Merge branch 'for-greg' of git://gitorious.org/usb/usb into usb-linus
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable queues.
70          */
71         rt2x00queue_start_queues(rt2x00dev);
72         rt2x00link_start_tuner(rt2x00dev);
73
74         /*
75          * Start watchdog monitoring.
76          */
77         rt2x00link_start_watchdog(rt2x00dev);
78
79         return 0;
80 }
81
82 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
83 {
84         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
85                 return;
86
87         /*
88          * Stop watchdog monitoring.
89          */
90         rt2x00link_stop_watchdog(rt2x00dev);
91
92         /*
93          * Stop all queues
94          */
95         rt2x00link_stop_tuner(rt2x00dev);
96         rt2x00queue_stop_queues(rt2x00dev);
97         rt2x00queue_flush_queues(rt2x00dev, true);
98
99         /*
100          * Disable radio.
101          */
102         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
103         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
104         rt2x00led_led_activity(rt2x00dev, false);
105         rt2x00leds_led_radio(rt2x00dev, false);
106 }
107
108 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
109                                           struct ieee80211_vif *vif)
110 {
111         struct rt2x00_dev *rt2x00dev = data;
112         struct rt2x00_intf *intf = vif_to_intf(vif);
113
114         /*
115          * It is possible the radio was disabled while the work had been
116          * scheduled. If that happens we should return here immediately,
117          * note that in the spinlock protected area above the delayed_flags
118          * have been cleared correctly.
119          */
120         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
121                 return;
122
123         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
124                 rt2x00queue_update_beacon(rt2x00dev, vif);
125 }
126
127 static void rt2x00lib_intf_scheduled(struct work_struct *work)
128 {
129         struct rt2x00_dev *rt2x00dev =
130             container_of(work, struct rt2x00_dev, intf_work);
131
132         /*
133          * Iterate over each interface and perform the
134          * requested configurations.
135          */
136         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
137                                             rt2x00lib_intf_scheduled_iter,
138                                             rt2x00dev);
139 }
140
141 /*
142  * Interrupt context handlers.
143  */
144 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
145                                      struct ieee80211_vif *vif)
146 {
147         struct rt2x00_dev *rt2x00dev = data;
148         struct sk_buff *skb;
149
150         /*
151          * Only AP mode interfaces do broad- and multicast buffering
152          */
153         if (vif->type != NL80211_IFTYPE_AP)
154                 return;
155
156         /*
157          * Send out buffered broad- and multicast frames
158          */
159         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
160         while (skb) {
161                 rt2x00mac_tx(rt2x00dev->hw, skb);
162                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
163         }
164 }
165
166 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
167                                         struct ieee80211_vif *vif)
168 {
169         struct rt2x00_dev *rt2x00dev = data;
170
171         if (vif->type != NL80211_IFTYPE_AP &&
172             vif->type != NL80211_IFTYPE_ADHOC &&
173             vif->type != NL80211_IFTYPE_MESH_POINT &&
174             vif->type != NL80211_IFTYPE_WDS)
175                 return;
176
177         /*
178          * Update the beacon without locking. This is safe on PCI devices
179          * as they only update the beacon periodically here. This should
180          * never be called for USB devices.
181          */
182         WARN_ON(rt2x00_is_usb(rt2x00dev));
183         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
184 }
185
186 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
187 {
188         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
189                 return;
190
191         /* send buffered bc/mc frames out for every bssid */
192         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
193                                                    rt2x00lib_bc_buffer_iter,
194                                                    rt2x00dev);
195         /*
196          * Devices with pre tbtt interrupt don't need to update the beacon
197          * here as they will fetch the next beacon directly prior to
198          * transmission.
199          */
200         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
201                 return;
202
203         /* fetch next beacon */
204         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
205                                                    rt2x00lib_beaconupdate_iter,
206                                                    rt2x00dev);
207 }
208 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
209
210 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
211 {
212         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213                 return;
214
215         /* fetch next beacon */
216         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
217                                                    rt2x00lib_beaconupdate_iter,
218                                                    rt2x00dev);
219 }
220 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
221
222 void rt2x00lib_dmastart(struct queue_entry *entry)
223 {
224         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
225         rt2x00queue_index_inc(entry->queue, Q_INDEX);
226 }
227 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
228
229 void rt2x00lib_dmadone(struct queue_entry *entry)
230 {
231         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
232         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
233         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
234 }
235 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
236
237 void rt2x00lib_txdone(struct queue_entry *entry,
238                       struct txdone_entry_desc *txdesc)
239 {
240         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
241         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
242         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
243         unsigned int header_length, i;
244         u8 rate_idx, rate_flags, retry_rates;
245         u8 skbdesc_flags = skbdesc->flags;
246         bool success;
247
248         /*
249          * Unmap the skb.
250          */
251         rt2x00queue_unmap_skb(entry);
252
253         /*
254          * Remove the extra tx headroom from the skb.
255          */
256         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
257
258         /*
259          * Signal that the TX descriptor is no longer in the skb.
260          */
261         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
262
263         /*
264          * Determine the length of 802.11 header.
265          */
266         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
267
268         /*
269          * Remove L2 padding which was added during
270          */
271         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
272                 rt2x00queue_remove_l2pad(entry->skb, header_length);
273
274         /*
275          * If the IV/EIV data was stripped from the frame before it was
276          * passed to the hardware, we should now reinsert it again because
277          * mac80211 will expect the same data to be present it the
278          * frame as it was passed to us.
279          */
280         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
281                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
282
283         /*
284          * Send frame to debugfs immediately, after this call is completed
285          * we are going to overwrite the skb->cb array.
286          */
287         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
288
289         /*
290          * Determine if the frame has been successfully transmitted.
291          */
292         success =
293             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
294             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
295
296         /*
297          * Update TX statistics.
298          */
299         rt2x00dev->link.qual.tx_success += success;
300         rt2x00dev->link.qual.tx_failed += !success;
301
302         rate_idx = skbdesc->tx_rate_idx;
303         rate_flags = skbdesc->tx_rate_flags;
304         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
305             (txdesc->retry + 1) : 1;
306
307         /*
308          * Initialize TX status
309          */
310         memset(&tx_info->status, 0, sizeof(tx_info->status));
311         tx_info->status.ack_signal = 0;
312
313         /*
314          * Frame was send with retries, hardware tried
315          * different rates to send out the frame, at each
316          * retry it lowered the rate 1 step except when the
317          * lowest rate was used.
318          */
319         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
320                 tx_info->status.rates[i].idx = rate_idx - i;
321                 tx_info->status.rates[i].flags = rate_flags;
322
323                 if (rate_idx - i == 0) {
324                         /*
325                          * The lowest rate (index 0) was used until the
326                          * number of max retries was reached.
327                          */
328                         tx_info->status.rates[i].count = retry_rates - i;
329                         i++;
330                         break;
331                 }
332                 tx_info->status.rates[i].count = 1;
333         }
334         if (i < (IEEE80211_TX_MAX_RATES - 1))
335                 tx_info->status.rates[i].idx = -1; /* terminate */
336
337         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
338                 if (success)
339                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
340                 else
341                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
342         }
343
344         /*
345          * Every single frame has it's own tx status, hence report
346          * every frame as ampdu of size 1.
347          *
348          * TODO: if we can find out how many frames were aggregated
349          * by the hw we could provide the real ampdu_len to mac80211
350          * which would allow the rc algorithm to better decide on
351          * which rates are suitable.
352          */
353         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
354                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
355                 tx_info->status.ampdu_len = 1;
356                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
357         }
358
359         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
360                 if (success)
361                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
362                 else
363                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
364         }
365
366         /*
367          * Only send the status report to mac80211 when it's a frame
368          * that originated in mac80211. If this was a extra frame coming
369          * through a mac80211 library call (RTS/CTS) then we should not
370          * send the status report back.
371          */
372         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
373                 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
374                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
375                 else
376                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
377         } else
378                 dev_kfree_skb_any(entry->skb);
379
380         /*
381          * Make this entry available for reuse.
382          */
383         entry->skb = NULL;
384         entry->flags = 0;
385
386         rt2x00dev->ops->lib->clear_entry(entry);
387
388         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
389
390         /*
391          * If the data queue was below the threshold before the txdone
392          * handler we must make sure the packet queue in the mac80211 stack
393          * is reenabled when the txdone handler has finished.
394          */
395         if (!rt2x00queue_threshold(entry->queue))
396                 rt2x00queue_unpause_queue(entry->queue);
397 }
398 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
399
400 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
401 {
402         struct txdone_entry_desc txdesc;
403
404         txdesc.flags = 0;
405         __set_bit(status, &txdesc.flags);
406         txdesc.retry = 0;
407
408         rt2x00lib_txdone(entry, &txdesc);
409 }
410 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
411
412 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
413                                         struct rxdone_entry_desc *rxdesc)
414 {
415         struct ieee80211_supported_band *sband;
416         const struct rt2x00_rate *rate;
417         unsigned int i;
418         int signal = rxdesc->signal;
419         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
420
421         switch (rxdesc->rate_mode) {
422         case RATE_MODE_CCK:
423         case RATE_MODE_OFDM:
424                 /*
425                  * For non-HT rates the MCS value needs to contain the
426                  * actually used rate modulation (CCK or OFDM).
427                  */
428                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
429                         signal = RATE_MCS(rxdesc->rate_mode, signal);
430
431                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
432                 for (i = 0; i < sband->n_bitrates; i++) {
433                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
434                         if (((type == RXDONE_SIGNAL_PLCP) &&
435                              (rate->plcp == signal)) ||
436                             ((type == RXDONE_SIGNAL_BITRATE) &&
437                               (rate->bitrate == signal)) ||
438                             ((type == RXDONE_SIGNAL_MCS) &&
439                               (rate->mcs == signal))) {
440                                 return i;
441                         }
442                 }
443                 break;
444         case RATE_MODE_HT_MIX:
445         case RATE_MODE_HT_GREENFIELD:
446                 if (signal >= 0 && signal <= 76)
447                         return signal;
448                 break;
449         default:
450                 break;
451         }
452
453         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
454                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
455                 rxdesc->rate_mode, signal, type);
456         return 0;
457 }
458
459 void rt2x00lib_rxdone(struct queue_entry *entry)
460 {
461         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
462         struct rxdone_entry_desc rxdesc;
463         struct sk_buff *skb;
464         struct ieee80211_rx_status *rx_status;
465         unsigned int header_length;
466         int rate_idx;
467
468         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
469             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
470                 goto submit_entry;
471
472         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
473                 goto submit_entry;
474
475         /*
476          * Allocate a new sk_buffer. If no new buffer available, drop the
477          * received frame and reuse the existing buffer.
478          */
479         skb = rt2x00queue_alloc_rxskb(entry);
480         if (!skb)
481                 goto submit_entry;
482
483         /*
484          * Unmap the skb.
485          */
486         rt2x00queue_unmap_skb(entry);
487
488         /*
489          * Extract the RXD details.
490          */
491         memset(&rxdesc, 0, sizeof(rxdesc));
492         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
493
494         /*
495          * The data behind the ieee80211 header must be
496          * aligned on a 4 byte boundary.
497          */
498         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
499
500         /*
501          * Hardware might have stripped the IV/EIV/ICV data,
502          * in that case it is possible that the data was
503          * provided separately (through hardware descriptor)
504          * in which case we should reinsert the data into the frame.
505          */
506         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
507             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
508                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
509                                           &rxdesc);
510         else if (header_length &&
511                  (rxdesc.size > header_length) &&
512                  (rxdesc.dev_flags & RXDONE_L2PAD))
513                 rt2x00queue_remove_l2pad(entry->skb, header_length);
514         else
515                 rt2x00queue_align_payload(entry->skb, header_length);
516
517         /* Trim buffer to correct size */
518         skb_trim(entry->skb, rxdesc.size);
519
520         /*
521          * Translate the signal to the correct bitrate index.
522          */
523         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
524         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
525             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
526                 rxdesc.flags |= RX_FLAG_HT;
527
528         /*
529          * Update extra components
530          */
531         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
532         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
533         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
534
535         /*
536          * Initialize RX status information, and send frame
537          * to mac80211.
538          */
539         rx_status = IEEE80211_SKB_RXCB(entry->skb);
540         rx_status->mactime = rxdesc.timestamp;
541         rx_status->band = rt2x00dev->curr_band;
542         rx_status->freq = rt2x00dev->curr_freq;
543         rx_status->rate_idx = rate_idx;
544         rx_status->signal = rxdesc.rssi;
545         rx_status->flag = rxdesc.flags;
546         rx_status->antenna = rt2x00dev->link.ant.active.rx;
547
548         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
549
550         /*
551          * Replace the skb with the freshly allocated one.
552          */
553         entry->skb = skb;
554
555 submit_entry:
556         entry->flags = 0;
557         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
558         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
559             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
560                 rt2x00dev->ops->lib->clear_entry(entry);
561 }
562 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
563
564 /*
565  * Driver initialization handlers.
566  */
567 const struct rt2x00_rate rt2x00_supported_rates[12] = {
568         {
569                 .flags = DEV_RATE_CCK,
570                 .bitrate = 10,
571                 .ratemask = BIT(0),
572                 .plcp = 0x00,
573                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
574         },
575         {
576                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
577                 .bitrate = 20,
578                 .ratemask = BIT(1),
579                 .plcp = 0x01,
580                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
581         },
582         {
583                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
584                 .bitrate = 55,
585                 .ratemask = BIT(2),
586                 .plcp = 0x02,
587                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
588         },
589         {
590                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
591                 .bitrate = 110,
592                 .ratemask = BIT(3),
593                 .plcp = 0x03,
594                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
595         },
596         {
597                 .flags = DEV_RATE_OFDM,
598                 .bitrate = 60,
599                 .ratemask = BIT(4),
600                 .plcp = 0x0b,
601                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
602         },
603         {
604                 .flags = DEV_RATE_OFDM,
605                 .bitrate = 90,
606                 .ratemask = BIT(5),
607                 .plcp = 0x0f,
608                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
609         },
610         {
611                 .flags = DEV_RATE_OFDM,
612                 .bitrate = 120,
613                 .ratemask = BIT(6),
614                 .plcp = 0x0a,
615                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
616         },
617         {
618                 .flags = DEV_RATE_OFDM,
619                 .bitrate = 180,
620                 .ratemask = BIT(7),
621                 .plcp = 0x0e,
622                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
623         },
624         {
625                 .flags = DEV_RATE_OFDM,
626                 .bitrate = 240,
627                 .ratemask = BIT(8),
628                 .plcp = 0x09,
629                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
630         },
631         {
632                 .flags = DEV_RATE_OFDM,
633                 .bitrate = 360,
634                 .ratemask = BIT(9),
635                 .plcp = 0x0d,
636                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
637         },
638         {
639                 .flags = DEV_RATE_OFDM,
640                 .bitrate = 480,
641                 .ratemask = BIT(10),
642                 .plcp = 0x08,
643                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
644         },
645         {
646                 .flags = DEV_RATE_OFDM,
647                 .bitrate = 540,
648                 .ratemask = BIT(11),
649                 .plcp = 0x0c,
650                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
651         },
652 };
653
654 static void rt2x00lib_channel(struct ieee80211_channel *entry,
655                               const int channel, const int tx_power,
656                               const int value)
657 {
658         /* XXX: this assumption about the band is wrong for 802.11j */
659         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
660         entry->center_freq = ieee80211_channel_to_frequency(channel,
661                                                             entry->band);
662         entry->hw_value = value;
663         entry->max_power = tx_power;
664         entry->max_antenna_gain = 0xff;
665 }
666
667 static void rt2x00lib_rate(struct ieee80211_rate *entry,
668                            const u16 index, const struct rt2x00_rate *rate)
669 {
670         entry->flags = 0;
671         entry->bitrate = rate->bitrate;
672         entry->hw_value = index;
673         entry->hw_value_short = index;
674
675         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
676                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
677 }
678
679 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
680                                     struct hw_mode_spec *spec)
681 {
682         struct ieee80211_hw *hw = rt2x00dev->hw;
683         struct ieee80211_channel *channels;
684         struct ieee80211_rate *rates;
685         unsigned int num_rates;
686         unsigned int i;
687
688         num_rates = 0;
689         if (spec->supported_rates & SUPPORT_RATE_CCK)
690                 num_rates += 4;
691         if (spec->supported_rates & SUPPORT_RATE_OFDM)
692                 num_rates += 8;
693
694         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
695         if (!channels)
696                 return -ENOMEM;
697
698         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
699         if (!rates)
700                 goto exit_free_channels;
701
702         /*
703          * Initialize Rate list.
704          */
705         for (i = 0; i < num_rates; i++)
706                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
707
708         /*
709          * Initialize Channel list.
710          */
711         for (i = 0; i < spec->num_channels; i++) {
712                 rt2x00lib_channel(&channels[i],
713                                   spec->channels[i].channel,
714                                   spec->channels_info[i].max_power, i);
715         }
716
717         /*
718          * Intitialize 802.11b, 802.11g
719          * Rates: CCK, OFDM.
720          * Channels: 2.4 GHz
721          */
722         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
723                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
724                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
725                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
726                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
727                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
728                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
729                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
730                        &spec->ht, sizeof(spec->ht));
731         }
732
733         /*
734          * Intitialize 802.11a
735          * Rates: OFDM.
736          * Channels: OFDM, UNII, HiperLAN2.
737          */
738         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
739                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
740                     spec->num_channels - 14;
741                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
742                     num_rates - 4;
743                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
744                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
745                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
746                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
747                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
748                        &spec->ht, sizeof(spec->ht));
749         }
750
751         return 0;
752
753  exit_free_channels:
754         kfree(channels);
755         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
756         return -ENOMEM;
757 }
758
759 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
760 {
761         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
762                 ieee80211_unregister_hw(rt2x00dev->hw);
763
764         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
765                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
766                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
767                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
768                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
769         }
770
771         kfree(rt2x00dev->spec.channels_info);
772 }
773
774 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
775 {
776         struct hw_mode_spec *spec = &rt2x00dev->spec;
777         int status;
778
779         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
780                 return 0;
781
782         /*
783          * Initialize HW modes.
784          */
785         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
786         if (status)
787                 return status;
788
789         /*
790          * Initialize HW fields.
791          */
792         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
793
794         /*
795          * Initialize extra TX headroom required.
796          */
797         rt2x00dev->hw->extra_tx_headroom =
798                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
799                       rt2x00dev->ops->extra_tx_headroom);
800
801         /*
802          * Take TX headroom required for alignment into account.
803          */
804         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
805                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
806         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
807                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
808
809         /*
810          * Allocate tx status FIFO for driver use.
811          */
812         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags)) {
813                 /*
814                  * Allocate txstatus fifo and tasklet, we use a size of 512
815                  * for the kfifo which is big enough to store 512/4=128 tx
816                  * status reports. In the worst case (tx status for all tx
817                  * queues gets reported before we've got a chance to handle
818                  * them) 24*4=384 tx status reports need to be cached.
819                  */
820                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
821                                      GFP_KERNEL);
822                 if (status)
823                         return status;
824         }
825
826         /*
827          * Initialize tasklets if used by the driver. Tasklets are
828          * disabled until the interrupts are turned on. The driver
829          * has to handle that.
830          */
831 #define RT2X00_TASKLET_INIT(taskletname) \
832         if (rt2x00dev->ops->lib->taskletname) { \
833                 tasklet_init(&rt2x00dev->taskletname, \
834                              rt2x00dev->ops->lib->taskletname, \
835                              (unsigned long)rt2x00dev); \
836                 tasklet_disable(&rt2x00dev->taskletname); \
837         }
838
839         RT2X00_TASKLET_INIT(txstatus_tasklet);
840         RT2X00_TASKLET_INIT(pretbtt_tasklet);
841         RT2X00_TASKLET_INIT(tbtt_tasklet);
842         RT2X00_TASKLET_INIT(rxdone_tasklet);
843         RT2X00_TASKLET_INIT(autowake_tasklet);
844
845 #undef RT2X00_TASKLET_INIT
846
847         /*
848          * Register HW.
849          */
850         status = ieee80211_register_hw(rt2x00dev->hw);
851         if (status)
852                 return status;
853
854         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
855
856         return 0;
857 }
858
859 /*
860  * Initialization/uninitialization handlers.
861  */
862 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
863 {
864         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
865                 return;
866
867         /*
868          * Unregister extra components.
869          */
870         rt2x00rfkill_unregister(rt2x00dev);
871
872         /*
873          * Allow the HW to uninitialize.
874          */
875         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
876
877         /*
878          * Free allocated queue entries.
879          */
880         rt2x00queue_uninitialize(rt2x00dev);
881 }
882
883 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
884 {
885         int status;
886
887         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
888                 return 0;
889
890         /*
891          * Allocate all queue entries.
892          */
893         status = rt2x00queue_initialize(rt2x00dev);
894         if (status)
895                 return status;
896
897         /*
898          * Initialize the device.
899          */
900         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
901         if (status) {
902                 rt2x00queue_uninitialize(rt2x00dev);
903                 return status;
904         }
905
906         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
907
908         /*
909          * Register the extra components.
910          */
911         rt2x00rfkill_register(rt2x00dev);
912
913         return 0;
914 }
915
916 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
917 {
918         int retval;
919
920         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
921                 return 0;
922
923         /*
924          * If this is the first interface which is added,
925          * we should load the firmware now.
926          */
927         retval = rt2x00lib_load_firmware(rt2x00dev);
928         if (retval)
929                 return retval;
930
931         /*
932          * Initialize the device.
933          */
934         retval = rt2x00lib_initialize(rt2x00dev);
935         if (retval)
936                 return retval;
937
938         rt2x00dev->intf_ap_count = 0;
939         rt2x00dev->intf_sta_count = 0;
940         rt2x00dev->intf_associated = 0;
941
942         /* Enable the radio */
943         retval = rt2x00lib_enable_radio(rt2x00dev);
944         if (retval)
945                 return retval;
946
947         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
948
949         return 0;
950 }
951
952 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
953 {
954         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
955                 return;
956
957         /*
958          * Perhaps we can add something smarter here,
959          * but for now just disabling the radio should do.
960          */
961         rt2x00lib_disable_radio(rt2x00dev);
962
963         rt2x00dev->intf_ap_count = 0;
964         rt2x00dev->intf_sta_count = 0;
965         rt2x00dev->intf_associated = 0;
966 }
967
968 /*
969  * driver allocation handlers.
970  */
971 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
972 {
973         int retval = -ENOMEM;
974
975         spin_lock_init(&rt2x00dev->irqmask_lock);
976         mutex_init(&rt2x00dev->csr_mutex);
977
978         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
979
980         /*
981          * Make room for rt2x00_intf inside the per-interface
982          * structure ieee80211_vif.
983          */
984         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
985
986         /*
987          * Determine which operating modes are supported, all modes
988          * which require beaconing, depend on the availability of
989          * beacon entries.
990          */
991         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
992         if (rt2x00dev->ops->bcn->entry_num > 0)
993                 rt2x00dev->hw->wiphy->interface_modes |=
994                     BIT(NL80211_IFTYPE_ADHOC) |
995                     BIT(NL80211_IFTYPE_AP) |
996                     BIT(NL80211_IFTYPE_MESH_POINT) |
997                     BIT(NL80211_IFTYPE_WDS);
998
999         /*
1000          * Initialize work.
1001          */
1002         rt2x00dev->workqueue =
1003             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1004         if (!rt2x00dev->workqueue) {
1005                 retval = -ENOMEM;
1006                 goto exit;
1007         }
1008
1009         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1010
1011         /*
1012          * Let the driver probe the device to detect the capabilities.
1013          */
1014         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1015         if (retval) {
1016                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1017                 goto exit;
1018         }
1019
1020         /*
1021          * Allocate queue array.
1022          */
1023         retval = rt2x00queue_allocate(rt2x00dev);
1024         if (retval)
1025                 goto exit;
1026
1027         /*
1028          * Initialize ieee80211 structure.
1029          */
1030         retval = rt2x00lib_probe_hw(rt2x00dev);
1031         if (retval) {
1032                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1033                 goto exit;
1034         }
1035
1036         /*
1037          * Register extra components.
1038          */
1039         rt2x00link_register(rt2x00dev);
1040         rt2x00leds_register(rt2x00dev);
1041         rt2x00debug_register(rt2x00dev);
1042
1043         return 0;
1044
1045 exit:
1046         rt2x00lib_remove_dev(rt2x00dev);
1047
1048         return retval;
1049 }
1050 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1051
1052 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1053 {
1054         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1055
1056         /*
1057          * Disable radio.
1058          */
1059         rt2x00lib_disable_radio(rt2x00dev);
1060
1061         /*
1062          * Stop all work.
1063          */
1064         cancel_work_sync(&rt2x00dev->intf_work);
1065         if (rt2x00_is_usb(rt2x00dev)) {
1066                 cancel_work_sync(&rt2x00dev->rxdone_work);
1067                 cancel_work_sync(&rt2x00dev->txdone_work);
1068         }
1069         destroy_workqueue(rt2x00dev->workqueue);
1070
1071         /*
1072          * Free the tx status fifo.
1073          */
1074         kfifo_free(&rt2x00dev->txstatus_fifo);
1075
1076         /*
1077          * Kill the tx status tasklet.
1078          */
1079         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1080         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1081         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1082         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1083         tasklet_kill(&rt2x00dev->autowake_tasklet);
1084
1085         /*
1086          * Uninitialize device.
1087          */
1088         rt2x00lib_uninitialize(rt2x00dev);
1089
1090         /*
1091          * Free extra components
1092          */
1093         rt2x00debug_deregister(rt2x00dev);
1094         rt2x00leds_unregister(rt2x00dev);
1095
1096         /*
1097          * Free ieee80211_hw memory.
1098          */
1099         rt2x00lib_remove_hw(rt2x00dev);
1100
1101         /*
1102          * Free firmware image.
1103          */
1104         rt2x00lib_free_firmware(rt2x00dev);
1105
1106         /*
1107          * Free queue structures.
1108          */
1109         rt2x00queue_free(rt2x00dev);
1110 }
1111 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1112
1113 /*
1114  * Device state handlers
1115  */
1116 #ifdef CONFIG_PM
1117 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1118 {
1119         NOTICE(rt2x00dev, "Going to sleep.\n");
1120
1121         /*
1122          * Prevent mac80211 from accessing driver while suspended.
1123          */
1124         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1125                 return 0;
1126
1127         /*
1128          * Cleanup as much as possible.
1129          */
1130         rt2x00lib_uninitialize(rt2x00dev);
1131
1132         /*
1133          * Suspend/disable extra components.
1134          */
1135         rt2x00leds_suspend(rt2x00dev);
1136         rt2x00debug_deregister(rt2x00dev);
1137
1138         /*
1139          * Set device mode to sleep for power management,
1140          * on some hardware this call seems to consistently fail.
1141          * From the specifications it is hard to tell why it fails,
1142          * and if this is a "bad thing".
1143          * Overall it is safe to just ignore the failure and
1144          * continue suspending. The only downside is that the
1145          * device will not be in optimal power save mode, but with
1146          * the radio and the other components already disabled the
1147          * device is as good as disabled.
1148          */
1149         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1150                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1151                         "continue suspending.\n");
1152
1153         return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1156
1157 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1158 {
1159         NOTICE(rt2x00dev, "Waking up.\n");
1160
1161         /*
1162          * Restore/enable extra components.
1163          */
1164         rt2x00debug_register(rt2x00dev);
1165         rt2x00leds_resume(rt2x00dev);
1166
1167         /*
1168          * We are ready again to receive requests from mac80211.
1169          */
1170         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1171
1172         return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1175 #endif /* CONFIG_PM */
1176
1177 /*
1178  * rt2x00lib module information.
1179  */
1180 MODULE_AUTHOR(DRV_PROJECT);
1181 MODULE_VERSION(DRV_VERSION);
1182 MODULE_DESCRIPTION("rt2x00 library");
1183 MODULE_LICENSE("GPL");