Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         u32 mask;
349         u16 reg;
350         enum cipher curr_cipher;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Disallow to set WEP key other than with index 0,
355                  * it is known that not work at least on some hardware.
356                  * SW crypto will be used in that case.
357                  */
358                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
359                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
360                     key->keyidx != 0)
361                         return -EOPNOTSUPP;
362
363                 /*
364                  * Pairwise key will always be entry 0, but this
365                  * could collide with a shared key on the same
366                  * position...
367                  */
368                 mask = TXRX_CSR0_KEY_ID.bit_mask;
369
370                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372                 reg &= mask;
373
374                 if (reg && reg == mask)
375                         return -ENOSPC;
376
377                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
378
379                 key->hw_key_idx += reg ? ffz(reg) : 0;
380                 /*
381                  * Hardware requires that all keys use the same cipher
382                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383                  * If this is not the first key, compare the cipher with the
384                  * first one and fall back to SW crypto if not the same.
385                  */
386                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
387                         return -EOPNOTSUPP;
388
389                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390                                               crypto->key, sizeof(crypto->key));
391
392                 /*
393                  * The driver does not support the IV/EIV generation
394                  * in hardware. However it demands the data to be provided
395                  * both separately as well as inside the frame.
396                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397                  * to ensure rt2x00lib will not strip the data from the
398                  * frame after the copy, now we must tell mac80211
399                  * to generate the IV/EIV data.
400                  */
401                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
403         }
404
405         /*
406          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407          * a particular key is valid.
408          */
409         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
410         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
411         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
412
413         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
414         if (crypto->cmd == SET_KEY)
415                 mask |= 1 << key->hw_key_idx;
416         else if (crypto->cmd == DISABLE_KEY)
417                 mask &= ~(1 << key->hw_key_idx);
418         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
419         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
420
421         return 0;
422 }
423
424 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
425                                     const unsigned int filter_flags)
426 {
427         u16 reg;
428
429         /*
430          * Start configuration steps.
431          * Note that the version error will always be dropped
432          * and broadcast frames will always be accepted since
433          * there is no filter for it at this time.
434          */
435         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
437                            !(filter_flags & FIF_FCSFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
439                            !(filter_flags & FIF_PLCPFAIL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
441                            !(filter_flags & FIF_CONTROL));
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
443                            !(filter_flags & FIF_PROMISC_IN_BSS));
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
445                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
446                            !rt2x00dev->intf_ap_count);
447         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
448         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
449                            !(filter_flags & FIF_ALLMULTI));
450         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
451         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 }
453
454 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
455                                   struct rt2x00_intf *intf,
456                                   struct rt2x00intf_conf *conf,
457                                   const unsigned int flags)
458 {
459         unsigned int bcn_preload;
460         u16 reg;
461
462         if (flags & CONFIG_UPDATE_TYPE) {
463                 /*
464                  * Enable beacon config
465                  */
466                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
468                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
469                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
470                                    2 * (conf->type != NL80211_IFTYPE_STATION));
471                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472
473                 /*
474                  * Enable synchronisation.
475                  */
476                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
477                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
478                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
479
480                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
481                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
482                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483         }
484
485         if (flags & CONFIG_UPDATE_MAC)
486                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487                                               (3 * sizeof(__le16)));
488
489         if (flags & CONFIG_UPDATE_BSSID)
490                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491                                               (3 * sizeof(__le16)));
492 }
493
494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495                                  struct rt2x00lib_erp *erp,
496                                  u32 changed)
497 {
498         u16 reg;
499
500         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
501                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
502                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
503                                    !!erp->short_preamble);
504                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
505         }
506
507         if (changed & BSS_CHANGED_BASIC_RATES)
508                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
509                                          erp->basic_rates);
510
511         if (changed & BSS_CHANGED_BEACON_INT) {
512                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
513                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
514                                    erp->beacon_int * 4);
515                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
516         }
517
518         if (changed & BSS_CHANGED_ERP_SLOT) {
519                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
520                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
521                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
522         }
523 }
524
525 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
526                                  struct antenna_setup *ant)
527 {
528         u8 r2;
529         u8 r14;
530         u16 csr5;
531         u16 csr6;
532
533         /*
534          * We should never come here because rt2x00lib is supposed
535          * to catch this and send us the correct antenna explicitely.
536          */
537         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
538                ant->tx == ANTENNA_SW_DIVERSITY);
539
540         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
541         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
542         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
543         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
544
545         /*
546          * Configure the TX antenna.
547          */
548         switch (ant->tx) {
549         case ANTENNA_HW_DIVERSITY:
550                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
551                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
552                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
553                 break;
554         case ANTENNA_A:
555                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
556                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
557                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
562                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
563                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
564                 break;
565         }
566
567         /*
568          * Configure the RX antenna.
569          */
570         switch (ant->rx) {
571         case ANTENNA_HW_DIVERSITY:
572                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
573                 break;
574         case ANTENNA_A:
575                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
576                 break;
577         case ANTENNA_B:
578         default:
579                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
580                 break;
581         }
582
583         /*
584          * RT2525E and RT5222 need to flip TX I/Q
585          */
586         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
587                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
588                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
589                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
590
591                 /*
592                  * RT2525E does not need RX I/Q Flip.
593                  */
594                 if (rt2x00_rf(rt2x00dev, RF2525E))
595                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
596         } else {
597                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
598                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
599         }
600
601         rt2500usb_bbp_write(rt2x00dev, 2, r2);
602         rt2500usb_bbp_write(rt2x00dev, 14, r14);
603         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
604         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
605 }
606
607 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
608                                      struct rf_channel *rf, const int txpower)
609 {
610         /*
611          * Set TXpower.
612          */
613         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
614
615         /*
616          * For RT2525E we should first set the channel to half band higher.
617          */
618         if (rt2x00_rf(rt2x00dev, RF2525E)) {
619                 static const u32 vals[] = {
620                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
621                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
622                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
623                         0x00000902, 0x00000906
624                 };
625
626                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
627                 if (rf->rf4)
628                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629         }
630
631         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
632         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
633         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
634         if (rf->rf4)
635                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
636 }
637
638 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
639                                      const int txpower)
640 {
641         u32 rf3;
642
643         rt2x00_rf_read(rt2x00dev, 3, &rf3);
644         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
645         rt2500usb_rf_write(rt2x00dev, 3, rf3);
646 }
647
648 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
649                                 struct rt2x00lib_conf *libconf)
650 {
651         enum dev_state state =
652             (libconf->conf->flags & IEEE80211_CONF_PS) ?
653                 STATE_SLEEP : STATE_AWAKE;
654         u16 reg;
655
656         if (state == STATE_SLEEP) {
657                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
658                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
659                                    rt2x00dev->beacon_int - 20);
660                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
661                                    libconf->conf->listen_interval - 1);
662
663                 /* We must first disable autowake before it can be enabled */
664                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666
667                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
668                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669         } else {
670                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
671                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
672                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
673         }
674
675         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
676 }
677
678 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
679                              struct rt2x00lib_conf *libconf,
680                              const unsigned int flags)
681 {
682         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
683                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
684                                          libconf->conf->power_level);
685         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
686             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
687                 rt2500usb_config_txpower(rt2x00dev,
688                                          libconf->conf->power_level);
689         if (flags & IEEE80211_CONF_CHANGE_PS)
690                 rt2500usb_config_ps(rt2x00dev, libconf);
691 }
692
693 /*
694  * Link tuning
695  */
696 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
697                                  struct link_qual *qual)
698 {
699         u16 reg;
700
701         /*
702          * Update FCS error count from register.
703          */
704         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
705         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
706
707         /*
708          * Update False CCA count from register.
709          */
710         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
711         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
712 }
713
714 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
715                                   struct link_qual *qual)
716 {
717         u16 eeprom;
718         u16 value;
719
720         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
721         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
722         rt2500usb_bbp_write(rt2x00dev, 24, value);
723
724         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
725         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
726         rt2500usb_bbp_write(rt2x00dev, 25, value);
727
728         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
729         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
730         rt2500usb_bbp_write(rt2x00dev, 61, value);
731
732         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
733         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
734         rt2500usb_bbp_write(rt2x00dev, 17, value);
735
736         qual->vgc_level = value;
737 }
738
739 /*
740  * Queue handlers.
741  */
742 static void rt2500usb_start_queue(struct data_queue *queue)
743 {
744         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
745         u16 reg;
746
747         switch (queue->qid) {
748         case QID_RX:
749                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
750                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
751                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
752                 break;
753         case QID_BEACON:
754                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
755                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
756                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
757                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
758                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
759                 break;
760         default:
761                 break;
762         }
763 }
764
765 static void rt2500usb_stop_queue(struct data_queue *queue)
766 {
767         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768         u16 reg;
769
770         switch (queue->qid) {
771         case QID_RX:
772                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
773                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
774                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
775                 break;
776         case QID_BEACON:
777                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
778                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
779                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
780                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
781                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
782                 break;
783         default:
784                 break;
785         }
786 }
787
788 /*
789  * Initialization functions.
790  */
791 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
792 {
793         u16 reg;
794
795         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
796                                     USB_MODE_TEST, REGISTER_TIMEOUT);
797         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
798                                     0x00f0, REGISTER_TIMEOUT);
799
800         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
801         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
802         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
803
804         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
806
807         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
808         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
809         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
810         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
811         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
812
813         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
814         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
815         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
816         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
818
819         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
820         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
821         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
822         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
823         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
824         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
825
826         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
827         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
828         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
829         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
830         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
832
833         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
834         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
835         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
836         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
837         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
838         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
839
840         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
841         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
842         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
843         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
844         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
845         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
846
847         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
848         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
849         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
850         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
851         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
852         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
853
854         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
855         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
856
857         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
858                 return -EBUSY;
859
860         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
861         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
862         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
863         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
864         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
865
866         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
867                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
868                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
869         } else {
870                 reg = 0;
871                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
872                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
873         }
874         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
875
876         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
877         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
878         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
879         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
880
881         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
882         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
883                            rt2x00dev->rx->data_size);
884         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
885
886         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
887         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
888         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
889         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
890         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
891
892         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
893         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
894         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
895
896         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
897         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
898         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
899
900         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
901         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
902         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
903
904         return 0;
905 }
906
907 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
908 {
909         unsigned int i;
910         u8 value;
911
912         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
913                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
914                 if ((value != 0xff) && (value != 0x00))
915                         return 0;
916                 udelay(REGISTER_BUSY_DELAY);
917         }
918
919         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
920         return -EACCES;
921 }
922
923 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
924 {
925         unsigned int i;
926         u16 eeprom;
927         u8 value;
928         u8 reg_id;
929
930         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
931                 return -EACCES;
932
933         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
934         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
935         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
936         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
937         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
938         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
939         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
940         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
941         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
942         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
943         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
944         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
945         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
946         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
947         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
948         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
949         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
950         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
951         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
952         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
953         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
954         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
955         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
956         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
957         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
958         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
959         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
960         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
961         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
962         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
963         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
964
965         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
966                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
967
968                 if (eeprom != 0xffff && eeprom != 0x0000) {
969                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
970                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
971                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
972                 }
973         }
974
975         return 0;
976 }
977
978 /*
979  * Device state switch handlers.
980  */
981 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
982 {
983         /*
984          * Initialize all registers.
985          */
986         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
987                      rt2500usb_init_bbp(rt2x00dev)))
988                 return -EIO;
989
990         return 0;
991 }
992
993 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
994 {
995         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
996         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
997
998         /*
999          * Disable synchronisation.
1000          */
1001         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1002
1003         rt2x00usb_disable_radio(rt2x00dev);
1004 }
1005
1006 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1007                                enum dev_state state)
1008 {
1009         u16 reg;
1010         u16 reg2;
1011         unsigned int i;
1012         char put_to_sleep;
1013         char bbp_state;
1014         char rf_state;
1015
1016         put_to_sleep = (state != STATE_AWAKE);
1017
1018         reg = 0;
1019         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1020         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1021         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1022         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1024         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1025
1026         /*
1027          * Device is not guaranteed to be in the requested state yet.
1028          * We must wait until the register indicates that the
1029          * device has entered the correct state.
1030          */
1031         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1032                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1033                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1034                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1035                 if (bbp_state == state && rf_state == state)
1036                         return 0;
1037                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1038                 msleep(30);
1039         }
1040
1041         return -EBUSY;
1042 }
1043
1044 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1045                                       enum dev_state state)
1046 {
1047         int retval = 0;
1048
1049         switch (state) {
1050         case STATE_RADIO_ON:
1051                 retval = rt2500usb_enable_radio(rt2x00dev);
1052                 break;
1053         case STATE_RADIO_OFF:
1054                 rt2500usb_disable_radio(rt2x00dev);
1055                 break;
1056         case STATE_RADIO_IRQ_ON:
1057         case STATE_RADIO_IRQ_OFF:
1058                 /* No support, but no error either */
1059                 break;
1060         case STATE_DEEP_SLEEP:
1061         case STATE_SLEEP:
1062         case STATE_STANDBY:
1063         case STATE_AWAKE:
1064                 retval = rt2500usb_set_state(rt2x00dev, state);
1065                 break;
1066         default:
1067                 retval = -ENOTSUPP;
1068                 break;
1069         }
1070
1071         if (unlikely(retval))
1072                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1073                       state, retval);
1074
1075         return retval;
1076 }
1077
1078 /*
1079  * TX descriptor initialization
1080  */
1081 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082                                     struct txentry_desc *txdesc)
1083 {
1084         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1085         __le32 *txd = (__le32 *) entry->skb->data;
1086         u32 word;
1087
1088         /*
1089          * Start writing the descriptor words.
1090          */
1091         rt2x00_desc_read(txd, 0, &word);
1092         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1093         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1094                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1095         rt2x00_set_field32(&word, TXD_W0_ACK,
1096                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1097         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1098                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1099         rt2x00_set_field32(&word, TXD_W0_OFDM,
1100                            (txdesc->rate_mode == RATE_MODE_OFDM));
1101         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1102                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1103         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1104         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1105         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1106         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1107         rt2x00_desc_write(txd, 0, word);
1108
1109         rt2x00_desc_read(txd, 1, &word);
1110         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1111         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1112         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1113         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114         rt2x00_desc_write(txd, 1, word);
1115
1116         rt2x00_desc_read(txd, 2, &word);
1117         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1118         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1119         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1120                            txdesc->u.plcp.length_low);
1121         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1122                            txdesc->u.plcp.length_high);
1123         rt2x00_desc_write(txd, 2, word);
1124
1125         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1126                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1127                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1128         }
1129
1130         /*
1131          * Register descriptor details in skb frame descriptor.
1132          */
1133         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1134         skbdesc->desc = txd;
1135         skbdesc->desc_len = TXD_DESC_SIZE;
1136 }
1137
1138 /*
1139  * TX data initialization
1140  */
1141 static void rt2500usb_beacondone(struct urb *urb);
1142
1143 static void rt2500usb_write_beacon(struct queue_entry *entry,
1144                                    struct txentry_desc *txdesc)
1145 {
1146         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1147         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1148         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1149         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1150         int length;
1151         u16 reg, reg0;
1152
1153         /*
1154          * Disable beaconing while we are reloading the beacon data,
1155          * otherwise we might be sending out invalid data.
1156          */
1157         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1158         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1159         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1160
1161         /*
1162          * Add space for the descriptor in front of the skb.
1163          */
1164         skb_push(entry->skb, TXD_DESC_SIZE);
1165         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1166
1167         /*
1168          * Write the TX descriptor for the beacon.
1169          */
1170         rt2500usb_write_tx_desc(entry, txdesc);
1171
1172         /*
1173          * Dump beacon to userspace through debugfs.
1174          */
1175         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1176
1177         /*
1178          * USB devices cannot blindly pass the skb->len as the
1179          * length of the data to usb_fill_bulk_urb. Pass the skb
1180          * to the driver to determine what the length should be.
1181          */
1182         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1183
1184         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1185                           entry->skb->data, length, rt2500usb_beacondone,
1186                           entry);
1187
1188         /*
1189          * Second we need to create the guardian byte.
1190          * We only need a single byte, so lets recycle
1191          * the 'flags' field we are not using for beacons.
1192          */
1193         bcn_priv->guardian_data = 0;
1194         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1195                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1196                           entry);
1197
1198         /*
1199          * Send out the guardian byte.
1200          */
1201         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1202
1203         /*
1204          * Enable beaconing again.
1205          */
1206         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1207         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1208         reg0 = reg;
1209         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1210         /*
1211          * Beacon generation will fail initially.
1212          * To prevent this we need to change the TXRX_CSR19
1213          * register several times (reg0 is the same as reg
1214          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1215          * and 1 in reg).
1216          */
1217         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1221         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1222 }
1223
1224 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1225 {
1226         int length;
1227
1228         /*
1229          * The length _must_ be a multiple of 2,
1230          * but it must _not_ be a multiple of the USB packet size.
1231          */
1232         length = roundup(entry->skb->len, 2);
1233         length += (2 * !(length % entry->queue->usb_maxpacket));
1234
1235         return length;
1236 }
1237
1238 /*
1239  * RX control handlers
1240  */
1241 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1242                                   struct rxdone_entry_desc *rxdesc)
1243 {
1244         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1245         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1246         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1247         __le32 *rxd =
1248             (__le32 *)(entry->skb->data +
1249                        (entry_priv->urb->actual_length -
1250                         entry->queue->desc_size));
1251         u32 word0;
1252         u32 word1;
1253
1254         /*
1255          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1256          * frame data in rt2x00usb.
1257          */
1258         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1259         rxd = (__le32 *)skbdesc->desc;
1260
1261         /*
1262          * It is now safe to read the descriptor on all architectures.
1263          */
1264         rt2x00_desc_read(rxd, 0, &word0);
1265         rt2x00_desc_read(rxd, 1, &word1);
1266
1267         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1268                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1269         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1270                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1271
1272         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1273         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1274                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1275
1276         if (rxdesc->cipher != CIPHER_NONE) {
1277                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1278                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1279                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1280
1281                 /* ICV is located at the end of frame */
1282
1283                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1284                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1285                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1286                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1287                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1288         }
1289
1290         /*
1291          * Obtain the status about this packet.
1292          * When frame was received with an OFDM bitrate,
1293          * the signal is the PLCP value. If it was received with
1294          * a CCK bitrate the signal is the rate in 100kbit/s.
1295          */
1296         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1297         rxdesc->rssi =
1298             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1299         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1300
1301         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1302                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1303         else
1304                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1305         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1306                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1307
1308         /*
1309          * Adjust the skb memory window to the frame boundaries.
1310          */
1311         skb_trim(entry->skb, rxdesc->size);
1312 }
1313
1314 /*
1315  * Interrupt functions.
1316  */
1317 static void rt2500usb_beacondone(struct urb *urb)
1318 {
1319         struct queue_entry *entry = (struct queue_entry *)urb->context;
1320         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1321
1322         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1323                 return;
1324
1325         /*
1326          * Check if this was the guardian beacon,
1327          * if that was the case we need to send the real beacon now.
1328          * Otherwise we should free the sk_buffer, the device
1329          * should be doing the rest of the work now.
1330          */
1331         if (bcn_priv->guardian_urb == urb) {
1332                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1333         } else if (bcn_priv->urb == urb) {
1334                 dev_kfree_skb(entry->skb);
1335                 entry->skb = NULL;
1336         }
1337 }
1338
1339 /*
1340  * Device probe functions.
1341  */
1342 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1343 {
1344         u16 word;
1345         u8 *mac;
1346         u8 bbp;
1347
1348         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1349
1350         /*
1351          * Start validation of the data that has been read.
1352          */
1353         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1354         if (!is_valid_ether_addr(mac)) {
1355                 random_ether_addr(mac);
1356                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1357         }
1358
1359         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1360         if (word == 0xffff) {
1361                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1363                                    ANTENNA_SW_DIVERSITY);
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1365                                    ANTENNA_SW_DIVERSITY);
1366                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1367                                    LED_MODE_DEFAULT);
1368                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1369                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1370                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1371                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1372                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1373         }
1374
1375         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1376         if (word == 0xffff) {
1377                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1378                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1379                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1380                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1381                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1382         }
1383
1384         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1385         if (word == 0xffff) {
1386                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1387                                    DEFAULT_RSSI_OFFSET);
1388                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1389                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1390         }
1391
1392         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1393         if (word == 0xffff) {
1394                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1395                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1396                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1397         }
1398
1399         /*
1400          * Switch lower vgc bound to current BBP R17 value,
1401          * lower the value a bit for better quality.
1402          */
1403         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1404         bbp -= 6;
1405
1406         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1407         if (word == 0xffff) {
1408                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1409                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1410                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1411                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1412         } else {
1413                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1414                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1415         }
1416
1417         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1418         if (word == 0xffff) {
1419                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1420                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1421                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1422                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1423         }
1424
1425         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1426         if (word == 0xffff) {
1427                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1428                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1429                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1430                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1431         }
1432
1433         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1434         if (word == 0xffff) {
1435                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1436                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1437                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1438                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1439         }
1440
1441         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1442         if (word == 0xffff) {
1443                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1444                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1445                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1446                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1447         }
1448
1449         return 0;
1450 }
1451
1452 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1453 {
1454         u16 reg;
1455         u16 value;
1456         u16 eeprom;
1457
1458         /*
1459          * Read EEPROM word for configuration.
1460          */
1461         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1462
1463         /*
1464          * Identify RF chipset.
1465          */
1466         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1467         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1468         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1469
1470         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1471                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1472                 return -ENODEV;
1473         }
1474
1475         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1476             !rt2x00_rf(rt2x00dev, RF2523) &&
1477             !rt2x00_rf(rt2x00dev, RF2524) &&
1478             !rt2x00_rf(rt2x00dev, RF2525) &&
1479             !rt2x00_rf(rt2x00dev, RF2525E) &&
1480             !rt2x00_rf(rt2x00dev, RF5222)) {
1481                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1482                 return -ENODEV;
1483         }
1484
1485         /*
1486          * Identify default antenna configuration.
1487          */
1488         rt2x00dev->default_ant.tx =
1489             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1490         rt2x00dev->default_ant.rx =
1491             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1492
1493         /*
1494          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1495          * I am not 100% sure about this, but the legacy drivers do not
1496          * indicate antenna swapping in software is required when
1497          * diversity is enabled.
1498          */
1499         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1500                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1501         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1502                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1503
1504         /*
1505          * Store led mode, for correct led behaviour.
1506          */
1507 #ifdef CONFIG_RT2X00_LIB_LEDS
1508         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1509
1510         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1511         if (value == LED_MODE_TXRX_ACTIVITY ||
1512             value == LED_MODE_DEFAULT ||
1513             value == LED_MODE_ASUS)
1514                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1515                                    LED_TYPE_ACTIVITY);
1516 #endif /* CONFIG_RT2X00_LIB_LEDS */
1517
1518         /*
1519          * Detect if this device has an hardware controlled radio.
1520          */
1521         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1522                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1523
1524         /*
1525          * Read the RSSI <-> dBm offset information.
1526          */
1527         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1528         rt2x00dev->rssi_offset =
1529             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1530
1531         return 0;
1532 }
1533
1534 /*
1535  * RF value list for RF2522
1536  * Supports: 2.4 GHz
1537  */
1538 static const struct rf_channel rf_vals_bg_2522[] = {
1539         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1540         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1541         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1542         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1543         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1544         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1545         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1546         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1547         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1548         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1549         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1550         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1551         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1552         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1553 };
1554
1555 /*
1556  * RF value list for RF2523
1557  * Supports: 2.4 GHz
1558  */
1559 static const struct rf_channel rf_vals_bg_2523[] = {
1560         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1561         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1562         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1563         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1564         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1565         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1566         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1567         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1568         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1569         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1570         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1571         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1572         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1573         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1574 };
1575
1576 /*
1577  * RF value list for RF2524
1578  * Supports: 2.4 GHz
1579  */
1580 static const struct rf_channel rf_vals_bg_2524[] = {
1581         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1582         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1583         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1584         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1585         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1586         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1587         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1588         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1589         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1590         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1591         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1592         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1593         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1594         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1595 };
1596
1597 /*
1598  * RF value list for RF2525
1599  * Supports: 2.4 GHz
1600  */
1601 static const struct rf_channel rf_vals_bg_2525[] = {
1602         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1603         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1604         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1605         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1606         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1607         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1608         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1609         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1610         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1611         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1612         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1613         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1614         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1615         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1616 };
1617
1618 /*
1619  * RF value list for RF2525e
1620  * Supports: 2.4 GHz
1621  */
1622 static const struct rf_channel rf_vals_bg_2525e[] = {
1623         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1624         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1625         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1626         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1627         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1628         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1629         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1630         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1631         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1632         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1633         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1634         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1635         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1636         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1637 };
1638
1639 /*
1640  * RF value list for RF5222
1641  * Supports: 2.4 GHz & 5.2 GHz
1642  */
1643 static const struct rf_channel rf_vals_5222[] = {
1644         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1645         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1646         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1647         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1648         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1649         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1650         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1651         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1652         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1653         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1654         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1655         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1656         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1657         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1658
1659         /* 802.11 UNI / HyperLan 2 */
1660         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1661         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1662         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1663         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1664         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1665         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1666         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1667         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1668
1669         /* 802.11 HyperLan 2 */
1670         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1671         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1672         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1673         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1674         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1675         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1676         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1677         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1678         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1679         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1680
1681         /* 802.11 UNII */
1682         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1683         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1684         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1685         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1686         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1687 };
1688
1689 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1690 {
1691         struct hw_mode_spec *spec = &rt2x00dev->spec;
1692         struct channel_info *info;
1693         char *tx_power;
1694         unsigned int i;
1695
1696         /*
1697          * Initialize all hw fields.
1698          *
1699          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1700          * capable of sending the buffered frames out after the DTIM
1701          * transmission using rt2x00lib_beacondone. This will send out
1702          * multicast and broadcast traffic immediately instead of buffering it
1703          * infinitly and thus dropping it after some time.
1704          */
1705         rt2x00dev->hw->flags =
1706             IEEE80211_HW_RX_INCLUDES_FCS |
1707             IEEE80211_HW_SIGNAL_DBM |
1708             IEEE80211_HW_SUPPORTS_PS |
1709             IEEE80211_HW_PS_NULLFUNC_STACK;
1710
1711         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1712         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1713                                 rt2x00_eeprom_addr(rt2x00dev,
1714                                                    EEPROM_MAC_ADDR_0));
1715
1716         /*
1717          * Initialize hw_mode information.
1718          */
1719         spec->supported_bands = SUPPORT_BAND_2GHZ;
1720         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1721
1722         if (rt2x00_rf(rt2x00dev, RF2522)) {
1723                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1724                 spec->channels = rf_vals_bg_2522;
1725         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1726                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1727                 spec->channels = rf_vals_bg_2523;
1728         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1729                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1730                 spec->channels = rf_vals_bg_2524;
1731         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1732                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1733                 spec->channels = rf_vals_bg_2525;
1734         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1735                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1736                 spec->channels = rf_vals_bg_2525e;
1737         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1738                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1739                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1740                 spec->channels = rf_vals_5222;
1741         }
1742
1743         /*
1744          * Create channel information array
1745          */
1746         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1747         if (!info)
1748                 return -ENOMEM;
1749
1750         spec->channels_info = info;
1751
1752         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1753         for (i = 0; i < 14; i++) {
1754                 info[i].max_power = MAX_TXPOWER;
1755                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1756         }
1757
1758         if (spec->num_channels > 14) {
1759                 for (i = 14; i < spec->num_channels; i++) {
1760                         info[i].max_power = MAX_TXPOWER;
1761                         info[i].default_power1 = DEFAULT_TXPOWER;
1762                 }
1763         }
1764
1765         return 0;
1766 }
1767
1768 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1769 {
1770         int retval;
1771
1772         /*
1773          * Allocate eeprom data.
1774          */
1775         retval = rt2500usb_validate_eeprom(rt2x00dev);
1776         if (retval)
1777                 return retval;
1778
1779         retval = rt2500usb_init_eeprom(rt2x00dev);
1780         if (retval)
1781                 return retval;
1782
1783         /*
1784          * Initialize hw specifications.
1785          */
1786         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1787         if (retval)
1788                 return retval;
1789
1790         /*
1791          * This device requires the atim queue
1792          */
1793         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1794         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1795         if (!modparam_nohwcrypt) {
1796                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1797                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1798         }
1799         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1800         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1801
1802         /*
1803          * Set the rssi offset.
1804          */
1805         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1806
1807         return 0;
1808 }
1809
1810 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1811         .tx                     = rt2x00mac_tx,
1812         .start                  = rt2x00mac_start,
1813         .stop                   = rt2x00mac_stop,
1814         .add_interface          = rt2x00mac_add_interface,
1815         .remove_interface       = rt2x00mac_remove_interface,
1816         .config                 = rt2x00mac_config,
1817         .configure_filter       = rt2x00mac_configure_filter,
1818         .set_tim                = rt2x00mac_set_tim,
1819         .set_key                = rt2x00mac_set_key,
1820         .sw_scan_start          = rt2x00mac_sw_scan_start,
1821         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1822         .get_stats              = rt2x00mac_get_stats,
1823         .bss_info_changed       = rt2x00mac_bss_info_changed,
1824         .conf_tx                = rt2x00mac_conf_tx,
1825         .rfkill_poll            = rt2x00mac_rfkill_poll,
1826         .flush                  = rt2x00mac_flush,
1827         .set_antenna            = rt2x00mac_set_antenna,
1828         .get_antenna            = rt2x00mac_get_antenna,
1829         .get_ringparam          = rt2x00mac_get_ringparam,
1830         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1831 };
1832
1833 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1834         .probe_hw               = rt2500usb_probe_hw,
1835         .initialize             = rt2x00usb_initialize,
1836         .uninitialize           = rt2x00usb_uninitialize,
1837         .clear_entry            = rt2x00usb_clear_entry,
1838         .set_device_state       = rt2500usb_set_device_state,
1839         .rfkill_poll            = rt2500usb_rfkill_poll,
1840         .link_stats             = rt2500usb_link_stats,
1841         .reset_tuner            = rt2500usb_reset_tuner,
1842         .watchdog               = rt2x00usb_watchdog,
1843         .start_queue            = rt2500usb_start_queue,
1844         .kick_queue             = rt2x00usb_kick_queue,
1845         .stop_queue             = rt2500usb_stop_queue,
1846         .flush_queue            = rt2x00usb_flush_queue,
1847         .write_tx_desc          = rt2500usb_write_tx_desc,
1848         .write_beacon           = rt2500usb_write_beacon,
1849         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1850         .fill_rxdone            = rt2500usb_fill_rxdone,
1851         .config_shared_key      = rt2500usb_config_key,
1852         .config_pairwise_key    = rt2500usb_config_key,
1853         .config_filter          = rt2500usb_config_filter,
1854         .config_intf            = rt2500usb_config_intf,
1855         .config_erp             = rt2500usb_config_erp,
1856         .config_ant             = rt2500usb_config_ant,
1857         .config                 = rt2500usb_config,
1858 };
1859
1860 static const struct data_queue_desc rt2500usb_queue_rx = {
1861         .entry_num              = 32,
1862         .data_size              = DATA_FRAME_SIZE,
1863         .desc_size              = RXD_DESC_SIZE,
1864         .priv_size              = sizeof(struct queue_entry_priv_usb),
1865 };
1866
1867 static const struct data_queue_desc rt2500usb_queue_tx = {
1868         .entry_num              = 32,
1869         .data_size              = DATA_FRAME_SIZE,
1870         .desc_size              = TXD_DESC_SIZE,
1871         .priv_size              = sizeof(struct queue_entry_priv_usb),
1872 };
1873
1874 static const struct data_queue_desc rt2500usb_queue_bcn = {
1875         .entry_num              = 1,
1876         .data_size              = MGMT_FRAME_SIZE,
1877         .desc_size              = TXD_DESC_SIZE,
1878         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1879 };
1880
1881 static const struct data_queue_desc rt2500usb_queue_atim = {
1882         .entry_num              = 8,
1883         .data_size              = DATA_FRAME_SIZE,
1884         .desc_size              = TXD_DESC_SIZE,
1885         .priv_size              = sizeof(struct queue_entry_priv_usb),
1886 };
1887
1888 static const struct rt2x00_ops rt2500usb_ops = {
1889         .name                   = KBUILD_MODNAME,
1890         .max_sta_intf           = 1,
1891         .max_ap_intf            = 1,
1892         .eeprom_size            = EEPROM_SIZE,
1893         .rf_size                = RF_SIZE,
1894         .tx_queues              = NUM_TX_QUEUES,
1895         .extra_tx_headroom      = TXD_DESC_SIZE,
1896         .rx                     = &rt2500usb_queue_rx,
1897         .tx                     = &rt2500usb_queue_tx,
1898         .bcn                    = &rt2500usb_queue_bcn,
1899         .atim                   = &rt2500usb_queue_atim,
1900         .lib                    = &rt2500usb_rt2x00_ops,
1901         .hw                     = &rt2500usb_mac80211_ops,
1902 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1903         .debugfs                = &rt2500usb_rt2x00debug,
1904 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1905 };
1906
1907 /*
1908  * rt2500usb module information.
1909  */
1910 static struct usb_device_id rt2500usb_device_table[] = {
1911         /* ASUS */
1912         { USB_DEVICE(0x0b05, 0x1706) },
1913         { USB_DEVICE(0x0b05, 0x1707) },
1914         /* Belkin */
1915         { USB_DEVICE(0x050d, 0x7050) },
1916         { USB_DEVICE(0x050d, 0x7051) },
1917         /* Cisco Systems */
1918         { USB_DEVICE(0x13b1, 0x000d) },
1919         { USB_DEVICE(0x13b1, 0x0011) },
1920         { USB_DEVICE(0x13b1, 0x001a) },
1921         /* Conceptronic */
1922         { USB_DEVICE(0x14b2, 0x3c02) },
1923         /* D-LINK */
1924         { USB_DEVICE(0x2001, 0x3c00) },
1925         /* Gigabyte */
1926         { USB_DEVICE(0x1044, 0x8001) },
1927         { USB_DEVICE(0x1044, 0x8007) },
1928         /* Hercules */
1929         { USB_DEVICE(0x06f8, 0xe000) },
1930         /* Melco */
1931         { USB_DEVICE(0x0411, 0x005e) },
1932         { USB_DEVICE(0x0411, 0x0066) },
1933         { USB_DEVICE(0x0411, 0x0067) },
1934         { USB_DEVICE(0x0411, 0x008b) },
1935         { USB_DEVICE(0x0411, 0x0097) },
1936         /* MSI */
1937         { USB_DEVICE(0x0db0, 0x6861) },
1938         { USB_DEVICE(0x0db0, 0x6865) },
1939         { USB_DEVICE(0x0db0, 0x6869) },
1940         /* Ralink */
1941         { USB_DEVICE(0x148f, 0x1706) },
1942         { USB_DEVICE(0x148f, 0x2570) },
1943         { USB_DEVICE(0x148f, 0x9020) },
1944         /* Sagem */
1945         { USB_DEVICE(0x079b, 0x004b) },
1946         /* Siemens */
1947         { USB_DEVICE(0x0681, 0x3c06) },
1948         /* SMC */
1949         { USB_DEVICE(0x0707, 0xee13) },
1950         /* Spairon */
1951         { USB_DEVICE(0x114b, 0x0110) },
1952         /* SURECOM */
1953         { USB_DEVICE(0x0769, 0x11f3) },
1954         /* Trust */
1955         { USB_DEVICE(0x0eb0, 0x9020) },
1956         /* VTech */
1957         { USB_DEVICE(0x0f88, 0x3012) },
1958         /* Zinwell */
1959         { USB_DEVICE(0x5a57, 0x0260) },
1960         { 0, }
1961 };
1962
1963 MODULE_AUTHOR(DRV_PROJECT);
1964 MODULE_VERSION(DRV_VERSION);
1965 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1966 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1967 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1968 MODULE_LICENSE("GPL");
1969
1970 static int rt2500usb_probe(struct usb_interface *usb_intf,
1971                            const struct usb_device_id *id)
1972 {
1973         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1974 }
1975
1976 static struct usb_driver rt2500usb_driver = {
1977         .name           = KBUILD_MODNAME,
1978         .id_table       = rt2500usb_device_table,
1979         .probe          = rt2500usb_probe,
1980         .disconnect     = rt2x00usb_disconnect,
1981         .suspend        = rt2x00usb_suspend,
1982         .resume         = rt2x00usb_resume,
1983 };
1984
1985 static int __init rt2500usb_init(void)
1986 {
1987         return usb_register(&rt2500usb_driver);
1988 }
1989
1990 static void __exit rt2500usb_exit(void)
1991 {
1992         usb_deregister(&rt2500usb_driver);
1993 }
1994
1995 module_init(rt2500usb_init);
1996 module_exit(rt2500usb_exit);