc(req_len, GFP_KERNEL);
1386         if (!req)
1387                 return -ENOMEM;
1388         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1389         for (i = 0; i < count; i++)
1390                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1391
1392         udev = zd_usb_to_usbdev(usb);
1393         prepare_read_regs_int(usb);
1394         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1395                          req, req_len, &actual_req_len, 1000 /* ms */);
1396         if (r) {
1397                 dev_dbg_f(zd_usb_dev(usb),
1398                         "error in usb_bulk_msg(). Error number %d\n", r);
1399                 goto error;
1400         }
1401         if (req_len != actual_req_len) {
1402                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1403                         " req_len %d != actual_req_len %d\n",
1404                         req_len, actual_req_len);
1405                 r = -EIO;
1406                 goto error;
1407         }
1408
1409         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1410                                               msecs_to_jiffies(1000));
1411         if (!timeout) {
1412                 disable_read_regs_int(usb);
1413                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1414                 r = -ETIMEDOUT;
1415                 goto error;
1416         }
1417
1418         r = get_results(usb, values, req, count);
1419 error:
1420         kfree(req);
1421         return r;
1422 }
1423
1424 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1425                       unsigned int count)
1426 {
1427         int r;
1428         struct usb_device *udev;
1429         struct usb_req_write_regs *req = NULL;
1430         int i, req_len, actual_req_len;
1431
1432         if (count == 0)
1433                 return 0;
1434         if (count > USB_MAX_IOWRITE16_COUNT) {
1435                 dev_dbg_f(zd_usb_dev(usb),
1436                         "error: count %u exceeds possible max %u\n",
1437                         count, USB_MAX_IOWRITE16_COUNT);
1438                 return -EINVAL;
1439         }
1440         if (in_atomic()) {
1441                 dev_dbg_f(zd_usb_dev(usb),
1442                         "error: io in atomic context not supported\n");
1443                 return -EWOULDBLOCK;
1444         }
1445
1446         req_len = sizeof(struct usb_req_write_regs) +
1447                   count * sizeof(struct reg_data);
1448         req = kmalloc(req_len, GFP_KERNEL);
1449         if (!req)
1450                 return -ENOMEM;
1451
1452         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1453         for (i = 0; i < count; i++) {
1454                 struct reg_data *rw  = &req->reg_writes[i];
1455                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1456                 rw->value = cpu_to_le16(ioreqs[i].value);
1457         }
1458
1459         udev = zd_usb_to_usbdev(usb);
1460         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1461                          req, req_len, &actual_req_len, 1000 /* ms */);
1462         if (r) {
1463                 dev_dbg_f(zd_usb_dev(usb),
1464                         "error in usb_bulk_msg(). Error number %d\n", r);
1465                 goto error;
1466         }
1467         if (req_len != actual_req_len) {
1468                 dev_dbg_f(zd_usb_dev(usb),
1469                         "error in usb_bulk_msg()"
1470                         " req_len %d != actual_req_len %d\n",
1471                         req_len, actual_req_len);
1472                 r = -EIO;
1473                 goto error;
1474         }
1475
1476         /* FALL-THROUGH with r == 0 */
1477 error:
1478         kfree(req);
1479         return r;
1480 }
1481
1482 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1483 {
1484         int r;
1485         struct usb_device *udev;
1486         struct usb_req_rfwrite *req = NULL;
1487         int i, req_len, actual_req_len;
1488         u16 bit_value_template;
1489
1490         if (in_atomic()) {
1491                 dev_dbg_f(zd_usb_dev(usb),
1492                         "error: io in atomic context not supported\n");
1493                 return -EWOULDBLOCK;
1494         }
1495         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1496                 dev_dbg_f(zd_usb_dev(usb),
1497                         "error: bits %d are smaller than"
1498                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1499                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1500                 return -EINVAL;
1501         }
1502         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1503                 dev_dbg_f(zd_usb_dev(usb),
1504                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1505                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1506                 return -EINVAL;
1507         }
1508 #ifdef DEBUG
1509         if (value & (~0UL << bits)) {
1510                 dev_dbg_f(zd_usb_dev(usb),
1511                         "error: value %#09x has bits >= %d set\n",
1512                         value, bits);
1513                 return -EINVAL;
1514         }
1515 #endif /* DEBUG */
1516
1517         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1518
1519         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1520         if (r) {
1521                 dev_dbg_f(zd_usb_dev(usb),
1522                         "error %d: Couldn't read CR203\n", r);
1523                 goto out;
1524         }
1525         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1526
1527         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1528         req = kmalloc(req_len, GFP_KERNEL);
1529         if (!req)
1530                 return -ENOMEM;
1531
1532         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1533         /* 1: 3683a, but not used in ZYDAS driver */
1534         req->value = cpu_to_le16(2);
1535         req->bits = cpu_to_le16(bits);
1536
1537         for (i = 0; i < bits; i++) {
1538                 u16 bv = bit_value_template;
1539                 if (value & (1 << (bits-1-i)))
1540                         bv |= RF_DATA;
1541                 req->bit_values[i] = cpu_to_le16(bv);
1542         }
1543
1544         udev = zd_usb_to_usbdev(usb);
1545         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1546                          req, req_len, &actual_req_len, 1000 /* ms */);
1547         if (r) {
1548                 dev_dbg_f(zd_usb_dev(usb),
1549                         "error in usb_bulk_msg(). Error number %d\n", r);
1550                 goto out;
1551         }
1552         if (req_len != actual_req_len) {
1553                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1554                         " req_len %d != actual_req_len %d\n",
1555                         req_len, actual_req_len);
1556                 r = -EIO;
1557                 goto out;
1558         }
1559
1560         /* FALL-THROUGH with r == 0 */
1561 out:
1562         kfree(req);
1563         return r;
1564 }