rt2x00: use wiphy rfkill interface
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Radio control handlers.
34  */
35 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
36 {
37         int status;
38
39         /*
40          * Don't enable the radio twice.
41          * And check if the hardware button has been disabled.
42          */
43         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
44             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
45                 return 0;
46
47         /*
48          * Initialize all data queues.
49          */
50         rt2x00queue_init_queues(rt2x00dev);
51
52         /*
53          * Enable radio.
54          */
55         status =
56             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
57         if (status)
58                 return status;
59
60         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
61
62         rt2x00leds_led_radio(rt2x00dev, true);
63         rt2x00led_led_activity(rt2x00dev, true);
64
65         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
66
67         /*
68          * Enable RX.
69          */
70         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
71
72         /*
73          * Start the TX queues.
74          */
75         ieee80211_wake_queues(rt2x00dev->hw);
76
77         return 0;
78 }
79
80 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
81 {
82         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
83                 return;
84
85         /*
86          * Stop the TX queues in mac80211.
87          */
88         ieee80211_stop_queues(rt2x00dev->hw);
89         rt2x00queue_stop_queues(rt2x00dev);
90
91         /*
92          * Disable RX.
93          */
94         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
95
96         /*
97          * Disable radio.
98          */
99         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
100         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
101         rt2x00led_led_activity(rt2x00dev, false);
102         rt2x00leds_led_radio(rt2x00dev, false);
103 }
104
105 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
106 {
107         /*
108          * When we are disabling the RX, we should also stop the link tuner.
109          */
110         if (state == STATE_RADIO_RX_OFF)
111                 rt2x00link_stop_tuner(rt2x00dev);
112
113         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
114
115         /*
116          * When we are enabling the RX, we should also start the link tuner.
117          */
118         if (state == STATE_RADIO_RX_ON)
119                 rt2x00link_start_tuner(rt2x00dev);
120 }
121
122 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
123 {
124         struct rt2x00_dev *rt2x00dev =
125             container_of(work, struct rt2x00_dev, filter_work);
126
127         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
128 }
129
130 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
131                                           struct ieee80211_vif *vif)
132 {
133         struct rt2x00_dev *rt2x00dev = data;
134         struct rt2x00_intf *intf = vif_to_intf(vif);
135         struct ieee80211_bss_conf conf;
136         int delayed_flags;
137
138         /*
139          * Copy all data we need during this action under the protection
140          * of a spinlock. Otherwise race conditions might occur which results
141          * into an invalid configuration.
142          */
143         spin_lock(&intf->lock);
144
145         memcpy(&conf, &vif->bss_conf, sizeof(conf));
146         delayed_flags = intf->delayed_flags;
147         intf->delayed_flags = 0;
148
149         spin_unlock(&intf->lock);
150
151         /*
152          * It is possible the radio was disabled while the work had been
153          * scheduled. If that happens we should return here immediately,
154          * note that in the spinlock protected area above the delayed_flags
155          * have been cleared correctly.
156          */
157         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
158                 return;
159
160         if (delayed_flags & DELAYED_UPDATE_BEACON)
161                 rt2x00queue_update_beacon(rt2x00dev, vif, true);
162
163         if (delayed_flags & DELAYED_CONFIG_ERP)
164                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
165
166         if (delayed_flags & DELAYED_LED_ASSOC)
167                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
168 }
169
170 static void rt2x00lib_intf_scheduled(struct work_struct *work)
171 {
172         struct rt2x00_dev *rt2x00dev =
173             container_of(work, struct rt2x00_dev, intf_work);
174
175         /*
176          * Iterate over each interface and perform the
177          * requested configurations.
178          */
179         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
180                                             rt2x00lib_intf_scheduled_iter,
181                                             rt2x00dev);
182 }
183
184 /*
185  * Interrupt context handlers.
186  */
187 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
188                                       struct ieee80211_vif *vif)
189 {
190         struct rt2x00_dev *rt2x00dev = data;
191         struct rt2x00_intf *intf = vif_to_intf(vif);
192
193         if (vif->type != NL80211_IFTYPE_AP &&
194             vif->type != NL80211_IFTYPE_ADHOC &&
195             vif->type != NL80211_IFTYPE_MESH_POINT &&
196             vif->type != NL80211_IFTYPE_WDS)
197                 return;
198
199         /*
200          * Clean up the beacon skb.
201          */
202         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
203         intf->beacon->skb = NULL;
204
205         spin_lock(&intf->lock);
206         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
207         spin_unlock(&intf->lock);
208 }
209
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213                 return;
214
215         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
216                                                    rt2x00lib_beacondone_iter,
217                                                    rt2x00dev);
218
219         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
222
223 void rt2x00lib_txdone(struct queue_entry *entry,
224                       struct txdone_entry_desc *txdesc)
225 {
226         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
227         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
228         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
229         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
230         unsigned int header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
231         u8 rate_idx, rate_flags;
232
233         /*
234          * Unmap the skb.
235          */
236         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
237
238         /*
239          * Remove L2 padding which was added during
240          */
241         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
242                 rt2x00queue_payload_align(entry->skb, true, header_length);
243
244         /*
245          * If the IV/EIV data was stripped from the frame before it was
246          * passed to the hardware, we should now reinsert it again because
247          * mac80211 will expect the the same data to be present it the
248          * frame as it was passed to us.
249          */
250         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
251                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
252
253         /*
254          * Send frame to debugfs immediately, after this call is completed
255          * we are going to overwrite the skb->cb array.
256          */
257         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
258
259         /*
260          * Update TX statistics.
261          */
262         rt2x00dev->link.qual.tx_success +=
263             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
264             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
265         rt2x00dev->link.qual.tx_failed +=
266             test_bit(TXDONE_FAILURE, &txdesc->flags);
267
268         rate_idx = skbdesc->tx_rate_idx;
269         rate_flags = skbdesc->tx_rate_flags;
270
271         /*
272          * Initialize TX status
273          */
274         memset(&tx_info->status, 0, sizeof(tx_info->status));
275         tx_info->status.ack_signal = 0;
276         tx_info->status.rates[0].idx = rate_idx;
277         tx_info->status.rates[0].flags = rate_flags;
278         tx_info->status.rates[0].count = txdesc->retry + 1;
279         tx_info->status.rates[1].idx = -1; /* terminate */
280
281         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
282                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
283                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
284                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
285                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
286                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
287         }
288
289         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
290                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
291                                 test_bit(TXDONE_UNKNOWN, &txdesc->flags))
292                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
293                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
294                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
295         }
296
297         /*
298          * Only send the status report to mac80211 when TX status was
299          * requested by it. If this was a extra frame coming through
300          * a mac80211 library call (RTS/CTS) then we should not send the
301          * status report back.
302          */
303         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
304                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
305         else
306                 dev_kfree_skb_irq(entry->skb);
307
308         /*
309          * Make this entry available for reuse.
310          */
311         entry->skb = NULL;
312         entry->flags = 0;
313
314         rt2x00dev->ops->lib->clear_entry(entry);
315
316         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
317         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
318
319         /*
320          * If the data queue was below the threshold before the txdone
321          * handler we must make sure the packet queue in the mac80211 stack
322          * is reenabled when the txdone handler has finished.
323          */
324         if (!rt2x00queue_threshold(entry->queue))
325                 ieee80211_wake_queue(rt2x00dev->hw, qid);
326 }
327 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
328
329 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
330                                         struct rxdone_entry_desc *rxdesc)
331 {
332         struct ieee80211_supported_band *sband;
333         const struct rt2x00_rate *rate;
334         unsigned int i;
335         int signal;
336         int type;
337
338         /*
339          * For non-HT rates the MCS value needs to contain the
340          * actually used rate modulation (CCK or OFDM).
341          */
342         if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
343                 signal = RATE_MCS(rxdesc->rate_mode, rxdesc->signal);
344         else
345                 signal = rxdesc->signal;
346
347         type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
348
349         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
350         for (i = 0; i < sband->n_bitrates; i++) {
351                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
352
353                 if (((type == RXDONE_SIGNAL_PLCP) &&
354                      (rate->plcp == signal)) ||
355                     ((type == RXDONE_SIGNAL_BITRATE) &&
356                       (rate->bitrate == signal)) ||
357                     ((type == RXDONE_SIGNAL_MCS) &&
358                       (rate->mcs == signal))) {
359                         return i;
360                 }
361         }
362
363         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
364                 "signal=0x%.4x, type=%d.\n", signal, type);
365         return 0;
366 }
367
368 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
369                       struct queue_entry *entry)
370 {
371         struct rxdone_entry_desc rxdesc;
372         struct sk_buff *skb;
373         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
374         unsigned int header_length;
375         bool l2pad;
376         int rate_idx;
377         /*
378          * Allocate a new sk_buffer. If no new buffer available, drop the
379          * received frame and reuse the existing buffer.
380          */
381         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
382         if (!skb)
383                 return;
384
385         /*
386          * Unmap the skb.
387          */
388         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
389
390         /*
391          * Extract the RXD details.
392          */
393         memset(&rxdesc, 0, sizeof(rxdesc));
394         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
395
396         /* Trim buffer to correct size */
397         skb_trim(entry->skb, rxdesc.size);
398
399         /*
400          * The data behind the ieee80211 header must be
401          * aligned on a 4 byte boundary.
402          */
403         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
404         l2pad = !!(rxdesc.dev_flags & RXDONE_L2PAD);
405
406         /*
407          * Hardware might have stripped the IV/EIV/ICV data,
408          * in that case it is possible that the data was
409          * provided seperately (through hardware descriptor)
410          * in which case we should reinsert the data into the frame.
411          */
412         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
413             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
414                 rt2x00crypto_rx_insert_iv(entry->skb, l2pad, header_length,
415                                           &rxdesc);
416         else
417                 rt2x00queue_payload_align(entry->skb, l2pad, header_length);
418
419         /*
420          * Check if the frame was received using HT. In that case,
421          * the rate is the MCS index and should be passed to mac80211
422          * directly. Otherwise we need to translate the signal to
423          * the correct bitrate index.
424          */
425         if (rxdesc.rate_mode == RATE_MODE_CCK ||
426             rxdesc.rate_mode == RATE_MODE_OFDM) {
427                 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
428         } else {
429                 rxdesc.flags |= RX_FLAG_HT;
430                 rate_idx = rxdesc.signal;
431         }
432
433         /*
434          * Update extra components
435          */
436         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
437         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
438
439         rx_status->mactime = rxdesc.timestamp;
440         rx_status->rate_idx = rate_idx;
441         rx_status->qual = rt2x00link_calculate_signal(rt2x00dev, rxdesc.rssi);
442         rx_status->signal = rxdesc.rssi;
443         rx_status->noise = rxdesc.noise;
444         rx_status->flag = rxdesc.flags;
445         rx_status->antenna = rt2x00dev->link.ant.active.rx;
446
447         /*
448          * Send frame to mac80211 & debugfs.
449          * mac80211 will clean up the skb structure.
450          */
451         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
452         memcpy(IEEE80211_SKB_RXCB(entry->skb), rx_status, sizeof(*rx_status));
453         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb);
454
455         /*
456          * Replace the skb with the freshly allocated one.
457          */
458         entry->skb = skb;
459         entry->flags = 0;
460
461         rt2x00dev->ops->lib->clear_entry(entry);
462
463         rt2x00queue_index_inc(entry->queue, Q_INDEX);
464 }
465 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
466
467 /*
468  * Driver initialization handlers.
469  */
470 const struct rt2x00_rate rt2x00_supported_rates[12] = {
471         {
472                 .flags = DEV_RATE_CCK,
473                 .bitrate = 10,
474                 .ratemask = BIT(0),
475                 .plcp = 0x00,
476                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
477         },
478         {
479                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
480                 .bitrate = 20,
481                 .ratemask = BIT(1),
482                 .plcp = 0x01,
483                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
484         },
485         {
486                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
487                 .bitrate = 55,
488                 .ratemask = BIT(2),
489                 .plcp = 0x02,
490                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
491         },
492         {
493                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
494                 .bitrate = 110,
495                 .ratemask = BIT(3),
496                 .plcp = 0x03,
497                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
498         },
499         {
500                 .flags = DEV_RATE_OFDM,
501                 .bitrate = 60,
502                 .ratemask = BIT(4),
503                 .plcp = 0x0b,
504                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
505         },
506         {
507                 .flags = DEV_RATE_OFDM,
508                 .bitrate = 90,
509                 .ratemask = BIT(5),
510                 .plcp = 0x0f,
511                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
512         },
513         {
514                 .flags = DEV_RATE_OFDM,
515                 .bitrate = 120,
516                 .ratemask = BIT(6),
517                 .plcp = 0x0a,
518                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
519         },
520         {
521                 .flags = DEV_RATE_OFDM,
522                 .bitrate = 180,
523                 .ratemask = BIT(7),
524                 .plcp = 0x0e,
525                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
526         },
527         {
528                 .flags = DEV_RATE_OFDM,
529                 .bitrate = 240,
530                 .ratemask = BIT(8),
531                 .plcp = 0x09,
532                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
533         },
534         {
535                 .flags = DEV_RATE_OFDM,
536                 .bitrate = 360,
537                 .ratemask = BIT(9),
538                 .plcp = 0x0d,
539                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
540         },
541         {
542                 .flags = DEV_RATE_OFDM,
543                 .bitrate = 480,
544                 .ratemask = BIT(10),
545                 .plcp = 0x08,
546                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
547         },
548         {
549                 .flags = DEV_RATE_OFDM,
550                 .bitrate = 540,
551                 .ratemask = BIT(11),
552                 .plcp = 0x0c,
553                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
554         },
555 };
556
557 static void rt2x00lib_channel(struct ieee80211_channel *entry,
558                               const int channel, const int tx_power,
559                               const int value)
560 {
561         entry->center_freq = ieee80211_channel_to_frequency(channel);
562         entry->hw_value = value;
563         entry->max_power = tx_power;
564         entry->max_antenna_gain = 0xff;
565 }
566
567 static void rt2x00lib_rate(struct ieee80211_rate *entry,
568                            const u16 index, const struct rt2x00_rate *rate)
569 {
570         entry->flags = 0;
571         entry->bitrate = rate->bitrate;
572         entry->hw_value =index;
573         entry->hw_value_short = index;
574
575         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
576                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
577 }
578
579 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
580                                     struct hw_mode_spec *spec)
581 {
582         struct ieee80211_hw *hw = rt2x00dev->hw;
583         struct ieee80211_channel *channels;
584         struct ieee80211_rate *rates;
585         unsigned int num_rates;
586         unsigned int i;
587
588         num_rates = 0;
589         if (spec->supported_rates & SUPPORT_RATE_CCK)
590                 num_rates += 4;
591         if (spec->supported_rates & SUPPORT_RATE_OFDM)
592                 num_rates += 8;
593
594         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
595         if (!channels)
596                 return -ENOMEM;
597
598         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
599         if (!rates)
600                 goto exit_free_channels;
601
602         /*
603          * Initialize Rate list.
604          */
605         for (i = 0; i < num_rates; i++)
606                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
607
608         /*
609          * Initialize Channel list.
610          */
611         for (i = 0; i < spec->num_channels; i++) {
612                 rt2x00lib_channel(&channels[i],
613                                   spec->channels[i].channel,
614                                   spec->channels_info[i].tx_power1, i);
615         }
616
617         /*
618          * Intitialize 802.11b, 802.11g
619          * Rates: CCK, OFDM.
620          * Channels: 2.4 GHz
621          */
622         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
623                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
624                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
625                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
626                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
627                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
628                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
629                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
630                        &spec->ht, sizeof(spec->ht));
631         }
632
633         /*
634          * Intitialize 802.11a
635          * Rates: OFDM.
636          * Channels: OFDM, UNII, HiperLAN2.
637          */
638         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
639                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
640                     spec->num_channels - 14;
641                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
642                     num_rates - 4;
643                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
644                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
645                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
646                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
647                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
648                        &spec->ht, sizeof(spec->ht));
649         }
650
651         return 0;
652
653  exit_free_channels:
654         kfree(channels);
655         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
656         return -ENOMEM;
657 }
658
659 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
660 {
661         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
662                 ieee80211_unregister_hw(rt2x00dev->hw);
663
664         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
665                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
666                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
667                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
668                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
669         }
670
671         kfree(rt2x00dev->spec.channels_info);
672 }
673
674 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
675 {
676         struct hw_mode_spec *spec = &rt2x00dev->spec;
677         int status;
678
679         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
680                 return 0;
681
682         /*
683          * Initialize HW modes.
684          */
685         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
686         if (status)
687                 return status;
688
689         /*
690          * Initialize HW fields.
691          */
692         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
693
694         /*
695          * Register HW.
696          */
697         status = ieee80211_register_hw(rt2x00dev->hw);
698         if (status)
699                 return status;
700
701         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
702
703         return 0;
704 }
705
706 /*
707  * Initialization/uninitialization handlers.
708  */
709 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
710 {
711         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
712                 return;
713
714         /*
715          * Unregister extra components.
716          */
717         rt2x00rfkill_unregister(rt2x00dev);
718
719         /*
720          * Allow the HW to uninitialize.
721          */
722         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
723
724         /*
725          * Free allocated queue entries.
726          */
727         rt2x00queue_uninitialize(rt2x00dev);
728 }
729
730 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
731 {
732         int status;
733
734         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
735                 return 0;
736
737         /*
738          * Allocate all queue entries.
739          */
740         status = rt2x00queue_initialize(rt2x00dev);
741         if (status)
742                 return status;
743
744         /*
745          * Initialize the device.
746          */
747         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
748         if (status) {
749                 rt2x00queue_uninitialize(rt2x00dev);
750                 return status;
751         }
752
753         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
754
755         /*
756          * Register the extra components.
757          */
758         rt2x00rfkill_register(rt2x00dev);
759
760         return 0;
761 }
762
763 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
764 {
765         int retval;
766
767         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
768                 return 0;
769
770         /*
771          * If this is the first interface which is added,
772          * we should load the firmware now.
773          */
774         retval = rt2x00lib_load_firmware(rt2x00dev);
775         if (retval)
776                 return retval;
777
778         /*
779          * Initialize the device.
780          */
781         retval = rt2x00lib_initialize(rt2x00dev);
782         if (retval)
783                 return retval;
784
785         rt2x00dev->intf_ap_count = 0;
786         rt2x00dev->intf_sta_count = 0;
787         rt2x00dev->intf_associated = 0;
788
789         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
790
791         return 0;
792 }
793
794 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
795 {
796         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
797                 return;
798
799         /*
800          * Perhaps we can add something smarter here,
801          * but for now just disabling the radio should do.
802          */
803         rt2x00lib_disable_radio(rt2x00dev);
804
805         rt2x00dev->intf_ap_count = 0;
806         rt2x00dev->intf_sta_count = 0;
807         rt2x00dev->intf_associated = 0;
808 }
809
810 /*
811  * driver allocation handlers.
812  */
813 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
814 {
815         int retval = -ENOMEM;
816
817         mutex_init(&rt2x00dev->csr_mutex);
818
819         /*
820          * Make room for rt2x00_intf inside the per-interface
821          * structure ieee80211_vif.
822          */
823         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
824
825         /*
826          * Determine which operating modes are supported, all modes
827          * which require beaconing, depend on the availability of
828          * beacon entries.
829          */
830         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
831         if (rt2x00dev->ops->bcn->entry_num > 0)
832                 rt2x00dev->hw->wiphy->interface_modes |=
833                     BIT(NL80211_IFTYPE_ADHOC) |
834                     BIT(NL80211_IFTYPE_AP) |
835                     BIT(NL80211_IFTYPE_MESH_POINT) |
836                     BIT(NL80211_IFTYPE_WDS);
837
838         /*
839          * Let the driver probe the device to detect the capabilities.
840          */
841         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
842         if (retval) {
843                 ERROR(rt2x00dev, "Failed to allocate device.\n");
844                 goto exit;
845         }
846
847         /*
848          * Initialize configuration work.
849          */
850         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
851         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
852
853         /*
854          * Allocate queue array.
855          */
856         retval = rt2x00queue_allocate(rt2x00dev);
857         if (retval)
858                 goto exit;
859
860         /*
861          * Initialize ieee80211 structure.
862          */
863         retval = rt2x00lib_probe_hw(rt2x00dev);
864         if (retval) {
865                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
866                 goto exit;
867         }
868
869         /*
870          * Register extra components.
871          */
872         rt2x00link_register(rt2x00dev);
873         rt2x00leds_register(rt2x00dev);
874         rt2x00debug_register(rt2x00dev);
875
876         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
877
878         return 0;
879
880 exit:
881         rt2x00lib_remove_dev(rt2x00dev);
882
883         return retval;
884 }
885 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
886
887 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
888 {
889         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
890
891         /*
892          * Disable radio.
893          */
894         rt2x00lib_disable_radio(rt2x00dev);
895
896         /*
897          * Uninitialize device.
898          */
899         rt2x00lib_uninitialize(rt2x00dev);
900
901         /*
902          * Free extra components
903          */
904         rt2x00debug_deregister(rt2x00dev);
905         rt2x00leds_unregister(rt2x00dev);
906
907         /*
908          * Free ieee80211_hw memory.
909          */
910         rt2x00lib_remove_hw(rt2x00dev);
911
912         /*
913          * Free firmware image.
914          */
915         rt2x00lib_free_firmware(rt2x00dev);
916
917         /*
918          * Free queue structures.
919          */
920         rt2x00queue_free(rt2x00dev);
921 }
922 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
923
924 /*
925  * Device state handlers
926  */
927 #ifdef CONFIG_PM
928 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
929 {
930         NOTICE(rt2x00dev, "Going to sleep.\n");
931
932         /*
933          * Prevent mac80211 from accessing driver while suspended.
934          */
935         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
936                 return 0;
937
938         /*
939          * Cleanup as much as possible.
940          */
941         rt2x00lib_uninitialize(rt2x00dev);
942
943         /*
944          * Suspend/disable extra components.
945          */
946         rt2x00leds_suspend(rt2x00dev);
947         rt2x00debug_deregister(rt2x00dev);
948
949         /*
950          * Set device mode to sleep for power management,
951          * on some hardware this call seems to consistently fail.
952          * From the specifications it is hard to tell why it fails,
953          * and if this is a "bad thing".
954          * Overall it is safe to just ignore the failure and
955          * continue suspending. The only downside is that the
956          * device will not be in optimal power save mode, but with
957          * the radio and the other components already disabled the
958          * device is as good as disabled.
959          */
960         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
961                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
962                         "continue suspending.\n");
963
964         return 0;
965 }
966 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
967
968 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
969 {
970         NOTICE(rt2x00dev, "Waking up.\n");
971
972         /*
973          * Restore/enable extra components.
974          */
975         rt2x00debug_register(rt2x00dev);
976         rt2x00leds_resume(rt2x00dev);
977
978         /*
979          * We are ready again to receive requests from mac80211.
980          */
981         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
982
983         return 0;
984 }
985 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
986 #endif /* CONFIG_PM */
987
988 /*
989  * rt2x00lib module information.
990  */
991 MODULE_AUTHOR(DRV_PROJECT);
992 MODULE_VERSION(DRV_VERSION);
993 MODULE_DESCRIPTION("rt2x00 library");
994 MODULE_LICENSE("GPL");