Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[pandora-kernel.git] / drivers / net / wireless / iwlwifi / iwl-agn-calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-agn-calib.h"
69 #include "iwl-trans.h"
70 #include "iwl-agn.h"
71
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75
76 struct statistics_general_data {
77         u32 beacon_silence_rssi_a;
78         u32 beacon_silence_rssi_b;
79         u32 beacon_silence_rssi_c;
80         u32 beacon_energy_a;
81         u32 beacon_energy_b;
82         u32 beacon_energy_c;
83 };
84
85 int iwl_send_calib_results(struct iwl_priv *priv)
86 {
87         int ret = 0;
88         int i = 0;
89
90         struct iwl_host_cmd hcmd = {
91                 .id = REPLY_PHY_CALIBRATION_CMD,
92                 .flags = CMD_SYNC,
93         };
94
95         for (i = 0; i < IWL_CALIB_MAX; i++) {
96                 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
97                     priv->calib_results[i].buf) {
98                         hcmd.len[0] = priv->calib_results[i].buf_len;
99                         hcmd.data[0] = priv->calib_results[i].buf;
100                         hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
101                         ret = trans_send_cmd(priv, &hcmd);
102                         if (ret) {
103                                 IWL_ERR(priv, "Error %d iteration %d\n",
104                                         ret, i);
105                                 break;
106                         }
107                 }
108         }
109
110         return ret;
111 }
112
113 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
114 {
115         if (res->buf_len != len) {
116                 kfree(res->buf);
117                 res->buf = kzalloc(len, GFP_ATOMIC);
118         }
119         if (unlikely(res->buf == NULL))
120                 return -ENOMEM;
121
122         res->buf_len = len;
123         memcpy(res->buf, buf, len);
124         return 0;
125 }
126
127 void iwl_calib_free_results(struct iwl_priv *priv)
128 {
129         int i;
130
131         for (i = 0; i < IWL_CALIB_MAX; i++) {
132                 kfree(priv->calib_results[i].buf);
133                 priv->calib_results[i].buf = NULL;
134                 priv->calib_results[i].buf_len = 0;
135         }
136 }
137
138 /*****************************************************************************
139  * RUNTIME calibrations framework
140  *****************************************************************************/
141
142 /* "false alarms" are signals that our DSP tries to lock onto,
143  *   but then determines that they are either noise, or transmissions
144  *   from a distant wireless network (also "noise", really) that get
145  *   "stepped on" by stronger transmissions within our own network.
146  * This algorithm attempts to set a sensitivity level that is high
147  *   enough to receive all of our own network traffic, but not so
148  *   high that our DSP gets too busy trying to lock onto non-network
149  *   activity/noise. */
150 static int iwl_sens_energy_cck(struct iwl_priv *priv,
151                                    u32 norm_fa,
152                                    u32 rx_enable_time,
153                                    struct statistics_general_data *rx_info)
154 {
155         u32 max_nrg_cck = 0;
156         int i = 0;
157         u8 max_silence_rssi = 0;
158         u32 silence_ref = 0;
159         u8 silence_rssi_a = 0;
160         u8 silence_rssi_b = 0;
161         u8 silence_rssi_c = 0;
162         u32 val;
163
164         /* "false_alarms" values below are cross-multiplications to assess the
165          *   numbers of false alarms within the measured period of actual Rx
166          *   (Rx is off when we're txing), vs the min/max expected false alarms
167          *   (some should be expected if rx is sensitive enough) in a
168          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
169          *
170          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
171          *
172          * */
173         u32 false_alarms = norm_fa * 200 * 1024;
174         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
175         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
176         struct iwl_sensitivity_data *data = NULL;
177         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
178
179         data = &(priv->sensitivity_data);
180
181         data->nrg_auto_corr_silence_diff = 0;
182
183         /* Find max silence rssi among all 3 receivers.
184          * This is background noise, which may include transmissions from other
185          *    networks, measured during silence before our network's beacon */
186         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
187                             ALL_BAND_FILTER) >> 8);
188         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
189                             ALL_BAND_FILTER) >> 8);
190         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
191                             ALL_BAND_FILTER) >> 8);
192
193         val = max(silence_rssi_b, silence_rssi_c);
194         max_silence_rssi = max(silence_rssi_a, (u8) val);
195
196         /* Store silence rssi in 20-beacon history table */
197         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
198         data->nrg_silence_idx++;
199         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
200                 data->nrg_silence_idx = 0;
201
202         /* Find max silence rssi across 20 beacon history */
203         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
204                 val = data->nrg_silence_rssi[i];
205                 silence_ref = max(silence_ref, val);
206         }
207         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
208                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
209                         silence_ref);
210
211         /* Find max rx energy (min value!) among all 3 receivers,
212          *   measured during beacon frame.
213          * Save it in 10-beacon history table. */
214         i = data->nrg_energy_idx;
215         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
216         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
217
218         data->nrg_energy_idx++;
219         if (data->nrg_energy_idx >= 10)
220                 data->nrg_energy_idx = 0;
221
222         /* Find min rx energy (max value) across 10 beacon history.
223          * This is the minimum signal level that we want to receive well.
224          * Add backoff (margin so we don't miss slightly lower energy frames).
225          * This establishes an upper bound (min value) for energy threshold. */
226         max_nrg_cck = data->nrg_value[0];
227         for (i = 1; i < 10; i++)
228                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
229         max_nrg_cck += 6;
230
231         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
232                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
233                         rx_info->beacon_energy_c, max_nrg_cck - 6);
234
235         /* Count number of consecutive beacons with fewer-than-desired
236          *   false alarms. */
237         if (false_alarms < min_false_alarms)
238                 data->num_in_cck_no_fa++;
239         else
240                 data->num_in_cck_no_fa = 0;
241         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
242                         data->num_in_cck_no_fa);
243
244         /* If we got too many false alarms this time, reduce sensitivity */
245         if ((false_alarms > max_false_alarms) &&
246                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
247                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
248                      false_alarms, max_false_alarms);
249                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
250                 data->nrg_curr_state = IWL_FA_TOO_MANY;
251                 /* Store for "fewer than desired" on later beacon */
252                 data->nrg_silence_ref = silence_ref;
253
254                 /* increase energy threshold (reduce nrg value)
255                  *   to decrease sensitivity */
256                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
257         /* Else if we got fewer than desired, increase sensitivity */
258         } else if (false_alarms < min_false_alarms) {
259                 data->nrg_curr_state = IWL_FA_TOO_FEW;
260
261                 /* Compare silence level with silence level for most recent
262                  *   healthy number or too many false alarms */
263                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
264                                                    (s32)silence_ref;
265
266                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
267                          false_alarms, min_false_alarms,
268                          data->nrg_auto_corr_silence_diff);
269
270                 /* Increase value to increase sensitivity, but only if:
271                  * 1a) previous beacon did *not* have *too many* false alarms
272                  * 1b) AND there's a significant difference in Rx levels
273                  *      from a previous beacon with too many, or healthy # FAs
274                  * OR 2) We've seen a lot of beacons (100) with too few
275                  *       false alarms */
276                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
277                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
278                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
279
280                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
281                         /* Increase nrg value to increase sensitivity */
282                         val = data->nrg_th_cck + NRG_STEP_CCK;
283                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
284                 } else {
285                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
286                 }
287
288         /* Else we got a healthy number of false alarms, keep status quo */
289         } else {
290                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
291                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
292
293                 /* Store for use in "fewer than desired" with later beacon */
294                 data->nrg_silence_ref = silence_ref;
295
296                 /* If previous beacon had too many false alarms,
297                  *   give it some extra margin by reducing sensitivity again
298                  *   (but don't go below measured energy of desired Rx) */
299                 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
300                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
301                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
302                                 data->nrg_th_cck -= NRG_MARGIN;
303                         else
304                                 data->nrg_th_cck = max_nrg_cck;
305                 }
306         }
307
308         /* Make sure the energy threshold does not go above the measured
309          * energy of the desired Rx signals (reduced by backoff margin),
310          * or else we might start missing Rx frames.
311          * Lower value is higher energy, so we use max()!
312          */
313         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
314         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
315
316         data->nrg_prev_state = data->nrg_curr_state;
317
318         /* Auto-correlation CCK algorithm */
319         if (false_alarms > min_false_alarms) {
320
321                 /* increase auto_corr values to decrease sensitivity
322                  * so the DSP won't be disturbed by the noise
323                  */
324                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
325                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
326                 else {
327                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
328                         data->auto_corr_cck =
329                                 min((u32)ranges->auto_corr_max_cck, val);
330                 }
331                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
332                 data->auto_corr_cck_mrc =
333                         min((u32)ranges->auto_corr_max_cck_mrc, val);
334         } else if ((false_alarms < min_false_alarms) &&
335            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
336            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
337
338                 /* Decrease auto_corr values to increase sensitivity */
339                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
340                 data->auto_corr_cck =
341                         max((u32)ranges->auto_corr_min_cck, val);
342                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
343                 data->auto_corr_cck_mrc =
344                         max((u32)ranges->auto_corr_min_cck_mrc, val);
345         }
346
347         return 0;
348 }
349
350
351 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
352                                        u32 norm_fa,
353                                        u32 rx_enable_time)
354 {
355         u32 val;
356         u32 false_alarms = norm_fa * 200 * 1024;
357         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
358         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
359         struct iwl_sensitivity_data *data = NULL;
360         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
361
362         data = &(priv->sensitivity_data);
363
364         /* If we got too many false alarms this time, reduce sensitivity */
365         if (false_alarms > max_false_alarms) {
366
367                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
368                              false_alarms, max_false_alarms);
369
370                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
371                 data->auto_corr_ofdm =
372                         min((u32)ranges->auto_corr_max_ofdm, val);
373
374                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
375                 data->auto_corr_ofdm_mrc =
376                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
377
378                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
379                 data->auto_corr_ofdm_x1 =
380                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
381
382                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
383                 data->auto_corr_ofdm_mrc_x1 =
384                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
385         }
386
387         /* Else if we got fewer than desired, increase sensitivity */
388         else if (false_alarms < min_false_alarms) {
389
390                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
391                              false_alarms, min_false_alarms);
392
393                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
394                 data->auto_corr_ofdm =
395                         max((u32)ranges->auto_corr_min_ofdm, val);
396
397                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
398                 data->auto_corr_ofdm_mrc =
399                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
400
401                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
402                 data->auto_corr_ofdm_x1 =
403                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
404
405                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
406                 data->auto_corr_ofdm_mrc_x1 =
407                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
408         } else {
409                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
410                          min_false_alarms, false_alarms, max_false_alarms);
411         }
412         return 0;
413 }
414
415 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
416                                 struct iwl_sensitivity_data *data,
417                                 __le16 *tbl)
418 {
419         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
420                                 cpu_to_le16((u16)data->auto_corr_ofdm);
421         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
422                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
423         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
424                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
425         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
426                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
427
428         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
429                                 cpu_to_le16((u16)data->auto_corr_cck);
430         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
431                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
432
433         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
434                                 cpu_to_le16((u16)data->nrg_th_cck);
435         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
436                                 cpu_to_le16((u16)data->nrg_th_ofdm);
437
438         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
439                                 cpu_to_le16(data->barker_corr_th_min);
440         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
441                                 cpu_to_le16(data->barker_corr_th_min_mrc);
442         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
443                                 cpu_to_le16(data->nrg_th_cca);
444
445         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
446                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
447                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
448                         data->nrg_th_ofdm);
449
450         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
451                         data->auto_corr_cck, data->auto_corr_cck_mrc,
452                         data->nrg_th_cck);
453 }
454
455 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
456 static int iwl_sensitivity_write(struct iwl_priv *priv)
457 {
458         struct iwl_sensitivity_cmd cmd;
459         struct iwl_sensitivity_data *data = NULL;
460         struct iwl_host_cmd cmd_out = {
461                 .id = SENSITIVITY_CMD,
462                 .len = { sizeof(struct iwl_sensitivity_cmd), },
463                 .flags = CMD_ASYNC,
464                 .data = { &cmd, },
465         };
466
467         data = &(priv->sensitivity_data);
468
469         memset(&cmd, 0, sizeof(cmd));
470
471         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
472
473         /* Update uCode's "work" table, and copy it to DSP */
474         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
475
476         /* Don't send command to uCode if nothing has changed */
477         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
478                     sizeof(u16)*HD_TABLE_SIZE)) {
479                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
480                 return 0;
481         }
482
483         /* Copy table for comparison next time */
484         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
485                sizeof(u16)*HD_TABLE_SIZE);
486
487         return trans_send_cmd(priv, &cmd_out);
488 }
489
490 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
491 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
492 {
493         struct iwl_enhance_sensitivity_cmd cmd;
494         struct iwl_sensitivity_data *data = NULL;
495         struct iwl_host_cmd cmd_out = {
496                 .id = SENSITIVITY_CMD,
497                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
498                 .flags = CMD_ASYNC,
499                 .data = { &cmd, },
500         };
501
502         data = &(priv->sensitivity_data);
503
504         memset(&cmd, 0, sizeof(cmd));
505
506         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
507
508         cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
509                 HD_INA_NON_SQUARE_DET_OFDM_DATA;
510         cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
511                 HD_INA_NON_SQUARE_DET_CCK_DATA;
512         cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
513                 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA;
514         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
515                 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA;
516         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
517                 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
518         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
519                 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA;
520         cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
521                 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA;
522         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
523                 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA;
524         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
525                 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA;
526         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
527                 HD_CCK_NON_SQUARE_DET_SLOPE_DATA;
528         cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
529                 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA;
530
531         /* Update uCode's "work" table, and copy it to DSP */
532         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
533
534         /* Don't send command to uCode if nothing has changed */
535         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
536                     sizeof(u16)*HD_TABLE_SIZE) &&
537             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
538                     &(priv->enhance_sensitivity_tbl[0]),
539                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
540                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
541                 return 0;
542         }
543
544         /* Copy table for comparison next time */
545         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
546                sizeof(u16)*HD_TABLE_SIZE);
547         memcpy(&(priv->enhance_sensitivity_tbl[0]),
548                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
549                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
550
551         return trans_send_cmd(priv, &cmd_out);
552 }
553
554 void iwl_init_sensitivity(struct iwl_priv *priv)
555 {
556         int ret = 0;
557         int i;
558         struct iwl_sensitivity_data *data = NULL;
559         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
560
561         if (priv->disable_sens_cal)
562                 return;
563
564         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
565
566         /* Clear driver's sensitivity algo data */
567         data = &(priv->sensitivity_data);
568
569         if (ranges == NULL)
570                 return;
571
572         memset(data, 0, sizeof(struct iwl_sensitivity_data));
573
574         data->num_in_cck_no_fa = 0;
575         data->nrg_curr_state = IWL_FA_TOO_MANY;
576         data->nrg_prev_state = IWL_FA_TOO_MANY;
577         data->nrg_silence_ref = 0;
578         data->nrg_silence_idx = 0;
579         data->nrg_energy_idx = 0;
580
581         for (i = 0; i < 10; i++)
582                 data->nrg_value[i] = 0;
583
584         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
585                 data->nrg_silence_rssi[i] = 0;
586
587         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
588         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
589         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
590         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
591         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
592         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
593         data->nrg_th_cck = ranges->nrg_th_cck;
594         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
595         data->barker_corr_th_min = ranges->barker_corr_th_min;
596         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
597         data->nrg_th_cca = ranges->nrg_th_cca;
598
599         data->last_bad_plcp_cnt_ofdm = 0;
600         data->last_fa_cnt_ofdm = 0;
601         data->last_bad_plcp_cnt_cck = 0;
602         data->last_fa_cnt_cck = 0;
603
604         if (priv->enhance_sensitivity_table)
605                 ret |= iwl_enhance_sensitivity_write(priv);
606         else
607                 ret |= iwl_sensitivity_write(priv);
608         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
609 }
610
611 void iwl_sensitivity_calibration(struct iwl_priv *priv)
612 {
613         u32 rx_enable_time;
614         u32 fa_cck;
615         u32 fa_ofdm;
616         u32 bad_plcp_cck;
617         u32 bad_plcp_ofdm;
618         u32 norm_fa_ofdm;
619         u32 norm_fa_cck;
620         struct iwl_sensitivity_data *data = NULL;
621         struct statistics_rx_non_phy *rx_info;
622         struct statistics_rx_phy *ofdm, *cck;
623         unsigned long flags;
624         struct statistics_general_data statis;
625
626         if (priv->disable_sens_cal)
627                 return;
628
629         data = &(priv->sensitivity_data);
630
631         if (!iwl_is_any_associated(priv)) {
632                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
633                 return;
634         }
635
636         spin_lock_irqsave(&priv->lock, flags);
637         rx_info = &priv->statistics.rx_non_phy;
638         ofdm = &priv->statistics.rx_ofdm;
639         cck = &priv->statistics.rx_cck;
640         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
641                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
642                 spin_unlock_irqrestore(&priv->lock, flags);
643                 return;
644         }
645
646         /* Extract Statistics: */
647         rx_enable_time = le32_to_cpu(rx_info->channel_load);
648         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
649         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
650         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
651         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
652
653         statis.beacon_silence_rssi_a =
654                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
655         statis.beacon_silence_rssi_b =
656                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
657         statis.beacon_silence_rssi_c =
658                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
659         statis.beacon_energy_a =
660                         le32_to_cpu(rx_info->beacon_energy_a);
661         statis.beacon_energy_b =
662                         le32_to_cpu(rx_info->beacon_energy_b);
663         statis.beacon_energy_c =
664                         le32_to_cpu(rx_info->beacon_energy_c);
665
666         spin_unlock_irqrestore(&priv->lock, flags);
667
668         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
669
670         if (!rx_enable_time) {
671                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
672                 return;
673         }
674
675         /* These statistics increase monotonically, and do not reset
676          *   at each beacon.  Calculate difference from last value, or just
677          *   use the new statistics value if it has reset or wrapped around. */
678         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
679                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
680         else {
681                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
682                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
683         }
684
685         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
686                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
687         else {
688                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
689                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
690         }
691
692         if (data->last_fa_cnt_ofdm > fa_ofdm)
693                 data->last_fa_cnt_ofdm = fa_ofdm;
694         else {
695                 fa_ofdm -= data->last_fa_cnt_ofdm;
696                 data->last_fa_cnt_ofdm += fa_ofdm;
697         }
698
699         if (data->last_fa_cnt_cck > fa_cck)
700                 data->last_fa_cnt_cck = fa_cck;
701         else {
702                 fa_cck -= data->last_fa_cnt_cck;
703                 data->last_fa_cnt_cck += fa_cck;
704         }
705
706         /* Total aborted signal locks */
707         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
708         norm_fa_cck = fa_cck + bad_plcp_cck;
709
710         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
711                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
712
713         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
714         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
715         if (priv->enhance_sensitivity_table)
716                 iwl_enhance_sensitivity_write(priv);
717         else
718                 iwl_sensitivity_write(priv);
719 }
720
721 static inline u8 find_first_chain(u8 mask)
722 {
723         if (mask & ANT_A)
724                 return CHAIN_A;
725         if (mask & ANT_B)
726                 return CHAIN_B;
727         return CHAIN_C;
728 }
729
730 /**
731  * Run disconnected antenna algorithm to find out which antennas are
732  * disconnected.
733  */
734 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
735                                      struct iwl_chain_noise_data *data)
736 {
737         u32 active_chains = 0;
738         u32 max_average_sig;
739         u16 max_average_sig_antenna_i;
740         u8 num_tx_chains;
741         u8 first_chain;
742         u16 i = 0;
743
744         average_sig[0] = data->chain_signal_a /
745                          priv->cfg->base_params->chain_noise_num_beacons;
746         average_sig[1] = data->chain_signal_b /
747                          priv->cfg->base_params->chain_noise_num_beacons;
748         average_sig[2] = data->chain_signal_c /
749                          priv->cfg->base_params->chain_noise_num_beacons;
750
751         if (average_sig[0] >= average_sig[1]) {
752                 max_average_sig = average_sig[0];
753                 max_average_sig_antenna_i = 0;
754                 active_chains = (1 << max_average_sig_antenna_i);
755         } else {
756                 max_average_sig = average_sig[1];
757                 max_average_sig_antenna_i = 1;
758                 active_chains = (1 << max_average_sig_antenna_i);
759         }
760
761         if (average_sig[2] >= max_average_sig) {
762                 max_average_sig = average_sig[2];
763                 max_average_sig_antenna_i = 2;
764                 active_chains = (1 << max_average_sig_antenna_i);
765         }
766
767         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
768                      average_sig[0], average_sig[1], average_sig[2]);
769         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
770                      max_average_sig, max_average_sig_antenna_i);
771
772         /* Compare signal strengths for all 3 receivers. */
773         for (i = 0; i < NUM_RX_CHAINS; i++) {
774                 if (i != max_average_sig_antenna_i) {
775                         s32 rssi_delta = (max_average_sig - average_sig[i]);
776
777                         /* If signal is very weak, compared with
778                          * strongest, mark it as disconnected. */
779                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
780                                 data->disconn_array[i] = 1;
781                         else
782                                 active_chains |= (1 << i);
783                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
784                              "disconn_array[i] = %d\n",
785                              i, rssi_delta, data->disconn_array[i]);
786                 }
787         }
788
789         /*
790          * The above algorithm sometimes fails when the ucode
791          * reports 0 for all chains. It's not clear why that
792          * happens to start with, but it is then causing trouble
793          * because this can make us enable more chains than the
794          * hardware really has.
795          *
796          * To be safe, simply mask out any chains that we know
797          * are not on the device.
798          */
799         active_chains &= priv->hw_params.valid_rx_ant;
800
801         num_tx_chains = 0;
802         for (i = 0; i < NUM_RX_CHAINS; i++) {
803                 /* loops on all the bits of
804                  * priv->hw_setting.valid_tx_ant */
805                 u8 ant_msk = (1 << i);
806                 if (!(priv->hw_params.valid_tx_ant & ant_msk))
807                         continue;
808
809                 num_tx_chains++;
810                 if (data->disconn_array[i] == 0)
811                         /* there is a Tx antenna connected */
812                         break;
813                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
814                     data->disconn_array[i]) {
815                         /*
816                          * If all chains are disconnected
817                          * connect the first valid tx chain
818                          */
819                         first_chain =
820                                 find_first_chain(priv->cfg->valid_tx_ant);
821                         data->disconn_array[first_chain] = 0;
822                         active_chains |= BIT(first_chain);
823                         IWL_DEBUG_CALIB(priv,
824                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
825                                         first_chain);
826                         break;
827                 }
828         }
829
830         if (active_chains != priv->hw_params.valid_rx_ant &&
831             active_chains != priv->chain_noise_data.active_chains)
832                 IWL_DEBUG_CALIB(priv,
833                                 "Detected that not all antennas are connected! "
834                                 "Connected: %#x, valid: %#x.\n",
835                                 active_chains, priv->hw_params.valid_rx_ant);
836
837         /* Save for use within RXON, TX, SCAN commands, etc. */
838         data->active_chains = active_chains;
839         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
840                         active_chains);
841 }
842
843
844 /*
845  * Accumulate 16 beacons of signal and noise statistics for each of
846  *   3 receivers/antennas/rx-chains, then figure out:
847  * 1)  Which antennas are connected.
848  * 2)  Differential rx gain settings to balance the 3 receivers.
849  */
850 void iwl_chain_noise_calibration(struct iwl_priv *priv)
851 {
852         struct iwl_chain_noise_data *data = NULL;
853
854         u32 chain_noise_a;
855         u32 chain_noise_b;
856         u32 chain_noise_c;
857         u32 chain_sig_a;
858         u32 chain_sig_b;
859         u32 chain_sig_c;
860         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
861         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
862         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
863         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
864         u16 i = 0;
865         u16 rxon_chnum = INITIALIZATION_VALUE;
866         u16 stat_chnum = INITIALIZATION_VALUE;
867         u8 rxon_band24;
868         u8 stat_band24;
869         unsigned long flags;
870         struct statistics_rx_non_phy *rx_info;
871
872         /*
873          * MULTI-FIXME:
874          * When we support multiple interfaces on different channels,
875          * this must be modified/fixed.
876          */
877         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
878
879         if (priv->disable_chain_noise_cal)
880                 return;
881
882         data = &(priv->chain_noise_data);
883
884         /*
885          * Accumulate just the first "chain_noise_num_beacons" after
886          * the first association, then we're done forever.
887          */
888         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
889                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
890                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
891                 return;
892         }
893
894         spin_lock_irqsave(&priv->lock, flags);
895
896         rx_info = &priv->statistics.rx_non_phy;
897
898         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
899                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
900                 spin_unlock_irqrestore(&priv->lock, flags);
901                 return;
902         }
903
904         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
905         rxon_chnum = le16_to_cpu(ctx->staging.channel);
906         stat_band24 =
907                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
908         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
909
910         /* Make sure we accumulate data for just the associated channel
911          *   (even if scanning). */
912         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
913                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
914                                 rxon_chnum, rxon_band24);
915                 spin_unlock_irqrestore(&priv->lock, flags);
916                 return;
917         }
918
919         /*
920          *  Accumulate beacon statistics values across
921          * "chain_noise_num_beacons"
922          */
923         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
924                                 IN_BAND_FILTER;
925         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
926                                 IN_BAND_FILTER;
927         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
928                                 IN_BAND_FILTER;
929
930         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
931         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
932         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
933
934         spin_unlock_irqrestore(&priv->lock, flags);
935
936         data->beacon_count++;
937
938         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
939         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
940         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
941
942         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
943         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
944         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
945
946         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
947                         rxon_chnum, rxon_band24, data->beacon_count);
948         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
949                         chain_sig_a, chain_sig_b, chain_sig_c);
950         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
951                         chain_noise_a, chain_noise_b, chain_noise_c);
952
953         /* If this is the "chain_noise_num_beacons", determine:
954          * 1)  Disconnected antennas (using signal strengths)
955          * 2)  Differential gain (using silence noise) to balance receivers */
956         if (data->beacon_count !=
957                 priv->cfg->base_params->chain_noise_num_beacons)
958                 return;
959
960         /* Analyze signal for disconnected antenna */
961         if (priv->cfg->bt_params &&
962             priv->cfg->bt_params->advanced_bt_coexist) {
963                 /* Disable disconnected antenna algorithm for advanced
964                    bt coex, assuming valid antennas are connected */
965                 data->active_chains = priv->hw_params.valid_rx_ant;
966                 for (i = 0; i < NUM_RX_CHAINS; i++)
967                         if (!(data->active_chains & (1<<i)))
968                                 data->disconn_array[i] = 1;
969         } else
970                 iwl_find_disconn_antenna(priv, average_sig, data);
971
972         /* Analyze noise for rx balance */
973         average_noise[0] = data->chain_noise_a /
974                            priv->cfg->base_params->chain_noise_num_beacons;
975         average_noise[1] = data->chain_noise_b /
976                            priv->cfg->base_params->chain_noise_num_beacons;
977         average_noise[2] = data->chain_noise_c /
978                            priv->cfg->base_params->chain_noise_num_beacons;
979
980         for (i = 0; i < NUM_RX_CHAINS; i++) {
981                 if (!(data->disconn_array[i]) &&
982                    (average_noise[i] <= min_average_noise)) {
983                         /* This means that chain i is active and has
984                          * lower noise values so far: */
985                         min_average_noise = average_noise[i];
986                         min_average_noise_antenna_i = i;
987                 }
988         }
989
990         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
991                         average_noise[0], average_noise[1],
992                         average_noise[2]);
993
994         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
995                         min_average_noise, min_average_noise_antenna_i);
996
997         iwlagn_gain_computation(priv, average_noise,
998                                 min_average_noise_antenna_i, min_average_noise,
999                                 find_first_chain(priv->cfg->valid_rx_ant));
1000
1001         /* Some power changes may have been made during the calibration.
1002          * Update and commit the RXON
1003          */
1004         iwl_update_chain_flags(priv);
1005
1006         data->state = IWL_CHAIN_NOISE_DONE;
1007         iwl_power_update_mode(priv, false);
1008 }
1009
1010 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1011 {
1012         int i;
1013         memset(&(priv->sensitivity_data), 0,
1014                sizeof(struct iwl_sensitivity_data));
1015         memset(&(priv->chain_noise_data), 0,
1016                sizeof(struct iwl_chain_noise_data));
1017         for (i = 0; i < NUM_RX_CHAINS; i++)
1018                 priv->chain_noise_data.delta_gain_code[i] =
1019                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1020
1021         /* Ask for statistics now, the uCode will send notification
1022          * periodically after association */
1023         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1024 }