Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93
94         iounmap(base_addr);
95 }
96 #else
97 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
98 {
99 }
100 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101
102 #ifdef CONFIG_PCI
103 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 {
105         struct rt2x00_dev *rt2x00dev = eeprom->data;
106         u32 reg;
107
108         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109
110         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
111         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
112         eeprom->reg_data_clock =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
114         eeprom->reg_chip_select =
115             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
116 }
117
118 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 {
120         struct rt2x00_dev *rt2x00dev = eeprom->data;
121         u32 reg = 0;
122
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
124         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
125         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
126                            !!eeprom->reg_data_clock);
127         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
128                            !!eeprom->reg_chip_select);
129
130         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 }
132
133 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 {
135         struct eeprom_93cx6 eeprom;
136         u32 reg;
137
138         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139
140         eeprom.data = rt2x00dev;
141         eeprom.register_read = rt2800pci_eepromregister_read;
142         eeprom.register_write = rt2800pci_eepromregister_write;
143         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
144         {
145         case 0:
146                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
147                 break;
148         case 1:
149                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
150                 break;
151         default:
152                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
153                 break;
154         }
155         eeprom.reg_data_in = 0;
156         eeprom.reg_data_out = 0;
157         eeprom.reg_data_clock = 0;
158         eeprom.reg_chip_select = 0;
159
160         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
161                                EEPROM_SIZE / sizeof(u16));
162 }
163
164 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
165 {
166         return rt2800_efuse_detect(rt2x00dev);
167 }
168
169 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170 {
171         rt2800_read_eeprom_efuse(rt2x00dev);
172 }
173 #else
174 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
175 {
176 }
177
178 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
179 {
180         return 0;
181 }
182
183 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
184 {
185 }
186 #endif /* CONFIG_PCI */
187
188 /*
189  * Queue handlers.
190  */
191 static void rt2800pci_start_queue(struct data_queue *queue)
192 {
193         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
194         u32 reg;
195
196         switch (queue->qid) {
197         case QID_RX:
198                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201                 break;
202         case QID_BEACON:
203                 /*
204                  * Allow beacon tasklets to be scheduled for periodic
205                  * beacon updates.
206                  */
207                 tasklet_enable(&rt2x00dev->tbtt_tasklet);
208                 tasklet_enable(&rt2x00dev->pretbtt_tasklet);
209
210                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
211                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
212                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
213                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
214                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
215
216                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
217                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
218                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
219                 break;
220         default:
221                 break;
222         }
223 }
224
225 static void rt2800pci_kick_queue(struct data_queue *queue)
226 {
227         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
228         struct queue_entry *entry;
229
230         switch (queue->qid) {
231         case QID_AC_VO:
232         case QID_AC_VI:
233         case QID_AC_BE:
234         case QID_AC_BK:
235                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
236                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
237                                          entry->entry_idx);
238                 break;
239         case QID_MGMT:
240                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
241                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
242                                          entry->entry_idx);
243                 break;
244         default:
245                 break;
246         }
247 }
248
249 static void rt2800pci_stop_queue(struct data_queue *queue)
250 {
251         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
252         u32 reg;
253
254         switch (queue->qid) {
255         case QID_RX:
256                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
257                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
258                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
259                 break;
260         case QID_BEACON:
261                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
262                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
263                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
264                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
265                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
266
267                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
268                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
269                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
270
271                 /*
272                  * Wait for tbtt tasklets to finish.
273                  */
274                 tasklet_disable(&rt2x00dev->tbtt_tasklet);
275                 tasklet_disable(&rt2x00dev->pretbtt_tasklet);
276                 break;
277         default:
278                 break;
279         }
280 }
281
282 /*
283  * Firmware functions
284  */
285 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
286 {
287         return FIRMWARE_RT2860;
288 }
289
290 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
291                                     const u8 *data, const size_t len)
292 {
293         u32 reg;
294
295         /*
296          * enable Host program ram write selection
297          */
298         reg = 0;
299         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
300         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
301
302         /*
303          * Write firmware to device.
304          */
305         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
306                                       data, len);
307
308         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
309         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
310
311         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
312         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
313
314         return 0;
315 }
316
317 /*
318  * Initialization functions.
319  */
320 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
321 {
322         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
323         u32 word;
324
325         if (entry->queue->qid == QID_RX) {
326                 rt2x00_desc_read(entry_priv->desc, 1, &word);
327
328                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
329         } else {
330                 rt2x00_desc_read(entry_priv->desc, 1, &word);
331
332                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
333         }
334 }
335
336 static void rt2800pci_clear_entry(struct queue_entry *entry)
337 {
338         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
339         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
340         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
341         u32 word;
342
343         if (entry->queue->qid == QID_RX) {
344                 rt2x00_desc_read(entry_priv->desc, 0, &word);
345                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
346                 rt2x00_desc_write(entry_priv->desc, 0, word);
347
348                 rt2x00_desc_read(entry_priv->desc, 1, &word);
349                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
350                 rt2x00_desc_write(entry_priv->desc, 1, word);
351
352                 /*
353                  * Set RX IDX in register to inform hardware that we have
354                  * handled this entry and it is available for reuse again.
355                  */
356                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
357                                       entry->entry_idx);
358         } else {
359                 rt2x00_desc_read(entry_priv->desc, 1, &word);
360                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
361                 rt2x00_desc_write(entry_priv->desc, 1, word);
362         }
363 }
364
365 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
366 {
367         struct queue_entry_priv_pci *entry_priv;
368         u32 reg;
369
370         /*
371          * Initialize registers.
372          */
373         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
374         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
375         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
376                                  rt2x00dev->tx[0].limit);
377         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
378         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
379
380         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
381         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
382         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
383                                  rt2x00dev->tx[1].limit);
384         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
385         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
386
387         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
388         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
389         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
390                                  rt2x00dev->tx[2].limit);
391         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
392         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
393
394         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
395         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
396         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
397                                  rt2x00dev->tx[3].limit);
398         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
399         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
400
401         entry_priv = rt2x00dev->rx->entries[0].priv_data;
402         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
403         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
404                                  rt2x00dev->rx[0].limit);
405         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
406                                  rt2x00dev->rx[0].limit - 1);
407         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
408
409         /*
410          * Enable global DMA configuration
411          */
412         rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
413         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
414         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
415         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
416         rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
417
418         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
419
420         return 0;
421 }
422
423 /*
424  * Device state switch handlers.
425  */
426 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
427                                  enum dev_state state)
428 {
429         int mask = (state == STATE_RADIO_IRQ_ON);
430         u32 reg;
431         unsigned long flags;
432
433         /*
434          * When interrupts are being enabled, the interrupt registers
435          * should clear the register to assure a clean state.
436          */
437         if (state == STATE_RADIO_IRQ_ON) {
438                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
439                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
440
441                 /*
442                  * Enable tasklets. The beacon related tasklets are
443                  * enabled when the beacon queue is started.
444                  */
445                 tasklet_enable(&rt2x00dev->txstatus_tasklet);
446                 tasklet_enable(&rt2x00dev->rxdone_tasklet);
447                 tasklet_enable(&rt2x00dev->autowake_tasklet);
448         }
449
450         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
452         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
453         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
454         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
455         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
456         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
457         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
458         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
459         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
460         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
461         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
462         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
463         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
464         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
465         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
466         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
467         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
468         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
469         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
470         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
471         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
472
473         if (state == STATE_RADIO_IRQ_OFF) {
474                 /*
475                  * Ensure that all tasklets are finished before
476                  * disabling the interrupts.
477                  */
478                 tasklet_disable(&rt2x00dev->txstatus_tasklet);
479                 tasklet_disable(&rt2x00dev->rxdone_tasklet);
480                 tasklet_disable(&rt2x00dev->autowake_tasklet);
481         }
482 }
483
484 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
485 {
486         u32 reg;
487
488         /*
489          * Reset DMA indexes
490          */
491         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
492         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
493         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
494         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
495         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
496         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
497         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
498         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
499         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
500
501         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
502         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
503
504         if (rt2x00_is_pcie(rt2x00dev) &&
505             (rt2x00_rt(rt2x00dev, RT3572) ||
506              rt2x00_rt(rt2x00dev, RT5390))) {
507                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
508                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
509                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
510                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
511         }
512
513         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
514
515         rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
516         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
517         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
518         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
519
520         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
521
522         return 0;
523 }
524
525 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
526 {
527         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
528                      rt2800pci_init_queues(rt2x00dev)))
529                 return -EIO;
530
531         return rt2800_enable_radio(rt2x00dev);
532 }
533
534 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
535 {
536         if (rt2x00_is_soc(rt2x00dev)) {
537                 rt2800_disable_radio(rt2x00dev);
538                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
539                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
540         }
541 }
542
543 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
544                                enum dev_state state)
545 {
546         if (state == STATE_AWAKE) {
547                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
548                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
549         } else if (state == STATE_SLEEP) {
550                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
551                                          0xffffffff);
552                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
553                                          0xffffffff);
554                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
555         }
556
557         return 0;
558 }
559
560 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
561                                       enum dev_state state)
562 {
563         int retval = 0;
564
565         switch (state) {
566         case STATE_RADIO_ON:
567                 /*
568                  * Before the radio can be enabled, the device first has
569                  * to be woken up. After that it needs a bit of time
570                  * to be fully awake and then the radio can be enabled.
571                  */
572                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
573                 msleep(1);
574                 retval = rt2800pci_enable_radio(rt2x00dev);
575                 break;
576         case STATE_RADIO_OFF:
577                 /*
578                  * After the radio has been disabled, the device should
579                  * be put to sleep for powersaving.
580                  */
581                 rt2800pci_disable_radio(rt2x00dev);
582                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
583                 break;
584         case STATE_RADIO_IRQ_ON:
585         case STATE_RADIO_IRQ_OFF:
586                 rt2800pci_toggle_irq(rt2x00dev, state);
587                 break;
588         case STATE_DEEP_SLEEP:
589         case STATE_SLEEP:
590         case STATE_STANDBY:
591         case STATE_AWAKE:
592                 retval = rt2800pci_set_state(rt2x00dev, state);
593                 break;
594         default:
595                 retval = -ENOTSUPP;
596                 break;
597         }
598
599         if (unlikely(retval))
600                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
601                       state, retval);
602
603         return retval;
604 }
605
606 /*
607  * TX descriptor initialization
608  */
609 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
610 {
611         return (__le32 *) entry->skb->data;
612 }
613
614 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
615                                     struct txentry_desc *txdesc)
616 {
617         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
618         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
619         __le32 *txd = entry_priv->desc;
620         u32 word;
621
622         /*
623          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
624          * must contains a TXWI structure + 802.11 header + padding + 802.11
625          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
626          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
627          * data. It means that LAST_SEC0 is always 0.
628          */
629
630         /*
631          * Initialize TX descriptor
632          */
633         rt2x00_desc_read(txd, 0, &word);
634         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
635         rt2x00_desc_write(txd, 0, word);
636
637         rt2x00_desc_read(txd, 1, &word);
638         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
639         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
640                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
641         rt2x00_set_field32(&word, TXD_W1_BURST,
642                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
643         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
644         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
645         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
646         rt2x00_desc_write(txd, 1, word);
647
648         rt2x00_desc_read(txd, 2, &word);
649         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
650                            skbdesc->skb_dma + TXWI_DESC_SIZE);
651         rt2x00_desc_write(txd, 2, word);
652
653         rt2x00_desc_read(txd, 3, &word);
654         rt2x00_set_field32(&word, TXD_W3_WIV,
655                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
656         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
657         rt2x00_desc_write(txd, 3, word);
658
659         /*
660          * Register descriptor details in skb frame descriptor.
661          */
662         skbdesc->desc = txd;
663         skbdesc->desc_len = TXD_DESC_SIZE;
664 }
665
666 /*
667  * RX control handlers
668  */
669 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
670                                   struct rxdone_entry_desc *rxdesc)
671 {
672         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
673         __le32 *rxd = entry_priv->desc;
674         u32 word;
675
676         rt2x00_desc_read(rxd, 3, &word);
677
678         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
679                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
680
681         /*
682          * Unfortunately we don't know the cipher type used during
683          * decryption. This prevents us from correct providing
684          * correct statistics through debugfs.
685          */
686         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
687
688         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
689                 /*
690                  * Hardware has stripped IV/EIV data from 802.11 frame during
691                  * decryption. Unfortunately the descriptor doesn't contain
692                  * any fields with the EIV/IV data either, so they can't
693                  * be restored by rt2x00lib.
694                  */
695                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
696
697                 /*
698                  * The hardware has already checked the Michael Mic and has
699                  * stripped it from the frame. Signal this to mac80211.
700                  */
701                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
702
703                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
704                         rxdesc->flags |= RX_FLAG_DECRYPTED;
705                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
706                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
707         }
708
709         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
710                 rxdesc->dev_flags |= RXDONE_MY_BSS;
711
712         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
713                 rxdesc->dev_flags |= RXDONE_L2PAD;
714
715         /*
716          * Process the RXWI structure that is at the start of the buffer.
717          */
718         rt2800_process_rxwi(entry, rxdesc);
719 }
720
721 /*
722  * Interrupt functions.
723  */
724 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
725 {
726         struct ieee80211_conf conf = { .flags = 0 };
727         struct rt2x00lib_conf libconf = { .conf = &conf };
728
729         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
730 }
731
732 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
733 {
734         struct data_queue *queue;
735         struct queue_entry *entry;
736         u32 status;
737         u8 qid;
738         int max_tx_done = 16;
739
740         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
741                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
742                 if (unlikely(qid >= QID_RX)) {
743                         /*
744                          * Unknown queue, this shouldn't happen. Just drop
745                          * this tx status.
746                          */
747                         WARNING(rt2x00dev, "Got TX status report with "
748                                            "unexpected pid %u, dropping\n", qid);
749                         break;
750                 }
751
752                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
753                 if (unlikely(queue == NULL)) {
754                         /*
755                          * The queue is NULL, this shouldn't happen. Stop
756                          * processing here and drop the tx status
757                          */
758                         WARNING(rt2x00dev, "Got TX status for an unavailable "
759                                            "queue %u, dropping\n", qid);
760                         break;
761                 }
762
763                 if (unlikely(rt2x00queue_empty(queue))) {
764                         /*
765                          * The queue is empty. Stop processing here
766                          * and drop the tx status.
767                          */
768                         WARNING(rt2x00dev, "Got TX status for an empty "
769                                            "queue %u, dropping\n", qid);
770                         break;
771                 }
772
773                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
774                 rt2800_txdone_entry(entry, status);
775
776                 if (--max_tx_done == 0)
777                         break;
778         }
779
780         return !max_tx_done;
781 }
782
783 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
784                                               struct rt2x00_field32 irq_field)
785 {
786         u32 reg;
787
788         /*
789          * Enable a single interrupt. The interrupt mask register
790          * access needs locking.
791          */
792         spin_lock_irq(&rt2x00dev->irqmask_lock);
793         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
794         rt2x00_set_field32(&reg, irq_field, 1);
795         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
796         spin_unlock_irq(&rt2x00dev->irqmask_lock);
797 }
798
799 static void rt2800pci_txstatus_tasklet(unsigned long data)
800 {
801         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
802         if (rt2800pci_txdone(rt2x00dev))
803                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
804
805         /*
806          * No need to enable the tx status interrupt here as we always
807          * leave it enabled to minimize the possibility of a tx status
808          * register overflow. See comment in interrupt handler.
809          */
810 }
811
812 static void rt2800pci_pretbtt_tasklet(unsigned long data)
813 {
814         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
815         rt2x00lib_pretbtt(rt2x00dev);
816         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
817 }
818
819 static void rt2800pci_tbtt_tasklet(unsigned long data)
820 {
821         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
822         rt2x00lib_beacondone(rt2x00dev);
823         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
824 }
825
826 static void rt2800pci_rxdone_tasklet(unsigned long data)
827 {
828         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
829         if (rt2x00pci_rxdone(rt2x00dev))
830                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
831         else
832                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
833 }
834
835 static void rt2800pci_autowake_tasklet(unsigned long data)
836 {
837         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
838         rt2800pci_wakeup(rt2x00dev);
839         rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
840 }
841
842 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
843 {
844         u32 status;
845         int i;
846
847         /*
848          * The TX_FIFO_STATUS interrupt needs special care. We should
849          * read TX_STA_FIFO but we should do it immediately as otherwise
850          * the register can overflow and we would lose status reports.
851          *
852          * Hence, read the TX_STA_FIFO register and copy all tx status
853          * reports into a kernel FIFO which is handled in the txstatus
854          * tasklet. We use a tasklet to process the tx status reports
855          * because we can schedule the tasklet multiple times (when the
856          * interrupt fires again during tx status processing).
857          *
858          * Furthermore we don't disable the TX_FIFO_STATUS
859          * interrupt here but leave it enabled so that the TX_STA_FIFO
860          * can also be read while the tx status tasklet gets executed.
861          *
862          * Since we have only one producer and one consumer we don't
863          * need to lock the kfifo.
864          */
865         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
866                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
867
868                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
869                         break;
870
871                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
872                         WARNING(rt2x00dev, "TX status FIFO overrun,"
873                                 "drop tx status report.\n");
874                         break;
875                 }
876         }
877
878         /* Schedule the tasklet for processing the tx status. */
879         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
880 }
881
882 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
883 {
884         struct rt2x00_dev *rt2x00dev = dev_instance;
885         u32 reg, mask;
886
887         /* Read status and ACK all interrupts */
888         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
889         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
890
891         if (!reg)
892                 return IRQ_NONE;
893
894         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
895                 return IRQ_HANDLED;
896
897         /*
898          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
899          * for interrupts and interrupt masks we can just use the value of
900          * INT_SOURCE_CSR to create the interrupt mask.
901          */
902         mask = ~reg;
903
904         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
905                 rt2800pci_txstatus_interrupt(rt2x00dev);
906                 /*
907                  * Never disable the TX_FIFO_STATUS interrupt.
908                  */
909                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
910         }
911
912         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
913                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
914
915         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
916                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
917
918         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
919                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
920
921         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
922                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
923
924         /*
925          * Disable all interrupts for which a tasklet was scheduled right now,
926          * the tasklet will reenable the appropriate interrupts.
927          */
928         spin_lock(&rt2x00dev->irqmask_lock);
929         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
930         reg &= mask;
931         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
932         spin_unlock(&rt2x00dev->irqmask_lock);
933
934         return IRQ_HANDLED;
935 }
936
937 /*
938  * Device probe functions.
939  */
940 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
941 {
942         /*
943          * Read EEPROM into buffer
944          */
945         if (rt2x00_is_soc(rt2x00dev))
946                 rt2800pci_read_eeprom_soc(rt2x00dev);
947         else if (rt2800pci_efuse_detect(rt2x00dev))
948                 rt2800pci_read_eeprom_efuse(rt2x00dev);
949         else
950                 rt2800pci_read_eeprom_pci(rt2x00dev);
951
952         return rt2800_validate_eeprom(rt2x00dev);
953 }
954
955 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
956 {
957         int retval;
958
959         /*
960          * Allocate eeprom data.
961          */
962         retval = rt2800pci_validate_eeprom(rt2x00dev);
963         if (retval)
964                 return retval;
965
966         retval = rt2800_init_eeprom(rt2x00dev);
967         if (retval)
968                 return retval;
969
970         /*
971          * Initialize hw specifications.
972          */
973         retval = rt2800_probe_hw_mode(rt2x00dev);
974         if (retval)
975                 return retval;
976
977         /*
978          * This device has multiple filters for control frames
979          * and has a separate filter for PS Poll frames.
980          */
981         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
982         __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
983
984         /*
985          * This device has a pre tbtt interrupt and thus fetches
986          * a new beacon directly prior to transmission.
987          */
988         __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
989
990         /*
991          * This device requires firmware.
992          */
993         if (!rt2x00_is_soc(rt2x00dev))
994                 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
995         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
996         __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
997         __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
998         __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
999         if (!modparam_nohwcrypt)
1000                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1001         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1002         __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1003
1004         /*
1005          * Set the rssi offset.
1006          */
1007         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1008
1009         return 0;
1010 }
1011
1012 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
1013         .tx                     = rt2x00mac_tx,
1014         .start                  = rt2x00mac_start,
1015         .stop                   = rt2x00mac_stop,
1016         .add_interface          = rt2x00mac_add_interface,
1017         .remove_interface       = rt2x00mac_remove_interface,
1018         .config                 = rt2x00mac_config,
1019         .configure_filter       = rt2x00mac_configure_filter,
1020         .set_key                = rt2x00mac_set_key,
1021         .sw_scan_start          = rt2x00mac_sw_scan_start,
1022         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1023         .get_stats              = rt2x00mac_get_stats,
1024         .get_tkip_seq           = rt2800_get_tkip_seq,
1025         .set_rts_threshold      = rt2800_set_rts_threshold,
1026         .bss_info_changed       = rt2x00mac_bss_info_changed,
1027         .conf_tx                = rt2800_conf_tx,
1028         .get_tsf                = rt2800_get_tsf,
1029         .rfkill_poll            = rt2x00mac_rfkill_poll,
1030         .ampdu_action           = rt2800_ampdu_action,
1031         .flush                  = rt2x00mac_flush,
1032         .get_survey             = rt2800_get_survey,
1033         .get_ringparam          = rt2x00mac_get_ringparam,
1034         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1035 };
1036
1037 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1038         .register_read          = rt2x00pci_register_read,
1039         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1040         .register_write         = rt2x00pci_register_write,
1041         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1042         .register_multiread     = rt2x00pci_register_multiread,
1043         .register_multiwrite    = rt2x00pci_register_multiwrite,
1044         .regbusy_read           = rt2x00pci_regbusy_read,
1045         .drv_write_firmware     = rt2800pci_write_firmware,
1046         .drv_init_registers     = rt2800pci_init_registers,
1047         .drv_get_txwi           = rt2800pci_get_txwi,
1048 };
1049
1050 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1051         .irq_handler            = rt2800pci_interrupt,
1052         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1053         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1054         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1055         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1056         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1057         .probe_hw               = rt2800pci_probe_hw,
1058         .get_firmware_name      = rt2800pci_get_firmware_name,
1059         .check_firmware         = rt2800_check_firmware,
1060         .load_firmware          = rt2800_load_firmware,
1061         .initialize             = rt2x00pci_initialize,
1062         .uninitialize           = rt2x00pci_uninitialize,
1063         .get_entry_state        = rt2800pci_get_entry_state,
1064         .clear_entry            = rt2800pci_clear_entry,
1065         .set_device_state       = rt2800pci_set_device_state,
1066         .rfkill_poll            = rt2800_rfkill_poll,
1067         .link_stats             = rt2800_link_stats,
1068         .reset_tuner            = rt2800_reset_tuner,
1069         .link_tuner             = rt2800_link_tuner,
1070         .gain_calibration       = rt2800_gain_calibration,
1071         .start_queue            = rt2800pci_start_queue,
1072         .kick_queue             = rt2800pci_kick_queue,
1073         .stop_queue             = rt2800pci_stop_queue,
1074         .flush_queue            = rt2x00pci_flush_queue,
1075         .write_tx_desc          = rt2800pci_write_tx_desc,
1076         .write_tx_data          = rt2800_write_tx_data,
1077         .write_beacon           = rt2800_write_beacon,
1078         .clear_beacon           = rt2800_clear_beacon,
1079         .fill_rxdone            = rt2800pci_fill_rxdone,
1080         .config_shared_key      = rt2800_config_shared_key,
1081         .config_pairwise_key    = rt2800_config_pairwise_key,
1082         .config_filter          = rt2800_config_filter,
1083         .config_intf            = rt2800_config_intf,
1084         .config_erp             = rt2800_config_erp,
1085         .config_ant             = rt2800_config_ant,
1086         .config                 = rt2800_config,
1087 };
1088
1089 static const struct data_queue_desc rt2800pci_queue_rx = {
1090         .entry_num              = 128,
1091         .data_size              = AGGREGATION_SIZE,
1092         .desc_size              = RXD_DESC_SIZE,
1093         .priv_size              = sizeof(struct queue_entry_priv_pci),
1094 };
1095
1096 static const struct data_queue_desc rt2800pci_queue_tx = {
1097         .entry_num              = 64,
1098         .data_size              = AGGREGATION_SIZE,
1099         .desc_size              = TXD_DESC_SIZE,
1100         .priv_size              = sizeof(struct queue_entry_priv_pci),
1101 };
1102
1103 static const struct data_queue_desc rt2800pci_queue_bcn = {
1104         .entry_num              = 8,
1105         .data_size              = 0, /* No DMA required for beacons */
1106         .desc_size              = TXWI_DESC_SIZE,
1107         .priv_size              = sizeof(struct queue_entry_priv_pci),
1108 };
1109
1110 static const struct rt2x00_ops rt2800pci_ops = {
1111         .name                   = KBUILD_MODNAME,
1112         .max_sta_intf           = 1,
1113         .max_ap_intf            = 8,
1114         .eeprom_size            = EEPROM_SIZE,
1115         .rf_size                = RF_SIZE,
1116         .tx_queues              = NUM_TX_QUEUES,
1117         .extra_tx_headroom      = TXWI_DESC_SIZE,
1118         .rx                     = &rt2800pci_queue_rx,
1119         .tx                     = &rt2800pci_queue_tx,
1120         .bcn                    = &rt2800pci_queue_bcn,
1121         .lib                    = &rt2800pci_rt2x00_ops,
1122         .drv                    = &rt2800pci_rt2800_ops,
1123         .hw                     = &rt2800pci_mac80211_ops,
1124 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1125         .debugfs                = &rt2800_rt2x00debug,
1126 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1127 };
1128
1129 /*
1130  * RT2800pci module information.
1131  */
1132 #ifdef CONFIG_PCI
1133 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1134         { PCI_DEVICE(0x1814, 0x0601) },
1135         { PCI_DEVICE(0x1814, 0x0681) },
1136         { PCI_DEVICE(0x1814, 0x0701) },
1137         { PCI_DEVICE(0x1814, 0x0781) },
1138         { PCI_DEVICE(0x1814, 0x3090) },
1139         { PCI_DEVICE(0x1814, 0x3091) },
1140         { PCI_DEVICE(0x1814, 0x3092) },
1141         { PCI_DEVICE(0x1432, 0x7708) },
1142         { PCI_DEVICE(0x1432, 0x7727) },
1143         { PCI_DEVICE(0x1432, 0x7728) },
1144         { PCI_DEVICE(0x1432, 0x7738) },
1145         { PCI_DEVICE(0x1432, 0x7748) },
1146         { PCI_DEVICE(0x1432, 0x7758) },
1147         { PCI_DEVICE(0x1432, 0x7768) },
1148         { PCI_DEVICE(0x1462, 0x891a) },
1149         { PCI_DEVICE(0x1a3b, 0x1059) },
1150 #ifdef CONFIG_RT2800PCI_RT33XX
1151         { PCI_DEVICE(0x1814, 0x3390) },
1152 #endif
1153 #ifdef CONFIG_RT2800PCI_RT35XX
1154         { PCI_DEVICE(0x1432, 0x7711) },
1155         { PCI_DEVICE(0x1432, 0x7722) },
1156         { PCI_DEVICE(0x1814, 0x3060) },
1157         { PCI_DEVICE(0x1814, 0x3062) },
1158         { PCI_DEVICE(0x1814, 0x3562) },
1159         { PCI_DEVICE(0x1814, 0x3592) },
1160         { PCI_DEVICE(0x1814, 0x3593) },
1161 #endif
1162 #ifdef CONFIG_RT2800PCI_RT53XX
1163         { PCI_DEVICE(0x1814, 0x5390) },
1164         { PCI_DEVICE(0x1814, 0x539f) },
1165 #endif
1166         { 0, }
1167 };
1168 #endif /* CONFIG_PCI */
1169
1170 MODULE_AUTHOR(DRV_PROJECT);
1171 MODULE_VERSION(DRV_VERSION);
1172 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1173 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1174 #ifdef CONFIG_PCI
1175 MODULE_FIRMWARE(FIRMWARE_RT2860);
1176 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1177 #endif /* CONFIG_PCI */
1178 MODULE_LICENSE("GPL");
1179
1180 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1181 static int rt2800soc_probe(struct platform_device *pdev)
1182 {
1183         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1184 }
1185
1186 static struct platform_driver rt2800soc_driver = {
1187         .driver         = {
1188                 .name           = "rt2800_wmac",
1189                 .owner          = THIS_MODULE,
1190                 .mod_name       = KBUILD_MODNAME,
1191         },
1192         .probe          = rt2800soc_probe,
1193         .remove         = __devexit_p(rt2x00soc_remove),
1194         .suspend        = rt2x00soc_suspend,
1195         .resume         = rt2x00soc_resume,
1196 };
1197 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1198
1199 #ifdef CONFIG_PCI
1200 static int rt2800pci_probe(struct pci_dev *pci_dev,
1201                            const struct pci_device_id *id)
1202 {
1203         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1204 }
1205
1206 static struct pci_driver rt2800pci_driver = {
1207         .name           = KBUILD_MODNAME,
1208         .id_table       = rt2800pci_device_table,
1209         .probe          = rt2800pci_probe,
1210         .remove         = __devexit_p(rt2x00pci_remove),
1211         .suspend        = rt2x00pci_suspend,
1212         .resume         = rt2x00pci_resume,
1213 };
1214 #endif /* CONFIG_PCI */
1215
1216 static int __init rt2800pci_init(void)
1217 {
1218         int ret = 0;
1219
1220 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1221         ret = platform_driver_register(&rt2800soc_driver);
1222         if (ret)
1223                 return ret;
1224 #endif
1225 #ifdef CONFIG_PCI
1226         ret = pci_register_driver(&rt2800pci_driver);
1227         if (ret) {
1228 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1229                 platform_driver_unregister(&rt2800soc_driver);
1230 #endif
1231                 return ret;
1232         }
1233 #endif
1234
1235         return ret;
1236 }
1237
1238 static void __exit rt2800pci_exit(void)
1239 {
1240 #ifdef CONFIG_PCI
1241         pci_unregister_driver(&rt2800pci_driver);
1242 #endif
1243 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1244         platform_driver_unregister(&rt2800soc_driver);
1245 #endif
1246 }
1247
1248 module_init(rt2800pci_init);
1249 module_exit(rt2800pci_exit);