Merge branch 'stable-3.2' into pandora-3.2
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
36
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
40
41 /*
42  * Allow hardware encryption to be disabled.
43  */
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
47
48 /*
49  * Register access.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attempt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  */
59 #define WAIT_FOR_BBP(__dev, __reg) \
60         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65                                H2M_MAILBOX_CSR_OWNER, (__reg))
66
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68                               const unsigned int word, const u8 value)
69 {
70         u32 reg;
71
72         mutex_lock(&rt2x00dev->csr_mutex);
73
74         /*
75          * Wait until the BBP becomes available, afterwards we
76          * can safely write the new data into the register.
77          */
78         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79                 reg = 0;
80                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
84
85                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
86         }
87
88         mutex_unlock(&rt2x00dev->csr_mutex);
89 }
90
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92                              const unsigned int word, u8 *value)
93 {
94         u32 reg;
95
96         mutex_lock(&rt2x00dev->csr_mutex);
97
98         /*
99          * Wait until the BBP becomes available, afterwards we
100          * can safely write the read request into the register.
101          * After the data has been written, we wait until hardware
102          * returns the correct value, if at any time the register
103          * doesn't become available in time, reg will be 0xffffffff
104          * which means we return 0xff to the caller.
105          */
106         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107                 reg = 0;
108                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
111
112                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
113
114                 WAIT_FOR_BBP(rt2x00dev, &reg);
115         }
116
117         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
118
119         mutex_unlock(&rt2x00dev->csr_mutex);
120 }
121
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123                              const unsigned int word, const u32 value)
124 {
125         u32 reg;
126
127         mutex_lock(&rt2x00dev->csr_mutex);
128
129         /*
130          * Wait until the RF becomes available, afterwards we
131          * can safely write the new data into the register.
132          */
133         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134                 reg = 0;
135                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
139
140                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141                 rt2x00_rf_write(rt2x00dev, word, value);
142         }
143
144         mutex_unlock(&rt2x00dev->csr_mutex);
145 }
146
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148                                 const u8 command, const u8 token,
149                                 const u8 arg0, const u8 arg1)
150 {
151         u32 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the MCU becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
165
166                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
170         }
171
172         mutex_unlock(&rt2x00dev->csr_mutex);
173
174 }
175
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
177 {
178         struct rt2x00_dev *rt2x00dev = eeprom->data;
179         u32 reg;
180
181         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
182
183         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185         eeprom->reg_data_clock =
186             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187         eeprom->reg_chip_select =
188             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
189 }
190
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
192 {
193         struct rt2x00_dev *rt2x00dev = eeprom->data;
194         u32 reg = 0;
195
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199                            !!eeprom->reg_data_clock);
200         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201                            !!eeprom->reg_chip_select);
202
203         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
204 }
205
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208         .owner  = THIS_MODULE,
209         .csr    = {
210                 .read           = rt2x00pci_register_read,
211                 .write          = rt2x00pci_register_write,
212                 .flags          = RT2X00DEBUGFS_OFFSET,
213                 .word_base      = CSR_REG_BASE,
214                 .word_size      = sizeof(u32),
215                 .word_count     = CSR_REG_SIZE / sizeof(u32),
216         },
217         .eeprom = {
218                 .read           = rt2x00_eeprom_read,
219                 .write          = rt2x00_eeprom_write,
220                 .word_base      = EEPROM_BASE,
221                 .word_size      = sizeof(u16),
222                 .word_count     = EEPROM_SIZE / sizeof(u16),
223         },
224         .bbp    = {
225                 .read           = rt61pci_bbp_read,
226                 .write          = rt61pci_bbp_write,
227                 .word_base      = BBP_BASE,
228                 .word_size      = sizeof(u8),
229                 .word_count     = BBP_SIZE / sizeof(u8),
230         },
231         .rf     = {
232                 .read           = rt2x00_rf_read,
233                 .write          = rt61pci_rf_write,
234                 .word_base      = RF_BASE,
235                 .word_size      = sizeof(u32),
236                 .word_count     = RF_SIZE / sizeof(u32),
237         },
238 };
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
240
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243         u32 reg;
244
245         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251                                    enum led_brightness brightness)
252 {
253         struct rt2x00_led *led =
254             container_of(led_cdev, struct rt2x00_led, led_dev);
255         unsigned int enabled = brightness != LED_OFF;
256         unsigned int a_mode =
257             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258         unsigned int bg_mode =
259             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
260
261         if (led->type == LED_TYPE_RADIO) {
262                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263                                    MCU_LEDCS_RADIO_STATUS, enabled);
264
265                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266                                     (led->rt2x00dev->led_mcu_reg & 0xff),
267                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
268         } else if (led->type == LED_TYPE_ASSOC) {
269                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
273
274                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275                                     (led->rt2x00dev->led_mcu_reg & 0xff),
276                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
277         } else if (led->type == LED_TYPE_QUALITY) {
278                 /*
279                  * The brightness is divided into 6 levels (0 - 5),
280                  * this means we need to convert the brightness
281                  * argument into the matching level within that range.
282                  */
283                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284                                     brightness / (LED_FULL / 6), 0);
285         }
286 }
287
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289                              unsigned long *delay_on,
290                              unsigned long *delay_off)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         u32 reg;
295
296         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
300
301         return 0;
302 }
303
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305                              struct rt2x00_led *led,
306                              enum led_type type)
307 {
308         led->rt2x00dev = rt2x00dev;
309         led->type = type;
310         led->led_dev.brightness_set = rt61pci_brightness_set;
311         led->led_dev.blink_set = rt61pci_blink_set;
312         led->flags = LED_INITIALIZED;
313 }
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
315
316 /*
317  * Configuration handlers.
318  */
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320                                      struct rt2x00lib_crypto *crypto,
321                                      struct ieee80211_key_conf *key)
322 {
323         struct hw_key_entry key_entry;
324         struct rt2x00_field32 field;
325         u32 mask;
326         u32 reg;
327
328         if (crypto->cmd == SET_KEY) {
329                 /*
330                  * rt2x00lib can't determine the correct free
331                  * key_idx for shared keys. We have 1 register
332                  * with key valid bits. The goal is simple, read
333                  * the register, if that is full we have no slots
334                  * left.
335                  * Note that each BSS is allowed to have up to 4
336                  * shared keys, so put a mask over the allowed
337                  * entries.
338                  */
339                 mask = (0xf << crypto->bssidx);
340
341                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342                 reg &= mask;
343
344                 if (reg && reg == mask)
345                         return -ENOSPC;
346
347                 key->hw_key_idx += reg ? ffz(reg) : 0;
348
349                 /*
350                  * Upload key to hardware
351                  */
352                 memcpy(key_entry.key, crypto->key,
353                        sizeof(key_entry.key));
354                 memcpy(key_entry.tx_mic, crypto->tx_mic,
355                        sizeof(key_entry.tx_mic));
356                 memcpy(key_entry.rx_mic, crypto->rx_mic,
357                        sizeof(key_entry.rx_mic));
358
359                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361                                               &key_entry, sizeof(key_entry));
362
363                 /*
364                  * The cipher types are stored over 2 registers.
365                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
367                  * Using the correct defines correctly will cause overhead,
368                  * so just calculate the correct offset.
369                  */
370                 if (key->hw_key_idx < 8) {
371                         field.bit_offset = (3 * key->hw_key_idx);
372                         field.bit_mask = 0x7 << field.bit_offset;
373
374                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375                         rt2x00_set_field32(&reg, field, crypto->cipher);
376                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377                 } else {
378                         field.bit_offset = (3 * (key->hw_key_idx - 8));
379                         field.bit_mask = 0x7 << field.bit_offset;
380
381                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382                         rt2x00_set_field32(&reg, field, crypto->cipher);
383                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
384                 }
385
386                 /*
387                  * The driver does not support the IV/EIV generation
388                  * in hardware. However it doesn't support the IV/EIV
389                  * inside the ieee80211 frame either, but requires it
390                  * to be provided separately for the descriptor.
391                  * rt2x00lib will cut the IV/EIV data out of all frames
392                  * given to us by mac80211, but we must tell mac80211
393                  * to generate the IV/EIV data.
394                  */
395                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
396         }
397
398         /*
399          * SEC_CSR0 contains only single-bit fields to indicate
400          * a particular key is valid. Because using the FIELD32()
401          * defines directly will cause a lot of overhead, we use
402          * a calculation to determine the correct bit directly.
403          */
404         mask = 1 << key->hw_key_idx;
405
406         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407         if (crypto->cmd == SET_KEY)
408                 reg |= mask;
409         else if (crypto->cmd == DISABLE_KEY)
410                 reg &= ~mask;
411         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
412
413         return 0;
414 }
415
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417                                        struct rt2x00lib_crypto *crypto,
418                                        struct ieee80211_key_conf *key)
419 {
420         struct hw_pairwise_ta_entry addr_entry;
421         struct hw_key_entry key_entry;
422         u32 mask;
423         u32 reg;
424
425         if (crypto->cmd == SET_KEY) {
426                 /*
427                  * rt2x00lib can't determine the correct free
428                  * key_idx for pairwise keys. We have 2 registers
429                  * with key valid bits. The goal is simple: read
430                  * the first register. If that is full, move to
431                  * the next register.
432                  * When both registers are full, we drop the key.
433                  * Otherwise, we use the first invalid entry.
434                  */
435                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436                 if (reg && reg == ~0) {
437                         key->hw_key_idx = 32;
438                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439                         if (reg && reg == ~0)
440                                 return -ENOSPC;
441                 }
442
443                 key->hw_key_idx += reg ? ffz(reg) : 0;
444
445                 /*
446                  * Upload key to hardware
447                  */
448                 memcpy(key_entry.key, crypto->key,
449                        sizeof(key_entry.key));
450                 memcpy(key_entry.tx_mic, crypto->tx_mic,
451                        sizeof(key_entry.tx_mic));
452                 memcpy(key_entry.rx_mic, crypto->rx_mic,
453                        sizeof(key_entry.rx_mic));
454
455                 memset(&addr_entry, 0, sizeof(addr_entry));
456                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457                 addr_entry.cipher = crypto->cipher;
458
459                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461                                               &key_entry, sizeof(key_entry));
462
463                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465                                               &addr_entry, sizeof(addr_entry));
466
467                 /*
468                  * Enable pairwise lookup table for given BSS idx.
469                  * Without this, received frames will not be decrypted
470                  * by the hardware.
471                  */
472                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473                 reg |= (1 << crypto->bssidx);
474                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
475
476                 /*
477                  * The driver does not support the IV/EIV generation
478                  * in hardware. However it doesn't support the IV/EIV
479                  * inside the ieee80211 frame either, but requires it
480                  * to be provided separately for the descriptor.
481                  * rt2x00lib will cut the IV/EIV data out of all frames
482                  * given to us by mac80211, but we must tell mac80211
483                  * to generate the IV/EIV data.
484                  */
485                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
486         }
487
488         /*
489          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490          * a particular key is valid. Because using the FIELD32()
491          * defines directly will cause a lot of overhead, we use
492          * a calculation to determine the correct bit directly.
493          */
494         if (key->hw_key_idx < 32) {
495                 mask = 1 << key->hw_key_idx;
496
497                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498                 if (crypto->cmd == SET_KEY)
499                         reg |= mask;
500                 else if (crypto->cmd == DISABLE_KEY)
501                         reg &= ~mask;
502                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503         } else {
504                 mask = 1 << (key->hw_key_idx - 32);
505
506                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507                 if (crypto->cmd == SET_KEY)
508                         reg |= mask;
509                 else if (crypto->cmd == DISABLE_KEY)
510                         reg &= ~mask;
511                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
512         }
513
514         return 0;
515 }
516
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518                                   const unsigned int filter_flags)
519 {
520         u32 reg;
521
522         /*
523          * Start configuration steps.
524          * Note that the version error will always be dropped
525          * and broadcast frames will always be accepted since
526          * there is no filter for it at this time.
527          */
528         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530                            !(filter_flags & FIF_FCSFAIL));
531         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532                            !(filter_flags & FIF_PLCPFAIL));
533         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536                            !(filter_flags & FIF_PROMISC_IN_BSS));
537         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
539                            !rt2x00dev->intf_ap_count);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542                            !(filter_flags & FIF_ALLMULTI));
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545                            !(filter_flags & FIF_CONTROL));
546         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
547 }
548
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550                                 struct rt2x00_intf *intf,
551                                 struct rt2x00intf_conf *conf,
552                                 const unsigned int flags)
553 {
554         u32 reg;
555
556         if (flags & CONFIG_UPDATE_TYPE) {
557                 /*
558                  * Enable synchronisation.
559                  */
560                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
561                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
562                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
563         }
564
565         if (flags & CONFIG_UPDATE_MAC) {
566                 reg = le32_to_cpu(conf->mac[1]);
567                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
568                 conf->mac[1] = cpu_to_le32(reg);
569
570                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
571                                               conf->mac, sizeof(conf->mac));
572         }
573
574         if (flags & CONFIG_UPDATE_BSSID) {
575                 reg = le32_to_cpu(conf->bssid[1]);
576                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
577                 conf->bssid[1] = cpu_to_le32(reg);
578
579                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
580                                               conf->bssid, sizeof(conf->bssid));
581         }
582 }
583
584 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
585                                struct rt2x00lib_erp *erp,
586                                u32 changed)
587 {
588         u32 reg;
589
590         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
591         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
592         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
593         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
594
595         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
596                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
597                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
598                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
599                                    !!erp->short_preamble);
600                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
601         }
602
603         if (changed & BSS_CHANGED_BASIC_RATES)
604                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
605                                          erp->basic_rates);
606
607         if (changed & BSS_CHANGED_BEACON_INT) {
608                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
609                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
610                                    erp->beacon_int * 16);
611                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
612         }
613
614         if (changed & BSS_CHANGED_ERP_SLOT) {
615                 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616                 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617                 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618
619                 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622                 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623                 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624         }
625 }
626
627 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
628                                       struct antenna_setup *ant)
629 {
630         u8 r3;
631         u8 r4;
632         u8 r77;
633
634         rt61pci_bbp_read(rt2x00dev, 3, &r3);
635         rt61pci_bbp_read(rt2x00dev, 4, &r4);
636         rt61pci_bbp_read(rt2x00dev, 77, &r77);
637
638         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
639
640         /*
641          * Configure the RX antenna.
642          */
643         switch (ant->rx) {
644         case ANTENNA_HW_DIVERSITY:
645                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648                 break;
649         case ANTENNA_A:
650                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654                 else
655                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656                 break;
657         case ANTENNA_B:
658         default:
659                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663                 else
664                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665                 break;
666         }
667
668         rt61pci_bbp_write(rt2x00dev, 77, r77);
669         rt61pci_bbp_write(rt2x00dev, 3, r3);
670         rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674                                       struct antenna_setup *ant)
675 {
676         u8 r3;
677         u8 r4;
678         u8 r77;
679
680         rt61pci_bbp_read(rt2x00dev, 3, &r3);
681         rt61pci_bbp_read(rt2x00dev, 4, &r4);
682         rt61pci_bbp_read(rt2x00dev, 77, &r77);
683
684         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
685         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
686                           !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags));
687
688         /*
689          * Configure the RX antenna.
690          */
691         switch (ant->rx) {
692         case ANTENNA_HW_DIVERSITY:
693                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
694                 break;
695         case ANTENNA_A:
696                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
697                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
698                 break;
699         case ANTENNA_B:
700         default:
701                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
702                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
703                 break;
704         }
705
706         rt61pci_bbp_write(rt2x00dev, 77, r77);
707         rt61pci_bbp_write(rt2x00dev, 3, r3);
708         rt61pci_bbp_write(rt2x00dev, 4, r4);
709 }
710
711 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
712                                            const int p1, const int p2)
713 {
714         u32 reg;
715
716         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
717
718         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
719         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
720
721         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
723
724         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
725 }
726
727 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
728                                         struct antenna_setup *ant)
729 {
730         u8 r3;
731         u8 r4;
732         u8 r77;
733
734         rt61pci_bbp_read(rt2x00dev, 3, &r3);
735         rt61pci_bbp_read(rt2x00dev, 4, &r4);
736         rt61pci_bbp_read(rt2x00dev, 77, &r77);
737
738         /*
739          * Configure the RX antenna.
740          */
741         switch (ant->rx) {
742         case ANTENNA_A:
743                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
744                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
745                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
746                 break;
747         case ANTENNA_HW_DIVERSITY:
748                 /*
749                  * FIXME: Antenna selection for the rf 2529 is very confusing
750                  * in the legacy driver. Just default to antenna B until the
751                  * legacy code can be properly translated into rt2x00 code.
752                  */
753         case ANTENNA_B:
754         default:
755                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
756                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
757                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
758                 break;
759         }
760
761         rt61pci_bbp_write(rt2x00dev, 77, r77);
762         rt61pci_bbp_write(rt2x00dev, 3, r3);
763         rt61pci_bbp_write(rt2x00dev, 4, r4);
764 }
765
766 struct antenna_sel {
767         u8 word;
768         /*
769          * value[0] -> non-LNA
770          * value[1] -> LNA
771          */
772         u8 value[2];
773 };
774
775 static const struct antenna_sel antenna_sel_a[] = {
776         { 96,  { 0x58, 0x78 } },
777         { 104, { 0x38, 0x48 } },
778         { 75,  { 0xfe, 0x80 } },
779         { 86,  { 0xfe, 0x80 } },
780         { 88,  { 0xfe, 0x80 } },
781         { 35,  { 0x60, 0x60 } },
782         { 97,  { 0x58, 0x58 } },
783         { 98,  { 0x58, 0x58 } },
784 };
785
786 static const struct antenna_sel antenna_sel_bg[] = {
787         { 96,  { 0x48, 0x68 } },
788         { 104, { 0x2c, 0x3c } },
789         { 75,  { 0xfe, 0x80 } },
790         { 86,  { 0xfe, 0x80 } },
791         { 88,  { 0xfe, 0x80 } },
792         { 35,  { 0x50, 0x50 } },
793         { 97,  { 0x48, 0x48 } },
794         { 98,  { 0x48, 0x48 } },
795 };
796
797 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
798                                struct antenna_setup *ant)
799 {
800         const struct antenna_sel *sel;
801         unsigned int lna;
802         unsigned int i;
803         u32 reg;
804
805         /*
806          * We should never come here because rt2x00lib is supposed
807          * to catch this and send us the correct antenna explicitely.
808          */
809         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
810                ant->tx == ANTENNA_SW_DIVERSITY);
811
812         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
813                 sel = antenna_sel_a;
814                 lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
815         } else {
816                 sel = antenna_sel_bg;
817                 lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
818         }
819
820         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
821                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
822
823         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
824
825         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
826                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
827         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
828                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
829
830         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
831
832         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
833                 rt61pci_config_antenna_5x(rt2x00dev, ant);
834         else if (rt2x00_rf(rt2x00dev, RF2527))
835                 rt61pci_config_antenna_2x(rt2x00dev, ant);
836         else if (rt2x00_rf(rt2x00dev, RF2529)) {
837                 if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags))
838                         rt61pci_config_antenna_2x(rt2x00dev, ant);
839                 else
840                         rt61pci_config_antenna_2529(rt2x00dev, ant);
841         }
842 }
843
844 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
845                                     struct rt2x00lib_conf *libconf)
846 {
847         u16 eeprom;
848         short lna_gain = 0;
849
850         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
851                 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags))
852                         lna_gain += 14;
853
854                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
855                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
856         } else {
857                 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
858                         lna_gain += 14;
859
860                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
861                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
862         }
863
864         rt2x00dev->lna_gain = lna_gain;
865 }
866
867 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
868                                    struct rf_channel *rf, const int txpower)
869 {
870         u8 r3;
871         u8 r94;
872         u8 smart;
873
874         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
875         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
876
877         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
878
879         rt61pci_bbp_read(rt2x00dev, 3, &r3);
880         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
881         rt61pci_bbp_write(rt2x00dev, 3, r3);
882
883         r94 = 6;
884         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
885                 r94 += txpower - MAX_TXPOWER;
886         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
887                 r94 += txpower;
888         rt61pci_bbp_write(rt2x00dev, 94, r94);
889
890         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
891         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
892         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
893         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
894
895         udelay(200);
896
897         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
898         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
899         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
900         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
901
902         udelay(200);
903
904         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
905         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
906         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
907         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
908
909         msleep(1);
910 }
911
912 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
913                                    const int txpower)
914 {
915         struct rf_channel rf;
916
917         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
918         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
919         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
920         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
921
922         rt61pci_config_channel(rt2x00dev, &rf, txpower);
923 }
924
925 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
926                                     struct rt2x00lib_conf *libconf)
927 {
928         u32 reg;
929
930         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
931         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
932         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
933         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
934         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935                            libconf->conf->long_frame_max_tx_count);
936         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937                            libconf->conf->short_frame_max_tx_count);
938         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
942                                 struct rt2x00lib_conf *libconf)
943 {
944         enum dev_state state =
945             (libconf->conf->flags & IEEE80211_CONF_PS) ?
946                 STATE_SLEEP : STATE_AWAKE;
947         u32 reg;
948
949         if (state == STATE_SLEEP) {
950                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
951                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
952                                    rt2x00dev->beacon_int - 10);
953                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
954                                    libconf->conf->listen_interval - 1);
955                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
956
957                 /* We must first disable autowake before it can be enabled */
958                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
959                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
960
961                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
962                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
963
964                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
965                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
966                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
967
968                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
969         } else {
970                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
971                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
972                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
973                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
974                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
975                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
976
977                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
978                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
979                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
980
981                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
982         }
983 }
984
985 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
986                            struct rt2x00lib_conf *libconf,
987                            const unsigned int flags)
988 {
989         /* Always recalculate LNA gain before changing configuration */
990         rt61pci_config_lna_gain(rt2x00dev, libconf);
991
992         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
993                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
994                                        libconf->conf->power_level);
995         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
996             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
997                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
998         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
999                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1000         if (flags & IEEE80211_CONF_CHANGE_PS)
1001                 rt61pci_config_ps(rt2x00dev, libconf);
1002 }
1003
1004 /*
1005  * Link tuning
1006  */
1007 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1008                                struct link_qual *qual)
1009 {
1010         u32 reg;
1011
1012         /*
1013          * Update FCS error count from register.
1014          */
1015         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1016         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1017
1018         /*
1019          * Update False CCA count from register.
1020          */
1021         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1022         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1023 }
1024
1025 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1026                                    struct link_qual *qual, u8 vgc_level)
1027 {
1028         if (qual->vgc_level != vgc_level) {
1029                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1030                 qual->vgc_level = vgc_level;
1031                 qual->vgc_level_reg = vgc_level;
1032         }
1033 }
1034
1035 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1036                                 struct link_qual *qual)
1037 {
1038         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1039 }
1040
1041 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1042                                struct link_qual *qual, const u32 count)
1043 {
1044         u8 up_bound;
1045         u8 low_bound;
1046
1047         /*
1048          * Determine r17 bounds.
1049          */
1050         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1051                 low_bound = 0x28;
1052                 up_bound = 0x48;
1053                 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) {
1054                         low_bound += 0x10;
1055                         up_bound += 0x10;
1056                 }
1057         } else {
1058                 low_bound = 0x20;
1059                 up_bound = 0x40;
1060                 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) {
1061                         low_bound += 0x10;
1062                         up_bound += 0x10;
1063                 }
1064         }
1065
1066         /*
1067          * If we are not associated, we should go straight to the
1068          * dynamic CCA tuning.
1069          */
1070         if (!rt2x00dev->intf_associated)
1071                 goto dynamic_cca_tune;
1072
1073         /*
1074          * Special big-R17 for very short distance
1075          */
1076         if (qual->rssi >= -35) {
1077                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1078                 return;
1079         }
1080
1081         /*
1082          * Special big-R17 for short distance
1083          */
1084         if (qual->rssi >= -58) {
1085                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1086                 return;
1087         }
1088
1089         /*
1090          * Special big-R17 for middle-short distance
1091          */
1092         if (qual->rssi >= -66) {
1093                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1094                 return;
1095         }
1096
1097         /*
1098          * Special mid-R17 for middle distance
1099          */
1100         if (qual->rssi >= -74) {
1101                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1102                 return;
1103         }
1104
1105         /*
1106          * Special case: Change up_bound based on the rssi.
1107          * Lower up_bound when rssi is weaker then -74 dBm.
1108          */
1109         up_bound -= 2 * (-74 - qual->rssi);
1110         if (low_bound > up_bound)
1111                 up_bound = low_bound;
1112
1113         if (qual->vgc_level > up_bound) {
1114                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1115                 return;
1116         }
1117
1118 dynamic_cca_tune:
1119
1120         /*
1121          * r17 does not yet exceed upper limit, continue and base
1122          * the r17 tuning on the false CCA count.
1123          */
1124         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1125                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1126         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1127                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1128 }
1129
1130 /*
1131  * Queue handlers.
1132  */
1133 static void rt61pci_start_queue(struct data_queue *queue)
1134 {
1135         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1136         u32 reg;
1137
1138         switch (queue->qid) {
1139         case QID_RX:
1140                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1141                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1142                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1143                 break;
1144         case QID_BEACON:
1145                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1146                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1147                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1148                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1149                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1150                 break;
1151         default:
1152                 break;
1153         }
1154 }
1155
1156 static void rt61pci_kick_queue(struct data_queue *queue)
1157 {
1158         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1159         u32 reg;
1160
1161         switch (queue->qid) {
1162         case QID_AC_VO:
1163                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1164                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1165                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1166                 break;
1167         case QID_AC_VI:
1168                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1169                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1170                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1171                 break;
1172         case QID_AC_BE:
1173                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1174                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1175                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1176                 break;
1177         case QID_AC_BK:
1178                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1179                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1180                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1181                 break;
1182         default:
1183                 break;
1184         }
1185 }
1186
1187 static void rt61pci_stop_queue(struct data_queue *queue)
1188 {
1189         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1190         u32 reg;
1191
1192         switch (queue->qid) {
1193         case QID_AC_VO:
1194                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1195                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1196                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1197                 break;
1198         case QID_AC_VI:
1199                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1200                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1201                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1202                 break;
1203         case QID_AC_BE:
1204                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1205                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1206                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1207                 break;
1208         case QID_AC_BK:
1209                 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1210                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1211                 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1212                 break;
1213         case QID_RX:
1214                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1215                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1216                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1217                 break;
1218         case QID_BEACON:
1219                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1220                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1221                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1222                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1223                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1224
1225                 /*
1226                  * Wait for possibly running tbtt tasklets.
1227                  */
1228                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1229                 break;
1230         default:
1231                 break;
1232         }
1233 }
1234
1235 /*
1236  * Firmware functions
1237  */
1238 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1239 {
1240         u16 chip;
1241         char *fw_name;
1242
1243         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1244         switch (chip) {
1245         case RT2561_PCI_ID:
1246                 fw_name = FIRMWARE_RT2561;
1247                 break;
1248         case RT2561s_PCI_ID:
1249                 fw_name = FIRMWARE_RT2561s;
1250                 break;
1251         case RT2661_PCI_ID:
1252                 fw_name = FIRMWARE_RT2661;
1253                 break;
1254         default:
1255                 fw_name = NULL;
1256                 break;
1257         }
1258
1259         return fw_name;
1260 }
1261
1262 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1263                                   const u8 *data, const size_t len)
1264 {
1265         u16 fw_crc;
1266         u16 crc;
1267
1268         /*
1269          * Only support 8kb firmware files.
1270          */
1271         if (len != 8192)
1272                 return FW_BAD_LENGTH;
1273
1274         /*
1275          * The last 2 bytes in the firmware array are the crc checksum itself.
1276          * This means that we should never pass those 2 bytes to the crc
1277          * algorithm.
1278          */
1279         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1280
1281         /*
1282          * Use the crc itu-t algorithm.
1283          */
1284         crc = crc_itu_t(0, data, len - 2);
1285         crc = crc_itu_t_byte(crc, 0);
1286         crc = crc_itu_t_byte(crc, 0);
1287
1288         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1289 }
1290
1291 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1292                                  const u8 *data, const size_t len)
1293 {
1294         int i;
1295         u32 reg;
1296
1297         /*
1298          * Wait for stable hardware.
1299          */
1300         for (i = 0; i < 100; i++) {
1301                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1302                 if (reg)
1303                         break;
1304                 msleep(1);
1305         }
1306
1307         if (!reg) {
1308                 ERROR(rt2x00dev, "Unstable hardware.\n");
1309                 return -EBUSY;
1310         }
1311
1312         /*
1313          * Prepare MCU and mailbox for firmware loading.
1314          */
1315         reg = 0;
1316         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1317         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1318         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1319         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1320         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1321
1322         /*
1323          * Write firmware to device.
1324          */
1325         reg = 0;
1326         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1327         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1328         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1329
1330         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1331                                       data, len);
1332
1333         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1334         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1335
1336         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1337         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1338
1339         for (i = 0; i < 100; i++) {
1340                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1341                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1342                         break;
1343                 msleep(1);
1344         }
1345
1346         if (i == 100) {
1347                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1348                 return -EBUSY;
1349         }
1350
1351         /*
1352          * Hardware needs another millisecond before it is ready.
1353          */
1354         msleep(1);
1355
1356         /*
1357          * Reset MAC and BBP registers.
1358          */
1359         reg = 0;
1360         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1361         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1362         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1363
1364         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1365         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1366         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1367         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1368
1369         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1370         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1371         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1372
1373         return 0;
1374 }
1375
1376 /*
1377  * Initialization functions.
1378  */
1379 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1380 {
1381         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1382         u32 word;
1383
1384         if (entry->queue->qid == QID_RX) {
1385                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1386
1387                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1388         } else {
1389                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1390
1391                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1392                         rt2x00_get_field32(word, TXD_W0_VALID));
1393         }
1394 }
1395
1396 static void rt61pci_clear_entry(struct queue_entry *entry)
1397 {
1398         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1399         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1400         u32 word;
1401
1402         if (entry->queue->qid == QID_RX) {
1403                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1404                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1405                                    skbdesc->skb_dma);
1406                 rt2x00_desc_write(entry_priv->desc, 5, word);
1407
1408                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1409                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1410                 rt2x00_desc_write(entry_priv->desc, 0, word);
1411         } else {
1412                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1413                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1414                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1415                 rt2x00_desc_write(entry_priv->desc, 0, word);
1416         }
1417 }
1418
1419 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1420 {
1421         struct queue_entry_priv_pci *entry_priv;
1422         u32 reg;
1423
1424         /*
1425          * Initialize registers.
1426          */
1427         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1428         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1429                            rt2x00dev->tx[0].limit);
1430         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1431                            rt2x00dev->tx[1].limit);
1432         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1433                            rt2x00dev->tx[2].limit);
1434         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1435                            rt2x00dev->tx[3].limit);
1436         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1437
1438         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1439         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1440                            rt2x00dev->tx[0].desc_size / 4);
1441         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1442
1443         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1444         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1445         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1446                            entry_priv->desc_dma);
1447         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1448
1449         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1450         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1451         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1452                            entry_priv->desc_dma);
1453         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1454
1455         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1456         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1457         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1458                            entry_priv->desc_dma);
1459         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1460
1461         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1462         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1463         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1464                            entry_priv->desc_dma);
1465         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1466
1467         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1468         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1469         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1470                            rt2x00dev->rx->desc_size / 4);
1471         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1472         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1473
1474         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1475         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1476         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1477                            entry_priv->desc_dma);
1478         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1479
1480         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1481         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1482         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1483         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1484         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1485         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1486
1487         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1488         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1489         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1490         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1491         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1492         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1493
1494         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1495         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1496         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1497
1498         return 0;
1499 }
1500
1501 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1502 {
1503         u32 reg;
1504
1505         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1506         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1507         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1508         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1509         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1510
1511         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1512         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1513         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1514         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1515         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1516         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1517         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1518         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1519         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1520         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1521
1522         /*
1523          * CCK TXD BBP registers
1524          */
1525         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1526         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1527         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1528         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1529         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1530         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1531         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1532         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1533         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1534         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1535
1536         /*
1537          * OFDM TXD BBP registers
1538          */
1539         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1540         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1541         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1542         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1543         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1544         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1545         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1546         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1547
1548         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1549         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1550         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1551         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1552         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1553         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1554
1555         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1556         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1557         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1558         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1559         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1560         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1561
1562         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1563         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1564         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1565         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1566         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1567         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1568         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1569         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1570
1571         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1572
1573         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1574
1575         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1576         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1577         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1578
1579         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1580
1581         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1582                 return -EBUSY;
1583
1584         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1585
1586         /*
1587          * Invalidate all Shared Keys (SEC_CSR0),
1588          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1589          */
1590         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1591         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1592         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1593
1594         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1595         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1596         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1597         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1598
1599         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1600
1601         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1602
1603         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1604
1605         /*
1606          * Clear all beacons
1607          * For the Beacon base registers we only need to clear
1608          * the first byte since that byte contains the VALID and OWNER
1609          * bits which (when set to 0) will invalidate the entire beacon.
1610          */
1611         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1612         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1613         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1614         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1615
1616         /*
1617          * We must clear the error counters.
1618          * These registers are cleared on read,
1619          * so we may pass a useless variable to store the value.
1620          */
1621         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1622         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1623         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1624
1625         /*
1626          * Reset MAC and BBP registers.
1627          */
1628         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1629         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1630         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1631         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1632
1633         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1634         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1635         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1636         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1637
1638         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1639         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1640         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1641
1642         return 0;
1643 }
1644
1645 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1646 {
1647         unsigned int i;
1648         u8 value;
1649
1650         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1651                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1652                 if ((value != 0xff) && (value != 0x00))
1653                         return 0;
1654                 udelay(REGISTER_BUSY_DELAY);
1655         }
1656
1657         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1658         return -EACCES;
1659 }
1660
1661 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1662 {
1663         unsigned int i;
1664         u16 eeprom;
1665         u8 reg_id;
1666         u8 value;
1667
1668         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1669                 return -EACCES;
1670
1671         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1672         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1673         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1674         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1675         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1676         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1677         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1678         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1679         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1680         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1681         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1682         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1683         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1684         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1685         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1686         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1687         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1688         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1689         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1690         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1691         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1692         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1693         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1694         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1695
1696         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1697                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1698
1699                 if (eeprom != 0xffff && eeprom != 0x0000) {
1700                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1701                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1702                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1703                 }
1704         }
1705
1706         return 0;
1707 }
1708
1709 /*
1710  * Device state switch handlers.
1711  */
1712 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1713                                enum dev_state state)
1714 {
1715         int mask = (state == STATE_RADIO_IRQ_OFF);
1716         u32 reg;
1717         unsigned long flags;
1718
1719         /*
1720          * When interrupts are being enabled, the interrupt registers
1721          * should clear the register to assure a clean state.
1722          */
1723         if (state == STATE_RADIO_IRQ_ON) {
1724                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1725                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1726
1727                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1728                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1729         }
1730
1731         /*
1732          * Only toggle the interrupts bits we are going to use.
1733          * Non-checked interrupt bits are disabled by default.
1734          */
1735         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1736
1737         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1738         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1739         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1740         rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1741         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1742         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1743         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1744
1745         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1746         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1747         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1748         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1749         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1750         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1751         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1752         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1753         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1754         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1755         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1756
1757         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1758
1759         if (state == STATE_RADIO_IRQ_OFF) {
1760                 /*
1761                  * Ensure that all tasklets are finished.
1762                  */
1763                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1764                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1765                 tasklet_kill(&rt2x00dev->autowake_tasklet);
1766                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1767         }
1768 }
1769
1770 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1771 {
1772         u32 reg;
1773
1774         /*
1775          * Initialize all registers.
1776          */
1777         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1778                      rt61pci_init_registers(rt2x00dev) ||
1779                      rt61pci_init_bbp(rt2x00dev)))
1780                 return -EIO;
1781
1782         /*
1783          * Enable RX.
1784          */
1785         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1786         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1787         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1788
1789         return 0;
1790 }
1791
1792 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1793 {
1794         /*
1795          * Disable power
1796          */
1797         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1798 }
1799
1800 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1801 {
1802         u32 reg, reg2;
1803         unsigned int i;
1804         char put_to_sleep;
1805
1806         put_to_sleep = (state != STATE_AWAKE);
1807
1808         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1809         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1810         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1811         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1812
1813         /*
1814          * Device is not guaranteed to be in the requested state yet.
1815          * We must wait until the register indicates that the
1816          * device has entered the correct state.
1817          */
1818         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1819                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1820                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1821                 if (state == !put_to_sleep)
1822                         return 0;
1823                 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1824                 msleep(10);
1825         }
1826
1827         return -EBUSY;
1828 }
1829
1830 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1831                                     enum dev_state state)
1832 {
1833         int retval = 0;
1834
1835         switch (state) {
1836         case STATE_RADIO_ON:
1837                 retval = rt61pci_enable_radio(rt2x00dev);
1838                 break;
1839         case STATE_RADIO_OFF:
1840                 rt61pci_disable_radio(rt2x00dev);
1841                 break;
1842         case STATE_RADIO_IRQ_ON:
1843         case STATE_RADIO_IRQ_OFF:
1844                 rt61pci_toggle_irq(rt2x00dev, state);
1845                 break;
1846         case STATE_DEEP_SLEEP:
1847         case STATE_SLEEP:
1848         case STATE_STANDBY:
1849         case STATE_AWAKE:
1850                 retval = rt61pci_set_state(rt2x00dev, state);
1851                 break;
1852         default:
1853                 retval = -ENOTSUPP;
1854                 break;
1855         }
1856
1857         if (unlikely(retval))
1858                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1859                       state, retval);
1860
1861         return retval;
1862 }
1863
1864 /*
1865  * TX descriptor initialization
1866  */
1867 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1868                                   struct txentry_desc *txdesc)
1869 {
1870         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1871         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1872         __le32 *txd = entry_priv->desc;
1873         u32 word;
1874
1875         /*
1876          * Start writing the descriptor words.
1877          */
1878         rt2x00_desc_read(txd, 1, &word);
1879         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1880         rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1881         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1882         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1883         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1884         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1885                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1886         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1887         rt2x00_desc_write(txd, 1, word);
1888
1889         rt2x00_desc_read(txd, 2, &word);
1890         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1891         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1892         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1893                            txdesc->u.plcp.length_low);
1894         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1895                            txdesc->u.plcp.length_high);
1896         rt2x00_desc_write(txd, 2, word);
1897
1898         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1899                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1900                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1901         }
1902
1903         rt2x00_desc_read(txd, 5, &word);
1904         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1905         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1906                            skbdesc->entry->entry_idx);
1907         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1908                            TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1909         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1910         rt2x00_desc_write(txd, 5, word);
1911
1912         if (entry->queue->qid != QID_BEACON) {
1913                 rt2x00_desc_read(txd, 6, &word);
1914                 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1915                                    skbdesc->skb_dma);
1916                 rt2x00_desc_write(txd, 6, word);
1917
1918                 rt2x00_desc_read(txd, 11, &word);
1919                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1920                                    txdesc->length);
1921                 rt2x00_desc_write(txd, 11, word);
1922         }
1923
1924         /*
1925          * Writing TXD word 0 must the last to prevent a race condition with
1926          * the device, whereby the device may take hold of the TXD before we
1927          * finished updating it.
1928          */
1929         rt2x00_desc_read(txd, 0, &word);
1930         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1931         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1932         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1933                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1934         rt2x00_set_field32(&word, TXD_W0_ACK,
1935                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1936         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1937                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1938         rt2x00_set_field32(&word, TXD_W0_OFDM,
1939                            (txdesc->rate_mode == RATE_MODE_OFDM));
1940         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1941         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1942                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1943         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1944                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1945         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1946                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1947         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1948         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1949         rt2x00_set_field32(&word, TXD_W0_BURST,
1950                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1951         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1952         rt2x00_desc_write(txd, 0, word);
1953
1954         /*
1955          * Register descriptor details in skb frame descriptor.
1956          */
1957         skbdesc->desc = txd;
1958         skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1959                             TXD_DESC_SIZE;
1960 }
1961
1962 /*
1963  * TX data initialization
1964  */
1965 static void rt61pci_write_beacon(struct queue_entry *entry,
1966                                  struct txentry_desc *txdesc)
1967 {
1968         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1969         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1970         unsigned int beacon_base;
1971         unsigned int padding_len;
1972         u32 orig_reg, reg;
1973
1974         /*
1975          * Disable beaconing while we are reloading the beacon data,
1976          * otherwise we might be sending out invalid data.
1977          */
1978         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1979         orig_reg = reg;
1980         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1981         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1982
1983         /*
1984          * Write the TX descriptor for the beacon.
1985          */
1986         rt61pci_write_tx_desc(entry, txdesc);
1987
1988         /*
1989          * Dump beacon to userspace through debugfs.
1990          */
1991         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1992
1993         /*
1994          * Write entire beacon with descriptor and padding to register.
1995          */
1996         padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1997         if (padding_len && skb_pad(entry->skb, padding_len)) {
1998                 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
1999                 /* skb freed by skb_pad() on failure */
2000                 entry->skb = NULL;
2001                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2002                 return;
2003         }
2004
2005         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2006         rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
2007                                       entry_priv->desc, TXINFO_SIZE);
2008         rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2009                                       entry->skb->data,
2010                                       entry->skb->len + padding_len);
2011
2012         /*
2013          * Enable beaconing again.
2014          *
2015          * For Wi-Fi faily generated beacons between participating
2016          * stations. Set TBTT phase adaptive adjustment step to 8us.
2017          */
2018         rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2019
2020         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2021         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2022
2023         /*
2024          * Clean up beacon skb.
2025          */
2026         dev_kfree_skb_any(entry->skb);
2027         entry->skb = NULL;
2028 }
2029
2030 static void rt61pci_clear_beacon(struct queue_entry *entry)
2031 {
2032         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2033         u32 reg;
2034
2035         /*
2036          * Disable beaconing while we are reloading the beacon data,
2037          * otherwise we might be sending out invalid data.
2038          */
2039         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
2040         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2041         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2042
2043         /*
2044          * Clear beacon.
2045          */
2046         rt2x00pci_register_write(rt2x00dev,
2047                                  HW_BEACON_OFFSET(entry->entry_idx), 0);
2048
2049         /*
2050          * Enable beaconing again.
2051          */
2052         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2053         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2054 }
2055
2056 /*
2057  * RX control handlers
2058  */
2059 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2060 {
2061         u8 offset = rt2x00dev->lna_gain;
2062         u8 lna;
2063
2064         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2065         switch (lna) {
2066         case 3:
2067                 offset += 90;
2068                 break;
2069         case 2:
2070                 offset += 74;
2071                 break;
2072         case 1:
2073                 offset += 64;
2074                 break;
2075         default:
2076                 return 0;
2077         }
2078
2079         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2080                 if (lna == 3 || lna == 2)
2081                         offset += 10;
2082         }
2083
2084         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2085 }
2086
2087 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2088                                 struct rxdone_entry_desc *rxdesc)
2089 {
2090         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2091         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2092         u32 word0;
2093         u32 word1;
2094
2095         rt2x00_desc_read(entry_priv->desc, 0, &word0);
2096         rt2x00_desc_read(entry_priv->desc, 1, &word1);
2097
2098         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2099                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2100
2101         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2102         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2103
2104         if (rxdesc->cipher != CIPHER_NONE) {
2105                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2106                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2107                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2108
2109                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2110                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2111
2112                 /*
2113                  * Hardware has stripped IV/EIV data from 802.11 frame during
2114                  * decryption. It has provided the data separately but rt2x00lib
2115                  * should decide if it should be reinserted.
2116                  */
2117                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2118
2119                 /*
2120                  * The hardware has already checked the Michael Mic and has
2121                  * stripped it from the frame. Signal this to mac80211.
2122                  */
2123                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2124
2125                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2126                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2127                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2128                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2129         }
2130
2131         /*
2132          * Obtain the status about this packet.
2133          * When frame was received with an OFDM bitrate,
2134          * the signal is the PLCP value. If it was received with
2135          * a CCK bitrate the signal is the rate in 100kbit/s.
2136          */
2137         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2138         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2139         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2140
2141         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2142                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2143         else
2144                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2145         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2146                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2147 }
2148
2149 /*
2150  * Interrupt functions.
2151  */
2152 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2153 {
2154         struct data_queue *queue;
2155         struct queue_entry *entry;
2156         struct queue_entry *entry_done;
2157         struct queue_entry_priv_pci *entry_priv;
2158         struct txdone_entry_desc txdesc;
2159         u32 word;
2160         u32 reg;
2161         int type;
2162         int index;
2163         int i;
2164
2165         /*
2166          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2167          * at most X times and also stop processing once the TX_STA_FIFO_VALID
2168          * flag is not set anymore.
2169          *
2170          * The legacy drivers use X=TX_RING_SIZE but state in a comment
2171          * that the TX_STA_FIFO stack has a size of 16. We stick to our
2172          * tx ring size for now.
2173          */
2174         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2175                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2176                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2177                         break;
2178
2179                 /*
2180                  * Skip this entry when it contains an invalid
2181                  * queue identication number.
2182                  */
2183                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2184                 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2185                 if (unlikely(!queue))
2186                         continue;
2187
2188                 /*
2189                  * Skip this entry when it contains an invalid
2190                  * index number.
2191                  */
2192                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2193                 if (unlikely(index >= queue->limit))
2194                         continue;
2195
2196                 entry = &queue->entries[index];
2197                 entry_priv = entry->priv_data;
2198                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2199
2200                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2201                     !rt2x00_get_field32(word, TXD_W0_VALID))
2202                         return;
2203
2204                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2205                 while (entry != entry_done) {
2206                         /* Catch up.
2207                          * Just report any entries we missed as failed.
2208                          */
2209                         WARNING(rt2x00dev,
2210                                 "TX status report missed for entry %d\n",
2211                                 entry_done->entry_idx);
2212
2213                         rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2214                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2215                 }
2216
2217                 /*
2218                  * Obtain the status about this packet.
2219                  */
2220                 txdesc.flags = 0;
2221                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2222                 case 0: /* Success, maybe with retry */
2223                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2224                         break;
2225                 case 6: /* Failure, excessive retries */
2226                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2227                         /* Don't break, this is a failed frame! */
2228                 default: /* Failure */
2229                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2230                 }
2231                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2232
2233                 /*
2234                  * the frame was retried at least once
2235                  * -> hw used fallback rates
2236                  */
2237                 if (txdesc.retry)
2238                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2239
2240                 rt2x00lib_txdone(entry, &txdesc);
2241         }
2242 }
2243
2244 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2245 {
2246         struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2247
2248         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2249 }
2250
2251 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2252                                             struct rt2x00_field32 irq_field)
2253 {
2254         u32 reg;
2255
2256         /*
2257          * Enable a single interrupt. The interrupt mask register
2258          * access needs locking.
2259          */
2260         spin_lock_irq(&rt2x00dev->irqmask_lock);
2261
2262         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2263         rt2x00_set_field32(&reg, irq_field, 0);
2264         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2265
2266         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2267 }
2268
2269 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2270                                          struct rt2x00_field32 irq_field)
2271 {
2272         u32 reg;
2273
2274         /*
2275          * Enable a single MCU interrupt. The interrupt mask register
2276          * access needs locking.
2277          */
2278         spin_lock_irq(&rt2x00dev->irqmask_lock);
2279
2280         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2281         rt2x00_set_field32(&reg, irq_field, 0);
2282         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2283
2284         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2285 }
2286
2287 static void rt61pci_txstatus_tasklet(unsigned long data)
2288 {
2289         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2290         rt61pci_txdone(rt2x00dev);
2291         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2292                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2293 }
2294
2295 static void rt61pci_tbtt_tasklet(unsigned long data)
2296 {
2297         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2298         rt2x00lib_beacondone(rt2x00dev);
2299         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2300                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2301 }
2302
2303 static void rt61pci_rxdone_tasklet(unsigned long data)
2304 {
2305         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2306         if (rt2x00pci_rxdone(rt2x00dev))
2307                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2308         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2309                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2310 }
2311
2312 static void rt61pci_autowake_tasklet(unsigned long data)
2313 {
2314         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2315         rt61pci_wakeup(rt2x00dev);
2316         rt2x00pci_register_write(rt2x00dev,
2317                                  M2H_CMD_DONE_CSR, 0xffffffff);
2318         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2319                 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2320 }
2321
2322 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2323 {
2324         struct rt2x00_dev *rt2x00dev = dev_instance;
2325         u32 reg_mcu, mask_mcu;
2326         u32 reg, mask;
2327
2328         /*
2329          * Get the interrupt sources & saved to local variable.
2330          * Write register value back to clear pending interrupts.
2331          */
2332         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2333         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2334
2335         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2336         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2337
2338         if (!reg && !reg_mcu)
2339                 return IRQ_NONE;
2340
2341         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2342                 return IRQ_HANDLED;
2343
2344         /*
2345          * Schedule tasklets for interrupt handling.
2346          */
2347         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2348                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2349
2350         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2351                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2352
2353         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2354                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2355
2356         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2357                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2358
2359         /*
2360          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2361          * for interrupts and interrupt masks we can just use the value of
2362          * INT_SOURCE_CSR to create the interrupt mask.
2363          */
2364         mask = reg;
2365         mask_mcu = reg_mcu;
2366
2367         /*
2368          * Disable all interrupts for which a tasklet was scheduled right now,
2369          * the tasklet will reenable the appropriate interrupts.
2370          */
2371         spin_lock(&rt2x00dev->irqmask_lock);
2372
2373         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2374         reg |= mask;
2375         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
2376
2377         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2378         reg |= mask_mcu;
2379         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2380
2381         spin_unlock(&rt2x00dev->irqmask_lock);
2382
2383         return IRQ_HANDLED;
2384 }
2385
2386 /*
2387  * Device probe functions.
2388  */
2389 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2390 {
2391         struct eeprom_93cx6 eeprom;
2392         u32 reg;
2393         u16 word;
2394         u8 *mac;
2395         s8 value;
2396
2397         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2398
2399         eeprom.data = rt2x00dev;
2400         eeprom.register_read = rt61pci_eepromregister_read;
2401         eeprom.register_write = rt61pci_eepromregister_write;
2402         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2403             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2404         eeprom.reg_data_in = 0;
2405         eeprom.reg_data_out = 0;
2406         eeprom.reg_data_clock = 0;
2407         eeprom.reg_chip_select = 0;
2408
2409         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2410                                EEPROM_SIZE / sizeof(u16));
2411
2412         /*
2413          * Start validation of the data that has been read.
2414          */
2415         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2416         if (!is_valid_ether_addr(mac)) {
2417                 random_ether_addr(mac);
2418                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2419         }
2420
2421         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2422         if (word == 0xffff) {
2423                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2424                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2425                                    ANTENNA_B);
2426                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2427                                    ANTENNA_B);
2428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2429                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2430                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2431                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2432                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2433                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2434         }
2435
2436         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2437         if (word == 0xffff) {
2438                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2439                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2440                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2441                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2442                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2443                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2444                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2445                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2446                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2447         }
2448
2449         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2450         if (word == 0xffff) {
2451                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2452                                    LED_MODE_DEFAULT);
2453                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2454                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2455         }
2456
2457         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2458         if (word == 0xffff) {
2459                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2460                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2461                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2462                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2463         }
2464
2465         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2466         if (word == 0xffff) {
2467                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2468                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2469                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2470                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2471         } else {
2472                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2473                 if (value < -10 || value > 10)
2474                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2475                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2476                 if (value < -10 || value > 10)
2477                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2478                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2479         }
2480
2481         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2482         if (word == 0xffff) {
2483                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2484                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2485                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2486                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2487         } else {
2488                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2489                 if (value < -10 || value > 10)
2490                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2491                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2492                 if (value < -10 || value > 10)
2493                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2494                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2495         }
2496
2497         return 0;
2498 }
2499
2500 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2501 {
2502         u32 reg;
2503         u16 value;
2504         u16 eeprom;
2505
2506         /*
2507          * Read EEPROM word for configuration.
2508          */
2509         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2510
2511         /*
2512          * Identify RF chipset.
2513          */
2514         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2515         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2516         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2517                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2518
2519         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2520             !rt2x00_rf(rt2x00dev, RF5325) &&
2521             !rt2x00_rf(rt2x00dev, RF2527) &&
2522             !rt2x00_rf(rt2x00dev, RF2529)) {
2523                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2524                 return -ENODEV;
2525         }
2526
2527         /*
2528          * Determine number of antennas.
2529          */
2530         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2531                 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2532
2533         /*
2534          * Identify default antenna configuration.
2535          */
2536         rt2x00dev->default_ant.tx =
2537             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2538         rt2x00dev->default_ant.rx =
2539             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2540
2541         /*
2542          * Read the Frame type.
2543          */
2544         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2545                 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2546
2547         /*
2548          * Detect if this device has a hardware controlled radio.
2549          */
2550         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2551                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2552
2553         /*
2554          * Read frequency offset and RF programming sequence.
2555          */
2556         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2557         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2558                 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2559
2560         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2561
2562         /*
2563          * Read external LNA informations.
2564          */
2565         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2566
2567         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2568                 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2569         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2570                 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2571
2572         /*
2573          * When working with a RF2529 chip without double antenna,
2574          * the antenna settings should be gathered from the NIC
2575          * eeprom word.
2576          */
2577         if (rt2x00_rf(rt2x00dev, RF2529) &&
2578             !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) {
2579                 rt2x00dev->default_ant.rx =
2580                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2581                 rt2x00dev->default_ant.tx =
2582                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2583
2584                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2585                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2586                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2587                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2588         }
2589
2590         /*
2591          * Store led settings, for correct led behaviour.
2592          * If the eeprom value is invalid,
2593          * switch to default led mode.
2594          */
2595 #ifdef CONFIG_RT2X00_LIB_LEDS
2596         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2597         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2598
2599         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2600         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2601         if (value == LED_MODE_SIGNAL_STRENGTH)
2602                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2603                                  LED_TYPE_QUALITY);
2604
2605         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2606         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2607                            rt2x00_get_field16(eeprom,
2608                                               EEPROM_LED_POLARITY_GPIO_0));
2609         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2610                            rt2x00_get_field16(eeprom,
2611                                               EEPROM_LED_POLARITY_GPIO_1));
2612         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2613                            rt2x00_get_field16(eeprom,
2614                                               EEPROM_LED_POLARITY_GPIO_2));
2615         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2616                            rt2x00_get_field16(eeprom,
2617                                               EEPROM_LED_POLARITY_GPIO_3));
2618         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2619                            rt2x00_get_field16(eeprom,
2620                                               EEPROM_LED_POLARITY_GPIO_4));
2621         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2622                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2623         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2624                            rt2x00_get_field16(eeprom,
2625                                               EEPROM_LED_POLARITY_RDY_G));
2626         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2627                            rt2x00_get_field16(eeprom,
2628                                               EEPROM_LED_POLARITY_RDY_A));
2629 #endif /* CONFIG_RT2X00_LIB_LEDS */
2630
2631         return 0;
2632 }
2633
2634 /*
2635  * RF value list for RF5225 & RF5325
2636  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2637  */
2638 static const struct rf_channel rf_vals_noseq[] = {
2639         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2640         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2641         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2642         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2643         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2644         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2645         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2646         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2647         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2648         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2649         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2650         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2651         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2652         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2653
2654         /* 802.11 UNI / HyperLan 2 */
2655         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2656         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2657         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2658         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2659         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2660         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2661         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2662         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2663
2664         /* 802.11 HyperLan 2 */
2665         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2666         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2667         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2668         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2669         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2670         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2671         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2672         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2673         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2674         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2675
2676         /* 802.11 UNII */
2677         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2678         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2679         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2680         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2681         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2682         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2683
2684         /* MMAC(Japan)J52 ch 34,38,42,46 */
2685         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2686         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2687         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2688         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2689 };
2690
2691 /*
2692  * RF value list for RF5225 & RF5325
2693  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2694  */
2695 static const struct rf_channel rf_vals_seq[] = {
2696         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2697         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2698         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2699         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2700         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2701         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2702         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2703         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2704         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2705         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2706         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2707         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2708         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2709         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2710
2711         /* 802.11 UNI / HyperLan 2 */
2712         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2713         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2714         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2715         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2716         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2717         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2718         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2719         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2720
2721         /* 802.11 HyperLan 2 */
2722         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2723         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2724         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2725         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2726         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2727         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2728         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2729         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2730         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2731         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2732
2733         /* 802.11 UNII */
2734         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2735         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2736         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2737         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2738         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2739         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2740
2741         /* MMAC(Japan)J52 ch 34,38,42,46 */
2742         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2743         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2744         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2745         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2746 };
2747
2748 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2749 {
2750         struct hw_mode_spec *spec = &rt2x00dev->spec;
2751         struct channel_info *info;
2752         char *tx_power;
2753         unsigned int i;
2754
2755         /*
2756          * Disable powersaving as default.
2757          */
2758         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2759
2760         /*
2761          * Initialize all hw fields.
2762          */
2763         rt2x00dev->hw->flags =
2764             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2765             IEEE80211_HW_SIGNAL_DBM |
2766             IEEE80211_HW_SUPPORTS_PS |
2767             IEEE80211_HW_PS_NULLFUNC_STACK;
2768
2769         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2770         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2771                                 rt2x00_eeprom_addr(rt2x00dev,
2772                                                    EEPROM_MAC_ADDR_0));
2773
2774         /*
2775          * As rt61 has a global fallback table we cannot specify
2776          * more then one tx rate per frame but since the hw will
2777          * try several rates (based on the fallback table) we should
2778          * initialize max_report_rates to the maximum number of rates
2779          * we are going to try. Otherwise mac80211 will truncate our
2780          * reported tx rates and the rc algortihm will end up with
2781          * incorrect data.
2782          */
2783         rt2x00dev->hw->max_rates = 1;
2784         rt2x00dev->hw->max_report_rates = 7;
2785         rt2x00dev->hw->max_rate_tries = 1;
2786
2787         /*
2788          * Initialize hw_mode information.
2789          */
2790         spec->supported_bands = SUPPORT_BAND_2GHZ;
2791         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2792
2793         if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) {
2794                 spec->num_channels = 14;
2795                 spec->channels = rf_vals_noseq;
2796         } else {
2797                 spec->num_channels = 14;
2798                 spec->channels = rf_vals_seq;
2799         }
2800
2801         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2802                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2803                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2804         }
2805
2806         /*
2807          * Create channel information array
2808          */
2809         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2810         if (!info)
2811                 return -ENOMEM;
2812
2813         spec->channels_info = info;
2814
2815         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2816         for (i = 0; i < 14; i++) {
2817                 info[i].max_power = MAX_TXPOWER;
2818                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2819         }
2820
2821         if (spec->num_channels > 14) {
2822                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2823                 for (i = 14; i < spec->num_channels; i++) {
2824                         info[i].max_power = MAX_TXPOWER;
2825                         info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2826                 }
2827         }
2828
2829         return 0;
2830 }
2831
2832 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2833 {
2834         int retval;
2835         u32 reg;
2836
2837         /*
2838          * Disable power saving.
2839          */
2840         rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2841
2842         /*
2843          * Allocate eeprom data.
2844          */
2845         retval = rt61pci_validate_eeprom(rt2x00dev);
2846         if (retval)
2847                 return retval;
2848
2849         retval = rt61pci_init_eeprom(rt2x00dev);
2850         if (retval)
2851                 return retval;
2852
2853         /*
2854          * Enable rfkill polling by setting GPIO direction of the
2855          * rfkill switch GPIO pin correctly.
2856          */
2857         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
2858         rt2x00_set_field32(&reg, MAC_CSR13_BIT13, 1);
2859         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
2860
2861         /*
2862          * Initialize hw specifications.
2863          */
2864         retval = rt61pci_probe_hw_mode(rt2x00dev);
2865         if (retval)
2866                 return retval;
2867
2868         /*
2869          * This device has multiple filters for control frames,
2870          * but has no a separate filter for PS Poll frames.
2871          */
2872         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2873
2874         /*
2875          * This device requires firmware and DMA mapped skbs.
2876          */
2877         __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2878         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2879         if (!modparam_nohwcrypt)
2880                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2881         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2882
2883         /*
2884          * Set the rssi offset.
2885          */
2886         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2887
2888         return 0;
2889 }
2890
2891 /*
2892  * IEEE80211 stack callback functions.
2893  */
2894 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2895                            struct ieee80211_vif *vif, u16 queue_idx,
2896                            const struct ieee80211_tx_queue_params *params)
2897 {
2898         struct rt2x00_dev *rt2x00dev = hw->priv;
2899         struct data_queue *queue;
2900         struct rt2x00_field32 field;
2901         int retval;
2902         u32 reg;
2903         u32 offset;
2904
2905         /*
2906          * First pass the configuration through rt2x00lib, that will
2907          * update the queue settings and validate the input. After that
2908          * we are free to update the registers based on the value
2909          * in the queue parameter.
2910          */
2911         retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2912         if (retval)
2913                 return retval;
2914
2915         /*
2916          * We only need to perform additional register initialization
2917          * for WMM queues.
2918          */
2919         if (queue_idx >= 4)
2920                 return 0;
2921
2922         queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2923
2924         /* Update WMM TXOP register */
2925         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2926         field.bit_offset = (queue_idx & 1) * 16;
2927         field.bit_mask = 0xffff << field.bit_offset;
2928
2929         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2930         rt2x00_set_field32(&reg, field, queue->txop);
2931         rt2x00pci_register_write(rt2x00dev, offset, reg);
2932
2933         /* Update WMM registers */
2934         field.bit_offset = queue_idx * 4;
2935         field.bit_mask = 0xf << field.bit_offset;
2936
2937         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2938         rt2x00_set_field32(&reg, field, queue->aifs);
2939         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2940
2941         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2942         rt2x00_set_field32(&reg, field, queue->cw_min);
2943         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2944
2945         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2946         rt2x00_set_field32(&reg, field, queue->cw_max);
2947         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2948
2949         return 0;
2950 }
2951
2952 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2953 {
2954         struct rt2x00_dev *rt2x00dev = hw->priv;
2955         u64 tsf;
2956         u32 reg;
2957
2958         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2959         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2960         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2961         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2962
2963         return tsf;
2964 }
2965
2966 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2967         .tx                     = rt2x00mac_tx,
2968         .start                  = rt2x00mac_start,
2969         .stop                   = rt2x00mac_stop,
2970         .add_interface          = rt2x00mac_add_interface,
2971         .remove_interface       = rt2x00mac_remove_interface,
2972         .config                 = rt2x00mac_config,
2973         .configure_filter       = rt2x00mac_configure_filter,
2974         .set_key                = rt2x00mac_set_key,
2975         .sw_scan_start          = rt2x00mac_sw_scan_start,
2976         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2977         .get_stats              = rt2x00mac_get_stats,
2978         .bss_info_changed       = rt2x00mac_bss_info_changed,
2979         .conf_tx                = rt61pci_conf_tx,
2980         .get_tsf                = rt61pci_get_tsf,
2981         .rfkill_poll            = rt2x00mac_rfkill_poll,
2982         .flush                  = rt2x00mac_flush,
2983         .set_antenna            = rt2x00mac_set_antenna,
2984         .get_antenna            = rt2x00mac_get_antenna,
2985         .get_ringparam          = rt2x00mac_get_ringparam,
2986         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2987 };
2988
2989 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2990         .irq_handler            = rt61pci_interrupt,
2991         .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2992         .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2993         .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2994         .autowake_tasklet       = rt61pci_autowake_tasklet,
2995         .probe_hw               = rt61pci_probe_hw,
2996         .get_firmware_name      = rt61pci_get_firmware_name,
2997         .check_firmware         = rt61pci_check_firmware,
2998         .load_firmware          = rt61pci_load_firmware,
2999         .initialize             = rt2x00pci_initialize,
3000         .uninitialize           = rt2x00pci_uninitialize,
3001         .get_entry_state        = rt61pci_get_entry_state,
3002         .clear_entry            = rt61pci_clear_entry,
3003         .set_device_state       = rt61pci_set_device_state,
3004         .rfkill_poll            = rt61pci_rfkill_poll,
3005         .link_stats             = rt61pci_link_stats,
3006         .reset_tuner            = rt61pci_reset_tuner,
3007         .link_tuner             = rt61pci_link_tuner,
3008         .start_queue            = rt61pci_start_queue,
3009         .kick_queue             = rt61pci_kick_queue,
3010         .stop_queue             = rt61pci_stop_queue,
3011         .flush_queue            = rt2x00pci_flush_queue,
3012         .write_tx_desc          = rt61pci_write_tx_desc,
3013         .write_beacon           = rt61pci_write_beacon,
3014         .clear_beacon           = rt61pci_clear_beacon,
3015         .fill_rxdone            = rt61pci_fill_rxdone,
3016         .config_shared_key      = rt61pci_config_shared_key,
3017         .config_pairwise_key    = rt61pci_config_pairwise_key,
3018         .config_filter          = rt61pci_config_filter,
3019         .config_intf            = rt61pci_config_intf,
3020         .config_erp             = rt61pci_config_erp,
3021         .config_ant             = rt61pci_config_ant,
3022         .config                 = rt61pci_config,
3023 };
3024
3025 static const struct data_queue_desc rt61pci_queue_rx = {
3026         .entry_num              = 32,
3027         .data_size              = DATA_FRAME_SIZE,
3028         .desc_size              = RXD_DESC_SIZE,
3029         .priv_size              = sizeof(struct queue_entry_priv_pci),
3030 };
3031
3032 static const struct data_queue_desc rt61pci_queue_tx = {
3033         .entry_num              = 32,
3034         .data_size              = DATA_FRAME_SIZE,
3035         .desc_size              = TXD_DESC_SIZE,
3036         .priv_size              = sizeof(struct queue_entry_priv_pci),
3037 };
3038
3039 static const struct data_queue_desc rt61pci_queue_bcn = {
3040         .entry_num              = 4,
3041         .data_size              = 0, /* No DMA required for beacons */
3042         .desc_size              = TXINFO_SIZE,
3043         .priv_size              = sizeof(struct queue_entry_priv_pci),
3044 };
3045
3046 static const struct rt2x00_ops rt61pci_ops = {
3047         .name                   = KBUILD_MODNAME,
3048         .max_sta_intf           = 1,
3049         .max_ap_intf            = 4,
3050         .eeprom_size            = EEPROM_SIZE,
3051         .rf_size                = RF_SIZE,
3052         .tx_queues              = NUM_TX_QUEUES,
3053         .extra_tx_headroom      = 0,
3054         .rx                     = &rt61pci_queue_rx,
3055         .tx                     = &rt61pci_queue_tx,
3056         .bcn                    = &rt61pci_queue_bcn,
3057         .lib                    = &rt61pci_rt2x00_ops,
3058         .hw                     = &rt61pci_mac80211_ops,
3059 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3060         .debugfs                = &rt61pci_rt2x00debug,
3061 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3062 };
3063
3064 /*
3065  * RT61pci module information.
3066  */
3067 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
3068         /* RT2561s */
3069         { PCI_DEVICE(0x1814, 0x0301) },
3070         /* RT2561 v2 */
3071         { PCI_DEVICE(0x1814, 0x0302) },
3072         /* RT2661 */
3073         { PCI_DEVICE(0x1814, 0x0401) },
3074         { 0, }
3075 };
3076
3077 MODULE_AUTHOR(DRV_PROJECT);
3078 MODULE_VERSION(DRV_VERSION);
3079 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3080 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3081                         "PCI & PCMCIA chipset based cards");
3082 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3083 MODULE_FIRMWARE(FIRMWARE_RT2561);
3084 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3085 MODULE_FIRMWARE(FIRMWARE_RT2661);
3086 MODULE_LICENSE("GPL");
3087
3088 static int rt61pci_probe(struct pci_dev *pci_dev,
3089                          const struct pci_device_id *id)
3090 {
3091         return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3092 }
3093
3094 static struct pci_driver rt61pci_driver = {
3095         .name           = KBUILD_MODNAME,
3096         .id_table       = rt61pci_device_table,
3097         .probe          = rt61pci_probe,
3098         .remove         = __devexit_p(rt2x00pci_remove),
3099         .suspend        = rt2x00pci_suspend,
3100         .resume         = rt2x00pci_resume,
3101 };
3102
3103 static int __init rt61pci_init(void)
3104 {
3105         return pci_register_driver(&rt61pci_driver);
3106 }
3107
3108 static void __exit rt61pci_exit(void)
3109 {
3110         pci_unregister_driver(&rt61pci_driver);
3111 }
3112
3113 module_init(rt61pci_init);
3114 module_exit(rt61pci_exit);