Merge branch 'hotfixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * The payload should be aligned to a 4-byte boundary,
49          * this means we need at least 3 bytes for moving the frame
50          * into the correct offset.
51          */
52         reserved_size = 4;
53
54         /*
55          * Allocate skbuffer.
56          */
57         skb = dev_alloc_skb(frame_size + reserved_size);
58         if (!skb)
59                 return NULL;
60
61         skb_reserve(skb, reserved_size);
62         skb_put(skb, frame_size);
63
64         /*
65          * Populate skbdesc.
66          */
67         skbdesc = get_skb_frame_desc(skb);
68         memset(skbdesc, 0, sizeof(*skbdesc));
69         skbdesc->entry = entry;
70
71         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
72                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
73                                                   skb->data,
74                                                   skb->len,
75                                                   DMA_FROM_DEVICE);
76                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
77         }
78
79         return skb;
80 }
81
82 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
83 {
84         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
85
86         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
87                                           DMA_TO_DEVICE);
88         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
89 }
90 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
91
92 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
93 {
94         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
95
96         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
97                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
98                                  DMA_FROM_DEVICE);
99                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
100         }
101
102         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
103                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
104                                  DMA_TO_DEVICE);
105                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
106         }
107 }
108
109 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
110 {
111         if (!skb)
112                 return;
113
114         rt2x00queue_unmap_skb(rt2x00dev, skb);
115         dev_kfree_skb_any(skb);
116 }
117
118 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
119                                              struct txentry_desc *txdesc)
120 {
121         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
122         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
123         struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
124         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
125         struct ieee80211_rate *rate =
126             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
127         const struct rt2x00_rate *hwrate;
128         unsigned int data_length;
129         unsigned int duration;
130         unsigned int residual;
131
132         memset(txdesc, 0, sizeof(*txdesc));
133
134         /*
135          * Initialize information from queue
136          */
137         txdesc->queue = entry->queue->qid;
138         txdesc->cw_min = entry->queue->cw_min;
139         txdesc->cw_max = entry->queue->cw_max;
140         txdesc->aifs = entry->queue->aifs;
141
142         /* Data length should be extended with 4 bytes for CRC */
143         data_length = entry->skb->len + 4;
144
145         /*
146          * Check whether this frame is to be acked.
147          */
148         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
149                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
150
151         /*
152          * Check if this is a RTS/CTS frame
153          */
154         if (ieee80211_is_rts(hdr->frame_control) ||
155             ieee80211_is_cts(hdr->frame_control)) {
156                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
157                 if (ieee80211_is_rts(hdr->frame_control))
158                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
159                 else
160                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
161                 if (tx_info->control.rts_cts_rate_idx >= 0)
162                         rate =
163                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
164         }
165
166         /*
167          * Determine retry information.
168          */
169         txdesc->retry_limit = tx_info->control.retry_limit;
170         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
171                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
172
173         /*
174          * Check if more fragments are pending
175          */
176         if (ieee80211_has_morefrags(hdr->frame_control)) {
177                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
178                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
179         }
180
181         /*
182          * Beacons and probe responses require the tsf timestamp
183          * to be inserted into the frame.
184          */
185         if (ieee80211_is_beacon(hdr->frame_control) ||
186             ieee80211_is_probe_resp(hdr->frame_control))
187                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
188
189         /*
190          * Determine with what IFS priority this frame should be send.
191          * Set ifs to IFS_SIFS when the this is not the first fragment,
192          * or this fragment came after RTS/CTS.
193          */
194         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
195                 txdesc->ifs = IFS_SIFS;
196         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
197                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
198                 txdesc->ifs = IFS_BACKOFF;
199         } else {
200                 txdesc->ifs = IFS_SIFS;
201         }
202
203         /*
204          * Hardware should insert sequence counter.
205          * FIXME: We insert a software sequence counter first for
206          * hardware that doesn't support hardware sequence counting.
207          *
208          * This is wrong because beacons are not getting sequence
209          * numbers assigned properly.
210          *
211          * A secondary problem exists for drivers that cannot toggle
212          * sequence counting per-frame, since those will override the
213          * sequence counter given by mac80211.
214          */
215         if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
216                 spin_lock(&intf->lock);
217
218                 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219                         intf->seqno += 0x10;
220                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
221                 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
222
223                 spin_unlock(&intf->lock);
224
225                 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
226         }
227
228         /*
229          * PLCP setup
230          * Length calculation depends on OFDM/CCK rate.
231          */
232         hwrate = rt2x00_get_rate(rate->hw_value);
233         txdesc->signal = hwrate->plcp;
234         txdesc->service = 0x04;
235
236         if (hwrate->flags & DEV_RATE_OFDM) {
237                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
238
239                 txdesc->length_high = (data_length >> 6) & 0x3f;
240                 txdesc->length_low = data_length & 0x3f;
241         } else {
242                 /*
243                  * Convert length to microseconds.
244                  */
245                 residual = get_duration_res(data_length, hwrate->bitrate);
246                 duration = get_duration(data_length, hwrate->bitrate);
247
248                 if (residual != 0) {
249                         duration++;
250
251                         /*
252                          * Check if we need to set the Length Extension
253                          */
254                         if (hwrate->bitrate == 110 && residual <= 30)
255                                 txdesc->service |= 0x80;
256                 }
257
258                 txdesc->length_high = (duration >> 8) & 0xff;
259                 txdesc->length_low = duration & 0xff;
260
261                 /*
262                  * When preamble is enabled we should set the
263                  * preamble bit for the signal.
264                  */
265                 if (rt2x00_get_rate_preamble(rate->hw_value))
266                         txdesc->signal |= 0x08;
267         }
268 }
269
270 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
271                                             struct txentry_desc *txdesc)
272 {
273         struct data_queue *queue = entry->queue;
274         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
275
276         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
277
278         /*
279          * All processing on the frame has been completed, this means
280          * it is now ready to be dumped to userspace through debugfs.
281          */
282         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
283
284         /*
285          * Check if we need to kick the queue, there are however a few rules
286          *      1) Don't kick beacon queue
287          *      2) Don't kick unless this is the last in frame in a burst.
288          *         When the burst flag is set, this frame is always followed
289          *         by another frame which in some way are related to eachother.
290          *         This is true for fragments, RTS or CTS-to-self frames.
291          *      3) Rule 2 can be broken when the available entries
292          *         in the queue are less then a certain threshold.
293          */
294         if (entry->queue->qid == QID_BEACON)
295                 return;
296
297         if (rt2x00queue_threshold(queue) ||
298             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
299                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
300 }
301
302 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
303 {
304         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
305         struct txentry_desc txdesc;
306         struct skb_frame_desc *skbdesc;
307
308         if (unlikely(rt2x00queue_full(queue)))
309                 return -EINVAL;
310
311         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
312                 ERROR(queue->rt2x00dev,
313                       "Arrived at non-free entry in the non-full queue %d.\n"
314                       "Please file bug report to %s.\n",
315                       queue->qid, DRV_PROJECT);
316                 return -EINVAL;
317         }
318
319         /*
320          * Copy all TX descriptor information into txdesc,
321          * after that we are free to use the skb->cb array
322          * for our information.
323          */
324         entry->skb = skb;
325         rt2x00queue_create_tx_descriptor(entry, &txdesc);
326
327         /*
328          * skb->cb array is now ours and we are free to use it.
329          */
330         skbdesc = get_skb_frame_desc(entry->skb);
331         memset(skbdesc, 0, sizeof(*skbdesc));
332         skbdesc->entry = entry;
333
334         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
335                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
336                 return -EIO;
337         }
338
339         if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
340                 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
341
342         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
343
344         rt2x00queue_index_inc(queue, Q_INDEX);
345         rt2x00queue_write_tx_descriptor(entry, &txdesc);
346
347         return 0;
348 }
349
350 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
351                               struct ieee80211_vif *vif)
352 {
353         struct rt2x00_intf *intf = vif_to_intf(vif);
354         struct skb_frame_desc *skbdesc;
355         struct txentry_desc txdesc;
356         __le32 desc[16];
357
358         if (unlikely(!intf->beacon))
359                 return -ENOBUFS;
360
361         intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
362         if (!intf->beacon->skb)
363                 return -ENOMEM;
364
365         /*
366          * Copy all TX descriptor information into txdesc,
367          * after that we are free to use the skb->cb array
368          * for our information.
369          */
370         rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
371
372         /*
373          * For the descriptor we use a local array from where the
374          * driver can move it to the correct location required for
375          * the hardware.
376          */
377         memset(desc, 0, sizeof(desc));
378
379         /*
380          * Fill in skb descriptor
381          */
382         skbdesc = get_skb_frame_desc(intf->beacon->skb);
383         memset(skbdesc, 0, sizeof(*skbdesc));
384         skbdesc->desc = desc;
385         skbdesc->desc_len = intf->beacon->queue->desc_size;
386         skbdesc->entry = intf->beacon;
387
388         /*
389          * Write TX descriptor into reserved room in front of the beacon.
390          */
391         rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
392
393         /*
394          * Send beacon to hardware.
395          * Also enable beacon generation, which might have been disabled
396          * by the driver during the config_beacon() callback function.
397          */
398         rt2x00dev->ops->lib->write_beacon(intf->beacon);
399         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
400
401         return 0;
402 }
403
404 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
405                                          const enum data_queue_qid queue)
406 {
407         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
408
409         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
410                 return &rt2x00dev->tx[queue];
411
412         if (!rt2x00dev->bcn)
413                 return NULL;
414
415         if (queue == QID_BEACON)
416                 return &rt2x00dev->bcn[0];
417         else if (queue == QID_ATIM && atim)
418                 return &rt2x00dev->bcn[1];
419
420         return NULL;
421 }
422 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
423
424 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
425                                           enum queue_index index)
426 {
427         struct queue_entry *entry;
428         unsigned long irqflags;
429
430         if (unlikely(index >= Q_INDEX_MAX)) {
431                 ERROR(queue->rt2x00dev,
432                       "Entry requested from invalid index type (%d)\n", index);
433                 return NULL;
434         }
435
436         spin_lock_irqsave(&queue->lock, irqflags);
437
438         entry = &queue->entries[queue->index[index]];
439
440         spin_unlock_irqrestore(&queue->lock, irqflags);
441
442         return entry;
443 }
444 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
445
446 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
447 {
448         unsigned long irqflags;
449
450         if (unlikely(index >= Q_INDEX_MAX)) {
451                 ERROR(queue->rt2x00dev,
452                       "Index change on invalid index type (%d)\n", index);
453                 return;
454         }
455
456         spin_lock_irqsave(&queue->lock, irqflags);
457
458         queue->index[index]++;
459         if (queue->index[index] >= queue->limit)
460                 queue->index[index] = 0;
461
462         if (index == Q_INDEX) {
463                 queue->length++;
464         } else if (index == Q_INDEX_DONE) {
465                 queue->length--;
466                 queue->count ++;
467         }
468
469         spin_unlock_irqrestore(&queue->lock, irqflags);
470 }
471
472 static void rt2x00queue_reset(struct data_queue *queue)
473 {
474         unsigned long irqflags;
475
476         spin_lock_irqsave(&queue->lock, irqflags);
477
478         queue->count = 0;
479         queue->length = 0;
480         memset(queue->index, 0, sizeof(queue->index));
481
482         spin_unlock_irqrestore(&queue->lock, irqflags);
483 }
484
485 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
486 {
487         struct data_queue *queue = rt2x00dev->rx;
488         unsigned int i;
489
490         rt2x00queue_reset(queue);
491
492         if (!rt2x00dev->ops->lib->init_rxentry)
493                 return;
494
495         for (i = 0; i < queue->limit; i++) {
496                 queue->entries[i].flags = 0;
497
498                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
499                                                   &queue->entries[i]);
500         }
501 }
502
503 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
504 {
505         struct data_queue *queue;
506         unsigned int i;
507
508         txall_queue_for_each(rt2x00dev, queue) {
509                 rt2x00queue_reset(queue);
510
511                 if (!rt2x00dev->ops->lib->init_txentry)
512                         continue;
513
514                 for (i = 0; i < queue->limit; i++) {
515                         queue->entries[i].flags = 0;
516
517                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
518                                                           &queue->entries[i]);
519                 }
520         }
521 }
522
523 static int rt2x00queue_alloc_entries(struct data_queue *queue,
524                                      const struct data_queue_desc *qdesc)
525 {
526         struct queue_entry *entries;
527         unsigned int entry_size;
528         unsigned int i;
529
530         rt2x00queue_reset(queue);
531
532         queue->limit = qdesc->entry_num;
533         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
534         queue->data_size = qdesc->data_size;
535         queue->desc_size = qdesc->desc_size;
536
537         /*
538          * Allocate all queue entries.
539          */
540         entry_size = sizeof(*entries) + qdesc->priv_size;
541         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
542         if (!entries)
543                 return -ENOMEM;
544
545 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
546         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
547             ((__index) * (__psize)) )
548
549         for (i = 0; i < queue->limit; i++) {
550                 entries[i].flags = 0;
551                 entries[i].queue = queue;
552                 entries[i].skb = NULL;
553                 entries[i].entry_idx = i;
554                 entries[i].priv_data =
555                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
556                                             sizeof(*entries), qdesc->priv_size);
557         }
558
559 #undef QUEUE_ENTRY_PRIV_OFFSET
560
561         queue->entries = entries;
562
563         return 0;
564 }
565
566 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
567                                   struct data_queue *queue)
568 {
569         unsigned int i;
570
571         if (!queue->entries)
572                 return;
573
574         for (i = 0; i < queue->limit; i++) {
575                 if (queue->entries[i].skb)
576                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
577         }
578 }
579
580 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
581                                     struct data_queue *queue)
582 {
583         unsigned int i;
584         struct sk_buff *skb;
585
586         for (i = 0; i < queue->limit; i++) {
587                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
588                 if (!skb)
589                         return -ENOMEM;
590                 queue->entries[i].skb = skb;
591         }
592
593         return 0;
594 }
595
596 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
597 {
598         struct data_queue *queue;
599         int status;
600
601         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
602         if (status)
603                 goto exit;
604
605         tx_queue_for_each(rt2x00dev, queue) {
606                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
607                 if (status)
608                         goto exit;
609         }
610
611         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
612         if (status)
613                 goto exit;
614
615         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
616                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
617                                                    rt2x00dev->ops->atim);
618                 if (status)
619                         goto exit;
620         }
621
622         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
623         if (status)
624                 goto exit;
625
626         return 0;
627
628 exit:
629         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
630
631         rt2x00queue_uninitialize(rt2x00dev);
632
633         return status;
634 }
635
636 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
637 {
638         struct data_queue *queue;
639
640         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
641
642         queue_for_each(rt2x00dev, queue) {
643                 kfree(queue->entries);
644                 queue->entries = NULL;
645         }
646 }
647
648 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
649                              struct data_queue *queue, enum data_queue_qid qid)
650 {
651         spin_lock_init(&queue->lock);
652
653         queue->rt2x00dev = rt2x00dev;
654         queue->qid = qid;
655         queue->aifs = 2;
656         queue->cw_min = 5;
657         queue->cw_max = 10;
658 }
659
660 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
661 {
662         struct data_queue *queue;
663         enum data_queue_qid qid;
664         unsigned int req_atim =
665             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
666
667         /*
668          * We need the following queues:
669          * RX: 1
670          * TX: ops->tx_queues
671          * Beacon: 1
672          * Atim: 1 (if required)
673          */
674         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
675
676         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
677         if (!queue) {
678                 ERROR(rt2x00dev, "Queue allocation failed.\n");
679                 return -ENOMEM;
680         }
681
682         /*
683          * Initialize pointers
684          */
685         rt2x00dev->rx = queue;
686         rt2x00dev->tx = &queue[1];
687         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
688
689         /*
690          * Initialize queue parameters.
691          * RX: qid = QID_RX
692          * TX: qid = QID_AC_BE + index
693          * TX: cw_min: 2^5 = 32.
694          * TX: cw_max: 2^10 = 1024.
695          * BCN: qid = QID_BEACON
696          * ATIM: qid = QID_ATIM
697          */
698         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
699
700         qid = QID_AC_BE;
701         tx_queue_for_each(rt2x00dev, queue)
702                 rt2x00queue_init(rt2x00dev, queue, qid++);
703
704         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
705         if (req_atim)
706                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
707
708         return 0;
709 }
710
711 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
712 {
713         kfree(rt2x00dev->rx);
714         rt2x00dev->rx = NULL;
715         rt2x00dev->tx = NULL;
716         rt2x00dev->bcn = NULL;
717 }