Merge branch 'fix/misc' into for-linus
[pandora-kernel.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/firmware.h>
25 #include <linux/device.h>
26 #include <linux/errno.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <net/mac80211.h>
31 #include <asm/unaligned.h>
32
33 #include "zd_def.h"
34 #include "zd_mac.h"
35 #include "zd_usb.h"
36
37 static struct usb_device_id usb_ids[] = {
38         /* ZD1211 */
39         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
62         /* ZD1211B */
63         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
64         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
65         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
66         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
67         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
91         /* "Driverless" devices that need ejecting */
92         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
93         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
94         {}
95 };
96
97 MODULE_LICENSE("GPL");
98 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
99 MODULE_AUTHOR("Ulrich Kunitz");
100 MODULE_AUTHOR("Daniel Drake");
101 MODULE_VERSION("1.0");
102 MODULE_DEVICE_TABLE(usb, usb_ids);
103
104 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
105 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
106
107 /* USB device initialization */
108 static void int_urb_complete(struct urb *urb);
109
110 static int request_fw_file(
111         const struct firmware **fw, const char *name, struct device *device)
112 {
113         int r;
114
115         dev_dbg_f(device, "fw name %s\n", name);
116
117         r = request_firmware(fw, name, device);
118         if (r)
119                 dev_err(device,
120                        "Could not load firmware file %s. Error number %d\n",
121                        name, r);
122         return r;
123 }
124
125 static inline u16 get_bcdDevice(const struct usb_device *udev)
126 {
127         return le16_to_cpu(udev->descriptor.bcdDevice);
128 }
129
130 enum upload_code_flags {
131         REBOOT = 1,
132 };
133
134 /* Ensures that MAX_TRANSFER_SIZE is even. */
135 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
136
137 static int upload_code(struct usb_device *udev,
138         const u8 *data, size_t size, u16 code_offset, int flags)
139 {
140         u8 *p;
141         int r;
142
143         /* USB request blocks need "kmalloced" buffers.
144          */
145         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
146         if (!p) {
147                 dev_err(&udev->dev, "out of memory\n");
148                 r = -ENOMEM;
149                 goto error;
150         }
151
152         size &= ~1;
153         while (size > 0) {
154                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
155                         size : MAX_TRANSFER_SIZE;
156
157                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
158
159                 memcpy(p, data, transfer_size);
160                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
161                         USB_REQ_FIRMWARE_DOWNLOAD,
162                         USB_DIR_OUT | USB_TYPE_VENDOR,
163                         code_offset, 0, p, transfer_size, 1000 /* ms */);
164                 if (r < 0) {
165                         dev_err(&udev->dev,
166                                "USB control request for firmware upload"
167                                " failed. Error number %d\n", r);
168                         goto error;
169                 }
170                 transfer_size = r & ~1;
171
172                 size -= transfer_size;
173                 data += transfer_size;
174                 code_offset += transfer_size/sizeof(u16);
175         }
176
177         if (flags & REBOOT) {
178                 u8 ret;
179
180                 /* Use "DMA-aware" buffer. */
181                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
182                         USB_REQ_FIRMWARE_CONFIRM,
183                         USB_DIR_IN | USB_TYPE_VENDOR,
184                         0, 0, p, sizeof(ret), 5000 /* ms */);
185                 if (r != sizeof(ret)) {
186                         dev_err(&udev->dev,
187                                 "control request firmeware confirmation failed."
188                                 " Return value %d\n", r);
189                         if (r >= 0)
190                                 r = -ENODEV;
191                         goto error;
192                 }
193                 ret = p[0];
194                 if (ret & 0x80) {
195                         dev_err(&udev->dev,
196                                 "Internal error while downloading."
197                                 " Firmware confirm return value %#04x\n",
198                                 (unsigned int)ret);
199                         r = -ENODEV;
200                         goto error;
201                 }
202                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
203                         (unsigned int)ret);
204         }
205
206         r = 0;
207 error:
208         kfree(p);
209         return r;
210 }
211
212 static u16 get_word(const void *data, u16 offset)
213 {
214         const __le16 *p = data;
215         return le16_to_cpu(p[offset]);
216 }
217
218 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
219                        const char* postfix)
220 {
221         scnprintf(buffer, size, "%s%s",
222                 usb->is_zd1211b ?
223                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
224                 postfix);
225         return buffer;
226 }
227
228 static int handle_version_mismatch(struct zd_usb *usb,
229         const struct firmware *ub_fw)
230 {
231         struct usb_device *udev = zd_usb_to_usbdev(usb);
232         const struct firmware *ur_fw = NULL;
233         int offset;
234         int r = 0;
235         char fw_name[128];
236
237         r = request_fw_file(&ur_fw,
238                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
239                 &udev->dev);
240         if (r)
241                 goto error;
242
243         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
244         if (r)
245                 goto error;
246
247         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
248         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
249                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
250
251         /* At this point, the vendor driver downloads the whole firmware
252          * image, hacks around with version IDs, and uploads it again,
253          * completely overwriting the boot code. We do not do this here as
254          * it is not required on any tested devices, and it is suspected to
255          * cause problems. */
256 error:
257         release_firmware(ur_fw);
258         return r;
259 }
260
261 static int upload_firmware(struct zd_usb *usb)
262 {
263         int r;
264         u16 fw_bcdDevice;
265         u16 bcdDevice;
266         struct usb_device *udev = zd_usb_to_usbdev(usb);
267         const struct firmware *ub_fw = NULL;
268         const struct firmware *uph_fw = NULL;
269         char fw_name[128];
270
271         bcdDevice = get_bcdDevice(udev);
272
273         r = request_fw_file(&ub_fw,
274                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
275                 &udev->dev);
276         if (r)
277                 goto error;
278
279         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
280
281         if (fw_bcdDevice != bcdDevice) {
282                 dev_info(&udev->dev,
283                         "firmware version %#06x and device bootcode version "
284                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
285                 if (bcdDevice <= 0x4313)
286                         dev_warn(&udev->dev, "device has old bootcode, please "
287                                 "report success or failure\n");
288
289                 r = handle_version_mismatch(usb, ub_fw);
290                 if (r)
291                         goto error;
292         } else {
293                 dev_dbg_f(&udev->dev,
294                         "firmware device id %#06x is equal to the "
295                         "actual device id\n", fw_bcdDevice);
296         }
297
298
299         r = request_fw_file(&uph_fw,
300                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
301                 &udev->dev);
302         if (r)
303                 goto error;
304
305         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
306         if (r) {
307                 dev_err(&udev->dev,
308                         "Could not upload firmware code uph. Error number %d\n",
309                         r);
310         }
311
312         /* FALL-THROUGH */
313 error:
314         release_firmware(ub_fw);
315         release_firmware(uph_fw);
316         return r;
317 }
318
319 /* Read data from device address space using "firmware interface" which does
320  * not require firmware to be loaded. */
321 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
322 {
323         int r;
324         struct usb_device *udev = zd_usb_to_usbdev(usb);
325         u8 *buf;
326
327         /* Use "DMA-aware" buffer. */
328         buf = kmalloc(len, GFP_KERNEL);
329         if (!buf)
330                 return -ENOMEM;
331         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
332                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
333                 buf, len, 5000);
334         if (r < 0) {
335                 dev_err(&udev->dev,
336                         "read over firmware interface failed: %d\n", r);
337                 goto exit;
338         } else if (r != len) {
339                 dev_err(&udev->dev,
340                         "incomplete read over firmware interface: %d/%d\n",
341                         r, len);
342                 r = -EIO;
343                 goto exit;
344         }
345         r = 0;
346         memcpy(data, buf, len);
347 exit:
348         kfree(buf);
349         return r;
350 }
351
352 #define urb_dev(urb) (&(urb)->dev->dev)
353
354 static inline void handle_regs_int(struct urb *urb)
355 {
356         struct zd_usb *usb = urb->context;
357         struct zd_usb_interrupt *intr = &usb->intr;
358         int len;
359         u16 int_num;
360
361         ZD_ASSERT(in_interrupt());
362         spin_lock(&intr->lock);
363
364         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
365         if (int_num == CR_INTERRUPT) {
366                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
367                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
368                                 USB_MAX_EP_INT_BUFFER);
369                 schedule_work(&mac->process_intr);
370         } else if (intr->read_regs_enabled) {
371                 intr->read_regs.length = len = urb->actual_length;
372
373                 if (len > sizeof(intr->read_regs.buffer))
374                         len = sizeof(intr->read_regs.buffer);
375                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
376                 intr->read_regs_enabled = 0;
377                 complete(&intr->read_regs.completion);
378                 goto out;
379         }
380
381 out:
382         spin_unlock(&intr->lock);
383 }
384
385 static void int_urb_complete(struct urb *urb)
386 {
387         int r;
388         struct usb_int_header *hdr;
389
390         switch (urb->status) {
391         case 0:
392                 break;
393         case -ESHUTDOWN:
394         case -EINVAL:
395         case -ENODEV:
396         case -ENOENT:
397         case -ECONNRESET:
398         case -EPIPE:
399                 goto kfree;
400         default:
401                 goto resubmit;
402         }
403
404         if (urb->actual_length < sizeof(hdr)) {
405                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
406                 goto resubmit;
407         }
408
409         hdr = urb->transfer_buffer;
410         if (hdr->type != USB_INT_TYPE) {
411                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
412                 goto resubmit;
413         }
414
415         switch (hdr->id) {
416         case USB_INT_ID_REGS:
417                 handle_regs_int(urb);
418                 break;
419         case USB_INT_ID_RETRY_FAILED:
420                 zd_mac_tx_failed(zd_usb_to_hw(urb->context));
421                 break;
422         default:
423                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
424                         (unsigned int)hdr->id);
425                 goto resubmit;
426         }
427
428 resubmit:
429         r = usb_submit_urb(urb, GFP_ATOMIC);
430         if (r) {
431                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
432                 goto kfree;
433         }
434         return;
435 kfree:
436         kfree(urb->transfer_buffer);
437 }
438
439 static inline int int_urb_interval(struct usb_device *udev)
440 {
441         switch (udev->speed) {
442         case USB_SPEED_HIGH:
443                 return 4;
444         case USB_SPEED_LOW:
445                 return 10;
446         case USB_SPEED_FULL:
447         default:
448                 return 1;
449         }
450 }
451
452 static inline int usb_int_enabled(struct zd_usb *usb)
453 {
454         unsigned long flags;
455         struct zd_usb_interrupt *intr = &usb->intr;
456         struct urb *urb;
457
458         spin_lock_irqsave(&intr->lock, flags);
459         urb = intr->urb;
460         spin_unlock_irqrestore(&intr->lock, flags);
461         return urb != NULL;
462 }
463
464 int zd_usb_enable_int(struct zd_usb *usb)
465 {
466         int r;
467         struct usb_device *udev;
468         struct zd_usb_interrupt *intr = &usb->intr;
469         void *transfer_buffer = NULL;
470         struct urb *urb;
471
472         dev_dbg_f(zd_usb_dev(usb), "\n");
473
474         urb = usb_alloc_urb(0, GFP_KERNEL);
475         if (!urb) {
476                 r = -ENOMEM;
477                 goto out;
478         }
479
480         ZD_ASSERT(!irqs_disabled());
481         spin_lock_irq(&intr->lock);
482         if (intr->urb) {
483                 spin_unlock_irq(&intr->lock);
484                 r = 0;
485                 goto error_free_urb;
486         }
487         intr->urb = urb;
488         spin_unlock_irq(&intr->lock);
489
490         /* TODO: make it a DMA buffer */
491         r = -ENOMEM;
492         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_KERNEL);
493         if (!transfer_buffer) {
494                 dev_dbg_f(zd_usb_dev(usb),
495                         "couldn't allocate transfer_buffer\n");
496                 goto error_set_urb_null;
497         }
498
499         udev = zd_usb_to_usbdev(usb);
500         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
501                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
502                          int_urb_complete, usb,
503                          intr->interval);
504
505         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
506         r = usb_submit_urb(urb, GFP_KERNEL);
507         if (r) {
508                 dev_dbg_f(zd_usb_dev(usb),
509                          "Couldn't submit urb. Error number %d\n", r);
510                 goto error;
511         }
512
513         return 0;
514 error:
515         kfree(transfer_buffer);
516 error_set_urb_null:
517         spin_lock_irq(&intr->lock);
518         intr->urb = NULL;
519         spin_unlock_irq(&intr->lock);
520 error_free_urb:
521         usb_free_urb(urb);
522 out:
523         return r;
524 }
525
526 void zd_usb_disable_int(struct zd_usb *usb)
527 {
528         unsigned long flags;
529         struct zd_usb_interrupt *intr = &usb->intr;
530         struct urb *urb;
531
532         spin_lock_irqsave(&intr->lock, flags);
533         urb = intr->urb;
534         if (!urb) {
535                 spin_unlock_irqrestore(&intr->lock, flags);
536                 return;
537         }
538         intr->urb = NULL;
539         spin_unlock_irqrestore(&intr->lock, flags);
540
541         usb_kill_urb(urb);
542         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
543         usb_free_urb(urb);
544 }
545
546 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
547                              unsigned int length)
548 {
549         int i;
550         const struct rx_length_info *length_info;
551
552         if (length < sizeof(struct rx_length_info)) {
553                 /* It's not a complete packet anyhow. */
554                 return;
555         }
556         length_info = (struct rx_length_info *)
557                 (buffer + length - sizeof(struct rx_length_info));
558
559         /* It might be that three frames are merged into a single URB
560          * transaction. We have to check for the length info tag.
561          *
562          * While testing we discovered that length_info might be unaligned,
563          * because if USB transactions are merged, the last packet will not
564          * be padded. Unaligned access might also happen if the length_info
565          * structure is not present.
566          */
567         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
568         {
569                 unsigned int l, k, n;
570                 for (i = 0, l = 0;; i++) {
571                         k = get_unaligned_le16(&length_info->length[i]);
572                         if (k == 0)
573                                 return;
574                         n = l+k;
575                         if (n > length)
576                                 return;
577                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
578                         if (i >= 2)
579                                 return;
580                         l = (n+3) & ~3;
581                 }
582         } else {
583                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
584         }
585 }
586
587 static void rx_urb_complete(struct urb *urb)
588 {
589         struct zd_usb *usb;
590         struct zd_usb_rx *rx;
591         const u8 *buffer;
592         unsigned int length;
593
594         switch (urb->status) {
595         case 0:
596                 break;
597         case -ESHUTDOWN:
598         case -EINVAL:
599         case -ENODEV:
600         case -ENOENT:
601         case -ECONNRESET:
602         case -EPIPE:
603                 return;
604         default:
605                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
606                 goto resubmit;
607         }
608
609         buffer = urb->transfer_buffer;
610         length = urb->actual_length;
611         usb = urb->context;
612         rx = &usb->rx;
613
614         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
615                 /* If there is an old first fragment, we don't care. */
616                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
617                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
618                 spin_lock(&rx->lock);
619                 memcpy(rx->fragment, buffer, length);
620                 rx->fragment_length = length;
621                 spin_unlock(&rx->lock);
622                 goto resubmit;
623         }
624
625         spin_lock(&rx->lock);
626         if (rx->fragment_length > 0) {
627                 /* We are on a second fragment, we believe */
628                 ZD_ASSERT(length + rx->fragment_length <=
629                           ARRAY_SIZE(rx->fragment));
630                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
631                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
632                 handle_rx_packet(usb, rx->fragment,
633                                  rx->fragment_length + length);
634                 rx->fragment_length = 0;
635                 spin_unlock(&rx->lock);
636         } else {
637                 spin_unlock(&rx->lock);
638                 handle_rx_packet(usb, buffer, length);
639         }
640
641 resubmit:
642         usb_submit_urb(urb, GFP_ATOMIC);
643 }
644
645 static struct urb *alloc_rx_urb(struct zd_usb *usb)
646 {
647         struct usb_device *udev = zd_usb_to_usbdev(usb);
648         struct urb *urb;
649         void *buffer;
650
651         urb = usb_alloc_urb(0, GFP_KERNEL);
652         if (!urb)
653                 return NULL;
654         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
655                                   &urb->transfer_dma);
656         if (!buffer) {
657                 usb_free_urb(urb);
658                 return NULL;
659         }
660
661         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
662                           buffer, USB_MAX_RX_SIZE,
663                           rx_urb_complete, usb);
664         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
665
666         return urb;
667 }
668
669 static void free_rx_urb(struct urb *urb)
670 {
671         if (!urb)
672                 return;
673         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
674                         urb->transfer_buffer, urb->transfer_dma);
675         usb_free_urb(urb);
676 }
677
678 int zd_usb_enable_rx(struct zd_usb *usb)
679 {
680         int i, r;
681         struct zd_usb_rx *rx = &usb->rx;
682         struct urb **urbs;
683
684         dev_dbg_f(zd_usb_dev(usb), "\n");
685
686         r = -ENOMEM;
687         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
688         if (!urbs)
689                 goto error;
690         for (i = 0; i < RX_URBS_COUNT; i++) {
691                 urbs[i] = alloc_rx_urb(usb);
692                 if (!urbs[i])
693                         goto error;
694         }
695
696         ZD_ASSERT(!irqs_disabled());
697         spin_lock_irq(&rx->lock);
698         if (rx->urbs) {
699                 spin_unlock_irq(&rx->lock);
700                 r = 0;
701                 goto error;
702         }
703         rx->urbs = urbs;
704         rx->urbs_count = RX_URBS_COUNT;
705         spin_unlock_irq(&rx->lock);
706
707         for (i = 0; i < RX_URBS_COUNT; i++) {
708                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
709                 if (r)
710                         goto error_submit;
711         }
712
713         return 0;
714 error_submit:
715         for (i = 0; i < RX_URBS_COUNT; i++) {
716                 usb_kill_urb(urbs[i]);
717         }
718         spin_lock_irq(&rx->lock);
719         rx->urbs = NULL;
720         rx->urbs_count = 0;
721         spin_unlock_irq(&rx->lock);
722 error:
723         if (urbs) {
724                 for (i = 0; i < RX_URBS_COUNT; i++)
725                         free_rx_urb(urbs[i]);
726         }
727         return r;
728 }
729
730 void zd_usb_disable_rx(struct zd_usb *usb)
731 {
732         int i;
733         unsigned long flags;
734         struct urb **urbs;
735         unsigned int count;
736         struct zd_usb_rx *rx = &usb->rx;
737
738         spin_lock_irqsave(&rx->lock, flags);
739         urbs = rx->urbs;
740         count = rx->urbs_count;
741         spin_unlock_irqrestore(&rx->lock, flags);
742         if (!urbs)
743                 return;
744
745         for (i = 0; i < count; i++) {
746                 usb_kill_urb(urbs[i]);
747                 free_rx_urb(urbs[i]);
748         }
749         kfree(urbs);
750
751         spin_lock_irqsave(&rx->lock, flags);
752         rx->urbs = NULL;
753         rx->urbs_count = 0;
754         spin_unlock_irqrestore(&rx->lock, flags);
755 }
756
757 /**
758  * zd_usb_disable_tx - disable transmission
759  * @usb: the zd1211rw-private USB structure
760  *
761  * Frees all URBs in the free list and marks the transmission as disabled.
762  */
763 void zd_usb_disable_tx(struct zd_usb *usb)
764 {
765         struct zd_usb_tx *tx = &usb->tx;
766         unsigned long flags;
767         struct list_head *pos, *n;
768
769         spin_lock_irqsave(&tx->lock, flags);
770         list_for_each_safe(pos, n, &tx->free_urb_list) {
771                 list_del(pos);
772                 usb_free_urb(list_entry(pos, struct urb, urb_list));
773         }
774         tx->enabled = 0;
775         tx->submitted_urbs = 0;
776         /* The stopped state is ignored, relying on ieee80211_wake_queues()
777          * in a potentionally following zd_usb_enable_tx().
778          */
779         spin_unlock_irqrestore(&tx->lock, flags);
780 }
781
782 /**
783  * zd_usb_enable_tx - enables transmission
784  * @usb: a &struct zd_usb pointer
785  *
786  * This function enables transmission and prepares the &zd_usb_tx data
787  * structure.
788  */
789 void zd_usb_enable_tx(struct zd_usb *usb)
790 {
791         unsigned long flags;
792         struct zd_usb_tx *tx = &usb->tx;
793
794         spin_lock_irqsave(&tx->lock, flags);
795         tx->enabled = 1;
796         tx->submitted_urbs = 0;
797         ieee80211_wake_queues(zd_usb_to_hw(usb));
798         tx->stopped = 0;
799         spin_unlock_irqrestore(&tx->lock, flags);
800 }
801
802 /**
803  * alloc_tx_urb - provides an tx URB
804  * @usb: a &struct zd_usb pointer
805  *
806  * Allocates a new URB. If possible takes the urb from the free list in
807  * usb->tx.
808  */
809 static struct urb *alloc_tx_urb(struct zd_usb *usb)
810 {
811         struct zd_usb_tx *tx = &usb->tx;
812         unsigned long flags;
813         struct list_head *entry;
814         struct urb *urb;
815
816         spin_lock_irqsave(&tx->lock, flags);
817         if (list_empty(&tx->free_urb_list)) {
818                 urb = usb_alloc_urb(0, GFP_ATOMIC);
819                 goto out;
820         }
821         entry = tx->free_urb_list.next;
822         list_del(entry);
823         urb = list_entry(entry, struct urb, urb_list);
824 out:
825         spin_unlock_irqrestore(&tx->lock, flags);
826         return urb;
827 }
828
829 /**
830  * free_tx_urb - frees a used tx URB
831  * @usb: a &struct zd_usb pointer
832  * @urb: URB to be freed
833  *
834  * Frees the the transmission URB, which means to put it on the free URB
835  * list.
836  */
837 static void free_tx_urb(struct zd_usb *usb, struct urb *urb)
838 {
839         struct zd_usb_tx *tx = &usb->tx;
840         unsigned long flags;
841
842         spin_lock_irqsave(&tx->lock, flags);
843         if (!tx->enabled) {
844                 usb_free_urb(urb);
845                 goto out;
846         }
847         list_add(&urb->urb_list, &tx->free_urb_list);
848 out:
849         spin_unlock_irqrestore(&tx->lock, flags);
850 }
851
852 static void tx_dec_submitted_urbs(struct zd_usb *usb)
853 {
854         struct zd_usb_tx *tx = &usb->tx;
855         unsigned long flags;
856
857         spin_lock_irqsave(&tx->lock, flags);
858         --tx->submitted_urbs;
859         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
860                 ieee80211_wake_queues(zd_usb_to_hw(usb));
861                 tx->stopped = 0;
862         }
863         spin_unlock_irqrestore(&tx->lock, flags);
864 }
865
866 static void tx_inc_submitted_urbs(struct zd_usb *usb)
867 {
868         struct zd_usb_tx *tx = &usb->tx;
869         unsigned long flags;
870
871         spin_lock_irqsave(&tx->lock, flags);
872         ++tx->submitted_urbs;
873         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
874                 ieee80211_stop_queues(zd_usb_to_hw(usb));
875                 tx->stopped = 1;
876         }
877         spin_unlock_irqrestore(&tx->lock, flags);
878 }
879
880 /**
881  * tx_urb_complete - completes the execution of an URB
882  * @urb: a URB
883  *
884  * This function is called if the URB has been transferred to a device or an
885  * error has happened.
886  */
887 static void tx_urb_complete(struct urb *urb)
888 {
889         int r;
890         struct sk_buff *skb;
891         struct ieee80211_tx_info *info;
892         struct zd_usb *usb;
893
894         switch (urb->status) {
895         case 0:
896                 break;
897         case -ESHUTDOWN:
898         case -EINVAL:
899         case -ENODEV:
900         case -ENOENT:
901         case -ECONNRESET:
902         case -EPIPE:
903                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
904                 break;
905         default:
906                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
907                 goto resubmit;
908         }
909 free_urb:
910         skb = (struct sk_buff *)urb->context;
911         /*
912          * grab 'usb' pointer before handing off the skb (since
913          * it might be freed by zd_mac_tx_to_dev or mac80211)
914          */
915         info = IEEE80211_SKB_CB(skb);
916         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
917         zd_mac_tx_to_dev(skb, urb->status);
918         free_tx_urb(usb, urb);
919         tx_dec_submitted_urbs(usb);
920         return;
921 resubmit:
922         r = usb_submit_urb(urb, GFP_ATOMIC);
923         if (r) {
924                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
925                 goto free_urb;
926         }
927 }
928
929 /**
930  * zd_usb_tx: initiates transfer of a frame of the device
931  *
932  * @usb: the zd1211rw-private USB structure
933  * @skb: a &struct sk_buff pointer
934  *
935  * This function tranmits a frame to the device. It doesn't wait for
936  * completion. The frame must contain the control set and have all the
937  * control set information available.
938  *
939  * The function returns 0 if the transfer has been successfully initiated.
940  */
941 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
942 {
943         int r;
944         struct usb_device *udev = zd_usb_to_usbdev(usb);
945         struct urb *urb;
946
947         urb = alloc_tx_urb(usb);
948         if (!urb) {
949                 r = -ENOMEM;
950                 goto out;
951         }
952
953         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
954                           skb->data, skb->len, tx_urb_complete, skb);
955
956         r = usb_submit_urb(urb, GFP_ATOMIC);
957         if (r)
958                 goto error;
959         tx_inc_submitted_urbs(usb);
960         return 0;
961 error:
962         free_tx_urb(usb, urb);
963 out:
964         return r;
965 }
966
967 static inline void init_usb_interrupt(struct zd_usb *usb)
968 {
969         struct zd_usb_interrupt *intr = &usb->intr;
970
971         spin_lock_init(&intr->lock);
972         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
973         init_completion(&intr->read_regs.completion);
974         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
975 }
976
977 static inline void init_usb_rx(struct zd_usb *usb)
978 {
979         struct zd_usb_rx *rx = &usb->rx;
980         spin_lock_init(&rx->lock);
981         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
982                 rx->usb_packet_size = 512;
983         } else {
984                 rx->usb_packet_size = 64;
985         }
986         ZD_ASSERT(rx->fragment_length == 0);
987 }
988
989 static inline void init_usb_tx(struct zd_usb *usb)
990 {
991         struct zd_usb_tx *tx = &usb->tx;
992         spin_lock_init(&tx->lock);
993         tx->enabled = 0;
994         tx->stopped = 0;
995         INIT_LIST_HEAD(&tx->free_urb_list);
996         tx->submitted_urbs = 0;
997 }
998
999 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1000                  struct usb_interface *intf)
1001 {
1002         memset(usb, 0, sizeof(*usb));
1003         usb->intf = usb_get_intf(intf);
1004         usb_set_intfdata(usb->intf, hw);
1005         init_usb_interrupt(usb);
1006         init_usb_tx(usb);
1007         init_usb_rx(usb);
1008 }
1009
1010 void zd_usb_clear(struct zd_usb *usb)
1011 {
1012         usb_set_intfdata(usb->intf, NULL);
1013         usb_put_intf(usb->intf);
1014         ZD_MEMCLEAR(usb, sizeof(*usb));
1015         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1016 }
1017
1018 static const char *speed(enum usb_device_speed speed)
1019 {
1020         switch (speed) {
1021         case USB_SPEED_LOW:
1022                 return "low";
1023         case USB_SPEED_FULL:
1024                 return "full";
1025         case USB_SPEED_HIGH:
1026                 return "high";
1027         default:
1028                 return "unknown speed";
1029         }
1030 }
1031
1032 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1033 {
1034         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1035                 le16_to_cpu(udev->descriptor.idVendor),
1036                 le16_to_cpu(udev->descriptor.idProduct),
1037                 get_bcdDevice(udev),
1038                 speed(udev->speed));
1039 }
1040
1041 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1042 {
1043         struct usb_device *udev = interface_to_usbdev(usb->intf);
1044         return scnprint_id(udev, buffer, size);
1045 }
1046
1047 #ifdef DEBUG
1048 static void print_id(struct usb_device *udev)
1049 {
1050         char buffer[40];
1051
1052         scnprint_id(udev, buffer, sizeof(buffer));
1053         buffer[sizeof(buffer)-1] = 0;
1054         dev_dbg_f(&udev->dev, "%s\n", buffer);
1055 }
1056 #else
1057 #define print_id(udev) do { } while (0)
1058 #endif
1059
1060 static int eject_installer(struct usb_interface *intf)
1061 {
1062         struct usb_device *udev = interface_to_usbdev(intf);
1063         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1064         struct usb_endpoint_descriptor *endpoint;
1065         unsigned char *cmd;
1066         u8 bulk_out_ep;
1067         int r;
1068
1069         /* Find bulk out endpoint */
1070         endpoint = &iface_desc->endpoint[1].desc;
1071         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
1072             usb_endpoint_xfer_bulk(endpoint)) {
1073                 bulk_out_ep = endpoint->bEndpointAddress;
1074         } else {
1075                 dev_err(&udev->dev,
1076                         "zd1211rw: Could not find bulk out endpoint\n");
1077                 return -ENODEV;
1078         }
1079
1080         cmd = kzalloc(31, GFP_KERNEL);
1081         if (cmd == NULL)
1082                 return -ENODEV;
1083
1084         /* USB bulk command block */
1085         cmd[0] = 0x55;  /* bulk command signature */
1086         cmd[1] = 0x53;  /* bulk command signature */
1087         cmd[2] = 0x42;  /* bulk command signature */
1088         cmd[3] = 0x43;  /* bulk command signature */
1089         cmd[14] = 6;    /* command length */
1090
1091         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1092         cmd[19] = 0x2;  /* eject disc */
1093
1094         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1095         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1096                 cmd, 31, NULL, 2000);
1097         kfree(cmd);
1098         if (r)
1099                 return r;
1100
1101         /* At this point, the device disconnects and reconnects with the real
1102          * ID numbers. */
1103
1104         usb_set_intfdata(intf, NULL);
1105         return 0;
1106 }
1107
1108 int zd_usb_init_hw(struct zd_usb *usb)
1109 {
1110         int r;
1111         struct zd_mac *mac = zd_usb_to_mac(usb);
1112
1113         dev_dbg_f(zd_usb_dev(usb), "\n");
1114
1115         r = upload_firmware(usb);
1116         if (r) {
1117                 dev_err(zd_usb_dev(usb),
1118                        "couldn't load firmware. Error number %d\n", r);
1119                 return r;
1120         }
1121
1122         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1123         if (r) {
1124                 dev_dbg_f(zd_usb_dev(usb),
1125                         "couldn't reset configuration. Error number %d\n", r);
1126                 return r;
1127         }
1128
1129         r = zd_mac_init_hw(mac->hw);
1130         if (r) {
1131                 dev_dbg_f(zd_usb_dev(usb),
1132                          "couldn't initialize mac. Error number %d\n", r);
1133                 return r;
1134         }
1135
1136         usb->initialized = 1;
1137         return 0;
1138 }
1139
1140 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1141 {
1142         int r;
1143         struct usb_device *udev = interface_to_usbdev(intf);
1144         struct zd_usb *usb;
1145         struct ieee80211_hw *hw = NULL;
1146
1147         print_id(udev);
1148
1149         if (id->driver_info & DEVICE_INSTALLER)
1150                 return eject_installer(intf);
1151
1152         switch (udev->speed) {
1153         case USB_SPEED_LOW:
1154         case USB_SPEED_FULL:
1155         case USB_SPEED_HIGH:
1156                 break;
1157         default:
1158                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1159                 r = -ENODEV;
1160                 goto error;
1161         }
1162
1163         r = usb_reset_device(udev);
1164         if (r) {
1165                 dev_err(&intf->dev,
1166                         "couldn't reset usb device. Error number %d\n", r);
1167                 goto error;
1168         }
1169
1170         hw = zd_mac_alloc_hw(intf);
1171         if (hw == NULL) {
1172                 r = -ENOMEM;
1173                 goto error;
1174         }
1175
1176         usb = &zd_hw_mac(hw)->chip.usb;
1177         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1178
1179         r = zd_mac_preinit_hw(hw);
1180         if (r) {
1181                 dev_dbg_f(&intf->dev,
1182                          "couldn't initialize mac. Error number %d\n", r);
1183                 goto error;
1184         }
1185
1186         r = ieee80211_register_hw(hw);
1187         if (r) {
1188                 dev_dbg_f(&intf->dev,
1189                          "couldn't register device. Error number %d\n", r);
1190                 goto error;
1191         }
1192
1193         dev_dbg_f(&intf->dev, "successful\n");
1194         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1195         return 0;
1196 error:
1197         usb_reset_device(interface_to_usbdev(intf));
1198         if (hw) {
1199                 zd_mac_clear(zd_hw_mac(hw));
1200                 ieee80211_free_hw(hw);
1201         }
1202         return r;
1203 }
1204
1205 static void disconnect(struct usb_interface *intf)
1206 {
1207         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1208         struct zd_mac *mac;
1209         struct zd_usb *usb;
1210
1211         /* Either something really bad happened, or we're just dealing with
1212          * a DEVICE_INSTALLER. */
1213         if (hw == NULL)
1214                 return;
1215
1216         mac = zd_hw_mac(hw);
1217         usb = &mac->chip.usb;
1218
1219         dev_dbg_f(zd_usb_dev(usb), "\n");
1220
1221         ieee80211_unregister_hw(hw);
1222
1223         /* Just in case something has gone wrong! */
1224         zd_usb_disable_rx(usb);
1225         zd_usb_disable_int(usb);
1226
1227         /* If the disconnect has been caused by a removal of the
1228          * driver module, the reset allows reloading of the driver. If the
1229          * reset will not be executed here, the upload of the firmware in the
1230          * probe function caused by the reloading of the driver will fail.
1231          */
1232         usb_reset_device(interface_to_usbdev(intf));
1233
1234         zd_mac_clear(mac);
1235         ieee80211_free_hw(hw);
1236         dev_dbg(&intf->dev, "disconnected\n");
1237 }
1238
1239 static struct usb_driver driver = {
1240         .name           = KBUILD_MODNAME,
1241         .id_table       = usb_ids,
1242         .probe          = probe,
1243         .disconnect     = disconnect,
1244 };
1245
1246 struct workqueue_struct *zd_workqueue;
1247
1248 static int __init usb_init(void)
1249 {
1250         int r;
1251
1252         pr_debug("%s usb_init()\n", driver.name);
1253
1254         zd_workqueue = create_singlethread_workqueue(driver.name);
1255         if (zd_workqueue == NULL) {
1256                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1257                 return -ENOMEM;
1258         }
1259
1260         r = usb_register(&driver);
1261         if (r) {
1262                 destroy_workqueue(zd_workqueue);
1263                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1264                        driver.name, r);
1265                 return r;
1266         }
1267
1268         pr_debug("%s initialized\n", driver.name);
1269         return 0;
1270 }
1271
1272 static void __exit usb_exit(void)
1273 {
1274         pr_debug("%s usb_exit()\n", driver.name);
1275         usb_deregister(&driver);
1276         destroy_workqueue(zd_workqueue);
1277 }
1278
1279 module_init(usb_init);
1280 module_exit(usb_exit);
1281
1282 static int usb_int_regs_length(unsigned int count)
1283 {
1284         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1285 }
1286
1287 static void prepare_read_regs_int(struct zd_usb *usb)
1288 {
1289         struct zd_usb_interrupt *intr = &usb->intr;
1290
1291         spin_lock_irq(&intr->lock);
1292         intr->read_regs_enabled = 1;
1293         INIT_COMPLETION(intr->read_regs.completion);
1294         spin_unlock_irq(&intr->lock);
1295 }
1296
1297 static void disable_read_regs_int(struct zd_usb *usb)
1298 {
1299         struct zd_usb_interrupt *intr = &usb->intr;
1300
1301         spin_lock_irq(&intr->lock);
1302         intr->read_regs_enabled = 0;
1303         spin_unlock_irq(&intr->lock);
1304 }
1305
1306 static int get_results(struct zd_usb *usb, u16 *values,
1307                        struct usb_req_read_regs *req, unsigned int count)
1308 {
1309         int r;
1310         int i;
1311         struct zd_usb_interrupt *intr = &usb->intr;
1312         struct read_regs_int *rr = &intr->read_regs;
1313         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1314
1315         spin_lock_irq(&intr->lock);
1316
1317         r = -EIO;
1318         /* The created block size seems to be larger than expected.
1319          * However results appear to be correct.
1320          */
1321         if (rr->length < usb_int_regs_length(count)) {
1322                 dev_dbg_f(zd_usb_dev(usb),
1323                          "error: actual length %d less than expected %d\n",
1324                          rr->length, usb_int_regs_length(count));
1325                 goto error_unlock;
1326         }
1327         if (rr->length > sizeof(rr->buffer)) {
1328                 dev_dbg_f(zd_usb_dev(usb),
1329                          "error: actual length %d exceeds buffer size %zu\n",
1330                          rr->length, sizeof(rr->buffer));
1331                 goto error_unlock;
1332         }
1333
1334         for (i = 0; i < count; i++) {
1335                 struct reg_data *rd = &regs->regs[i];
1336                 if (rd->addr != req->addr[i]) {
1337                         dev_dbg_f(zd_usb_dev(usb),
1338                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1339                                  le16_to_cpu(rd->addr),
1340                                  le16_to_cpu(req->addr[i]));
1341                         goto error_unlock;
1342                 }
1343                 values[i] = le16_to_cpu(rd->value);
1344         }
1345
1346         r = 0;
1347 error_unlock:
1348         spin_unlock_irq(&intr->lock);
1349         return r;
1350 }
1351
1352 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1353                      const zd_addr_t *addresses, unsigned int count)
1354 {
1355         int r;
1356         int i, req_len, actual_req_len;
1357         struct usb_device *udev;
1358         struct usb_req_read_regs *req = NULL;
1359         unsigned long timeout;
1360
1361         if (count < 1) {
1362                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1363                 return -EINVAL;
1364         }
1365         if (count > USB_MAX_IOREAD16_COUNT) {
1366                 dev_dbg_f(zd_usb_dev(usb),
1367                          "error: count %u exceeds possible max %u\n",
1368                          count, USB_MAX_IOREAD16_COUNT);
1369                 return -EINVAL;
1370         }
1371         if (in_atomic()) {
1372                 dev_dbg_f(zd_usb_dev(usb),
1373                          "error: io in atomic context not supported\n");
1374                 return -EWOULDBLOCK;
1375         }
1376         if (!usb_int_enabled(usb)) {
1377                  dev_dbg_f(zd_usb_dev(usb),
1378                           "error: usb interrupt not enabled\n");
1379                 return -EWOULDBLOCK;
1380         }
1381
1382         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1383         req = kmalloc(req_len, GFP_KERNEL);
1384         if (!req)
1385                 return -ENOMEM;
1386         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1387         for (i = 0; i < count; i++)
1388                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1389
1390         udev = zd_usb_to_usbdev(usb);
1391         prepare_read_regs_int(usb);
1392         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1393                          req, req_len, &actual_req_len, 1000 /* ms */);
1394         if (r) {
1395                 dev_dbg_f(zd_usb_dev(usb),
1396                         "error in usb_bulk_msg(). Error number %d\n", r);
1397                 goto error;
1398         }
1399         if (req_len != actual_req_len) {
1400                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1401                         " req_len %d != actual_req_len %d\n",
1402                         req_len, actual_req_len);
1403                 r = -EIO;
1404                 goto error;
1405         }
1406
1407         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1408                                               msecs_to_jiffies(1000));
1409         if (!timeout) {
1410                 disable_read_regs_int(usb);
1411                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1412                 r = -ETIMEDOUT;
1413                 goto error;
1414         }
1415
1416         r = get_results(usb, values, req, count);
1417 error:
1418         kfree(req);
1419         return r;
1420 }
1421
1422 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1423                       unsigned int count)
1424 {
1425         int r;
1426         struct usb_device *udev;
1427         struct usb_req_write_regs *req = NULL;
1428         int i, req_len, actual_req_len;
1429
1430         if (count == 0)
1431                 return 0;
1432         if (count > USB_MAX_IOWRITE16_COUNT) {
1433                 dev_dbg_f(zd_usb_dev(usb),
1434                         "error: count %u exceeds possible max %u\n",
1435                         count, USB_MAX_IOWRITE16_COUNT);
1436                 return -EINVAL;
1437         }
1438         if (in_atomic()) {
1439                 dev_dbg_f(zd_usb_dev(usb),
1440                         "error: io in atomic context not supported\n");
1441                 return -EWOULDBLOCK;
1442         }
1443
1444         req_len = sizeof(struct usb_req_write_regs) +
1445                   count * sizeof(struct reg_data);
1446         req = kmalloc(req_len, GFP_KERNEL);
1447         if (!req)
1448                 return -ENOMEM;
1449
1450         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1451         for (i = 0; i < count; i++) {
1452                 struct reg_data *rw  = &req->reg_writes[i];
1453                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1454                 rw->value = cpu_to_le16(ioreqs[i].value);
1455         }
1456
1457         udev = zd_usb_to_usbdev(usb);
1458         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1459                          req, req_len, &actual_req_len, 1000 /* ms */);
1460         if (r) {
1461                 dev_dbg_f(zd_usb_dev(usb),
1462                         "error in usb_bulk_msg(). Error number %d\n", r);
1463                 goto error;
1464         }
1465         if (req_len != actual_req_len) {
1466                 dev_dbg_f(zd_usb_dev(usb),
1467                         "error in usb_bulk_msg()"
1468                         " req_len %d != actual_req_len %d\n",
1469                         req_len, actual_req_len);
1470                 r = -EIO;
1471                 goto error;
1472         }
1473
1474         /* FALL-THROUGH with r == 0 */
1475 error:
1476         kfree(req);
1477         return r;
1478 }
1479
1480 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1481 {
1482         int r;
1483         struct usb_device *udev;
1484         struct usb_req_rfwrite *req = NULL;
1485         int i, req_len, actual_req_len;
1486         u16 bit_value_template;
1487
1488         if (in_atomic()) {
1489                 dev_dbg_f(zd_usb_dev(usb),
1490                         "error: io in atomic context not supported\n");
1491                 return -EWOULDBLOCK;
1492         }
1493         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1494                 dev_dbg_f(zd_usb_dev(usb),
1495                         "error: bits %d are smaller than"
1496                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1497                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1498                 return -EINVAL;
1499         }
1500         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1501                 dev_dbg_f(zd_usb_dev(usb),
1502                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1503                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1504                 return -EINVAL;
1505         }
1506 #ifdef DEBUG
1507         if (value & (~0UL << bits)) {
1508                 dev_dbg_f(zd_usb_dev(usb),
1509                         "error: value %#09x has bits >= %d set\n",
1510                         value, bits);
1511                 return -EINVAL;
1512         }
1513 #endif /* DEBUG */
1514
1515         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1516
1517         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1518         if (r) {
1519                 dev_dbg_f(zd_usb_dev(usb),
1520                         "error %d: Couldn't read CR203\n", r);
1521                 goto out;
1522         }
1523         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1524
1525         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1526         req = kmalloc(req_len, GFP_KERNEL);
1527         if (!req)
1528                 return -ENOMEM;
1529
1530         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1531         /* 1: 3683a, but not used in ZYDAS driver */
1532         req->value = cpu_to_le16(2);
1533         req->bits = cpu_to_le16(bits);
1534
1535         for (i = 0; i < bits; i++) {
1536                 u16 bv = bit_value_template;
1537                 if (value & (1 << (bits-1-i)))
1538                         bv |= RF_DATA;
1539                 req->bit_values[i] = cpu_to_le16(bv);
1540         }
1541
1542         udev = zd_usb_to_usbdev(usb);
1543         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1544                          req, req_len, &actual_req_len, 1000 /* ms */);
1545         if (r) {
1546                 dev_dbg_f(zd_usb_dev(usb),
1547                         "error in usb_bulk_msg(). Error number %d\n", r);
1548                 goto out;
1549         }
1550         if (req_len != actual_req_len) {
1551                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1552                         " req_len %d != actual_req_len %d\n",
1553                         req_len, actual_req_len);
1554                 r = -EIO;
1555                 goto out;
1556         }
1557
1558         /* FALL-THROUGH with r == 0 */
1559 out:
1560         kfree(req);
1561         return r;
1562 }