de48c5c68eff59148cb34fc95f32852233e1eb7e
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
281 {
282         u16 reg;
283
284         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
285         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
286 }
287
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
290                                      enum led_brightness brightness)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         unsigned int enabled = brightness != LED_OFF;
295         u16 reg;
296
297         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
298
299         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
300                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
301         else if (led->type == LED_TYPE_ACTIVITY)
302                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
303
304         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 }
306
307 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
308                                unsigned long *delay_on,
309                                unsigned long *delay_off)
310 {
311         struct rt2x00_led *led =
312             container_of(led_cdev, struct rt2x00_led, led_dev);
313         u16 reg;
314
315         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
316         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
317         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
318         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
319
320         return 0;
321 }
322
323 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
324                                struct rt2x00_led *led,
325                                enum led_type type)
326 {
327         led->rt2x00dev = rt2x00dev;
328         led->type = type;
329         led->led_dev.brightness_set = rt2500usb_brightness_set;
330         led->led_dev.blink_set = rt2500usb_blink_set;
331         led->flags = LED_INITIALIZED;
332 }
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
334
335 /*
336  * Configuration handlers.
337  */
338
339 /*
340  * rt2500usb does not differentiate between shared and pairwise
341  * keys, so we should use the same function for both key types.
342  */
343 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
344                                 struct rt2x00lib_crypto *crypto,
345                                 struct ieee80211_key_conf *key)
346 {
347         int timeout;
348         u32 mask;
349         u16 reg;
350
351         if (crypto->cmd == SET_KEY) {
352                 /*
353                  * Pairwise key will always be entry 0, but this
354                  * could collide with a shared key on the same
355                  * position...
356                  */
357                 mask = TXRX_CSR0_KEY_ID.bit_mask;
358
359                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360                 reg &= mask;
361
362                 if (reg && reg == mask)
363                         return -ENOSPC;
364
365                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
366
367                 key->hw_key_idx += reg ? ffz(reg) : 0;
368
369                 /*
370                  * The encryption key doesn't fit within the CSR cache,
371                  * this means we should allocate it seperately and use
372                  * rt2x00usb_vendor_request() to send the key to the hardware.
373                  */
374                 reg = KEY_ENTRY(key->hw_key_idx);
375                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
376                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
377                                                     USB_VENDOR_REQUEST_OUT, reg,
378                                                     crypto->key,
379                                                     sizeof(crypto->key),
380                                                     timeout);
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both seperately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
493         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
494
495         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
496         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
497                            !!erp->short_preamble);
498         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
499
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
501
502         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
503         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
504         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
505
506         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
507         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
508         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
509 }
510
511 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
512                                  struct antenna_setup *ant)
513 {
514         u8 r2;
515         u8 r14;
516         u16 csr5;
517         u16 csr6;
518
519         /*
520          * We should never come here because rt2x00lib is supposed
521          * to catch this and send us the correct antenna explicitely.
522          */
523         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
524                ant->tx == ANTENNA_SW_DIVERSITY);
525
526         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
527         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
528         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
529         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
530
531         /*
532          * Configure the TX antenna.
533          */
534         switch (ant->tx) {
535         case ANTENNA_HW_DIVERSITY:
536                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
537                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
538                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
539                 break;
540         case ANTENNA_A:
541                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
542                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
543                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
544                 break;
545         case ANTENNA_B:
546         default:
547                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
548                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
549                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
550                 break;
551         }
552
553         /*
554          * Configure the RX antenna.
555          */
556         switch (ant->rx) {
557         case ANTENNA_HW_DIVERSITY:
558                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
559                 break;
560         case ANTENNA_A:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
562                 break;
563         case ANTENNA_B:
564         default:
565                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
566                 break;
567         }
568
569         /*
570          * RT2525E and RT5222 need to flip TX I/Q
571          */
572         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
573             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
574                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
575                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
576                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
577
578                 /*
579                  * RT2525E does not need RX I/Q Flip.
580                  */
581                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
582                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
583         } else {
584                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
585                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
586         }
587
588         rt2500usb_bbp_write(rt2x00dev, 2, r2);
589         rt2500usb_bbp_write(rt2x00dev, 14, r14);
590         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
591         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
592 }
593
594 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
595                                      struct rf_channel *rf, const int txpower)
596 {
597         /*
598          * Set TXpower.
599          */
600         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
601
602         /*
603          * For RT2525E we should first set the channel to half band higher.
604          */
605         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
606                 static const u32 vals[] = {
607                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
608                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
609                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
610                         0x00000902, 0x00000906
611                 };
612
613                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
614                 if (rf->rf4)
615                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
616         }
617
618         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
619         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
620         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
621         if (rf->rf4)
622                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
623 }
624
625 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
626                                      const int txpower)
627 {
628         u32 rf3;
629
630         rt2x00_rf_read(rt2x00dev, 3, &rf3);
631         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
632         rt2500usb_rf_write(rt2x00dev, 3, rf3);
633 }
634
635 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
636                                 struct rt2x00lib_conf *libconf)
637 {
638         enum dev_state state =
639             (libconf->conf->flags & IEEE80211_CONF_PS) ?
640                 STATE_SLEEP : STATE_AWAKE;
641         u16 reg;
642
643         if (state == STATE_SLEEP) {
644                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
645                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
646                                    rt2x00dev->beacon_int - 20);
647                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
648                                    libconf->conf->listen_interval - 1);
649
650                 /* We must first disable autowake before it can be enabled */
651                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
652                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
653
654                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
655                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
656         }
657
658         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
659 }
660
661 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
662                              struct rt2x00lib_conf *libconf,
663                              const unsigned int flags)
664 {
665         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
666                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
667                                          libconf->conf->power_level);
668         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
669             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
670                 rt2500usb_config_txpower(rt2x00dev,
671                                          libconf->conf->power_level);
672         if (flags & IEEE80211_CONF_CHANGE_PS)
673                 rt2500usb_config_ps(rt2x00dev, libconf);
674 }
675
676 /*
677  * Link tuning
678  */
679 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
680                                  struct link_qual *qual)
681 {
682         u16 reg;
683
684         /*
685          * Update FCS error count from register.
686          */
687         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
688         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
689
690         /*
691          * Update False CCA count from register.
692          */
693         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
694         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
695 }
696
697 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
698                                   struct link_qual *qual)
699 {
700         u16 eeprom;
701         u16 value;
702
703         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
705         rt2500usb_bbp_write(rt2x00dev, 24, value);
706
707         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
709         rt2500usb_bbp_write(rt2x00dev, 25, value);
710
711         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
712         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
713         rt2500usb_bbp_write(rt2x00dev, 61, value);
714
715         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
716         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
717         rt2500usb_bbp_write(rt2x00dev, 17, value);
718
719         qual->vgc_level = value;
720 }
721
722 /*
723  * NOTE: This function is directly ported from legacy driver, but
724  * despite it being declared it was never called. Although link tuning
725  * sounds like a good idea, and usually works well for the other drivers,
726  * it does _not_ work with rt2500usb. Enabling this function will result
727  * in TX capabilities only until association kicks in. Immediately
728  * after the successful association all TX frames will be kept in the
729  * hardware queue and never transmitted.
730  */
731 #if 0
732 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
733 {
734         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
735         u16 bbp_thresh;
736         u16 vgc_bound;
737         u16 sens;
738         u16 r24;
739         u16 r25;
740         u16 r61;
741         u16 r17_sens;
742         u8 r17;
743         u8 up_bound;
744         u8 low_bound;
745
746         /*
747          * Read current r17 value, as well as the sensitivity values
748          * for the r17 register.
749          */
750         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
751         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
752
753         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
754         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
755         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
756
757         /*
758          * If we are not associated, we should go straight to the
759          * dynamic CCA tuning.
760          */
761         if (!rt2x00dev->intf_associated)
762                 goto dynamic_cca_tune;
763
764         /*
765          * Determine the BBP tuning threshold and correctly
766          * set BBP 24, 25 and 61.
767          */
768         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
769         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
770
771         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
772         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
773         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
774
775         if ((rssi + bbp_thresh) > 0) {
776                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
777                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
778                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
779         } else {
780                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
781                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
782                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
783         }
784
785         rt2500usb_bbp_write(rt2x00dev, 24, r24);
786         rt2500usb_bbp_write(rt2x00dev, 25, r25);
787         rt2500usb_bbp_write(rt2x00dev, 61, r61);
788
789         /*
790          * A too low RSSI will cause too much false CCA which will
791          * then corrupt the R17 tuning. To remidy this the tuning should
792          * be stopped (While making sure the R17 value will not exceed limits)
793          */
794         if (rssi >= -40) {
795                 if (r17 != 0x60)
796                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
797                 return;
798         }
799
800         /*
801          * Special big-R17 for short distance
802          */
803         if (rssi >= -58) {
804                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
805                 if (r17 != sens)
806                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
807                 return;
808         }
809
810         /*
811          * Special mid-R17 for middle distance
812          */
813         if (rssi >= -74) {
814                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
815                 if (r17 != sens)
816                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
817                 return;
818         }
819
820         /*
821          * Leave short or middle distance condition, restore r17
822          * to the dynamic tuning range.
823          */
824         low_bound = 0x32;
825         if (rssi < -77)
826                 up_bound -= (-77 - rssi);
827
828         if (up_bound < low_bound)
829                 up_bound = low_bound;
830
831         if (r17 > up_bound) {
832                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
833                 rt2x00dev->link.vgc_level = up_bound;
834                 return;
835         }
836
837 dynamic_cca_tune:
838
839         /*
840          * R17 is inside the dynamic tuning range,
841          * start tuning the link based on the false cca counter.
842          */
843         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
844                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
845                 rt2x00dev->link.vgc_level = r17;
846         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
847                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
848                 rt2x00dev->link.vgc_level = r17;
849         }
850 }
851 #else
852 #define rt2500usb_link_tuner    NULL
853 #endif
854
855 /*
856  * Initialization functions.
857  */
858 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
859 {
860         u16 reg;
861
862         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
863                                     USB_MODE_TEST, REGISTER_TIMEOUT);
864         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
865                                     0x00f0, REGISTER_TIMEOUT);
866
867         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
868         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
869         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
870
871         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
872         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
873
874         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
875         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
876         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
877         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
878         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
879
880         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
881         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
882         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
883         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
884         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
885
886         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
887         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
888         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
889         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
890         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
891         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
892
893         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
894         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
895         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
896         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
897         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
898         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
899
900         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
901         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
902         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
903         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
904         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
905         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
906
907         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
908         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
909         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
910         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
911         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
912         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
913
914         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
915         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
916         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
917         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
918         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
919         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
920
921         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
922         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
923
924         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
925                 return -EBUSY;
926
927         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
928         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
929         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
930         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
931         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
932
933         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
934                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
935                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
936         } else {
937                 reg = 0;
938                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
939                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
940         }
941         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
942
943         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
944         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
945         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
946         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
947
948         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
949         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
950                            rt2x00dev->rx->data_size);
951         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
952
953         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
954         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
955         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
956         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
957
958         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
959         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
960         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
961
962         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
963         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
964         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
965
966         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
967         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
968         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
969
970         return 0;
971 }
972
973 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
974 {
975         unsigned int i;
976         u8 value;
977
978         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
979                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
980                 if ((value != 0xff) && (value != 0x00))
981                         return 0;
982                 udelay(REGISTER_BUSY_DELAY);
983         }
984
985         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
986         return -EACCES;
987 }
988
989 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
990 {
991         unsigned int i;
992         u16 eeprom;
993         u8 value;
994         u8 reg_id;
995
996         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
997                 return -EACCES;
998
999         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
1000         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
1001         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
1002         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
1003         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
1004         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
1005         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
1006         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
1007         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
1008         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
1009         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
1010         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
1011         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
1012         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
1013         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
1014         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
1015         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
1016         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
1017         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
1018         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
1019         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
1020         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
1021         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
1022         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
1023         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
1024         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
1025         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
1026         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
1027         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
1028         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
1029         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
1030
1031         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1032                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1033
1034                 if (eeprom != 0xffff && eeprom != 0x0000) {
1035                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1036                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1037                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
1038                 }
1039         }
1040
1041         return 0;
1042 }
1043
1044 /*
1045  * Device state switch handlers.
1046  */
1047 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1048                                 enum dev_state state)
1049 {
1050         u16 reg;
1051
1052         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1053         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
1054                            (state == STATE_RADIO_RX_OFF) ||
1055                            (state == STATE_RADIO_RX_OFF_LINK));
1056         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1057 }
1058
1059 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1060 {
1061         /*
1062          * Initialize all registers.
1063          */
1064         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
1065                      rt2500usb_init_bbp(rt2x00dev)))
1066                 return -EIO;
1067
1068         return 0;
1069 }
1070
1071 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1072 {
1073         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
1074         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
1075
1076         /*
1077          * Disable synchronisation.
1078          */
1079         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1080
1081         rt2x00usb_disable_radio(rt2x00dev);
1082 }
1083
1084 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1085                                enum dev_state state)
1086 {
1087         u16 reg;
1088         u16 reg2;
1089         unsigned int i;
1090         char put_to_sleep;
1091         char bbp_state;
1092         char rf_state;
1093
1094         put_to_sleep = (state != STATE_AWAKE);
1095
1096         reg = 0;
1097         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1098         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1099         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1100         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1101         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1102         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1103
1104         /*
1105          * Device is not guaranteed to be in the requested state yet.
1106          * We must wait until the register indicates that the
1107          * device has entered the correct state.
1108          */
1109         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1110                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1111                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1112                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1113                 if (bbp_state == state && rf_state == state)
1114                         return 0;
1115                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1116                 msleep(30);
1117         }
1118
1119         return -EBUSY;
1120 }
1121
1122 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1123                                       enum dev_state state)
1124 {
1125         int retval = 0;
1126
1127         switch (state) {
1128         case STATE_RADIO_ON:
1129                 retval = rt2500usb_enable_radio(rt2x00dev);
1130                 break;
1131         case STATE_RADIO_OFF:
1132                 rt2500usb_disable_radio(rt2x00dev);
1133                 break;
1134         case STATE_RADIO_RX_ON:
1135         case STATE_RADIO_RX_ON_LINK:
1136         case STATE_RADIO_RX_OFF:
1137         case STATE_RADIO_RX_OFF_LINK:
1138                 rt2500usb_toggle_rx(rt2x00dev, state);
1139                 break;
1140         case STATE_RADIO_IRQ_ON:
1141         case STATE_RADIO_IRQ_OFF:
1142                 /* No support, but no error either */
1143                 break;
1144         case STATE_DEEP_SLEEP:
1145         case STATE_SLEEP:
1146         case STATE_STANDBY:
1147         case STATE_AWAKE:
1148                 retval = rt2500usb_set_state(rt2x00dev, state);
1149                 break;
1150         default:
1151                 retval = -ENOTSUPP;
1152                 break;
1153         }
1154
1155         if (unlikely(retval))
1156                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1157                       state, retval);
1158
1159         return retval;
1160 }
1161
1162 /*
1163  * TX descriptor initialization
1164  */
1165 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1166                                     struct sk_buff *skb,
1167                                     struct txentry_desc *txdesc)
1168 {
1169         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1170         __le32 *txd = skbdesc->desc;
1171         u32 word;
1172
1173         /*
1174          * Start writing the descriptor words.
1175          */
1176         rt2x00_desc_read(txd, 1, &word);
1177         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1178         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1179         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1180         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1181         rt2x00_desc_write(txd, 1, word);
1182
1183         rt2x00_desc_read(txd, 2, &word);
1184         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1185         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1186         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1187         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1188         rt2x00_desc_write(txd, 2, word);
1189
1190         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1191                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1192                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1193         }
1194
1195         rt2x00_desc_read(txd, 0, &word);
1196         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1197         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1198                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1199         rt2x00_set_field32(&word, TXD_W0_ACK,
1200                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1201         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1202                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_OFDM,
1204                            (txdesc->rate_mode == RATE_MODE_OFDM));
1205         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1206                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1207         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1208         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1209         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1210         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1211         rt2x00_desc_write(txd, 0, word);
1212 }
1213
1214 /*
1215  * TX data initialization
1216  */
1217 static void rt2500usb_beacondone(struct urb *urb);
1218
1219 static void rt2500usb_write_beacon(struct queue_entry *entry)
1220 {
1221         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1223         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1224         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1225         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1226         int length;
1227         u16 reg;
1228
1229         /*
1230          * Add the descriptor in front of the skb.
1231          */
1232         skb_push(entry->skb, entry->queue->desc_size);
1233         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1234         skbdesc->desc = entry->skb->data;
1235
1236         /*
1237          * Disable beaconing while we are reloading the beacon data,
1238          * otherwise we might be sending out invalid data.
1239          */
1240         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1241         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
1242         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
1243         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1244         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1245
1246         /*
1247          * USB devices cannot blindly pass the skb->len as the
1248          * length of the data to usb_fill_bulk_urb. Pass the skb
1249          * to the driver to determine what the length should be.
1250          */
1251         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1252
1253         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1254                           entry->skb->data, length, rt2500usb_beacondone,
1255                           entry);
1256
1257         /*
1258          * Second we need to create the guardian byte.
1259          * We only need a single byte, so lets recycle
1260          * the 'flags' field we are not using for beacons.
1261          */
1262         bcn_priv->guardian_data = 0;
1263         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1264                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1265                           entry);
1266
1267         /*
1268          * Send out the guardian byte.
1269          */
1270         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1271 }
1272
1273 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1274 {
1275         int length;
1276
1277         /*
1278          * The length _must_ be a multiple of 2,
1279          * but it must _not_ be a multiple of the USB packet size.
1280          */
1281         length = roundup(entry->skb->len, 2);
1282         length += (2 * !(length % entry->queue->usb_maxpacket));
1283
1284         return length;
1285 }
1286
1287 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1288                                     const enum data_queue_qid queue)
1289 {
1290         u16 reg;
1291
1292         if (queue != QID_BEACON) {
1293                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1294                 return;
1295         }
1296
1297         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1298         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1299                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1300                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1301                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1302                 /*
1303                  * Beacon generation will fail initially.
1304                  * To prevent this we need to register the TXRX_CSR19
1305                  * register several times.
1306                  */
1307                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1308                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1309                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1310                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1311                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1312         }
1313 }
1314
1315 /*
1316  * RX control handlers
1317  */
1318 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1319                                   struct rxdone_entry_desc *rxdesc)
1320 {
1321         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1322         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1323         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1324         __le32 *rxd =
1325             (__le32 *)(entry->skb->data +
1326                        (entry_priv->urb->actual_length -
1327                         entry->queue->desc_size));
1328         u32 word0;
1329         u32 word1;
1330
1331         /*
1332          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1333          * frame data in rt2x00usb.
1334          */
1335         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1336         rxd = (__le32 *)skbdesc->desc;
1337
1338         /*
1339          * It is now safe to read the descriptor on all architectures.
1340          */
1341         rt2x00_desc_read(rxd, 0, &word0);
1342         rt2x00_desc_read(rxd, 1, &word1);
1343
1344         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1345                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1346         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1347                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1348
1349         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1350                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1351                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1352                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1353         }
1354
1355         if (rxdesc->cipher != CIPHER_NONE) {
1356                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1357                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1358                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1359
1360                 /* ICV is located at the end of frame */
1361
1362                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1363                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1364                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1365                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1366                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1367         }
1368
1369         /*
1370          * Obtain the status about this packet.
1371          * When frame was received with an OFDM bitrate,
1372          * the signal is the PLCP value. If it was received with
1373          * a CCK bitrate the signal is the rate in 100kbit/s.
1374          */
1375         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1376         rxdesc->rssi =
1377             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1378         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1379
1380         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1381                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1382         else
1383                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1384         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1385                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1386
1387         /*
1388          * Adjust the skb memory window to the frame boundaries.
1389          */
1390         skb_trim(entry->skb, rxdesc->size);
1391 }
1392
1393 /*
1394  * Interrupt functions.
1395  */
1396 static void rt2500usb_beacondone(struct urb *urb)
1397 {
1398         struct queue_entry *entry = (struct queue_entry *)urb->context;
1399         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1400
1401         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1402                 return;
1403
1404         /*
1405          * Check if this was the guardian beacon,
1406          * if that was the case we need to send the real beacon now.
1407          * Otherwise we should free the sk_buffer, the device
1408          * should be doing the rest of the work now.
1409          */
1410         if (bcn_priv->guardian_urb == urb) {
1411                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1412         } else if (bcn_priv->urb == urb) {
1413                 dev_kfree_skb(entry->skb);
1414                 entry->skb = NULL;
1415         }
1416 }
1417
1418 /*
1419  * Device probe functions.
1420  */
1421 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1422 {
1423         u16 word;
1424         u8 *mac;
1425         u8 bbp;
1426
1427         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1428
1429         /*
1430          * Start validation of the data that has been read.
1431          */
1432         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1433         if (!is_valid_ether_addr(mac)) {
1434                 random_ether_addr(mac);
1435                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1436         }
1437
1438         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1439         if (word == 0xffff) {
1440                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1441                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1442                                    ANTENNA_SW_DIVERSITY);
1443                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1444                                    ANTENNA_SW_DIVERSITY);
1445                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1446                                    LED_MODE_DEFAULT);
1447                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1448                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1449                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1450                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1451                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1452         }
1453
1454         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1455         if (word == 0xffff) {
1456                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1457                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1458                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1459                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1460                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1461         }
1462
1463         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1464         if (word == 0xffff) {
1465                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1466                                    DEFAULT_RSSI_OFFSET);
1467                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1468                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1469         }
1470
1471         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1472         if (word == 0xffff) {
1473                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1474                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1475                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1476         }
1477
1478         /*
1479          * Switch lower vgc bound to current BBP R17 value,
1480          * lower the value a bit for better quality.
1481          */
1482         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1483         bbp -= 6;
1484
1485         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1486         if (word == 0xffff) {
1487                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1488                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1489                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1490                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1491         } else {
1492                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1493                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1494         }
1495
1496         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1497         if (word == 0xffff) {
1498                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1499                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1500                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1501                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1502         }
1503
1504         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1505         if (word == 0xffff) {
1506                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1507                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1508                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1509                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1510         }
1511
1512         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1513         if (word == 0xffff) {
1514                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1515                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1516                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1517                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1518         }
1519
1520         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1521         if (word == 0xffff) {
1522                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1523                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1524                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1525                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1526         }
1527
1528         return 0;
1529 }
1530
1531 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1532 {
1533         u16 reg;
1534         u16 value;
1535         u16 eeprom;
1536
1537         /*
1538          * Read EEPROM word for configuration.
1539          */
1540         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1541
1542         /*
1543          * Identify RF chipset.
1544          */
1545         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1546         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1547         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1548
1549         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x000ffff0, 0) ||
1550             rt2x00_check_rev(&rt2x00dev->chip, 0x0000000f, 0)) {
1551
1552                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1553                 return -ENODEV;
1554         }
1555
1556         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1557             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1558             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1559             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1560             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1561             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1562                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1563                 return -ENODEV;
1564         }
1565
1566         /*
1567          * Identify default antenna configuration.
1568          */
1569         rt2x00dev->default_ant.tx =
1570             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1571         rt2x00dev->default_ant.rx =
1572             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1573
1574         /*
1575          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1576          * I am not 100% sure about this, but the legacy drivers do not
1577          * indicate antenna swapping in software is required when
1578          * diversity is enabled.
1579          */
1580         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1581                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1582         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1583                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1584
1585         /*
1586          * Store led mode, for correct led behaviour.
1587          */
1588 #ifdef CONFIG_RT2X00_LIB_LEDS
1589         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1590
1591         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1592         if (value == LED_MODE_TXRX_ACTIVITY ||
1593             value == LED_MODE_DEFAULT ||
1594             value == LED_MODE_ASUS)
1595                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1596                                    LED_TYPE_ACTIVITY);
1597 #endif /* CONFIG_RT2X00_LIB_LEDS */
1598
1599         /*
1600          * Detect if this device has an hardware controlled radio.
1601          */
1602         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1603                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1604
1605         /*
1606          * Check if the BBP tuning should be disabled.
1607          */
1608         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1609         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1610                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1611
1612         /*
1613          * Read the RSSI <-> dBm offset information.
1614          */
1615         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1616         rt2x00dev->rssi_offset =
1617             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1618
1619         return 0;
1620 }
1621
1622 /*
1623  * RF value list for RF2522
1624  * Supports: 2.4 GHz
1625  */
1626 static const struct rf_channel rf_vals_bg_2522[] = {
1627         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1628         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1629         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1630         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1631         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1632         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1633         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1634         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1635         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1636         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1637         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1638         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1639         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1640         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1641 };
1642
1643 /*
1644  * RF value list for RF2523
1645  * Supports: 2.4 GHz
1646  */
1647 static const struct rf_channel rf_vals_bg_2523[] = {
1648         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1649         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1650         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1651         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1652         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1653         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1654         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1655         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1656         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1657         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1658         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1659         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1660         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1661         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1662 };
1663
1664 /*
1665  * RF value list for RF2524
1666  * Supports: 2.4 GHz
1667  */
1668 static const struct rf_channel rf_vals_bg_2524[] = {
1669         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1670         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1671         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1672         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1673         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1674         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1675         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1676         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1677         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1678         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1679         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1680         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1681         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1682         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1683 };
1684
1685 /*
1686  * RF value list for RF2525
1687  * Supports: 2.4 GHz
1688  */
1689 static const struct rf_channel rf_vals_bg_2525[] = {
1690         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1691         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1692         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1693         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1694         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1695         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1696         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1697         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1698         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1699         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1700         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1701         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1702         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1703         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1704 };
1705
1706 /*
1707  * RF value list for RF2525e
1708  * Supports: 2.4 GHz
1709  */
1710 static const struct rf_channel rf_vals_bg_2525e[] = {
1711         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1712         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1713         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1714         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1715         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1716         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1717         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1718         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1719         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1720         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1721         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1722         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1723         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1724         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1725 };
1726
1727 /*
1728  * RF value list for RF5222
1729  * Supports: 2.4 GHz & 5.2 GHz
1730  */
1731 static const struct rf_channel rf_vals_5222[] = {
1732         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1733         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1734         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1735         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1736         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1737         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1738         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1739         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1740         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1741         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1742         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1743         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1744         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1745         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1746
1747         /* 802.11 UNI / HyperLan 2 */
1748         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1749         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1750         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1751         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1752         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1753         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1754         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1755         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1756
1757         /* 802.11 HyperLan 2 */
1758         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1759         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1760         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1761         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1762         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1763         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1764         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1765         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1766         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1767         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1768
1769         /* 802.11 UNII */
1770         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1771         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1772         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1773         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1774         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1775 };
1776
1777 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1778 {
1779         struct hw_mode_spec *spec = &rt2x00dev->spec;
1780         struct channel_info *info;
1781         char *tx_power;
1782         unsigned int i;
1783
1784         /*
1785          * Initialize all hw fields.
1786          */
1787         rt2x00dev->hw->flags =
1788             IEEE80211_HW_RX_INCLUDES_FCS |
1789             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1790             IEEE80211_HW_SIGNAL_DBM |
1791             IEEE80211_HW_SUPPORTS_PS |
1792             IEEE80211_HW_PS_NULLFUNC_STACK;
1793
1794         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1795
1796         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1797         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1798                                 rt2x00_eeprom_addr(rt2x00dev,
1799                                                    EEPROM_MAC_ADDR_0));
1800
1801         /*
1802          * Initialize hw_mode information.
1803          */
1804         spec->supported_bands = SUPPORT_BAND_2GHZ;
1805         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1806
1807         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1808                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1809                 spec->channels = rf_vals_bg_2522;
1810         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1811                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1812                 spec->channels = rf_vals_bg_2523;
1813         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1814                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1815                 spec->channels = rf_vals_bg_2524;
1816         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1817                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1818                 spec->channels = rf_vals_bg_2525;
1819         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1820                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1821                 spec->channels = rf_vals_bg_2525e;
1822         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1823                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1824                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1825                 spec->channels = rf_vals_5222;
1826         }
1827
1828         /*
1829          * Create channel information array
1830          */
1831         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1832         if (!info)
1833                 return -ENOMEM;
1834
1835         spec->channels_info = info;
1836
1837         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1838         for (i = 0; i < 14; i++)
1839                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1840
1841         if (spec->num_channels > 14) {
1842                 for (i = 14; i < spec->num_channels; i++)
1843                         info[i].tx_power1 = DEFAULT_TXPOWER;
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1850 {
1851         int retval;
1852
1853         /*
1854          * Allocate eeprom data.
1855          */
1856         retval = rt2500usb_validate_eeprom(rt2x00dev);
1857         if (retval)
1858                 return retval;
1859
1860         retval = rt2500usb_init_eeprom(rt2x00dev);
1861         if (retval)
1862                 return retval;
1863
1864         /*
1865          * Initialize hw specifications.
1866          */
1867         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1868         if (retval)
1869                 return retval;
1870
1871         /*
1872          * This device requires the atim queue
1873          */
1874         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1875         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1876         __set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
1877         if (!modparam_nohwcrypt) {
1878                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1879                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1880         }
1881         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1882
1883         /*
1884          * Set the rssi offset.
1885          */
1886         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1887
1888         return 0;
1889 }
1890
1891 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1892         .tx                     = rt2x00mac_tx,
1893         .start                  = rt2x00mac_start,
1894         .stop                   = rt2x00mac_stop,
1895         .add_interface          = rt2x00mac_add_interface,
1896         .remove_interface       = rt2x00mac_remove_interface,
1897         .config                 = rt2x00mac_config,
1898         .configure_filter       = rt2x00mac_configure_filter,
1899         .set_tim                = rt2x00mac_set_tim,
1900         .set_key                = rt2x00mac_set_key,
1901         .get_stats              = rt2x00mac_get_stats,
1902         .bss_info_changed       = rt2x00mac_bss_info_changed,
1903         .conf_tx                = rt2x00mac_conf_tx,
1904         .get_tx_stats           = rt2x00mac_get_tx_stats,
1905         .rfkill_poll            = rt2x00mac_rfkill_poll,
1906 };
1907
1908 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1909         .probe_hw               = rt2500usb_probe_hw,
1910         .initialize             = rt2x00usb_initialize,
1911         .uninitialize           = rt2x00usb_uninitialize,
1912         .clear_entry            = rt2x00usb_clear_entry,
1913         .set_device_state       = rt2500usb_set_device_state,
1914         .rfkill_poll            = rt2500usb_rfkill_poll,
1915         .link_stats             = rt2500usb_link_stats,
1916         .reset_tuner            = rt2500usb_reset_tuner,
1917         .link_tuner             = rt2500usb_link_tuner,
1918         .write_tx_desc          = rt2500usb_write_tx_desc,
1919         .write_tx_data          = rt2x00usb_write_tx_data,
1920         .write_beacon           = rt2500usb_write_beacon,
1921         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1922         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1923         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1924         .fill_rxdone            = rt2500usb_fill_rxdone,
1925         .config_shared_key      = rt2500usb_config_key,
1926         .config_pairwise_key    = rt2500usb_config_key,
1927         .config_filter          = rt2500usb_config_filter,
1928         .config_intf            = rt2500usb_config_intf,
1929         .config_erp             = rt2500usb_config_erp,
1930         .config_ant             = rt2500usb_config_ant,
1931         .config                 = rt2500usb_config,
1932 };
1933
1934 static const struct data_queue_desc rt2500usb_queue_rx = {
1935         .entry_num              = RX_ENTRIES,
1936         .data_size              = DATA_FRAME_SIZE,
1937         .desc_size              = RXD_DESC_SIZE,
1938         .priv_size              = sizeof(struct queue_entry_priv_usb),
1939 };
1940
1941 static const struct data_queue_desc rt2500usb_queue_tx = {
1942         .entry_num              = TX_ENTRIES,
1943         .data_size              = DATA_FRAME_SIZE,
1944         .desc_size              = TXD_DESC_SIZE,
1945         .priv_size              = sizeof(struct queue_entry_priv_usb),
1946 };
1947
1948 static const struct data_queue_desc rt2500usb_queue_bcn = {
1949         .entry_num              = BEACON_ENTRIES,
1950         .data_size              = MGMT_FRAME_SIZE,
1951         .desc_size              = TXD_DESC_SIZE,
1952         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1953 };
1954
1955 static const struct data_queue_desc rt2500usb_queue_atim = {
1956         .entry_num              = ATIM_ENTRIES,
1957         .data_size              = DATA_FRAME_SIZE,
1958         .desc_size              = TXD_DESC_SIZE,
1959         .priv_size              = sizeof(struct queue_entry_priv_usb),
1960 };
1961
1962 static const struct rt2x00_ops rt2500usb_ops = {
1963         .name           = KBUILD_MODNAME,
1964         .max_sta_intf   = 1,
1965         .max_ap_intf    = 1,
1966         .eeprom_size    = EEPROM_SIZE,
1967         .rf_size        = RF_SIZE,
1968         .tx_queues      = NUM_TX_QUEUES,
1969         .rx             = &rt2500usb_queue_rx,
1970         .tx             = &rt2500usb_queue_tx,
1971         .bcn            = &rt2500usb_queue_bcn,
1972         .atim           = &rt2500usb_queue_atim,
1973         .lib            = &rt2500usb_rt2x00_ops,
1974         .hw             = &rt2500usb_mac80211_ops,
1975 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1976         .debugfs        = &rt2500usb_rt2x00debug,
1977 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1978 };
1979
1980 /*
1981  * rt2500usb module information.
1982  */
1983 static struct usb_device_id rt2500usb_device_table[] = {
1984         /* ASUS */
1985         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1986         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1987         /* Belkin */
1988         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1989         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1990         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1991         /* Cisco Systems */
1992         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1993         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1994         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1995         /* CNet */
1996         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1997         /* Conceptronic */
1998         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1999         /* D-LINK */
2000         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
2001         /* Gigabyte */
2002         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
2003         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
2004         /* Hercules */
2005         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
2006         /* Melco */
2007         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
2008         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
2009         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
2010         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
2011         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
2012         /* MSI */
2013         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
2014         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
2015         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
2016         /* Ralink */
2017         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
2018         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
2019         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
2020         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2021         /* Sagem */
2022         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
2023         /* Siemens */
2024         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
2025         /* SMC */
2026         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
2027         /* Spairon */
2028         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
2029         /* SURECOM */
2030         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
2031         /* Trust */
2032         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2033         /* VTech */
2034         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
2035         /* Zinwell */
2036         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
2037         { 0, }
2038 };
2039
2040 MODULE_AUTHOR(DRV_PROJECT);
2041 MODULE_VERSION(DRV_VERSION);
2042 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2043 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2044 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
2045 MODULE_LICENSE("GPL");
2046
2047 static struct usb_driver rt2500usb_driver = {
2048         .name           = KBUILD_MODNAME,
2049         .id_table       = rt2500usb_device_table,
2050         .probe          = rt2x00usb_probe,
2051         .disconnect     = rt2x00usb_disconnect,
2052         .suspend        = rt2x00usb_suspend,
2053         .resume         = rt2x00usb_resume,
2054 };
2055
2056 static int __init rt2500usb_init(void)
2057 {
2058         return usb_register(&rt2500usb_driver);
2059 }
2060
2061 static void __exit rt2500usb_exit(void)
2062 {
2063         usb_deregister(&rt2500usb_driver);
2064 }
2065
2066 module_init(rt2500usb_init);
2067 module_exit(rt2500usb_exit);