rt2x00: Fix beacon de-synchronization while update beacon
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500pci
23         Abstract: rt2500pci device specific routines.
24         Supported chipsets: RT2560.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56
57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58                                 const unsigned int word, const u8 value)
59 {
60         u32 reg;
61
62         mutex_lock(&rt2x00dev->csr_mutex);
63
64         /*
65          * Wait until the BBP becomes available, afterwards we
66          * can safely write the new data into the register.
67          */
68         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69                 reg = 0;
70                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74
75                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76         }
77
78         mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80
81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82                                const unsigned int word, u8 *value)
83 {
84         u32 reg;
85
86         mutex_lock(&rt2x00dev->csr_mutex);
87
88         /*
89          * Wait until the BBP becomes available, afterwards we
90          * can safely write the read request into the register.
91          * After the data has been written, we wait until hardware
92          * returns the correct value, if at any time the register
93          * doesn't become available in time, reg will be 0xffffffff
94          * which means we return 0xff to the caller.
95          */
96         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97                 reg = 0;
98                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101
102                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103
104                 WAIT_FOR_BBP(rt2x00dev, &reg);
105         }
106
107         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108
109         mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111
112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113                                const unsigned int word, const u32 value)
114 {
115         u32 reg;
116
117         mutex_lock(&rt2x00dev->csr_mutex);
118
119         /*
120          * Wait until the RF becomes available, afterwards we
121          * can safely write the new data into the register.
122          */
123         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124                 reg = 0;
125                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
129
130                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131                 rt2x00_rf_write(rt2x00dev, word, value);
132         }
133
134         mutex_unlock(&rt2x00dev->csr_mutex);
135 }
136
137 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
138 {
139         struct rt2x00_dev *rt2x00dev = eeprom->data;
140         u32 reg;
141
142         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
143
144         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146         eeprom->reg_data_clock =
147             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148         eeprom->reg_chip_select =
149             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
150 }
151
152 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
153 {
154         struct rt2x00_dev *rt2x00dev = eeprom->data;
155         u32 reg = 0;
156
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160                            !!eeprom->reg_data_clock);
161         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162                            !!eeprom->reg_chip_select);
163
164         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
165 }
166
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2500pci_rt2x00debug = {
169         .owner  = THIS_MODULE,
170         .csr    = {
171                 .read           = rt2x00pci_register_read,
172                 .write          = rt2x00pci_register_write,
173                 .flags          = RT2X00DEBUGFS_OFFSET,
174                 .word_base      = CSR_REG_BASE,
175                 .word_size      = sizeof(u32),
176                 .word_count     = CSR_REG_SIZE / sizeof(u32),
177         },
178         .eeprom = {
179                 .read           = rt2x00_eeprom_read,
180                 .write          = rt2x00_eeprom_write,
181                 .word_base      = EEPROM_BASE,
182                 .word_size      = sizeof(u16),
183                 .word_count     = EEPROM_SIZE / sizeof(u16),
184         },
185         .bbp    = {
186                 .read           = rt2500pci_bbp_read,
187                 .write          = rt2500pci_bbp_write,
188                 .word_base      = BBP_BASE,
189                 .word_size      = sizeof(u8),
190                 .word_count     = BBP_SIZE / sizeof(u8),
191         },
192         .rf     = {
193                 .read           = rt2x00_rf_read,
194                 .write          = rt2500pci_rf_write,
195                 .word_base      = RF_BASE,
196                 .word_size      = sizeof(u32),
197                 .word_count     = RF_SIZE / sizeof(u32),
198         },
199 };
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
201
202 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
203 {
204         u32 reg;
205
206         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
208 }
209
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
212                                      enum led_brightness brightness)
213 {
214         struct rt2x00_led *led =
215             container_of(led_cdev, struct rt2x00_led, led_dev);
216         unsigned int enabled = brightness != LED_OFF;
217         u32 reg;
218
219         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
220
221         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223         else if (led->type == LED_TYPE_ACTIVITY)
224                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
225
226         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
227 }
228
229 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
230                                unsigned long *delay_on,
231                                unsigned long *delay_off)
232 {
233         struct rt2x00_led *led =
234             container_of(led_cdev, struct rt2x00_led, led_dev);
235         u32 reg;
236
237         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
241
242         return 0;
243 }
244
245 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
246                                struct rt2x00_led *led,
247                                enum led_type type)
248 {
249         led->rt2x00dev = rt2x00dev;
250         led->type = type;
251         led->led_dev.brightness_set = rt2500pci_brightness_set;
252         led->led_dev.blink_set = rt2500pci_blink_set;
253         led->flags = LED_INITIALIZED;
254 }
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
256
257 /*
258  * Configuration handlers.
259  */
260 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
261                                     const unsigned int filter_flags)
262 {
263         u32 reg;
264
265         /*
266          * Start configuration steps.
267          * Note that the version error will always be dropped
268          * and broadcast frames will always be accepted since
269          * there is no filter for it at this time.
270          */
271         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273                            !(filter_flags & FIF_FCSFAIL));
274         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275                            !(filter_flags & FIF_PLCPFAIL));
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277                            !(filter_flags & FIF_CONTROL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279                            !(filter_flags & FIF_PROMISC_IN_BSS));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
282                            !rt2x00dev->intf_ap_count);
283         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
285                            !(filter_flags & FIF_ALLMULTI));
286         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
287         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
288 }
289
290 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
291                                   struct rt2x00_intf *intf,
292                                   struct rt2x00intf_conf *conf,
293                                   const unsigned int flags)
294 {
295         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
296         unsigned int bcn_preload;
297         u32 reg;
298
299         if (flags & CONFIG_UPDATE_TYPE) {
300                 /*
301                  * Enable beacon config
302                  */
303                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
304                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
305                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
306                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
307                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
308
309                 /*
310                  * Enable synchronisation.
311                  */
312                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
313                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
314                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
315                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
316                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
317         }
318
319         if (flags & CONFIG_UPDATE_MAC)
320                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
321                                               conf->mac, sizeof(conf->mac));
322
323         if (flags & CONFIG_UPDATE_BSSID)
324                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
325                                               conf->bssid, sizeof(conf->bssid));
326 }
327
328 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
329                                  struct rt2x00lib_erp *erp)
330 {
331         int preamble_mask;
332         u32 reg;
333
334         /*
335          * When short preamble is enabled, we should set bit 0x08
336          */
337         preamble_mask = erp->short_preamble << 3;
338
339         rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
340         rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, erp->ack_timeout);
341         rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
342                            erp->ack_consume_time);
343         rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
344         rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
345         rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
346
347         rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
348         rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
349         rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
350         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
351         rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
352
353         rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
354         rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
355         rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
356         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
357         rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
358
359         rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
360         rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361         rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
363         rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
364
365         rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
366         rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
367         rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
368         rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
369         rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370
371         rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
372
373         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
374         rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
375         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
376
377         rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
378         rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
379         rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
380         rt2x00pci_register_write(rt2x00dev, CSR12, reg);
381
382         rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
383         rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
384         rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
385         rt2x00pci_register_write(rt2x00dev, CSR18, reg);
386
387         rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
388         rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
389         rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
390         rt2x00pci_register_write(rt2x00dev, CSR19, reg);
391 }
392
393 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
394                                  struct antenna_setup *ant)
395 {
396         u32 reg;
397         u8 r14;
398         u8 r2;
399
400         /*
401          * We should never come here because rt2x00lib is supposed
402          * to catch this and send us the correct antenna explicitely.
403          */
404         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
405                ant->tx == ANTENNA_SW_DIVERSITY);
406
407         rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
408         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
409         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
410
411         /*
412          * Configure the TX antenna.
413          */
414         switch (ant->tx) {
415         case ANTENNA_A:
416                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
417                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
418                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
419                 break;
420         case ANTENNA_B:
421         default:
422                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
423                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
424                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
425                 break;
426         }
427
428         /*
429          * Configure the RX antenna.
430          */
431         switch (ant->rx) {
432         case ANTENNA_A:
433                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
434                 break;
435         case ANTENNA_B:
436         default:
437                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
438                 break;
439         }
440
441         /*
442          * RT2525E and RT5222 need to flip TX I/Q
443          */
444         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
445             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
446                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
447                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
448                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
449
450                 /*
451                  * RT2525E does not need RX I/Q Flip.
452                  */
453                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
454                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
455         } else {
456                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
457                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
458         }
459
460         rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
461         rt2500pci_bbp_write(rt2x00dev, 14, r14);
462         rt2500pci_bbp_write(rt2x00dev, 2, r2);
463 }
464
465 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
466                                      struct rf_channel *rf, const int txpower)
467 {
468         u8 r70;
469
470         /*
471          * Set TXpower.
472          */
473         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
474
475         /*
476          * Switch on tuning bits.
477          * For RT2523 devices we do not need to update the R1 register.
478          */
479         if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
480                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
481         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
482
483         /*
484          * For RT2525 we should first set the channel to half band higher.
485          */
486         if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
487                 static const u32 vals[] = {
488                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
489                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
490                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
491                         0x00080d2e, 0x00080d3a
492                 };
493
494                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
495                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
496                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
497                 if (rf->rf4)
498                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
499         }
500
501         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
502         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
503         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
504         if (rf->rf4)
505                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
506
507         /*
508          * Channel 14 requires the Japan filter bit to be set.
509          */
510         r70 = 0x46;
511         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
512         rt2500pci_bbp_write(rt2x00dev, 70, r70);
513
514         msleep(1);
515
516         /*
517          * Switch off tuning bits.
518          * For RT2523 devices we do not need to update the R1 register.
519          */
520         if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
521                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
522                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
523         }
524
525         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
526         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
527
528         /*
529          * Clear false CRC during channel switch.
530          */
531         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
532 }
533
534 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
535                                      const int txpower)
536 {
537         u32 rf3;
538
539         rt2x00_rf_read(rt2x00dev, 3, &rf3);
540         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
541         rt2500pci_rf_write(rt2x00dev, 3, rf3);
542 }
543
544 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
545                                          struct rt2x00lib_conf *libconf)
546 {
547         u32 reg;
548
549         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
550         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
551                            libconf->conf->long_frame_max_tx_count);
552         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
553                            libconf->conf->short_frame_max_tx_count);
554         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
555 }
556
557 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
558                                 struct rt2x00lib_conf *libconf)
559 {
560         enum dev_state state =
561             (libconf->conf->flags & IEEE80211_CONF_PS) ?
562                 STATE_SLEEP : STATE_AWAKE;
563         u32 reg;
564
565         if (state == STATE_SLEEP) {
566                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
567                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
568                                    (rt2x00dev->beacon_int - 20) * 16);
569                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
570                                    libconf->conf->listen_interval - 1);
571
572                 /* We must first disable autowake before it can be enabled */
573                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
574                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
575
576                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
577                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
578         }
579
580         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
581 }
582
583 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
584                              struct rt2x00lib_conf *libconf,
585                              const unsigned int flags)
586 {
587         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
588                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
589                                          libconf->conf->power_level);
590         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
591             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
592                 rt2500pci_config_txpower(rt2x00dev,
593                                          libconf->conf->power_level);
594         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
595                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
596         if (flags & IEEE80211_CONF_CHANGE_PS)
597                 rt2500pci_config_ps(rt2x00dev, libconf);
598 }
599
600 /*
601  * Link tuning
602  */
603 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
604                                  struct link_qual *qual)
605 {
606         u32 reg;
607
608         /*
609          * Update FCS error count from register.
610          */
611         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
612         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
613
614         /*
615          * Update False CCA count from register.
616          */
617         rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
618         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
619 }
620
621 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
622                                      struct link_qual *qual, u8 vgc_level)
623 {
624         if (qual->vgc_level_reg != vgc_level) {
625                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
626                 qual->vgc_level_reg = vgc_level;
627         }
628 }
629
630 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
631                                   struct link_qual *qual)
632 {
633         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
634 }
635
636 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
637                                  struct link_qual *qual, const u32 count)
638 {
639         /*
640          * To prevent collisions with MAC ASIC on chipsets
641          * up to version C the link tuning should halt after 20
642          * seconds while being associated.
643          */
644         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
645             rt2x00dev->intf_associated && count > 20)
646                 return;
647
648         /*
649          * Chipset versions C and lower should directly continue
650          * to the dynamic CCA tuning. Chipset version D and higher
651          * should go straight to dynamic CCA tuning when they
652          * are not associated.
653          */
654         if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
655             !rt2x00dev->intf_associated)
656                 goto dynamic_cca_tune;
657
658         /*
659          * A too low RSSI will cause too much false CCA which will
660          * then corrupt the R17 tuning. To remidy this the tuning should
661          * be stopped (While making sure the R17 value will not exceed limits)
662          */
663         if (qual->rssi < -80 && count > 20) {
664                 if (qual->vgc_level_reg >= 0x41)
665                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
666                 return;
667         }
668
669         /*
670          * Special big-R17 for short distance
671          */
672         if (qual->rssi >= -58) {
673                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
674                 return;
675         }
676
677         /*
678          * Special mid-R17 for middle distance
679          */
680         if (qual->rssi >= -74) {
681                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
682                 return;
683         }
684
685         /*
686          * Leave short or middle distance condition, restore r17
687          * to the dynamic tuning range.
688          */
689         if (qual->vgc_level_reg >= 0x41) {
690                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
691                 return;
692         }
693
694 dynamic_cca_tune:
695
696         /*
697          * R17 is inside the dynamic tuning range,
698          * start tuning the link based on the false cca counter.
699          */
700         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) {
701                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
702                 qual->vgc_level = qual->vgc_level_reg;
703         } else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) {
704                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
705                 qual->vgc_level = qual->vgc_level_reg;
706         }
707 }
708
709 /*
710  * Initialization functions.
711  */
712 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
713 {
714         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
715         u32 word;
716
717         if (entry->queue->qid == QID_RX) {
718                 rt2x00_desc_read(entry_priv->desc, 0, &word);
719
720                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
721         } else {
722                 rt2x00_desc_read(entry_priv->desc, 0, &word);
723
724                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
725                         rt2x00_get_field32(word, TXD_W0_VALID));
726         }
727 }
728
729 static void rt2500pci_clear_entry(struct queue_entry *entry)
730 {
731         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
732         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
733         u32 word;
734
735         if (entry->queue->qid == QID_RX) {
736                 rt2x00_desc_read(entry_priv->desc, 1, &word);
737                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
738                 rt2x00_desc_write(entry_priv->desc, 1, word);
739
740                 rt2x00_desc_read(entry_priv->desc, 0, &word);
741                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
742                 rt2x00_desc_write(entry_priv->desc, 0, word);
743         } else {
744                 rt2x00_desc_read(entry_priv->desc, 0, &word);
745                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
746                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
747                 rt2x00_desc_write(entry_priv->desc, 0, word);
748         }
749 }
750
751 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
752 {
753         struct queue_entry_priv_pci *entry_priv;
754         u32 reg;
755
756         /*
757          * Initialize registers.
758          */
759         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
760         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
761         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
762         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
763         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
764         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
765
766         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
767         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
768         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
769                            entry_priv->desc_dma);
770         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
771
772         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
773         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
774         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
775                            entry_priv->desc_dma);
776         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
777
778         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
779         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
780         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
781                            entry_priv->desc_dma);
782         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
783
784         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
785         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
786         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
787                            entry_priv->desc_dma);
788         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
789
790         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
791         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
792         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
793         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
794
795         entry_priv = rt2x00dev->rx->entries[0].priv_data;
796         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
797         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
798                            entry_priv->desc_dma);
799         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
800
801         return 0;
802 }
803
804 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
805 {
806         u32 reg;
807
808         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
809         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
810         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
811         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
812
813         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
814         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
815         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
816         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
817         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
818
819         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
820         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
821                            rt2x00dev->rx->data_size / 128);
822         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
823
824         /*
825          * Always use CWmin and CWmax set in descriptor.
826          */
827         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
828         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
829         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
830
831         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
832         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
833         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
834         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
835         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
836         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
837         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
838         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
839         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
840         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
841
842         rt2x00pci_register_write(rt2x00dev, CNT3, 0);
843
844         rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
845         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
846         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
847         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
848         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
849         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
850         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
851         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
852         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
853         rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
854
855         rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
856         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
857         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
858         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
859         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
860         rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
861
862         rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
863         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
864         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
865         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
866         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
867         rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
868
869         rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
870         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
871         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
872         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
873         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
874         rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
875
876         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
877         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
878         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
879         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
880         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
881         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
882         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
883         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
884         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
885         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
886
887         rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
888         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
889         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
890         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
891         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
892         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
893         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
894         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
895         rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
896
897         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
898
899         rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
900         rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
901
902         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
903                 return -EBUSY;
904
905         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
906         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
907
908         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
909         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
910         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
911
912         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
913         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
914         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
915         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
916         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
917         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
918         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
919         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
920
921         rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
922
923         rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
924
925         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
926         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
927         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
928         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
929         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
930
931         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
932         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
933         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
934         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
935
936         /*
937          * We must clear the FCS and FIFO error count.
938          * These registers are cleared on read,
939          * so we may pass a useless variable to store the value.
940          */
941         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
942         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
943
944         return 0;
945 }
946
947 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
948 {
949         unsigned int i;
950         u8 value;
951
952         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
953                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
954                 if ((value != 0xff) && (value != 0x00))
955                         return 0;
956                 udelay(REGISTER_BUSY_DELAY);
957         }
958
959         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
960         return -EACCES;
961 }
962
963 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
964 {
965         unsigned int i;
966         u16 eeprom;
967         u8 reg_id;
968         u8 value;
969
970         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
971                 return -EACCES;
972
973         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
974         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
975         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
976         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
977         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
978         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
979         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
980         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
981         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
982         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
983         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
984         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
985         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
986         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
987         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
988         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
989         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
990         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
991         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
992         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
993         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
994         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
995         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
996         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
997         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
998         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
999         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1000         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1001         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1002         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1003
1004         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1005                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1006
1007                 if (eeprom != 0xffff && eeprom != 0x0000) {
1008                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1009                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1010                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1011                 }
1012         }
1013
1014         return 0;
1015 }
1016
1017 /*
1018  * Device state switch handlers.
1019  */
1020 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1021                                 enum dev_state state)
1022 {
1023         u32 reg;
1024
1025         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1026         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1027                            (state == STATE_RADIO_RX_OFF) ||
1028                            (state == STATE_RADIO_RX_OFF_LINK));
1029         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1030 }
1031
1032 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1033                                  enum dev_state state)
1034 {
1035         int mask = (state == STATE_RADIO_IRQ_OFF);
1036         u32 reg;
1037
1038         /*
1039          * When interrupts are being enabled, the interrupt registers
1040          * should clear the register to assure a clean state.
1041          */
1042         if (state == STATE_RADIO_IRQ_ON) {
1043                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1044                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1045         }
1046
1047         /*
1048          * Only toggle the interrupts bits we are going to use.
1049          * Non-checked interrupt bits are disabled by default.
1050          */
1051         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1052         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1053         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1054         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1055         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1056         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1057         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1058 }
1059
1060 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1061 {
1062         /*
1063          * Initialize all registers.
1064          */
1065         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1066                      rt2500pci_init_registers(rt2x00dev) ||
1067                      rt2500pci_init_bbp(rt2x00dev)))
1068                 return -EIO;
1069
1070         return 0;
1071 }
1072
1073 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1074 {
1075         /*
1076          * Disable power
1077          */
1078         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1079 }
1080
1081 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1082                                enum dev_state state)
1083 {
1084         u32 reg;
1085         unsigned int i;
1086         char put_to_sleep;
1087         char bbp_state;
1088         char rf_state;
1089
1090         put_to_sleep = (state != STATE_AWAKE);
1091
1092         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1093         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1094         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1095         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1096         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1097         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1098
1099         /*
1100          * Device is not guaranteed to be in the requested state yet.
1101          * We must wait until the register indicates that the
1102          * device has entered the correct state.
1103          */
1104         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1105                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1106                 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1107                 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1108                 if (bbp_state == state && rf_state == state)
1109                         return 0;
1110                 msleep(10);
1111         }
1112
1113         return -EBUSY;
1114 }
1115
1116 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1117                                       enum dev_state state)
1118 {
1119         int retval = 0;
1120
1121         switch (state) {
1122         case STATE_RADIO_ON:
1123                 retval = rt2500pci_enable_radio(rt2x00dev);
1124                 break;
1125         case STATE_RADIO_OFF:
1126                 rt2500pci_disable_radio(rt2x00dev);
1127                 break;
1128         case STATE_RADIO_RX_ON:
1129         case STATE_RADIO_RX_ON_LINK:
1130         case STATE_RADIO_RX_OFF:
1131         case STATE_RADIO_RX_OFF_LINK:
1132                 rt2500pci_toggle_rx(rt2x00dev, state);
1133                 break;
1134         case STATE_RADIO_IRQ_ON:
1135         case STATE_RADIO_IRQ_OFF:
1136                 rt2500pci_toggle_irq(rt2x00dev, state);
1137                 break;
1138         case STATE_DEEP_SLEEP:
1139         case STATE_SLEEP:
1140         case STATE_STANDBY:
1141         case STATE_AWAKE:
1142                 retval = rt2500pci_set_state(rt2x00dev, state);
1143                 break;
1144         default:
1145                 retval = -ENOTSUPP;
1146                 break;
1147         }
1148
1149         if (unlikely(retval))
1150                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1151                       state, retval);
1152
1153         return retval;
1154 }
1155
1156 /*
1157  * TX descriptor initialization
1158  */
1159 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1160                                     struct sk_buff *skb,
1161                                     struct txentry_desc *txdesc)
1162 {
1163         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1164         struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1165         __le32 *txd = skbdesc->desc;
1166         u32 word;
1167
1168         /*
1169          * Start writing the descriptor words.
1170          */
1171         rt2x00_desc_read(entry_priv->desc, 1, &word);
1172         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1173         rt2x00_desc_write(entry_priv->desc, 1, word);
1174
1175         rt2x00_desc_read(txd, 2, &word);
1176         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1177         rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1178         rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1179         rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1180         rt2x00_desc_write(txd, 2, word);
1181
1182         rt2x00_desc_read(txd, 3, &word);
1183         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1184         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1185         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1186         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1187         rt2x00_desc_write(txd, 3, word);
1188
1189         rt2x00_desc_read(txd, 10, &word);
1190         rt2x00_set_field32(&word, TXD_W10_RTS,
1191                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1192         rt2x00_desc_write(txd, 10, word);
1193
1194         rt2x00_desc_read(txd, 0, &word);
1195         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1196         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1197         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1198                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1199         rt2x00_set_field32(&word, TXD_W0_ACK,
1200                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1201         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1202                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_OFDM,
1204                            (txdesc->rate_mode == RATE_MODE_OFDM));
1205         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1206         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1207         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1208                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1209         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1210         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1211         rt2x00_desc_write(txd, 0, word);
1212 }
1213
1214 /*
1215  * TX data initialization
1216  */
1217 static void rt2500pci_write_beacon(struct queue_entry *entry)
1218 {
1219         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1221         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222         u32 word;
1223         u32 reg;
1224
1225         /*
1226          * Disable beaconing while we are reloading the beacon data,
1227          * otherwise we might be sending out invalid data.
1228          */
1229         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1230         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1231         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1232
1233         /*
1234          * Replace rt2x00lib allocated descriptor with the
1235          * pointer to the _real_ hardware descriptor.
1236          * After that, map the beacon to DMA and update the
1237          * descriptor.
1238          */
1239         memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1240         skbdesc->desc = entry_priv->desc;
1241
1242         rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1243
1244         rt2x00_desc_read(entry_priv->desc, 1, &word);
1245         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1246         rt2x00_desc_write(entry_priv->desc, 1, word);
1247 }
1248
1249 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1250                                     const enum data_queue_qid queue)
1251 {
1252         u32 reg;
1253
1254         if (queue == QID_BEACON) {
1255                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1256                 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1257                         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1258                         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1259                         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1260                         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1261                 }
1262                 return;
1263         }
1264
1265         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1266         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1267         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1268         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1269         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1270 }
1271
1272 static void rt2500pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1273                                     const enum data_queue_qid qid)
1274 {
1275         u32 reg;
1276
1277         if (qid == QID_BEACON) {
1278                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1279         } else {
1280                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1281                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1282                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1283         }
1284 }
1285
1286 /*
1287  * RX control handlers
1288  */
1289 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1290                                   struct rxdone_entry_desc *rxdesc)
1291 {
1292         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1293         u32 word0;
1294         u32 word2;
1295
1296         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1297         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1298
1299         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1300                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1301         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1302                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1303
1304         /*
1305          * Obtain the status about this packet.
1306          * When frame was received with an OFDM bitrate,
1307          * the signal is the PLCP value. If it was received with
1308          * a CCK bitrate the signal is the rate in 100kbit/s.
1309          */
1310         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1311         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1312             entry->queue->rt2x00dev->rssi_offset;
1313         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1314
1315         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1316                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1317         else
1318                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1319         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1320                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1321 }
1322
1323 /*
1324  * Interrupt functions.
1325  */
1326 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1327                              const enum data_queue_qid queue_idx)
1328 {
1329         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1330         struct queue_entry_priv_pci *entry_priv;
1331         struct queue_entry *entry;
1332         struct txdone_entry_desc txdesc;
1333         u32 word;
1334
1335         while (!rt2x00queue_empty(queue)) {
1336                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1337                 entry_priv = entry->priv_data;
1338                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1339
1340                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1341                     !rt2x00_get_field32(word, TXD_W0_VALID))
1342                         break;
1343
1344                 /*
1345                  * Obtain the status about this packet.
1346                  */
1347                 txdesc.flags = 0;
1348                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1349                 case 0: /* Success */
1350                 case 1: /* Success with retry */
1351                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1352                         break;
1353                 case 2: /* Failure, excessive retries */
1354                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1355                         /* Don't break, this is a failed frame! */
1356                 default: /* Failure */
1357                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1358                 }
1359                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1360
1361                 rt2x00lib_txdone(entry, &txdesc);
1362         }
1363 }
1364
1365 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1366 {
1367         struct rt2x00_dev *rt2x00dev = dev_instance;
1368         u32 reg;
1369
1370         /*
1371          * Get the interrupt sources & saved to local variable.
1372          * Write register value back to clear pending interrupts.
1373          */
1374         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1375         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1376
1377         if (!reg)
1378                 return IRQ_NONE;
1379
1380         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1381                 return IRQ_HANDLED;
1382
1383         /*
1384          * Handle interrupts, walk through all bits
1385          * and run the tasks, the bits are checked in order of
1386          * priority.
1387          */
1388
1389         /*
1390          * 1 - Beacon timer expired interrupt.
1391          */
1392         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1393                 rt2x00lib_beacondone(rt2x00dev);
1394
1395         /*
1396          * 2 - Rx ring done interrupt.
1397          */
1398         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1399                 rt2x00pci_rxdone(rt2x00dev);
1400
1401         /*
1402          * 3 - Atim ring transmit done interrupt.
1403          */
1404         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1405                 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1406
1407         /*
1408          * 4 - Priority ring transmit done interrupt.
1409          */
1410         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1411                 rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1412
1413         /*
1414          * 5 - Tx ring transmit done interrupt.
1415          */
1416         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1417                 rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1418
1419         return IRQ_HANDLED;
1420 }
1421
1422 /*
1423  * Device probe functions.
1424  */
1425 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1426 {
1427         struct eeprom_93cx6 eeprom;
1428         u32 reg;
1429         u16 word;
1430         u8 *mac;
1431
1432         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1433
1434         eeprom.data = rt2x00dev;
1435         eeprom.register_read = rt2500pci_eepromregister_read;
1436         eeprom.register_write = rt2500pci_eepromregister_write;
1437         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1438             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1439         eeprom.reg_data_in = 0;
1440         eeprom.reg_data_out = 0;
1441         eeprom.reg_data_clock = 0;
1442         eeprom.reg_chip_select = 0;
1443
1444         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1445                                EEPROM_SIZE / sizeof(u16));
1446
1447         /*
1448          * Start validation of the data that has been read.
1449          */
1450         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1451         if (!is_valid_ether_addr(mac)) {
1452                 random_ether_addr(mac);
1453                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1454         }
1455
1456         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1457         if (word == 0xffff) {
1458                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1459                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1460                                    ANTENNA_SW_DIVERSITY);
1461                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1462                                    ANTENNA_SW_DIVERSITY);
1463                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1464                                    LED_MODE_DEFAULT);
1465                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1466                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1467                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1468                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1469                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1470         }
1471
1472         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1473         if (word == 0xffff) {
1474                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1475                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1476                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1477                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1478                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1479         }
1480
1481         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1482         if (word == 0xffff) {
1483                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1484                                    DEFAULT_RSSI_OFFSET);
1485                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1486                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1487         }
1488
1489         return 0;
1490 }
1491
1492 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1493 {
1494         u32 reg;
1495         u16 value;
1496         u16 eeprom;
1497
1498         /*
1499          * Read EEPROM word for configuration.
1500          */
1501         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1502
1503         /*
1504          * Identify RF chipset.
1505          */
1506         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1507         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1508         rt2x00_set_chip_rf(rt2x00dev, value, reg);
1509
1510         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1511             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1512             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1513             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1514             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1515             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1516                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1517                 return -ENODEV;
1518         }
1519
1520         /*
1521          * Identify default antenna configuration.
1522          */
1523         rt2x00dev->default_ant.tx =
1524             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1525         rt2x00dev->default_ant.rx =
1526             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1527
1528         /*
1529          * Store led mode, for correct led behaviour.
1530          */
1531 #ifdef CONFIG_RT2X00_LIB_LEDS
1532         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1533
1534         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1535         if (value == LED_MODE_TXRX_ACTIVITY ||
1536             value == LED_MODE_DEFAULT ||
1537             value == LED_MODE_ASUS)
1538                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1539                                    LED_TYPE_ACTIVITY);
1540 #endif /* CONFIG_RT2X00_LIB_LEDS */
1541
1542         /*
1543          * Detect if this device has an hardware controlled radio.
1544          */
1545         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1546                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1547
1548         /*
1549          * Check if the BBP tuning should be enabled.
1550          */
1551         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1552
1553         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1554                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1555
1556         /*
1557          * Read the RSSI <-> dBm offset information.
1558          */
1559         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1560         rt2x00dev->rssi_offset =
1561             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * RF value list for RF2522
1568  * Supports: 2.4 GHz
1569  */
1570 static const struct rf_channel rf_vals_bg_2522[] = {
1571         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1572         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1573         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1574         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1575         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1576         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1577         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1578         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1579         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1580         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1581         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1582         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1583         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1584         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1585 };
1586
1587 /*
1588  * RF value list for RF2523
1589  * Supports: 2.4 GHz
1590  */
1591 static const struct rf_channel rf_vals_bg_2523[] = {
1592         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1593         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1594         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1595         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1596         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1597         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1598         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1599         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1600         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1601         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1602         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1603         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1604         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1605         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1606 };
1607
1608 /*
1609  * RF value list for RF2524
1610  * Supports: 2.4 GHz
1611  */
1612 static const struct rf_channel rf_vals_bg_2524[] = {
1613         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1614         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1615         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1616         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1617         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1618         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1619         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1620         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1621         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1622         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1623         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1624         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1625         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1626         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1627 };
1628
1629 /*
1630  * RF value list for RF2525
1631  * Supports: 2.4 GHz
1632  */
1633 static const struct rf_channel rf_vals_bg_2525[] = {
1634         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1635         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1636         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1637         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1638         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1639         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1640         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1641         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1642         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1643         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1644         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1645         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1646         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1647         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1648 };
1649
1650 /*
1651  * RF value list for RF2525e
1652  * Supports: 2.4 GHz
1653  */
1654 static const struct rf_channel rf_vals_bg_2525e[] = {
1655         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1656         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1657         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1658         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1659         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1660         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1661         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1662         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1663         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1664         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1665         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1666         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1667         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1668         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1669 };
1670
1671 /*
1672  * RF value list for RF5222
1673  * Supports: 2.4 GHz & 5.2 GHz
1674  */
1675 static const struct rf_channel rf_vals_5222[] = {
1676         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1677         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1678         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1679         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1680         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1681         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1682         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1683         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1684         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1685         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1686         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1687         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1688         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1689         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1690
1691         /* 802.11 UNI / HyperLan 2 */
1692         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1693         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1694         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1695         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1696         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1697         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1698         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1699         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1700
1701         /* 802.11 HyperLan 2 */
1702         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1703         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1704         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1705         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1706         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1707         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1708         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1709         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1710         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1711         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1712
1713         /* 802.11 UNII */
1714         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1715         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1716         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1717         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1718         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1719 };
1720
1721 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1722 {
1723         struct hw_mode_spec *spec = &rt2x00dev->spec;
1724         struct channel_info *info;
1725         char *tx_power;
1726         unsigned int i;
1727
1728         /*
1729          * Initialize all hw fields.
1730          */
1731         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1732                                IEEE80211_HW_SIGNAL_DBM |
1733                                IEEE80211_HW_SUPPORTS_PS |
1734                                IEEE80211_HW_PS_NULLFUNC_STACK;
1735
1736         rt2x00dev->hw->extra_tx_headroom = 0;
1737
1738         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1739         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1740                                 rt2x00_eeprom_addr(rt2x00dev,
1741                                                    EEPROM_MAC_ADDR_0));
1742
1743         /*
1744          * Initialize hw_mode information.
1745          */
1746         spec->supported_bands = SUPPORT_BAND_2GHZ;
1747         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1748
1749         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1750                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1751                 spec->channels = rf_vals_bg_2522;
1752         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1753                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1754                 spec->channels = rf_vals_bg_2523;
1755         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1756                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1757                 spec->channels = rf_vals_bg_2524;
1758         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1759                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1760                 spec->channels = rf_vals_bg_2525;
1761         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1762                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1763                 spec->channels = rf_vals_bg_2525e;
1764         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1765                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1766                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1767                 spec->channels = rf_vals_5222;
1768         }
1769
1770         /*
1771          * Create channel information array
1772          */
1773         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1774         if (!info)
1775                 return -ENOMEM;
1776
1777         spec->channels_info = info;
1778
1779         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1780         for (i = 0; i < 14; i++)
1781                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1782
1783         if (spec->num_channels > 14) {
1784                 for (i = 14; i < spec->num_channels; i++)
1785                         info[i].tx_power1 = DEFAULT_TXPOWER;
1786         }
1787
1788         return 0;
1789 }
1790
1791 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1792 {
1793         int retval;
1794
1795         /*
1796          * Allocate eeprom data.
1797          */
1798         retval = rt2500pci_validate_eeprom(rt2x00dev);
1799         if (retval)
1800                 return retval;
1801
1802         retval = rt2500pci_init_eeprom(rt2x00dev);
1803         if (retval)
1804                 return retval;
1805
1806         /*
1807          * Initialize hw specifications.
1808          */
1809         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1810         if (retval)
1811                 return retval;
1812
1813         /*
1814          * This device requires the atim queue and DMA-mapped skbs.
1815          */
1816         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1817         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1818
1819         /*
1820          * Set the rssi offset.
1821          */
1822         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1823
1824         return 0;
1825 }
1826
1827 /*
1828  * IEEE80211 stack callback functions.
1829  */
1830 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1831 {
1832         struct rt2x00_dev *rt2x00dev = hw->priv;
1833         u64 tsf;
1834         u32 reg;
1835
1836         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1837         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1838         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1839         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1840
1841         return tsf;
1842 }
1843
1844 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1845 {
1846         struct rt2x00_dev *rt2x00dev = hw->priv;
1847         u32 reg;
1848
1849         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1850         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1851 }
1852
1853 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1854         .tx                     = rt2x00mac_tx,
1855         .start                  = rt2x00mac_start,
1856         .stop                   = rt2x00mac_stop,
1857         .add_interface          = rt2x00mac_add_interface,
1858         .remove_interface       = rt2x00mac_remove_interface,
1859         .config                 = rt2x00mac_config,
1860         .configure_filter       = rt2x00mac_configure_filter,
1861         .set_tim                = rt2x00mac_set_tim,
1862         .get_stats              = rt2x00mac_get_stats,
1863         .bss_info_changed       = rt2x00mac_bss_info_changed,
1864         .conf_tx                = rt2x00mac_conf_tx,
1865         .get_tx_stats           = rt2x00mac_get_tx_stats,
1866         .get_tsf                = rt2500pci_get_tsf,
1867         .tx_last_beacon         = rt2500pci_tx_last_beacon,
1868         .rfkill_poll            = rt2x00mac_rfkill_poll,
1869 };
1870
1871 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1872         .irq_handler            = rt2500pci_interrupt,
1873         .probe_hw               = rt2500pci_probe_hw,
1874         .initialize             = rt2x00pci_initialize,
1875         .uninitialize           = rt2x00pci_uninitialize,
1876         .get_entry_state        = rt2500pci_get_entry_state,
1877         .clear_entry            = rt2500pci_clear_entry,
1878         .set_device_state       = rt2500pci_set_device_state,
1879         .rfkill_poll            = rt2500pci_rfkill_poll,
1880         .link_stats             = rt2500pci_link_stats,
1881         .reset_tuner            = rt2500pci_reset_tuner,
1882         .link_tuner             = rt2500pci_link_tuner,
1883         .write_tx_desc          = rt2500pci_write_tx_desc,
1884         .write_tx_data          = rt2x00pci_write_tx_data,
1885         .write_beacon           = rt2500pci_write_beacon,
1886         .kick_tx_queue          = rt2500pci_kick_tx_queue,
1887         .kill_tx_queue          = rt2500pci_kill_tx_queue,
1888         .fill_rxdone            = rt2500pci_fill_rxdone,
1889         .config_filter          = rt2500pci_config_filter,
1890         .config_intf            = rt2500pci_config_intf,
1891         .config_erp             = rt2500pci_config_erp,
1892         .config_ant             = rt2500pci_config_ant,
1893         .config                 = rt2500pci_config,
1894 };
1895
1896 static const struct data_queue_desc rt2500pci_queue_rx = {
1897         .entry_num              = RX_ENTRIES,
1898         .data_size              = DATA_FRAME_SIZE,
1899         .desc_size              = RXD_DESC_SIZE,
1900         .priv_size              = sizeof(struct queue_entry_priv_pci),
1901 };
1902
1903 static const struct data_queue_desc rt2500pci_queue_tx = {
1904         .entry_num              = TX_ENTRIES,
1905         .data_size              = DATA_FRAME_SIZE,
1906         .desc_size              = TXD_DESC_SIZE,
1907         .priv_size              = sizeof(struct queue_entry_priv_pci),
1908 };
1909
1910 static const struct data_queue_desc rt2500pci_queue_bcn = {
1911         .entry_num              = BEACON_ENTRIES,
1912         .data_size              = MGMT_FRAME_SIZE,
1913         .desc_size              = TXD_DESC_SIZE,
1914         .priv_size              = sizeof(struct queue_entry_priv_pci),
1915 };
1916
1917 static const struct data_queue_desc rt2500pci_queue_atim = {
1918         .entry_num              = ATIM_ENTRIES,
1919         .data_size              = DATA_FRAME_SIZE,
1920         .desc_size              = TXD_DESC_SIZE,
1921         .priv_size              = sizeof(struct queue_entry_priv_pci),
1922 };
1923
1924 static const struct rt2x00_ops rt2500pci_ops = {
1925         .name           = KBUILD_MODNAME,
1926         .max_sta_intf   = 1,
1927         .max_ap_intf    = 1,
1928         .eeprom_size    = EEPROM_SIZE,
1929         .rf_size        = RF_SIZE,
1930         .tx_queues      = NUM_TX_QUEUES,
1931         .rx             = &rt2500pci_queue_rx,
1932         .tx             = &rt2500pci_queue_tx,
1933         .bcn            = &rt2500pci_queue_bcn,
1934         .atim           = &rt2500pci_queue_atim,
1935         .lib            = &rt2500pci_rt2x00_ops,
1936         .hw             = &rt2500pci_mac80211_ops,
1937 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1938         .debugfs        = &rt2500pci_rt2x00debug,
1939 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1940 };
1941
1942 /*
1943  * RT2500pci module information.
1944  */
1945 static struct pci_device_id rt2500pci_device_table[] = {
1946         { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1947         { 0, }
1948 };
1949
1950 MODULE_AUTHOR(DRV_PROJECT);
1951 MODULE_VERSION(DRV_VERSION);
1952 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1953 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1954 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1955 MODULE_LICENSE("GPL");
1956
1957 static struct pci_driver rt2500pci_driver = {
1958         .name           = KBUILD_MODNAME,
1959         .id_table       = rt2500pci_device_table,
1960         .probe          = rt2x00pci_probe,
1961         .remove         = __devexit_p(rt2x00pci_remove),
1962         .suspend        = rt2x00pci_suspend,
1963         .resume         = rt2x00pci_resume,
1964 };
1965
1966 static int __init rt2500pci_init(void)
1967 {
1968         return pci_register_driver(&rt2500pci_driver);
1969 }
1970
1971 static void __exit rt2500pci_exit(void)
1972 {
1973         pci_unregister_driver(&rt2500pci_driver);
1974 }
1975
1976 module_init(rt2500pci_init);
1977 module_exit(rt2500pci_exit);