Merge branch 'hotfixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         enum antenna rx = rt2x00dev->link.ant.active.rx;
180         enum antenna tx = rt2x00dev->link.ant.active.tx;
181         int sample_a =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
183         int sample_b =
184             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         enum antenna rx = rt2x00dev->link.ant.active.rx;
214         enum antenna tx = rt2x00dev->link.ant.active.tx;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         /*
219          * Legacy driver indicates that we should swap antenna's
220          * when the difference in RSSI is greater that 5. This
221          * also should be done when the RSSI was actually better
222          * then the previous sample.
223          * When the difference exceeds the threshold we should
224          * sample the rssi from the other antenna to make a valid
225          * comparison between the 2 antennas.
226          */
227         if (abs(rssi_curr - rssi_old) < 5)
228                 return;
229
230         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
231
232         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
233                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
234
235         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
236                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
237
238         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
239 }
240
241 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
242 {
243         /*
244          * Determine if software diversity is enabled for
245          * either the TX or RX antenna (or both).
246          * Always perform this check since within the link
247          * tuner interval the configuration might have changed.
248          */
249         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
250         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
251
252         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
253             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
256             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->hw->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct ieee80211_bss_conf conf;
413         int delayed_flags;
414
415         /*
416          * Copy all data we need during this action under the protection
417          * of a spinlock. Otherwise race conditions might occur which results
418          * into an invalid configuration.
419          */
420         spin_lock(&intf->lock);
421
422         memcpy(&conf, &intf->conf, sizeof(conf));
423         delayed_flags = intf->delayed_flags;
424         intf->delayed_flags = 0;
425
426         spin_unlock(&intf->lock);
427
428         /*
429          * It is possible the radio was disabled while the work had been
430          * scheduled. If that happens we should return here immediately,
431          * note that in the spinlock protected area above the delayed_flags
432          * have been cleared correctly.
433          */
434         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
435                 return;
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON)
438                 rt2x00queue_update_beacon(rt2x00dev, vif);
439
440         if (delayed_flags & DELAYED_CONFIG_ERP)
441                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442
443         if (delayed_flags & DELAYED_LED_ASSOC)
444                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
445 }
446
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, intf_work);
451
452         /*
453          * Iterate over each interface and perform the
454          * requested configurations.
455          */
456         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457                                             rt2x00lib_intf_scheduled_iter,
458                                             rt2x00dev);
459 }
460
461 /*
462  * Interrupt context handlers.
463  */
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465                                       struct ieee80211_vif *vif)
466 {
467         struct rt2x00_dev *rt2x00dev = data;
468         struct rt2x00_intf *intf = vif_to_intf(vif);
469
470         if (vif->type != IEEE80211_IF_TYPE_AP &&
471             vif->type != IEEE80211_IF_TYPE_IBSS)
472                 return;
473
474         /*
475          * Clean up the beacon skb.
476          */
477         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478         intf->beacon->skb = NULL;
479
480         spin_lock(&intf->lock);
481         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482         spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
488                 return;
489
490         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491                                                    rt2x00lib_beacondone_iter,
492                                                    rt2x00dev);
493
494         schedule_work(&rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499                       struct txdone_entry_desc *txdesc)
500 {
501         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504
505         /*
506          * Unmap the skb.
507          */
508         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
509
510         /*
511          * Send frame to debugfs immediately, after this call is completed
512          * we are going to overwrite the skb->cb array.
513          */
514         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
515
516         /*
517          * Update TX statistics.
518          */
519         rt2x00dev->link.qual.tx_success +=
520             test_bit(TXDONE_SUCCESS, &txdesc->flags);
521         rt2x00dev->link.qual.tx_failed +=
522             test_bit(TXDONE_FAILURE, &txdesc->flags);
523
524         /*
525          * Initialize TX status
526          */
527         memset(&tx_info->status, 0, sizeof(tx_info->status));
528         tx_info->status.ack_signal = 0;
529         tx_info->status.excessive_retries =
530             test_bit(TXDONE_EXCESSIVE_RETRY, &txdesc->flags);
531         tx_info->status.retry_count = txdesc->retry;
532
533         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
534                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
535                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
536                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
537                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
538         }
539
540         if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
541                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
542                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
543                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
544                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
545         }
546
547         /*
548          * Only send the status report to mac80211 when TX status was
549          * requested by it. If this was a extra frame coming through
550          * a mac80211 library call (RTS/CTS) then we should not send the
551          * status report back.
552          */
553         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
554                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
555         else
556                 dev_kfree_skb_irq(entry->skb);
557
558         /*
559          * Make this entry available for reuse.
560          */
561         entry->skb = NULL;
562         entry->flags = 0;
563
564         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
565
566         __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
567         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
568
569         /*
570          * If the data queue was below the threshold before the txdone
571          * handler we must make sure the packet queue in the mac80211 stack
572          * is reenabled when the txdone handler has finished.
573          */
574         if (!rt2x00queue_threshold(entry->queue))
575                 ieee80211_wake_queue(rt2x00dev->hw, qid);
576 }
577 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
578
579 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
580                       struct queue_entry *entry)
581 {
582         struct rxdone_entry_desc rxdesc;
583         struct sk_buff *skb;
584         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
585         struct ieee80211_supported_band *sband;
586         struct ieee80211_hdr *hdr;
587         const struct rt2x00_rate *rate;
588         unsigned int header_size;
589         unsigned int align;
590         unsigned int i;
591         int idx = -1;
592
593         /*
594          * Allocate a new sk_buffer. If no new buffer available, drop the
595          * received frame and reuse the existing buffer.
596          */
597         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
598         if (!skb)
599                 return;
600
601         /*
602          * Unmap the skb.
603          */
604         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
605
606         /*
607          * Extract the RXD details.
608          */
609         memset(&rxdesc, 0, sizeof(rxdesc));
610         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
611
612         /*
613          * The data behind the ieee80211 header must be
614          * aligned on a 4 byte boundary.
615          */
616         header_size = ieee80211_get_hdrlen_from_skb(entry->skb);
617         align = ((unsigned long)(entry->skb->data + header_size)) & 3;
618
619         if (align) {
620                 skb_push(entry->skb, align);
621                 /* Move entire frame in 1 command */
622                 memmove(entry->skb->data, entry->skb->data + align,
623                         rxdesc.size);
624         }
625
626         /* Update data pointers, trim buffer to correct size */
627         skb_trim(entry->skb, rxdesc.size);
628
629         /*
630          * Update RX statistics.
631          */
632         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
633         for (i = 0; i < sband->n_bitrates; i++) {
634                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
635
636                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
637                      (rate->plcp == rxdesc.signal)) ||
638                     (!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
639                       (rate->bitrate == rxdesc.signal))) {
640                         idx = i;
641                         break;
642                 }
643         }
644
645         if (idx < 0) {
646                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
647                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
648                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
649                 idx = 0;
650         }
651
652         /*
653          * Only update link status if this is a beacon frame carrying our bssid.
654          */
655         hdr = (struct ieee80211_hdr *)entry->skb->data;
656         if (ieee80211_is_beacon(hdr->frame_control) &&
657             (rxdesc.dev_flags & RXDONE_MY_BSS))
658                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
659
660         rt2x00dev->link.qual.rx_success++;
661
662         rx_status->mactime = rxdesc.timestamp;
663         rx_status->rate_idx = idx;
664         rx_status->qual =
665             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
666         rx_status->signal = rxdesc.rssi;
667         rx_status->flag = rxdesc.flags;
668         rx_status->antenna = rt2x00dev->link.ant.active.rx;
669
670         /*
671          * Send frame to mac80211 & debugfs.
672          * mac80211 will clean up the skb structure.
673          */
674         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
675         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
676
677         /*
678          * Replace the skb with the freshly allocated one.
679          */
680         entry->skb = skb;
681         entry->flags = 0;
682
683         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
684
685         rt2x00queue_index_inc(entry->queue, Q_INDEX);
686 }
687 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
688
689 /*
690  * Driver initialization handlers.
691  */
692 const struct rt2x00_rate rt2x00_supported_rates[12] = {
693         {
694                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
695                 .bitrate = 10,
696                 .ratemask = BIT(0),
697                 .plcp = 0x00,
698         },
699         {
700                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
701                 .bitrate = 20,
702                 .ratemask = BIT(1),
703                 .plcp = 0x01,
704         },
705         {
706                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
707                 .bitrate = 55,
708                 .ratemask = BIT(2),
709                 .plcp = 0x02,
710         },
711         {
712                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
713                 .bitrate = 110,
714                 .ratemask = BIT(3),
715                 .plcp = 0x03,
716         },
717         {
718                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
719                 .bitrate = 60,
720                 .ratemask = BIT(4),
721                 .plcp = 0x0b,
722         },
723         {
724                 .flags = DEV_RATE_OFDM,
725                 .bitrate = 90,
726                 .ratemask = BIT(5),
727                 .plcp = 0x0f,
728         },
729         {
730                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
731                 .bitrate = 120,
732                 .ratemask = BIT(6),
733                 .plcp = 0x0a,
734         },
735         {
736                 .flags = DEV_RATE_OFDM,
737                 .bitrate = 180,
738                 .ratemask = BIT(7),
739                 .plcp = 0x0e,
740         },
741         {
742                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
743                 .bitrate = 240,
744                 .ratemask = BIT(8),
745                 .plcp = 0x09,
746         },
747         {
748                 .flags = DEV_RATE_OFDM,
749                 .bitrate = 360,
750                 .ratemask = BIT(9),
751                 .plcp = 0x0d,
752         },
753         {
754                 .flags = DEV_RATE_OFDM,
755                 .bitrate = 480,
756                 .ratemask = BIT(10),
757                 .plcp = 0x08,
758         },
759         {
760                 .flags = DEV_RATE_OFDM,
761                 .bitrate = 540,
762                 .ratemask = BIT(11),
763                 .plcp = 0x0c,
764         },
765 };
766
767 static void rt2x00lib_channel(struct ieee80211_channel *entry,
768                               const int channel, const int tx_power,
769                               const int value)
770 {
771         entry->center_freq = ieee80211_channel_to_frequency(channel);
772         entry->hw_value = value;
773         entry->max_power = tx_power;
774         entry->max_antenna_gain = 0xff;
775 }
776
777 static void rt2x00lib_rate(struct ieee80211_rate *entry,
778                            const u16 index, const struct rt2x00_rate *rate)
779 {
780         entry->flags = 0;
781         entry->bitrate = rate->bitrate;
782         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
783         entry->hw_value_short = entry->hw_value;
784
785         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
786                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
787                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
788         }
789 }
790
791 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
792                                     struct hw_mode_spec *spec)
793 {
794         struct ieee80211_hw *hw = rt2x00dev->hw;
795         struct ieee80211_channel *channels;
796         struct ieee80211_rate *rates;
797         unsigned int num_rates;
798         unsigned int i;
799         unsigned char tx_power;
800
801         num_rates = 0;
802         if (spec->supported_rates & SUPPORT_RATE_CCK)
803                 num_rates += 4;
804         if (spec->supported_rates & SUPPORT_RATE_OFDM)
805                 num_rates += 8;
806
807         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
808         if (!channels)
809                 return -ENOMEM;
810
811         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
812         if (!rates)
813                 goto exit_free_channels;
814
815         /*
816          * Initialize Rate list.
817          */
818         for (i = 0; i < num_rates; i++)
819                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
820
821         /*
822          * Initialize Channel list.
823          */
824         for (i = 0; i < spec->num_channels; i++) {
825                 if (spec->channels[i].channel <= 14) {
826                         if (spec->tx_power_bg)
827                                 tx_power = spec->tx_power_bg[i];
828                         else
829                                 tx_power = spec->tx_power_default;
830                 } else {
831                         if (spec->tx_power_a)
832                                 tx_power = spec->tx_power_a[i];
833                         else
834                                 tx_power = spec->tx_power_default;
835                 }
836
837                 rt2x00lib_channel(&channels[i],
838                                   spec->channels[i].channel, tx_power, i);
839         }
840
841         /*
842          * Intitialize 802.11b, 802.11g
843          * Rates: CCK, OFDM.
844          * Channels: 2.4 GHz
845          */
846         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
847                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
848                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
849                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
850                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
851                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
852                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
853         }
854
855         /*
856          * Intitialize 802.11a
857          * Rates: OFDM.
858          * Channels: OFDM, UNII, HiperLAN2.
859          */
860         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
861                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
862                     spec->num_channels - 14;
863                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
864                     num_rates - 4;
865                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
866                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
867                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
868                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
869         }
870
871         return 0;
872
873  exit_free_channels:
874         kfree(channels);
875         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
876         return -ENOMEM;
877 }
878
879 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
880 {
881         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
882                 ieee80211_unregister_hw(rt2x00dev->hw);
883
884         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
885                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
886                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
887                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
888                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
889         }
890 }
891
892 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
893 {
894         struct hw_mode_spec *spec = &rt2x00dev->spec;
895         int status;
896
897         /*
898          * Initialize HW modes.
899          */
900         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
901         if (status)
902                 return status;
903
904         /*
905          * Initialize HW fields.
906          */
907         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
908
909         /*
910          * Register HW.
911          */
912         status = ieee80211_register_hw(rt2x00dev->hw);
913         if (status) {
914                 rt2x00lib_remove_hw(rt2x00dev);
915                 return status;
916         }
917
918         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
919
920         return 0;
921 }
922
923 /*
924  * Initialization/uninitialization handlers.
925  */
926 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
927 {
928         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
929                 return;
930
931         /*
932          * Unregister extra components.
933          */
934         rt2x00rfkill_unregister(rt2x00dev);
935
936         /*
937          * Allow the HW to uninitialize.
938          */
939         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
940
941         /*
942          * Free allocated queue entries.
943          */
944         rt2x00queue_uninitialize(rt2x00dev);
945 }
946
947 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
948 {
949         int status;
950
951         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
952                 return 0;
953
954         /*
955          * Allocate all queue entries.
956          */
957         status = rt2x00queue_initialize(rt2x00dev);
958         if (status)
959                 return status;
960
961         /*
962          * Initialize the device.
963          */
964         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
965         if (status) {
966                 rt2x00queue_uninitialize(rt2x00dev);
967                 return status;
968         }
969
970         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
971
972         /*
973          * Register the extra components.
974          */
975         rt2x00rfkill_register(rt2x00dev);
976
977         return 0;
978 }
979
980 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
981 {
982         int retval;
983
984         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
985                 return 0;
986
987         /*
988          * If this is the first interface which is added,
989          * we should load the firmware now.
990          */
991         retval = rt2x00lib_load_firmware(rt2x00dev);
992         if (retval)
993                 return retval;
994
995         /*
996          * Initialize the device.
997          */
998         retval = rt2x00lib_initialize(rt2x00dev);
999         if (retval)
1000                 return retval;
1001
1002         /*
1003          * Enable radio.
1004          */
1005         retval = rt2x00lib_enable_radio(rt2x00dev);
1006         if (retval) {
1007                 rt2x00lib_uninitialize(rt2x00dev);
1008                 return retval;
1009         }
1010
1011         rt2x00dev->intf_ap_count = 0;
1012         rt2x00dev->intf_sta_count = 0;
1013         rt2x00dev->intf_associated = 0;
1014
1015         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1016         __set_bit(DEVICE_DIRTY_CONFIG, &rt2x00dev->flags);
1017
1018         return 0;
1019 }
1020
1021 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1022 {
1023         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1024                 return;
1025
1026         /*
1027          * Perhaps we can add something smarter here,
1028          * but for now just disabling the radio should do.
1029          */
1030         rt2x00lib_disable_radio(rt2x00dev);
1031
1032         rt2x00dev->intf_ap_count = 0;
1033         rt2x00dev->intf_sta_count = 0;
1034         rt2x00dev->intf_associated = 0;
1035
1036         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1037 }
1038
1039 /*
1040  * driver allocation handlers.
1041  */
1042 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1043 {
1044         int retval = -ENOMEM;
1045
1046         /*
1047          * Make room for rt2x00_intf inside the per-interface
1048          * structure ieee80211_vif.
1049          */
1050         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1051
1052         /*
1053          * Let the driver probe the device to detect the capabilities.
1054          */
1055         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1056         if (retval) {
1057                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1058                 goto exit;
1059         }
1060
1061         /*
1062          * Initialize configuration work.
1063          */
1064         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1065         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1066         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1067
1068         /*
1069          * Allocate queue array.
1070          */
1071         retval = rt2x00queue_allocate(rt2x00dev);
1072         if (retval)
1073                 goto exit;
1074
1075         /*
1076          * Initialize ieee80211 structure.
1077          */
1078         retval = rt2x00lib_probe_hw(rt2x00dev);
1079         if (retval) {
1080                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1081                 goto exit;
1082         }
1083
1084         /*
1085          * Register extra components.
1086          */
1087         rt2x00leds_register(rt2x00dev);
1088         rt2x00rfkill_allocate(rt2x00dev);
1089         rt2x00debug_register(rt2x00dev);
1090
1091         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1092
1093         return 0;
1094
1095 exit:
1096         rt2x00lib_remove_dev(rt2x00dev);
1097
1098         return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1101
1102 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1103 {
1104         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1105
1106         /*
1107          * Disable radio.
1108          */
1109         rt2x00lib_disable_radio(rt2x00dev);
1110
1111         /*
1112          * Uninitialize device.
1113          */
1114         rt2x00lib_uninitialize(rt2x00dev);
1115
1116         /*
1117          * Free extra components
1118          */
1119         rt2x00debug_deregister(rt2x00dev);
1120         rt2x00rfkill_free(rt2x00dev);
1121         rt2x00leds_unregister(rt2x00dev);
1122
1123         /*
1124          * Free ieee80211_hw memory.
1125          */
1126         rt2x00lib_remove_hw(rt2x00dev);
1127
1128         /*
1129          * Free firmware image.
1130          */
1131         rt2x00lib_free_firmware(rt2x00dev);
1132
1133         /*
1134          * Free queue structures.
1135          */
1136         rt2x00queue_free(rt2x00dev);
1137 }
1138 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1139
1140 /*
1141  * Device state handlers
1142  */
1143 #ifdef CONFIG_PM
1144 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1145 {
1146         int retval;
1147
1148         NOTICE(rt2x00dev, "Going to sleep.\n");
1149         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1150
1151         /*
1152          * Only continue if mac80211 has open interfaces.
1153          */
1154         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1155                 goto exit;
1156         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1157
1158         /*
1159          * Disable radio.
1160          */
1161         rt2x00lib_stop(rt2x00dev);
1162         rt2x00lib_uninitialize(rt2x00dev);
1163
1164         /*
1165          * Suspend/disable extra components.
1166          */
1167         rt2x00leds_suspend(rt2x00dev);
1168         rt2x00debug_deregister(rt2x00dev);
1169
1170 exit:
1171         /*
1172          * Set device mode to sleep for power management,
1173          * on some hardware this call seems to consistently fail.
1174          * From the specifications it is hard to tell why it fails,
1175          * and if this is a "bad thing".
1176          * Overall it is safe to just ignore the failure and
1177          * continue suspending. The only downside is that the
1178          * device will not be in optimal power save mode, but with
1179          * the radio and the other components already disabled the
1180          * device is as good as disabled.
1181          */
1182         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1183         if (retval)
1184                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1185                         "continue suspending.\n");
1186
1187         return 0;
1188 }
1189 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1190
1191 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1192                                   struct ieee80211_vif *vif)
1193 {
1194         struct rt2x00_dev *rt2x00dev = data;
1195         struct rt2x00_intf *intf = vif_to_intf(vif);
1196
1197         spin_lock(&intf->lock);
1198
1199         rt2x00lib_config_intf(rt2x00dev, intf,
1200                               vif->type, intf->mac, intf->bssid);
1201
1202
1203         /*
1204          * Master or Ad-hoc mode require a new beacon update.
1205          */
1206         if (vif->type == IEEE80211_IF_TYPE_AP ||
1207             vif->type == IEEE80211_IF_TYPE_IBSS)
1208                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1209
1210         spin_unlock(&intf->lock);
1211 }
1212
1213 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1214 {
1215         int retval;
1216
1217         NOTICE(rt2x00dev, "Waking up.\n");
1218
1219         /*
1220          * Restore/enable extra components.
1221          */
1222         rt2x00debug_register(rt2x00dev);
1223         rt2x00leds_resume(rt2x00dev);
1224
1225         /*
1226          * Only continue if mac80211 had open interfaces.
1227          */
1228         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1229                 return 0;
1230
1231         /*
1232          * Reinitialize device and all active interfaces.
1233          */
1234         retval = rt2x00lib_start(rt2x00dev);
1235         if (retval)
1236                 goto exit;
1237
1238         /*
1239          * Reconfigure device.
1240          */
1241         retval = rt2x00mac_config(rt2x00dev->hw, &rt2x00dev->hw->conf);
1242         if (retval)
1243                 goto exit;
1244
1245         /*
1246          * Iterator over each active interface to
1247          * reconfigure the hardware.
1248          */
1249         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1250                                             rt2x00lib_resume_intf, rt2x00dev);
1251
1252         /*
1253          * We are ready again to receive requests from mac80211.
1254          */
1255         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1256
1257         /*
1258          * It is possible that during that mac80211 has attempted
1259          * to send frames while we were suspending or resuming.
1260          * In that case we have disabled the TX queue and should
1261          * now enable it again
1262          */
1263         ieee80211_wake_queues(rt2x00dev->hw);
1264
1265         /*
1266          * During interface iteration we might have changed the
1267          * delayed_flags, time to handles the event by calling
1268          * the work handler directly.
1269          */
1270         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1271
1272         return 0;
1273
1274 exit:
1275         rt2x00lib_disable_radio(rt2x00dev);
1276         rt2x00lib_uninitialize(rt2x00dev);
1277         rt2x00debug_deregister(rt2x00dev);
1278
1279         return retval;
1280 }
1281 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1282 #endif /* CONFIG_PM */
1283
1284 /*
1285  * rt2x00lib module information.
1286  */
1287 MODULE_AUTHOR(DRV_PROJECT);
1288 MODULE_VERSION(DRV_VERSION);
1289 MODULE_DESCRIPTION("rt2x00 library");
1290 MODULE_LICENSE("GPL");