wl1251: remove wl1271_setup()
[pandora-kernel.git] / drivers / net / wireless / wl12xx / spi.c
1 /*
2  * This file is part of wl12xx
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  *
6  * Contact: Kalle Valo <kalle.valo@nokia.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * version 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20  * 02110-1301 USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/crc7.h>
26 #include <linux/spi/spi.h>
27
28 #include "wl12xx.h"
29 #include "wl12xx_80211.h"
30 #include "reg.h"
31 #include "spi.h"
32 #include "ps.h"
33
34 static int wl12xx_translate_reg_addr(struct wl12xx *wl, int addr)
35 {
36         /* If the address is lower than REGISTERS_BASE, it means that this is
37          * a chip-specific register address, so look it up in the registers
38          * table */
39         if (addr < REGISTERS_BASE) {
40                 /* Make sure we don't go over the table */
41                 if (addr >= ACX_REG_TABLE_LEN) {
42                         wl12xx_error("address out of range (%d)", addr);
43                         return -EINVAL;
44                 }
45                 addr = wl->chip.acx_reg_table[addr];
46         }
47
48         return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
49 }
50
51 static int wl12xx_translate_mem_addr(struct wl12xx *wl, int addr)
52 {
53         return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
54 }
55
56
57 void wl12xx_spi_reset(struct wl12xx *wl)
58 {
59         u8 *cmd;
60         struct spi_transfer t;
61         struct spi_message m;
62
63         cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
64         if (!cmd) {
65                 wl12xx_error("could not allocate cmd for spi reset");
66                 return;
67         }
68
69         memset(&t, 0, sizeof(t));
70         spi_message_init(&m);
71
72         memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
73
74         t.tx_buf = cmd;
75         t.len = WSPI_INIT_CMD_LEN;
76         spi_message_add_tail(&t, &m);
77
78         spi_sync(wl->spi, &m);
79
80         wl12xx_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
81 }
82
83 void wl12xx_spi_init(struct wl12xx *wl)
84 {
85         u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
86         struct spi_transfer t;
87         struct spi_message m;
88
89         cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
90         if (!cmd) {
91                 wl12xx_error("could not allocate cmd for spi init");
92                 return;
93         }
94
95         memset(crc, 0, sizeof(crc));
96         memset(&t, 0, sizeof(t));
97         spi_message_init(&m);
98
99         /*
100          * Set WSPI_INIT_COMMAND
101          * the data is being send from the MSB to LSB
102          */
103         cmd[2] = 0xff;
104         cmd[3] = 0xff;
105         cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
106         cmd[0] = 0;
107         cmd[7] = 0;
108         cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
109         cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
110
111         if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
112                 cmd[5] |=  WSPI_INIT_CMD_DIS_FIXEDBUSY;
113         else
114                 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
115
116         cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
117                 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
118
119         crc[0] = cmd[1];
120         crc[1] = cmd[0];
121         crc[2] = cmd[7];
122         crc[3] = cmd[6];
123         crc[4] = cmd[5];
124
125         cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
126         cmd[4] |= WSPI_INIT_CMD_END;
127
128         t.tx_buf = cmd;
129         t.len = WSPI_INIT_CMD_LEN;
130         spi_message_add_tail(&t, &m);
131
132         spi_sync(wl->spi, &m);
133
134         wl12xx_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
135 }
136
137 /* Set the SPI partitions to access the chip addresses
138  *
139  * There are two VIRTUAL (SPI) partitions (the memory partition and the
140  * registers partition), which are mapped to two different areas of the
141  * PHYSICAL (hardware) memory.  This function also makes other checks to
142  * ensure that the partitions are not overlapping.  In the diagram below, the
143  * memory partition comes before the register partition, but the opposite is
144  * also supported.
145  *
146  *                               PHYSICAL address
147  *                                     space
148  *
149  *                                    |    |
150  *                                 ...+----+--> mem_start
151  *          VIRTUAL address     ...   |    |
152  *               space       ...      |    | [PART_0]
153  *                        ...         |    |
154  * 0x00000000 <--+----+...         ...+----+--> mem_start + mem_size
155  *               |    |         ...   |    |
156  *               |MEM |      ...      |    |
157  *               |    |   ...         |    |
158  *  part_size <--+----+...            |    | {unused area)
159  *               |    |   ...         |    |
160  *               |REG |      ...      |    |
161  *  part_size    |    |         ...   |    |
162  *      +     <--+----+...         ...+----+--> reg_start
163  *  reg_size              ...         |    |
164  *                           ...      |    | [PART_1]
165  *                              ...   |    |
166  *                                 ...+----+--> reg_start + reg_size
167  *                                    |    |
168  *
169  */
170 int wl12xx_set_partition(struct wl12xx *wl,
171                           u32 mem_start, u32 mem_size,
172                           u32 reg_start, u32 reg_size)
173 {
174         struct wl12xx_partition *partition;
175         struct spi_transfer t;
176         struct spi_message m;
177         size_t len, cmd_len;
178         u32 *cmd;
179         int addr;
180
181         cmd_len = sizeof(u32) + 2 * sizeof(struct wl12xx_partition);
182         cmd = kzalloc(cmd_len, GFP_KERNEL);
183         if (!cmd)
184                 return -ENOMEM;
185
186         spi_message_init(&m);
187         memset(&t, 0, sizeof(t));
188
189         partition = (struct wl12xx_partition *) (cmd + 1);
190         addr = HW_ACCESS_PART0_SIZE_ADDR;
191         len = 2 * sizeof(struct wl12xx_partition);
192
193         *cmd |= WSPI_CMD_WRITE;
194         *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
195         *cmd |= addr & WSPI_CMD_BYTE_ADDR;
196
197         wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
198                      mem_start, mem_size);
199         wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
200                      reg_start, reg_size);
201
202         /* Make sure that the two partitions together don't exceed the
203          * address range */
204         if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
205                 wl12xx_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
206                              " address range.  Truncating partition[0].");
207                 mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
208                 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
209                              mem_start, mem_size);
210                 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
211                              reg_start, reg_size);
212         }
213
214         if ((mem_start < reg_start) &&
215             ((mem_start + mem_size) > reg_start)) {
216                 /* Guarantee that the memory partition doesn't overlap the
217                  * registers partition */
218                 wl12xx_debug(DEBUG_SPI, "End of partition[0] is "
219                              "overlapping partition[1].  Adjusted.");
220                 mem_size = reg_start - mem_start;
221                 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
222                              mem_start, mem_size);
223                 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
224                              reg_start, reg_size);
225         } else if ((reg_start < mem_start) &&
226                    ((reg_start + reg_size) > mem_start)) {
227                 /* Guarantee that the register partition doesn't overlap the
228                  * memory partition */
229                 wl12xx_debug(DEBUG_SPI, "End of partition[1] is"
230                              " overlapping partition[0].  Adjusted.");
231                 reg_size = mem_start - reg_start;
232                 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
233                              mem_start, mem_size);
234                 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
235                              reg_start, reg_size);
236         }
237
238         partition[0].start = mem_start;
239         partition[0].size  = mem_size;
240         partition[1].start = reg_start;
241         partition[1].size  = reg_size;
242
243         wl->physical_mem_addr = mem_start;
244         wl->physical_reg_addr = reg_start;
245
246         wl->virtual_mem_addr = 0;
247         wl->virtual_reg_addr = mem_size;
248
249         t.tx_buf = cmd;
250         t.len = cmd_len;
251         spi_message_add_tail(&t, &m);
252
253         spi_sync(wl->spi, &m);
254
255         kfree(cmd);
256
257         return 0;
258 }
259
260 void wl12xx_spi_read(struct wl12xx *wl, int addr, void *buf,
261                      size_t len, bool fixed)
262 {
263         struct spi_transfer t[3];
264         struct spi_message m;
265         u8 *busy_buf;
266         u32 *cmd;
267
268         cmd = &wl->buffer_cmd;
269         busy_buf = wl->buffer_busyword;
270
271         *cmd = 0;
272         *cmd |= WSPI_CMD_READ;
273         *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
274         *cmd |= addr & WSPI_CMD_BYTE_ADDR;
275
276         if (fixed)
277                 *cmd |= WSPI_CMD_FIXED;
278
279         spi_message_init(&m);
280         memset(t, 0, sizeof(t));
281
282         t[0].tx_buf = cmd;
283         t[0].len = 4;
284         spi_message_add_tail(&t[0], &m);
285
286         /* Busy and non busy words read */
287         t[1].rx_buf = busy_buf;
288         t[1].len = WL12XX_BUSY_WORD_LEN;
289         spi_message_add_tail(&t[1], &m);
290
291         t[2].rx_buf = buf;
292         t[2].len = len;
293         spi_message_add_tail(&t[2], &m);
294
295         spi_sync(wl->spi, &m);
296
297         /* FIXME: check busy words */
298
299         wl12xx_dump(DEBUG_SPI, "spi_read cmd -> ", cmd, sizeof(*cmd));
300         wl12xx_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
301 }
302
303 void wl12xx_spi_write(struct wl12xx *wl, int addr, void *buf,
304                       size_t len, bool fixed)
305 {
306         struct spi_transfer t[2];
307         struct spi_message m;
308         u32 *cmd;
309
310         cmd = &wl->buffer_cmd;
311
312         *cmd = 0;
313         *cmd |= WSPI_CMD_WRITE;
314         *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
315         *cmd |= addr & WSPI_CMD_BYTE_ADDR;
316
317         if (fixed)
318                 *cmd |= WSPI_CMD_FIXED;
319
320         spi_message_init(&m);
321         memset(t, 0, sizeof(t));
322
323         t[0].tx_buf = cmd;
324         t[0].len = sizeof(*cmd);
325         spi_message_add_tail(&t[0], &m);
326
327         t[1].tx_buf = buf;
328         t[1].len = len;
329         spi_message_add_tail(&t[1], &m);
330
331         spi_sync(wl->spi, &m);
332
333         wl12xx_dump(DEBUG_SPI, "spi_write cmd -> ", cmd, sizeof(*cmd));
334         wl12xx_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
335 }
336
337 void wl12xx_spi_mem_read(struct wl12xx *wl, int addr, void *buf,
338                          size_t len)
339 {
340         int physical;
341
342         physical = wl12xx_translate_mem_addr(wl, addr);
343
344         wl12xx_spi_read(wl, physical, buf, len, false);
345 }
346
347 void wl12xx_spi_mem_write(struct wl12xx *wl, int addr, void *buf,
348                           size_t len)
349 {
350         int physical;
351
352         physical = wl12xx_translate_mem_addr(wl, addr);
353
354         wl12xx_spi_write(wl, physical, buf, len, false);
355 }
356
357 void wl12xx_spi_reg_read(struct wl12xx *wl, int addr, void *buf, size_t len,
358                          bool fixed)
359 {
360         int physical;
361
362         physical = wl12xx_translate_reg_addr(wl, addr);
363
364         wl12xx_spi_read(wl, physical, buf, len, fixed);
365 }
366
367 void wl12xx_spi_reg_write(struct wl12xx *wl, int addr, void *buf, size_t len,
368                           bool fixed)
369 {
370         int physical;
371
372         physical = wl12xx_translate_reg_addr(wl, addr);
373
374         wl12xx_spi_write(wl, physical, buf, len, fixed);
375 }
376
377 u32 wl12xx_mem_read32(struct wl12xx *wl, int addr)
378 {
379         return wl12xx_read32(wl, wl12xx_translate_mem_addr(wl, addr));
380 }
381
382 void wl12xx_mem_write32(struct wl12xx *wl, int addr, u32 val)
383 {
384         wl12xx_write32(wl, wl12xx_translate_mem_addr(wl, addr), val);
385 }
386
387 u32 wl12xx_reg_read32(struct wl12xx *wl, int addr)
388 {
389         return wl12xx_read32(wl, wl12xx_translate_reg_addr(wl, addr));
390 }
391
392 void wl12xx_reg_write32(struct wl12xx *wl, int addr, u32 val)
393 {
394         wl12xx_write32(wl, wl12xx_translate_reg_addr(wl, addr), val);
395 }