Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / wireless / iwlwifi / iwl-agn-calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
69
70 /*****************************************************************************
71  * INIT calibrations framework
72  *****************************************************************************/
73
74 struct statistics_general_data {
75         u32 beacon_silence_rssi_a;
76         u32 beacon_silence_rssi_b;
77         u32 beacon_silence_rssi_c;
78         u32 beacon_energy_a;
79         u32 beacon_energy_b;
80         u32 beacon_energy_c;
81 };
82
83 int iwl_send_calib_results(struct iwl_priv *priv)
84 {
85         int ret = 0;
86         int i = 0;
87
88         struct iwl_host_cmd hcmd = {
89                 .id = REPLY_PHY_CALIBRATION_CMD,
90                 .flags = CMD_SIZE_HUGE,
91         };
92
93         for (i = 0; i < IWL_CALIB_MAX; i++) {
94                 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
95                     priv->calib_results[i].buf) {
96                         hcmd.len = priv->calib_results[i].buf_len;
97                         hcmd.data = priv->calib_results[i].buf;
98                         ret = iwl_send_cmd_sync(priv, &hcmd);
99                         if (ret) {
100                                 IWL_ERR(priv, "Error %d iteration %d\n",
101                                         ret, i);
102                                 break;
103                         }
104                 }
105         }
106
107         return ret;
108 }
109
110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
111 {
112         if (res->buf_len != len) {
113                 kfree(res->buf);
114                 res->buf = kzalloc(len, GFP_ATOMIC);
115         }
116         if (unlikely(res->buf == NULL))
117                 return -ENOMEM;
118
119         res->buf_len = len;
120         memcpy(res->buf, buf, len);
121         return 0;
122 }
123
124 void iwl_calib_free_results(struct iwl_priv *priv)
125 {
126         int i;
127
128         for (i = 0; i < IWL_CALIB_MAX; i++) {
129                 kfree(priv->calib_results[i].buf);
130                 priv->calib_results[i].buf = NULL;
131                 priv->calib_results[i].buf_len = 0;
132         }
133 }
134
135 /*****************************************************************************
136  * RUNTIME calibrations framework
137  *****************************************************************************/
138
139 /* "false alarms" are signals that our DSP tries to lock onto,
140  *   but then determines that they are either noise, or transmissions
141  *   from a distant wireless network (also "noise", really) that get
142  *   "stepped on" by stronger transmissions within our own network.
143  * This algorithm attempts to set a sensitivity level that is high
144  *   enough to receive all of our own network traffic, but not so
145  *   high that our DSP gets too busy trying to lock onto non-network
146  *   activity/noise. */
147 static int iwl_sens_energy_cck(struct iwl_priv *priv,
148                                    u32 norm_fa,
149                                    u32 rx_enable_time,
150                                    struct statistics_general_data *rx_info)
151 {
152         u32 max_nrg_cck = 0;
153         int i = 0;
154         u8 max_silence_rssi = 0;
155         u32 silence_ref = 0;
156         u8 silence_rssi_a = 0;
157         u8 silence_rssi_b = 0;
158         u8 silence_rssi_c = 0;
159         u32 val;
160
161         /* "false_alarms" values below are cross-multiplications to assess the
162          *   numbers of false alarms within the measured period of actual Rx
163          *   (Rx is off when we're txing), vs the min/max expected false alarms
164          *   (some should be expected if rx is sensitive enough) in a
165          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
166          *
167          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
168          *
169          * */
170         u32 false_alarms = norm_fa * 200 * 1024;
171         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
172         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
173         struct iwl_sensitivity_data *data = NULL;
174         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
175
176         data = &(priv->sensitivity_data);
177
178         data->nrg_auto_corr_silence_diff = 0;
179
180         /* Find max silence rssi among all 3 receivers.
181          * This is background noise, which may include transmissions from other
182          *    networks, measured during silence before our network's beacon */
183         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
184                             ALL_BAND_FILTER) >> 8);
185         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
186                             ALL_BAND_FILTER) >> 8);
187         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
188                             ALL_BAND_FILTER) >> 8);
189
190         val = max(silence_rssi_b, silence_rssi_c);
191         max_silence_rssi = max(silence_rssi_a, (u8) val);
192
193         /* Store silence rssi in 20-beacon history table */
194         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
195         data->nrg_silence_idx++;
196         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
197                 data->nrg_silence_idx = 0;
198
199         /* Find max silence rssi across 20 beacon history */
200         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
201                 val = data->nrg_silence_rssi[i];
202                 silence_ref = max(silence_ref, val);
203         }
204         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
205                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
206                         silence_ref);
207
208         /* Find max rx energy (min value!) among all 3 receivers,
209          *   measured during beacon frame.
210          * Save it in 10-beacon history table. */
211         i = data->nrg_energy_idx;
212         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
213         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
214
215         data->nrg_energy_idx++;
216         if (data->nrg_energy_idx >= 10)
217                 data->nrg_energy_idx = 0;
218
219         /* Find min rx energy (max value) across 10 beacon history.
220          * This is the minimum signal level that we want to receive well.
221          * Add backoff (margin so we don't miss slightly lower energy frames).
222          * This establishes an upper bound (min value) for energy threshold. */
223         max_nrg_cck = data->nrg_value[0];
224         for (i = 1; i < 10; i++)
225                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
226         max_nrg_cck += 6;
227
228         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
229                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
230                         rx_info->beacon_energy_c, max_nrg_cck - 6);
231
232         /* Count number of consecutive beacons with fewer-than-desired
233          *   false alarms. */
234         if (false_alarms < min_false_alarms)
235                 data->num_in_cck_no_fa++;
236         else
237                 data->num_in_cck_no_fa = 0;
238         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
239                         data->num_in_cck_no_fa);
240
241         /* If we got too many false alarms this time, reduce sensitivity */
242         if ((false_alarms > max_false_alarms) &&
243                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
244                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
245                      false_alarms, max_false_alarms);
246                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
247                 data->nrg_curr_state = IWL_FA_TOO_MANY;
248                 /* Store for "fewer than desired" on later beacon */
249                 data->nrg_silence_ref = silence_ref;
250
251                 /* increase energy threshold (reduce nrg value)
252                  *   to decrease sensitivity */
253                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
254         /* Else if we got fewer than desired, increase sensitivity */
255         } else if (false_alarms < min_false_alarms) {
256                 data->nrg_curr_state = IWL_FA_TOO_FEW;
257
258                 /* Compare silence level with silence level for most recent
259                  *   healthy number or too many false alarms */
260                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
261                                                    (s32)silence_ref;
262
263                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
264                          false_alarms, min_false_alarms,
265                          data->nrg_auto_corr_silence_diff);
266
267                 /* Increase value to increase sensitivity, but only if:
268                  * 1a) previous beacon did *not* have *too many* false alarms
269                  * 1b) AND there's a significant difference in Rx levels
270                  *      from a previous beacon with too many, or healthy # FAs
271                  * OR 2) We've seen a lot of beacons (100) with too few
272                  *       false alarms */
273                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
274                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
275                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
276
277                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
278                         /* Increase nrg value to increase sensitivity */
279                         val = data->nrg_th_cck + NRG_STEP_CCK;
280                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
281                 } else {
282                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
283                 }
284
285         /* Else we got a healthy number of false alarms, keep status quo */
286         } else {
287                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
288                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
289
290                 /* Store for use in "fewer than desired" with later beacon */
291                 data->nrg_silence_ref = silence_ref;
292
293                 /* If previous beacon had too many false alarms,
294                  *   give it some extra margin by reducing sensitivity again
295                  *   (but don't go below measured energy of desired Rx) */
296                 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
297                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
298                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
299                                 data->nrg_th_cck -= NRG_MARGIN;
300                         else
301                                 data->nrg_th_cck = max_nrg_cck;
302                 }
303         }
304
305         /* Make sure the energy threshold does not go above the measured
306          * energy of the desired Rx signals (reduced by backoff margin),
307          * or else we might start missing Rx frames.
308          * Lower value is higher energy, so we use max()!
309          */
310         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
311         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
312
313         data->nrg_prev_state = data->nrg_curr_state;
314
315         /* Auto-correlation CCK algorithm */
316         if (false_alarms > min_false_alarms) {
317
318                 /* increase auto_corr values to decrease sensitivity
319                  * so the DSP won't be disturbed by the noise
320                  */
321                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
322                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
323                 else {
324                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
325                         data->auto_corr_cck =
326                                 min((u32)ranges->auto_corr_max_cck, val);
327                 }
328                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
329                 data->auto_corr_cck_mrc =
330                         min((u32)ranges->auto_corr_max_cck_mrc, val);
331         } else if ((false_alarms < min_false_alarms) &&
332            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
333            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
334
335                 /* Decrease auto_corr values to increase sensitivity */
336                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
337                 data->auto_corr_cck =
338                         max((u32)ranges->auto_corr_min_cck, val);
339                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
340                 data->auto_corr_cck_mrc =
341                         max((u32)ranges->auto_corr_min_cck_mrc, val);
342         }
343
344         return 0;
345 }
346
347
348 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
349                                        u32 norm_fa,
350                                        u32 rx_enable_time)
351 {
352         u32 val;
353         u32 false_alarms = norm_fa * 200 * 1024;
354         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
355         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
356         struct iwl_sensitivity_data *data = NULL;
357         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
358
359         data = &(priv->sensitivity_data);
360
361         /* If we got too many false alarms this time, reduce sensitivity */
362         if (false_alarms > max_false_alarms) {
363
364                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
365                              false_alarms, max_false_alarms);
366
367                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
368                 data->auto_corr_ofdm =
369                         min((u32)ranges->auto_corr_max_ofdm, val);
370
371                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
372                 data->auto_corr_ofdm_mrc =
373                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
374
375                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
376                 data->auto_corr_ofdm_x1 =
377                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
378
379                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
380                 data->auto_corr_ofdm_mrc_x1 =
381                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
382         }
383
384         /* Else if we got fewer than desired, increase sensitivity */
385         else if (false_alarms < min_false_alarms) {
386
387                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
388                              false_alarms, min_false_alarms);
389
390                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
391                 data->auto_corr_ofdm =
392                         max((u32)ranges->auto_corr_min_ofdm, val);
393
394                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
395                 data->auto_corr_ofdm_mrc =
396                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
397
398                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
399                 data->auto_corr_ofdm_x1 =
400                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
401
402                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
403                 data->auto_corr_ofdm_mrc_x1 =
404                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
405         } else {
406                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
407                          min_false_alarms, false_alarms, max_false_alarms);
408         }
409         return 0;
410 }
411
412 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
413                                 struct iwl_sensitivity_data *data,
414                                 __le16 *tbl)
415 {
416         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
417                                 cpu_to_le16((u16)data->auto_corr_ofdm);
418         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
419                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
420         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
421                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
422         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
423                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
424
425         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
426                                 cpu_to_le16((u16)data->auto_corr_cck);
427         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
428                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
429
430         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
431                                 cpu_to_le16((u16)data->nrg_th_cck);
432         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
433                                 cpu_to_le16((u16)data->nrg_th_ofdm);
434
435         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
436                                 cpu_to_le16(data->barker_corr_th_min);
437         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
438                                 cpu_to_le16(data->barker_corr_th_min_mrc);
439         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
440                                 cpu_to_le16(data->nrg_th_cca);
441
442         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
443                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
444                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
445                         data->nrg_th_ofdm);
446
447         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
448                         data->auto_corr_cck, data->auto_corr_cck_mrc,
449                         data->nrg_th_cck);
450 }
451
452 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
453 static int iwl_sensitivity_write(struct iwl_priv *priv)
454 {
455         struct iwl_sensitivity_cmd cmd;
456         struct iwl_sensitivity_data *data = NULL;
457         struct iwl_host_cmd cmd_out = {
458                 .id = SENSITIVITY_CMD,
459                 .len = sizeof(struct iwl_sensitivity_cmd),
460                 .flags = CMD_ASYNC,
461                 .data = &cmd,
462         };
463
464         data = &(priv->sensitivity_data);
465
466         memset(&cmd, 0, sizeof(cmd));
467
468         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
469
470         /* Update uCode's "work" table, and copy it to DSP */
471         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
472
473         /* Don't send command to uCode if nothing has changed */
474         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
475                     sizeof(u16)*HD_TABLE_SIZE)) {
476                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
477                 return 0;
478         }
479
480         /* Copy table for comparison next time */
481         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
482                sizeof(u16)*HD_TABLE_SIZE);
483
484         return iwl_send_cmd(priv, &cmd_out);
485 }
486
487 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
488 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
489 {
490         struct iwl_enhance_sensitivity_cmd cmd;
491         struct iwl_sensitivity_data *data = NULL;
492         struct iwl_host_cmd cmd_out = {
493                 .id = SENSITIVITY_CMD,
494                 .len = sizeof(struct iwl_enhance_sensitivity_cmd),
495                 .flags = CMD_ASYNC,
496                 .data = &cmd,
497         };
498
499         data = &(priv->sensitivity_data);
500
501         memset(&cmd, 0, sizeof(cmd));
502
503         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
504
505         cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
506                 HD_INA_NON_SQUARE_DET_OFDM_DATA;
507         cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
508                 HD_INA_NON_SQUARE_DET_CCK_DATA;
509         cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
510                 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA;
511         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
512                 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA;
513         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
514                 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
515         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
516                 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA;
517         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
518                 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA;
519         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
520                 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA;
521         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
522                 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
523         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
524                 HD_CCK_NON_SQUARE_DET_SLOPE_DATA;
525         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
526                 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA;
527
528         /* Update uCode's "work" table, and copy it to DSP */
529         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
530
531         /* Don't send command to uCode if nothing has changed */
532         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
533                     sizeof(u16)*HD_TABLE_SIZE) &&
534             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
535                     &(priv->enhance_sensitivity_tbl[0]),
536                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
537                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
538                 return 0;
539         }
540
541         /* Copy table for comparison next time */
542         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
543                sizeof(u16)*HD_TABLE_SIZE);
544         memcpy(&(priv->enhance_sensitivity_tbl[0]),
545                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
546                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
547
548         return iwl_send_cmd(priv, &cmd_out);
549 }
550
551 void iwl_init_sensitivity(struct iwl_priv *priv)
552 {
553         int ret = 0;
554         int i;
555         struct iwl_sensitivity_data *data = NULL;
556         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
557
558         if (priv->disable_sens_cal)
559                 return;
560
561         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
562
563         /* Clear driver's sensitivity algo data */
564         data = &(priv->sensitivity_data);
565
566         if (ranges == NULL)
567                 return;
568
569         memset(data, 0, sizeof(struct iwl_sensitivity_data));
570
571         data->num_in_cck_no_fa = 0;
572         data->nrg_curr_state = IWL_FA_TOO_MANY;
573         data->nrg_prev_state = IWL_FA_TOO_MANY;
574         data->nrg_silence_ref = 0;
575         data->nrg_silence_idx = 0;
576         data->nrg_energy_idx = 0;
577
578         for (i = 0; i < 10; i++)
579                 data->nrg_value[i] = 0;
580
581         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
582                 data->nrg_silence_rssi[i] = 0;
583
584         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
585         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
586         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
587         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
588         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
589         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
590         data->nrg_th_cck = ranges->nrg_th_cck;
591         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
592         data->barker_corr_th_min = ranges->barker_corr_th_min;
593         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
594         data->nrg_th_cca = ranges->nrg_th_cca;
595
596         data->last_bad_plcp_cnt_ofdm = 0;
597         data->last_fa_cnt_ofdm = 0;
598         data->last_bad_plcp_cnt_cck = 0;
599         data->last_fa_cnt_cck = 0;
600
601         if (priv->enhance_sensitivity_table)
602                 ret |= iwl_enhance_sensitivity_write(priv);
603         else
604                 ret |= iwl_sensitivity_write(priv);
605         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
606 }
607
608 void iwl_sensitivity_calibration(struct iwl_priv *priv)
609 {
610         u32 rx_enable_time;
611         u32 fa_cck;
612         u32 fa_ofdm;
613         u32 bad_plcp_cck;
614         u32 bad_plcp_ofdm;
615         u32 norm_fa_ofdm;
616         u32 norm_fa_cck;
617         struct iwl_sensitivity_data *data = NULL;
618         struct statistics_rx_non_phy *rx_info;
619         struct statistics_rx_phy *ofdm, *cck;
620         unsigned long flags;
621         struct statistics_general_data statis;
622
623         if (priv->disable_sens_cal)
624                 return;
625
626         data = &(priv->sensitivity_data);
627
628         if (!iwl_is_any_associated(priv)) {
629                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
630                 return;
631         }
632
633         spin_lock_irqsave(&priv->lock, flags);
634         rx_info = &priv->statistics.rx_non_phy;
635         ofdm = &priv->statistics.rx_ofdm;
636         cck = &priv->statistics.rx_cck;
637         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
638                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
639                 spin_unlock_irqrestore(&priv->lock, flags);
640                 return;
641         }
642
643         /* Extract Statistics: */
644         rx_enable_time = le32_to_cpu(rx_info->channel_load);
645         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
646         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
647         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
648         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
649
650         statis.beacon_silence_rssi_a =
651                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
652         statis.beacon_silence_rssi_b =
653                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
654         statis.beacon_silence_rssi_c =
655                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
656         statis.beacon_energy_a =
657                         le32_to_cpu(rx_info->beacon_energy_a);
658         statis.beacon_energy_b =
659                         le32_to_cpu(rx_info->beacon_energy_b);
660         statis.beacon_energy_c =
661                         le32_to_cpu(rx_info->beacon_energy_c);
662
663         spin_unlock_irqrestore(&priv->lock, flags);
664
665         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
666
667         if (!rx_enable_time) {
668                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
669                 return;
670         }
671
672         /* These statistics increase monotonically, and do not reset
673          *   at each beacon.  Calculate difference from last value, or just
674          *   use the new statistics value if it has reset or wrapped around. */
675         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
676                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
677         else {
678                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
679                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
680         }
681
682         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
683                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
684         else {
685                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
686                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
687         }
688
689         if (data->last_fa_cnt_ofdm > fa_ofdm)
690                 data->last_fa_cnt_ofdm = fa_ofdm;
691         else {
692                 fa_ofdm -= data->last_fa_cnt_ofdm;
693                 data->last_fa_cnt_ofdm += fa_ofdm;
694         }
695
696         if (data->last_fa_cnt_cck > fa_cck)
697                 data->last_fa_cnt_cck = fa_cck;
698         else {
699                 fa_cck -= data->last_fa_cnt_cck;
700                 data->last_fa_cnt_cck += fa_cck;
701         }
702
703         /* Total aborted signal locks */
704         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
705         norm_fa_cck = fa_cck + bad_plcp_cck;
706
707         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
708                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
709
710         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
711         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
712         if (priv->enhance_sensitivity_table)
713                 iwl_enhance_sensitivity_write(priv);
714         else
715                 iwl_sensitivity_write(priv);
716 }
717
718 static inline u8 find_first_chain(u8 mask)
719 {
720         if (mask & ANT_A)
721                 return CHAIN_A;
722         if (mask & ANT_B)
723                 return CHAIN_B;
724         return CHAIN_C;
725 }
726
727 /**
728  * Run disconnected antenna algorithm to find out which antennas are
729  * disconnected.
730  */
731 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
732                                      struct iwl_chain_noise_data *data)
733 {
734         u32 active_chains = 0;
735         u32 max_average_sig;
736         u16 max_average_sig_antenna_i;
737         u8 num_tx_chains;
738         u8 first_chain;
739         u16 i = 0;
740
741         average_sig[0] = data->chain_signal_a /
742                          priv->cfg->base_params->chain_noise_num_beacons;
743         average_sig[1] = data->chain_signal_b /
744                          priv->cfg->base_params->chain_noise_num_beacons;
745         average_sig[2] = data->chain_signal_c /
746                          priv->cfg->base_params->chain_noise_num_beacons;
747
748         if (average_sig[0] >= average_sig[1]) {
749                 max_average_sig = average_sig[0];
750                 max_average_sig_antenna_i = 0;
751                 active_chains = (1 << max_average_sig_antenna_i);
752         } else {
753                 max_average_sig = average_sig[1];
754                 max_average_sig_antenna_i = 1;
755                 active_chains = (1 << max_average_sig_antenna_i);
756         }
757
758         if (average_sig[2] >= max_average_sig) {
759                 max_average_sig = average_sig[2];
760                 max_average_sig_antenna_i = 2;
761                 active_chains = (1 << max_average_sig_antenna_i);
762         }
763
764         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
765                      average_sig[0], average_sig[1], average_sig[2]);
766         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
767                      max_average_sig, max_average_sig_antenna_i);
768
769         /* Compare signal strengths for all 3 receivers. */
770         for (i = 0; i < NUM_RX_CHAINS; i++) {
771                 if (i != max_average_sig_antenna_i) {
772                         s32 rssi_delta = (max_average_sig - average_sig[i]);
773
774                         /* If signal is very weak, compared with
775                          * strongest, mark it as disconnected. */
776                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
777                                 data->disconn_array[i] = 1;
778                         else
779                                 active_chains |= (1 << i);
780                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
781                              "disconn_array[i] = %d\n",
782                              i, rssi_delta, data->disconn_array[i]);
783                 }
784         }
785
786         /*
787          * The above algorithm sometimes fails when the ucode
788          * reports 0 for all chains. It's not clear why that
789          * happens to start with, but it is then causing trouble
790          * because this can make us enable more chains than the
791          * hardware really has.
792          *
793          * To be safe, simply mask out any chains that we know
794          * are not on the device.
795          */
796         active_chains &= priv->hw_params.valid_rx_ant;
797
798         num_tx_chains = 0;
799         for (i = 0; i < NUM_RX_CHAINS; i++) {
800                 /* loops on all the bits of
801                  * priv->hw_setting.valid_tx_ant */
802                 u8 ant_msk = (1 << i);
803                 if (!(priv->hw_params.valid_tx_ant & ant_msk))
804                         continue;
805
806                 num_tx_chains++;
807                 if (data->disconn_array[i] == 0)
808                         /* there is a Tx antenna connected */
809                         break;
810                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
811                     data->disconn_array[i]) {
812                         /*
813                          * If all chains are disconnected
814                          * connect the first valid tx chain
815                          */
816                         first_chain =
817                                 find_first_chain(priv->cfg->valid_tx_ant);
818                         data->disconn_array[first_chain] = 0;
819                         active_chains |= BIT(first_chain);
820                         IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected \
821                                         W/A - declare %d as connected\n",
822                                         first_chain);
823                         break;
824                 }
825         }
826
827         if (active_chains != priv->hw_params.valid_rx_ant &&
828             active_chains != priv->chain_noise_data.active_chains)
829                 IWL_DEBUG_CALIB(priv,
830                                 "Detected that not all antennas are connected! "
831                                 "Connected: %#x, valid: %#x.\n",
832                                 active_chains, priv->hw_params.valid_rx_ant);
833
834         /* Save for use within RXON, TX, SCAN commands, etc. */
835         data->active_chains = active_chains;
836         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
837                         active_chains);
838 }
839
840
841 /*
842  * Accumulate 16 beacons of signal and noise statistics for each of
843  *   3 receivers/antennas/rx-chains, then figure out:
844  * 1)  Which antennas are connected.
845  * 2)  Differential rx gain settings to balance the 3 receivers.
846  */
847 void iwl_chain_noise_calibration(struct iwl_priv *priv)
848 {
849         struct iwl_chain_noise_data *data = NULL;
850
851         u32 chain_noise_a;
852         u32 chain_noise_b;
853         u32 chain_noise_c;
854         u32 chain_sig_a;
855         u32 chain_sig_b;
856         u32 chain_sig_c;
857         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
858         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
859         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
860         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
861         u16 i = 0;
862         u16 rxon_chnum = INITIALIZATION_VALUE;
863         u16 stat_chnum = INITIALIZATION_VALUE;
864         u8 rxon_band24;
865         u8 stat_band24;
866         unsigned long flags;
867         struct statistics_rx_non_phy *rx_info;
868
869         /*
870          * MULTI-FIXME:
871          * When we support multiple interfaces on different channels,
872          * this must be modified/fixed.
873          */
874         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
875
876         if (priv->disable_chain_noise_cal)
877                 return;
878
879         data = &(priv->chain_noise_data);
880
881         /*
882          * Accumulate just the first "chain_noise_num_beacons" after
883          * the first association, then we're done forever.
884          */
885         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
886                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
887                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
888                 return;
889         }
890
891         spin_lock_irqsave(&priv->lock, flags);
892
893         rx_info = &priv->statistics.rx_non_phy;
894
895         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
896                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
897                 spin_unlock_irqrestore(&priv->lock, flags);
898                 return;
899         }
900
901         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
902         rxon_chnum = le16_to_cpu(ctx->staging.channel);
903         stat_band24 =
904                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
905         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
906
907         /* Make sure we accumulate data for just the associated channel
908          *   (even if scanning). */
909         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
910                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
911                                 rxon_chnum, rxon_band24);
912                 spin_unlock_irqrestore(&priv->lock, flags);
913                 return;
914         }
915
916         /*
917          *  Accumulate beacon statistics values across
918          * "chain_noise_num_beacons"
919          */
920         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
921                                 IN_BAND_FILTER;
922         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
923                                 IN_BAND_FILTER;
924         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
925                                 IN_BAND_FILTER;
926
927         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
928         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
929         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
930
931         spin_unlock_irqrestore(&priv->lock, flags);
932
933         data->beacon_count++;
934
935         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
936         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
937         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
938
939         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
940         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
941         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
942
943         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
944                         rxon_chnum, rxon_band24, data->beacon_count);
945         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
946                         chain_sig_a, chain_sig_b, chain_sig_c);
947         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
948                         chain_noise_a, chain_noise_b, chain_noise_c);
949
950         /* If this is the "chain_noise_num_beacons", determine:
951          * 1)  Disconnected antennas (using signal strengths)
952          * 2)  Differential gain (using silence noise) to balance receivers */
953         if (data->beacon_count !=
954                 priv->cfg->base_params->chain_noise_num_beacons)
955                 return;
956
957         /* Analyze signal for disconnected antenna */
958         if (priv->cfg->bt_params &&
959             priv->cfg->bt_params->advanced_bt_coexist) {
960                 /* Disable disconnected antenna algorithm for advanced
961                    bt coex, assuming valid antennas are connected */
962                 data->active_chains = priv->hw_params.valid_rx_ant;
963                 for (i = 0; i < NUM_RX_CHAINS; i++)
964                         if (!(data->active_chains & (1<<i)))
965                                 data->disconn_array[i] = 1;
966         } else
967                 iwl_find_disconn_antenna(priv, average_sig, data);
968
969         /* Analyze noise for rx balance */
970         average_noise[0] = data->chain_noise_a /
971                            priv->cfg->base_params->chain_noise_num_beacons;
972         average_noise[1] = data->chain_noise_b /
973                            priv->cfg->base_params->chain_noise_num_beacons;
974         average_noise[2] = data->chain_noise_c /
975                            priv->cfg->base_params->chain_noise_num_beacons;
976
977         for (i = 0; i < NUM_RX_CHAINS; i++) {
978                 if (!(data->disconn_array[i]) &&
979                    (average_noise[i] <= min_average_noise)) {
980                         /* This means that chain i is active and has
981                          * lower noise values so far: */
982                         min_average_noise = average_noise[i];
983                         min_average_noise_antenna_i = i;
984                 }
985         }
986
987         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
988                         average_noise[0], average_noise[1],
989                         average_noise[2]);
990
991         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
992                         min_average_noise, min_average_noise_antenna_i);
993
994         if (priv->cfg->ops->utils->gain_computation)
995                 priv->cfg->ops->utils->gain_computation(priv, average_noise,
996                                 min_average_noise_antenna_i, min_average_noise,
997                                 find_first_chain(priv->cfg->valid_rx_ant));
998
999         /* Some power changes may have been made during the calibration.
1000          * Update and commit the RXON
1001          */
1002         if (priv->cfg->ops->lib->update_chain_flags)
1003                 priv->cfg->ops->lib->update_chain_flags(priv);
1004
1005         data->state = IWL_CHAIN_NOISE_DONE;
1006         iwl_power_update_mode(priv, false);
1007 }
1008
1009 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1010 {
1011         int i;
1012         memset(&(priv->sensitivity_data), 0,
1013                sizeof(struct iwl_sensitivity_data));
1014         memset(&(priv->chain_noise_data), 0,
1015                sizeof(struct iwl_chain_noise_data));
1016         for (i = 0; i < NUM_RX_CHAINS; i++)
1017                 priv->chain_noise_data.delta_gain_code[i] =
1018                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1019
1020         /* Ask for statistics now, the uCode will send notification
1021          * periodically after association */
1022         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1023 }