Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2400pci
23         Abstract: rt2400pci device specific routines.
24         Supported chipsets: RT2460.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 #include <linux/slab.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt2400pci.h"
39
40 /*
41  * Register access.
42  * All access to the CSR registers will go through the methods
43  * rt2x00pci_register_read and rt2x00pci_register_write.
44  * BBP and RF register require indirect register access,
45  * and use the CSR registers BBPCSR and RFCSR to achieve this.
46  * These indirect registers work with busy bits,
47  * and we will try maximal REGISTER_BUSY_COUNT times to access
48  * the register while taking a REGISTER_BUSY_DELAY us delay
49  * between each attampt. When the busy bit is still set at that time,
50  * the access attempt is considered to have failed,
51  * and we will print an error.
52  */
53 #define WAIT_FOR_BBP(__dev, __reg) \
54         rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
55 #define WAIT_FOR_RF(__dev, __reg) \
56         rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57
58 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
59                                 const unsigned int word, const u8 value)
60 {
61         u32 reg;
62
63         mutex_lock(&rt2x00dev->csr_mutex);
64
65         /*
66          * Wait until the BBP becomes available, afterwards we
67          * can safely write the new data into the register.
68          */
69         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
70                 reg = 0;
71                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
72                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
73                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
74                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75
76                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
77         }
78
79         mutex_unlock(&rt2x00dev->csr_mutex);
80 }
81
82 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
83                                const unsigned int word, u8 *value)
84 {
85         u32 reg;
86
87         mutex_lock(&rt2x00dev->csr_mutex);
88
89         /*
90          * Wait until the BBP becomes available, afterwards we
91          * can safely write the read request into the register.
92          * After the data has been written, we wait until hardware
93          * returns the correct value, if at any time the register
94          * doesn't become available in time, reg will be 0xffffffff
95          * which means we return 0xff to the caller.
96          */
97         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
98                 reg = 0;
99                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
100                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
101                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102
103                 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104
105                 WAIT_FOR_BBP(rt2x00dev, &reg);
106         }
107
108         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109
110         mutex_unlock(&rt2x00dev->csr_mutex);
111 }
112
113 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
114                                const unsigned int word, const u32 value)
115 {
116         u32 reg;
117
118         mutex_lock(&rt2x00dev->csr_mutex);
119
120         /*
121          * Wait until the RF becomes available, afterwards we
122          * can safely write the new data into the register.
123          */
124         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
125                 reg = 0;
126                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
127                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
128                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
129                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130
131                 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
132                 rt2x00_rf_write(rt2x00dev, word, value);
133         }
134
135         mutex_unlock(&rt2x00dev->csr_mutex);
136 }
137
138 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 {
140         struct rt2x00_dev *rt2x00dev = eeprom->data;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144
145         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
146         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
147         eeprom->reg_data_clock =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
149         eeprom->reg_chip_select =
150             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
151 }
152
153 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 {
155         struct rt2x00_dev *rt2x00dev = eeprom->data;
156         u32 reg = 0;
157
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
159         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
161                            !!eeprom->reg_data_clock);
162         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
163                            !!eeprom->reg_chip_select);
164
165         rt2x00pci_register_write(rt2x00dev, CSR21, reg);
166 }
167
168 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
169 static const struct rt2x00debug rt2400pci_rt2x00debug = {
170         .owner  = THIS_MODULE,
171         .csr    = {
172                 .read           = rt2x00pci_register_read,
173                 .write          = rt2x00pci_register_write,
174                 .flags          = RT2X00DEBUGFS_OFFSET,
175                 .word_base      = CSR_REG_BASE,
176                 .word_size      = sizeof(u32),
177                 .word_count     = CSR_REG_SIZE / sizeof(u32),
178         },
179         .eeprom = {
180                 .read           = rt2x00_eeprom_read,
181                 .write          = rt2x00_eeprom_write,
182                 .word_base      = EEPROM_BASE,
183                 .word_size      = sizeof(u16),
184                 .word_count     = EEPROM_SIZE / sizeof(u16),
185         },
186         .bbp    = {
187                 .read           = rt2400pci_bbp_read,
188                 .write          = rt2400pci_bbp_write,
189                 .word_base      = BBP_BASE,
190                 .word_size      = sizeof(u8),
191                 .word_count     = BBP_SIZE / sizeof(u8),
192         },
193         .rf     = {
194                 .read           = rt2x00_rf_read,
195                 .write          = rt2400pci_rf_write,
196                 .word_base      = RF_BASE,
197                 .word_size      = sizeof(u32),
198                 .word_count     = RF_SIZE / sizeof(u32),
199         },
200 };
201 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202
203 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 {
205         u32 reg;
206
207         rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
208         return rt2x00_get_field32(reg, GPIOCSR_BIT0);
209 }
210
211 #ifdef CONFIG_RT2X00_LIB_LEDS
212 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
213                                      enum led_brightness brightness)
214 {
215         struct rt2x00_led *led =
216             container_of(led_cdev, struct rt2x00_led, led_dev);
217         unsigned int enabled = brightness != LED_OFF;
218         u32 reg;
219
220         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221
222         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
223                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
224         else if (led->type == LED_TYPE_ACTIVITY)
225                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226
227         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
228 }
229
230 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
231                                unsigned long *delay_on,
232                                unsigned long *delay_off)
233 {
234         struct rt2x00_led *led =
235             container_of(led_cdev, struct rt2x00_led, led_dev);
236         u32 reg;
237
238         rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
239         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
240         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
241         rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242
243         return 0;
244 }
245
246 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
247                                struct rt2x00_led *led,
248                                enum led_type type)
249 {
250         led->rt2x00dev = rt2x00dev;
251         led->type = type;
252         led->led_dev.brightness_set = rt2400pci_brightness_set;
253         led->led_dev.blink_set = rt2400pci_blink_set;
254         led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257
258 /*
259  * Configuration handlers.
260  */
261 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
262                                     const unsigned int filter_flags)
263 {
264         u32 reg;
265
266         /*
267          * Start configuration steps.
268          * Note that the version error will always be dropped
269          * since there is no filter for it at this time.
270          */
271         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
272         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
273                            !(filter_flags & FIF_FCSFAIL));
274         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
275                            !(filter_flags & FIF_PLCPFAIL));
276         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
277                            !(filter_flags & FIF_CONTROL));
278         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
279                            !(filter_flags & FIF_PROMISC_IN_BSS));
280         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
281                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
282                            !rt2x00dev->intf_ap_count);
283         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
284         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
288                                   struct rt2x00_intf *intf,
289                                   struct rt2x00intf_conf *conf,
290                                   const unsigned int flags)
291 {
292         unsigned int bcn_preload;
293         u32 reg;
294
295         if (flags & CONFIG_UPDATE_TYPE) {
296                 /*
297                  * Enable beacon config
298                  */
299                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
300                 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
301                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
302                 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
303
304                 /*
305                  * Enable synchronisation.
306                  */
307                 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
308                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
309                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
310                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
311                 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
312         }
313
314         if (flags & CONFIG_UPDATE_MAC)
315                 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
316                                               conf->mac, sizeof(conf->mac));
317
318         if (flags & CONFIG_UPDATE_BSSID)
319                 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
320                                               conf->bssid, sizeof(conf->bssid));
321 }
322
323 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
324                                  struct rt2x00lib_erp *erp,
325                                  u32 changed)
326 {
327         int preamble_mask;
328         u32 reg;
329
330         /*
331          * When short preamble is enabled, we should set bit 0x08
332          */
333         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334                 preamble_mask = erp->short_preamble << 3;
335
336                 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
337                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
338                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
339                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341                 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
342
343                 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
344                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347                                    GET_DURATION(ACK_SIZE, 10));
348                 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
349
350                 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
351                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354                                    GET_DURATION(ACK_SIZE, 20));
355                 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
356
357                 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
358                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361                                    GET_DURATION(ACK_SIZE, 55));
362                 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
363
364                 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
365                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368                                    GET_DURATION(ACK_SIZE, 110));
369                 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
370         }
371
372         if (changed & BSS_CHANGED_BASIC_RATES)
373                 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374
375         if (changed & BSS_CHANGED_ERP_SLOT) {
376                 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
377                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378                 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
379
380                 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
381                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383                 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
384
385                 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
386                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388                 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
389         }
390
391         if (changed & BSS_CHANGED_BEACON_INT) {
392                 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
393                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394                                    erp->beacon_int * 16);
395                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396                                    erp->beacon_int * 16);
397                 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
398         }
399 }
400
401 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
402                                  struct antenna_setup *ant)
403 {
404         u8 r1;
405         u8 r4;
406
407         /*
408          * We should never come here because rt2x00lib is supposed
409          * to catch this and send us the correct antenna explicitely.
410          */
411         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
412                ant->tx == ANTENNA_SW_DIVERSITY);
413
414         rt2400pci_bbp_read(rt2x00dev, 4, &r4);
415         rt2400pci_bbp_read(rt2x00dev, 1, &r1);
416
417         /*
418          * Configure the TX antenna.
419          */
420         switch (ant->tx) {
421         case ANTENNA_HW_DIVERSITY:
422                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
423                 break;
424         case ANTENNA_A:
425                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
426                 break;
427         case ANTENNA_B:
428         default:
429                 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
430                 break;
431         }
432
433         /*
434          * Configure the RX antenna.
435          */
436         switch (ant->rx) {
437         case ANTENNA_HW_DIVERSITY:
438                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
439                 break;
440         case ANTENNA_A:
441                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
442                 break;
443         case ANTENNA_B:
444         default:
445                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
446                 break;
447         }
448
449         rt2400pci_bbp_write(rt2x00dev, 4, r4);
450         rt2400pci_bbp_write(rt2x00dev, 1, r1);
451 }
452
453 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
454                                      struct rf_channel *rf)
455 {
456         /*
457          * Switch on tuning bits.
458          */
459         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
460         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
461
462         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
464         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
465
466         /*
467          * RF2420 chipset don't need any additional actions.
468          */
469         if (rt2x00_rf(rt2x00dev, RF2420))
470                 return;
471
472         /*
473          * For the RT2421 chipsets we need to write an invalid
474          * reference clock rate to activate auto_tune.
475          * After that we set the value back to the correct channel.
476          */
477         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
478         rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
479         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
480
481         msleep(1);
482
483         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
484         rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
485         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486
487         msleep(1);
488
489         /*
490          * Switch off tuning bits.
491          */
492         rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
493         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
494
495         rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
496         rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
497
498         /*
499          * Clear false CRC during channel switch.
500          */
501         rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
502 }
503
504 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
505 {
506         rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
507 }
508
509 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
510                                          struct rt2x00lib_conf *libconf)
511 {
512         u32 reg;
513
514         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
515         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
516                            libconf->conf->long_frame_max_tx_count);
517         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
518                            libconf->conf->short_frame_max_tx_count);
519         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
520 }
521
522 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
523                                 struct rt2x00lib_conf *libconf)
524 {
525         enum dev_state state =
526             (libconf->conf->flags & IEEE80211_CONF_PS) ?
527                 STATE_SLEEP : STATE_AWAKE;
528         u32 reg;
529
530         if (state == STATE_SLEEP) {
531                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
532                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
533                                    (rt2x00dev->beacon_int - 20) * 16);
534                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
535                                    libconf->conf->listen_interval - 1);
536
537                 /* We must first disable autowake before it can be enabled */
538                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
539                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
540
541                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
542                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
543         } else {
544                 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
545                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
546                 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
547         }
548
549         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
550 }
551
552 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
553                              struct rt2x00lib_conf *libconf,
554                              const unsigned int flags)
555 {
556         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
557                 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
558         if (flags & IEEE80211_CONF_CHANGE_POWER)
559                 rt2400pci_config_txpower(rt2x00dev,
560                                          libconf->conf->power_level);
561         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
562                 rt2400pci_config_retry_limit(rt2x00dev, libconf);
563         if (flags & IEEE80211_CONF_CHANGE_PS)
564                 rt2400pci_config_ps(rt2x00dev, libconf);
565 }
566
567 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
568                                 const int cw_min, const int cw_max)
569 {
570         u32 reg;
571
572         rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
573         rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
574         rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
575         rt2x00pci_register_write(rt2x00dev, CSR11, reg);
576 }
577
578 /*
579  * Link tuning
580  */
581 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
582                                  struct link_qual *qual)
583 {
584         u32 reg;
585         u8 bbp;
586
587         /*
588          * Update FCS error count from register.
589          */
590         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
591         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
592
593         /*
594          * Update False CCA count from register.
595          */
596         rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
597         qual->false_cca = bbp;
598 }
599
600 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
601                                      struct link_qual *qual, u8 vgc_level)
602 {
603         if (qual->vgc_level_reg != vgc_level) {
604                 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
605                 qual->vgc_level = vgc_level;
606                 qual->vgc_level_reg = vgc_level;
607         }
608 }
609
610 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
611                                   struct link_qual *qual)
612 {
613         rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
614 }
615
616 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
617                                  struct link_qual *qual, const u32 count)
618 {
619         /*
620          * The link tuner should not run longer then 60 seconds,
621          * and should run once every 2 seconds.
622          */
623         if (count > 60 || !(count & 1))
624                 return;
625
626         /*
627          * Base r13 link tuning on the false cca count.
628          */
629         if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
630                 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
631         else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
632                 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
633 }
634
635 /*
636  * Initialization functions.
637  */
638 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
639 {
640         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641         u32 word;
642
643         if (entry->queue->qid == QID_RX) {
644                 rt2x00_desc_read(entry_priv->desc, 0, &word);
645
646                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
647         } else {
648                 rt2x00_desc_read(entry_priv->desc, 0, &word);
649
650                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
651                         rt2x00_get_field32(word, TXD_W0_VALID));
652         }
653 }
654
655 static void rt2400pci_clear_entry(struct queue_entry *entry)
656 {
657         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
658         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
659         u32 word;
660
661         if (entry->queue->qid == QID_RX) {
662                 rt2x00_desc_read(entry_priv->desc, 2, &word);
663                 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
664                 rt2x00_desc_write(entry_priv->desc, 2, word);
665
666                 rt2x00_desc_read(entry_priv->desc, 1, &word);
667                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
668                 rt2x00_desc_write(entry_priv->desc, 1, word);
669
670                 rt2x00_desc_read(entry_priv->desc, 0, &word);
671                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
672                 rt2x00_desc_write(entry_priv->desc, 0, word);
673         } else {
674                 rt2x00_desc_read(entry_priv->desc, 0, &word);
675                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
676                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
677                 rt2x00_desc_write(entry_priv->desc, 0, word);
678         }
679 }
680
681 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
682 {
683         struct queue_entry_priv_pci *entry_priv;
684         u32 reg;
685
686         /*
687          * Initialize registers.
688          */
689         rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
690         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
691         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
692         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
693         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
694         rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
695
696         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
697         rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
698         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
699                            entry_priv->desc_dma);
700         rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
701
702         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
703         rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
704         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
705                            entry_priv->desc_dma);
706         rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
707
708         entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
709         rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
710         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
711                            entry_priv->desc_dma);
712         rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
713
714         entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
715         rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
716         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
717                            entry_priv->desc_dma);
718         rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
719
720         rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
721         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
722         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
723         rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
724
725         entry_priv = rt2x00dev->rx->entries[0].priv_data;
726         rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
727         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
728                            entry_priv->desc_dma);
729         rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
730
731         return 0;
732 }
733
734 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
735 {
736         u32 reg;
737
738         rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
739         rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
740         rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
741         rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
742
743         rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
744         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
745         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
746         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
747         rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
748
749         rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
750         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
751                            (rt2x00dev->rx->data_size / 128));
752         rt2x00pci_register_write(rt2x00dev, CSR9, reg);
753
754         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
755         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
756         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
757         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
758         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
759         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
760         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
761         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
762         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
763         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
764
765         rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
766
767         rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
768         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
769         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
770         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
771         rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
772         rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
773
774         rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
775         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
776         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
777         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
778         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
779         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
780         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
781         rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
782
783         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
784
785         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
786                 return -EBUSY;
787
788         rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
789         rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
790
791         rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
792         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
793         rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
794
795         rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
796         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
797         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
798         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
799         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
800         rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
801
802         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
803         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
804         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
805         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
806         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
807
808         rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
809         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
810         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
811         rt2x00pci_register_write(rt2x00dev, CSR1, reg);
812
813         /*
814          * We must clear the FCS and FIFO error count.
815          * These registers are cleared on read,
816          * so we may pass a useless variable to store the value.
817          */
818         rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
819         rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
820
821         return 0;
822 }
823
824 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
825 {
826         unsigned int i;
827         u8 value;
828
829         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
830                 rt2400pci_bbp_read(rt2x00dev, 0, &value);
831                 if ((value != 0xff) && (value != 0x00))
832                         return 0;
833                 udelay(REGISTER_BUSY_DELAY);
834         }
835
836         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
837         return -EACCES;
838 }
839
840 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
841 {
842         unsigned int i;
843         u16 eeprom;
844         u8 reg_id;
845         u8 value;
846
847         if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
848                 return -EACCES;
849
850         rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
851         rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
852         rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
853         rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
854         rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
855         rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
856         rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
857         rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
858         rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
859         rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
860         rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
861         rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
862         rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
863         rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
864
865         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
866                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
867
868                 if (eeprom != 0xffff && eeprom != 0x0000) {
869                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
870                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
871                         rt2400pci_bbp_write(rt2x00dev, reg_id, value);
872                 }
873         }
874
875         return 0;
876 }
877
878 /*
879  * Device state switch handlers.
880  */
881 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
882                                 enum dev_state state)
883 {
884         u32 reg;
885
886         rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
887         rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
888                            (state == STATE_RADIO_RX_OFF) ||
889                            (state == STATE_RADIO_RX_OFF_LINK));
890         rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
891 }
892
893 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
894                                  enum dev_state state)
895 {
896         int mask = (state == STATE_RADIO_IRQ_OFF) ||
897                    (state == STATE_RADIO_IRQ_OFF_ISR);
898         u32 reg;
899
900         /*
901          * When interrupts are being enabled, the interrupt registers
902          * should clear the register to assure a clean state.
903          */
904         if (state == STATE_RADIO_IRQ_ON) {
905                 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
906                 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
907         }
908
909         /*
910          * Only toggle the interrupts bits we are going to use.
911          * Non-checked interrupt bits are disabled by default.
912          */
913         rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
914         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
915         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
916         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
917         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
918         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
919         rt2x00pci_register_write(rt2x00dev, CSR8, reg);
920 }
921
922 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
923 {
924         /*
925          * Initialize all registers.
926          */
927         if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
928                      rt2400pci_init_registers(rt2x00dev) ||
929                      rt2400pci_init_bbp(rt2x00dev)))
930                 return -EIO;
931
932         return 0;
933 }
934
935 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
936 {
937         /*
938          * Disable power
939          */
940         rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
941 }
942
943 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
944                                enum dev_state state)
945 {
946         u32 reg, reg2;
947         unsigned int i;
948         char put_to_sleep;
949         char bbp_state;
950         char rf_state;
951
952         put_to_sleep = (state != STATE_AWAKE);
953
954         rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
955         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
956         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
957         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
958         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
959         rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
960
961         /*
962          * Device is not guaranteed to be in the requested state yet.
963          * We must wait until the register indicates that the
964          * device has entered the correct state.
965          */
966         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
967                 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
968                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
969                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
970                 if (bbp_state == state && rf_state == state)
971                         return 0;
972                 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
973                 msleep(10);
974         }
975
976         return -EBUSY;
977 }
978
979 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
980                                       enum dev_state state)
981 {
982         int retval = 0;
983
984         switch (state) {
985         case STATE_RADIO_ON:
986                 retval = rt2400pci_enable_radio(rt2x00dev);
987                 break;
988         case STATE_RADIO_OFF:
989                 rt2400pci_disable_radio(rt2x00dev);
990                 break;
991         case STATE_RADIO_RX_ON:
992         case STATE_RADIO_RX_ON_LINK:
993         case STATE_RADIO_RX_OFF:
994         case STATE_RADIO_RX_OFF_LINK:
995                 rt2400pci_toggle_rx(rt2x00dev, state);
996                 break;
997         case STATE_RADIO_IRQ_ON:
998         case STATE_RADIO_IRQ_ON_ISR:
999         case STATE_RADIO_IRQ_OFF:
1000         case STATE_RADIO_IRQ_OFF_ISR:
1001                 rt2400pci_toggle_irq(rt2x00dev, state);
1002                 break;
1003         case STATE_DEEP_SLEEP:
1004         case STATE_SLEEP:
1005         case STATE_STANDBY:
1006         case STATE_AWAKE:
1007                 retval = rt2400pci_set_state(rt2x00dev, state);
1008                 break;
1009         default:
1010                 retval = -ENOTSUPP;
1011                 break;
1012         }
1013
1014         if (unlikely(retval))
1015                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1016                       state, retval);
1017
1018         return retval;
1019 }
1020
1021 /*
1022  * TX descriptor initialization
1023  */
1024 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1025                                     struct txentry_desc *txdesc)
1026 {
1027         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1028         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1029         __le32 *txd = entry_priv->desc;
1030         u32 word;
1031
1032         /*
1033          * Start writing the descriptor words.
1034          */
1035         rt2x00_desc_read(txd, 1, &word);
1036         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1037         rt2x00_desc_write(txd, 1, word);
1038
1039         rt2x00_desc_read(txd, 2, &word);
1040         rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1041         rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1042         rt2x00_desc_write(txd, 2, word);
1043
1044         rt2x00_desc_read(txd, 3, &word);
1045         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1046         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1047         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1048         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1049         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1050         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1051         rt2x00_desc_write(txd, 3, word);
1052
1053         rt2x00_desc_read(txd, 4, &word);
1054         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1055         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1056         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1057         rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1058         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1059         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1060         rt2x00_desc_write(txd, 4, word);
1061
1062         /*
1063          * Writing TXD word 0 must the last to prevent a race condition with
1064          * the device, whereby the device may take hold of the TXD before we
1065          * finished updating it.
1066          */
1067         rt2x00_desc_read(txd, 0, &word);
1068         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1069         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1070         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1071                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1072         rt2x00_set_field32(&word, TXD_W0_ACK,
1073                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1075                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1076         rt2x00_set_field32(&word, TXD_W0_RTS,
1077                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1078         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1079         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1080                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1081         rt2x00_desc_write(txd, 0, word);
1082
1083         /*
1084          * Register descriptor details in skb frame descriptor.
1085          */
1086         skbdesc->desc = txd;
1087         skbdesc->desc_len = TXD_DESC_SIZE;
1088 }
1089
1090 /*
1091  * TX data initialization
1092  */
1093 static void rt2400pci_write_beacon(struct queue_entry *entry,
1094                                    struct txentry_desc *txdesc)
1095 {
1096         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1097         u32 reg;
1098
1099         /*
1100          * Disable beaconing while we are reloading the beacon data,
1101          * otherwise we might be sending out invalid data.
1102          */
1103         rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1104         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1105         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1106
1107         rt2x00queue_map_txskb(entry);
1108
1109         /*
1110          * Write the TX descriptor for the beacon.
1111          */
1112         rt2400pci_write_tx_desc(entry, txdesc);
1113
1114         /*
1115          * Dump beacon to userspace through debugfs.
1116          */
1117         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1118
1119         /*
1120          * Enable beaconing again.
1121          */
1122         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1123         rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1124         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1125         rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1126 }
1127
1128 static void rt2400pci_kick_tx_queue(struct data_queue *queue)
1129 {
1130         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1131         u32 reg;
1132
1133         rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1134         rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue->qid == QID_AC_BE));
1135         rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue->qid == QID_AC_BK));
1136         rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue->qid == QID_ATIM));
1137         rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1138 }
1139
1140 static void rt2400pci_kill_tx_queue(struct data_queue *queue)
1141 {
1142         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1143         u32 reg;
1144
1145         if (queue->qid == QID_BEACON) {
1146                 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1147         } else {
1148                 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1149                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1150                 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1151         }
1152 }
1153
1154 /*
1155  * RX control handlers
1156  */
1157 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1158                                   struct rxdone_entry_desc *rxdesc)
1159 {
1160         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1161         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1162         u32 word0;
1163         u32 word2;
1164         u32 word3;
1165         u32 word4;
1166         u64 tsf;
1167         u32 rx_low;
1168         u32 rx_high;
1169
1170         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1171         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1172         rt2x00_desc_read(entry_priv->desc, 3, &word3);
1173         rt2x00_desc_read(entry_priv->desc, 4, &word4);
1174
1175         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1176                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1177         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1178                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1179
1180         /*
1181          * We only get the lower 32bits from the timestamp,
1182          * to get the full 64bits we must complement it with
1183          * the timestamp from get_tsf().
1184          * Note that when a wraparound of the lower 32bits
1185          * has occurred between the frame arrival and the get_tsf()
1186          * call, we must decrease the higher 32bits with 1 to get
1187          * to correct value.
1188          */
1189         tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1190         rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1191         rx_high = upper_32_bits(tsf);
1192
1193         if ((u32)tsf <= rx_low)
1194                 rx_high--;
1195
1196         /*
1197          * Obtain the status about this packet.
1198          * The signal is the PLCP value, and needs to be stripped
1199          * of the preamble bit (0x08).
1200          */
1201         rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1202         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1203         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1204             entry->queue->rt2x00dev->rssi_offset;
1205         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1206
1207         rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1208         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1209                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1210 }
1211
1212 /*
1213  * Interrupt functions.
1214  */
1215 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1216                              const enum data_queue_qid queue_idx)
1217 {
1218         struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1219         struct queue_entry_priv_pci *entry_priv;
1220         struct queue_entry *entry;
1221         struct txdone_entry_desc txdesc;
1222         u32 word;
1223
1224         while (!rt2x00queue_empty(queue)) {
1225                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1226                 entry_priv = entry->priv_data;
1227                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1228
1229                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1230                     !rt2x00_get_field32(word, TXD_W0_VALID))
1231                         break;
1232
1233                 /*
1234                  * Obtain the status about this packet.
1235                  */
1236                 txdesc.flags = 0;
1237                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1238                 case 0: /* Success */
1239                 case 1: /* Success with retry */
1240                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1241                         break;
1242                 case 2: /* Failure, excessive retries */
1243                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1244                         /* Don't break, this is a failed frame! */
1245                 default: /* Failure */
1246                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1247                 }
1248                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1249
1250                 rt2x00lib_txdone(entry, &txdesc);
1251         }
1252 }
1253
1254 static irqreturn_t rt2400pci_interrupt_thread(int irq, void *dev_instance)
1255 {
1256         struct rt2x00_dev *rt2x00dev = dev_instance;
1257         u32 reg = rt2x00dev->irqvalue[0];
1258
1259         /*
1260          * Handle interrupts, walk through all bits
1261          * and run the tasks, the bits are checked in order of
1262          * priority.
1263          */
1264
1265         /*
1266          * 1 - Beacon timer expired interrupt.
1267          */
1268         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1269                 rt2x00lib_beacondone(rt2x00dev);
1270
1271         /*
1272          * 2 - Rx ring done interrupt.
1273          */
1274         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1275                 rt2x00pci_rxdone(rt2x00dev);
1276
1277         /*
1278          * 3 - Atim ring transmit done interrupt.
1279          */
1280         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1281                 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1282
1283         /*
1284          * 4 - Priority ring transmit done interrupt.
1285          */
1286         if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1287                 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1288
1289         /*
1290          * 5 - Tx ring transmit done interrupt.
1291          */
1292         if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1293                 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1294
1295         /* Enable interrupts again. */
1296         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1297                                               STATE_RADIO_IRQ_ON_ISR);
1298         return IRQ_HANDLED;
1299 }
1300
1301 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1302 {
1303         struct rt2x00_dev *rt2x00dev = dev_instance;
1304         u32 reg;
1305
1306         /*
1307          * Get the interrupt sources & saved to local variable.
1308          * Write register value back to clear pending interrupts.
1309          */
1310         rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1311         rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1312
1313         if (!reg)
1314                 return IRQ_NONE;
1315
1316         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1317                 return IRQ_HANDLED;
1318
1319         /* Store irqvalues for use in the interrupt thread. */
1320         rt2x00dev->irqvalue[0] = reg;
1321
1322         /* Disable interrupts, will be enabled again in the interrupt thread. */
1323         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1324                                               STATE_RADIO_IRQ_OFF_ISR);
1325
1326         return IRQ_WAKE_THREAD;
1327 }
1328
1329 /*
1330  * Device probe functions.
1331  */
1332 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1333 {
1334         struct eeprom_93cx6 eeprom;
1335         u32 reg;
1336         u16 word;
1337         u8 *mac;
1338
1339         rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1340
1341         eeprom.data = rt2x00dev;
1342         eeprom.register_read = rt2400pci_eepromregister_read;
1343         eeprom.register_write = rt2400pci_eepromregister_write;
1344         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1345             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1346         eeprom.reg_data_in = 0;
1347         eeprom.reg_data_out = 0;
1348         eeprom.reg_data_clock = 0;
1349         eeprom.reg_chip_select = 0;
1350
1351         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1352                                EEPROM_SIZE / sizeof(u16));
1353
1354         /*
1355          * Start validation of the data that has been read.
1356          */
1357         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1358         if (!is_valid_ether_addr(mac)) {
1359                 random_ether_addr(mac);
1360                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1361         }
1362
1363         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1364         if (word == 0xffff) {
1365                 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1366                 return -EINVAL;
1367         }
1368
1369         return 0;
1370 }
1371
1372 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1373 {
1374         u32 reg;
1375         u16 value;
1376         u16 eeprom;
1377
1378         /*
1379          * Read EEPROM word for configuration.
1380          */
1381         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1382
1383         /*
1384          * Identify RF chipset.
1385          */
1386         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1387         rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1388         rt2x00_set_chip(rt2x00dev, RT2460, value,
1389                         rt2x00_get_field32(reg, CSR0_REVISION));
1390
1391         if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1392                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1393                 return -ENODEV;
1394         }
1395
1396         /*
1397          * Identify default antenna configuration.
1398          */
1399         rt2x00dev->default_ant.tx =
1400             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1401         rt2x00dev->default_ant.rx =
1402             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1403
1404         /*
1405          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1406          * I am not 100% sure about this, but the legacy drivers do not
1407          * indicate antenna swapping in software is required when
1408          * diversity is enabled.
1409          */
1410         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1411                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1412         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1413                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1414
1415         /*
1416          * Store led mode, for correct led behaviour.
1417          */
1418 #ifdef CONFIG_RT2X00_LIB_LEDS
1419         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1420
1421         rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1422         if (value == LED_MODE_TXRX_ACTIVITY ||
1423             value == LED_MODE_DEFAULT ||
1424             value == LED_MODE_ASUS)
1425                 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1426                                    LED_TYPE_ACTIVITY);
1427 #endif /* CONFIG_RT2X00_LIB_LEDS */
1428
1429         /*
1430          * Detect if this device has an hardware controlled radio.
1431          */
1432         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1433                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1434
1435         /*
1436          * Check if the BBP tuning should be enabled.
1437          */
1438         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1439                 __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1440
1441         return 0;
1442 }
1443
1444 /*
1445  * RF value list for RF2420 & RF2421
1446  * Supports: 2.4 GHz
1447  */
1448 static const struct rf_channel rf_vals_b[] = {
1449         { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1450         { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1451         { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1452         { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1453         { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1454         { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1455         { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1456         { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1457         { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1458         { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1459         { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1460         { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1461         { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1462         { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1463 };
1464
1465 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1466 {
1467         struct hw_mode_spec *spec = &rt2x00dev->spec;
1468         struct channel_info *info;
1469         char *tx_power;
1470         unsigned int i;
1471
1472         /*
1473          * Initialize all hw fields.
1474          */
1475         rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1476                                IEEE80211_HW_SIGNAL_DBM |
1477                                IEEE80211_HW_SUPPORTS_PS |
1478                                IEEE80211_HW_PS_NULLFUNC_STACK;
1479
1480         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1481         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1482                                 rt2x00_eeprom_addr(rt2x00dev,
1483                                                    EEPROM_MAC_ADDR_0));
1484
1485         /*
1486          * Initialize hw_mode information.
1487          */
1488         spec->supported_bands = SUPPORT_BAND_2GHZ;
1489         spec->supported_rates = SUPPORT_RATE_CCK;
1490
1491         spec->num_channels = ARRAY_SIZE(rf_vals_b);
1492         spec->channels = rf_vals_b;
1493
1494         /*
1495          * Create channel information array
1496          */
1497         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1498         if (!info)
1499                 return -ENOMEM;
1500
1501         spec->channels_info = info;
1502
1503         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1504         for (i = 0; i < 14; i++) {
1505                 info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1506                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1507         }
1508
1509         return 0;
1510 }
1511
1512 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1513 {
1514         int retval;
1515
1516         /*
1517          * Allocate eeprom data.
1518          */
1519         retval = rt2400pci_validate_eeprom(rt2x00dev);
1520         if (retval)
1521                 return retval;
1522
1523         retval = rt2400pci_init_eeprom(rt2x00dev);
1524         if (retval)
1525                 return retval;
1526
1527         /*
1528          * Initialize hw specifications.
1529          */
1530         retval = rt2400pci_probe_hw_mode(rt2x00dev);
1531         if (retval)
1532                 return retval;
1533
1534         /*
1535          * This device requires the atim queue and DMA-mapped skbs.
1536          */
1537         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1538         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1539
1540         /*
1541          * Set the rssi offset.
1542          */
1543         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1544
1545         return 0;
1546 }
1547
1548 /*
1549  * IEEE80211 stack callback functions.
1550  */
1551 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1552                              const struct ieee80211_tx_queue_params *params)
1553 {
1554         struct rt2x00_dev *rt2x00dev = hw->priv;
1555
1556         /*
1557          * We don't support variating cw_min and cw_max variables
1558          * per queue. So by default we only configure the TX queue,
1559          * and ignore all other configurations.
1560          */
1561         if (queue != 0)
1562                 return -EINVAL;
1563
1564         if (rt2x00mac_conf_tx(hw, queue, params))
1565                 return -EINVAL;
1566
1567         /*
1568          * Write configuration to register.
1569          */
1570         rt2400pci_config_cw(rt2x00dev,
1571                             rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1572
1573         return 0;
1574 }
1575
1576 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1577 {
1578         struct rt2x00_dev *rt2x00dev = hw->priv;
1579         u64 tsf;
1580         u32 reg;
1581
1582         rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1583         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1584         rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1585         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1586
1587         return tsf;
1588 }
1589
1590 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1591 {
1592         struct rt2x00_dev *rt2x00dev = hw->priv;
1593         u32 reg;
1594
1595         rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1596         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1597 }
1598
1599 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1600         .tx                     = rt2x00mac_tx,
1601         .start                  = rt2x00mac_start,
1602         .stop                   = rt2x00mac_stop,
1603         .add_interface          = rt2x00mac_add_interface,
1604         .remove_interface       = rt2x00mac_remove_interface,
1605         .config                 = rt2x00mac_config,
1606         .configure_filter       = rt2x00mac_configure_filter,
1607         .sw_scan_start          = rt2x00mac_sw_scan_start,
1608         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1609         .get_stats              = rt2x00mac_get_stats,
1610         .bss_info_changed       = rt2x00mac_bss_info_changed,
1611         .conf_tx                = rt2400pci_conf_tx,
1612         .get_tsf                = rt2400pci_get_tsf,
1613         .tx_last_beacon         = rt2400pci_tx_last_beacon,
1614         .rfkill_poll            = rt2x00mac_rfkill_poll,
1615 };
1616
1617 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1618         .irq_handler            = rt2400pci_interrupt,
1619         .irq_handler_thread     = rt2400pci_interrupt_thread,
1620         .probe_hw               = rt2400pci_probe_hw,
1621         .initialize             = rt2x00pci_initialize,
1622         .uninitialize           = rt2x00pci_uninitialize,
1623         .get_entry_state        = rt2400pci_get_entry_state,
1624         .clear_entry            = rt2400pci_clear_entry,
1625         .set_device_state       = rt2400pci_set_device_state,
1626         .rfkill_poll            = rt2400pci_rfkill_poll,
1627         .link_stats             = rt2400pci_link_stats,
1628         .reset_tuner            = rt2400pci_reset_tuner,
1629         .link_tuner             = rt2400pci_link_tuner,
1630         .write_tx_desc          = rt2400pci_write_tx_desc,
1631         .write_beacon           = rt2400pci_write_beacon,
1632         .kick_tx_queue          = rt2400pci_kick_tx_queue,
1633         .kill_tx_queue          = rt2400pci_kill_tx_queue,
1634         .fill_rxdone            = rt2400pci_fill_rxdone,
1635         .config_filter          = rt2400pci_config_filter,
1636         .config_intf            = rt2400pci_config_intf,
1637         .config_erp             = rt2400pci_config_erp,
1638         .config_ant             = rt2400pci_config_ant,
1639         .config                 = rt2400pci_config,
1640 };
1641
1642 static const struct data_queue_desc rt2400pci_queue_rx = {
1643         .entry_num              = RX_ENTRIES,
1644         .data_size              = DATA_FRAME_SIZE,
1645         .desc_size              = RXD_DESC_SIZE,
1646         .priv_size              = sizeof(struct queue_entry_priv_pci),
1647 };
1648
1649 static const struct data_queue_desc rt2400pci_queue_tx = {
1650         .entry_num              = TX_ENTRIES,
1651         .data_size              = DATA_FRAME_SIZE,
1652         .desc_size              = TXD_DESC_SIZE,
1653         .priv_size              = sizeof(struct queue_entry_priv_pci),
1654 };
1655
1656 static const struct data_queue_desc rt2400pci_queue_bcn = {
1657         .entry_num              = BEACON_ENTRIES,
1658         .data_size              = MGMT_FRAME_SIZE,
1659         .desc_size              = TXD_DESC_SIZE,
1660         .priv_size              = sizeof(struct queue_entry_priv_pci),
1661 };
1662
1663 static const struct data_queue_desc rt2400pci_queue_atim = {
1664         .entry_num              = ATIM_ENTRIES,
1665         .data_size              = DATA_FRAME_SIZE,
1666         .desc_size              = TXD_DESC_SIZE,
1667         .priv_size              = sizeof(struct queue_entry_priv_pci),
1668 };
1669
1670 static const struct rt2x00_ops rt2400pci_ops = {
1671         .name                   = KBUILD_MODNAME,
1672         .max_sta_intf           = 1,
1673         .max_ap_intf            = 1,
1674         .eeprom_size            = EEPROM_SIZE,
1675         .rf_size                = RF_SIZE,
1676         .tx_queues              = NUM_TX_QUEUES,
1677         .extra_tx_headroom      = 0,
1678         .rx                     = &rt2400pci_queue_rx,
1679         .tx                     = &rt2400pci_queue_tx,
1680         .bcn                    = &rt2400pci_queue_bcn,
1681         .atim                   = &rt2400pci_queue_atim,
1682         .lib                    = &rt2400pci_rt2x00_ops,
1683         .hw                     = &rt2400pci_mac80211_ops,
1684 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1685         .debugfs                = &rt2400pci_rt2x00debug,
1686 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1687 };
1688
1689 /*
1690  * RT2400pci module information.
1691  */
1692 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1693         { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1694         { 0, }
1695 };
1696
1697 MODULE_AUTHOR(DRV_PROJECT);
1698 MODULE_VERSION(DRV_VERSION);
1699 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1700 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1701 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1702 MODULE_LICENSE("GPL");
1703
1704 static struct pci_driver rt2400pci_driver = {
1705         .name           = KBUILD_MODNAME,
1706         .id_table       = rt2400pci_device_table,
1707         .probe          = rt2x00pci_probe,
1708         .remove         = __devexit_p(rt2x00pci_remove),
1709         .suspend        = rt2x00pci_suspend,
1710         .resume         = rt2x00pci_resume,
1711 };
1712
1713 static int __init rt2400pci_init(void)
1714 {
1715         return pci_register_driver(&rt2400pci_driver);
1716 }
1717
1718 static void __exit rt2400pci_exit(void)
1719 {
1720         pci_unregister_driver(&rt2400pci_driver);
1721 }
1722
1723 module_init(rt2400pci_init);
1724 module_exit(rt2400pci_exit);