ipw2x00: fix sparse warnings
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION     IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int default_channel = 0;
87 static int network_mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led_support = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98         'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116          QOS_TX3_CW_MIN_OFDM},
117         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118          QOS_TX3_CW_MAX_OFDM},
119         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127          QOS_TX3_CW_MIN_CCK},
128         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129          QOS_TX3_CW_MAX_CCK},
130         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133          QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138          DEF_TX3_CW_MIN_OFDM},
139         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140          DEF_TX3_CW_MAX_OFDM},
141         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149          DEF_TX3_CW_MIN_CCK},
150         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151          DEF_TX3_CW_MAX_CCK},
152         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155          DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168                                        *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170                                      *qos_param);
171 #endif                          /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177                                 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181                              int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194                                 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199                         const u8 * data, u32 len, u32 ofs)
200 {
201         int out, i, j, l;
202         char c;
203
204         out = snprintf(buf, count, "%08X", ofs);
205
206         for (l = 0, i = 0; i < 2; i++) {
207                 out += snprintf(buf + out, count - out, " ");
208                 for (j = 0; j < 8 && l < len; j++, l++)
209                         out += snprintf(buf + out, count - out, "%02X ",
210                                         data[(i * 8 + j)]);
211                 for (; j < 8; j++)
212                         out += snprintf(buf + out, count - out, "   ");
213         }
214
215         out += snprintf(buf + out, count - out, " ");
216         for (l = 0, i = 0; i < 2; i++) {
217                 out += snprintf(buf + out, count - out, " ");
218                 for (j = 0; j < 8 && l < len; j++, l++) {
219                         c = data[(i * 8 + j)];
220                         if (!isascii(c) || !isprint(c))
221                                 c = '.';
222
223                         out += snprintf(buf + out, count - out, "%c", c);
224                 }
225
226                 for (; j < 8; j++)
227                         out += snprintf(buf + out, count - out, " ");
228         }
229
230         return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235         char line[81];
236         u32 ofs = 0;
237         if (!(ipw_debug_level & level))
238                 return;
239
240         while (len) {
241                 snprint_line(line, sizeof(line), &data[ofs],
242                              min(len, 16U), ofs);
243                 printk(KERN_DEBUG "%s\n", line);
244                 ofs += 16;
245                 len -= min(len, 16U);
246         }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251         size_t out = size;
252         u32 ofs = 0;
253         int total = 0;
254
255         while (size && len) {
256                 out = snprint_line(output, size, &data[ofs],
257                                    min_t(size_t, len, 16U), ofs);
258
259                 ofs += 16;
260                 output += out;
261                 size -= out;
262                 len -= min_t(size_t, len, 16U);
263                 total += out;
264         }
265         return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281                      __LINE__, (u32) (b), (u32) (c));
282         _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290                      __LINE__, (u32) (b), (u32) (c));
291         _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299                      __LINE__, (u32) (b), (u32) (c));
300         _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305                 u8 val)
306 {
307         writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313                         __LINE__, (u32)(ofs), (u32)(val)); \
314         _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319                 u16 val)
320 {
321         writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327                         __LINE__, (u32)(ofs), (u32)(val)); \
328         _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333                 u32 val)
334 {
335         writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341                         __LINE__, (u32)(ofs), (u32)(val)); \
342         _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348         return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354                         (u32)(ofs)); \
355         _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361         return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367                         (u32)(ofs)); \
368         _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388                         __LINE__, (u32)(b), (u32)(d)); \
389         _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394                                 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397                         __LINE__, (u32)(b), (u32)(d)); \
398         _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
413         u32 dif_len = reg - aligned_addr;
414
415         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
424         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434         u32 word;
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444         u32 value;
445
446         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451         return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /*    for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457                                int num)
458 {
459         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
460         u32 dif_len = addr - aligned_addr;
461         u32 i;
462
463         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465         if (num <= 0) {
466                 return;
467         }
468
469         /* Read the first dword (or portion) byte by byte */
470         if (unlikely(dif_len)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 /* Start reading at aligned_addr + dif_len */
473                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475                 aligned_addr += 4;
476         }
477
478         /* Read all of the middle dwords as dwords, with auto-increment */
479         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483         /* Read the last dword (or portion) byte by byte */
484         if (unlikely(num)) {
485                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486                 for (i = 0; num > 0; i++, num--)
487                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488         }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /*    for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494                                 int num)
495 {
496         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
497         u32 dif_len = addr - aligned_addr;
498         u32 i;
499
500         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502         if (num <= 0) {
503                 return;
504         }
505
506         /* Write the first dword (or portion) byte by byte */
507         if (unlikely(dif_len)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 /* Start writing at aligned_addr + dif_len */
510                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512                 aligned_addr += 4;
513         }
514
515         /* Write all of the middle dwords as dwords, with auto-increment */
516         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520         /* Write the last dword (or portion) byte by byte */
521         if (unlikely(num)) {
522                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523                 for (i = 0; num > 0; i++, num--, buf++)
524                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525         }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /*    for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531                              int num)
532 {
533         memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550         if (priv->status & STATUS_INT_ENABLED)
551                 return;
552         priv->status |= STATUS_INT_ENABLED;
553         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558         if (!(priv->status & STATUS_INT_ENABLED))
559                 return;
560         priv->status &= ~STATUS_INT_ENABLED;
561         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566         unsigned long flags;
567
568         spin_lock_irqsave(&priv->irq_lock, flags);
569         __ipw_enable_interrupts(priv);
570         spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&priv->irq_lock, flags);
578         __ipw_disable_interrupts(priv);
579         spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584         switch (val) {
585         case IPW_FW_ERROR_OK:
586                 return "ERROR_OK";
587         case IPW_FW_ERROR_FAIL:
588                 return "ERROR_FAIL";
589         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590                 return "MEMORY_UNDERFLOW";
591         case IPW_FW_ERROR_MEMORY_OVERFLOW:
592                 return "MEMORY_OVERFLOW";
593         case IPW_FW_ERROR_BAD_PARAM:
594                 return "BAD_PARAM";
595         case IPW_FW_ERROR_BAD_CHECKSUM:
596                 return "BAD_CHECKSUM";
597         case IPW_FW_ERROR_NMI_INTERRUPT:
598                 return "NMI_INTERRUPT";
599         case IPW_FW_ERROR_BAD_DATABASE:
600                 return "BAD_DATABASE";
601         case IPW_FW_ERROR_ALLOC_FAIL:
602                 return "ALLOC_FAIL";
603         case IPW_FW_ERROR_DMA_UNDERRUN:
604                 return "DMA_UNDERRUN";
605         case IPW_FW_ERROR_DMA_STATUS:
606                 return "DMA_STATUS";
607         case IPW_FW_ERROR_DINO_ERROR:
608                 return "DINO_ERROR";
609         case IPW_FW_ERROR_EEPROM_ERROR:
610                 return "EEPROM_ERROR";
611         case IPW_FW_ERROR_SYSASSERT:
612                 return "SYSASSERT";
613         case IPW_FW_ERROR_FATAL_ERROR:
614                 return "FATAL_ERROR";
615         default:
616                 return "UNKNOWN_ERROR";
617         }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621                                struct ipw_fw_error *error)
622 {
623         u32 i;
624
625         if (!error) {
626                 IPW_ERROR("Error allocating and capturing error log.  "
627                           "Nothing to dump.\n");
628                 return;
629         }
630
631         IPW_ERROR("Start IPW Error Log Dump:\n");
632         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633                   error->status, error->config);
634
635         for (i = 0; i < error->elem_len; i++)
636                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
637                           ipw_error_desc(error->elem[i].desc),
638                           error->elem[i].time,
639                           error->elem[i].blink1,
640                           error->elem[i].blink2,
641                           error->elem[i].link1,
642                           error->elem[i].link2, error->elem[i].data);
643         for (i = 0; i < error->log_len; i++)
644                 IPW_ERROR("%i\t0x%08x\t%i\n",
645                           error->log[i].time,
646                           error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651         return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656         u32 addr, field_info, field_len, field_count, total_len;
657
658         IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660         if (!priv || !val || !len) {
661                 IPW_DEBUG_ORD("Invalid argument\n");
662                 return -EINVAL;
663         }
664
665         /* verify device ordinal tables have been initialized */
666         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668                 return -EINVAL;
669         }
670
671         switch (IPW_ORD_TABLE_ID_MASK & ord) {
672         case IPW_ORD_TABLE_0_MASK:
673                 /*
674                  * TABLE 0: Direct access to a table of 32 bit values
675                  *
676                  * This is a very simple table with the data directly
677                  * read from the table
678                  */
679
680                 /* remove the table id from the ordinal */
681                 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683                 /* boundary check */
684                 if (ord > priv->table0_len) {
685                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
686                                       "max (%i)\n", ord, priv->table0_len);
687                         return -EINVAL;
688                 }
689
690                 /* verify we have enough room to store the value */
691                 if (*len < sizeof(u32)) {
692                         IPW_DEBUG_ORD("ordinal buffer length too small, "
693                                       "need %zd\n", sizeof(u32));
694                         return -EINVAL;
695                 }
696
697                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698                               ord, priv->table0_addr + (ord << 2));
699
700                 *len = sizeof(u32);
701                 ord <<= 2;
702                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703                 break;
704
705         case IPW_ORD_TABLE_1_MASK:
706                 /*
707                  * TABLE 1: Indirect access to a table of 32 bit values
708                  *
709                  * This is a fairly large table of u32 values each
710                  * representing starting addr for the data (which is
711                  * also a u32)
712                  */
713
714                 /* remove the table id from the ordinal */
715                 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717                 /* boundary check */
718                 if (ord > priv->table1_len) {
719                         IPW_DEBUG_ORD("ordinal value too long\n");
720                         return -EINVAL;
721                 }
722
723                 /* verify we have enough room to store the value */
724                 if (*len < sizeof(u32)) {
725                         IPW_DEBUG_ORD("ordinal buffer length too small, "
726                                       "need %zd\n", sizeof(u32));
727                         return -EINVAL;
728                 }
729
730                 *((u32 *) val) =
731                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732                 *len = sizeof(u32);
733                 break;
734
735         case IPW_ORD_TABLE_2_MASK:
736                 /*
737                  * TABLE 2: Indirect access to a table of variable sized values
738                  *
739                  * This table consist of six values, each containing
740                  *     - dword containing the starting offset of the data
741                  *     - dword containing the lengh in the first 16bits
742                  *       and the count in the second 16bits
743                  */
744
745                 /* remove the table id from the ordinal */
746                 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748                 /* boundary check */
749                 if (ord > priv->table2_len) {
750                         IPW_DEBUG_ORD("ordinal value too long\n");
751                         return -EINVAL;
752                 }
753
754                 /* get the address of statistic */
755                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757                 /* get the second DW of statistics ;
758                  * two 16-bit words - first is length, second is count */
759                 field_info =
760                     ipw_read_reg32(priv,
761                                    priv->table2_addr + (ord << 3) +
762                                    sizeof(u32));
763
764                 /* get each entry length */
765                 field_len = *((u16 *) & field_info);
766
767                 /* get number of entries */
768                 field_count = *(((u16 *) & field_info) + 1);
769
770                 /* abort if not enought memory */
771                 total_len = field_len * field_count;
772                 if (total_len > *len) {
773                         *len = total_len;
774                         return -EINVAL;
775                 }
776
777                 *len = total_len;
778                 if (!total_len)
779                         return 0;
780
781                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782                               "field_info = 0x%08x\n",
783                               addr, total_len, field_info);
784                 ipw_read_indirect(priv, addr, val, total_len);
785                 break;
786
787         default:
788                 IPW_DEBUG_ORD("Invalid ordinal!\n");
789                 return -EINVAL;
790
791         }
792
793         return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799         priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802                       priv->table0_addr, priv->table0_len);
803
804         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808                       priv->table1_addr, priv->table1_len);
809
810         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812         priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815                       priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821         reg &= ~IPW_START_STANDBY;
822         if (reg & IPW_GATE_ODMA)
823                 reg &= ~IPW_GATE_ODMA;
824         if (reg & IPW_GATE_IDMA)
825                 reg &= ~IPW_GATE_IDMA;
826         if (reg & IPW_GATE_ADMA)
827                 reg &= ~IPW_GATE_ADMA;
828         return reg;
829 }
830
831 /*
832  * LED behavior:
833  * - On radio ON, turn on any LEDs that require to be on during start
834  * - On initialization, start unassociated blink
835  * - On association, disable unassociated blink
836  * - On disassociation, start unassociated blink
837  * - On radio OFF, turn off any LEDs started during radio on
838  *
839  */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846         unsigned long flags;
847         u32 led;
848
849         /* If configured to not use LEDs, or nic_type is 1,
850          * then we don't toggle a LINK led */
851         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852                 return;
853
854         spin_lock_irqsave(&priv->lock, flags);
855
856         if (!(priv->status & STATUS_RF_KILL_MASK) &&
857             !(priv->status & STATUS_LED_LINK_ON)) {
858                 IPW_DEBUG_LED("Link LED On\n");
859                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860                 led |= priv->led_association_on;
861
862                 led = ipw_register_toggle(led);
863
864                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867                 priv->status |= STATUS_LED_LINK_ON;
868
869                 /* If we aren't associated, schedule turning the LED off */
870                 if (!(priv->status & STATUS_ASSOCIATED))
871                         queue_delayed_work(priv->workqueue,
872                                            &priv->led_link_off,
873                                            LD_TIME_LINK_ON);
874         }
875
876         spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881         struct ipw_priv *priv =
882                 container_of(work, struct ipw_priv, led_link_on.work);
883         mutex_lock(&priv->mutex);
884         ipw_led_link_on(priv);
885         mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890         unsigned long flags;
891         u32 led;
892
893         /* If configured not to use LEDs, or nic type is 1,
894          * then we don't goggle the LINK led. */
895         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896                 return;
897
898         spin_lock_irqsave(&priv->lock, flags);
899
900         if (priv->status & STATUS_LED_LINK_ON) {
901                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902                 led &= priv->led_association_off;
903                 led = ipw_register_toggle(led);
904
905                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908                 IPW_DEBUG_LED("Link LED Off\n");
909
910                 priv->status &= ~STATUS_LED_LINK_ON;
911
912                 /* If we aren't associated and the radio is on, schedule
913                  * turning the LED on (blink while unassociated) */
914                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915                     !(priv->status & STATUS_ASSOCIATED))
916                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
917                                            LD_TIME_LINK_OFF);
918
919         }
920
921         spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926         struct ipw_priv *priv =
927                 container_of(work, struct ipw_priv, led_link_off.work);
928         mutex_lock(&priv->mutex);
929         ipw_led_link_off(priv);
930         mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935         u32 led;
936
937         if (priv->config & CFG_NO_LED)
938                 return;
939
940         if (priv->status & STATUS_RF_KILL_MASK)
941                 return;
942
943         if (!(priv->status & STATUS_LED_ACT_ON)) {
944                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945                 led |= priv->led_activity_on;
946
947                 led = ipw_register_toggle(led);
948
949                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952                 IPW_DEBUG_LED("Activity LED On\n");
953
954                 priv->status |= STATUS_LED_ACT_ON;
955
956                 cancel_delayed_work(&priv->led_act_off);
957                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958                                    LD_TIME_ACT_ON);
959         } else {
960                 /* Reschedule LED off for full time period */
961                 cancel_delayed_work(&priv->led_act_off);
962                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963                                    LD_TIME_ACT_ON);
964         }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&priv->lock, flags);
972         __ipw_led_activity_on(priv);
973         spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif  /*  0  */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979         unsigned long flags;
980         u32 led;
981
982         if (priv->config & CFG_NO_LED)
983                 return;
984
985         spin_lock_irqsave(&priv->lock, flags);
986
987         if (priv->status & STATUS_LED_ACT_ON) {
988                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989                 led &= priv->led_activity_off;
990
991                 led = ipw_register_toggle(led);
992
993                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996                 IPW_DEBUG_LED("Activity LED Off\n");
997
998                 priv->status &= ~STATUS_LED_ACT_ON;
999         }
1000
1001         spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006         struct ipw_priv *priv =
1007                 container_of(work, struct ipw_priv, led_act_off.work);
1008         mutex_lock(&priv->mutex);
1009         ipw_led_activity_off(priv);
1010         mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015         unsigned long flags;
1016         u32 led;
1017
1018         /* Only nic type 1 supports mode LEDs */
1019         if (priv->config & CFG_NO_LED ||
1020             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021                 return;
1022
1023         spin_lock_irqsave(&priv->lock, flags);
1024
1025         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026         if (priv->assoc_network->mode == IEEE_A) {
1027                 led |= priv->led_ofdm_on;
1028                 led &= priv->led_association_off;
1029                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030         } else if (priv->assoc_network->mode == IEEE_G) {
1031                 led |= priv->led_ofdm_on;
1032                 led |= priv->led_association_on;
1033                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034         } else {
1035                 led &= priv->led_ofdm_off;
1036                 led |= priv->led_association_on;
1037                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038         }
1039
1040         led = ipw_register_toggle(led);
1041
1042         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045         spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050         unsigned long flags;
1051         u32 led;
1052
1053         /* Only nic type 1 supports mode LEDs */
1054         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055                 return;
1056
1057         spin_lock_irqsave(&priv->lock, flags);
1058
1059         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060         led &= priv->led_ofdm_off;
1061         led &= priv->led_association_off;
1062
1063         led = ipw_register_toggle(led);
1064
1065         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068         spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073         ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078         ipw_led_activity_off(priv);
1079         ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084         /* Set the Link Led on for all nic types */
1085         ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090         ipw_led_activity_off(priv);
1091         ipw_led_link_off(priv);
1092
1093         if (priv->status & STATUS_RF_KILL_MASK)
1094                 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101         /* Set the default PINs for the link and activity leds */
1102         priv->led_activity_on = IPW_ACTIVITY_LED;
1103         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105         priv->led_association_on = IPW_ASSOCIATED_LED;
1106         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108         /* Set the default PINs for the OFDM leds */
1109         priv->led_ofdm_on = IPW_OFDM_LED;
1110         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112         switch (priv->nic_type) {
1113         case EEPROM_NIC_TYPE_1:
1114                 /* In this NIC type, the LEDs are reversed.... */
1115                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117                 priv->led_association_on = IPW_ACTIVITY_LED;
1118                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120                 if (!(priv->config & CFG_NO_LED))
1121                         ipw_led_band_on(priv);
1122
1123                 /* And we don't blink link LEDs for this nic, so
1124                  * just return here */
1125                 return;
1126
1127         case EEPROM_NIC_TYPE_3:
1128         case EEPROM_NIC_TYPE_2:
1129         case EEPROM_NIC_TYPE_4:
1130         case EEPROM_NIC_TYPE_0:
1131                 break;
1132
1133         default:
1134                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135                                priv->nic_type);
1136                 priv->nic_type = EEPROM_NIC_TYPE_0;
1137                 break;
1138         }
1139
1140         if (!(priv->config & CFG_NO_LED)) {
1141                 if (priv->status & STATUS_ASSOCIATED)
1142                         ipw_led_link_on(priv);
1143                 else
1144                         ipw_led_link_off(priv);
1145         }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150         ipw_led_activity_off(priv);
1151         ipw_led_link_off(priv);
1152         ipw_led_band_off(priv);
1153         cancel_delayed_work(&priv->led_link_on);
1154         cancel_delayed_work(&priv->led_link_off);
1155         cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159  * The following adds a new attribute to the sysfs representation
1160  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161  * used for controling the debug level.
1162  *
1163  * See the level definitions in ipw for details.
1164  */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171                                  size_t count)
1172 {
1173         char *p = (char *)buf;
1174         u32 val;
1175
1176         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177                 p++;
1178                 if (p[0] == 'x' || p[0] == 'X')
1179                         p++;
1180                 val = simple_strtoul(p, &p, 16);
1181         } else
1182                 val = simple_strtoul(p, &p, 10);
1183         if (p == buf)
1184                 printk(KERN_INFO DRV_NAME
1185                        ": %s is not in hex or decimal form.\n", buf);
1186         else
1187                 ipw_debug_level = val;
1188
1189         return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193                    show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197         /* length = 1st dword in log */
1198         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202                                   u32 log_len, struct ipw_event *log)
1203 {
1204         u32 base;
1205
1206         if (log_len) {
1207                 base = ipw_read32(priv, IPW_EVENT_LOG);
1208                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209                                   (u8 *) log, sizeof(*log) * log_len);
1210         }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215         struct ipw_fw_error *error;
1216         u32 log_len = ipw_get_event_log_len(priv);
1217         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218         u32 elem_len = ipw_read_reg32(priv, base);
1219
1220         error = kmalloc(sizeof(*error) +
1221                         sizeof(*error->elem) * elem_len +
1222                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1223         if (!error) {
1224                 IPW_ERROR("Memory allocation for firmware error log "
1225                           "failed.\n");
1226                 return NULL;
1227         }
1228         error->jiffies = jiffies;
1229         error->status = priv->status;
1230         error->config = priv->config;
1231         error->elem_len = elem_len;
1232         error->log_len = log_len;
1233         error->elem = (struct ipw_error_elem *)error->payload;
1234         error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236         ipw_capture_event_log(priv, log_len, error->log);
1237
1238         if (elem_len)
1239                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240                                   sizeof(*error->elem) * elem_len);
1241
1242         return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246                               struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 log_size;
1251         struct ipw_event *log;
1252         u32 len = 0, i;
1253
1254         /* not using min() because of its strict type checking */
1255         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256                         sizeof(*log) * log_len : PAGE_SIZE;
1257         log = kzalloc(log_size, GFP_KERNEL);
1258         if (!log) {
1259                 IPW_ERROR("Unable to allocate memory for log\n");
1260                 return 0;
1261         }
1262         log_len = log_size / sizeof(*log);
1263         ipw_capture_event_log(priv, log_len, log);
1264
1265         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266         for (i = 0; i < log_len; i++)
1267                 len += snprintf(buf + len, PAGE_SIZE - len,
1268                                 "\n%08X%08X%08X",
1269                                 log[i].time, log[i].event, log[i].data);
1270         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271         kfree(log);
1272         return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278                           struct device_attribute *attr, char *buf)
1279 {
1280         struct ipw_priv *priv = dev_get_drvdata(d);
1281         u32 len = 0, i;
1282         if (!priv->error)
1283                 return 0;
1284         len += snprintf(buf + len, PAGE_SIZE - len,
1285                         "%08lX%08X%08X%08X",
1286                         priv->error->jiffies,
1287                         priv->error->status,
1288                         priv->error->config, priv->error->elem_len);
1289         for (i = 0; i < priv->error->elem_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1292                                 priv->error->elem[i].time,
1293                                 priv->error->elem[i].desc,
1294                                 priv->error->elem[i].blink1,
1295                                 priv->error->elem[i].blink2,
1296                                 priv->error->elem[i].link1,
1297                                 priv->error->elem[i].link2,
1298                                 priv->error->elem[i].data);
1299
1300         len += snprintf(buf + len, PAGE_SIZE - len,
1301                         "\n%08X", priv->error->log_len);
1302         for (i = 0; i < priv->error->log_len; i++)
1303                 len += snprintf(buf + len, PAGE_SIZE - len,
1304                                 "\n%08X%08X%08X",
1305                                 priv->error->log[i].time,
1306                                 priv->error->log[i].event,
1307                                 priv->error->log[i].data);
1308         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309         return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313                            struct device_attribute *attr,
1314                            const char *buf, size_t count)
1315 {
1316         struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318         kfree(priv->error);
1319         priv->error = NULL;
1320         return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326                             struct device_attribute *attr, char *buf)
1327 {
1328         struct ipw_priv *priv = dev_get_drvdata(d);
1329         u32 len = 0, i;
1330         if (!priv->cmdlog)
1331                 return 0;
1332         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334              i = (i + 1) % priv->cmdlog_len) {
1335                 len +=
1336                     snprintf(buf + len, PAGE_SIZE - len,
1337                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339                              priv->cmdlog[i].cmd.len);
1340                 len +=
1341                     snprintk_buf(buf + len, PAGE_SIZE - len,
1342                                  (u8 *) priv->cmdlog[i].cmd.param,
1343                                  priv->cmdlog[i].cmd.len);
1344                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345         }
1346         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347         return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356                          struct device_attribute *attr,
1357                          const char *buf, size_t count)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         int rc = 0;
1361
1362         if (count < 1)
1363                 return -EINVAL;
1364
1365         switch (buf[0]) {
1366         case '0':
1367                 if (!rtap_iface)
1368                         return count;
1369
1370                 if (netif_running(priv->prom_net_dev)) {
1371                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372                         return count;
1373                 }
1374
1375                 ipw_prom_free(priv);
1376                 rtap_iface = 0;
1377                 break;
1378
1379         case '1':
1380                 if (rtap_iface)
1381                         return count;
1382
1383                 rc = ipw_prom_alloc(priv);
1384                 if (!rc)
1385                         rtap_iface = 1;
1386                 break;
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391
1392         if (rc) {
1393                 IPW_ERROR("Failed to register promiscuous network "
1394                           "device (error %d).\n", rc);
1395         }
1396
1397         return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401                         struct device_attribute *attr,
1402                         char *buf)
1403 {
1404         struct ipw_priv *priv = dev_get_drvdata(d);
1405         if (rtap_iface)
1406                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407         else {
1408                 buf[0] = '-';
1409                 buf[1] = '1';
1410                 buf[2] = '\0';
1411                 return 3;
1412         }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416                    store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419                          struct device_attribute *attr,
1420                          const char *buf, size_t count)
1421 {
1422         struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424         if (!priv->prom_priv) {
1425                 IPW_ERROR("Attempting to set filter without "
1426                           "rtap_iface enabled.\n");
1427                 return -EPERM;
1428         }
1429
1430         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433                        BIT_ARG16(priv->prom_priv->filter));
1434
1435         return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439                         struct device_attribute *attr,
1440                         char *buf)
1441 {
1442         struct ipw_priv *priv = dev_get_drvdata(d);
1443         return sprintf(buf, "0x%04X",
1444                        priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448                    store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452                              char *buf)
1453 {
1454         struct ipw_priv *priv = dev_get_drvdata(d);
1455         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459                               const char *buf, size_t count)
1460 {
1461         struct ipw_priv *priv = dev_get_drvdata(d);
1462         struct net_device *dev = priv->net_dev;
1463         char buffer[] = "00000000";
1464         unsigned long len =
1465             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466         unsigned long val;
1467         char *p = buffer;
1468
1469         IPW_DEBUG_INFO("enter\n");
1470
1471         strncpy(buffer, buf, len);
1472         buffer[len] = 0;
1473
1474         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475                 p++;
1476                 if (p[0] == 'x' || p[0] == 'X')
1477                         p++;
1478                 val = simple_strtoul(p, &p, 16);
1479         } else
1480                 val = simple_strtoul(p, &p, 10);
1481         if (p == buffer) {
1482                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483         } else {
1484                 priv->ieee->scan_age = val;
1485                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486         }
1487
1488         IPW_DEBUG_INFO("exit\n");
1489         return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495                         char *buf)
1496 {
1497         struct ipw_priv *priv = dev_get_drvdata(d);
1498         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506         IPW_DEBUG_INFO("enter\n");
1507
1508         if (count == 0)
1509                 return 0;
1510
1511         if (*buf == 0) {
1512                 IPW_DEBUG_LED("Disabling LED control.\n");
1513                 priv->config |= CFG_NO_LED;
1514                 ipw_led_shutdown(priv);
1515         } else {
1516                 IPW_DEBUG_LED("Enabling LED control.\n");
1517                 priv->config &= ~CFG_NO_LED;
1518                 ipw_led_init(priv);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528                            struct device_attribute *attr, char *buf)
1529 {
1530         struct ipw_priv *p = dev_get_drvdata(d);
1531         return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537                         char *buf)
1538 {
1539         struct ipw_priv *p = dev_get_drvdata(d);
1540         return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546                              struct device_attribute *attr, char *buf)
1547 {
1548         struct ipw_priv *priv = dev_get_drvdata(d);
1549         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555                                   struct device_attribute *attr, char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = dev_get_drvdata(d);
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569                         char *buf)
1570 {
1571         u32 len = sizeof(u32), tmp = 0;
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573
1574         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575                 return 0;
1576
1577         return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583  * Add a device attribute to view/control the delay between eeprom
1584  * operations.
1585  */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587                                  struct device_attribute *attr, char *buf)
1588 {
1589         struct ipw_priv *p = dev_get_drvdata(d);
1590         int n = p->eeprom_delay;
1591         return sprintf(buf, "%i\n", n);
1592 }
1593 static ssize_t store_eeprom_delay(struct device *d,
1594                                   struct device_attribute *attr,
1595                                   const char *buf, size_t count)
1596 {
1597         struct ipw_priv *p = dev_get_drvdata(d);
1598         sscanf(buf, "%i", &p->eeprom_delay);
1599         return strnlen(buf, count);
1600 }
1601
1602 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1603                    show_eeprom_delay, store_eeprom_delay);
1604
1605 static ssize_t show_command_event_reg(struct device *d,
1606                                       struct device_attribute *attr, char *buf)
1607 {
1608         u32 reg = 0;
1609         struct ipw_priv *p = dev_get_drvdata(d);
1610
1611         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1612         return sprintf(buf, "0x%08x\n", reg);
1613 }
1614 static ssize_t store_command_event_reg(struct device *d,
1615                                        struct device_attribute *attr,
1616                                        const char *buf, size_t count)
1617 {
1618         u32 reg;
1619         struct ipw_priv *p = dev_get_drvdata(d);
1620
1621         sscanf(buf, "%x", &reg);
1622         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1623         return strnlen(buf, count);
1624 }
1625
1626 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1627                    show_command_event_reg, store_command_event_reg);
1628
1629 static ssize_t show_mem_gpio_reg(struct device *d,
1630                                  struct device_attribute *attr, char *buf)
1631 {
1632         u32 reg = 0;
1633         struct ipw_priv *p = dev_get_drvdata(d);
1634
1635         reg = ipw_read_reg32(p, 0x301100);
1636         return sprintf(buf, "0x%08x\n", reg);
1637 }
1638 static ssize_t store_mem_gpio_reg(struct device *d,
1639                                   struct device_attribute *attr,
1640                                   const char *buf, size_t count)
1641 {
1642         u32 reg;
1643         struct ipw_priv *p = dev_get_drvdata(d);
1644
1645         sscanf(buf, "%x", &reg);
1646         ipw_write_reg32(p, 0x301100, reg);
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1651                    show_mem_gpio_reg, store_mem_gpio_reg);
1652
1653 static ssize_t show_indirect_dword(struct device *d,
1654                                    struct device_attribute *attr, char *buf)
1655 {
1656         u32 reg = 0;
1657         struct ipw_priv *priv = dev_get_drvdata(d);
1658
1659         if (priv->status & STATUS_INDIRECT_DWORD)
1660                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_indirect_dword(struct device *d,
1667                                     struct device_attribute *attr,
1668                                     const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672         sscanf(buf, "%x", &priv->indirect_dword);
1673         priv->status |= STATUS_INDIRECT_DWORD;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1678                    show_indirect_dword, store_indirect_dword);
1679
1680 static ssize_t show_indirect_byte(struct device *d,
1681                                   struct device_attribute *attr, char *buf)
1682 {
1683         u8 reg = 0;
1684         struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686         if (priv->status & STATUS_INDIRECT_BYTE)
1687                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%02x\n", reg);
1692 }
1693 static ssize_t store_indirect_byte(struct device *d,
1694                                    struct device_attribute *attr,
1695                                    const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         sscanf(buf, "%x", &priv->indirect_byte);
1700         priv->status |= STATUS_INDIRECT_BYTE;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1705                    show_indirect_byte, store_indirect_byte);
1706
1707 static ssize_t show_direct_dword(struct device *d,
1708                                  struct device_attribute *attr, char *buf)
1709 {
1710         u32 reg = 0;
1711         struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713         if (priv->status & STATUS_DIRECT_DWORD)
1714                 reg = ipw_read32(priv, priv->direct_dword);
1715         else
1716                 reg = 0;
1717
1718         return sprintf(buf, "0x%08x\n", reg);
1719 }
1720 static ssize_t store_direct_dword(struct device *d,
1721                                   struct device_attribute *attr,
1722                                   const char *buf, size_t count)
1723 {
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         sscanf(buf, "%x", &priv->direct_dword);
1727         priv->status |= STATUS_DIRECT_DWORD;
1728         return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1732                    show_direct_dword, store_direct_dword);
1733
1734 static int rf_kill_active(struct ipw_priv *priv)
1735 {
1736         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1737                 priv->status |= STATUS_RF_KILL_HW;
1738         else
1739                 priv->status &= ~STATUS_RF_KILL_HW;
1740
1741         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1742 }
1743
1744 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1745                             char *buf)
1746 {
1747         /* 0 - RF kill not enabled
1748            1 - SW based RF kill active (sysfs)
1749            2 - HW based RF kill active
1750            3 - Both HW and SW baed RF kill active */
1751         struct ipw_priv *priv = dev_get_drvdata(d);
1752         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1753             (rf_kill_active(priv) ? 0x2 : 0x0);
1754         return sprintf(buf, "%i\n", val);
1755 }
1756
1757 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 {
1759         if ((disable_radio ? 1 : 0) ==
1760             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1761                 return 0;
1762
1763         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1764                           disable_radio ? "OFF" : "ON");
1765
1766         if (disable_radio) {
1767                 priv->status |= STATUS_RF_KILL_SW;
1768
1769                 if (priv->workqueue) {
1770                         cancel_delayed_work(&priv->request_scan);
1771                         cancel_delayed_work(&priv->request_direct_scan);
1772                         cancel_delayed_work(&priv->request_passive_scan);
1773                         cancel_delayed_work(&priv->scan_event);
1774                 }
1775                 queue_work(priv->workqueue, &priv->down);
1776         } else {
1777                 priv->status &= ~STATUS_RF_KILL_SW;
1778                 if (rf_kill_active(priv)) {
1779                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1780                                           "disabled by HW switch\n");
1781                         /* Make sure the RF_KILL check timer is running */
1782                         cancel_delayed_work(&priv->rf_kill);
1783                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1784                                            round_jiffies_relative(2 * HZ));
1785                 } else
1786                         queue_work(priv->workqueue, &priv->up);
1787         }
1788
1789         return 1;
1790 }
1791
1792 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1793                              const char *buf, size_t count)
1794 {
1795         struct ipw_priv *priv = dev_get_drvdata(d);
1796
1797         ipw_radio_kill_sw(priv, buf[0] == '1');
1798
1799         return count;
1800 }
1801
1802 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803
1804 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1805                                char *buf)
1806 {
1807         struct ipw_priv *priv = dev_get_drvdata(d);
1808         int pos = 0, len = 0;
1809         if (priv->config & CFG_SPEED_SCAN) {
1810                 while (priv->speed_scan[pos] != 0)
1811                         len += sprintf(&buf[len], "%d ",
1812                                        priv->speed_scan[pos++]);
1813                 return len + sprintf(&buf[len], "\n");
1814         }
1815
1816         return sprintf(buf, "0\n");
1817 }
1818
1819 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1820                                 const char *buf, size_t count)
1821 {
1822         struct ipw_priv *priv = dev_get_drvdata(d);
1823         int channel, pos = 0;
1824         const char *p = buf;
1825
1826         /* list of space separated channels to scan, optionally ending with 0 */
1827         while ((channel = simple_strtol(p, NULL, 0))) {
1828                 if (pos == MAX_SPEED_SCAN - 1) {
1829                         priv->speed_scan[pos] = 0;
1830                         break;
1831                 }
1832
1833                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1834                         priv->speed_scan[pos++] = channel;
1835                 else
1836                         IPW_WARNING("Skipping invalid channel request: %d\n",
1837                                     channel);
1838                 p = strchr(p, ' ');
1839                 if (!p)
1840                         break;
1841                 while (*p == ' ' || *p == '\t')
1842                         p++;
1843         }
1844
1845         if (pos == 0)
1846                 priv->config &= ~CFG_SPEED_SCAN;
1847         else {
1848                 priv->speed_scan_pos = 0;
1849                 priv->config |= CFG_SPEED_SCAN;
1850         }
1851
1852         return count;
1853 }
1854
1855 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1856                    store_speed_scan);
1857
1858 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1859                               char *buf)
1860 {
1861         struct ipw_priv *priv = dev_get_drvdata(d);
1862         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1863 }
1864
1865 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1866                                const char *buf, size_t count)
1867 {
1868         struct ipw_priv *priv = dev_get_drvdata(d);
1869         if (buf[0] == '1')
1870                 priv->config |= CFG_NET_STATS;
1871         else
1872                 priv->config &= ~CFG_NET_STATS;
1873
1874         return count;
1875 }
1876
1877 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1878                    show_net_stats, store_net_stats);
1879
1880 static ssize_t show_channels(struct device *d,
1881                              struct device_attribute *attr,
1882                              char *buf)
1883 {
1884         struct ipw_priv *priv = dev_get_drvdata(d);
1885         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1886         int len = 0, i;
1887
1888         len = sprintf(&buf[len],
1889                       "Displaying %d channels in 2.4Ghz band "
1890                       "(802.11bg):\n", geo->bg_channels);
1891
1892         for (i = 0; i < geo->bg_channels; i++) {
1893                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894                                geo->bg[i].channel,
1895                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896                                " (radar spectrum)" : "",
1897                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1898                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899                                ? "" : ", IBSS",
1900                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901                                "passive only" : "active/passive",
1902                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1903                                "B" : "B/G");
1904         }
1905
1906         len += sprintf(&buf[len],
1907                        "Displaying %d channels in 5.2Ghz band "
1908                        "(802.11a):\n", geo->a_channels);
1909         for (i = 0; i < geo->a_channels; i++) {
1910                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911                                geo->a[i].channel,
1912                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1913                                " (radar spectrum)" : "",
1914                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1915                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916                                ? "" : ", IBSS",
1917                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1918                                "passive only" : "active/passive");
1919         }
1920
1921         return len;
1922 }
1923
1924 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925
1926 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 {
1928         union iwreq_data wrqu;
1929         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1930         if (priv->status & STATUS_ASSOCIATED)
1931                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932         else
1933                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1934         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1935 }
1936
1937 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 {
1939         u32 inta, inta_mask, handled = 0;
1940         unsigned long flags;
1941         int rc = 0;
1942
1943         spin_lock_irqsave(&priv->irq_lock, flags);
1944
1945         inta = ipw_read32(priv, IPW_INTA_RW);
1946         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1947         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948
1949         /* Add any cached INTA values that need to be handled */
1950         inta |= priv->isr_inta;
1951
1952         spin_unlock_irqrestore(&priv->irq_lock, flags);
1953
1954         spin_lock_irqsave(&priv->lock, flags);
1955
1956         /* handle all the justifications for the interrupt */
1957         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958                 ipw_rx(priv);
1959                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1960         }
1961
1962         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1963                 IPW_DEBUG_HC("Command completed.\n");
1964                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1965                 priv->status &= ~STATUS_HCMD_ACTIVE;
1966                 wake_up_interruptible(&priv->wait_command_queue);
1967                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1968         }
1969
1970         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1971                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1972                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1973                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1974         }
1975
1976         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1977                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1978                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1979                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1980         }
1981
1982         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1983                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1984                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1985                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1986         }
1987
1988         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1989                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1990                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1991                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1995                 IPW_WARNING("STATUS_CHANGE\n");
1996                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1997         }
1998
1999         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2000                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2001                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2005                 IPW_WARNING("HOST_CMD_DONE\n");
2006                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2010                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2011                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2012         }
2013
2014         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2015                 IPW_WARNING("PHY_OFF_DONE\n");
2016                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2017         }
2018
2019         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2020                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2021                 priv->status |= STATUS_RF_KILL_HW;
2022                 wake_up_interruptible(&priv->wait_command_queue);
2023                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2024                 cancel_delayed_work(&priv->request_scan);
2025                 cancel_delayed_work(&priv->request_direct_scan);
2026                 cancel_delayed_work(&priv->request_passive_scan);
2027                 cancel_delayed_work(&priv->scan_event);
2028                 schedule_work(&priv->link_down);
2029                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2030                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2034                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2035                 if (priv->error) {
2036                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2037                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2038                                 struct ipw_fw_error *error =
2039                                     ipw_alloc_error_log(priv);
2040                                 ipw_dump_error_log(priv, error);
2041                                 kfree(error);
2042                         }
2043                 } else {
2044                         priv->error = ipw_alloc_error_log(priv);
2045                         if (priv->error)
2046                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047                         else
2048                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049                                              "log.\n");
2050                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2051                                 ipw_dump_error_log(priv, priv->error);
2052                 }
2053
2054                 /* XXX: If hardware encryption is for WPA/WPA2,
2055                  * we have to notify the supplicant. */
2056                 if (priv->ieee->sec.encrypt) {
2057                         priv->status &= ~STATUS_ASSOCIATED;
2058                         notify_wx_assoc_event(priv);
2059                 }
2060
2061                 /* Keep the restart process from trying to send host
2062                  * commands by clearing the INIT status bit */
2063                 priv->status &= ~STATUS_INIT;
2064
2065                 /* Cancel currently queued command. */
2066                 priv->status &= ~STATUS_HCMD_ACTIVE;
2067                 wake_up_interruptible(&priv->wait_command_queue);
2068
2069                 queue_work(priv->workqueue, &priv->adapter_restart);
2070                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2071         }
2072
2073         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2074                 IPW_ERROR("Parity error\n");
2075                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2076         }
2077
2078         if (handled != inta) {
2079                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2080         }
2081
2082         spin_unlock_irqrestore(&priv->lock, flags);
2083
2084         /* enable all interrupts */
2085         ipw_enable_interrupts(priv);
2086 }
2087
2088 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2089 static char *get_cmd_string(u8 cmd)
2090 {
2091         switch (cmd) {
2092                 IPW_CMD(HOST_COMPLETE);
2093                 IPW_CMD(POWER_DOWN);
2094                 IPW_CMD(SYSTEM_CONFIG);
2095                 IPW_CMD(MULTICAST_ADDRESS);
2096                 IPW_CMD(SSID);
2097                 IPW_CMD(ADAPTER_ADDRESS);
2098                 IPW_CMD(PORT_TYPE);
2099                 IPW_CMD(RTS_THRESHOLD);
2100                 IPW_CMD(FRAG_THRESHOLD);
2101                 IPW_CMD(POWER_MODE);
2102                 IPW_CMD(WEP_KEY);
2103                 IPW_CMD(TGI_TX_KEY);
2104                 IPW_CMD(SCAN_REQUEST);
2105                 IPW_CMD(SCAN_REQUEST_EXT);
2106                 IPW_CMD(ASSOCIATE);
2107                 IPW_CMD(SUPPORTED_RATES);
2108                 IPW_CMD(SCAN_ABORT);
2109                 IPW_CMD(TX_FLUSH);
2110                 IPW_CMD(QOS_PARAMETERS);
2111                 IPW_CMD(DINO_CONFIG);
2112                 IPW_CMD(RSN_CAPABILITIES);
2113                 IPW_CMD(RX_KEY);
2114                 IPW_CMD(CARD_DISABLE);
2115                 IPW_CMD(SEED_NUMBER);
2116                 IPW_CMD(TX_POWER);
2117                 IPW_CMD(COUNTRY_INFO);
2118                 IPW_CMD(AIRONET_INFO);
2119                 IPW_CMD(AP_TX_POWER);
2120                 IPW_CMD(CCKM_INFO);
2121                 IPW_CMD(CCX_VER_INFO);
2122                 IPW_CMD(SET_CALIBRATION);
2123                 IPW_CMD(SENSITIVITY_CALIB);
2124                 IPW_CMD(RETRY_LIMIT);
2125                 IPW_CMD(IPW_PRE_POWER_DOWN);
2126                 IPW_CMD(VAP_BEACON_TEMPLATE);
2127                 IPW_CMD(VAP_DTIM_PERIOD);
2128                 IPW_CMD(EXT_SUPPORTED_RATES);
2129                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2130                 IPW_CMD(VAP_QUIET_INTERVALS);
2131                 IPW_CMD(VAP_CHANNEL_SWITCH);
2132                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2133                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2134                 IPW_CMD(VAP_CF_PARAM_SET);
2135                 IPW_CMD(VAP_SET_BEACONING_STATE);
2136                 IPW_CMD(MEASUREMENT);
2137                 IPW_CMD(POWER_CAPABILITY);
2138                 IPW_CMD(SUPPORTED_CHANNELS);
2139                 IPW_CMD(TPC_REPORT);
2140                 IPW_CMD(WME_INFO);
2141                 IPW_CMD(PRODUCTION_COMMAND);
2142         default:
2143                 return "UNKNOWN";
2144         }
2145 }
2146
2147 #define HOST_COMPLETE_TIMEOUT HZ
2148
2149 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2150 {
2151         int rc = 0;
2152         unsigned long flags;
2153
2154         spin_lock_irqsave(&priv->lock, flags);
2155         if (priv->status & STATUS_HCMD_ACTIVE) {
2156                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2157                           get_cmd_string(cmd->cmd));
2158                 spin_unlock_irqrestore(&priv->lock, flags);
2159                 return -EAGAIN;
2160         }
2161
2162         priv->status |= STATUS_HCMD_ACTIVE;
2163
2164         if (priv->cmdlog) {
2165                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2166                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2167                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2168                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169                        cmd->len);
2170                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2171         }
2172
2173         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2174                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2175                      priv->status);
2176
2177 #ifndef DEBUG_CMD_WEP_KEY
2178         if (cmd->cmd == IPW_CMD_WEP_KEY)
2179                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2180         else
2181 #endif
2182                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183
2184         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185         if (rc) {
2186                 priv->status &= ~STATUS_HCMD_ACTIVE;
2187                 IPW_ERROR("Failed to send %s: Reason %d\n",
2188                           get_cmd_string(cmd->cmd), rc);
2189                 spin_unlock_irqrestore(&priv->lock, flags);
2190                 goto exit;
2191         }
2192         spin_unlock_irqrestore(&priv->lock, flags);
2193
2194         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195                                               !(priv->
2196                                                 status & STATUS_HCMD_ACTIVE),
2197                                               HOST_COMPLETE_TIMEOUT);
2198         if (rc == 0) {
2199                 spin_lock_irqsave(&priv->lock, flags);
2200                 if (priv->status & STATUS_HCMD_ACTIVE) {
2201                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2202                                   get_cmd_string(cmd->cmd));
2203                         priv->status &= ~STATUS_HCMD_ACTIVE;
2204                         spin_unlock_irqrestore(&priv->lock, flags);
2205                         rc = -EIO;
2206                         goto exit;
2207                 }
2208                 spin_unlock_irqrestore(&priv->lock, flags);
2209         } else
2210                 rc = 0;
2211
2212         if (priv->status & STATUS_RF_KILL_HW) {
2213                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2214                           get_cmd_string(cmd->cmd));
2215                 rc = -EIO;
2216                 goto exit;
2217         }
2218
2219       exit:
2220         if (priv->cmdlog) {
2221                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2222                 priv->cmdlog_pos %= priv->cmdlog_len;
2223         }
2224         return rc;
2225 }
2226
2227 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 {
2229         struct host_cmd cmd = {
2230                 .cmd = command,
2231         };
2232
2233         return __ipw_send_cmd(priv, &cmd);
2234 }
2235
2236 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2237                             void *data)
2238 {
2239         struct host_cmd cmd = {
2240                 .cmd = command,
2241                 .len = len,
2242                 .param = data,
2243         };
2244
2245         return __ipw_send_cmd(priv, &cmd);
2246 }
2247
2248 static int ipw_send_host_complete(struct ipw_priv *priv)
2249 {
2250         if (!priv) {
2251                 IPW_ERROR("Invalid args\n");
2252                 return -1;
2253         }
2254
2255         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2256 }
2257
2258 static int ipw_send_system_config(struct ipw_priv *priv)
2259 {
2260         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2261                                 sizeof(priv->sys_config),
2262                                 &priv->sys_config);
2263 }
2264
2265 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 {
2267         if (!priv || !ssid) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2273                                 ssid);
2274 }
2275
2276 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 {
2278         if (!priv || !mac) {
2279                 IPW_ERROR("Invalid args\n");
2280                 return -1;
2281         }
2282
2283         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2284                        priv->net_dev->name, mac);
2285
2286         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2287 }
2288
2289 /*
2290  * NOTE: This must be executed from our workqueue as it results in udelay
2291  * being called which may corrupt the keyboard if executed on default
2292  * workqueue
2293  */
2294 static void ipw_adapter_restart(void *adapter)
2295 {
2296         struct ipw_priv *priv = adapter;
2297
2298         if (priv->status & STATUS_RF_KILL_MASK)
2299                 return;
2300
2301         ipw_down(priv);
2302
2303         if (priv->assoc_network &&
2304             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2305                 ipw_remove_current_network(priv);
2306
2307         if (ipw_up(priv)) {
2308                 IPW_ERROR("Failed to up device\n");
2309                 return;
2310         }
2311 }
2312
2313 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 {
2315         struct ipw_priv *priv =
2316                 container_of(work, struct ipw_priv, adapter_restart);
2317         mutex_lock(&priv->mutex);
2318         ipw_adapter_restart(priv);
2319         mutex_unlock(&priv->mutex);
2320 }
2321
2322 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323
2324 static void ipw_scan_check(void *data)
2325 {
2326         struct ipw_priv *priv = data;
2327         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2328                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2329                                "adapter after (%dms).\n",
2330                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2331                 queue_work(priv->workqueue, &priv->adapter_restart);
2332         }
2333 }
2334
2335 static void ipw_bg_scan_check(struct work_struct *work)
2336 {
2337         struct ipw_priv *priv =
2338                 container_of(work, struct ipw_priv, scan_check.work);
2339         mutex_lock(&priv->mutex);
2340         ipw_scan_check(priv);
2341         mutex_unlock(&priv->mutex);
2342 }
2343
2344 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2345                                      struct ipw_scan_request_ext *request)
2346 {
2347         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2348                                 sizeof(*request), request);
2349 }
2350
2351 static int ipw_send_scan_abort(struct ipw_priv *priv)
2352 {
2353         if (!priv) {
2354                 IPW_ERROR("Invalid args\n");
2355                 return -1;
2356         }
2357
2358         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2359 }
2360
2361 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 {
2363         struct ipw_sensitivity_calib calib = {
2364                 .beacon_rssi_raw = cpu_to_le16(sens),
2365         };
2366
2367         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2368                                 &calib);
2369 }
2370
2371 static int ipw_send_associate(struct ipw_priv *priv,
2372                               struct ipw_associate *associate)
2373 {
2374         if (!priv || !associate) {
2375                 IPW_ERROR("Invalid args\n");
2376                 return -1;
2377         }
2378
2379         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2380                                 associate);
2381 }
2382
2383 static int ipw_send_supported_rates(struct ipw_priv *priv,
2384                                     struct ipw_supported_rates *rates)
2385 {
2386         if (!priv || !rates) {
2387                 IPW_ERROR("Invalid args\n");
2388                 return -1;
2389         }
2390
2391         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2392                                 rates);
2393 }
2394
2395 static int ipw_set_random_seed(struct ipw_priv *priv)
2396 {
2397         u32 val;
2398
2399         if (!priv) {
2400                 IPW_ERROR("Invalid args\n");
2401                 return -1;
2402         }
2403
2404         get_random_bytes(&val, sizeof(val));
2405
2406         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2407 }
2408
2409 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 {
2411         __le32 v = cpu_to_le32(phy_off);
2412         if (!priv) {
2413                 IPW_ERROR("Invalid args\n");
2414                 return -1;
2415         }
2416
2417         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2418 }
2419
2420 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 {
2422         if (!priv || !power) {
2423                 IPW_ERROR("Invalid args\n");
2424                 return -1;
2425         }
2426
2427         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2428 }
2429
2430 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 {
2432         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2433         struct ipw_tx_power tx_power;
2434         s8 max_power;
2435         int i;
2436
2437         memset(&tx_power, 0, sizeof(tx_power));
2438
2439         /* configure device for 'G' band */
2440         tx_power.ieee_mode = IPW_G_MODE;
2441         tx_power.num_channels = geo->bg_channels;
2442         for (i = 0; i < geo->bg_channels; i++) {
2443                 max_power = geo->bg[i].max_power;
2444                 tx_power.channels_tx_power[i].channel_number =
2445                     geo->bg[i].channel;
2446                 tx_power.channels_tx_power[i].tx_power = max_power ?
2447                     min(max_power, priv->tx_power) : priv->tx_power;
2448         }
2449         if (ipw_send_tx_power(priv, &tx_power))
2450                 return -EIO;
2451
2452         /* configure device to also handle 'B' band */
2453         tx_power.ieee_mode = IPW_B_MODE;
2454         if (ipw_send_tx_power(priv, &tx_power))
2455                 return -EIO;
2456
2457         /* configure device to also handle 'A' band */
2458         if (priv->ieee->abg_true) {
2459                 tx_power.ieee_mode = IPW_A_MODE;
2460                 tx_power.num_channels = geo->a_channels;
2461                 for (i = 0; i < tx_power.num_channels; i++) {
2462                         max_power = geo->a[i].max_power;
2463                         tx_power.channels_tx_power[i].channel_number =
2464                             geo->a[i].channel;
2465                         tx_power.channels_tx_power[i].tx_power = max_power ?
2466                             min(max_power, priv->tx_power) : priv->tx_power;
2467                 }
2468                 if (ipw_send_tx_power(priv, &tx_power))
2469                         return -EIO;
2470         }
2471         return 0;
2472 }
2473
2474 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 {
2476         struct ipw_rts_threshold rts_threshold = {
2477                 .rts_threshold = cpu_to_le16(rts),
2478         };
2479
2480         if (!priv) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2486                                 sizeof(rts_threshold), &rts_threshold);
2487 }
2488
2489 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 {
2491         struct ipw_frag_threshold frag_threshold = {
2492                 .frag_threshold = cpu_to_le16(frag),
2493         };
2494
2495         if (!priv) {
2496                 IPW_ERROR("Invalid args\n");
2497                 return -1;
2498         }
2499
2500         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2501                                 sizeof(frag_threshold), &frag_threshold);
2502 }
2503
2504 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2505 {
2506         __le32 param;
2507
2508         if (!priv) {
2509                 IPW_ERROR("Invalid args\n");
2510                 return -1;
2511         }
2512
2513         /* If on battery, set to 3, if AC set to CAM, else user
2514          * level */
2515         switch (mode) {
2516         case IPW_POWER_BATTERY:
2517                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2518                 break;
2519         case IPW_POWER_AC:
2520                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2521                 break;
2522         default:
2523                 param = cpu_to_le32(mode);
2524                 break;
2525         }
2526
2527         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2528                                 &param);
2529 }
2530
2531 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 {
2533         struct ipw_retry_limit retry_limit = {
2534                 .short_retry_limit = slimit,
2535                 .long_retry_limit = llimit
2536         };
2537
2538         if (!priv) {
2539                 IPW_ERROR("Invalid args\n");
2540                 return -1;
2541         }
2542
2543         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2544                                 &retry_limit);
2545 }
2546
2547 /*
2548  * The IPW device contains a Microwire compatible EEPROM that stores
2549  * various data like the MAC address.  Usually the firmware has exclusive
2550  * access to the eeprom, but during device initialization (before the
2551  * device driver has sent the HostComplete command to the firmware) the
2552  * device driver has read access to the EEPROM by way of indirect addressing
2553  * through a couple of memory mapped registers.
2554  *
2555  * The following is a simplified implementation for pulling data out of the
2556  * the eeprom, along with some helper functions to find information in
2557  * the per device private data's copy of the eeprom.
2558  *
2559  * NOTE: To better understand how these functions work (i.e what is a chip
2560  *       select and why do have to keep driving the eeprom clock?), read
2561  *       just about any data sheet for a Microwire compatible EEPROM.
2562  */
2563
2564 /* write a 32 bit value into the indirect accessor register */
2565 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 {
2567         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568
2569         /* the eeprom requires some time to complete the operation */
2570         udelay(p->eeprom_delay);
2571
2572         return;
2573 }
2574
2575 /* perform a chip select operation */
2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578         eeprom_write_reg(priv, 0);
2579         eeprom_write_reg(priv, EEPROM_BIT_CS);
2580         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581         eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583
2584 /* perform a chip select operation */
2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587         eeprom_write_reg(priv, EEPROM_BIT_CS);
2588         eeprom_write_reg(priv, 0);
2589         eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591
2592 /* push a single bit down to the eeprom */
2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595         int d = (bit ? EEPROM_BIT_DI : 0);
2596         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599
2600 /* push an opcode followed by an address down to the eeprom */
2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603         int i;
2604
2605         eeprom_cs(priv);
2606         eeprom_write_bit(priv, 1);
2607         eeprom_write_bit(priv, op & 2);
2608         eeprom_write_bit(priv, op & 1);
2609         for (i = 7; i >= 0; i--) {
2610                 eeprom_write_bit(priv, addr & (1 << i));
2611         }
2612 }
2613
2614 /* pull 16 bits off the eeprom, one bit at a time */
2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617         int i;
2618         u16 r = 0;
2619
2620         /* Send READ Opcode */
2621         eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623         /* Send dummy bit */
2624         eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626         /* Read the byte off the eeprom one bit at a time */
2627         for (i = 0; i < 16; i++) {
2628                 u32 data = 0;
2629                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2631                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633         }
2634
2635         /* Send another dummy bit */
2636         eeprom_write_reg(priv, 0);
2637         eeprom_disable_cs(priv);
2638
2639         return r;
2640 }
2641
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data                                 */
2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 }
2648
2649 /*
2650  * Either the device driver (i.e. the host) or the firmware can
2651  * load eeprom data into the designated region in SRAM.  If neither
2652  * happens then the FW will shutdown with a fatal error.
2653  *
2654  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2655  * bit needs region of shared SRAM needs to be non-zero.
2656  */
2657 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2658 {
2659         int i;
2660         __le16 *eeprom = (__le16 *) priv->eeprom;
2661
2662         IPW_DEBUG_TRACE(">>\n");
2663
2664         /* read entire contents of eeprom into private buffer */
2665         for (i = 0; i < 128; i++)
2666                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2667
2668         /*
2669            If the data looks correct, then copy it to our private
2670            copy.  Otherwise let the firmware know to perform the operation
2671            on its own.
2672          */
2673         if (priv->eeprom[EEPROM_VERSION] != 0) {
2674                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675
2676                 /* write the eeprom data to sram */
2677                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2678                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679
2680                 /* Do not load eeprom data on fatal error or suspend */
2681                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682         } else {
2683                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684
2685                 /* Load eeprom data on fatal error or suspend */
2686                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2687         }
2688
2689         IPW_DEBUG_TRACE("<<\n");
2690 }
2691
2692 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2693 {
2694         count >>= 2;
2695         if (!count)
2696                 return;
2697         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698         while (count--)
2699                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2700 }
2701
2702 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 {
2704         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2705                         CB_NUMBER_OF_ELEMENTS_SMALL *
2706                         sizeof(struct command_block));
2707 }
2708
2709 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2710 {                               /* start dma engine but no transfers yet */
2711
2712         IPW_DEBUG_FW(">> : \n");
2713
2714         /* Start the dma */
2715         ipw_fw_dma_reset_command_blocks(priv);
2716
2717         /* Write CB base address */
2718         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719
2720         IPW_DEBUG_FW("<< : \n");
2721         return 0;
2722 }
2723
2724 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2725 {
2726         u32 control = 0;
2727
2728         IPW_DEBUG_FW(">> :\n");
2729
2730         /* set the Stop and Abort bit */
2731         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2732         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2733         priv->sram_desc.last_cb_index = 0;
2734
2735         IPW_DEBUG_FW("<< \n");
2736 }
2737
2738 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2739                                           struct command_block *cb)
2740 {
2741         u32 address =
2742             IPW_SHARED_SRAM_DMA_CONTROL +
2743             (sizeof(struct command_block) * index);
2744         IPW_DEBUG_FW(">> :\n");
2745
2746         ipw_write_indirect(priv, address, (u8 *) cb,
2747                            (int)sizeof(struct command_block));
2748
2749         IPW_DEBUG_FW("<< :\n");
2750         return 0;
2751
2752 }
2753
2754 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2755 {
2756         u32 control = 0;
2757         u32 index = 0;
2758
2759         IPW_DEBUG_FW(">> :\n");
2760
2761         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2762                 ipw_fw_dma_write_command_block(priv, index,
2763                                                &priv->sram_desc.cb_list[index]);
2764
2765         /* Enable the DMA in the CSR register */
2766         ipw_clear_bit(priv, IPW_RESET_REG,
2767                       IPW_RESET_REG_MASTER_DISABLED |
2768                       IPW_RESET_REG_STOP_MASTER);
2769
2770         /* Set the Start bit. */
2771         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2772         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773
2774         IPW_DEBUG_FW("<< :\n");
2775         return 0;
2776 }
2777
2778 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2779 {
2780         u32 address;
2781         u32 register_value = 0;
2782         u32 cb_fields_address = 0;
2783
2784         IPW_DEBUG_FW(">> :\n");
2785         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2786         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787
2788         /* Read the DMA Controlor register */
2789         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2790         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791
2792         /* Print the CB values */
2793         cb_fields_address = address;
2794         register_value = ipw_read_reg32(priv, cb_fields_address);
2795         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796
2797         cb_fields_address += sizeof(u32);
2798         register_value = ipw_read_reg32(priv, cb_fields_address);
2799         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800
2801         cb_fields_address += sizeof(u32);
2802         register_value = ipw_read_reg32(priv, cb_fields_address);
2803         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2804                           register_value);
2805
2806         cb_fields_address += sizeof(u32);
2807         register_value = ipw_read_reg32(priv, cb_fields_address);
2808         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809
2810         IPW_DEBUG_FW(">> :\n");
2811 }
2812
2813 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 {
2815         u32 current_cb_address = 0;
2816         u32 current_cb_index = 0;
2817
2818         IPW_DEBUG_FW("<< :\n");
2819         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820
2821         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2822             sizeof(struct command_block);
2823
2824         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2825                           current_cb_index, current_cb_address);
2826
2827         IPW_DEBUG_FW(">> :\n");
2828         return current_cb_index;
2829
2830 }
2831
2832 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2833                                         u32 src_address,
2834                                         u32 dest_address,
2835                                         u32 length,
2836                                         int interrupt_enabled, int is_last)
2837 {
2838
2839         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2840             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841             CB_DEST_SIZE_LONG;
2842         struct command_block *cb;
2843         u32 last_cb_element = 0;
2844
2845         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2846                           src_address, dest_address, length);
2847
2848         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2849                 return -1;
2850
2851         last_cb_element = priv->sram_desc.last_cb_index;
2852         cb = &priv->sram_desc.cb_list[last_cb_element];
2853         priv->sram_desc.last_cb_index++;
2854
2855         /* Calculate the new CB control word */
2856         if (interrupt_enabled)
2857                 control |= CB_INT_ENABLED;
2858
2859         if (is_last)
2860                 control |= CB_LAST_VALID;
2861
2862         control |= length;
2863
2864         /* Calculate the CB Element's checksum value */
2865         cb->status = control ^ src_address ^ dest_address;
2866
2867         /* Copy the Source and Destination addresses */
2868         cb->dest_addr = dest_address;
2869         cb->source_addr = src_address;
2870
2871         /* Copy the Control Word last */
2872         cb->control = control;
2873
2874         return 0;
2875 }
2876
2877 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2878                                  u32 src_phys, u32 dest_address, u32 length)
2879 {
2880         u32 bytes_left = length;
2881         u32 src_offset = 0;
2882         u32 dest_offset = 0;
2883         int status = 0;
2884         IPW_DEBUG_FW(">> \n");
2885         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2886                           src_phys, dest_address, length);
2887         while (bytes_left > CB_MAX_LENGTH) {
2888                 status = ipw_fw_dma_add_command_block(priv,
2889                                                       src_phys + src_offset,
2890                                                       dest_address +
2891                                                       dest_offset,
2892                                                       CB_MAX_LENGTH, 0, 0);
2893                 if (status) {
2894                         IPW_DEBUG_FW_INFO(": Failed\n");
2895                         return -1;
2896                 } else
2897                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2898
2899                 src_offset += CB_MAX_LENGTH;
2900                 dest_offset += CB_MAX_LENGTH;
2901                 bytes_left -= CB_MAX_LENGTH;
2902         }
2903
2904         /* add the buffer tail */
2905         if (bytes_left > 0) {
2906                 status =
2907                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2908                                                  dest_address + dest_offset,
2909                                                  bytes_left, 0, 0);
2910                 if (status) {
2911                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2912                         return -1;
2913                 } else
2914                         IPW_DEBUG_FW_INFO
2915                             (": Adding new cb - the buffer tail\n");
2916         }
2917
2918         IPW_DEBUG_FW("<< \n");
2919         return 0;
2920 }
2921
2922 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2923 {
2924         u32 current_index = 0, previous_index;
2925         u32 watchdog = 0;
2926
2927         IPW_DEBUG_FW(">> : \n");
2928
2929         current_index = ipw_fw_dma_command_block_index(priv);
2930         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2931                           (int)priv->sram_desc.last_cb_index);
2932
2933         while (current_index < priv->sram_desc.last_cb_index) {
2934                 udelay(50);
2935                 previous_index = current_index;
2936                 current_index = ipw_fw_dma_command_block_index(priv);
2937
2938                 if (previous_index < current_index) {
2939                         watchdog = 0;
2940                         continue;
2941                 }
2942                 if (++watchdog > 400) {
2943                         IPW_DEBUG_FW_INFO("Timeout\n");
2944                         ipw_fw_dma_dump_command_block(priv);
2945                         ipw_fw_dma_abort(priv);
2946                         return -1;
2947                 }
2948         }
2949
2950         ipw_fw_dma_abort(priv);
2951
2952         /*Disable the DMA in the CSR register */
2953         ipw_set_bit(priv, IPW_RESET_REG,
2954                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2955
2956         IPW_DEBUG_FW("<< dmaWaitSync \n");
2957         return 0;
2958 }
2959
2960 static void ipw_remove_current_network(struct ipw_priv *priv)
2961 {
2962         struct list_head *element, *safe;
2963         struct ieee80211_network *network = NULL;
2964         unsigned long flags;
2965
2966         spin_lock_irqsave(&priv->ieee->lock, flags);
2967         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2968                 network = list_entry(element, struct ieee80211_network, list);
2969                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2970                         list_del(element);
2971                         list_add_tail(&network->list,
2972                                       &priv->ieee->network_free_list);
2973                 }
2974         }
2975         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2976 }
2977
2978 /**
2979  * Check that card is still alive.
2980  * Reads debug register from domain0.
2981  * If card is present, pre-defined value should
2982  * be found there.
2983  *
2984  * @param priv
2985  * @return 1 if card is present, 0 otherwise
2986  */
2987 static inline int ipw_alive(struct ipw_priv *priv)
2988 {
2989         return ipw_read32(priv, 0x90) == 0xd55555d5;
2990 }
2991
2992 /* timeout in msec, attempted in 10-msec quanta */
2993 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2994                                int timeout)
2995 {
2996         int i = 0;
2997
2998         do {
2999                 if ((ipw_read32(priv, addr) & mask) == mask)
3000                         return i;
3001                 mdelay(10);
3002                 i += 10;
3003         } while (i < timeout);
3004
3005         return -ETIME;
3006 }
3007
3008 /* These functions load the firmware and micro code for the operation of
3009  * the ipw hardware.  It assumes the buffer has all the bits for the
3010  * image and the caller is handling the memory allocation and clean up.
3011  */
3012
3013 static int ipw_stop_master(struct ipw_priv *priv)
3014 {
3015         int rc;
3016
3017         IPW_DEBUG_TRACE(">> \n");
3018         /* stop master. typical delay - 0 */
3019         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3020
3021         /* timeout is in msec, polled in 10-msec quanta */
3022         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3023                           IPW_RESET_REG_MASTER_DISABLED, 100);
3024         if (rc < 0) {
3025                 IPW_ERROR("wait for stop master failed after 100ms\n");
3026                 return -1;
3027         }
3028
3029         IPW_DEBUG_INFO("stop master %dms\n", rc);
3030
3031         return rc;
3032 }
3033
3034 static void ipw_arc_release(struct ipw_priv *priv)
3035 {
3036         IPW_DEBUG_TRACE(">> \n");
3037         mdelay(5);
3038
3039         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3040
3041         /* no one knows timing, for safety add some delay */
3042         mdelay(5);
3043 }
3044
3045 struct fw_chunk {
3046         __le32 address;
3047         __le32 length;
3048 };
3049
3050 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3051 {
3052         int rc = 0, i, addr;
3053         u8 cr = 0;
3054         __le16 *image;
3055
3056         image = (__le16 *) data;
3057
3058         IPW_DEBUG_TRACE(">> \n");
3059
3060         rc = ipw_stop_master(priv);
3061
3062         if (rc < 0)
3063                 return rc;
3064
3065         for (addr = IPW_SHARED_LOWER_BOUND;
3066              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3067                 ipw_write32(priv, addr, 0);
3068         }
3069
3070         /* no ucode (yet) */
3071         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3072         /* destroy DMA queues */
3073         /* reset sequence */
3074
3075         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3076         ipw_arc_release(priv);
3077         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3078         mdelay(1);
3079
3080         /* reset PHY */
3081         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3082         mdelay(1);
3083
3084         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3085         mdelay(1);
3086
3087         /* enable ucode store */
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3089         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3090         mdelay(1);
3091
3092         /* write ucode */
3093         /**
3094          * @bug
3095          * Do NOT set indirect address register once and then
3096          * store data to indirect data register in the loop.
3097          * It seems very reasonable, but in this case DINO do not
3098          * accept ucode. It is essential to set address each time.
3099          */
3100         /* load new ipw uCode */
3101         for (i = 0; i < len / 2; i++)
3102                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3103                                 le16_to_cpu(image[i]));
3104
3105         /* enable DINO */
3106         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3107         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3108
3109         /* this is where the igx / win driver deveates from the VAP driver. */
3110
3111         /* wait for alive response */
3112         for (i = 0; i < 100; i++) {
3113                 /* poll for incoming data */
3114                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3115                 if (cr & DINO_RXFIFO_DATA)
3116                         break;
3117                 mdelay(1);
3118         }
3119
3120         if (cr & DINO_RXFIFO_DATA) {
3121                 /* alive_command_responce size is NOT multiple of 4 */
3122                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3123
3124                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3125                         response_buffer[i] =
3126                             cpu_to_le32(ipw_read_reg32(priv,
3127                                                        IPW_BASEBAND_RX_FIFO_READ));
3128                 memcpy(&priv->dino_alive, response_buffer,
3129                        sizeof(priv->dino_alive));
3130                 if (priv->dino_alive.alive_command == 1
3131                     && priv->dino_alive.ucode_valid == 1) {
3132                         rc = 0;
3133                         IPW_DEBUG_INFO
3134                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3135                              "of %02d/%02d/%02d %02d:%02d\n",
3136                              priv->dino_alive.software_revision,
3137                              priv->dino_alive.software_revision,
3138                              priv->dino_alive.device_identifier,
3139                              priv->dino_alive.device_identifier,
3140                              priv->dino_alive.time_stamp[0],
3141                              priv->dino_alive.time_stamp[1],
3142                              priv->dino_alive.time_stamp[2],
3143                              priv->dino_alive.time_stamp[3],
3144                              priv->dino_alive.time_stamp[4]);
3145                 } else {
3146                         IPW_DEBUG_INFO("Microcode is not alive\n");
3147                         rc = -EINVAL;
3148                 }
3149         } else {
3150                 IPW_DEBUG_INFO("No alive response from DINO\n");
3151                 rc = -ETIME;
3152         }
3153
3154         /* disable DINO, otherwise for some reason
3155            firmware have problem getting alive resp. */
3156         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3157
3158         return rc;
3159 }
3160
3161 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3162 {
3163         int rc = -1;
3164         int offset = 0;
3165         struct fw_chunk *chunk;
3166         dma_addr_t shared_phys;
3167         u8 *shared_virt;
3168
3169         IPW_DEBUG_TRACE("<< : \n");
3170         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3171
3172         if (!shared_virt)
3173                 return -ENOMEM;
3174
3175         memmove(shared_virt, data, len);
3176
3177         /* Start the Dma */
3178         rc = ipw_fw_dma_enable(priv);
3179
3180         /* the DMA is already ready this would be a bug. */
3181         BUG_ON(priv->sram_desc.last_cb_index > 0);
3182
3183         do {
3184                 chunk = (struct fw_chunk *)(data + offset);
3185                 offset += sizeof(struct fw_chunk);
3186                 /* build DMA packet and queue up for sending */
3187                 /* dma to chunk->address, the chunk->length bytes from data +
3188                  * offeset*/
3189                 /* Dma loading */
3190                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3191                                            le32_to_cpu(chunk->address),
3192                                            le32_to_cpu(chunk->length));
3193                 if (rc) {
3194                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3195                         goto out;
3196                 }
3197
3198                 offset += le32_to_cpu(chunk->length);
3199         } while (offset < len);
3200
3201         /* Run the DMA and wait for the answer */
3202         rc = ipw_fw_dma_kick(priv);
3203         if (rc) {
3204                 IPW_ERROR("dmaKick Failed\n");
3205                 goto out;
3206         }
3207
3208         rc = ipw_fw_dma_wait(priv);
3209         if (rc) {
3210                 IPW_ERROR("dmaWaitSync Failed\n");
3211                 goto out;
3212         }
3213       out:
3214         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3215         return rc;
3216 }
3217
3218 /* stop nic */
3219 static int ipw_stop_nic(struct ipw_priv *priv)
3220 {
3221         int rc = 0;
3222
3223         /* stop */
3224         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3225
3226         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3227                           IPW_RESET_REG_MASTER_DISABLED, 500);
3228         if (rc < 0) {
3229                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3230                 return rc;
3231         }
3232
3233         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3234
3235         return rc;
3236 }
3237
3238 static void ipw_start_nic(struct ipw_priv *priv)
3239 {
3240         IPW_DEBUG_TRACE(">>\n");
3241
3242         /* prvHwStartNic  release ARC */
3243         ipw_clear_bit(priv, IPW_RESET_REG,
3244                       IPW_RESET_REG_MASTER_DISABLED |
3245                       IPW_RESET_REG_STOP_MASTER |
3246                       CBD_RESET_REG_PRINCETON_RESET);
3247
3248         /* enable power management */
3249         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3250                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3251
3252         IPW_DEBUG_TRACE("<<\n");
3253 }
3254
3255 static int ipw_init_nic(struct ipw_priv *priv)
3256 {
3257         int rc;
3258
3259         IPW_DEBUG_TRACE(">>\n");
3260         /* reset */
3261         /*prvHwInitNic */
3262         /* set "initialization complete" bit to move adapter to D0 state */
3263         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3264
3265         /* low-level PLL activation */
3266         ipw_write32(priv, IPW_READ_INT_REGISTER,
3267                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3268
3269         /* wait for clock stabilization */
3270         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3271                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3272         if (rc < 0)
3273                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3274
3275         /* assert SW reset */
3276         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3277
3278         udelay(10);
3279
3280         /* set "initialization complete" bit to move adapter to D0 state */
3281         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3282
3283         IPW_DEBUG_TRACE(">>\n");
3284         return 0;
3285 }
3286
3287 /* Call this function from process context, it will sleep in request_firmware.
3288  * Probe is an ok place to call this from.
3289  */
3290 static int ipw_reset_nic(struct ipw_priv *priv)
3291 {
3292         int rc = 0;
3293         unsigned long flags;
3294
3295         IPW_DEBUG_TRACE(">>\n");
3296
3297         rc = ipw_init_nic(priv);
3298
3299         spin_lock_irqsave(&priv->lock, flags);
3300         /* Clear the 'host command active' bit... */
3301         priv->status &= ~STATUS_HCMD_ACTIVE;
3302         wake_up_interruptible(&priv->wait_command_queue);
3303         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3304         wake_up_interruptible(&priv->wait_state);
3305         spin_unlock_irqrestore(&priv->lock, flags);
3306
3307         IPW_DEBUG_TRACE("<<\n");
3308         return rc;
3309 }
3310
3311
3312 struct ipw_fw {
3313         __le32 ver;
3314         __le32 boot_size;
3315         __le32 ucode_size;
3316         __le32 fw_size;
3317         u8 data[0];
3318 };
3319
3320 static int ipw_get_fw(struct ipw_priv *priv,
3321                       const struct firmware **raw, const char *name)
3322 {
3323         struct ipw_fw *fw;
3324         int rc;
3325
3326         /* ask firmware_class module to get the boot firmware off disk */
3327         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3328         if (rc < 0) {
3329                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3330                 return rc;
3331         }
3332
3333         if ((*raw)->size < sizeof(*fw)) {
3334                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3335                 return -EINVAL;
3336         }
3337
3338         fw = (void *)(*raw)->data;
3339
3340         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3341             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3342                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3343                           name, (*raw)->size);
3344                 return -EINVAL;
3345         }
3346
3347         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3348                        name,
3349                        le32_to_cpu(fw->ver) >> 16,
3350                        le32_to_cpu(fw->ver) & 0xff,
3351                        (*raw)->size - sizeof(*fw));
3352         return 0;
3353 }
3354
3355 #define IPW_RX_BUF_SIZE (3000)
3356
3357 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3358                                       struct ipw_rx_queue *rxq)
3359 {
3360         unsigned long flags;
3361         int i;
3362
3363         spin_lock_irqsave(&rxq->lock, flags);
3364
3365         INIT_LIST_HEAD(&rxq->rx_free);
3366         INIT_LIST_HEAD(&rxq->rx_used);
3367
3368         /* Fill the rx_used queue with _all_ of the Rx buffers */
3369         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3370                 /* In the reset function, these buffers may have been allocated
3371                  * to an SKB, so we need to unmap and free potential storage */
3372                 if (rxq->pool[i].skb != NULL) {
3373                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3374                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3375                         dev_kfree_skb(rxq->pool[i].skb);
3376                         rxq->pool[i].skb = NULL;
3377                 }
3378                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3379         }
3380
3381         /* Set us so that we have processed and used all buffers, but have
3382          * not restocked the Rx queue with fresh buffers */
3383         rxq->read = rxq->write = 0;
3384         rxq->free_count = 0;
3385         spin_unlock_irqrestore(&rxq->lock, flags);
3386 }
3387
3388 #ifdef CONFIG_PM
3389 static int fw_loaded = 0;
3390 static const struct firmware *raw = NULL;
3391
3392 static void free_firmware(void)
3393 {
3394         if (fw_loaded) {
3395                 release_firmware(raw);
3396                 raw = NULL;
3397                 fw_loaded = 0;
3398         }
3399 }
3400 #else
3401 #define free_firmware() do {} while (0)
3402 #endif
3403
3404 static int ipw_load(struct ipw_priv *priv)
3405 {
3406 #ifndef CONFIG_PM
3407         const struct firmware *raw = NULL;
3408 #endif
3409         struct ipw_fw *fw;
3410         u8 *boot_img, *ucode_img, *fw_img;
3411         u8 *name = NULL;
3412         int rc = 0, retries = 3;
3413
3414         switch (priv->ieee->iw_mode) {
3415         case IW_MODE_ADHOC:
3416                 name = "ipw2200-ibss.fw";
3417                 break;
3418 #ifdef CONFIG_IPW2200_MONITOR
3419         case IW_MODE_MONITOR:
3420                 name = "ipw2200-sniffer.fw";
3421                 break;
3422 #endif
3423         case IW_MODE_INFRA:
3424                 name = "ipw2200-bss.fw";
3425                 break;
3426         }
3427
3428         if (!name) {
3429                 rc = -EINVAL;
3430                 goto error;
3431         }
3432
3433 #ifdef CONFIG_PM
3434         if (!fw_loaded) {
3435 #endif
3436                 rc = ipw_get_fw(priv, &raw, name);
3437                 if (rc < 0)
3438                         goto error;
3439 #ifdef CONFIG_PM
3440         }
3441 #endif
3442
3443         fw = (void *)raw->data;
3444         boot_img = &fw->data[0];
3445         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3446         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3447                            le32_to_cpu(fw->ucode_size)];
3448
3449         if (rc < 0)
3450                 goto error;
3451
3452         if (!priv->rxq)
3453                 priv->rxq = ipw_rx_queue_alloc(priv);
3454         else
3455                 ipw_rx_queue_reset(priv, priv->rxq);
3456         if (!priv->rxq) {
3457                 IPW_ERROR("Unable to initialize Rx queue\n");
3458                 goto error;
3459         }
3460
3461       retry:
3462         /* Ensure interrupts are disabled */
3463         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3464         priv->status &= ~STATUS_INT_ENABLED;
3465
3466         /* ack pending interrupts */
3467         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3468
3469         ipw_stop_nic(priv);
3470
3471         rc = ipw_reset_nic(priv);
3472         if (rc < 0) {
3473                 IPW_ERROR("Unable to reset NIC\n");
3474                 goto error;
3475         }
3476
3477         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3478                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3479
3480         /* DMA the initial boot firmware into the device */
3481         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3482         if (rc < 0) {
3483                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3484                 goto error;
3485         }
3486
3487         /* kick start the device */
3488         ipw_start_nic(priv);
3489
3490         /* wait for the device to finish its initial startup sequence */
3491         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3492                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3493         if (rc < 0) {
3494                 IPW_ERROR("device failed to boot initial fw image\n");
3495                 goto error;
3496         }
3497         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3498
3499         /* ack fw init done interrupt */
3500         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3501
3502         /* DMA the ucode into the device */
3503         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3504         if (rc < 0) {
3505                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3506                 goto error;
3507         }
3508
3509         /* stop nic */
3510         ipw_stop_nic(priv);
3511
3512         /* DMA bss firmware into the device */
3513         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3514         if (rc < 0) {
3515                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3516                 goto error;
3517         }
3518 #ifdef CONFIG_PM
3519         fw_loaded = 1;
3520 #endif
3521
3522         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3523
3524         rc = ipw_queue_reset(priv);
3525         if (rc < 0) {
3526                 IPW_ERROR("Unable to initialize queues\n");
3527                 goto error;
3528         }
3529
3530         /* Ensure interrupts are disabled */
3531         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3532         /* ack pending interrupts */
3533         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3534
3535         /* kick start the device */
3536         ipw_start_nic(priv);
3537
3538         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3539                 if (retries > 0) {
3540                         IPW_WARNING("Parity error.  Retrying init.\n");
3541                         retries--;
3542                         goto retry;
3543                 }
3544
3545                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3546                 rc = -EIO;
3547                 goto error;
3548         }
3549
3550         /* wait for the device */
3551         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3552                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3553         if (rc < 0) {
3554                 IPW_ERROR("device failed to start within 500ms\n");
3555                 goto error;
3556         }
3557         IPW_DEBUG_INFO("device response after %dms\n", rc);
3558
3559         /* ack fw init done interrupt */
3560         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3561
3562         /* read eeprom data and initialize the eeprom region of sram */
3563         priv->eeprom_delay = 1;
3564         ipw_eeprom_init_sram(priv);
3565
3566         /* enable interrupts */
3567         ipw_enable_interrupts(priv);
3568
3569         /* Ensure our queue has valid packets */
3570         ipw_rx_queue_replenish(priv);
3571
3572         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3573
3574         /* ack pending interrupts */
3575         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3576
3577 #ifndef CONFIG_PM
3578         release_firmware(raw);
3579 #endif
3580         return 0;
3581
3582       error:
3583         if (priv->rxq) {
3584                 ipw_rx_queue_free(priv, priv->rxq);
3585                 priv->rxq = NULL;
3586         }
3587         ipw_tx_queue_free(priv);
3588         if (raw)
3589                 release_firmware(raw);
3590 #ifdef CONFIG_PM
3591         fw_loaded = 0;
3592         raw = NULL;
3593 #endif
3594
3595         return rc;
3596 }
3597
3598 /**
3599  * DMA services
3600  *
3601  * Theory of operation
3602  *
3603  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3604  * 2 empty entries always kept in the buffer to protect from overflow.
3605  *
3606  * For Tx queue, there are low mark and high mark limits. If, after queuing
3607  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3608  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3609  * Tx queue resumed.
3610  *
3611  * The IPW operates with six queues, one receive queue in the device's
3612  * sram, one transmit queue for sending commands to the device firmware,
3613  * and four transmit queues for data.
3614  *
3615  * The four transmit queues allow for performing quality of service (qos)
3616  * transmissions as per the 802.11 protocol.  Currently Linux does not
3617  * provide a mechanism to the user for utilizing prioritized queues, so
3618  * we only utilize the first data transmit queue (queue1).
3619  */
3620
3621 /**
3622  * Driver allocates buffers of this size for Rx
3623  */
3624
3625 /**
3626  * ipw_rx_queue_space - Return number of free slots available in queue.
3627  */
3628 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3629 {
3630         int s = q->read - q->write;
3631         if (s <= 0)
3632                 s += RX_QUEUE_SIZE;
3633         /* keep some buffer to not confuse full and empty queue */
3634         s -= 2;
3635         if (s < 0)
3636                 s = 0;
3637         return s;
3638 }
3639
3640 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3641 {
3642         int s = q->last_used - q->first_empty;
3643         if (s <= 0)
3644                 s += q->n_bd;
3645         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3646         if (s < 0)
3647                 s = 0;
3648         return s;
3649 }
3650
3651 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3652 {
3653         return (++index == n_bd) ? 0 : index;
3654 }
3655
3656 /**
3657  * Initialize common DMA queue structure
3658  *
3659  * @param q                queue to init
3660  * @param count            Number of BD's to allocate. Should be power of 2
3661  * @param read_register    Address for 'read' register
3662  *                         (not offset within BAR, full address)
3663  * @param write_register   Address for 'write' register
3664  *                         (not offset within BAR, full address)
3665  * @param base_register    Address for 'base' register
3666  *                         (not offset within BAR, full address)
3667  * @param size             Address for 'size' register
3668  *                         (not offset within BAR, full address)
3669  */
3670 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3671                            int count, u32 read, u32 write, u32 base, u32 size)
3672 {
3673         q->n_bd = count;
3674
3675         q->low_mark = q->n_bd / 4;
3676         if (q->low_mark < 4)
3677                 q->low_mark = 4;
3678
3679         q->high_mark = q->n_bd / 8;
3680         if (q->high_mark < 2)
3681                 q->high_mark = 2;
3682
3683         q->first_empty = q->last_used = 0;
3684         q->reg_r = read;
3685         q->reg_w = write;
3686
3687         ipw_write32(priv, base, q->dma_addr);
3688         ipw_write32(priv, size, count);
3689         ipw_write32(priv, read, 0);
3690         ipw_write32(priv, write, 0);
3691
3692         _ipw_read32(priv, 0x90);
3693 }
3694
3695 static int ipw_queue_tx_init(struct ipw_priv *priv,
3696                              struct clx2_tx_queue *q,
3697                              int count, u32 read, u32 write, u32 base, u32 size)
3698 {
3699         struct pci_dev *dev = priv->pci_dev;
3700
3701         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3702         if (!q->txb) {
3703                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3704                 return -ENOMEM;
3705         }
3706
3707         q->bd =
3708             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3709         if (!q->bd) {
3710                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3711                           sizeof(q->bd[0]) * count);
3712                 kfree(q->txb);
3713                 q->txb = NULL;
3714                 return -ENOMEM;
3715         }
3716
3717         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3718         return 0;
3719 }
3720
3721 /**
3722  * Free one TFD, those at index [txq->q.last_used].
3723  * Do NOT advance any indexes
3724  *
3725  * @param dev
3726  * @param txq
3727  */
3728 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3729                                   struct clx2_tx_queue *txq)
3730 {
3731         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3732         struct pci_dev *dev = priv->pci_dev;
3733         int i;
3734
3735         /* classify bd */
3736         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3737                 /* nothing to cleanup after for host commands */
3738                 return;
3739
3740         /* sanity check */
3741         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3742                 IPW_ERROR("Too many chunks: %i\n",
3743                           le32_to_cpu(bd->u.data.num_chunks));
3744                 /** @todo issue fatal error, it is quite serious situation */
3745                 return;
3746         }
3747
3748         /* unmap chunks if any */
3749         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3750                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3751                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3752                                  PCI_DMA_TODEVICE);
3753                 if (txq->txb[txq->q.last_used]) {
3754                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3755                         txq->txb[txq->q.last_used] = NULL;
3756                 }
3757         }
3758 }
3759
3760 /**
3761  * Deallocate DMA queue.
3762  *
3763  * Empty queue by removing and destroying all BD's.
3764  * Free all buffers.
3765  *
3766  * @param dev
3767  * @param q
3768  */
3769 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3770 {
3771         struct clx2_queue *q = &txq->q;
3772         struct pci_dev *dev = priv->pci_dev;
3773
3774         if (q->n_bd == 0)
3775                 return;
3776
3777         /* first, empty all BD's */
3778         for (; q->first_empty != q->last_used;
3779              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3780                 ipw_queue_tx_free_tfd(priv, txq);
3781         }
3782
3783         /* free buffers belonging to queue itself */
3784         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3785                             q->dma_addr);
3786         kfree(txq->txb);
3787
3788         /* 0 fill whole structure */
3789         memset(txq, 0, sizeof(*txq));
3790 }
3791
3792 /**
3793  * Destroy all DMA queues and structures
3794  *
3795  * @param priv
3796  */
3797 static void ipw_tx_queue_free(struct ipw_priv *priv)
3798 {
3799         /* Tx CMD queue */
3800         ipw_queue_tx_free(priv, &priv->txq_cmd);
3801
3802         /* Tx queues */
3803         ipw_queue_tx_free(priv, &priv->txq[0]);
3804         ipw_queue_tx_free(priv, &priv->txq[1]);
3805         ipw_queue_tx_free(priv, &priv->txq[2]);
3806         ipw_queue_tx_free(priv, &priv->txq[3]);
3807 }
3808
3809 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3810 {
3811         /* First 3 bytes are manufacturer */
3812         bssid[0] = priv->mac_addr[0];
3813         bssid[1] = priv->mac_addr[1];
3814         bssid[2] = priv->mac_addr[2];
3815
3816         /* Last bytes are random */
3817         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3818
3819         bssid[0] &= 0xfe;       /* clear multicast bit */
3820         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3821 }
3822
3823 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3824 {
3825         struct ipw_station_entry entry;
3826         int i;
3827
3828         for (i = 0; i < priv->num_stations; i++) {
3829                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3830                         /* Another node is active in network */
3831                         priv->missed_adhoc_beacons = 0;
3832                         if (!(priv->config & CFG_STATIC_CHANNEL))
3833                                 /* when other nodes drop out, we drop out */
3834                                 priv->config &= ~CFG_ADHOC_PERSIST;
3835
3836                         return i;
3837                 }
3838         }
3839
3840         if (i == MAX_STATIONS)
3841                 return IPW_INVALID_STATION;
3842
3843         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3844
3845         entry.reserved = 0;
3846         entry.support_mode = 0;
3847         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3848         memcpy(priv->stations[i], bssid, ETH_ALEN);
3849         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3850                          &entry, sizeof(entry));
3851         priv->num_stations++;
3852
3853         return i;
3854 }
3855
3856 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3857 {
3858         int i;
3859
3860         for (i = 0; i < priv->num_stations; i++)
3861                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3862                         return i;
3863
3864         return IPW_INVALID_STATION;
3865 }
3866
3867 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3868 {
3869         int err;
3870
3871         if (priv->status & STATUS_ASSOCIATING) {
3872                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3873                 queue_work(priv->workqueue, &priv->disassociate);
3874                 return;
3875         }
3876
3877         if (!(priv->status & STATUS_ASSOCIATED)) {
3878                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3879                 return;
3880         }
3881
3882         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3883                         "on channel %d.\n",
3884                         priv->assoc_request.bssid,
3885                         priv->assoc_request.channel);
3886
3887         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3888         priv->status |= STATUS_DISASSOCIATING;
3889
3890         if (quiet)
3891                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3892         else
3893                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3894
3895         err = ipw_send_associate(priv, &priv->assoc_request);
3896         if (err) {
3897                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3898                              "failed.\n");
3899                 return;
3900         }
3901
3902 }
3903
3904 static int ipw_disassociate(void *data)
3905 {
3906         struct ipw_priv *priv = data;
3907         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3908                 return 0;
3909         ipw_send_disassociate(data, 0);
3910         netif_carrier_off(priv->net_dev);
3911         return 1;
3912 }
3913
3914 static void ipw_bg_disassociate(struct work_struct *work)
3915 {
3916         struct ipw_priv *priv =
3917                 container_of(work, struct ipw_priv, disassociate);
3918         mutex_lock(&priv->mutex);
3919         ipw_disassociate(priv);
3920         mutex_unlock(&priv->mutex);
3921 }
3922
3923 static void ipw_system_config(struct work_struct *work)
3924 {
3925         struct ipw_priv *priv =
3926                 container_of(work, struct ipw_priv, system_config);
3927
3928 #ifdef CONFIG_IPW2200_PROMISCUOUS
3929         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3930                 priv->sys_config.accept_all_data_frames = 1;
3931                 priv->sys_config.accept_non_directed_frames = 1;
3932                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3933                 priv->sys_config.accept_all_mgmt_frames = 1;
3934         }
3935 #endif
3936
3937         ipw_send_system_config(priv);
3938 }
3939
3940 struct ipw_status_code {
3941         u16 status;
3942         const char *reason;
3943 };
3944
3945 static const struct ipw_status_code ipw_status_codes[] = {
3946         {0x00, "Successful"},
3947         {0x01, "Unspecified failure"},
3948         {0x0A, "Cannot support all requested capabilities in the "
3949          "Capability information field"},
3950         {0x0B, "Reassociation denied due to inability to confirm that "
3951          "association exists"},
3952         {0x0C, "Association denied due to reason outside the scope of this "
3953          "standard"},
3954         {0x0D,
3955          "Responding station does not support the specified authentication "
3956          "algorithm"},
3957         {0x0E,
3958          "Received an Authentication frame with authentication sequence "
3959          "transaction sequence number out of expected sequence"},
3960         {0x0F, "Authentication rejected because of challenge failure"},
3961         {0x10, "Authentication rejected due to timeout waiting for next "
3962          "frame in sequence"},
3963         {0x11, "Association denied because AP is unable to handle additional "
3964          "associated stations"},
3965         {0x12,
3966          "Association denied due to requesting station not supporting all "
3967          "of the datarates in the BSSBasicServiceSet Parameter"},
3968         {0x13,
3969          "Association denied due to requesting station not supporting "
3970          "short preamble operation"},
3971         {0x14,
3972          "Association denied due to requesting station not supporting "
3973          "PBCC encoding"},
3974         {0x15,
3975          "Association denied due to requesting station not supporting "
3976          "channel agility"},
3977         {0x19,
3978          "Association denied due to requesting station not supporting "
3979          "short slot operation"},
3980         {0x1A,
3981          "Association denied due to requesting station not supporting "
3982          "DSSS-OFDM operation"},
3983         {0x28, "Invalid Information Element"},
3984         {0x29, "Group Cipher is not valid"},
3985         {0x2A, "Pairwise Cipher is not valid"},
3986         {0x2B, "AKMP is not valid"},
3987         {0x2C, "Unsupported RSN IE version"},
3988         {0x2D, "Invalid RSN IE Capabilities"},
3989         {0x2E, "Cipher suite is rejected per security policy"},
3990 };
3991
3992 static const char *ipw_get_status_code(u16 status)
3993 {
3994         int i;
3995         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3996                 if (ipw_status_codes[i].status == (status & 0xff))
3997                         return ipw_status_codes[i].reason;
3998         return "Unknown status value.";
3999 }
4000
4001 static void inline average_init(struct average *avg)
4002 {
4003         memset(avg, 0, sizeof(*avg));
4004 }
4005
4006 #define DEPTH_RSSI 8
4007 #define DEPTH_NOISE 16
4008 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4009 {
4010         return ((depth-1)*prev_avg +  val)/depth;
4011 }
4012
4013 static void average_add(struct average *avg, s16 val)
4014 {
4015         avg->sum -= avg->entries[avg->pos];
4016         avg->sum += val;
4017         avg->entries[avg->pos++] = val;
4018         if (unlikely(avg->pos == AVG_ENTRIES)) {
4019                 avg->init = 1;
4020                 avg->pos = 0;
4021         }
4022 }
4023
4024 static s16 average_value(struct average *avg)
4025 {
4026         if (!unlikely(avg->init)) {
4027                 if (avg->pos)
4028                         return avg->sum / avg->pos;
4029                 return 0;
4030         }
4031
4032         return avg->sum / AVG_ENTRIES;
4033 }
4034
4035 static void ipw_reset_stats(struct ipw_priv *priv)
4036 {
4037         u32 len = sizeof(u32);
4038
4039         priv->quality = 0;
4040
4041         average_init(&priv->average_missed_beacons);
4042         priv->exp_avg_rssi = -60;
4043         priv->exp_avg_noise = -85 + 0x100;
4044
4045         priv->last_rate = 0;
4046         priv->last_missed_beacons = 0;
4047         priv->last_rx_packets = 0;
4048         priv->last_tx_packets = 0;
4049         priv->last_tx_failures = 0;
4050
4051         /* Firmware managed, reset only when NIC is restarted, so we have to
4052          * normalize on the current value */
4053         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4054                         &priv->last_rx_err, &len);
4055         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4056                         &priv->last_tx_failures, &len);
4057
4058         /* Driver managed, reset with each association */
4059         priv->missed_adhoc_beacons = 0;
4060         priv->missed_beacons = 0;
4061         priv->tx_packets = 0;
4062         priv->rx_packets = 0;
4063
4064 }
4065
4066 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4067 {
4068         u32 i = 0x80000000;
4069         u32 mask = priv->rates_mask;
4070         /* If currently associated in B mode, restrict the maximum
4071          * rate match to B rates */
4072         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4073                 mask &= IEEE80211_CCK_RATES_MASK;
4074
4075         /* TODO: Verify that the rate is supported by the current rates
4076          * list. */
4077
4078         while (i && !(mask & i))
4079                 i >>= 1;
4080         switch (i) {
4081         case IEEE80211_CCK_RATE_1MB_MASK:
4082                 return 1000000;
4083         case IEEE80211_CCK_RATE_2MB_MASK:
4084                 return 2000000;
4085         case IEEE80211_CCK_RATE_5MB_MASK:
4086                 return 5500000;
4087         case IEEE80211_OFDM_RATE_6MB_MASK:
4088                 return 6000000;
4089         case IEEE80211_OFDM_RATE_9MB_MASK:
4090                 return 9000000;
4091         case IEEE80211_CCK_RATE_11MB_MASK:
4092                 return 11000000;
4093         case IEEE80211_OFDM_RATE_12MB_MASK:
4094                 return 12000000;
4095         case IEEE80211_OFDM_RATE_18MB_MASK:
4096                 return 18000000;
4097         case IEEE80211_OFDM_RATE_24MB_MASK:
4098                 return 24000000;
4099         case IEEE80211_OFDM_RATE_36MB_MASK:
4100                 return 36000000;
4101         case IEEE80211_OFDM_RATE_48MB_MASK:
4102                 return 48000000;
4103         case IEEE80211_OFDM_RATE_54MB_MASK:
4104                 return 54000000;
4105         }
4106
4107         if (priv->ieee->mode == IEEE_B)
4108                 return 11000000;
4109         else
4110                 return 54000000;
4111 }
4112
4113 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4114 {
4115         u32 rate, len = sizeof(rate);
4116         int err;
4117
4118         if (!(priv->status & STATUS_ASSOCIATED))
4119                 return 0;
4120
4121         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4122                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4123                                       &len);
4124                 if (err) {
4125                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4126                         return 0;
4127                 }
4128         } else
4129                 return ipw_get_max_rate(priv);
4130
4131         switch (rate) {
4132         case IPW_TX_RATE_1MB:
4133                 return 1000000;
4134         case IPW_TX_RATE_2MB:
4135                 return 2000000;
4136         case IPW_TX_RATE_5MB:
4137                 return 5500000;
4138         case IPW_TX_RATE_6MB:
4139                 return 6000000;
4140         case IPW_TX_RATE_9MB:
4141                 return 9000000;
4142         case IPW_TX_RATE_11MB:
4143                 return 11000000;
4144         case IPW_TX_RATE_12MB:
4145                 return 12000000;
4146         case IPW_TX_RATE_18MB:
4147                 return 18000000;
4148         case IPW_TX_RATE_24MB:
4149                 return 24000000;
4150         case IPW_TX_RATE_36MB:
4151                 return 36000000;
4152         case IPW_TX_RATE_48MB:
4153                 return 48000000;
4154         case IPW_TX_RATE_54MB:
4155                 return 54000000;
4156         }
4157
4158         return 0;
4159 }
4160
4161 #define IPW_STATS_INTERVAL (2 * HZ)
4162 static void ipw_gather_stats(struct ipw_priv *priv)
4163 {
4164         u32 rx_err, rx_err_delta, rx_packets_delta;
4165         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4166         u32 missed_beacons_percent, missed_beacons_delta;
4167         u32 quality = 0;
4168         u32 len = sizeof(u32);
4169         s16 rssi;
4170         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4171             rate_quality;
4172         u32 max_rate;
4173
4174         if (!(priv->status & STATUS_ASSOCIATED)) {
4175                 priv->quality = 0;
4176                 return;
4177         }
4178
4179         /* Update the statistics */
4180         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4181                         &priv->missed_beacons, &len);
4182         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4183         priv->last_missed_beacons = priv->missed_beacons;
4184         if (priv->assoc_request.beacon_interval) {
4185                 missed_beacons_percent = missed_beacons_delta *
4186                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4187                     (IPW_STATS_INTERVAL * 10);
4188         } else {
4189                 missed_beacons_percent = 0;
4190         }
4191         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4192
4193         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4194         rx_err_delta = rx_err - priv->last_rx_err;
4195         priv->last_rx_err = rx_err;
4196
4197         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4198         tx_failures_delta = tx_failures - priv->last_tx_failures;
4199         priv->last_tx_failures = tx_failures;
4200
4201         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4202         priv->last_rx_packets = priv->rx_packets;
4203
4204         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4205         priv->last_tx_packets = priv->tx_packets;
4206
4207         /* Calculate quality based on the following:
4208          *
4209          * Missed beacon: 100% = 0, 0% = 70% missed
4210          * Rate: 60% = 1Mbs, 100% = Max
4211          * Rx and Tx errors represent a straight % of total Rx/Tx
4212          * RSSI: 100% = > -50,  0% = < -80
4213          * Rx errors: 100% = 0, 0% = 50% missed
4214          *
4215          * The lowest computed quality is used.
4216          *
4217          */
4218 #define BEACON_THRESHOLD 5
4219         beacon_quality = 100 - missed_beacons_percent;
4220         if (beacon_quality < BEACON_THRESHOLD)
4221                 beacon_quality = 0;
4222         else
4223                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4224                     (100 - BEACON_THRESHOLD);
4225         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4226                         beacon_quality, missed_beacons_percent);
4227
4228         priv->last_rate = ipw_get_current_rate(priv);
4229         max_rate = ipw_get_max_rate(priv);
4230         rate_quality = priv->last_rate * 40 / max_rate + 60;
4231         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4232                         rate_quality, priv->last_rate / 1000000);
4233
4234         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4235                 rx_quality = 100 - (rx_err_delta * 100) /
4236                     (rx_packets_delta + rx_err_delta);
4237         else
4238                 rx_quality = 100;
4239         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4240                         rx_quality, rx_err_delta, rx_packets_delta);
4241
4242         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4243                 tx_quality = 100 - (tx_failures_delta * 100) /
4244                     (tx_packets_delta + tx_failures_delta);
4245         else
4246                 tx_quality = 100;
4247         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4248                         tx_quality, tx_failures_delta, tx_packets_delta);
4249
4250         rssi = priv->exp_avg_rssi;
4251         signal_quality =
4252             (100 *
4253              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4254              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4255              (priv->ieee->perfect_rssi - rssi) *
4256              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4257               62 * (priv->ieee->perfect_rssi - rssi))) /
4258             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4259              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4260         if (signal_quality > 100)
4261                 signal_quality = 100;
4262         else if (signal_quality < 1)
4263                 signal_quality = 0;
4264
4265         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4266                         signal_quality, rssi);
4267
4268         quality = min(rx_quality, signal_quality);
4269         quality = min(tx_quality, quality);
4270         quality = min(rate_quality, quality);
4271         quality = min(beacon_quality, quality);
4272         if (quality == beacon_quality)
4273                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4274                                 quality);
4275         if (quality == rate_quality)
4276                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4277                                 quality);
4278         if (quality == tx_quality)
4279                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4280                                 quality);
4281         if (quality == rx_quality)
4282                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4283                                 quality);
4284         if (quality == signal_quality)
4285                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4286                                 quality);
4287
4288         priv->quality = quality;
4289
4290         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4291                            IPW_STATS_INTERVAL);
4292 }
4293
4294 static void ipw_bg_gather_stats(struct work_struct *work)
4295 {
4296         struct ipw_priv *priv =
4297                 container_of(work, struct ipw_priv, gather_stats.work);
4298         mutex_lock(&priv->mutex);
4299         ipw_gather_stats(priv);
4300         mutex_unlock(&priv->mutex);
4301 }
4302
4303 /* Missed beacon behavior:
4304  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4305  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4306  * Above disassociate threshold, give up and stop scanning.
4307  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4308 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4309                                             int missed_count)
4310 {
4311         priv->notif_missed_beacons = missed_count;
4312
4313         if (missed_count > priv->disassociate_threshold &&
4314             priv->status & STATUS_ASSOCIATED) {
4315                 /* If associated and we've hit the missed
4316                  * beacon threshold, disassociate, turn
4317                  * off roaming, and abort any active scans */
4318                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4319                           IPW_DL_STATE | IPW_DL_ASSOC,
4320                           "Missed beacon: %d - disassociate\n", missed_count);
4321                 priv->status &= ~STATUS_ROAMING;
4322                 if (priv->status & STATUS_SCANNING) {
4323                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4324                                   IPW_DL_STATE,
4325                                   "Aborting scan with missed beacon.\n");
4326                         queue_work(priv->workqueue, &priv->abort_scan);
4327                 }
4328
4329                 queue_work(priv->workqueue, &priv->disassociate);
4330                 return;
4331         }
4332
4333         if (priv->status & STATUS_ROAMING) {
4334                 /* If we are currently roaming, then just
4335                  * print a debug statement... */
4336                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4337                           "Missed beacon: %d - roam in progress\n",
4338                           missed_count);
4339                 return;
4340         }
4341
4342         if (roaming &&
4343             (missed_count > priv->roaming_threshold &&
4344              missed_count <= priv->disassociate_threshold)) {
4345                 /* If we are not already roaming, set the ROAM
4346                  * bit in the status and kick off a scan.
4347                  * This can happen several times before we reach
4348                  * disassociate_threshold. */
4349                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4350                           "Missed beacon: %d - initiate "
4351                           "roaming\n", missed_count);
4352                 if (!(priv->status & STATUS_ROAMING)) {
4353                         priv->status |= STATUS_ROAMING;
4354                         if (!(priv->status & STATUS_SCANNING))
4355                                 queue_delayed_work(priv->workqueue,
4356                                                    &priv->request_scan, 0);
4357                 }
4358                 return;
4359         }
4360
4361         if (priv->status & STATUS_SCANNING &&
4362             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4363                 /* Stop scan to keep fw from getting
4364                  * stuck (only if we aren't roaming --
4365                  * otherwise we'll never scan more than 2 or 3
4366                  * channels..) */
4367                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4368                           "Aborting scan with missed beacon.\n");
4369                 queue_work(priv->workqueue, &priv->abort_scan);
4370         }
4371
4372         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4373 }
4374
4375 static void ipw_scan_event(struct work_struct *work)
4376 {
4377         union iwreq_data wrqu;
4378
4379         struct ipw_priv *priv =
4380                 container_of(work, struct ipw_priv, scan_event.work);
4381
4382         wrqu.data.length = 0;
4383         wrqu.data.flags = 0;
4384         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4385 }
4386
4387 static void handle_scan_event(struct ipw_priv *priv)
4388 {
4389         /* Only userspace-requested scan completion events go out immediately */
4390         if (!priv->user_requested_scan) {
4391                 if (!delayed_work_pending(&priv->scan_event))
4392                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4393                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4394         } else {
4395                 union iwreq_data wrqu;
4396
4397                 priv->user_requested_scan = 0;
4398                 cancel_delayed_work(&priv->scan_event);
4399
4400                 wrqu.data.length = 0;
4401                 wrqu.data.flags = 0;
4402                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4403         }
4404 }
4405
4406 /**
4407  * Handle host notification packet.
4408  * Called from interrupt routine
4409  */
4410 static void ipw_rx_notification(struct ipw_priv *priv,
4411                                        struct ipw_rx_notification *notif)
4412 {
4413         DECLARE_SSID_BUF(ssid);
4414         u16 size = le16_to_cpu(notif->size);
4415
4416         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4417
4418         switch (notif->subtype) {
4419         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4420                         struct notif_association *assoc = &notif->u.assoc;
4421
4422                         switch (assoc->state) {
4423                         case CMAS_ASSOCIATED:{
4424                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4425                                                   IPW_DL_ASSOC,
4426                                                   "associated: '%s' %pM \n",
4427                                                   print_ssid(ssid, priv->essid,
4428                                                              priv->essid_len),
4429                                                   priv->bssid);
4430
4431                                         switch (priv->ieee->iw_mode) {
4432                                         case IW_MODE_INFRA:
4433                                                 memcpy(priv->ieee->bssid,
4434                                                        priv->bssid, ETH_ALEN);
4435                                                 break;
4436
4437                                         case IW_MODE_ADHOC:
4438                                                 memcpy(priv->ieee->bssid,
4439                                                        priv->bssid, ETH_ALEN);
4440
4441                                                 /* clear out the station table */
4442                                                 priv->num_stations = 0;
4443
4444                                                 IPW_DEBUG_ASSOC
4445                                                     ("queueing adhoc check\n");
4446                                                 queue_delayed_work(priv->
4447                                                                    workqueue,
4448                                                                    &priv->
4449                                                                    adhoc_check,
4450                                                                    le16_to_cpu(priv->
4451                                                                    assoc_request.
4452                                                                    beacon_interval));
4453                                                 break;
4454                                         }
4455
4456                                         priv->status &= ~STATUS_ASSOCIATING;
4457                                         priv->status |= STATUS_ASSOCIATED;
4458                                         queue_work(priv->workqueue,
4459                                                    &priv->system_config);
4460
4461 #ifdef CONFIG_IPW2200_QOS
4462 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4463                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4464                                         if ((priv->status & STATUS_AUTH) &&
4465                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4466                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4467                                                 if ((sizeof
4468                                                      (struct
4469                                                       ieee80211_assoc_response)
4470                                                      <= size)
4471                                                     && (size <= 2314)) {
4472                                                         struct
4473                                                         ieee80211_rx_stats
4474                                                             stats = {
4475                                                                 .len = size - 1,
4476                                                         };
4477
4478                                                         IPW_DEBUG_QOS
4479                                                             ("QoS Associate "
4480                                                              "size %d\n", size);
4481                                                         ieee80211_rx_mgt(priv->
4482                                                                          ieee,
4483                                                                          (struct
4484                                                                           ieee80211_hdr_4addr
4485                                                                           *)
4486                                                                          &notif->u.raw, &stats);
4487                                                 }
4488                                         }
4489 #endif
4490
4491                                         schedule_work(&priv->link_up);
4492
4493                                         break;
4494                                 }
4495
4496                         case CMAS_AUTHENTICATED:{
4497                                         if (priv->
4498                                             status & (STATUS_ASSOCIATED |
4499                                                       STATUS_AUTH)) {
4500                                                 struct notif_authenticate *auth
4501                                                     = &notif->u.auth;
4502                                                 IPW_DEBUG(IPW_DL_NOTIF |
4503                                                           IPW_DL_STATE |
4504                                                           IPW_DL_ASSOC,
4505                                                           "deauthenticated: '%s' "
4506                                                           "%pM"
4507                                                           ": (0x%04X) - %s \n",
4508                                                           print_ssid(ssid,
4509                                                                      priv->
4510                                                                      essid,
4511                                                                      priv->
4512                                                                      essid_len),
4513                                                           priv->bssid,
4514                                                           le16_to_cpu(auth->status),
4515                                                           ipw_get_status_code
4516                                                           (le16_to_cpu
4517                                                            (auth->status)));
4518
4519                                                 priv->status &=
4520                                                     ~(STATUS_ASSOCIATING |
4521                                                       STATUS_AUTH |
4522                                                       STATUS_ASSOCIATED);
4523
4524                                                 schedule_work(&priv->link_down);
4525                                                 break;
4526                                         }
4527
4528                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                                   IPW_DL_ASSOC,
4530                                                   "authenticated: '%s' %pM\n",
4531                                                   print_ssid(ssid, priv->essid,
4532                                                              priv->essid_len),
4533                                                   priv->bssid);
4534                                         break;
4535                                 }
4536
4537                         case CMAS_INIT:{
4538                                         if (priv->status & STATUS_AUTH) {
4539                                                 struct
4540                                                     ieee80211_assoc_response
4541                                                 *resp;
4542                                                 resp =
4543                                                     (struct
4544                                                      ieee80211_assoc_response
4545                                                      *)&notif->u.raw;
4546                                                 IPW_DEBUG(IPW_DL_NOTIF |
4547                                                           IPW_DL_STATE |
4548                                                           IPW_DL_ASSOC,
4549                                                           "association failed (0x%04X): %s\n",
4550                                                           le16_to_cpu(resp->status),
4551                                                           ipw_get_status_code
4552                                                           (le16_to_cpu
4553                                                            (resp->status)));
4554                                         }
4555
4556                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4557                                                   IPW_DL_ASSOC,
4558                                                   "disassociated: '%s' %pM \n",
4559                                                   print_ssid(ssid, priv->essid,
4560                                                              priv->essid_len),
4561                                                   priv->bssid);
4562
4563                                         priv->status &=
4564                                             ~(STATUS_DISASSOCIATING |
4565                                               STATUS_ASSOCIATING |
4566                                               STATUS_ASSOCIATED | STATUS_AUTH);
4567                                         if (priv->assoc_network
4568                                             && (priv->assoc_network->
4569                                                 capability &
4570                                                 WLAN_CAPABILITY_IBSS))
4571                                                 ipw_remove_current_network
4572                                                     (priv);
4573
4574                                         schedule_work(&priv->link_down);
4575
4576                                         break;
4577                                 }
4578
4579                         case CMAS_RX_ASSOC_RESP:
4580                                 break;
4581
4582                         default:
4583                                 IPW_ERROR("assoc: unknown (%d)\n",
4584                                           assoc->state);
4585                                 break;
4586                         }
4587
4588                         break;
4589                 }
4590
4591         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4592                         struct notif_authenticate *auth = &notif->u.auth;
4593                         switch (auth->state) {
4594                         case CMAS_AUTHENTICATED:
4595                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4596                                           "authenticated: '%s' %pM \n",
4597                                           print_ssid(ssid, priv->essid,
4598                                                      priv->essid_len),
4599                                           priv->bssid);
4600                                 priv->status |= STATUS_AUTH;
4601                                 break;
4602
4603                         case CMAS_INIT:
4604                                 if (priv->status & STATUS_AUTH) {
4605                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4606                                                   IPW_DL_ASSOC,
4607                                                   "authentication failed (0x%04X): %s\n",
4608                                                   le16_to_cpu(auth->status),
4609                                                   ipw_get_status_code(le16_to_cpu
4610                                                                       (auth->
4611                                                                        status)));
4612                                 }
4613                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4614                                           IPW_DL_ASSOC,
4615                                           "deauthenticated: '%s' %pM\n",
4616                                           print_ssid(ssid, priv->essid,
4617                                                      priv->essid_len),
4618                                           priv->bssid);
4619
4620                                 priv->status &= ~(STATUS_ASSOCIATING |
4621                                                   STATUS_AUTH |
4622                                                   STATUS_ASSOCIATED);
4623
4624                                 schedule_work(&priv->link_down);
4625                                 break;
4626
4627                         case CMAS_TX_AUTH_SEQ_1:
4628                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4630                                 break;
4631                         case CMAS_RX_AUTH_SEQ_2:
4632                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4634                                 break;
4635                         case CMAS_AUTH_SEQ_1_PASS:
4636                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4637                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4638                                 break;
4639                         case CMAS_AUTH_SEQ_1_FAIL:
4640                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4641                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4642                                 break;
4643                         case CMAS_TX_AUTH_SEQ_3:
4644                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4645                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4646                                 break;
4647                         case CMAS_RX_AUTH_SEQ_4:
4648                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4650                                 break;
4651                         case CMAS_AUTH_SEQ_2_PASS:
4652                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4653                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4654                                 break;
4655                         case CMAS_AUTH_SEQ_2_FAIL:
4656                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4657                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4658                                 break;
4659                         case CMAS_TX_ASSOC:
4660                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4662                                 break;
4663                         case CMAS_RX_ASSOC_RESP:
4664                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4665                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4666
4667                                 break;
4668                         case CMAS_ASSOCIATED:
4669                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4670                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4671                                 break;
4672                         default:
4673                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4674                                                 auth->state);
4675                                 break;
4676                         }
4677                         break;
4678                 }
4679
4680         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4681                         struct notif_channel_result *x =
4682                             &notif->u.channel_result;
4683
4684                         if (size == sizeof(*x)) {
4685                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4686                                                x->channel_num);
4687                         } else {
4688                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4689                                                "(should be %zd)\n",
4690                                                size, sizeof(*x));
4691                         }
4692                         break;
4693                 }
4694
4695         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4696                         struct notif_scan_complete *x = &notif->u.scan_complete;
4697                         if (size == sizeof(*x)) {
4698                                 IPW_DEBUG_SCAN
4699                                     ("Scan completed: type %d, %d channels, "
4700                                      "%d status\n", x->scan_type,
4701                                      x->num_channels, x->status);
4702                         } else {
4703                                 IPW_ERROR("Scan completed of wrong size %d "
4704                                           "(should be %zd)\n",
4705                                           size, sizeof(*x));
4706                         }
4707
4708                         priv->status &=
4709                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4710
4711                         wake_up_interruptible(&priv->wait_state);
4712                         cancel_delayed_work(&priv->scan_check);
4713
4714                         if (priv->status & STATUS_EXIT_PENDING)
4715                                 break;
4716
4717                         priv->ieee->scans++;
4718
4719 #ifdef CONFIG_IPW2200_MONITOR
4720                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4721                                 priv->status |= STATUS_SCAN_FORCED;
4722                                 queue_delayed_work(priv->workqueue,
4723                                                    &priv->request_scan, 0);
4724                                 break;
4725                         }
4726                         priv->status &= ~STATUS_SCAN_FORCED;
4727 #endif                          /* CONFIG_IPW2200_MONITOR */
4728
4729                         /* Do queued direct scans first */
4730                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4731                                 queue_delayed_work(priv->workqueue,
4732                                                    &priv->request_direct_scan, 0);
4733                         }
4734
4735                         if (!(priv->status & (STATUS_ASSOCIATED |
4736                                               STATUS_ASSOCIATING |
4737                                               STATUS_ROAMING |
4738                                               STATUS_DISASSOCIATING)))
4739                                 queue_work(priv->workqueue, &priv->associate);
4740                         else if (priv->status & STATUS_ROAMING) {
4741                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4742                                         /* If a scan completed and we are in roam mode, then
4743                                          * the scan that completed was the one requested as a
4744                                          * result of entering roam... so, schedule the
4745                                          * roam work */
4746                                         queue_work(priv->workqueue,
4747                                                    &priv->roam);
4748                                 else
4749                                         /* Don't schedule if we aborted the scan */
4750                                         priv->status &= ~STATUS_ROAMING;
4751                         } else if (priv->status & STATUS_SCAN_PENDING)
4752                                 queue_delayed_work(priv->workqueue,
4753                                                    &priv->request_scan, 0);
4754                         else if (priv->config & CFG_BACKGROUND_SCAN
4755                                  && priv->status & STATUS_ASSOCIATED)
4756                                 queue_delayed_work(priv->workqueue,
4757                                                    &priv->request_scan,
4758                                                    round_jiffies_relative(HZ));
4759
4760                         /* Send an empty event to user space.
4761                          * We don't send the received data on the event because
4762                          * it would require us to do complex transcoding, and
4763                          * we want to minimise the work done in the irq handler
4764                          * Use a request to extract the data.
4765                          * Also, we generate this even for any scan, regardless
4766                          * on how the scan was initiated. User space can just
4767                          * sync on periodic scan to get fresh data...
4768                          * Jean II */
4769                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4770                                 handle_scan_event(priv);
4771                         break;
4772                 }
4773
4774         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4775                         struct notif_frag_length *x = &notif->u.frag_len;
4776
4777                         if (size == sizeof(*x))
4778                                 IPW_ERROR("Frag length: %d\n",
4779                                           le16_to_cpu(x->frag_length));
4780                         else
4781                                 IPW_ERROR("Frag length of wrong size %d "
4782                                           "(should be %zd)\n",
4783                                           size, sizeof(*x));
4784                         break;
4785                 }
4786
4787         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4788                         struct notif_link_deterioration *x =
4789                             &notif->u.link_deterioration;
4790
4791                         if (size == sizeof(*x)) {
4792                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4793                                         "link deterioration: type %d, cnt %d\n",
4794                                         x->silence_notification_type,
4795                                         x->silence_count);
4796                                 memcpy(&priv->last_link_deterioration, x,
4797                                        sizeof(*x));
4798                         } else {
4799                                 IPW_ERROR("Link Deterioration of wrong size %d "
4800                                           "(should be %zd)\n",
4801                                           size, sizeof(*x));
4802                         }
4803                         break;
4804                 }
4805
4806         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4807                         IPW_ERROR("Dino config\n");
4808                         if (priv->hcmd
4809                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4810                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4811
4812                         break;
4813                 }
4814
4815         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4816                         struct notif_beacon_state *x = &notif->u.beacon_state;
4817                         if (size != sizeof(*x)) {
4818                                 IPW_ERROR
4819                                     ("Beacon state of wrong size %d (should "
4820                                      "be %zd)\n", size, sizeof(*x));
4821                                 break;
4822                         }
4823
4824                         if (le32_to_cpu(x->state) ==
4825                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4826                                 ipw_handle_missed_beacon(priv,
4827                                                          le32_to_cpu(x->
4828                                                                      number));
4829
4830                         break;
4831                 }
4832
4833         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4834                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4835                         if (size == sizeof(*x)) {
4836                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4837                                           "0x%02x station %d\n",
4838                                           x->key_state, x->security_type,
4839                                           x->station_index);
4840                                 break;
4841                         }
4842
4843                         IPW_ERROR
4844                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4845                              size, sizeof(*x));
4846                         break;
4847                 }
4848
4849         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4850                         struct notif_calibration *x = &notif->u.calibration;
4851
4852                         if (size == sizeof(*x)) {
4853                                 memcpy(&priv->calib, x, sizeof(*x));
4854                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4855                                 break;
4856                         }
4857
4858                         IPW_ERROR
4859                             ("Calibration of wrong size %d (should be %zd)\n",
4860                              size, sizeof(*x));
4861                         break;
4862                 }
4863
4864         case HOST_NOTIFICATION_NOISE_STATS:{
4865                         if (size == sizeof(u32)) {
4866                                 priv->exp_avg_noise =
4867                                     exponential_average(priv->exp_avg_noise,
4868                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4869                                     DEPTH_NOISE);
4870                                 break;
4871                         }
4872
4873                         IPW_ERROR
4874                             ("Noise stat is wrong size %d (should be %zd)\n",
4875                              size, sizeof(u32));
4876                         break;
4877                 }
4878
4879         default:
4880                 IPW_DEBUG_NOTIF("Unknown notification: "
4881                                 "subtype=%d,flags=0x%2x,size=%d\n",
4882                                 notif->subtype, notif->flags, size);
4883         }
4884 }
4885
4886 /**
4887  * Destroys all DMA structures and initialise them again
4888  *
4889  * @param priv
4890  * @return error code
4891  */
4892 static int ipw_queue_reset(struct ipw_priv *priv)
4893 {
4894         int rc = 0;
4895         /** @todo customize queue sizes */
4896         int nTx = 64, nTxCmd = 8;
4897         ipw_tx_queue_free(priv);
4898         /* Tx CMD queue */
4899         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4900                                IPW_TX_CMD_QUEUE_READ_INDEX,
4901                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4902                                IPW_TX_CMD_QUEUE_BD_BASE,
4903                                IPW_TX_CMD_QUEUE_BD_SIZE);
4904         if (rc) {
4905                 IPW_ERROR("Tx Cmd queue init failed\n");
4906                 goto error;
4907         }
4908         /* Tx queue(s) */
4909         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4910                                IPW_TX_QUEUE_0_READ_INDEX,
4911                                IPW_TX_QUEUE_0_WRITE_INDEX,
4912                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4913         if (rc) {
4914                 IPW_ERROR("Tx 0 queue init failed\n");
4915                 goto error;
4916         }
4917         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4918                                IPW_TX_QUEUE_1_READ_INDEX,
4919                                IPW_TX_QUEUE_1_WRITE_INDEX,
4920                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4921         if (rc) {
4922                 IPW_ERROR("Tx 1 queue init failed\n");
4923                 goto error;
4924         }
4925         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4926                                IPW_TX_QUEUE_2_READ_INDEX,
4927                                IPW_TX_QUEUE_2_WRITE_INDEX,
4928                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4929         if (rc) {
4930                 IPW_ERROR("Tx 2 queue init failed\n");
4931                 goto error;
4932         }
4933         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4934                                IPW_TX_QUEUE_3_READ_INDEX,
4935                                IPW_TX_QUEUE_3_WRITE_INDEX,
4936                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4937         if (rc) {
4938                 IPW_ERROR("Tx 3 queue init failed\n");
4939                 goto error;
4940         }
4941         /* statistics */
4942         priv->rx_bufs_min = 0;
4943         priv->rx_pend_max = 0;
4944         return rc;
4945
4946       error:
4947         ipw_tx_queue_free(priv);
4948         return rc;
4949 }
4950
4951 /**
4952  * Reclaim Tx queue entries no more used by NIC.
4953  *
4954  * When FW advances 'R' index, all entries between old and
4955  * new 'R' index need to be reclaimed. As result, some free space
4956  * forms. If there is enough free space (> low mark), wake Tx queue.
4957  *
4958  * @note Need to protect against garbage in 'R' index
4959  * @param priv
4960  * @param txq
4961  * @param qindex
4962  * @return Number of used entries remains in the queue
4963  */
4964 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4965                                 struct clx2_tx_queue *txq, int qindex)
4966 {
4967         u32 hw_tail;
4968         int used;
4969         struct clx2_queue *q = &txq->q;
4970
4971         hw_tail = ipw_read32(priv, q->reg_r);
4972         if (hw_tail >= q->n_bd) {
4973                 IPW_ERROR
4974                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4975                      hw_tail, q->n_bd);
4976                 goto done;
4977         }
4978         for (; q->last_used != hw_tail;
4979              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4980                 ipw_queue_tx_free_tfd(priv, txq);
4981                 priv->tx_packets++;
4982         }
4983       done:
4984         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4985             (qindex >= 0))
4986                 netif_wake_queue(priv->net_dev);
4987         used = q->first_empty - q->last_used;
4988         if (used < 0)
4989                 used += q->n_bd;
4990
4991         return used;
4992 }
4993
4994 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4995                              int len, int sync)
4996 {
4997         struct clx2_tx_queue *txq = &priv->txq_cmd;
4998         struct clx2_queue *q = &txq->q;
4999         struct tfd_frame *tfd;
5000
5001         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5002                 IPW_ERROR("No space for Tx\n");
5003                 return -EBUSY;
5004         }
5005
5006         tfd = &txq->bd[q->first_empty];
5007         txq->txb[q->first_empty] = NULL;
5008
5009         memset(tfd, 0, sizeof(*tfd));
5010         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5011         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5012         priv->hcmd_seq++;
5013         tfd->u.cmd.index = hcmd;
5014         tfd->u.cmd.length = len;
5015         memcpy(tfd->u.cmd.payload, buf, len);
5016         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5017         ipw_write32(priv, q->reg_w, q->first_empty);
5018         _ipw_read32(priv, 0x90);
5019
5020         return 0;
5021 }
5022
5023 /*
5024  * Rx theory of operation
5025  *
5026  * The host allocates 32 DMA target addresses and passes the host address
5027  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5028  * 0 to 31
5029  *
5030  * Rx Queue Indexes
5031  * The host/firmware share two index registers for managing the Rx buffers.
5032  *
5033  * The READ index maps to the first position that the firmware may be writing
5034  * to -- the driver can read up to (but not including) this position and get
5035  * good data.
5036  * The READ index is managed by the firmware once the card is enabled.
5037  *
5038  * The WRITE index maps to the last position the driver has read from -- the
5039  * position preceding WRITE is the last slot the firmware can place a packet.
5040  *
5041  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5042  * WRITE = READ.
5043  *
5044  * During initialization the host sets up the READ queue position to the first
5045  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5046  *
5047  * When the firmware places a packet in a buffer it will advance the READ index
5048  * and fire the RX interrupt.  The driver can then query the READ index and
5049  * process as many packets as possible, moving the WRITE index forward as it
5050  * resets the Rx queue buffers with new memory.
5051  *
5052  * The management in the driver is as follows:
5053  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5054  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5055  *   to replensish the ipw->rxq->rx_free.
5056  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5057  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5058  *   'processed' and 'read' driver indexes as well)
5059  * + A received packet is processed and handed to the kernel network stack,
5060  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5061  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5062  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5063  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5064  *   were enough free buffers and RX_STALLED is set it is cleared.
5065  *
5066  *
5067  * Driver sequence:
5068  *
5069  * ipw_rx_queue_alloc()       Allocates rx_free
5070  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5071  *                            ipw_rx_queue_restock
5072  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5073  *                            queue, updates firmware pointers, and updates
5074  *                            the WRITE index.  If insufficient rx_free buffers
5075  *                            are available, schedules ipw_rx_queue_replenish
5076  *
5077  * -- enable interrupts --
5078  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5079  *                            READ INDEX, detaching the SKB from the pool.
5080  *                            Moves the packet buffer from queue to rx_used.
5081  *                            Calls ipw_rx_queue_restock to refill any empty
5082  *                            slots.
5083  * ...
5084  *
5085  */
5086
5087 /*
5088  * If there are slots in the RX queue that  need to be restocked,
5089  * and we have free pre-allocated buffers, fill the ranks as much
5090  * as we can pulling from rx_free.
5091  *
5092  * This moves the 'write' index forward to catch up with 'processed', and
5093  * also updates the memory address in the firmware to reference the new
5094  * target buffer.
5095  */
5096 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5097 {
5098         struct ipw_rx_queue *rxq = priv->rxq;
5099         struct list_head *element;
5100         struct ipw_rx_mem_buffer *rxb;
5101         unsigned long flags;
5102         int write;
5103
5104         spin_lock_irqsave(&rxq->lock, flags);
5105         write = rxq->write;
5106         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5107                 element = rxq->rx_free.next;
5108                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5109                 list_del(element);
5110
5111                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5112                             rxb->dma_addr);
5113                 rxq->queue[rxq->write] = rxb;
5114                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5115                 rxq->free_count--;
5116         }
5117         spin_unlock_irqrestore(&rxq->lock, flags);
5118
5119         /* If the pre-allocated buffer pool is dropping low, schedule to
5120          * refill it */
5121         if (rxq->free_count <= RX_LOW_WATERMARK)
5122                 queue_work(priv->workqueue, &priv->rx_replenish);
5123
5124         /* If we've added more space for the firmware to place data, tell it */
5125         if (write != rxq->write)
5126                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5127 }
5128
5129 /*
5130  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5131  * Also restock the Rx queue via ipw_rx_queue_restock.
5132  *
5133  * This is called as a scheduled work item (except for during intialization)
5134  */
5135 static void ipw_rx_queue_replenish(void *data)
5136 {
5137         struct ipw_priv *priv = data;
5138         struct ipw_rx_queue *rxq = priv->rxq;
5139         struct list_head *element;
5140         struct ipw_rx_mem_buffer *rxb;
5141         unsigned long flags;
5142
5143         spin_lock_irqsave(&rxq->lock, flags);
5144         while (!list_empty(&rxq->rx_used)) {
5145                 element = rxq->rx_used.next;
5146                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5147                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5148                 if (!rxb->skb) {
5149                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5150                                priv->net_dev->name);
5151                         /* We don't reschedule replenish work here -- we will
5152                          * call the restock method and if it still needs
5153                          * more buffers it will schedule replenish */
5154                         break;
5155                 }
5156                 list_del(element);
5157
5158                 rxb->dma_addr =
5159                     pci_map_single(priv->pci_dev, rxb->skb->data,
5160                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5161
5162                 list_add_tail(&rxb->list, &rxq->rx_free);
5163                 rxq->free_count++;
5164         }
5165         spin_unlock_irqrestore(&rxq->lock, flags);
5166
5167         ipw_rx_queue_restock(priv);
5168 }
5169
5170 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5171 {
5172         struct ipw_priv *priv =
5173                 container_of(work, struct ipw_priv, rx_replenish);
5174         mutex_lock(&priv->mutex);
5175         ipw_rx_queue_replenish(priv);
5176         mutex_unlock(&priv->mutex);
5177 }
5178
5179 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5180  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5181  * This free routine walks the list of POOL entries and if SKB is set to
5182  * non NULL it is unmapped and freed
5183  */
5184 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5185 {
5186         int i;
5187
5188         if (!rxq)
5189                 return;
5190
5191         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5192                 if (rxq->pool[i].skb != NULL) {
5193                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5194                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5195                         dev_kfree_skb(rxq->pool[i].skb);
5196                 }
5197         }
5198
5199         kfree(rxq);
5200 }
5201
5202 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5203 {
5204         struct ipw_rx_queue *rxq;
5205         int i;
5206
5207         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5208         if (unlikely(!rxq)) {
5209                 IPW_ERROR("memory allocation failed\n");
5210                 return NULL;
5211         }
5212         spin_lock_init(&rxq->lock);
5213         INIT_LIST_HEAD(&rxq->rx_free);
5214         INIT_LIST_HEAD(&rxq->rx_used);
5215
5216         /* Fill the rx_used queue with _all_ of the Rx buffers */
5217         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5218                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5219
5220         /* Set us so that we have processed and used all buffers, but have
5221          * not restocked the Rx queue with fresh buffers */
5222         rxq->read = rxq->write = 0;
5223         rxq->free_count = 0;
5224
5225         return rxq;
5226 }
5227
5228 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5229 {
5230         rate &= ~IEEE80211_BASIC_RATE_MASK;
5231         if (ieee_mode == IEEE_A) {
5232                 switch (rate) {
5233                 case IEEE80211_OFDM_RATE_6MB:
5234                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5235                             1 : 0;
5236                 case IEEE80211_OFDM_RATE_9MB:
5237                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5238                             1 : 0;
5239                 case IEEE80211_OFDM_RATE_12MB:
5240                         return priv->
5241                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5242                 case IEEE80211_OFDM_RATE_18MB:
5243                         return priv->
5244                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5245                 case IEEE80211_OFDM_RATE_24MB:
5246                         return priv->
5247                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5248                 case IEEE80211_OFDM_RATE_36MB:
5249                         return priv->
5250                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5251                 case IEEE80211_OFDM_RATE_48MB:
5252                         return priv->
5253                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5254                 case IEEE80211_OFDM_RATE_54MB:
5255                         return priv->
5256                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5257                 default:
5258                         return 0;
5259                 }
5260         }
5261
5262         /* B and G mixed */
5263         switch (rate) {
5264         case IEEE80211_CCK_RATE_1MB:
5265                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5266         case IEEE80211_CCK_RATE_2MB:
5267                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5268         case IEEE80211_CCK_RATE_5MB:
5269                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5270         case IEEE80211_CCK_RATE_11MB:
5271                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5272         }
5273
5274         /* If we are limited to B modulations, bail at this point */
5275         if (ieee_mode == IEEE_B)
5276                 return 0;
5277
5278         /* G */
5279         switch (rate) {
5280         case IEEE80211_OFDM_RATE_6MB:
5281                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5282         case IEEE80211_OFDM_RATE_9MB:
5283                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5284         case IEEE80211_OFDM_RATE_12MB:
5285                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5286         case IEEE80211_OFDM_RATE_18MB:
5287                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5288         case IEEE80211_OFDM_RATE_24MB:
5289                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5290         case IEEE80211_OFDM_RATE_36MB:
5291                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5292         case IEEE80211_OFDM_RATE_48MB:
5293                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5294         case IEEE80211_OFDM_RATE_54MB:
5295                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5296         }
5297
5298         return 0;
5299 }
5300
5301 static int ipw_compatible_rates(struct ipw_priv *priv,
5302                                 const struct ieee80211_network *network,
5303                                 struct ipw_supported_rates *rates)
5304 {
5305         int num_rates, i;
5306
5307         memset(rates, 0, sizeof(*rates));
5308         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5309         rates->num_rates = 0;
5310         for (i = 0; i < num_rates; i++) {
5311                 if (!ipw_is_rate_in_mask(priv, network->mode,
5312                                          network->rates[i])) {
5313
5314                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5315                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5316                                                "rate %02X\n",
5317                                                network->rates[i]);
5318                                 rates->supported_rates[rates->num_rates++] =
5319                                     network->rates[i];
5320                                 continue;
5321                         }
5322
5323                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5324                                        network->rates[i], priv->rates_mask);
5325                         continue;
5326                 }
5327
5328                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5329         }
5330
5331         num_rates = min(network->rates_ex_len,
5332                         (u8) (IPW_MAX_RATES - num_rates));
5333         for (i = 0; i < num_rates; i++) {
5334                 if (!ipw_is_rate_in_mask(priv, network->mode,
5335                                          network->rates_ex[i])) {
5336                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5337                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5338                                                "rate %02X\n",
5339                                                network->rates_ex[i]);
5340                                 rates->supported_rates[rates->num_rates++] =
5341                                     network->rates[i];
5342                                 continue;
5343                         }
5344
5345                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5346                                        network->rates_ex[i], priv->rates_mask);
5347                         continue;
5348                 }
5349
5350                 rates->supported_rates[rates->num_rates++] =
5351                     network->rates_ex[i];
5352         }
5353
5354         return 1;
5355 }
5356
5357 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5358                                   const struct ipw_supported_rates *src)
5359 {
5360         u8 i;
5361         for (i = 0; i < src->num_rates; i++)
5362                 dest->supported_rates[i] = src->supported_rates[i];
5363         dest->num_rates = src->num_rates;
5364 }
5365
5366 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5367  * mask should ever be used -- right now all callers to add the scan rates are
5368  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5369 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5370                                    u8 modulation, u32 rate_mask)
5371 {
5372         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5373             IEEE80211_BASIC_RATE_MASK : 0;
5374
5375         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5376                 rates->supported_rates[rates->num_rates++] =
5377                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5378
5379         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5380                 rates->supported_rates[rates->num_rates++] =
5381                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5382
5383         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5384                 rates->supported_rates[rates->num_rates++] = basic_mask |
5385                     IEEE80211_CCK_RATE_5MB;
5386
5387         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5388                 rates->supported_rates[rates->num_rates++] = basic_mask |
5389                     IEEE80211_CCK_RATE_11MB;
5390 }
5391
5392 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5393                                     u8 modulation, u32 rate_mask)
5394 {
5395         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5396             IEEE80211_BASIC_RATE_MASK : 0;
5397
5398         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5399                 rates->supported_rates[rates->num_rates++] = basic_mask |
5400                     IEEE80211_OFDM_RATE_6MB;
5401
5402         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5403                 rates->supported_rates[rates->num_rates++] =
5404                     IEEE80211_OFDM_RATE_9MB;
5405
5406         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5407                 rates->supported_rates[rates->num_rates++] = basic_mask |
5408                     IEEE80211_OFDM_RATE_12MB;
5409
5410         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5411                 rates->supported_rates[rates->num_rates++] =
5412                     IEEE80211_OFDM_RATE_18MB;
5413
5414         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5415                 rates->supported_rates[rates->num_rates++] = basic_mask |
5416                     IEEE80211_OFDM_RATE_24MB;
5417
5418         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5419                 rates->supported_rates[rates->num_rates++] =
5420                     IEEE80211_OFDM_RATE_36MB;
5421
5422         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5423                 rates->supported_rates[rates->num_rates++] =
5424                     IEEE80211_OFDM_RATE_48MB;
5425
5426         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5427                 rates->supported_rates[rates->num_rates++] =
5428                     IEEE80211_OFDM_RATE_54MB;
5429 }
5430
5431 struct ipw_network_match {
5432         struct ieee80211_network *network;
5433         struct ipw_supported_rates rates;
5434 };
5435
5436 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5437                                   struct ipw_network_match *match,
5438                                   struct ieee80211_network *network,
5439                                   int roaming)
5440 {
5441         struct ipw_supported_rates rates;
5442         DECLARE_SSID_BUF(ssid);
5443
5444         /* Verify that this network's capability is compatible with the
5445          * current mode (AdHoc or Infrastructure) */
5446         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5447              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5448                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5449                                 "capability mismatch.\n",
5450                                 print_ssid(ssid, network->ssid,
5451                                            network->ssid_len),
5452                                 network->bssid);
5453                 return 0;
5454         }
5455
5456         if (unlikely(roaming)) {
5457                 /* If we are roaming, then ensure check if this is a valid
5458                  * network to try and roam to */
5459                 if ((network->ssid_len != match->network->ssid_len) ||
5460                     memcmp(network->ssid, match->network->ssid,
5461                            network->ssid_len)) {
5462                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5463                                         "because of non-network ESSID.\n",
5464                                         print_ssid(ssid, network->ssid,
5465                                                    network->ssid_len),
5466                                         network->bssid);
5467                         return 0;
5468                 }
5469         } else {
5470                 /* If an ESSID has been configured then compare the broadcast
5471                  * ESSID to ours */
5472                 if ((priv->config & CFG_STATIC_ESSID) &&
5473                     ((network->ssid_len != priv->essid_len) ||
5474                      memcmp(network->ssid, priv->essid,
5475                             min(network->ssid_len, priv->essid_len)))) {
5476                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5477
5478                         strncpy(escaped,
5479                                 print_ssid(ssid, network->ssid,
5480                                            network->ssid_len),
5481                                 sizeof(escaped));
5482                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5483                                         "because of ESSID mismatch: '%s'.\n",
5484                                         escaped, network->bssid,
5485                                         print_ssid(ssid, priv->essid,
5486                                                    priv->essid_len));
5487                         return 0;
5488                 }
5489         }
5490
5491         /* If the old network rate is better than this one, don't bother
5492          * testing everything else. */
5493
5494         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496                                 "current network.\n",
5497                                 print_ssid(ssid, match->network->ssid,
5498                                            match->network->ssid_len));
5499                 return 0;
5500         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502                                 "current network.\n",
5503                                 print_ssid(ssid, match->network->ssid,
5504                                            match->network->ssid_len));
5505                 return 0;
5506         }
5507
5508         /* Now go through and see if the requested network is valid... */
5509         if (priv->ieee->scan_age != 0 &&
5510             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5512                                 "because of age: %ums.\n",
5513                                 print_ssid(ssid, network->ssid,
5514                                            network->ssid_len),
5515                                 network->bssid,
5516                                 jiffies_to_msecs(jiffies -
5517                                                  network->last_scanned));
5518                 return 0;
5519         }
5520
5521         if ((priv->config & CFG_STATIC_CHANNEL) &&
5522             (network->channel != priv->channel)) {
5523                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5524                                 "because of channel mismatch: %d != %d.\n",
5525                                 print_ssid(ssid, network->ssid,
5526                                            network->ssid_len),
5527                                 network->bssid,
5528                                 network->channel, priv->channel);
5529                 return 0;
5530         }
5531
5532         /* Verify privacy compatability */
5533         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5534             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5535                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536                                 "because of privacy mismatch: %s != %s.\n",
5537                                 print_ssid(ssid, network->ssid,
5538                                            network->ssid_len),
5539                                 network->bssid,
5540                                 priv->
5541                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5542                                 network->
5543                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5544                                 "off");
5545                 return 0;
5546         }
5547
5548         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5549                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5550                                 "because of the same BSSID match: %pM"
5551                                 ".\n", print_ssid(ssid, network->ssid,
5552                                                   network->ssid_len),
5553                                 network->bssid,
5554                                 priv->bssid);
5555                 return 0;
5556         }
5557
5558         /* Filter out any incompatible freq / mode combinations */
5559         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5560                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5561                                 "because of invalid frequency/mode "
5562                                 "combination.\n",
5563                                 print_ssid(ssid, network->ssid,
5564                                            network->ssid_len),
5565                                 network->bssid);
5566                 return 0;
5567         }
5568
5569         /* Ensure that the rates supported by the driver are compatible with
5570          * this AP, including verification of basic rates (mandatory) */
5571         if (!ipw_compatible_rates(priv, network, &rates)) {
5572                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5573                                 "because configured rate mask excludes "
5574                                 "AP mandatory rate.\n",
5575                                 print_ssid(ssid, network->ssid,
5576                                            network->ssid_len),
5577                                 network->bssid);
5578                 return 0;
5579         }
5580
5581         if (rates.num_rates == 0) {
5582                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5583                                 "because of no compatible rates.\n",
5584                                 print_ssid(ssid, network->ssid,
5585                                            network->ssid_len),
5586                                 network->bssid);
5587                 return 0;
5588         }
5589
5590         /* TODO: Perform any further minimal comparititive tests.  We do not
5591          * want to put too much policy logic here; intelligent scan selection
5592          * should occur within a generic IEEE 802.11 user space tool.  */
5593
5594         /* Set up 'new' AP to this network */
5595         ipw_copy_rates(&match->rates, &rates);
5596         match->network = network;
5597         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5598                         print_ssid(ssid, network->ssid, network->ssid_len),
5599                         network->bssid);
5600
5601         return 1;
5602 }
5603
5604 static void ipw_merge_adhoc_network(struct work_struct *work)
5605 {
5606         DECLARE_SSID_BUF(ssid);
5607         struct ipw_priv *priv =
5608                 container_of(work, struct ipw_priv, merge_networks);
5609         struct ieee80211_network *network = NULL;
5610         struct ipw_network_match match = {
5611                 .network = priv->assoc_network
5612         };
5613
5614         if ((priv->status & STATUS_ASSOCIATED) &&
5615             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5616                 /* First pass through ROAM process -- look for a better
5617                  * network */
5618                 unsigned long flags;
5619
5620                 spin_lock_irqsave(&priv->ieee->lock, flags);
5621                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5622                         if (network != priv->assoc_network)
5623                                 ipw_find_adhoc_network(priv, &match, network,
5624                                                        1);
5625                 }
5626                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5627
5628                 if (match.network == priv->assoc_network) {
5629                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5630                                         "merge to.\n");
5631                         return;
5632                 }
5633
5634                 mutex_lock(&priv->mutex);
5635                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5636                         IPW_DEBUG_MERGE("remove network %s\n",
5637                                         print_ssid(ssid, priv->essid,
5638                                                    priv->essid_len));
5639                         ipw_remove_current_network(priv);
5640                 }
5641
5642                 ipw_disassociate(priv);
5643                 priv->assoc_network = match.network;
5644                 mutex_unlock(&priv->mutex);
5645                 return;
5646         }
5647 }
5648
5649 static int ipw_best_network(struct ipw_priv *priv,
5650                             struct ipw_network_match *match,
5651                             struct ieee80211_network *network, int roaming)
5652 {
5653         struct ipw_supported_rates rates;
5654         DECLARE_SSID_BUF(ssid);
5655
5656         /* Verify that this network's capability is compatible with the
5657          * current mode (AdHoc or Infrastructure) */
5658         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5659              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5660             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5661              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5662                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5663                                 "capability mismatch.\n",
5664                                 print_ssid(ssid, network->ssid,
5665                                            network->ssid_len),
5666                                 network->bssid);
5667                 return 0;
5668         }
5669
5670         if (unlikely(roaming)) {
5671                 /* If we are roaming, then ensure check if this is a valid
5672                  * network to try and roam to */
5673                 if ((network->ssid_len != match->network->ssid_len) ||
5674                     memcmp(network->ssid, match->network->ssid,
5675                            network->ssid_len)) {
5676                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5677                                         "because of non-network ESSID.\n",
5678                                         print_ssid(ssid, network->ssid,
5679                                                    network->ssid_len),
5680                                         network->bssid);
5681                         return 0;
5682                 }
5683         } else {
5684                 /* If an ESSID has been configured then compare the broadcast
5685                  * ESSID to ours */
5686                 if ((priv->config & CFG_STATIC_ESSID) &&
5687                     ((network->ssid_len != priv->essid_len) ||
5688                      memcmp(network->ssid, priv->essid,
5689                             min(network->ssid_len, priv->essid_len)))) {
5690                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5691                         strncpy(escaped,
5692                                 print_ssid(ssid, network->ssid,
5693                                            network->ssid_len),
5694                                 sizeof(escaped));
5695                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5696                                         "because of ESSID mismatch: '%s'.\n",
5697                                         escaped, network->bssid,
5698                                         print_ssid(ssid, priv->essid,
5699                                                    priv->essid_len));
5700                         return 0;
5701                 }
5702         }
5703
5704         /* If the old network rate is better than this one, don't bother
5705          * testing everything else. */
5706         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5707                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5708                 strncpy(escaped,
5709                         print_ssid(ssid, network->ssid, network->ssid_len),
5710                         sizeof(escaped));
5711                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5712                                 "'%s (%pM)' has a stronger signal.\n",
5713                                 escaped, network->bssid,
5714                                 print_ssid(ssid, match->network->ssid,
5715                                            match->network->ssid_len),
5716                                 match->network->bssid);
5717                 return 0;
5718         }
5719
5720         /* If this network has already had an association attempt within the
5721          * last 3 seconds, do not try and associate again... */
5722         if (network->last_associate &&
5723             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5724                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5725                                 "because of storming (%ums since last "
5726                                 "assoc attempt).\n",
5727                                 print_ssid(ssid, network->ssid,
5728                                            network->ssid_len),
5729                                 network->bssid,
5730                                 jiffies_to_msecs(jiffies -
5731                                                  network->last_associate));
5732                 return 0;
5733         }
5734
5735         /* Now go through and see if the requested network is valid... */
5736         if (priv->ieee->scan_age != 0 &&
5737             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739                                 "because of age: %ums.\n",
5740                                 print_ssid(ssid, network->ssid,
5741                                            network->ssid_len),
5742                                 network->bssid,
5743                                 jiffies_to_msecs(jiffies -
5744                                                  network->last_scanned));
5745                 return 0;
5746         }
5747
5748         if ((priv->config & CFG_STATIC_CHANNEL) &&
5749             (network->channel != priv->channel)) {
5750                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751                                 "because of channel mismatch: %d != %d.\n",
5752                                 print_ssid(ssid, network->ssid,
5753                                            network->ssid_len),
5754                                 network->bssid,
5755                                 network->channel, priv->channel);
5756                 return 0;
5757         }
5758
5759         /* Verify privacy compatability */
5760         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5761             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5762                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5763                                 "because of privacy mismatch: %s != %s.\n",
5764                                 print_ssid(ssid, network->ssid,
5765                                            network->ssid_len),
5766                                 network->bssid,
5767                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5768                                 "off",
5769                                 network->capability &
5770                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5771                 return 0;
5772         }
5773
5774         if ((priv->config & CFG_STATIC_BSSID) &&
5775             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5776                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5777                                 "because of BSSID mismatch: %pM.\n",
5778                                 print_ssid(ssid, network->ssid,
5779                                            network->ssid_len),
5780                                 network->bssid, priv->bssid);
5781                 return 0;
5782         }
5783
5784         /* Filter out any incompatible freq / mode combinations */
5785         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5786                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5787                                 "because of invalid frequency/mode "
5788                                 "combination.\n",
5789                                 print_ssid(ssid, network->ssid,
5790                                            network->ssid_len),
5791                                 network->bssid);
5792                 return 0;
5793         }
5794
5795         /* Filter out invalid channel in current GEO */
5796         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5797                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5798                                 "because of invalid channel in current GEO\n",
5799                                 print_ssid(ssid, network->ssid,
5800                                            network->ssid_len),
5801                                 network->bssid);
5802                 return 0;
5803         }
5804
5805         /* Ensure that the rates supported by the driver are compatible with
5806          * this AP, including verification of basic rates (mandatory) */
5807         if (!ipw_compatible_rates(priv, network, &rates)) {
5808                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5809                                 "because configured rate mask excludes "
5810                                 "AP mandatory rate.\n",
5811                                 print_ssid(ssid, network->ssid,
5812                                            network->ssid_len),
5813                                 network->bssid);
5814                 return 0;
5815         }
5816
5817         if (rates.num_rates == 0) {
5818                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5819                                 "because of no compatible rates.\n",
5820                                 print_ssid(ssid, network->ssid,
5821                                            network->ssid_len),
5822                                 network->bssid);
5823                 return 0;
5824         }
5825
5826         /* TODO: Perform any further minimal comparititive tests.  We do not
5827          * want to put too much policy logic here; intelligent scan selection
5828          * should occur within a generic IEEE 802.11 user space tool.  */
5829
5830         /* Set up 'new' AP to this network */
5831         ipw_copy_rates(&match->rates, &rates);
5832         match->network = network;
5833
5834         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5835                         print_ssid(ssid, network->ssid, network->ssid_len),
5836                         network->bssid);
5837
5838         return 1;
5839 }
5840
5841 static void ipw_adhoc_create(struct ipw_priv *priv,
5842                              struct ieee80211_network *network)
5843 {
5844         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5845         int i;
5846
5847         /*
5848          * For the purposes of scanning, we can set our wireless mode
5849          * to trigger scans across combinations of bands, but when it
5850          * comes to creating a new ad-hoc network, we have tell the FW
5851          * exactly which band to use.
5852          *
5853          * We also have the possibility of an invalid channel for the
5854          * chossen band.  Attempting to create a new ad-hoc network
5855          * with an invalid channel for wireless mode will trigger a
5856          * FW fatal error.
5857          *
5858          */
5859         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5860         case IEEE80211_52GHZ_BAND:
5861                 network->mode = IEEE_A;
5862                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5863                 BUG_ON(i == -1);
5864                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5865                         IPW_WARNING("Overriding invalid channel\n");
5866                         priv->channel = geo->a[0].channel;
5867                 }
5868                 break;
5869
5870         case IEEE80211_24GHZ_BAND:
5871                 if (priv->ieee->mode & IEEE_G)
5872                         network->mode = IEEE_G;
5873                 else
5874                         network->mode = IEEE_B;
5875                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5876                 BUG_ON(i == -1);
5877                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5878                         IPW_WARNING("Overriding invalid channel\n");
5879                         priv->channel = geo->bg[0].channel;
5880                 }
5881                 break;
5882
5883         default:
5884                 IPW_WARNING("Overriding invalid channel\n");
5885                 if (priv->ieee->mode & IEEE_A) {
5886                         network->mode = IEEE_A;
5887                         priv->channel = geo->a[0].channel;
5888                 } else if (priv->ieee->mode & IEEE_G) {
5889                         network->mode = IEEE_G;
5890                         priv->channel = geo->bg[0].channel;
5891                 } else {
5892                         network->mode = IEEE_B;
5893                         priv->channel = geo->bg[0].channel;
5894                 }
5895                 break;
5896         }
5897
5898         network->channel = priv->channel;
5899         priv->config |= CFG_ADHOC_PERSIST;
5900         ipw_create_bssid(priv, network->bssid);
5901         network->ssid_len = priv->essid_len;
5902         memcpy(network->ssid, priv->essid, priv->essid_len);
5903         memset(&network->stats, 0, sizeof(network->stats));
5904         network->capability = WLAN_CAPABILITY_IBSS;
5905         if (!(priv->config & CFG_PREAMBLE_LONG))
5906                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5907         if (priv->capability & CAP_PRIVACY_ON)
5908                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5909         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5910         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5911         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5912         memcpy(network->rates_ex,
5913                &priv->rates.supported_rates[network->rates_len],
5914                network->rates_ex_len);
5915         network->last_scanned = 0;
5916         network->flags = 0;
5917         network->last_associate = 0;
5918         network->time_stamp[0] = 0;
5919         network->time_stamp[1] = 0;
5920         network->beacon_interval = 100; /* Default */
5921         network->listen_interval = 10;  /* Default */
5922         network->atim_window = 0;       /* Default */
5923         network->wpa_ie_len = 0;
5924         network->rsn_ie_len = 0;
5925 }
5926
5927 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5928 {
5929         struct ipw_tgi_tx_key key;
5930
5931         if (!(priv->ieee->sec.flags & (1 << index)))
5932                 return;
5933
5934         key.key_id = index;
5935         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5936         key.security_type = type;
5937         key.station_index = 0;  /* always 0 for BSS */
5938         key.flags = 0;
5939         /* 0 for new key; previous value of counter (after fatal error) */
5940         key.tx_counter[0] = cpu_to_le32(0);
5941         key.tx_counter[1] = cpu_to_le32(0);
5942
5943         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5944 }
5945
5946 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5947 {
5948         struct ipw_wep_key key;
5949         int i;
5950
5951         key.cmd_id = DINO_CMD_WEP_KEY;
5952         key.seq_num = 0;
5953
5954         /* Note: AES keys cannot be set for multiple times.
5955          * Only set it at the first time. */
5956         for (i = 0; i < 4; i++) {
5957                 key.key_index = i | type;
5958                 if (!(priv->ieee->sec.flags & (1 << i))) {
5959                         key.key_size = 0;
5960                         continue;
5961                 }
5962
5963                 key.key_size = priv->ieee->sec.key_sizes[i];
5964                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5965
5966                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5967         }
5968 }
5969
5970 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5971 {
5972         if (priv->ieee->host_encrypt)
5973                 return;
5974
5975         switch (level) {
5976         case SEC_LEVEL_3:
5977                 priv->sys_config.disable_unicast_decryption = 0;
5978                 priv->ieee->host_decrypt = 0;
5979                 break;
5980         case SEC_LEVEL_2:
5981                 priv->sys_config.disable_unicast_decryption = 1;
5982                 priv->ieee->host_decrypt = 1;
5983                 break;
5984         case SEC_LEVEL_1:
5985                 priv->sys_config.disable_unicast_decryption = 0;
5986                 priv->ieee->host_decrypt = 0;
5987                 break;
5988         case SEC_LEVEL_0:
5989                 priv->sys_config.disable_unicast_decryption = 1;
5990                 break;
5991         default:
5992                 break;
5993         }
5994 }
5995
5996 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5997 {
5998         if (priv->ieee->host_encrypt)
5999                 return;
6000
6001         switch (level) {
6002         case SEC_LEVEL_3:
6003                 priv->sys_config.disable_multicast_decryption = 0;
6004                 break;
6005         case SEC_LEVEL_2:
6006                 priv->sys_config.disable_multicast_decryption = 1;
6007                 break;
6008         case SEC_LEVEL_1:
6009                 priv->sys_config.disable_multicast_decryption = 0;
6010                 break;
6011         case SEC_LEVEL_0:
6012                 priv->sys_config.disable_multicast_decryption = 1;
6013                 break;
6014         default:
6015                 break;
6016         }
6017 }
6018
6019 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6020 {
6021         switch (priv->ieee->sec.level) {
6022         case SEC_LEVEL_3:
6023                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6024                         ipw_send_tgi_tx_key(priv,
6025                                             DCT_FLAG_EXT_SECURITY_CCM,
6026                                             priv->ieee->sec.active_key);
6027
6028                 if (!priv->ieee->host_mc_decrypt)
6029                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6030                 break;
6031         case SEC_LEVEL_2:
6032                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6033                         ipw_send_tgi_tx_key(priv,
6034                                             DCT_FLAG_EXT_SECURITY_TKIP,
6035                                             priv->ieee->sec.active_key);
6036                 break;
6037         case SEC_LEVEL_1:
6038                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6039                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6040                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6041                 break;
6042         case SEC_LEVEL_0:
6043         default:
6044                 break;
6045         }
6046 }
6047
6048 static void ipw_adhoc_check(void *data)
6049 {
6050         struct ipw_priv *priv = data;
6051
6052         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6053             !(priv->config & CFG_ADHOC_PERSIST)) {
6054                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6055                           IPW_DL_STATE | IPW_DL_ASSOC,
6056                           "Missed beacon: %d - disassociate\n",
6057                           priv->missed_adhoc_beacons);
6058                 ipw_remove_current_network(priv);
6059                 ipw_disassociate(priv);
6060                 return;
6061         }
6062
6063         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6064                            le16_to_cpu(priv->assoc_request.beacon_interval));
6065 }
6066
6067 static void ipw_bg_adhoc_check(struct work_struct *work)
6068 {
6069         struct ipw_priv *priv =
6070                 container_of(work, struct ipw_priv, adhoc_check.work);
6071         mutex_lock(&priv->mutex);
6072         ipw_adhoc_check(priv);
6073         mutex_unlock(&priv->mutex);
6074 }
6075
6076 static void ipw_debug_config(struct ipw_priv *priv)
6077 {
6078         DECLARE_SSID_BUF(ssid);
6079         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6080                        "[CFG 0x%08X]\n", priv->config);
6081         if (priv->config & CFG_STATIC_CHANNEL)
6082                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6083         else
6084                 IPW_DEBUG_INFO("Channel unlocked.\n");
6085         if (priv->config & CFG_STATIC_ESSID)
6086                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6087                                print_ssid(ssid, priv->essid, priv->essid_len));
6088         else
6089                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6090         if (priv->config & CFG_STATIC_BSSID)
6091                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6092         else
6093                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6094         if (priv->capability & CAP_PRIVACY_ON)
6095                 IPW_DEBUG_INFO("PRIVACY on\n");
6096         else
6097                 IPW_DEBUG_INFO("PRIVACY off\n");
6098         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6099 }
6100
6101 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6102 {
6103         /* TODO: Verify that this works... */
6104         struct ipw_fixed_rate fr;
6105         u32 reg;
6106         u16 mask = 0;
6107         u16 new_tx_rates = priv->rates_mask;
6108
6109         /* Identify 'current FW band' and match it with the fixed
6110          * Tx rates */
6111
6112         switch (priv->ieee->freq_band) {
6113         case IEEE80211_52GHZ_BAND:      /* A only */
6114                 /* IEEE_A */
6115                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6116                         /* Invalid fixed rate mask */
6117                         IPW_DEBUG_WX
6118                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6119                         new_tx_rates = 0;
6120                         break;
6121                 }
6122
6123                 new_tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6124                 break;
6125
6126         default:                /* 2.4Ghz or Mixed */
6127                 /* IEEE_B */
6128                 if (mode == IEEE_B) {
6129                         if (new_tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6130                                 /* Invalid fixed rate mask */
6131                                 IPW_DEBUG_WX
6132                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133                                 new_tx_rates = 0;
6134                         }
6135                         break;
6136                 }
6137
6138                 /* IEEE_G */
6139                 if (new_tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6140                                     IEEE80211_OFDM_RATES_MASK)) {
6141                         /* Invalid fixed rate mask */
6142                         IPW_DEBUG_WX
6143                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6144                         new_tx_rates = 0;
6145                         break;
6146                 }
6147
6148                 if (IEEE80211_OFDM_RATE_6MB_MASK & new_tx_rates) {
6149                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6150                         new_tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6151                 }
6152
6153                 if (IEEE80211_OFDM_RATE_9MB_MASK & new_tx_rates) {
6154                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6155                         new_tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6156                 }
6157
6158                 if (IEEE80211_OFDM_RATE_12MB_MASK & new_tx_rates) {
6159                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6160                         new_tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6161                 }
6162
6163                 new_tx_rates |= mask;
6164                 break;
6165         }
6166
6167         fr.tx_rates = cpu_to_le16(new_tx_rates);
6168
6169         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6170         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6171 }
6172
6173 static void ipw_abort_scan(struct ipw_priv *priv)
6174 {
6175         int err;
6176
6177         if (priv->status & STATUS_SCAN_ABORTING) {
6178                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6179                 return;
6180         }
6181         priv->status |= STATUS_SCAN_ABORTING;
6182
6183         err = ipw_send_scan_abort(priv);
6184         if (err)
6185                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6186 }
6187
6188 static void ipw_add_scan_channels(struct ipw_priv *priv,
6189                                   struct ipw_scan_request_ext *scan,
6190                                   int scan_type)
6191 {
6192         int channel_index = 0;
6193         const struct ieee80211_geo *geo;
6194         int i;
6195
6196         geo = ieee80211_get_geo(priv->ieee);
6197
6198         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6199                 int start = channel_index;
6200                 for (i = 0; i < geo->a_channels; i++) {
6201                         if ((priv->status & STATUS_ASSOCIATED) &&
6202                             geo->a[i].channel == priv->channel)
6203                                 continue;
6204                         channel_index++;
6205                         scan->channels_list[channel_index] = geo->a[i].channel;
6206                         ipw_set_scan_type(scan, channel_index,
6207                                           geo->a[i].
6208                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6209                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6210                                           scan_type);
6211                 }
6212
6213                 if (start != channel_index) {
6214                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6215                             (channel_index - start);
6216                         channel_index++;
6217                 }
6218         }
6219
6220         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6221                 int start = channel_index;
6222                 if (priv->config & CFG_SPEED_SCAN) {
6223                         int index;
6224                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6225                                 /* nop out the list */
6226                                 [0] = 0
6227                         };
6228
6229                         u8 channel;
6230                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6231                                 channel =
6232                                     priv->speed_scan[priv->speed_scan_pos];
6233                                 if (channel == 0) {
6234                                         priv->speed_scan_pos = 0;
6235                                         channel = priv->speed_scan[0];
6236                                 }
6237                                 if ((priv->status & STATUS_ASSOCIATED) &&
6238                                     channel == priv->channel) {
6239                                         priv->speed_scan_pos++;
6240                                         continue;
6241                                 }
6242
6243                                 /* If this channel has already been
6244                                  * added in scan, break from loop
6245                                  * and this will be the first channel
6246                                  * in the next scan.
6247                                  */
6248                                 if (channels[channel - 1] != 0)
6249                                         break;
6250
6251                                 channels[channel - 1] = 1;
6252                                 priv->speed_scan_pos++;
6253                                 channel_index++;
6254                                 scan->channels_list[channel_index] = channel;
6255                                 index =
6256                                     ieee80211_channel_to_index(priv->ieee, channel);
6257                                 ipw_set_scan_type(scan, channel_index,
6258                                                   geo->bg[index].
6259                                                   flags &
6260                                                   IEEE80211_CH_PASSIVE_ONLY ?
6261                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6262                                                   : scan_type);
6263                         }
6264                 } else {
6265                         for (i = 0; i < geo->bg_channels; i++) {
6266                                 if ((priv->status & STATUS_ASSOCIATED) &&
6267                                     geo->bg[i].channel == priv->channel)
6268                                         continue;
6269                                 channel_index++;
6270                                 scan->channels_list[channel_index] =
6271                                     geo->bg[i].channel;
6272                                 ipw_set_scan_type(scan, channel_index,
6273                                                   geo->bg[i].
6274                                                   flags &
6275                                                   IEEE80211_CH_PASSIVE_ONLY ?
6276                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6277                                                   : scan_type);
6278                         }
6279                 }
6280
6281                 if (start != channel_index) {
6282                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6283                             (channel_index - start);
6284                 }
6285         }
6286 }
6287
6288 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6289 {
6290         /* staying on passive channels longer than the DTIM interval during a
6291          * scan, while associated, causes the firmware to cancel the scan
6292          * without notification. Hence, don't stay on passive channels longer
6293          * than the beacon interval.
6294          */
6295         if (priv->status & STATUS_ASSOCIATED
6296             && priv->assoc_network->beacon_interval > 10)
6297                 return priv->assoc_network->beacon_interval - 10;
6298         else
6299                 return 120;
6300 }
6301
6302 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6303 {
6304         struct ipw_scan_request_ext scan;
6305         int err = 0, scan_type;
6306
6307         if (!(priv->status & STATUS_INIT) ||
6308             (priv->status & STATUS_EXIT_PENDING))
6309                 return 0;
6310
6311         mutex_lock(&priv->mutex);
6312
6313         if (direct && (priv->direct_scan_ssid_len == 0)) {
6314                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6315                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6316                 goto done;
6317         }
6318
6319         if (priv->status & STATUS_SCANNING) {
6320                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6321                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6322                                         STATUS_SCAN_PENDING;
6323                 goto done;
6324         }
6325
6326         if (!(priv->status & STATUS_SCAN_FORCED) &&
6327             priv->status & STATUS_SCAN_ABORTING) {
6328                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6329                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6330                                         STATUS_SCAN_PENDING;
6331                 goto done;
6332         }
6333
6334         if (priv->status & STATUS_RF_KILL_MASK) {
6335                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6336                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6337                                         STATUS_SCAN_PENDING;
6338                 goto done;
6339         }
6340
6341         memset(&scan, 0, sizeof(scan));
6342         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6343
6344         if (type == IW_SCAN_TYPE_PASSIVE) {
6345                 IPW_DEBUG_WX("use passive scanning\n");
6346                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6347                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6348                         cpu_to_le16(ipw_passive_dwell_time(priv));
6349                 ipw_add_scan_channels(priv, &scan, scan_type);
6350                 goto send_request;
6351         }
6352
6353         /* Use active scan by default. */
6354         if (priv->config & CFG_SPEED_SCAN)
6355                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6356                         cpu_to_le16(30);
6357         else
6358                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6359                         cpu_to_le16(20);
6360
6361         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6362                 cpu_to_le16(20);
6363
6364         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6365                 cpu_to_le16(ipw_passive_dwell_time(priv));
6366         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6367
6368 #ifdef CONFIG_IPW2200_MONITOR
6369         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6370                 u8 channel;
6371                 u8 band = 0;
6372
6373                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6374                 case IEEE80211_52GHZ_BAND:
6375                         band = (u8) (IPW_A_MODE << 6) | 1;
6376                         channel = priv->channel;
6377                         break;
6378
6379                 case IEEE80211_24GHZ_BAND:
6380                         band = (u8) (IPW_B_MODE << 6) | 1;
6381                         channel = priv->channel;
6382                         break;
6383
6384                 default:
6385                         band = (u8) (IPW_B_MODE << 6) | 1;
6386                         channel = 9;
6387                         break;
6388                 }
6389
6390                 scan.channels_list[0] = band;
6391                 scan.channels_list[1] = channel;
6392                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6393
6394                 /* NOTE:  The card will sit on this channel for this time
6395                  * period.  Scan aborts are timing sensitive and frequently
6396                  * result in firmware restarts.  As such, it is best to
6397                  * set a small dwell_time here and just keep re-issuing
6398                  * scans.  Otherwise fast channel hopping will not actually
6399                  * hop channels.
6400                  *
6401                  * TODO: Move SPEED SCAN support to all modes and bands */
6402                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6403                         cpu_to_le16(2000);
6404         } else {
6405 #endif                          /* CONFIG_IPW2200_MONITOR */
6406                 /* Honor direct scans first, otherwise if we are roaming make
6407                  * this a direct scan for the current network.  Finally,
6408                  * ensure that every other scan is a fast channel hop scan */
6409                 if (direct) {
6410                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6411                                             priv->direct_scan_ssid_len);
6412                         if (err) {
6413                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6414                                              "failed\n");
6415                                 goto done;
6416                         }
6417
6418                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6419                 } else if ((priv->status & STATUS_ROAMING)
6420                            || (!(priv->status & STATUS_ASSOCIATED)
6421                                && (priv->config & CFG_STATIC_ESSID)
6422                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6423                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6424                         if (err) {
6425                                 IPW_DEBUG_HC("Attempt to send SSID command "
6426                                              "failed.\n");
6427                                 goto done;
6428                         }
6429
6430                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6431                 } else
6432                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6433
6434                 ipw_add_scan_channels(priv, &scan, scan_type);
6435 #ifdef CONFIG_IPW2200_MONITOR
6436         }
6437 #endif
6438
6439 send_request:
6440         err = ipw_send_scan_request_ext(priv, &scan);
6441         if (err) {
6442                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6443                 goto done;
6444         }
6445
6446         priv->status |= STATUS_SCANNING;
6447         if (direct) {
6448                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6449                 priv->direct_scan_ssid_len = 0;
6450         } else
6451                 priv->status &= ~STATUS_SCAN_PENDING;
6452
6453         queue_delayed_work(priv->workqueue, &priv->scan_check,
6454                            IPW_SCAN_CHECK_WATCHDOG);
6455 done:
6456         mutex_unlock(&priv->mutex);
6457         return err;
6458 }
6459
6460 static void ipw_request_passive_scan(struct work_struct *work)
6461 {
6462         struct ipw_priv *priv =
6463                 container_of(work, struct ipw_priv, request_passive_scan.work);
6464         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6465 }
6466
6467 static void ipw_request_scan(struct work_struct *work)
6468 {
6469         struct ipw_priv *priv =
6470                 container_of(work, struct ipw_priv, request_scan.work);
6471         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6472 }
6473
6474 static void ipw_request_direct_scan(struct work_struct *work)
6475 {
6476         struct ipw_priv *priv =
6477                 container_of(work, struct ipw_priv, request_direct_scan.work);
6478         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6479 }
6480
6481 static void ipw_bg_abort_scan(struct work_struct *work)
6482 {
6483         struct ipw_priv *priv =
6484                 container_of(work, struct ipw_priv, abort_scan);
6485         mutex_lock(&priv->mutex);
6486         ipw_abort_scan(priv);
6487         mutex_unlock(&priv->mutex);
6488 }
6489
6490 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6491 {
6492         /* This is called when wpa_supplicant loads and closes the driver
6493          * interface. */
6494         priv->ieee->wpa_enabled = value;
6495         return 0;
6496 }
6497
6498 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6499 {
6500         struct ieee80211_device *ieee = priv->ieee;
6501         struct ieee80211_security sec = {
6502                 .flags = SEC_AUTH_MODE,
6503         };
6504         int ret = 0;
6505
6506         if (value & IW_AUTH_ALG_SHARED_KEY) {
6507                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6508                 ieee->open_wep = 0;
6509         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6510                 sec.auth_mode = WLAN_AUTH_OPEN;
6511                 ieee->open_wep = 1;
6512         } else if (value & IW_AUTH_ALG_LEAP) {
6513                 sec.auth_mode = WLAN_AUTH_LEAP;
6514                 ieee->open_wep = 1;
6515         } else
6516                 return -EINVAL;
6517
6518         if (ieee->set_security)
6519                 ieee->set_security(ieee->dev, &sec);
6520         else
6521                 ret = -EOPNOTSUPP;
6522
6523         return ret;
6524 }
6525
6526 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6527                                 int wpa_ie_len)
6528 {
6529         /* make sure WPA is enabled */
6530         ipw_wpa_enable(priv, 1);
6531 }
6532
6533 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6534                             char *capabilities, int length)
6535 {
6536         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6537
6538         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6539                                 capabilities);
6540 }
6541
6542 /*
6543  * WE-18 support
6544  */
6545
6546 /* SIOCSIWGENIE */
6547 static int ipw_wx_set_genie(struct net_device *dev,
6548                             struct iw_request_info *info,
6549                             union iwreq_data *wrqu, char *extra)
6550 {
6551         struct ipw_priv *priv = ieee80211_priv(dev);
6552         struct ieee80211_device *ieee = priv->ieee;
6553         u8 *buf;
6554         int err = 0;
6555
6556         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6557             (wrqu->data.length && extra == NULL))
6558                 return -EINVAL;
6559
6560         if (wrqu->data.length) {
6561                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6562                 if (buf == NULL) {
6563                         err = -ENOMEM;
6564                         goto out;
6565                 }
6566
6567                 memcpy(buf, extra, wrqu->data.length);
6568                 kfree(ieee->wpa_ie);
6569                 ieee->wpa_ie = buf;
6570                 ieee->wpa_ie_len = wrqu->data.length;
6571         } else {
6572                 kfree(ieee->wpa_ie);
6573                 ieee->wpa_ie = NULL;
6574                 ieee->wpa_ie_len = 0;
6575         }
6576
6577         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6578       out:
6579         return err;
6580 }
6581
6582 /* SIOCGIWGENIE */
6583 static int ipw_wx_get_genie(struct net_device *dev,
6584                             struct iw_request_info *info,
6585                             union iwreq_data *wrqu, char *extra)
6586 {
6587         struct ipw_priv *priv = ieee80211_priv(dev);
6588         struct ieee80211_device *ieee = priv->ieee;
6589         int err = 0;
6590
6591         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6592                 wrqu->data.length = 0;
6593                 goto out;
6594         }
6595
6596         if (wrqu->data.length < ieee->wpa_ie_len) {
6597                 err = -E2BIG;
6598                 goto out;
6599         }
6600
6601         wrqu->data.length = ieee->wpa_ie_len;
6602         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6603
6604       out:
6605         return err;
6606 }
6607
6608 static int wext_cipher2level(int cipher)
6609 {
6610         switch (cipher) {
6611         case IW_AUTH_CIPHER_NONE:
6612                 return SEC_LEVEL_0;
6613         case IW_AUTH_CIPHER_WEP40:
6614         case IW_AUTH_CIPHER_WEP104:
6615                 return SEC_LEVEL_1;
6616         case IW_AUTH_CIPHER_TKIP:
6617                 return SEC_LEVEL_2;
6618         case IW_AUTH_CIPHER_CCMP:
6619                 return SEC_LEVEL_3;
6620         default:
6621                 return -1;
6622         }
6623 }
6624
6625 /* SIOCSIWAUTH */
6626 static int ipw_wx_set_auth(struct net_device *dev,
6627                            struct iw_request_info *info,
6628                            union iwreq_data *wrqu, char *extra)
6629 {
6630         struct ipw_priv *priv = ieee80211_priv(dev);
6631         struct ieee80211_device *ieee = priv->ieee;
6632         struct iw_param *param = &wrqu->param;
6633         struct lib80211_crypt_data *crypt;
6634         unsigned long flags;
6635         int ret = 0;
6636
6637         switch (param->flags & IW_AUTH_INDEX) {
6638         case IW_AUTH_WPA_VERSION:
6639                 break;
6640         case IW_AUTH_CIPHER_PAIRWISE:
6641                 ipw_set_hw_decrypt_unicast(priv,
6642                                            wext_cipher2level(param->value));
6643                 break;
6644         case IW_AUTH_CIPHER_GROUP:
6645                 ipw_set_hw_decrypt_multicast(priv,
6646                                              wext_cipher2level(param->value));
6647                 break;
6648         case IW_AUTH_KEY_MGMT:
6649                 /*
6650                  * ipw2200 does not use these parameters
6651                  */
6652                 break;
6653
6654         case IW_AUTH_TKIP_COUNTERMEASURES:
6655                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6656                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6657                         break;
6658
6659                 flags = crypt->ops->get_flags(crypt->priv);
6660
6661                 if (param->value)
6662                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6663                 else
6664                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6665
6666                 crypt->ops->set_flags(flags, crypt->priv);
6667
6668                 break;
6669
6670         case IW_AUTH_DROP_UNENCRYPTED:{
6671                         /* HACK:
6672                          *
6673                          * wpa_supplicant calls set_wpa_enabled when the driver
6674                          * is loaded and unloaded, regardless of if WPA is being
6675                          * used.  No other calls are made which can be used to
6676                          * determine if encryption will be used or not prior to
6677                          * association being expected.  If encryption is not being
6678                          * used, drop_unencrypted is set to false, else true -- we
6679                          * can use this to determine if the CAP_PRIVACY_ON bit should
6680                          * be set.
6681                          */
6682                         struct ieee80211_security sec = {
6683                                 .flags = SEC_ENABLED,
6684                                 .enabled = param->value,
6685                         };
6686                         priv->ieee->drop_unencrypted = param->value;
6687                         /* We only change SEC_LEVEL for open mode. Others
6688                          * are set by ipw_wpa_set_encryption.
6689                          */
6690                         if (!param->value) {
6691                                 sec.flags |= SEC_LEVEL;
6692                                 sec.level = SEC_LEVEL_0;
6693                         } else {
6694                                 sec.flags |= SEC_LEVEL;
6695                                 sec.level = SEC_LEVEL_1;
6696                         }
6697                         if (priv->ieee->set_security)
6698                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6699                         break;
6700                 }
6701
6702         case IW_AUTH_80211_AUTH_ALG:
6703                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6704                 break;
6705
6706         case IW_AUTH_WPA_ENABLED:
6707                 ret = ipw_wpa_enable(priv, param->value);
6708                 ipw_disassociate(priv);
6709                 break;
6710
6711         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6712                 ieee->ieee802_1x = param->value;
6713                 break;
6714
6715         case IW_AUTH_PRIVACY_INVOKED:
6716                 ieee->privacy_invoked = param->value;
6717                 break;
6718
6719         default:
6720                 return -EOPNOTSUPP;
6721         }
6722         return ret;
6723 }
6724
6725 /* SIOCGIWAUTH */
6726 static int ipw_wx_get_auth(struct net_device *dev,
6727                            struct iw_request_info *info,
6728                            union iwreq_data *wrqu, char *extra)
6729 {
6730         struct ipw_priv *priv = ieee80211_priv(dev);
6731         struct ieee80211_device *ieee = priv->ieee;
6732         struct lib80211_crypt_data *crypt;
6733         struct iw_param *param = &wrqu->param;
6734         int ret = 0;
6735
6736         switch (param->flags & IW_AUTH_INDEX) {
6737         case IW_AUTH_WPA_VERSION:
6738         case IW_AUTH_CIPHER_PAIRWISE:
6739         case IW_AUTH_CIPHER_GROUP:
6740         case IW_AUTH_KEY_MGMT:
6741                 /*
6742                  * wpa_supplicant will control these internally
6743                  */
6744                 ret = -EOPNOTSUPP;
6745                 break;
6746
6747         case IW_AUTH_TKIP_COUNTERMEASURES:
6748                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6749                 if (!crypt || !crypt->ops->get_flags)
6750                         break;
6751
6752                 param->value = (crypt->ops->get_flags(crypt->priv) &
6753                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6754
6755                 break;
6756
6757         case IW_AUTH_DROP_UNENCRYPTED:
6758                 param->value = ieee->drop_unencrypted;
6759                 break;
6760
6761         case IW_AUTH_80211_AUTH_ALG:
6762                 param->value = ieee->sec.auth_mode;
6763                 break;
6764
6765         case IW_AUTH_WPA_ENABLED:
6766                 param->value = ieee->wpa_enabled;
6767                 break;
6768
6769         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6770                 param->value = ieee->ieee802_1x;
6771                 break;
6772
6773         case IW_AUTH_ROAMING_CONTROL:
6774         case IW_AUTH_PRIVACY_INVOKED:
6775                 param->value = ieee->privacy_invoked;
6776                 break;
6777
6778         default:
6779                 return -EOPNOTSUPP;
6780         }
6781         return 0;
6782 }
6783
6784 /* SIOCSIWENCODEEXT */
6785 static int ipw_wx_set_encodeext(struct net_device *dev,
6786                                 struct iw_request_info *info,
6787                                 union iwreq_data *wrqu, char *extra)
6788 {
6789         struct ipw_priv *priv = ieee80211_priv(dev);
6790         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6791
6792         if (hwcrypto) {
6793                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6794                         /* IPW HW can't build TKIP MIC,
6795                            host decryption still needed */
6796                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6797                                 priv->ieee->host_mc_decrypt = 1;
6798                         else {
6799                                 priv->ieee->host_encrypt = 0;
6800                                 priv->ieee->host_encrypt_msdu = 1;
6801                                 priv->ieee->host_decrypt = 1;
6802                         }
6803                 } else {
6804                         priv->ieee->host_encrypt = 0;
6805                         priv->ieee->host_encrypt_msdu = 0;
6806                         priv->ieee->host_decrypt = 0;
6807                         priv->ieee->host_mc_decrypt = 0;
6808                 }
6809         }
6810
6811         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6812 }
6813
6814 /* SIOCGIWENCODEEXT */
6815 static int ipw_wx_get_encodeext(struct net_device *dev,
6816                                 struct iw_request_info *info,
6817                                 union iwreq_data *wrqu, char *extra)
6818 {
6819         struct ipw_priv *priv = ieee80211_priv(dev);
6820         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6821 }
6822
6823 /* SIOCSIWMLME */
6824 static int ipw_wx_set_mlme(struct net_device *dev,
6825                            struct iw_request_info *info,
6826                            union iwreq_data *wrqu, char *extra)
6827 {
6828         struct ipw_priv *priv = ieee80211_priv(dev);
6829         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6830         __le16 reason;
6831
6832         reason = cpu_to_le16(mlme->reason_code);
6833
6834         switch (mlme->cmd) {
6835         case IW_MLME_DEAUTH:
6836                 /* silently ignore */
6837                 break;
6838
6839         case IW_MLME_DISASSOC:
6840                 ipw_disassociate(priv);
6841                 break;
6842
6843         default:
6844                 return -EOPNOTSUPP;
6845         }
6846         return 0;
6847 }
6848
6849 #ifdef CONFIG_IPW2200_QOS
6850
6851 /* QoS */
6852 /*
6853 * get the modulation type of the current network or
6854 * the card current mode
6855 */
6856 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6857 {
6858         u8 mode = 0;
6859
6860         if (priv->status & STATUS_ASSOCIATED) {
6861                 unsigned long flags;
6862
6863                 spin_lock_irqsave(&priv->ieee->lock, flags);
6864                 mode = priv->assoc_network->mode;
6865                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6866         } else {
6867                 mode = priv->ieee->mode;
6868         }
6869         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6870         return mode;
6871 }
6872
6873 /*
6874 * Handle management frame beacon and probe response
6875 */
6876 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6877                                          int active_network,
6878                                          struct ieee80211_network *network)
6879 {
6880         u32 size = sizeof(struct ieee80211_qos_parameters);
6881
6882         if (network->capability & WLAN_CAPABILITY_IBSS)
6883                 network->qos_data.active = network->qos_data.supported;
6884
6885         if (network->flags & NETWORK_HAS_QOS_MASK) {
6886                 if (active_network &&
6887                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6888                         network->qos_data.active = network->qos_data.supported;
6889
6890                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6891                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6892                     (network->qos_data.old_param_count !=
6893                      network->qos_data.param_count)) {
6894                         network->qos_data.old_param_count =
6895                             network->qos_data.param_count;
6896                         schedule_work(&priv->qos_activate);
6897                         IPW_DEBUG_QOS("QoS parameters change call "
6898                                       "qos_activate\n");
6899                 }
6900         } else {
6901                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6902                         memcpy(&network->qos_data.parameters,
6903                                &def_parameters_CCK, size);
6904                 else
6905                         memcpy(&network->qos_data.parameters,
6906                                &def_parameters_OFDM, size);
6907
6908                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6909                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6910                         schedule_work(&priv->qos_activate);
6911                 }
6912
6913                 network->qos_data.active = 0;
6914                 network->qos_data.supported = 0;
6915         }
6916         if ((priv->status & STATUS_ASSOCIATED) &&
6917             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6918                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6919                         if (network->capability & WLAN_CAPABILITY_IBSS)
6920                                 if ((network->ssid_len ==
6921                                      priv->assoc_network->ssid_len) &&
6922                                     !memcmp(network->ssid,
6923                                             priv->assoc_network->ssid,
6924                                             network->ssid_len)) {
6925                                         queue_work(priv->workqueue,
6926                                                    &priv->merge_networks);
6927                                 }
6928         }
6929
6930         return 0;
6931 }
6932
6933 /*
6934 * This function set up the firmware to support QoS. It sends
6935 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6936 */
6937 static int ipw_qos_activate(struct ipw_priv *priv,
6938                             struct ieee80211_qos_data *qos_network_data)
6939 {
6940         int err;
6941         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6942         struct ieee80211_qos_parameters *active_one = NULL;
6943         u32 size = sizeof(struct ieee80211_qos_parameters);
6944         u32 burst_duration;
6945         int i;
6946         u8 type;
6947
6948         type = ipw_qos_current_mode(priv);
6949
6950         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6951         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6952         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6953         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6954
6955         if (qos_network_data == NULL) {
6956                 if (type == IEEE_B) {
6957                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6958                         active_one = &def_parameters_CCK;
6959                 } else
6960                         active_one = &def_parameters_OFDM;
6961
6962                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6963                 burst_duration = ipw_qos_get_burst_duration(priv);
6964                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6965                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6966                             cpu_to_le16(burst_duration);
6967         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6968                 if (type == IEEE_B) {
6969                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6970                                       type);
6971                         if (priv->qos_data.qos_enable == 0)
6972                                 active_one = &def_parameters_CCK;
6973                         else
6974                                 active_one = priv->qos_data.def_qos_parm_CCK;
6975                 } else {
6976                         if (priv->qos_data.qos_enable == 0)
6977                                 active_one = &def_parameters_OFDM;
6978                         else
6979                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6980                 }
6981                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6982         } else {
6983                 unsigned long flags;
6984                 int active;
6985
6986                 spin_lock_irqsave(&priv->ieee->lock, flags);
6987                 active_one = &(qos_network_data->parameters);
6988                 qos_network_data->old_param_count =
6989                     qos_network_data->param_count;
6990                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6991                 active = qos_network_data->supported;
6992                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6993
6994                 if (active == 0) {
6995                         burst_duration = ipw_qos_get_burst_duration(priv);
6996                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6997                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6998                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6999                 }
7000         }
7001
7002         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7003         err = ipw_send_qos_params_command(priv,
7004                                           (struct ieee80211_qos_parameters *)
7005                                           &(qos_parameters[0]));
7006         if (err)
7007                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7008
7009         return err;
7010 }
7011
7012 /*
7013 * send IPW_CMD_WME_INFO to the firmware
7014 */
7015 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7016 {
7017         int ret = 0;
7018         struct ieee80211_qos_information_element qos_info;
7019
7020         if (priv == NULL)
7021                 return -1;
7022
7023         qos_info.elementID = QOS_ELEMENT_ID;
7024         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7025
7026         qos_info.version = QOS_VERSION_1;
7027         qos_info.ac_info = 0;
7028
7029         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7030         qos_info.qui_type = QOS_OUI_TYPE;
7031         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7032
7033         ret = ipw_send_qos_info_command(priv, &qos_info);
7034         if (ret != 0) {
7035                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7036         }
7037         return ret;
7038 }
7039
7040 /*
7041 * Set the QoS parameter with the association request structure
7042 */
7043 static int ipw_qos_association(struct ipw_priv *priv,
7044                                struct ieee80211_network *network)
7045 {
7046         int err = 0;
7047         struct ieee80211_qos_data *qos_data = NULL;
7048         struct ieee80211_qos_data ibss_data = {
7049                 .supported = 1,
7050                 .active = 1,
7051         };
7052
7053         switch (priv->ieee->iw_mode) {
7054         case IW_MODE_ADHOC:
7055                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7056
7057                 qos_data = &ibss_data;
7058                 break;
7059
7060         case IW_MODE_INFRA:
7061                 qos_data = &network->qos_data;
7062                 break;
7063
7064         default:
7065                 BUG();
7066                 break;
7067         }
7068
7069         err = ipw_qos_activate(priv, qos_data);
7070         if (err) {
7071                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7072                 return err;
7073         }
7074
7075         if (priv->qos_data.qos_enable && qos_data->supported) {
7076                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7077                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7078                 return ipw_qos_set_info_element(priv);
7079         }
7080
7081         return 0;
7082 }
7083
7084 /*
7085 * handling the beaconing responses. if we get different QoS setting
7086 * off the network from the associated setting, adjust the QoS
7087 * setting
7088 */
7089 static int ipw_qos_association_resp(struct ipw_priv *priv,
7090                                     struct ieee80211_network *network)
7091 {
7092         int ret = 0;
7093         unsigned long flags;
7094         u32 size = sizeof(struct ieee80211_qos_parameters);
7095         int set_qos_param = 0;
7096
7097         if ((priv == NULL) || (network == NULL) ||
7098             (priv->assoc_network == NULL))
7099                 return ret;
7100
7101         if (!(priv->status & STATUS_ASSOCIATED))
7102                 return ret;
7103
7104         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7105                 return ret;
7106
7107         spin_lock_irqsave(&priv->ieee->lock, flags);
7108         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7109                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7110                        sizeof(struct ieee80211_qos_data));
7111                 priv->assoc_network->qos_data.active = 1;
7112                 if ((network->qos_data.old_param_count !=
7113                      network->qos_data.param_count)) {
7114                         set_qos_param = 1;
7115                         network->qos_data.old_param_count =
7116                             network->qos_data.param_count;
7117                 }
7118
7119         } else {
7120                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7121                         memcpy(&priv->assoc_network->qos_data.parameters,
7122                                &def_parameters_CCK, size);
7123                 else
7124                         memcpy(&priv->assoc_network->qos_data.parameters,
7125                                &def_parameters_OFDM, size);
7126                 priv->assoc_network->qos_data.active = 0;
7127                 priv->assoc_network->qos_data.supported = 0;
7128                 set_qos_param = 1;
7129         }
7130
7131         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7132
7133         if (set_qos_param == 1)
7134                 schedule_work(&priv->qos_activate);
7135
7136         return ret;
7137 }
7138
7139 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7140 {
7141         u32 ret = 0;
7142
7143         if ((priv == NULL))
7144                 return 0;
7145
7146         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7147                 ret = priv->qos_data.burst_duration_CCK;
7148         else
7149                 ret = priv->qos_data.burst_duration_OFDM;
7150
7151         return ret;
7152 }
7153
7154 /*
7155 * Initialize the setting of QoS global
7156 */
7157 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7158                          int burst_enable, u32 burst_duration_CCK,
7159                          u32 burst_duration_OFDM)
7160 {
7161         priv->qos_data.qos_enable = enable;
7162
7163         if (priv->qos_data.qos_enable) {
7164                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7165                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7166                 IPW_DEBUG_QOS("QoS is enabled\n");
7167         } else {
7168                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7169                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7170                 IPW_DEBUG_QOS("QoS is not enabled\n");
7171         }
7172
7173         priv->qos_data.burst_enable = burst_enable;
7174
7175         if (burst_enable) {
7176                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7177                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7178         } else {
7179                 priv->qos_data.burst_duration_CCK = 0;
7180                 priv->qos_data.burst_duration_OFDM = 0;
7181         }
7182 }
7183
7184 /*
7185 * map the packet priority to the right TX Queue
7186 */
7187 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7188 {
7189         if (priority > 7 || !priv->qos_data.qos_enable)
7190                 priority = 0;
7191
7192         return from_priority_to_tx_queue[priority] - 1;
7193 }
7194
7195 static int ipw_is_qos_active(struct net_device *dev,
7196                              struct sk_buff *skb)
7197 {
7198         struct ipw_priv *priv = ieee80211_priv(dev);
7199         struct ieee80211_qos_data *qos_data = NULL;
7200         int active, supported;
7201         u8 *daddr = skb->data + ETH_ALEN;
7202         int unicast = !is_multicast_ether_addr(daddr);
7203
7204         if (!(priv->status & STATUS_ASSOCIATED))
7205                 return 0;
7206
7207         qos_data = &priv->assoc_network->qos_data;
7208
7209         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7210                 if (unicast == 0)
7211                         qos_data->active = 0;
7212                 else
7213                         qos_data->active = qos_data->supported;
7214         }
7215         active = qos_data->active;
7216         supported = qos_data->supported;
7217         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7218                       "unicast %d\n",
7219                       priv->qos_data.qos_enable, active, supported, unicast);
7220         if (active && priv->qos_data.qos_enable)
7221                 return 1;
7222
7223         return 0;
7224
7225 }
7226 /*
7227 * add QoS parameter to the TX command
7228 */
7229 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7230                                         u16 priority,
7231                                         struct tfd_data *tfd)
7232 {
7233         int tx_queue_id = 0;
7234
7235
7236         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7237         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7238
7239         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7240                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7241                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7242         }
7243         return 0;
7244 }
7245
7246 /*
7247 * background support to run QoS activate functionality
7248 */
7249 static void ipw_bg_qos_activate(struct work_struct *work)
7250 {
7251         struct ipw_priv *priv =
7252                 container_of(work, struct ipw_priv, qos_activate);
7253
7254         mutex_lock(&priv->mutex);
7255
7256         if (priv->status & STATUS_ASSOCIATED)
7257                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7258
7259         mutex_unlock(&priv->mutex);
7260 }
7261
7262 static int ipw_handle_probe_response(struct net_device *dev,
7263                                      struct ieee80211_probe_response *resp,
7264                                      struct ieee80211_network *network)
7265 {
7266         struct ipw_priv *priv = ieee80211_priv(dev);
7267         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7268                               (network == priv->assoc_network));
7269
7270         ipw_qos_handle_probe_response(priv, active_network, network);
7271
7272         return 0;
7273 }
7274
7275 static int ipw_handle_beacon(struct net_device *dev,
7276                              struct ieee80211_beacon *resp,
7277                              struct ieee80211_network *network)
7278 {
7279         struct ipw_priv *priv = ieee80211_priv(dev);
7280         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7281                               (network == priv->assoc_network));
7282
7283         ipw_qos_handle_probe_response(priv, active_network, network);
7284
7285         return 0;
7286 }
7287
7288 static int ipw_handle_assoc_response(struct net_device *dev,
7289                                      struct ieee80211_assoc_response *resp,
7290                                      struct ieee80211_network *network)
7291 {
7292         struct ipw_priv *priv = ieee80211_priv(dev);
7293         ipw_qos_association_resp(priv, network);
7294         return 0;
7295 }
7296
7297 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7298                                        *qos_param)
7299 {
7300         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7301                                 sizeof(*qos_param) * 3, qos_param);
7302 }
7303
7304 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7305                                      *qos_param)
7306 {
7307         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7308                                 qos_param);
7309 }
7310
7311 #endif                          /* CONFIG_IPW2200_QOS */
7312
7313 static int ipw_associate_network(struct ipw_priv *priv,
7314                                  struct ieee80211_network *network,
7315                                  struct ipw_supported_rates *rates, int roaming)
7316 {
7317         int err;
7318         DECLARE_SSID_BUF(ssid);
7319
7320         if (priv->config & CFG_FIXED_RATE)
7321                 ipw_set_fixed_rate(priv, network->mode);
7322
7323         if (!(priv->config & CFG_STATIC_ESSID)) {
7324                 priv->essid_len = min(network->ssid_len,
7325                                       (u8) IW_ESSID_MAX_SIZE);
7326                 memcpy(priv->essid, network->ssid, priv->essid_len);
7327         }
7328
7329         network->last_associate = jiffies;
7330
7331         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7332         priv->assoc_request.channel = network->channel;
7333         priv->assoc_request.auth_key = 0;
7334
7335         if ((priv->capability & CAP_PRIVACY_ON) &&
7336             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7337                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7338                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7339
7340                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7341                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7342
7343         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7344                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7345                 priv->assoc_request.auth_type = AUTH_LEAP;
7346         else
7347                 priv->assoc_request.auth_type = AUTH_OPEN;
7348
7349         if (priv->ieee->wpa_ie_len) {
7350                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7351                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7352                                  priv->ieee->wpa_ie_len);
7353         }
7354
7355         /*
7356          * It is valid for our ieee device to support multiple modes, but
7357          * when it comes to associating to a given network we have to choose
7358          * just one mode.
7359          */
7360         if (network->mode & priv->ieee->mode & IEEE_A)
7361                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7362         else if (network->mode & priv->ieee->mode & IEEE_G)
7363                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7364         else if (network->mode & priv->ieee->mode & IEEE_B)
7365                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7366
7367         priv->assoc_request.capability = cpu_to_le16(network->capability);
7368         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7369             && !(priv->config & CFG_PREAMBLE_LONG)) {
7370                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7371         } else {
7372                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7373
7374                 /* Clear the short preamble if we won't be supporting it */
7375                 priv->assoc_request.capability &=
7376                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7377         }
7378
7379         /* Clear capability bits that aren't used in Ad Hoc */
7380         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7381                 priv->assoc_request.capability &=
7382                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7383
7384         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7385                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7386                         roaming ? "Rea" : "A",
7387                         print_ssid(ssid, priv->essid, priv->essid_len),
7388                         network->channel,
7389                         ipw_modes[priv->assoc_request.ieee_mode],
7390                         rates->num_rates,
7391                         (priv->assoc_request.preamble_length ==
7392                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7393                         network->capability &
7394                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7395                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7396                         priv->capability & CAP_PRIVACY_ON ?
7397                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7398                          "(open)") : "",
7399                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7400                         priv->capability & CAP_PRIVACY_ON ?
7401                         '1' + priv->ieee->sec.active_key : '.',
7402                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7403
7404         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7405         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7406             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7407                 priv->assoc_request.assoc_type = HC_IBSS_START;
7408                 priv->assoc_request.assoc_tsf_msw = 0;
7409                 priv->assoc_request.assoc_tsf_lsw = 0;
7410         } else {
7411                 if (unlikely(roaming))
7412                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7413                 else
7414                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7415                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7416                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7417         }
7418
7419         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7420
7421         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7422                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7423                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7424         } else {
7425                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7426                 priv->assoc_request.atim_window = 0;
7427         }
7428
7429         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7430
7431         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7432         if (err) {
7433                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7434                 return err;
7435         }
7436
7437         rates->ieee_mode = priv->assoc_request.ieee_mode;
7438         rates->purpose = IPW_RATE_CONNECT;
7439         ipw_send_supported_rates(priv, rates);
7440
7441         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7442                 priv->sys_config.dot11g_auto_detection = 1;
7443         else
7444                 priv->sys_config.dot11g_auto_detection = 0;
7445
7446         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7447                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7448         else
7449                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7450
7451         err = ipw_send_system_config(priv);
7452         if (err) {
7453                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7454                 return err;
7455         }
7456
7457         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7458         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7459         if (err) {
7460                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7461                 return err;
7462         }
7463
7464         /*
7465          * If preemption is enabled, it is possible for the association
7466          * to complete before we return from ipw_send_associate.  Therefore
7467          * we have to be sure and update our priviate data first.
7468          */
7469         priv->channel = network->channel;
7470         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7471         priv->status |= STATUS_ASSOCIATING;
7472         priv->status &= ~STATUS_SECURITY_UPDATED;
7473
7474         priv->assoc_network = network;
7475
7476 #ifdef CONFIG_IPW2200_QOS
7477         ipw_qos_association(priv, network);
7478 #endif
7479
7480         err = ipw_send_associate(priv, &priv->assoc_request);
7481         if (err) {
7482                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7483                 return err;
7484         }
7485
7486         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7487                   print_ssid(ssid, priv->essid, priv->essid_len),
7488                   priv->bssid);
7489
7490         return 0;
7491 }
7492
7493 static void ipw_roam(void *data)
7494 {
7495         struct ipw_priv *priv = data;
7496         struct ieee80211_network *network = NULL;
7497         struct ipw_network_match match = {
7498                 .network = priv->assoc_network
7499         };
7500
7501         /* The roaming process is as follows:
7502          *
7503          * 1.  Missed beacon threshold triggers the roaming process by
7504          *     setting the status ROAM bit and requesting a scan.
7505          * 2.  When the scan completes, it schedules the ROAM work
7506          * 3.  The ROAM work looks at all of the known networks for one that
7507          *     is a better network than the currently associated.  If none
7508          *     found, the ROAM process is over (ROAM bit cleared)
7509          * 4.  If a better network is found, a disassociation request is
7510          *     sent.
7511          * 5.  When the disassociation completes, the roam work is again
7512          *     scheduled.  The second time through, the driver is no longer
7513          *     associated, and the newly selected network is sent an
7514          *     association request.
7515          * 6.  At this point ,the roaming process is complete and the ROAM
7516          *     status bit is cleared.
7517          */
7518
7519         /* If we are no longer associated, and the roaming bit is no longer
7520          * set, then we are not actively roaming, so just return */
7521         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7522                 return;
7523
7524         if (priv->status & STATUS_ASSOCIATED) {
7525                 /* First pass through ROAM process -- look for a better
7526                  * network */
7527                 unsigned long flags;
7528                 u8 rssi = priv->assoc_network->stats.rssi;
7529                 priv->assoc_network->stats.rssi = -128;
7530                 spin_lock_irqsave(&priv->ieee->lock, flags);
7531                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7532                         if (network != priv->assoc_network)
7533                                 ipw_best_network(priv, &match, network, 1);
7534                 }
7535                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7536                 priv->assoc_network->stats.rssi = rssi;
7537
7538                 if (match.network == priv->assoc_network) {
7539                         IPW_DEBUG_ASSOC("No better APs in this network to "
7540                                         "roam to.\n");
7541                         priv->status &= ~STATUS_ROAMING;
7542                         ipw_debug_config(priv);
7543                         return;
7544                 }
7545
7546                 ipw_send_disassociate(priv, 1);
7547                 priv->assoc_network = match.network;
7548
7549                 return;
7550         }
7551
7552         /* Second pass through ROAM process -- request association */
7553         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7554         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7555         priv->status &= ~STATUS_ROAMING;
7556 }
7557
7558 static void ipw_bg_roam(struct work_struct *work)
7559 {
7560         struct ipw_priv *priv =
7561                 container_of(work, struct ipw_priv, roam);
7562         mutex_lock(&priv->mutex);
7563         ipw_roam(priv);
7564         mutex_unlock(&priv->mutex);
7565 }
7566
7567 static int ipw_associate(void *data)
7568 {
7569         struct ipw_priv *priv = data;
7570
7571         struct ieee80211_network *network = NULL;
7572         struct ipw_network_match match = {
7573                 .network = NULL
7574         };
7575         struct ipw_supported_rates *rates;
7576         struct list_head *element;
7577         unsigned long flags;
7578         DECLARE_SSID_BUF(ssid);
7579
7580         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7581                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7582                 return 0;
7583         }
7584
7585         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7586                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7587                                 "progress)\n");
7588                 return 0;
7589         }
7590
7591         if (priv->status & STATUS_DISASSOCIATING) {
7592                 IPW_DEBUG_ASSOC("Not attempting association (in "
7593                                 "disassociating)\n ");
7594                 queue_work(priv->workqueue, &priv->associate);
7595                 return 0;
7596         }
7597
7598         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7599                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7600                                 "initialized)\n");
7601                 return 0;
7602         }
7603
7604         if (!(priv->config & CFG_ASSOCIATE) &&
7605             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7606                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7607                 return 0;
7608         }
7609
7610         /* Protect our use of the network_list */
7611         spin_lock_irqsave(&priv->ieee->lock, flags);
7612         list_for_each_entry(network, &priv->ieee->network_list, list)
7613             ipw_best_network(priv, &match, network, 0);
7614
7615         network = match.network;
7616         rates = &match.rates;
7617
7618         if (network == NULL &&
7619             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7620             priv->config & CFG_ADHOC_CREATE &&
7621             priv->config & CFG_STATIC_ESSID &&
7622             priv->config & CFG_STATIC_CHANNEL) {
7623                 /* Use oldest network if the free list is empty */
7624                 if (list_empty(&priv->ieee->network_free_list)) {
7625                         struct ieee80211_network *oldest = NULL;
7626                         struct ieee80211_network *target;
7627
7628                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7629                                 if ((oldest == NULL) ||
7630                                     (target->last_scanned < oldest->last_scanned))
7631                                         oldest = target;
7632                         }
7633
7634                         /* If there are no more slots, expire the oldest */
7635                         list_del(&oldest->list);
7636                         target = oldest;
7637                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7638                                         "network list.\n",
7639                                         print_ssid(ssid, target->ssid,
7640                                                    target->ssid_len),
7641                                         target->bssid);
7642                         list_add_tail(&target->list,
7643                                       &priv->ieee->network_free_list);
7644                 }
7645
7646                 element = priv->ieee->network_free_list.next;
7647                 network = list_entry(element, struct ieee80211_network, list);
7648                 ipw_adhoc_create(priv, network);
7649                 rates = &priv->rates;
7650                 list_del(element);
7651                 list_add_tail(&network->list, &priv->ieee->network_list);
7652         }
7653         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7654
7655         /* If we reached the end of the list, then we don't have any valid
7656          * matching APs */
7657         if (!network) {
7658                 ipw_debug_config(priv);
7659
7660                 if (!(priv->status & STATUS_SCANNING)) {
7661                         if (!(priv->config & CFG_SPEED_SCAN))
7662                                 queue_delayed_work(priv->workqueue,
7663                                                    &priv->request_scan,
7664                                                    SCAN_INTERVAL);
7665                         else
7666                                 queue_delayed_work(priv->workqueue,
7667                                                    &priv->request_scan, 0);
7668                 }
7669
7670                 return 0;
7671         }
7672
7673         ipw_associate_network(priv, network, rates, 0);
7674
7675         return 1;
7676 }
7677
7678 static void ipw_bg_associate(struct work_struct *work)
7679 {
7680         struct ipw_priv *priv =
7681                 container_of(work, struct ipw_priv, associate);
7682         mutex_lock(&priv->mutex);
7683         ipw_associate(priv);
7684         mutex_unlock(&priv->mutex);
7685 }
7686
7687 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7688                                       struct sk_buff *skb)
7689 {
7690         struct ieee80211_hdr *hdr;
7691         u16 fc;
7692
7693         hdr = (struct ieee80211_hdr *)skb->data;
7694         fc = le16_to_cpu(hdr->frame_control);
7695         if (!(fc & IEEE80211_FCTL_PROTECTED))
7696                 return;
7697
7698         fc &= ~IEEE80211_FCTL_PROTECTED;
7699         hdr->frame_control = cpu_to_le16(fc);
7700         switch (priv->ieee->sec.level) {
7701         case SEC_LEVEL_3:
7702                 /* Remove CCMP HDR */
7703                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7704                         skb->data + IEEE80211_3ADDR_LEN + 8,
7705                         skb->len - IEEE80211_3ADDR_LEN - 8);
7706                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7707                 break;
7708         case SEC_LEVEL_2:
7709                 break;
7710         case SEC_LEVEL_1:
7711                 /* Remove IV */
7712                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7713                         skb->data + IEEE80211_3ADDR_LEN + 4,
7714                         skb->len - IEEE80211_3ADDR_LEN - 4);
7715                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7716                 break;
7717         case SEC_LEVEL_0:
7718                 break;
7719         default:
7720                 printk(KERN_ERR "Unknow security level %d\n",
7721                        priv->ieee->sec.level);
7722                 break;
7723         }
7724 }
7725
7726 static void ipw_handle_data_packet(struct ipw_priv *priv,
7727                                    struct ipw_rx_mem_buffer *rxb,
7728                                    struct ieee80211_rx_stats *stats)
7729 {
7730         struct net_device *dev = priv->net_dev;
7731         struct ieee80211_hdr_4addr *hdr;
7732         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7733
7734         /* We received data from the HW, so stop the watchdog */
7735         dev->trans_start = jiffies;
7736
7737         /* We only process data packets if the
7738          * interface is open */
7739         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7740                      skb_tailroom(rxb->skb))) {
7741                 dev->stats.rx_errors++;
7742                 priv->wstats.discard.misc++;
7743                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7744                 return;
7745         } else if (unlikely(!netif_running(priv->net_dev))) {
7746                 dev->stats.rx_dropped++;
7747                 priv->wstats.discard.misc++;
7748                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7749                 return;
7750         }
7751
7752         /* Advance skb->data to the start of the actual payload */
7753         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7754
7755         /* Set the size of the skb to the size of the frame */
7756         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7757
7758         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7759
7760         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7761         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7762         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7763             (is_multicast_ether_addr(hdr->addr1) ?
7764              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7765                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7766
7767         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7768                 dev->stats.rx_errors++;
7769         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7770                 rxb->skb = NULL;
7771                 __ipw_led_activity_on(priv);
7772         }
7773 }
7774
7775 #ifdef CONFIG_IPW2200_RADIOTAP
7776 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7777                                            struct ipw_rx_mem_buffer *rxb,
7778                                            struct ieee80211_rx_stats *stats)
7779 {
7780         struct net_device *dev = priv->net_dev;
7781         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7782         struct ipw_rx_frame *frame = &pkt->u.frame;
7783
7784         /* initial pull of some data */
7785         u16 received_channel = frame->received_channel;
7786         u8 antennaAndPhy = frame->antennaAndPhy;
7787         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7788         u16 pktrate = frame->rate;
7789
7790         /* Magic struct that slots into the radiotap header -- no reason
7791          * to build this manually element by element, we can write it much
7792          * more efficiently than we can parse it. ORDER MATTERS HERE */
7793         struct ipw_rt_hdr *ipw_rt;
7794
7795         short len = le16_to_cpu(pkt->u.frame.length);
7796
7797         /* We received data from the HW, so stop the watchdog */
7798         dev->trans_start = jiffies;
7799
7800         /* We only process data packets if the
7801          * interface is open */
7802         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7803                      skb_tailroom(rxb->skb))) {
7804                 dev->stats.rx_errors++;
7805                 priv->wstats.discard.misc++;
7806                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7807                 return;
7808         } else if (unlikely(!netif_running(priv->net_dev))) {
7809                 dev->stats.rx_dropped++;
7810                 priv->wstats.discard.misc++;
7811                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7812                 return;
7813         }
7814
7815         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7816          * that now */
7817         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7818                 /* FIXME: Should alloc bigger skb instead */
7819                 dev->stats.rx_dropped++;
7820                 priv->wstats.discard.misc++;
7821                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7822                 return;
7823         }
7824
7825         /* copy the frame itself */
7826         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7827                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7828
7829         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7830
7831         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7832         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7833         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7834
7835         /* Big bitfield of all the fields we provide in radiotap */
7836         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7837              (1 << IEEE80211_RADIOTAP_TSFT) |
7838              (1 << IEEE80211_RADIOTAP_FLAGS) |
7839              (1 << IEEE80211_RADIOTAP_RATE) |
7840              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7841              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7842              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7843              (1 << IEEE80211_RADIOTAP_ANTENNA));
7844
7845         /* Zero the flags, we'll add to them as we go */
7846         ipw_rt->rt_flags = 0;
7847         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7848                                frame->parent_tsf[2] << 16 |
7849                                frame->parent_tsf[1] << 8  |
7850                                frame->parent_tsf[0]);
7851
7852         /* Convert signal to DBM */
7853         ipw_rt->rt_dbmsignal = antsignal;
7854         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7855
7856         /* Convert the channel data and set the flags */
7857         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7858         if (received_channel > 14) {    /* 802.11a */
7859                 ipw_rt->rt_chbitmask =
7860                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7861         } else if (antennaAndPhy & 32) {        /* 802.11b */
7862                 ipw_rt->rt_chbitmask =
7863                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7864         } else {                /* 802.11g */
7865                 ipw_rt->rt_chbitmask =
7866                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7867         }
7868
7869         /* set the rate in multiples of 500k/s */
7870         switch (pktrate) {
7871         case IPW_TX_RATE_1MB:
7872                 ipw_rt->rt_rate = 2;
7873                 break;
7874         case IPW_TX_RATE_2MB:
7875                 ipw_rt->rt_rate = 4;
7876                 break;
7877         case IPW_TX_RATE_5MB:
7878                 ipw_rt->rt_rate = 10;
7879                 break;
7880         case IPW_TX_RATE_6MB:
7881                 ipw_rt->rt_rate = 12;
7882                 break;
7883         case IPW_TX_RATE_9MB:
7884                 ipw_rt->rt_rate = 18;
7885                 break;
7886         case IPW_TX_RATE_11MB:
7887                 ipw_rt->rt_rate = 22;
7888                 break;
7889         case IPW_TX_RATE_12MB:
7890                 ipw_rt->rt_rate = 24;
7891                 break;
7892         case IPW_TX_RATE_18MB:
7893                 ipw_rt->rt_rate = 36;
7894                 break;
7895         case IPW_TX_RATE_24MB:
7896                 ipw_rt->rt_rate = 48;
7897                 break;
7898         case IPW_TX_RATE_36MB:
7899                 ipw_rt->rt_rate = 72;
7900                 break;
7901         case IPW_TX_RATE_48MB:
7902                 ipw_rt->rt_rate = 96;
7903                 break;
7904         case IPW_TX_RATE_54MB:
7905                 ipw_rt->rt_rate = 108;
7906                 break;
7907         default:
7908                 ipw_rt->rt_rate = 0;
7909                 break;
7910         }
7911
7912         /* antenna number */
7913         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7914
7915         /* set the preamble flag if we have it */
7916         if ((antennaAndPhy & 64))
7917                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7918
7919         /* Set the size of the skb to the size of the frame */
7920         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7921
7922         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7923
7924         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7925                 dev->stats.rx_errors++;
7926         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7927                 rxb->skb = NULL;
7928                 /* no LED during capture */
7929         }
7930 }
7931 #endif
7932
7933 #ifdef CONFIG_IPW2200_PROMISCUOUS
7934 #define ieee80211_is_probe_response(fc) \
7935    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7936     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7937
7938 #define ieee80211_is_management(fc) \
7939    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7940
7941 #define ieee80211_is_control(fc) \
7942    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7943
7944 #define ieee80211_is_data(fc) \
7945    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7946
7947 #define ieee80211_is_assoc_request(fc) \
7948    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7949
7950 #define ieee80211_is_reassoc_request(fc) \
7951    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7952
7953 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7954                                       struct ipw_rx_mem_buffer *rxb,
7955                                       struct ieee80211_rx_stats *stats)
7956 {
7957         struct net_device *dev = priv->prom_net_dev;
7958         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7959         struct ipw_rx_frame *frame = &pkt->u.frame;
7960         struct ipw_rt_hdr *ipw_rt;
7961
7962         /* First cache any information we need before we overwrite
7963          * the information provided in the skb from the hardware */
7964         struct ieee80211_hdr *hdr;
7965         u16 channel = frame->received_channel;
7966         u8 phy_flags = frame->antennaAndPhy;
7967         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7968         s8 noise = (s8) le16_to_cpu(frame->noise);
7969         u8 rate = frame->rate;
7970         short len = le16_to_cpu(pkt->u.frame.length);
7971         struct sk_buff *skb;
7972         int hdr_only = 0;
7973         u16 filter = priv->prom_priv->filter;
7974
7975         /* If the filter is set to not include Rx frames then return */
7976         if (filter & IPW_PROM_NO_RX)
7977                 return;
7978
7979         /* We received data from the HW, so stop the watchdog */
7980         dev->trans_start = jiffies;
7981
7982         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7983                 dev->stats.rx_errors++;
7984                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7985                 return;
7986         }
7987
7988         /* We only process data packets if the interface is open */
7989         if (unlikely(!netif_running(dev))) {
7990                 dev->stats.rx_dropped++;
7991                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7992                 return;
7993         }
7994
7995         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7996          * that now */
7997         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7998                 /* FIXME: Should alloc bigger skb instead */
7999                 dev->stats.rx_dropped++;
8000                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8001                 return;
8002         }
8003
8004         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8005         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8006                 if (filter & IPW_PROM_NO_MGMT)
8007                         return;
8008                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8009                         hdr_only = 1;
8010         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8011                 if (filter & IPW_PROM_NO_CTL)
8012                         return;
8013                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8014                         hdr_only = 1;
8015         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8016                 if (filter & IPW_PROM_NO_DATA)
8017                         return;
8018                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8019                         hdr_only = 1;
8020         }
8021
8022         /* Copy the SKB since this is for the promiscuous side */
8023         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8024         if (skb == NULL) {
8025                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8026                 return;
8027         }
8028
8029         /* copy the frame data to write after where the radiotap header goes */
8030         ipw_rt = (void *)skb->data;
8031
8032         if (hdr_only)
8033                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8034
8035         memcpy(ipw_rt->payload, hdr, len);
8036
8037         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8038         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8039         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8040
8041         /* Set the size of the skb to the size of the frame */
8042         skb_put(skb, sizeof(*ipw_rt) + len);
8043
8044         /* Big bitfield of all the fields we provide in radiotap */
8045         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8046              (1 << IEEE80211_RADIOTAP_TSFT) |
8047              (1 << IEEE80211_RADIOTAP_FLAGS) |
8048              (1 << IEEE80211_RADIOTAP_RATE) |
8049              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8050              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8051              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8052              (1 << IEEE80211_RADIOTAP_ANTENNA));
8053
8054         /* Zero the flags, we'll add to them as we go */
8055         ipw_rt->rt_flags = 0;
8056         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8057                                frame->parent_tsf[2] << 16 |
8058                                frame->parent_tsf[1] << 8  |
8059                                frame->parent_tsf[0]);
8060
8061         /* Convert to DBM */
8062         ipw_rt->rt_dbmsignal = signal;
8063         ipw_rt->rt_dbmnoise = noise;
8064
8065         /* Convert the channel data and set the flags */
8066         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8067         if (channel > 14) {     /* 802.11a */
8068                 ipw_rt->rt_chbitmask =
8069                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8070         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8071                 ipw_rt->rt_chbitmask =
8072                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8073         } else {                /* 802.11g */
8074                 ipw_rt->rt_chbitmask =
8075                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8076         }
8077
8078         /* set the rate in multiples of 500k/s */
8079         switch (rate) {
8080         case IPW_TX_RATE_1MB:
8081                 ipw_rt->rt_rate = 2;
8082                 break;
8083         case IPW_TX_RATE_2MB:
8084                 ipw_rt->rt_rate = 4;
8085                 break;
8086         case IPW_TX_RATE_5MB:
8087                 ipw_rt->rt_rate = 10;
8088                 break;
8089         case IPW_TX_RATE_6MB:
8090                 ipw_rt->rt_rate = 12;
8091                 break;
8092         case IPW_TX_RATE_9MB:
8093                 ipw_rt->rt_rate = 18;
8094                 break;
8095         case IPW_TX_RATE_11MB:
8096                 ipw_rt->rt_rate = 22;
8097                 break;
8098         case IPW_TX_RATE_12MB:
8099                 ipw_rt->rt_rate = 24;
8100                 break;
8101         case IPW_TX_RATE_18MB:
8102                 ipw_rt->rt_rate = 36;
8103                 break;
8104         case IPW_TX_RATE_24MB:
8105                 ipw_rt->rt_rate = 48;
8106                 break;
8107         case IPW_TX_RATE_36MB:
8108                 ipw_rt->rt_rate = 72;
8109                 break;
8110         case IPW_TX_RATE_48MB:
8111                 ipw_rt->rt_rate = 96;
8112                 break;
8113         case IPW_TX_RATE_54MB:
8114                 ipw_rt->rt_rate = 108;
8115                 break;
8116         default:
8117                 ipw_rt->rt_rate = 0;
8118                 break;
8119         }
8120
8121         /* antenna number */
8122         ipw_rt->rt_antenna = (phy_flags & 3);
8123
8124         /* set the preamble flag if we have it */
8125         if (phy_flags & (1 << 6))
8126                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8127
8128         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8129
8130         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8131                 dev->stats.rx_errors++;
8132                 dev_kfree_skb_any(skb);
8133         }
8134 }
8135 #endif
8136
8137 static int is_network_packet(struct ipw_priv *priv,
8138                                     struct ieee80211_hdr_4addr *header)
8139 {
8140         /* Filter incoming packets to determine if they are targetted toward
8141          * this network, discarding packets coming from ourselves */
8142         switch (priv->ieee->iw_mode) {
8143         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8144                 /* packets from our adapter are dropped (echo) */
8145                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8146                         return 0;
8147
8148                 /* {broad,multi}cast packets to our BSSID go through */
8149                 if (is_multicast_ether_addr(header->addr1))
8150                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8151
8152                 /* packets to our adapter go through */
8153                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8154                                ETH_ALEN);
8155
8156         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8157                 /* packets from our adapter are dropped (echo) */
8158                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8159                         return 0;
8160
8161                 /* {broad,multi}cast packets to our BSS go through */
8162                 if (is_multicast_ether_addr(header->addr1))
8163                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8164
8165                 /* packets to our adapter go through */
8166                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8167                                ETH_ALEN);
8168         }
8169
8170         return 1;
8171 }
8172
8173 #define IPW_PACKET_RETRY_TIME HZ
8174
8175 static  int is_duplicate_packet(struct ipw_priv *priv,
8176                                       struct ieee80211_hdr_4addr *header)
8177 {
8178         u16 sc = le16_to_cpu(header->seq_ctl);
8179         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8180         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8181         u16 *last_seq, *last_frag;
8182         unsigned long *last_time;
8183
8184         switch (priv->ieee->iw_mode) {
8185         case IW_MODE_ADHOC:
8186                 {
8187                         struct list_head *p;
8188                         struct ipw_ibss_seq *entry = NULL;
8189                         u8 *mac = header->addr2;
8190                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8191
8192                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8193                                 entry =
8194                                     list_entry(p, struct ipw_ibss_seq, list);
8195                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8196                                         break;
8197                         }
8198                         if (p == &priv->ibss_mac_hash[index]) {
8199                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8200                                 if (!entry) {
8201                                         IPW_ERROR
8202                                             ("Cannot malloc new mac entry\n");
8203                                         return 0;
8204                                 }
8205                                 memcpy(entry->mac, mac, ETH_ALEN);
8206                                 entry->seq_num = seq;
8207                                 entry->frag_num = frag;
8208                                 entry->packet_time = jiffies;
8209                                 list_add(&entry->list,
8210                                          &priv->ibss_mac_hash[index]);
8211                                 return 0;
8212                         }
8213                         last_seq = &entry->seq_num;
8214                         last_frag = &entry->frag_num;
8215                         last_time = &entry->packet_time;
8216                         break;
8217                 }
8218         case IW_MODE_INFRA:
8219                 last_seq = &priv->last_seq_num;
8220                 last_frag = &priv->last_frag_num;
8221                 last_time = &priv->last_packet_time;
8222                 break;
8223         default:
8224                 return 0;
8225         }
8226         if ((*last_seq == seq) &&
8227             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8228                 if (*last_frag == frag)
8229                         goto drop;
8230                 if (*last_frag + 1 != frag)
8231                         /* out-of-order fragment */
8232                         goto drop;
8233         } else
8234                 *last_seq = seq;
8235
8236         *last_frag = frag;
8237         *last_time = jiffies;
8238         return 0;
8239
8240       drop:
8241         /* Comment this line now since we observed the card receives
8242          * duplicate packets but the FCTL_RETRY bit is not set in the
8243          * IBSS mode with fragmentation enabled.
8244          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8245         return 1;
8246 }
8247
8248 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8249                                    struct ipw_rx_mem_buffer *rxb,
8250                                    struct ieee80211_rx_stats *stats)
8251 {
8252         struct sk_buff *skb = rxb->skb;
8253         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8254         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8255             (skb->data + IPW_RX_FRAME_SIZE);
8256
8257         ieee80211_rx_mgt(priv->ieee, header, stats);
8258
8259         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8260             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8261               IEEE80211_STYPE_PROBE_RESP) ||
8262              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8263               IEEE80211_STYPE_BEACON))) {
8264                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8265                         ipw_add_station(priv, header->addr2);
8266         }
8267
8268         if (priv->config & CFG_NET_STATS) {
8269                 IPW_DEBUG_HC("sending stat packet\n");
8270
8271                 /* Set the size of the skb to the size of the full
8272                  * ipw header and 802.11 frame */
8273                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8274                         IPW_RX_FRAME_SIZE);
8275
8276                 /* Advance past the ipw packet header to the 802.11 frame */
8277                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8278
8279                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8280                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8281
8282                 skb->dev = priv->ieee->dev;
8283
8284                 /* Point raw at the ieee80211_stats */
8285                 skb_reset_mac_header(skb);
8286
8287                 skb->pkt_type = PACKET_OTHERHOST;
8288                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8289                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8290                 netif_rx(skb);
8291                 rxb->skb = NULL;
8292         }
8293 }
8294
8295 /*
8296  * Main entry function for recieving a packet with 80211 headers.  This
8297  * should be called when ever the FW has notified us that there is a new
8298  * skb in the recieve queue.
8299  */
8300 static void ipw_rx(struct ipw_priv *priv)
8301 {
8302         struct ipw_rx_mem_buffer *rxb;
8303         struct ipw_rx_packet *pkt;
8304         struct ieee80211_hdr_4addr *header;
8305         u32 r, w, i;
8306         u8 network_packet;
8307         u8 fill_rx = 0;
8308
8309         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8310         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8311         i = priv->rxq->read;
8312
8313         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8314                 fill_rx = 1;
8315
8316         while (i != r) {
8317                 rxb = priv->rxq->queue[i];
8318                 if (unlikely(rxb == NULL)) {
8319                         printk(KERN_CRIT "Queue not allocated!\n");
8320                         break;
8321                 }
8322                 priv->rxq->queue[i] = NULL;
8323
8324                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8325                                             IPW_RX_BUF_SIZE,
8326                                             PCI_DMA_FROMDEVICE);
8327
8328                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8329                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8330                              pkt->header.message_type,
8331                              pkt->header.rx_seq_num, pkt->header.control_bits);
8332
8333                 switch (pkt->header.message_type) {
8334                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8335                                 struct ieee80211_rx_stats stats = {
8336                                         .rssi = pkt->u.frame.rssi_dbm -
8337                                             IPW_RSSI_TO_DBM,
8338                                         .signal =
8339                                             pkt->u.frame.rssi_dbm -
8340                                             IPW_RSSI_TO_DBM + 0x100,
8341                                         .noise =
8342                                             le16_to_cpu(pkt->u.frame.noise),
8343                                         .rate = pkt->u.frame.rate,
8344                                         .mac_time = jiffies,
8345                                         .received_channel =
8346                                             pkt->u.frame.received_channel,
8347                                         .freq =
8348                                             (pkt->u.frame.
8349                                              control & (1 << 0)) ?
8350                                             IEEE80211_24GHZ_BAND :
8351                                             IEEE80211_52GHZ_BAND,
8352                                         .len = le16_to_cpu(pkt->u.frame.length),
8353                                 };
8354
8355                                 if (stats.rssi != 0)
8356                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8357                                 if (stats.signal != 0)
8358                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8359                                 if (stats.noise != 0)
8360                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8361                                 if (stats.rate != 0)
8362                                         stats.mask |= IEEE80211_STATMASK_RATE;
8363
8364                                 priv->rx_packets++;
8365
8366 #ifdef CONFIG_IPW2200_PROMISCUOUS
8367         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8368                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8369 #endif
8370
8371 #ifdef CONFIG_IPW2200_MONITOR
8372                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8373 #ifdef CONFIG_IPW2200_RADIOTAP
8374
8375                 ipw_handle_data_packet_monitor(priv,
8376                                                rxb,
8377                                                &stats);
8378 #else
8379                 ipw_handle_data_packet(priv, rxb,
8380                                        &stats);
8381 #endif
8382                                         break;
8383                                 }
8384 #endif
8385
8386                                 header =
8387                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8388                                                                    data +
8389                                                                    IPW_RX_FRAME_SIZE);
8390                                 /* TODO: Check Ad-Hoc dest/source and make sure
8391                                  * that we are actually parsing these packets
8392                                  * correctly -- we should probably use the
8393                                  * frame control of the packet and disregard
8394                                  * the current iw_mode */
8395
8396                                 network_packet =
8397                                     is_network_packet(priv, header);
8398                                 if (network_packet && priv->assoc_network) {
8399                                         priv->assoc_network->stats.rssi =
8400                                             stats.rssi;
8401                                         priv->exp_avg_rssi =
8402                                             exponential_average(priv->exp_avg_rssi,
8403                                             stats.rssi, DEPTH_RSSI);
8404                                 }
8405
8406                                 IPW_DEBUG_RX("Frame: len=%u\n",
8407                                              le16_to_cpu(pkt->u.frame.length));
8408
8409                                 if (le16_to_cpu(pkt->u.frame.length) <
8410                                     ieee80211_get_hdrlen(le16_to_cpu(
8411                                                     header->frame_ctl))) {
8412                                         IPW_DEBUG_DROP
8413                                             ("Received packet is too small. "
8414                                              "Dropping.\n");
8415                                         priv->net_dev->stats.rx_errors++;
8416                                         priv->wstats.discard.misc++;
8417                                         break;
8418                                 }
8419
8420                                 switch (WLAN_FC_GET_TYPE
8421                                         (le16_to_cpu(header->frame_ctl))) {
8422
8423                                 case IEEE80211_FTYPE_MGMT:
8424                                         ipw_handle_mgmt_packet(priv, rxb,
8425                                                                &stats);
8426                                         break;
8427
8428                                 case IEEE80211_FTYPE_CTL:
8429                                         break;
8430
8431                                 case IEEE80211_FTYPE_DATA:
8432                                         if (unlikely(!network_packet ||
8433                                                      is_duplicate_packet(priv,
8434                                                                          header)))
8435                                         {
8436                                                 IPW_DEBUG_DROP("Dropping: "
8437                                                                "%pM, "
8438                                                                "%pM, "
8439                                                                "%pM\n",
8440                                                                header->addr1,
8441                                                                header->addr2,
8442                                                                header->addr3);
8443                                                 break;
8444                                         }
8445
8446                                         ipw_handle_data_packet(priv, rxb,
8447                                                                &stats);
8448
8449                                         break;
8450                                 }
8451                                 break;
8452                         }
8453
8454                 case RX_HOST_NOTIFICATION_TYPE:{
8455                                 IPW_DEBUG_RX
8456                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8457                                      pkt->u.notification.subtype,
8458                                      pkt->u.notification.flags,
8459                                      le16_to_cpu(pkt->u.notification.size));
8460                                 ipw_rx_notification(priv, &pkt->u.notification);
8461                                 break;
8462                         }
8463
8464                 default:
8465                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8466                                      pkt->header.message_type);
8467                         break;
8468                 }
8469
8470                 /* For now we just don't re-use anything.  We can tweak this
8471                  * later to try and re-use notification packets and SKBs that
8472                  * fail to Rx correctly */
8473                 if (rxb->skb != NULL) {
8474                         dev_kfree_skb_any(rxb->skb);
8475                         rxb->skb = NULL;
8476                 }
8477
8478                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8479                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8480                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8481
8482                 i = (i + 1) % RX_QUEUE_SIZE;
8483
8484                 /* If there are a lot of unsued frames, restock the Rx queue
8485                  * so the ucode won't assert */
8486                 if (fill_rx) {
8487                         priv->rxq->read = i;
8488                         ipw_rx_queue_replenish(priv);
8489                 }
8490         }
8491
8492         /* Backtrack one entry */
8493         priv->rxq->read = i;
8494         ipw_rx_queue_restock(priv);
8495 }
8496
8497 #define DEFAULT_RTS_THRESHOLD     2304U
8498 #define MIN_RTS_THRESHOLD         1U
8499 #define MAX_RTS_THRESHOLD         2304U
8500 #define DEFAULT_BEACON_INTERVAL   100U
8501 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8502 #define DEFAULT_LONG_RETRY_LIMIT  4U
8503
8504 /**
8505  * ipw_sw_reset
8506  * @option: options to control different reset behaviour
8507  *          0 = reset everything except the 'disable' module_param
8508  *          1 = reset everything and print out driver info (for probe only)
8509  *          2 = reset everything
8510  */
8511 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8512 {
8513         int band, modulation;
8514         int old_mode = priv->ieee->iw_mode;
8515
8516         /* Initialize module parameter values here */
8517         priv->config = 0;
8518
8519         /* We default to disabling the LED code as right now it causes
8520          * too many systems to lock up... */
8521         if (!led_support)
8522                 priv->config |= CFG_NO_LED;
8523
8524         if (associate)
8525                 priv->config |= CFG_ASSOCIATE;
8526         else
8527                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8528
8529         if (auto_create)
8530                 priv->config |= CFG_ADHOC_CREATE;
8531         else
8532                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8533
8534         priv->config &= ~CFG_STATIC_ESSID;
8535         priv->essid_len = 0;
8536         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8537
8538         if (disable && option) {
8539                 priv->status |= STATUS_RF_KILL_SW;
8540                 IPW_DEBUG_INFO("Radio disabled.\n");
8541         }
8542
8543         if (default_channel != 0) {
8544                 priv->config |= CFG_STATIC_CHANNEL;
8545                 priv->channel = default_channel;
8546                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8547                 /* TODO: Validate that provided channel is in range */
8548         }
8549 #ifdef CONFIG_IPW2200_QOS
8550         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8551                      burst_duration_CCK, burst_duration_OFDM);
8552 #endif                          /* CONFIG_IPW2200_QOS */
8553
8554         switch (network_mode) {
8555         case 1:
8556                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8557                 priv->net_dev->type = ARPHRD_ETHER;
8558
8559                 break;
8560 #ifdef CONFIG_IPW2200_MONITOR
8561         case 2:
8562                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8563 #ifdef CONFIG_IPW2200_RADIOTAP
8564                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8565 #else
8566                 priv->net_dev->type = ARPHRD_IEEE80211;
8567 #endif
8568                 break;
8569 #endif
8570         default:
8571         case 0:
8572                 priv->net_dev->type = ARPHRD_ETHER;
8573                 priv->ieee->iw_mode = IW_MODE_INFRA;
8574                 break;
8575         }
8576
8577         if (hwcrypto) {
8578                 priv->ieee->host_encrypt = 0;
8579                 priv->ieee->host_encrypt_msdu = 0;
8580                 priv->ieee->host_decrypt = 0;
8581                 priv->ieee->host_mc_decrypt = 0;
8582         }
8583         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8584
8585         /* IPW2200/2915 is abled to do hardware fragmentation. */
8586         priv->ieee->host_open_frag = 0;
8587
8588         if ((priv->pci_dev->device == 0x4223) ||
8589             (priv->pci_dev->device == 0x4224)) {
8590                 if (option == 1)
8591                         printk(KERN_INFO DRV_NAME
8592                                ": Detected Intel PRO/Wireless 2915ABG Network "
8593                                "Connection\n");
8594                 priv->ieee->abg_true = 1;
8595                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8596                 modulation = IEEE80211_OFDM_MODULATION |
8597                     IEEE80211_CCK_MODULATION;
8598                 priv->adapter = IPW_2915ABG;
8599                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8600         } else {
8601                 if (option == 1)
8602                         printk(KERN_INFO DRV_NAME
8603                                ": Detected Intel PRO/Wireless 2200BG Network "
8604                                "Connection\n");
8605
8606                 priv->ieee->abg_true = 0;
8607                 band = IEEE80211_24GHZ_BAND;
8608                 modulation = IEEE80211_OFDM_MODULATION |
8609                     IEEE80211_CCK_MODULATION;
8610                 priv->adapter = IPW_2200BG;
8611                 priv->ieee->mode = IEEE_G | IEEE_B;
8612         }
8613
8614         priv->ieee->freq_band = band;
8615         priv->ieee->modulation = modulation;
8616
8617         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8618
8619         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8620         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8621
8622         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8623         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8624         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8625
8626         /* If power management is turned on, default to AC mode */
8627         priv->power_mode = IPW_POWER_AC;
8628         priv->tx_power = IPW_TX_POWER_DEFAULT;
8629
8630         return old_mode == priv->ieee->iw_mode;
8631 }
8632
8633 /*
8634  * This file defines the Wireless Extension handlers.  It does not
8635  * define any methods of hardware manipulation and relies on the
8636  * functions defined in ipw_main to provide the HW interaction.
8637  *
8638  * The exception to this is the use of the ipw_get_ordinal()
8639  * function used to poll the hardware vs. making unecessary calls.
8640  *
8641  */
8642
8643 static int ipw_wx_get_name(struct net_device *dev,
8644                            struct iw_request_info *info,
8645                            union iwreq_data *wrqu, char *extra)
8646 {
8647         struct ipw_priv *priv = ieee80211_priv(dev);
8648         mutex_lock(&priv->mutex);
8649         if (priv->status & STATUS_RF_KILL_MASK)
8650                 strcpy(wrqu->name, "radio off");
8651         else if (!(priv->status & STATUS_ASSOCIATED))
8652                 strcpy(wrqu->name, "unassociated");
8653         else
8654                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8655                          ipw_modes[priv->assoc_request.ieee_mode]);
8656         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8657         mutex_unlock(&priv->mutex);
8658         return 0;
8659 }
8660
8661 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8662 {
8663         if (channel == 0) {
8664                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8665                 priv->config &= ~CFG_STATIC_CHANNEL;
8666                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8667                                 "parameters.\n");
8668                 ipw_associate(priv);
8669                 return 0;
8670         }
8671
8672         priv->config |= CFG_STATIC_CHANNEL;
8673
8674         if (priv->channel == channel) {
8675                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8676                                channel);
8677                 return 0;
8678         }
8679
8680         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8681         priv->channel = channel;
8682
8683 #ifdef CONFIG_IPW2200_MONITOR
8684         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8685                 int i;
8686                 if (priv->status & STATUS_SCANNING) {
8687                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8688                                        "channel change.\n");
8689                         ipw_abort_scan(priv);
8690                 }
8691
8692                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8693                         udelay(10);
8694
8695                 if (priv->status & STATUS_SCANNING)
8696                         IPW_DEBUG_SCAN("Still scanning...\n");
8697                 else
8698                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8699                                        1000 - i);
8700
8701                 return 0;
8702         }
8703 #endif                          /* CONFIG_IPW2200_MONITOR */
8704
8705         /* Network configuration changed -- force [re]association */
8706         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8707         if (!ipw_disassociate(priv))
8708                 ipw_associate(priv);
8709
8710         return 0;
8711 }
8712
8713 static int ipw_wx_set_freq(struct net_device *dev,
8714                            struct iw_request_info *info,
8715                            union iwreq_data *wrqu, char *extra)
8716 {
8717         struct ipw_priv *priv = ieee80211_priv(dev);
8718         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8719         struct iw_freq *fwrq = &wrqu->freq;
8720         int ret = 0, i;
8721         u8 channel, flags;
8722         int band;
8723
8724         if (fwrq->m == 0) {
8725                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8726                 mutex_lock(&priv->mutex);
8727                 ret = ipw_set_channel(priv, 0);
8728                 mutex_unlock(&priv->mutex);
8729                 return ret;
8730         }
8731         /* if setting by freq convert to channel */
8732         if (fwrq->e == 1) {
8733                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8734                 if (channel == 0)
8735                         return -EINVAL;
8736         } else
8737                 channel = fwrq->m;
8738
8739         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8740                 return -EINVAL;
8741
8742         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8743                 i = ieee80211_channel_to_index(priv->ieee, channel);
8744                 if (i == -1)
8745                         return -EINVAL;
8746
8747                 flags = (band == IEEE80211_24GHZ_BAND) ?
8748                     geo->bg[i].flags : geo->a[i].flags;
8749                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8750                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8751                         return -EINVAL;
8752                 }
8753         }
8754
8755         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8756         mutex_lock(&priv->mutex);
8757         ret = ipw_set_channel(priv, channel);
8758         mutex_unlock(&priv->mutex);
8759         return ret;
8760 }
8761
8762 static int ipw_wx_get_freq(struct net_device *dev,
8763                            struct iw_request_info *info,
8764                            union iwreq_data *wrqu, char *extra)
8765 {
8766         struct ipw_priv *priv = ieee80211_priv(dev);
8767
8768         wrqu->freq.e = 0;
8769
8770         /* If we are associated, trying to associate, or have a statically
8771          * configured CHANNEL then return that; otherwise return ANY */
8772         mutex_lock(&priv->mutex);
8773         if (priv->config & CFG_STATIC_CHANNEL ||
8774             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8775                 int i;
8776
8777                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8778                 BUG_ON(i == -1);
8779                 wrqu->freq.e = 1;
8780
8781                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8782                 case IEEE80211_52GHZ_BAND:
8783                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8784                         break;
8785
8786                 case IEEE80211_24GHZ_BAND:
8787                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8788                         break;
8789
8790                 default:
8791                         BUG();
8792                 }
8793         } else
8794                 wrqu->freq.m = 0;
8795
8796         mutex_unlock(&priv->mutex);
8797         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8798         return 0;
8799 }
8800
8801 static int ipw_wx_set_mode(struct net_device *dev,
8802                            struct iw_request_info *info,
8803                            union iwreq_data *wrqu, char *extra)
8804 {
8805         struct ipw_priv *priv = ieee80211_priv(dev);
8806         int err = 0;
8807
8808         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8809
8810         switch (wrqu->mode) {
8811 #ifdef CONFIG_IPW2200_MONITOR
8812         case IW_MODE_MONITOR:
8813 #endif
8814         case IW_MODE_ADHOC:
8815         case IW_MODE_INFRA:
8816                 break;
8817         case IW_MODE_AUTO:
8818                 wrqu->mode = IW_MODE_INFRA;
8819                 break;
8820         default:
8821                 return -EINVAL;
8822         }
8823         if (wrqu->mode == priv->ieee->iw_mode)
8824                 return 0;
8825
8826         mutex_lock(&priv->mutex);
8827
8828         ipw_sw_reset(priv, 0);
8829
8830 #ifdef CONFIG_IPW2200_MONITOR
8831         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8832                 priv->net_dev->type = ARPHRD_ETHER;
8833
8834         if (wrqu->mode == IW_MODE_MONITOR)
8835 #ifdef CONFIG_IPW2200_RADIOTAP
8836                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8837 #else
8838                 priv->net_dev->type = ARPHRD_IEEE80211;
8839 #endif
8840 #endif                          /* CONFIG_IPW2200_MONITOR */
8841
8842         /* Free the existing firmware and reset the fw_loaded
8843          * flag so ipw_load() will bring in the new firmware */
8844         free_firmware();
8845
8846         priv->ieee->iw_mode = wrqu->mode;
8847
8848         queue_work(priv->workqueue, &priv->adapter_restart);
8849         mutex_unlock(&priv->mutex);
8850         return err;
8851 }
8852
8853 static int ipw_wx_get_mode(struct net_device *dev,
8854                            struct iw_request_info *info,
8855                            union iwreq_data *wrqu, char *extra)
8856 {
8857         struct ipw_priv *priv = ieee80211_priv(dev);
8858         mutex_lock(&priv->mutex);
8859         wrqu->mode = priv->ieee->iw_mode;
8860         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8861         mutex_unlock(&priv->mutex);
8862         return 0;
8863 }
8864
8865 /* Values are in microsecond */
8866 static const s32 timeout_duration[] = {
8867         350000,
8868         250000,
8869         75000,
8870         37000,
8871         25000,
8872 };
8873
8874 static const s32 period_duration[] = {
8875         400000,
8876         700000,
8877         1000000,
8878         1000000,
8879         1000000
8880 };
8881
8882 static int ipw_wx_get_range(struct net_device *dev,
8883                             struct iw_request_info *info,
8884                             union iwreq_data *wrqu, char *extra)
8885 {
8886         struct ipw_priv *priv = ieee80211_priv(dev);
8887         struct iw_range *range = (struct iw_range *)extra;
8888         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8889         int i = 0, j;
8890
8891         wrqu->data.length = sizeof(*range);
8892         memset(range, 0, sizeof(*range));
8893
8894         /* 54Mbs == ~27 Mb/s real (802.11g) */
8895         range->throughput = 27 * 1000 * 1000;
8896
8897         range->max_qual.qual = 100;
8898         /* TODO: Find real max RSSI and stick here */
8899         range->max_qual.level = 0;
8900         range->max_qual.noise = 0;
8901         range->max_qual.updated = 7;    /* Updated all three */
8902
8903         range->avg_qual.qual = 70;
8904         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8905         range->avg_qual.level = 0;      /* FIXME to real average level */
8906         range->avg_qual.noise = 0;
8907         range->avg_qual.updated = 7;    /* Updated all three */
8908         mutex_lock(&priv->mutex);
8909         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8910
8911         for (i = 0; i < range->num_bitrates; i++)
8912                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8913                     500000;
8914
8915         range->max_rts = DEFAULT_RTS_THRESHOLD;
8916         range->min_frag = MIN_FRAG_THRESHOLD;
8917         range->max_frag = MAX_FRAG_THRESHOLD;
8918
8919         range->encoding_size[0] = 5;
8920         range->encoding_size[1] = 13;
8921         range->num_encoding_sizes = 2;
8922         range->max_encoding_tokens = WEP_KEYS;
8923
8924         /* Set the Wireless Extension versions */
8925         range->we_version_compiled = WIRELESS_EXT;
8926         range->we_version_source = 18;
8927
8928         i = 0;
8929         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8930                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8931                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8932                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8933                                 continue;
8934
8935                         range->freq[i].i = geo->bg[j].channel;
8936                         range->freq[i].m = geo->bg[j].freq * 100000;
8937                         range->freq[i].e = 1;
8938                         i++;
8939                 }
8940         }
8941
8942         if (priv->ieee->mode & IEEE_A) {
8943                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8944                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8945                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8946                                 continue;
8947
8948                         range->freq[i].i = geo->a[j].channel;
8949                         range->freq[i].m = geo->a[j].freq * 100000;
8950                         range->freq[i].e = 1;
8951                         i++;
8952                 }
8953         }
8954
8955         range->num_channels = i;
8956         range->num_frequency = i;
8957
8958         mutex_unlock(&priv->mutex);
8959
8960         /* Event capability (kernel + driver) */
8961         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8962                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8963                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8964                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8965         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8966
8967         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8968                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8969
8970         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8971
8972         IPW_DEBUG_WX("GET Range\n");
8973         return 0;
8974 }
8975
8976 static int ipw_wx_set_wap(struct net_device *dev,
8977                           struct iw_request_info *info,
8978                           union iwreq_data *wrqu, char *extra)
8979 {
8980         struct ipw_priv *priv = ieee80211_priv(dev);
8981
8982         static const unsigned char any[] = {
8983                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8984         };
8985         static const unsigned char off[] = {
8986                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8987         };
8988
8989         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8990                 return -EINVAL;
8991         mutex_lock(&priv->mutex);
8992         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8993             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8994                 /* we disable mandatory BSSID association */
8995                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8996                 priv->config &= ~CFG_STATIC_BSSID;
8997                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8998                                 "parameters.\n");
8999                 ipw_associate(priv);
9000                 mutex_unlock(&priv->mutex);
9001                 return 0;
9002         }
9003
9004         priv->config |= CFG_STATIC_BSSID;
9005         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9006                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9007                 mutex_unlock(&priv->mutex);
9008                 return 0;
9009         }
9010
9011         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9012                      wrqu->ap_addr.sa_data);
9013
9014         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9015
9016         /* Network configuration changed -- force [re]association */
9017         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9018         if (!ipw_disassociate(priv))
9019                 ipw_associate(priv);
9020
9021         mutex_unlock(&priv->mutex);
9022         return 0;
9023 }
9024
9025 static int ipw_wx_get_wap(struct net_device *dev,
9026                           struct iw_request_info *info,
9027                           union iwreq_data *wrqu, char *extra)
9028 {
9029         struct ipw_priv *priv = ieee80211_priv(dev);
9030
9031         /* If we are associated, trying to associate, or have a statically
9032          * configured BSSID then return that; otherwise return ANY */
9033         mutex_lock(&priv->mutex);
9034         if (priv->config & CFG_STATIC_BSSID ||
9035             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9036                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9037                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9038         } else
9039                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9040
9041         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9042                      wrqu->ap_addr.sa_data);
9043         mutex_unlock(&priv->mutex);
9044         return 0;
9045 }
9046
9047 static int ipw_wx_set_essid(struct net_device *dev,
9048                             struct iw_request_info *info,
9049                             union iwreq_data *wrqu, char *extra)
9050 {
9051         struct ipw_priv *priv = ieee80211_priv(dev);
9052         int length;
9053         DECLARE_SSID_BUF(ssid);
9054
9055         mutex_lock(&priv->mutex);
9056
9057         if (!wrqu->essid.flags)
9058         {
9059                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9060                 ipw_disassociate(priv);
9061                 priv->config &= ~CFG_STATIC_ESSID;
9062                 ipw_associate(priv);
9063                 mutex_unlock(&priv->mutex);
9064                 return 0;
9065         }
9066
9067         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9068
9069         priv->config |= CFG_STATIC_ESSID;
9070
9071         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9072             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9073                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9074                 mutex_unlock(&priv->mutex);
9075                 return 0;
9076         }
9077
9078         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9079                      print_ssid(ssid, extra, length), length);
9080
9081         priv->essid_len = length;
9082         memcpy(priv->essid, extra, priv->essid_len);
9083
9084         /* Network configuration changed -- force [re]association */
9085         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9086         if (!ipw_disassociate(priv))
9087                 ipw_associate(priv);
9088
9089         mutex_unlock(&priv->mutex);
9090         return 0;
9091 }
9092
9093 static int ipw_wx_get_essid(struct net_device *dev,
9094                             struct iw_request_info *info,
9095                             union iwreq_data *wrqu, char *extra)
9096 {
9097         struct ipw_priv *priv = ieee80211_priv(dev);
9098         DECLARE_SSID_BUF(ssid);
9099
9100         /* If we are associated, trying to associate, or have a statically
9101          * configured ESSID then return that; otherwise return ANY */
9102         mutex_lock(&priv->mutex);
9103         if (priv->config & CFG_STATIC_ESSID ||
9104             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9105                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9106                              print_ssid(ssid, priv->essid, priv->essid_len));
9107                 memcpy(extra, priv->essid, priv->essid_len);
9108                 wrqu->essid.length = priv->essid_len;
9109                 wrqu->essid.flags = 1;  /* active */
9110         } else {
9111                 IPW_DEBUG_WX("Getting essid: ANY\n");
9112                 wrqu->essid.length = 0;
9113                 wrqu->essid.flags = 0;  /* active */
9114         }
9115         mutex_unlock(&priv->mutex);
9116         return 0;
9117 }
9118
9119 static int ipw_wx_set_nick(struct net_device *dev,
9120                            struct iw_request_info *info,
9121                            union iwreq_data *wrqu, char *extra)
9122 {
9123         struct ipw_priv *priv = ieee80211_priv(dev);
9124
9125         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9126         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9127                 return -E2BIG;
9128         mutex_lock(&priv->mutex);
9129         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9130         memset(priv->nick, 0, sizeof(priv->nick));
9131         memcpy(priv->nick, extra, wrqu->data.length);
9132         IPW_DEBUG_TRACE("<<\n");
9133         mutex_unlock(&priv->mutex);
9134         return 0;
9135
9136 }
9137
9138 static int ipw_wx_get_nick(struct net_device *dev,
9139                            struct iw_request_info *info,
9140                            union iwreq_data *wrqu, char *extra)
9141 {
9142         struct ipw_priv *priv = ieee80211_priv(dev);
9143         IPW_DEBUG_WX("Getting nick\n");
9144         mutex_lock(&priv->mutex);
9145         wrqu->data.length = strlen(priv->nick);
9146         memcpy(extra, priv->nick, wrqu->data.length);
9147         wrqu->data.flags = 1;   /* active */
9148         mutex_unlock(&priv->mutex);
9149         return 0;
9150 }
9151
9152 static int ipw_wx_set_sens(struct net_device *dev,
9153                             struct iw_request_info *info,
9154                             union iwreq_data *wrqu, char *extra)
9155 {
9156         struct ipw_priv *priv = ieee80211_priv(dev);
9157         int err = 0;
9158
9159         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9160         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9161         mutex_lock(&priv->mutex);
9162
9163         if (wrqu->sens.fixed == 0)
9164         {
9165                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9166                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9167                 goto out;
9168         }
9169         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9170             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9171                 err = -EINVAL;
9172                 goto out;
9173         }
9174
9175         priv->roaming_threshold = wrqu->sens.value;
9176         priv->disassociate_threshold = 3*wrqu->sens.value;
9177       out:
9178         mutex_unlock(&priv->mutex);
9179         return err;
9180 }
9181
9182 static int ipw_wx_get_sens(struct net_device *dev,
9183                             struct iw_request_info *info,
9184                             union iwreq_data *wrqu, char *extra)
9185 {
9186         struct ipw_priv *priv = ieee80211_priv(dev);
9187         mutex_lock(&priv->mutex);
9188         wrqu->sens.fixed = 1;
9189         wrqu->sens.value = priv->roaming_threshold;
9190         mutex_unlock(&priv->mutex);
9191
9192         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9193                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9194
9195         return 0;
9196 }
9197
9198 static int ipw_wx_set_rate(struct net_device *dev,
9199                            struct iw_request_info *info,
9200                            union iwreq_data *wrqu, char *extra)
9201 {
9202         /* TODO: We should use semaphores or locks for access to priv */
9203         struct ipw_priv *priv = ieee80211_priv(dev);
9204         u32 target_rate = wrqu->bitrate.value;
9205         u32 fixed, mask;
9206
9207         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9208         /* value = X, fixed = 1 means only rate X */
9209         /* value = X, fixed = 0 means all rates lower equal X */
9210
9211         if (target_rate == -1) {
9212                 fixed = 0;
9213                 mask = IEEE80211_DEFAULT_RATES_MASK;
9214                 /* Now we should reassociate */
9215                 goto apply;
9216         }
9217
9218         mask = 0;
9219         fixed = wrqu->bitrate.fixed;
9220
9221         if (target_rate == 1000000 || !fixed)
9222                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9223         if (target_rate == 1000000)
9224                 goto apply;
9225
9226         if (target_rate == 2000000 || !fixed)
9227                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9228         if (target_rate == 2000000)
9229                 goto apply;
9230
9231         if (target_rate == 5500000 || !fixed)
9232                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9233         if (target_rate == 5500000)
9234                 goto apply;
9235
9236         if (target_rate == 6000000 || !fixed)
9237                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9238         if (target_rate == 6000000)
9239                 goto apply;
9240
9241         if (target_rate == 9000000 || !fixed)
9242                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9243         if (target_rate == 9000000)
9244                 goto apply;
9245
9246         if (target_rate == 11000000 || !fixed)
9247                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9248         if (target_rate == 11000000)
9249                 goto apply;
9250
9251         if (target_rate == 12000000 || !fixed)
9252                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9253         if (target_rate == 12000000)
9254                 goto apply;
9255
9256         if (target_rate == 18000000 || !fixed)
9257                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9258         if (target_rate == 18000000)
9259                 goto apply;
9260
9261         if (target_rate == 24000000 || !fixed)
9262                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9263         if (target_rate == 24000000)
9264                 goto apply;
9265
9266         if (target_rate == 36000000 || !fixed)
9267                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9268         if (target_rate == 36000000)
9269                 goto apply;
9270
9271         if (target_rate == 48000000 || !fixed)
9272                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9273         if (target_rate == 48000000)
9274                 goto apply;
9275
9276         if (target_rate == 54000000 || !fixed)
9277                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9278         if (target_rate == 54000000)
9279                 goto apply;
9280
9281         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9282         return -EINVAL;
9283
9284       apply:
9285         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9286                      mask, fixed ? "fixed" : "sub-rates");
9287         mutex_lock(&priv->mutex);
9288         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9289                 priv->config &= ~CFG_FIXED_RATE;
9290                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9291         } else
9292                 priv->config |= CFG_FIXED_RATE;
9293
9294         if (priv->rates_mask == mask) {
9295                 IPW_DEBUG_WX("Mask set to current mask.\n");
9296                 mutex_unlock(&priv->mutex);
9297                 return 0;
9298         }
9299
9300         priv->rates_mask = mask;
9301
9302         /* Network configuration changed -- force [re]association */
9303         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9304         if (!ipw_disassociate(priv))
9305                 ipw_associate(priv);
9306
9307         mutex_unlock(&priv->mutex);
9308         return 0;
9309 }
9310
9311 static int ipw_wx_get_rate(struct net_device *dev,
9312                            struct iw_request_info *info,
9313                            union iwreq_data *wrqu, char *extra)
9314 {
9315         struct ipw_priv *priv = ieee80211_priv(dev);
9316         mutex_lock(&priv->mutex);
9317         wrqu->bitrate.value = priv->last_rate;
9318         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9319         mutex_unlock(&priv->mutex);
9320         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9321         return 0;
9322 }
9323
9324 static int ipw_wx_set_rts(struct net_device *dev,
9325                           struct iw_request_info *info,
9326                           union iwreq_data *wrqu, char *extra)
9327 {
9328         struct ipw_priv *priv = ieee80211_priv(dev);
9329         mutex_lock(&priv->mutex);
9330         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9331                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9332         else {
9333                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9334                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9335                         mutex_unlock(&priv->mutex);
9336                         return -EINVAL;
9337                 }
9338                 priv->rts_threshold = wrqu->rts.value;
9339         }
9340
9341         ipw_send_rts_threshold(priv, priv->rts_threshold);
9342         mutex_unlock(&priv->mutex);
9343         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9344         return 0;
9345 }
9346
9347 static int ipw_wx_get_rts(struct net_device *dev,
9348                           struct iw_request_info *info,
9349                           union iwreq_data *wrqu, char *extra)
9350 {
9351         struct ipw_priv *priv = ieee80211_priv(dev);
9352         mutex_lock(&priv->mutex);
9353         wrqu->rts.value = priv->rts_threshold;
9354         wrqu->rts.fixed = 0;    /* no auto select */
9355         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9356         mutex_unlock(&priv->mutex);
9357         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9358         return 0;
9359 }
9360
9361 static int ipw_wx_set_txpow(struct net_device *dev,
9362                             struct iw_request_info *info,
9363                             union iwreq_data *wrqu, char *extra)
9364 {
9365         struct ipw_priv *priv = ieee80211_priv(dev);
9366         int err = 0;
9367
9368         mutex_lock(&priv->mutex);
9369         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9370                 err = -EINPROGRESS;
9371                 goto out;
9372         }
9373
9374         if (!wrqu->power.fixed)
9375                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9376
9377         if (wrqu->power.flags != IW_TXPOW_DBM) {
9378                 err = -EINVAL;
9379                 goto out;
9380         }
9381
9382         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9383             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9384                 err = -EINVAL;
9385                 goto out;
9386         }
9387
9388         priv->tx_power = wrqu->power.value;
9389         err = ipw_set_tx_power(priv);
9390       out:
9391         mutex_unlock(&priv->mutex);
9392         return err;
9393 }
9394
9395 static int ipw_wx_get_txpow(struct net_device *dev,
9396                             struct iw_request_info *info,
9397                             union iwreq_data *wrqu, char *extra)
9398 {
9399         struct ipw_priv *priv = ieee80211_priv(dev);
9400         mutex_lock(&priv->mutex);
9401         wrqu->power.value = priv->tx_power;
9402         wrqu->power.fixed = 1;
9403         wrqu->power.flags = IW_TXPOW_DBM;
9404         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9405         mutex_unlock(&priv->mutex);
9406
9407         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9408                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9409
9410         return 0;
9411 }
9412
9413 static int ipw_wx_set_frag(struct net_device *dev,
9414                            struct iw_request_info *info,
9415                            union iwreq_data *wrqu, char *extra)
9416 {
9417         struct ipw_priv *priv = ieee80211_priv(dev);
9418         mutex_lock(&priv->mutex);
9419         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9420                 priv->ieee->fts = DEFAULT_FTS;
9421         else {
9422                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9423                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9424                         mutex_unlock(&priv->mutex);
9425                         return -EINVAL;
9426                 }
9427
9428                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9429         }
9430
9431         ipw_send_frag_threshold(priv, wrqu->frag.value);
9432         mutex_unlock(&priv->mutex);
9433         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9434         return 0;
9435 }
9436
9437 static int ipw_wx_get_frag(struct net_device *dev,
9438                            struct iw_request_info *info,
9439                            union iwreq_data *wrqu, char *extra)
9440 {
9441         struct ipw_priv *priv = ieee80211_priv(dev);
9442         mutex_lock(&priv->mutex);
9443         wrqu->frag.value = priv->ieee->fts;
9444         wrqu->frag.fixed = 0;   /* no auto select */
9445         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9446         mutex_unlock(&priv->mutex);
9447         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9448
9449         return 0;
9450 }
9451
9452 static int ipw_wx_set_retry(struct net_device *dev,
9453                             struct iw_request_info *info,
9454                             union iwreq_data *wrqu, char *extra)
9455 {
9456         struct ipw_priv *priv = ieee80211_priv(dev);
9457
9458         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9459                 return -EINVAL;
9460
9461         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9462                 return 0;
9463
9464         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9465                 return -EINVAL;
9466
9467         mutex_lock(&priv->mutex);
9468         if (wrqu->retry.flags & IW_RETRY_SHORT)
9469                 priv->short_retry_limit = (u8) wrqu->retry.value;
9470         else if (wrqu->retry.flags & IW_RETRY_LONG)
9471                 priv->long_retry_limit = (u8) wrqu->retry.value;
9472         else {
9473                 priv->short_retry_limit = (u8) wrqu->retry.value;
9474                 priv->long_retry_limit = (u8) wrqu->retry.value;
9475         }
9476
9477         ipw_send_retry_limit(priv, priv->short_retry_limit,
9478                              priv->long_retry_limit);
9479         mutex_unlock(&priv->mutex);
9480         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9481                      priv->short_retry_limit, priv->long_retry_limit);
9482         return 0;
9483 }
9484
9485 static int ipw_wx_get_retry(struct net_device *dev,
9486                             struct iw_request_info *info,
9487                             union iwreq_data *wrqu, char *extra)
9488 {
9489         struct ipw_priv *priv = ieee80211_priv(dev);
9490
9491         mutex_lock(&priv->mutex);
9492         wrqu->retry.disabled = 0;
9493
9494         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9495                 mutex_unlock(&priv->mutex);
9496                 return -EINVAL;
9497         }
9498
9499         if (wrqu->retry.flags & IW_RETRY_LONG) {
9500                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9501                 wrqu->retry.value = priv->long_retry_limit;
9502         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9503                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9504                 wrqu->retry.value = priv->short_retry_limit;
9505         } else {
9506                 wrqu->retry.flags = IW_RETRY_LIMIT;
9507                 wrqu->retry.value = priv->short_retry_limit;
9508         }
9509         mutex_unlock(&priv->mutex);
9510
9511         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9512
9513         return 0;
9514 }
9515
9516 static int ipw_wx_set_scan(struct net_device *dev,
9517                            struct iw_request_info *info,
9518                            union iwreq_data *wrqu, char *extra)
9519 {
9520         struct ipw_priv *priv = ieee80211_priv(dev);
9521         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9522         struct delayed_work *work = NULL;
9523
9524         mutex_lock(&priv->mutex);
9525
9526         priv->user_requested_scan = 1;
9527
9528         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9529                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9530                         int len = min((int)req->essid_len,
9531                                       (int)sizeof(priv->direct_scan_ssid));
9532                         memcpy(priv->direct_scan_ssid, req->essid, len);
9533                         priv->direct_scan_ssid_len = len;
9534                         work = &priv->request_direct_scan;
9535                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9536                         work = &priv->request_passive_scan;
9537                 }
9538         } else {
9539                 /* Normal active broadcast scan */
9540                 work = &priv->request_scan;
9541         }
9542
9543         mutex_unlock(&priv->mutex);
9544
9545         IPW_DEBUG_WX("Start scan\n");
9546
9547         queue_delayed_work(priv->workqueue, work, 0);
9548
9549         return 0;
9550 }
9551
9552 static int ipw_wx_get_scan(struct net_device *dev,
9553                            struct iw_request_info *info,
9554                            union iwreq_data *wrqu, char *extra)
9555 {
9556         struct ipw_priv *priv = ieee80211_priv(dev);
9557         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9558 }
9559
9560 static int ipw_wx_set_encode(struct net_device *dev,
9561                              struct iw_request_info *info,
9562                              union iwreq_data *wrqu, char *key)
9563 {
9564         struct ipw_priv *priv = ieee80211_priv(dev);
9565         int ret;
9566         u32 cap = priv->capability;
9567
9568         mutex_lock(&priv->mutex);
9569         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9570
9571         /* In IBSS mode, we need to notify the firmware to update
9572          * the beacon info after we changed the capability. */
9573         if (cap != priv->capability &&
9574             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9575             priv->status & STATUS_ASSOCIATED)
9576                 ipw_disassociate(priv);
9577
9578         mutex_unlock(&priv->mutex);
9579         return ret;
9580 }
9581
9582 static int ipw_wx_get_encode(struct net_device *dev,
9583                              struct iw_request_info *info,
9584                              union iwreq_data *wrqu, char *key)
9585 {
9586         struct ipw_priv *priv = ieee80211_priv(dev);
9587         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9588 }
9589
9590 static int ipw_wx_set_power(struct net_device *dev,
9591                             struct iw_request_info *info,
9592                             union iwreq_data *wrqu, char *extra)
9593 {
9594         struct ipw_priv *priv = ieee80211_priv(dev);
9595         int err;
9596         mutex_lock(&priv->mutex);
9597         if (wrqu->power.disabled) {
9598                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9599                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9600                 if (err) {
9601                         IPW_DEBUG_WX("failed setting power mode.\n");
9602                         mutex_unlock(&priv->mutex);
9603                         return err;
9604                 }
9605                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9606                 mutex_unlock(&priv->mutex);
9607                 return 0;
9608         }
9609
9610         switch (wrqu->power.flags & IW_POWER_MODE) {
9611         case IW_POWER_ON:       /* If not specified */
9612         case IW_POWER_MODE:     /* If set all mask */
9613         case IW_POWER_ALL_R:    /* If explicitly state all */
9614                 break;
9615         default:                /* Otherwise we don't support it */
9616                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9617                              wrqu->power.flags);
9618                 mutex_unlock(&priv->mutex);
9619                 return -EOPNOTSUPP;
9620         }
9621
9622         /* If the user hasn't specified a power management mode yet, default
9623          * to BATTERY */
9624         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9625                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9626         else
9627                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9628
9629         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9630         if (err) {
9631                 IPW_DEBUG_WX("failed setting power mode.\n");
9632                 mutex_unlock(&priv->mutex);
9633                 return err;
9634         }
9635
9636         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9637         mutex_unlock(&priv->mutex);
9638         return 0;
9639 }
9640
9641 static int ipw_wx_get_power(struct net_device *dev,
9642                             struct iw_request_info *info,
9643                             union iwreq_data *wrqu, char *extra)
9644 {
9645         struct ipw_priv *priv = ieee80211_priv(dev);
9646         mutex_lock(&priv->mutex);
9647         if (!(priv->power_mode & IPW_POWER_ENABLED))
9648                 wrqu->power.disabled = 1;
9649         else
9650                 wrqu->power.disabled = 0;
9651
9652         mutex_unlock(&priv->mutex);
9653         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9654
9655         return 0;
9656 }
9657
9658 static int ipw_wx_set_powermode(struct net_device *dev,
9659                                 struct iw_request_info *info,
9660                                 union iwreq_data *wrqu, char *extra)
9661 {
9662         struct ipw_priv *priv = ieee80211_priv(dev);
9663         int mode = *(int *)extra;
9664         int err;
9665
9666         mutex_lock(&priv->mutex);
9667         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9668                 mode = IPW_POWER_AC;
9669
9670         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9671                 err = ipw_send_power_mode(priv, mode);
9672                 if (err) {
9673                         IPW_DEBUG_WX("failed setting power mode.\n");
9674                         mutex_unlock(&priv->mutex);
9675                         return err;
9676                 }
9677                 priv->power_mode = IPW_POWER_ENABLED | mode;
9678         }
9679         mutex_unlock(&priv->mutex);
9680         return 0;
9681 }
9682
9683 #define MAX_WX_STRING 80
9684 static int ipw_wx_get_powermode(struct net_device *dev,
9685                                 struct iw_request_info *info,
9686                                 union iwreq_data *wrqu, char *extra)
9687 {
9688         struct ipw_priv *priv = ieee80211_priv(dev);
9689         int level = IPW_POWER_LEVEL(priv->power_mode);
9690         char *p = extra;
9691
9692         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9693
9694         switch (level) {
9695         case IPW_POWER_AC:
9696                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9697                 break;
9698         case IPW_POWER_BATTERY:
9699                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9700                 break;
9701         default:
9702                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9703                               "(Timeout %dms, Period %dms)",
9704                               timeout_duration[level - 1] / 1000,
9705                               period_duration[level - 1] / 1000);
9706         }
9707
9708         if (!(priv->power_mode & IPW_POWER_ENABLED))
9709                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9710
9711         wrqu->data.length = p - extra + 1;
9712
9713         return 0;
9714 }
9715
9716 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9717                                     struct iw_request_info *info,
9718                                     union iwreq_data *wrqu, char *extra)
9719 {
9720         struct ipw_priv *priv = ieee80211_priv(dev);
9721         int mode = *(int *)extra;
9722         u8 band = 0, modulation = 0;
9723
9724         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9725                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9726                 return -EINVAL;
9727         }
9728         mutex_lock(&priv->mutex);
9729         if (priv->adapter == IPW_2915ABG) {
9730                 priv->ieee->abg_true = 1;
9731                 if (mode & IEEE_A) {
9732                         band |= IEEE80211_52GHZ_BAND;
9733                         modulation |= IEEE80211_OFDM_MODULATION;
9734                 } else
9735                         priv->ieee->abg_true = 0;
9736         } else {
9737                 if (mode & IEEE_A) {
9738                         IPW_WARNING("Attempt to set 2200BG into "
9739                                     "802.11a mode\n");
9740                         mutex_unlock(&priv->mutex);
9741                         return -EINVAL;
9742                 }
9743
9744                 priv->ieee->abg_true = 0;
9745         }
9746
9747         if (mode & IEEE_B) {
9748                 band |= IEEE80211_24GHZ_BAND;
9749                 modulation |= IEEE80211_CCK_MODULATION;
9750         } else
9751                 priv->ieee->abg_true = 0;
9752
9753         if (mode & IEEE_G) {
9754                 band |= IEEE80211_24GHZ_BAND;
9755                 modulation |= IEEE80211_OFDM_MODULATION;
9756         } else
9757                 priv->ieee->abg_true = 0;
9758
9759         priv->ieee->mode = mode;
9760         priv->ieee->freq_band = band;
9761         priv->ieee->modulation = modulation;
9762         init_supported_rates(priv, &priv->rates);
9763
9764         /* Network configuration changed -- force [re]association */
9765         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9766         if (!ipw_disassociate(priv)) {
9767                 ipw_send_supported_rates(priv, &priv->rates);
9768                 ipw_associate(priv);
9769         }
9770
9771         /* Update the band LEDs */
9772         ipw_led_band_on(priv);
9773
9774         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9775                      mode & IEEE_A ? 'a' : '.',
9776                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9777         mutex_unlock(&priv->mutex);
9778         return 0;
9779 }
9780
9781 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9782                                     struct iw_request_info *info,
9783                                     union iwreq_data *wrqu, char *extra)
9784 {
9785         struct ipw_priv *priv = ieee80211_priv(dev);
9786         mutex_lock(&priv->mutex);
9787         switch (priv->ieee->mode) {
9788         case IEEE_A:
9789                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9790                 break;
9791         case IEEE_B:
9792                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9793                 break;
9794         case IEEE_A | IEEE_B:
9795                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9796                 break;
9797         case IEEE_G:
9798                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9799                 break;
9800         case IEEE_A | IEEE_G:
9801                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9802                 break;
9803         case IEEE_B | IEEE_G:
9804                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9805                 break;
9806         case IEEE_A | IEEE_B | IEEE_G:
9807                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9808                 break;
9809         default:
9810                 strncpy(extra, "unknown", MAX_WX_STRING);
9811                 break;
9812         }
9813
9814         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9815
9816         wrqu->data.length = strlen(extra) + 1;
9817         mutex_unlock(&priv->mutex);
9818
9819         return 0;
9820 }
9821
9822 static int ipw_wx_set_preamble(struct net_device *dev,
9823                                struct iw_request_info *info,
9824                                union iwreq_data *wrqu, char *extra)
9825 {
9826         struct ipw_priv *priv = ieee80211_priv(dev);
9827         int mode = *(int *)extra;
9828         mutex_lock(&priv->mutex);
9829         /* Switching from SHORT -> LONG requires a disassociation */
9830         if (mode == 1) {
9831                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9832                         priv->config |= CFG_PREAMBLE_LONG;
9833
9834                         /* Network configuration changed -- force [re]association */
9835                         IPW_DEBUG_ASSOC
9836                             ("[re]association triggered due to preamble change.\n");
9837                         if (!ipw_disassociate(priv))
9838                                 ipw_associate(priv);
9839                 }
9840                 goto done;
9841         }
9842
9843         if (mode == 0) {
9844                 priv->config &= ~CFG_PREAMBLE_LONG;
9845                 goto done;
9846         }
9847         mutex_unlock(&priv->mutex);
9848         return -EINVAL;
9849
9850       done:
9851         mutex_unlock(&priv->mutex);
9852         return 0;
9853 }
9854
9855 static int ipw_wx_get_preamble(struct net_device *dev,
9856                                struct iw_request_info *info,
9857                                union iwreq_data *wrqu, char *extra)
9858 {
9859         struct ipw_priv *priv = ieee80211_priv(dev);
9860         mutex_lock(&priv->mutex);
9861         if (priv->config & CFG_PREAMBLE_LONG)
9862                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9863         else
9864                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9865         mutex_unlock(&priv->mutex);
9866         return 0;
9867 }
9868
9869 #ifdef CONFIG_IPW2200_MONITOR
9870 static int ipw_wx_set_monitor(struct net_device *dev,
9871                               struct iw_request_info *info,
9872                               union iwreq_data *wrqu, char *extra)
9873 {
9874         struct ipw_priv *priv = ieee80211_priv(dev);
9875         int *parms = (int *)extra;
9876         int enable = (parms[0] > 0);
9877         mutex_lock(&priv->mutex);
9878         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9879         if (enable) {
9880                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9881 #ifdef CONFIG_IPW2200_RADIOTAP
9882                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9883 #else
9884                         priv->net_dev->type = ARPHRD_IEEE80211;
9885 #endif
9886                         queue_work(priv->workqueue, &priv->adapter_restart);
9887                 }
9888
9889                 ipw_set_channel(priv, parms[1]);
9890         } else {
9891                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9892                         mutex_unlock(&priv->mutex);
9893                         return 0;
9894                 }
9895                 priv->net_dev->type = ARPHRD_ETHER;
9896                 queue_work(priv->workqueue, &priv->adapter_restart);
9897         }
9898         mutex_unlock(&priv->mutex);
9899         return 0;
9900 }
9901
9902 #endif                          /* CONFIG_IPW2200_MONITOR */
9903
9904 static int ipw_wx_reset(struct net_device *dev,
9905                         struct iw_request_info *info,
9906                         union iwreq_data *wrqu, char *extra)
9907 {
9908         struct ipw_priv *priv = ieee80211_priv(dev);
9909         IPW_DEBUG_WX("RESET\n");
9910         queue_work(priv->workqueue, &priv->adapter_restart);
9911         return 0;
9912 }
9913
9914 static int ipw_wx_sw_reset(struct net_device *dev,
9915                            struct iw_request_info *info,
9916                            union iwreq_data *wrqu, char *extra)
9917 {
9918         struct ipw_priv *priv = ieee80211_priv(dev);
9919         union iwreq_data wrqu_sec = {
9920                 .encoding = {
9921                              .flags = IW_ENCODE_DISABLED,
9922                              },
9923         };
9924         int ret;
9925
9926         IPW_DEBUG_WX("SW_RESET\n");
9927
9928         mutex_lock(&priv->mutex);
9929
9930         ret = ipw_sw_reset(priv, 2);
9931         if (!ret) {
9932                 free_firmware();
9933                 ipw_adapter_restart(priv);
9934         }
9935
9936         /* The SW reset bit might have been toggled on by the 'disable'
9937          * module parameter, so take appropriate action */
9938         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9939
9940         mutex_unlock(&priv->mutex);
9941         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9942         mutex_lock(&priv->mutex);
9943
9944         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9945                 /* Configuration likely changed -- force [re]association */
9946                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9947                                 "reset.\n");
9948                 if (!ipw_disassociate(priv))
9949                         ipw_associate(priv);
9950         }
9951
9952         mutex_unlock(&priv->mutex);
9953
9954         return 0;
9955 }
9956
9957 /* Rebase the WE IOCTLs to zero for the handler array */
9958 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9959 static iw_handler ipw_wx_handlers[] = {
9960         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9961         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9962         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9963         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9964         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9965         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9966         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9967         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9968         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9969         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9970         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9971         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9972         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9973         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9974         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9975         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9976         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9977         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9978         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9979         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9980         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9981         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9982         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9983         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9984         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9985         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9986         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9987         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9988         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9989         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9990         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9991         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9992         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9993         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9994         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9995         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9996         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9997         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9998         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9999         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10000         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10001 };
10002
10003 enum {
10004         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10005         IPW_PRIV_GET_POWER,
10006         IPW_PRIV_SET_MODE,
10007         IPW_PRIV_GET_MODE,
10008         IPW_PRIV_SET_PREAMBLE,
10009         IPW_PRIV_GET_PREAMBLE,
10010         IPW_PRIV_RESET,
10011         IPW_PRIV_SW_RESET,
10012 #ifdef CONFIG_IPW2200_MONITOR
10013         IPW_PRIV_SET_MONITOR,
10014 #endif
10015 };
10016
10017 static struct iw_priv_args ipw_priv_args[] = {
10018         {
10019          .cmd = IPW_PRIV_SET_POWER,
10020          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10021          .name = "set_power"},
10022         {
10023          .cmd = IPW_PRIV_GET_POWER,
10024          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10025          .name = "get_power"},
10026         {
10027          .cmd = IPW_PRIV_SET_MODE,
10028          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10029          .name = "set_mode"},
10030         {
10031          .cmd = IPW_PRIV_GET_MODE,
10032          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10033          .name = "get_mode"},
10034         {
10035          .cmd = IPW_PRIV_SET_PREAMBLE,
10036          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10037          .name = "set_preamble"},
10038         {
10039          .cmd = IPW_PRIV_GET_PREAMBLE,
10040          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10041          .name = "get_preamble"},
10042         {
10043          IPW_PRIV_RESET,
10044          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10045         {
10046          IPW_PRIV_SW_RESET,
10047          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10048 #ifdef CONFIG_IPW2200_MONITOR
10049         {
10050          IPW_PRIV_SET_MONITOR,
10051          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10052 #endif                          /* CONFIG_IPW2200_MONITOR */
10053 };
10054
10055 static iw_handler ipw_priv_handler[] = {
10056         ipw_wx_set_powermode,
10057         ipw_wx_get_powermode,
10058         ipw_wx_set_wireless_mode,
10059         ipw_wx_get_wireless_mode,
10060         ipw_wx_set_preamble,
10061         ipw_wx_get_preamble,
10062         ipw_wx_reset,
10063         ipw_wx_sw_reset,
10064 #ifdef CONFIG_IPW2200_MONITOR
10065         ipw_wx_set_monitor,
10066 #endif
10067 };
10068
10069 static struct iw_handler_def ipw_wx_handler_def = {
10070         .standard = ipw_wx_handlers,
10071         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10072         .num_private = ARRAY_SIZE(ipw_priv_handler),
10073         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10074         .private = ipw_priv_handler,
10075         .private_args = ipw_priv_args,
10076         .get_wireless_stats = ipw_get_wireless_stats,
10077 };
10078
10079 /*
10080  * Get wireless statistics.
10081  * Called by /proc/net/wireless
10082  * Also called by SIOCGIWSTATS
10083  */
10084 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10085 {
10086         struct ipw_priv *priv = ieee80211_priv(dev);
10087         struct iw_statistics *wstats;
10088
10089         wstats = &priv->wstats;
10090
10091         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10092          * netdev->get_wireless_stats seems to be called before fw is
10093          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10094          * and associated; if not associcated, the values are all meaningless
10095          * anyway, so set them all to NULL and INVALID */
10096         if (!(priv->status & STATUS_ASSOCIATED)) {
10097                 wstats->miss.beacon = 0;
10098                 wstats->discard.retries = 0;
10099                 wstats->qual.qual = 0;
10100                 wstats->qual.level = 0;
10101                 wstats->qual.noise = 0;
10102                 wstats->qual.updated = 7;
10103                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10104                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10105                 return wstats;
10106         }
10107
10108         wstats->qual.qual = priv->quality;
10109         wstats->qual.level = priv->exp_avg_rssi;
10110         wstats->qual.noise = priv->exp_avg_noise;
10111         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10112             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10113
10114         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10115         wstats->discard.retries = priv->last_tx_failures;
10116         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10117
10118 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10119         goto fail_get_ordinal;
10120         wstats->discard.retries += tx_retry; */
10121
10122         return wstats;
10123 }
10124
10125 /* net device stuff */
10126
10127 static  void init_sys_config(struct ipw_sys_config *sys_config)
10128 {
10129         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10130         sys_config->bt_coexistence = 0;
10131         sys_config->answer_broadcast_ssid_probe = 0;
10132         sys_config->accept_all_data_frames = 0;
10133         sys_config->accept_non_directed_frames = 1;
10134         sys_config->exclude_unicast_unencrypted = 0;
10135         sys_config->disable_unicast_decryption = 1;
10136         sys_config->exclude_multicast_unencrypted = 0;
10137         sys_config->disable_multicast_decryption = 1;
10138         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10139                 antenna = CFG_SYS_ANTENNA_BOTH;
10140         sys_config->antenna_diversity = antenna;
10141         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10142         sys_config->dot11g_auto_detection = 0;
10143         sys_config->enable_cts_to_self = 0;
10144         sys_config->bt_coexist_collision_thr = 0;
10145         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10146         sys_config->silence_threshold = 0x1e;
10147 }
10148
10149 static int ipw_net_open(struct net_device *dev)
10150 {
10151         IPW_DEBUG_INFO("dev->open\n");
10152         netif_start_queue(dev);
10153         return 0;
10154 }
10155
10156 static int ipw_net_stop(struct net_device *dev)
10157 {
10158         IPW_DEBUG_INFO("dev->close\n");
10159         netif_stop_queue(dev);
10160         return 0;
10161 }
10162
10163 /*
10164 todo:
10165
10166 modify to send one tfd per fragment instead of using chunking.  otherwise
10167 we need to heavily modify the ieee80211_skb_to_txb.
10168 */
10169
10170 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10171                              int pri)
10172 {
10173         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10174             txb->fragments[0]->data;
10175         int i = 0;
10176         struct tfd_frame *tfd;
10177 #ifdef CONFIG_IPW2200_QOS
10178         int tx_id = ipw_get_tx_queue_number(priv, pri);
10179         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10180 #else
10181         struct clx2_tx_queue *txq = &priv->txq[0];
10182 #endif
10183         struct clx2_queue *q = &txq->q;
10184         u8 id, hdr_len, unicast;
10185         int fc;
10186
10187         if (!(priv->status & STATUS_ASSOCIATED))
10188                 goto drop;
10189
10190         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10191         switch (priv->ieee->iw_mode) {
10192         case IW_MODE_ADHOC:
10193                 unicast = !is_multicast_ether_addr(hdr->addr1);
10194                 id = ipw_find_station(priv, hdr->addr1);
10195                 if (id == IPW_INVALID_STATION) {
10196                         id = ipw_add_station(priv, hdr->addr1);
10197                         if (id == IPW_INVALID_STATION) {
10198                                 IPW_WARNING("Attempt to send data to "
10199                                             "invalid cell: %pM\n",
10200                                             hdr->addr1);
10201                                 goto drop;
10202                         }
10203                 }
10204                 break;
10205
10206         case IW_MODE_INFRA:
10207         default:
10208                 unicast = !is_multicast_ether_addr(hdr->addr3);
10209                 id = 0;
10210                 break;
10211         }
10212
10213         tfd = &txq->bd[q->first_empty];
10214         txq->txb[q->first_empty] = txb;
10215         memset(tfd, 0, sizeof(*tfd));
10216         tfd->u.data.station_number = id;
10217
10218         tfd->control_flags.message_type = TX_FRAME_TYPE;
10219         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10220
10221         tfd->u.data.cmd_id = DINO_CMD_TX;
10222         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10223
10224         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10225                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10226         else
10227                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10228
10229         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10230                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10231
10232         fc = le16_to_cpu(hdr->frame_ctl);
10233         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10234
10235         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10236
10237         if (likely(unicast))
10238                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10239
10240         if (txb->encrypted && !priv->ieee->host_encrypt) {
10241                 switch (priv->ieee->sec.level) {
10242                 case SEC_LEVEL_3:
10243                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10244                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10245                         /* XXX: ACK flag must be set for CCMP even if it
10246                          * is a multicast/broadcast packet, because CCMP
10247                          * group communication encrypted by GTK is
10248                          * actually done by the AP. */
10249                         if (!unicast)
10250                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10251
10252                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10253                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10254                         tfd->u.data.key_index = 0;
10255                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10256                         break;
10257                 case SEC_LEVEL_2:
10258                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10259                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10260                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10261                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10262                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10263                         break;
10264                 case SEC_LEVEL_1:
10265                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10266                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10267                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10268                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10269                             40)
10270                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10271                         else
10272                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10273                         break;
10274                 case SEC_LEVEL_0:
10275                         break;
10276                 default:
10277                         printk(KERN_ERR "Unknow security level %d\n",
10278                                priv->ieee->sec.level);
10279                         break;
10280                 }
10281         } else
10282                 /* No hardware encryption */
10283                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10284
10285 #ifdef CONFIG_IPW2200_QOS
10286         if (fc & IEEE80211_STYPE_QOS_DATA)
10287                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10288 #endif                          /* CONFIG_IPW2200_QOS */
10289
10290         /* payload */
10291         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10292                                                  txb->nr_frags));
10293         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10294                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10295         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10296                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10297                                i, le32_to_cpu(tfd->u.data.num_chunks),
10298                                txb->fragments[i]->len - hdr_len);
10299                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10300                              i, tfd->u.data.num_chunks,
10301                              txb->fragments[i]->len - hdr_len);
10302                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10303                            txb->fragments[i]->len - hdr_len);
10304
10305                 tfd->u.data.chunk_ptr[i] =
10306                     cpu_to_le32(pci_map_single
10307                                 (priv->pci_dev,
10308                                  txb->fragments[i]->data + hdr_len,
10309                                  txb->fragments[i]->len - hdr_len,
10310                                  PCI_DMA_TODEVICE));
10311                 tfd->u.data.chunk_len[i] =
10312                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10313         }
10314
10315         if (i != txb->nr_frags) {
10316                 struct sk_buff *skb;
10317                 u16 remaining_bytes = 0;
10318                 int j;
10319
10320                 for (j = i; j < txb->nr_frags; j++)
10321                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10322
10323                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10324                        remaining_bytes);
10325                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10326                 if (skb != NULL) {
10327                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10328                         for (j = i; j < txb->nr_frags; j++) {
10329                                 int size = txb->fragments[j]->len - hdr_len;
10330
10331                                 printk(KERN_INFO "Adding frag %d %d...\n",
10332                                        j, size);
10333                                 memcpy(skb_put(skb, size),
10334                                        txb->fragments[j]->data + hdr_len, size);
10335                         }
10336                         dev_kfree_skb_any(txb->fragments[i]);
10337                         txb->fragments[i] = skb;
10338                         tfd->u.data.chunk_ptr[i] =
10339                             cpu_to_le32(pci_map_single
10340                                         (priv->pci_dev, skb->data,
10341                                          remaining_bytes,
10342                                          PCI_DMA_TODEVICE));
10343
10344                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10345                 }
10346         }
10347
10348         /* kick DMA */
10349         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10350         ipw_write32(priv, q->reg_w, q->first_empty);
10351
10352         if (ipw_tx_queue_space(q) < q->high_mark)
10353                 netif_stop_queue(priv->net_dev);
10354
10355         return NETDEV_TX_OK;
10356
10357       drop:
10358         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10359         ieee80211_txb_free(txb);
10360         return NETDEV_TX_OK;
10361 }
10362
10363 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10364 {
10365         struct ipw_priv *priv = ieee80211_priv(dev);
10366 #ifdef CONFIG_IPW2200_QOS
10367         int tx_id = ipw_get_tx_queue_number(priv, pri);
10368         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10369 #else
10370         struct clx2_tx_queue *txq = &priv->txq[0];
10371 #endif                          /* CONFIG_IPW2200_QOS */
10372
10373         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10374                 return 1;
10375
10376         return 0;
10377 }
10378
10379 #ifdef CONFIG_IPW2200_PROMISCUOUS
10380 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10381                                       struct ieee80211_txb *txb)
10382 {
10383         struct ieee80211_rx_stats dummystats;
10384         struct ieee80211_hdr *hdr;
10385         u8 n;
10386         u16 filter = priv->prom_priv->filter;
10387         int hdr_only = 0;
10388
10389         if (filter & IPW_PROM_NO_TX)
10390                 return;
10391
10392         memset(&dummystats, 0, sizeof(dummystats));
10393
10394         /* Filtering of fragment chains is done agains the first fragment */
10395         hdr = (void *)txb->fragments[0]->data;
10396         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10397                 if (filter & IPW_PROM_NO_MGMT)
10398                         return;
10399                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10400                         hdr_only = 1;
10401         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10402                 if (filter & IPW_PROM_NO_CTL)
10403                         return;
10404                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10405                         hdr_only = 1;
10406         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10407                 if (filter & IPW_PROM_NO_DATA)
10408                         return;
10409                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10410                         hdr_only = 1;
10411         }
10412
10413         for(n=0; n<txb->nr_frags; ++n) {
10414                 struct sk_buff *src = txb->fragments[n];
10415                 struct sk_buff *dst;
10416                 struct ieee80211_radiotap_header *rt_hdr;
10417                 int len;
10418
10419                 if (hdr_only) {
10420                         hdr = (void *)src->data;
10421                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10422                 } else
10423                         len = src->len;
10424
10425                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10426                 if (!dst)
10427                         continue;
10428
10429                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10430
10431                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10432                 rt_hdr->it_pad = 0;
10433                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10434                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10435
10436                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10437                         ieee80211chan2mhz(priv->channel));
10438                 if (priv->channel > 14)         /* 802.11a */
10439                         *(__le16*)skb_put(dst, sizeof(u16)) =
10440                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10441                                              IEEE80211_CHAN_5GHZ);
10442                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10443                         *(__le16*)skb_put(dst, sizeof(u16)) =
10444                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10445                                              IEEE80211_CHAN_2GHZ);
10446                 else            /* 802.11g */
10447                         *(__le16*)skb_put(dst, sizeof(u16)) =
10448                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10449                                  IEEE80211_CHAN_2GHZ);
10450
10451                 rt_hdr->it_len = cpu_to_le16(dst->len);
10452
10453                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10454
10455                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10456                         dev_kfree_skb_any(dst);
10457         }
10458 }
10459 #endif
10460
10461 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10462                                    struct net_device *dev, int pri)
10463 {
10464         struct ipw_priv *priv = ieee80211_priv(dev);
10465         unsigned long flags;
10466         int ret;
10467
10468         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10469         spin_lock_irqsave(&priv->lock, flags);
10470
10471 #ifdef CONFIG_IPW2200_PROMISCUOUS
10472         if (rtap_iface && netif_running(priv->prom_net_dev))
10473                 ipw_handle_promiscuous_tx(priv, txb);
10474 #endif
10475
10476         ret = ipw_tx_skb(priv, txb, pri);
10477         if (ret == NETDEV_TX_OK)
10478                 __ipw_led_activity_on(priv);
10479         spin_unlock_irqrestore(&priv->lock, flags);
10480
10481         return ret;
10482 }
10483
10484 static void ipw_net_set_multicast_list(struct net_device *dev)
10485 {
10486
10487 }
10488
10489 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10490 {
10491         struct ipw_priv *priv = ieee80211_priv(dev);
10492         struct sockaddr *addr = p;
10493
10494         if (!is_valid_ether_addr(addr->sa_data))
10495                 return -EADDRNOTAVAIL;
10496         mutex_lock(&priv->mutex);
10497         priv->config |= CFG_CUSTOM_MAC;
10498         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10499         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10500                priv->net_dev->name, priv->mac_addr);
10501         queue_work(priv->workqueue, &priv->adapter_restart);
10502         mutex_unlock(&priv->mutex);
10503         return 0;
10504 }
10505
10506 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10507                                     struct ethtool_drvinfo *info)
10508 {
10509         struct ipw_priv *p = ieee80211_priv(dev);
10510         char vers[64];
10511         char date[32];
10512         u32 len;
10513
10514         strcpy(info->driver, DRV_NAME);
10515         strcpy(info->version, DRV_VERSION);
10516
10517         len = sizeof(vers);
10518         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10519         len = sizeof(date);
10520         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10521
10522         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10523                  vers, date);
10524         strcpy(info->bus_info, pci_name(p->pci_dev));
10525         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10526 }
10527
10528 static u32 ipw_ethtool_get_link(struct net_device *dev)
10529 {
10530         struct ipw_priv *priv = ieee80211_priv(dev);
10531         return (priv->status & STATUS_ASSOCIATED) != 0;
10532 }
10533
10534 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10535 {
10536         return IPW_EEPROM_IMAGE_SIZE;
10537 }
10538
10539 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10540                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10541 {
10542         struct ipw_priv *p = ieee80211_priv(dev);
10543
10544         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10545                 return -EINVAL;
10546         mutex_lock(&p->mutex);
10547         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10548         mutex_unlock(&p->mutex);
10549         return 0;
10550 }
10551
10552 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10553                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10554 {
10555         struct ipw_priv *p = ieee80211_priv(dev);
10556         int i;
10557
10558         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10559                 return -EINVAL;
10560         mutex_lock(&p->mutex);
10561         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10562         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10563                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10564         mutex_unlock(&p->mutex);
10565         return 0;
10566 }
10567
10568 static const struct ethtool_ops ipw_ethtool_ops = {
10569         .get_link = ipw_ethtool_get_link,
10570         .get_drvinfo = ipw_ethtool_get_drvinfo,
10571         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10572         .get_eeprom = ipw_ethtool_get_eeprom,
10573         .set_eeprom = ipw_ethtool_set_eeprom,
10574 };
10575
10576 static irqreturn_t ipw_isr(int irq, void *data)
10577 {
10578         struct ipw_priv *priv = data;
10579         u32 inta, inta_mask;
10580
10581         if (!priv)
10582                 return IRQ_NONE;
10583
10584         spin_lock(&priv->irq_lock);
10585
10586         if (!(priv->status & STATUS_INT_ENABLED)) {
10587                 /* IRQ is disabled */
10588                 goto none;
10589         }
10590
10591         inta = ipw_read32(priv, IPW_INTA_RW);
10592         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10593
10594         if (inta == 0xFFFFFFFF) {
10595                 /* Hardware disappeared */
10596                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10597                 goto none;
10598         }
10599
10600         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10601                 /* Shared interrupt */
10602                 goto none;
10603         }
10604
10605         /* tell the device to stop sending interrupts */
10606         __ipw_disable_interrupts(priv);
10607
10608         /* ack current interrupts */
10609         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10610         ipw_write32(priv, IPW_INTA_RW, inta);
10611
10612         /* Cache INTA value for our tasklet */
10613         priv->isr_inta = inta;
10614
10615         tasklet_schedule(&priv->irq_tasklet);
10616
10617         spin_unlock(&priv->irq_lock);
10618
10619         return IRQ_HANDLED;
10620       none:
10621         spin_unlock(&priv->irq_lock);
10622         return IRQ_NONE;
10623 }
10624
10625 static void ipw_rf_kill(void *adapter)
10626 {
10627         struct ipw_priv *priv = adapter;
10628         unsigned long flags;
10629
10630         spin_lock_irqsave(&priv->lock, flags);
10631
10632         if (rf_kill_active(priv)) {
10633                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10634                 if (priv->workqueue)
10635                         queue_delayed_work(priv->workqueue,
10636                                            &priv->rf_kill, 2 * HZ);
10637                 goto exit_unlock;
10638         }
10639
10640         /* RF Kill is now disabled, so bring the device back up */
10641
10642         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10643                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10644                                   "device\n");
10645
10646                 /* we can not do an adapter restart while inside an irq lock */
10647                 queue_work(priv->workqueue, &priv->adapter_restart);
10648         } else
10649                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10650                                   "enabled\n");
10651
10652       exit_unlock:
10653         spin_unlock_irqrestore(&priv->lock, flags);
10654 }
10655
10656 static void ipw_bg_rf_kill(struct work_struct *work)
10657 {
10658         struct ipw_priv *priv =
10659                 container_of(work, struct ipw_priv, rf_kill.work);
10660         mutex_lock(&priv->mutex);
10661         ipw_rf_kill(priv);
10662         mutex_unlock(&priv->mutex);
10663 }
10664
10665 static void ipw_link_up(struct ipw_priv *priv)
10666 {
10667         priv->last_seq_num = -1;
10668         priv->last_frag_num = -1;
10669         priv->last_packet_time = 0;
10670
10671         netif_carrier_on(priv->net_dev);
10672
10673         cancel_delayed_work(&priv->request_scan);
10674         cancel_delayed_work(&priv->request_direct_scan);
10675         cancel_delayed_work(&priv->request_passive_scan);
10676         cancel_delayed_work(&priv->scan_event);
10677         ipw_reset_stats(priv);
10678         /* Ensure the rate is updated immediately */
10679         priv->last_rate = ipw_get_current_rate(priv);
10680         ipw_gather_stats(priv);
10681         ipw_led_link_up(priv);
10682         notify_wx_assoc_event(priv);
10683
10684         if (priv->config & CFG_BACKGROUND_SCAN)
10685                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10686 }
10687
10688 static void ipw_bg_link_up(struct work_struct *work)
10689 {
10690         struct ipw_priv *priv =
10691                 container_of(work, struct ipw_priv, link_up);
10692         mutex_lock(&priv->mutex);
10693         ipw_link_up(priv);
10694         mutex_unlock(&priv->mutex);
10695 }
10696
10697 static void ipw_link_down(struct ipw_priv *priv)
10698 {
10699         ipw_led_link_down(priv);
10700         netif_carrier_off(priv->net_dev);
10701         notify_wx_assoc_event(priv);
10702
10703         /* Cancel any queued work ... */
10704         cancel_delayed_work(&priv->request_scan);
10705         cancel_delayed_work(&priv->request_direct_scan);
10706         cancel_delayed_work(&priv->request_passive_scan);
10707         cancel_delayed_work(&priv->adhoc_check);
10708         cancel_delayed_work(&priv->gather_stats);
10709
10710         ipw_reset_stats(priv);
10711
10712         if (!(priv->status & STATUS_EXIT_PENDING)) {
10713                 /* Queue up another scan... */
10714                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10715         } else
10716                 cancel_delayed_work(&priv->scan_event);
10717 }
10718
10719 static void ipw_bg_link_down(struct work_struct *work)
10720 {
10721         struct ipw_priv *priv =
10722                 container_of(work, struct ipw_priv, link_down);
10723         mutex_lock(&priv->mutex);
10724         ipw_link_down(priv);
10725         mutex_unlock(&priv->mutex);
10726 }
10727
10728 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10729 {
10730         int ret = 0;
10731
10732         priv->workqueue = create_workqueue(DRV_NAME);
10733         init_waitqueue_head(&priv->wait_command_queue);
10734         init_waitqueue_head(&priv->wait_state);
10735
10736         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10737         INIT_WORK(&priv->associate, ipw_bg_associate);
10738         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10739         INIT_WORK(&priv->system_config, ipw_system_config);
10740         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10741         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10742         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10743         INIT_WORK(&priv->up, ipw_bg_up);
10744         INIT_WORK(&priv->down, ipw_bg_down);
10745         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10746         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10747         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10748         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10749         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10750         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10751         INIT_WORK(&priv->roam, ipw_bg_roam);
10752         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10753         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10754         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10755         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10756         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10757         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10758         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10759
10760 #ifdef CONFIG_IPW2200_QOS
10761         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10762 #endif                          /* CONFIG_IPW2200_QOS */
10763
10764         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10765                      ipw_irq_tasklet, (unsigned long)priv);
10766
10767         return ret;
10768 }
10769
10770 static void shim__set_security(struct net_device *dev,
10771                                struct ieee80211_security *sec)
10772 {
10773         struct ipw_priv *priv = ieee80211_priv(dev);
10774         int i;
10775         for (i = 0; i < 4; i++) {
10776                 if (sec->flags & (1 << i)) {
10777                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10778                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10779                         if (sec->key_sizes[i] == 0)
10780                                 priv->ieee->sec.flags &= ~(1 << i);
10781                         else {
10782                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10783                                        sec->key_sizes[i]);
10784                                 priv->ieee->sec.flags |= (1 << i);
10785                         }
10786                         priv->status |= STATUS_SECURITY_UPDATED;
10787                 } else if (sec->level != SEC_LEVEL_1)
10788                         priv->ieee->sec.flags &= ~(1 << i);
10789         }
10790
10791         if (sec->flags & SEC_ACTIVE_KEY) {
10792                 if (sec->active_key <= 3) {
10793                         priv->ieee->sec.active_key = sec->active_key;
10794                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10795                 } else
10796                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10797                 priv->status |= STATUS_SECURITY_UPDATED;
10798         } else
10799                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10800
10801         if ((sec->flags & SEC_AUTH_MODE) &&
10802             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10803                 priv->ieee->sec.auth_mode = sec->auth_mode;
10804                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10805                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10806                         priv->capability |= CAP_SHARED_KEY;
10807                 else
10808                         priv->capability &= ~CAP_SHARED_KEY;
10809                 priv->status |= STATUS_SECURITY_UPDATED;
10810         }
10811
10812         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10813                 priv->ieee->sec.flags |= SEC_ENABLED;
10814                 priv->ieee->sec.enabled = sec->enabled;
10815                 priv->status |= STATUS_SECURITY_UPDATED;
10816                 if (sec->enabled)
10817                         priv->capability |= CAP_PRIVACY_ON;
10818                 else
10819                         priv->capability &= ~CAP_PRIVACY_ON;
10820         }
10821
10822         if (sec->flags & SEC_ENCRYPT)
10823                 priv->ieee->sec.encrypt = sec->encrypt;
10824
10825         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10826                 priv->ieee->sec.level = sec->level;
10827                 priv->ieee->sec.flags |= SEC_LEVEL;
10828                 priv->status |= STATUS_SECURITY_UPDATED;
10829         }
10830
10831         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10832                 ipw_set_hwcrypto_keys(priv);
10833
10834         /* To match current functionality of ipw2100 (which works well w/
10835          * various supplicants, we don't force a disassociate if the
10836          * privacy capability changes ... */
10837 #if 0
10838         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10839             (((priv->assoc_request.capability &
10840                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10841              (!(priv->assoc_request.capability &
10842                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10843                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10844                                 "change.\n");
10845                 ipw_disassociate(priv);
10846         }
10847 #endif
10848 }
10849
10850 static int init_supported_rates(struct ipw_priv *priv,
10851                                 struct ipw_supported_rates *rates)
10852 {
10853         /* TODO: Mask out rates based on priv->rates_mask */
10854
10855         memset(rates, 0, sizeof(*rates));
10856         /* configure supported rates */
10857         switch (priv->ieee->freq_band) {
10858         case IEEE80211_52GHZ_BAND:
10859                 rates->ieee_mode = IPW_A_MODE;
10860                 rates->purpose = IPW_RATE_CAPABILITIES;
10861                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10862                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10863                 break;
10864
10865         default:                /* Mixed or 2.4Ghz */
10866                 rates->ieee_mode = IPW_G_MODE;
10867                 rates->purpose = IPW_RATE_CAPABILITIES;
10868                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10869                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10870                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10871                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10872                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10873                 }
10874                 break;
10875         }
10876
10877         return 0;
10878 }
10879
10880 static int ipw_config(struct ipw_priv *priv)
10881 {
10882         /* This is only called from ipw_up, which resets/reloads the firmware
10883            so, we don't need to first disable the card before we configure
10884            it */
10885         if (ipw_set_tx_power(priv))
10886                 goto error;
10887
10888         /* initialize adapter address */
10889         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10890                 goto error;
10891
10892         /* set basic system config settings */
10893         init_sys_config(&priv->sys_config);
10894
10895         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10896          * Does not support BT priority yet (don't abort or defer our Tx) */
10897         if (bt_coexist) {
10898                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10899
10900                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10901                         priv->sys_config.bt_coexistence
10902                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10903                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10904                         priv->sys_config.bt_coexistence
10905                             |= CFG_BT_COEXISTENCE_OOB;
10906         }
10907
10908 #ifdef CONFIG_IPW2200_PROMISCUOUS
10909         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10910                 priv->sys_config.accept_all_data_frames = 1;
10911                 priv->sys_config.accept_non_directed_frames = 1;
10912                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10913                 priv->sys_config.accept_all_mgmt_frames = 1;
10914         }
10915 #endif
10916
10917         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10918                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10919         else
10920                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10921
10922         if (ipw_send_system_config(priv))
10923                 goto error;
10924
10925         init_supported_rates(priv, &priv->rates);
10926         if (ipw_send_supported_rates(priv, &priv->rates))
10927                 goto error;
10928
10929         /* Set request-to-send threshold */
10930         if (priv->rts_threshold) {
10931                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10932                         goto error;
10933         }
10934 #ifdef CONFIG_IPW2200_QOS
10935         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10936         ipw_qos_activate(priv, NULL);
10937 #endif                          /* CONFIG_IPW2200_QOS */
10938
10939         if (ipw_set_random_seed(priv))
10940                 goto error;
10941
10942         /* final state transition to the RUN state */
10943         if (ipw_send_host_complete(priv))
10944                 goto error;
10945
10946         priv->status |= STATUS_INIT;
10947
10948         ipw_led_init(priv);
10949         ipw_led_radio_on(priv);
10950         priv->notif_missed_beacons = 0;
10951
10952         /* Set hardware WEP key if it is configured. */
10953         if ((priv->capability & CAP_PRIVACY_ON) &&
10954             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10955             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10956                 ipw_set_hwcrypto_keys(priv);
10957
10958         return 0;
10959
10960       error:
10961         return -EIO;
10962 }
10963
10964 /*
10965  * NOTE:
10966  *
10967  * These tables have been tested in conjunction with the
10968  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10969  *
10970  * Altering this values, using it on other hardware, or in geographies
10971  * not intended for resale of the above mentioned Intel adapters has
10972  * not been tested.
10973  *
10974  * Remember to update the table in README.ipw2200 when changing this
10975  * table.
10976  *
10977  */
10978 static const struct ieee80211_geo ipw_geos[] = {
10979         {                       /* Restricted */
10980          "---",
10981          .bg_channels = 11,
10982          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10983                 {2427, 4}, {2432, 5}, {2437, 6},
10984                 {2442, 7}, {2447, 8}, {2452, 9},
10985                 {2457, 10}, {2462, 11}},
10986          },
10987
10988         {                       /* Custom US/Canada */
10989          "ZZF",
10990          .bg_channels = 11,
10991          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10992                 {2427, 4}, {2432, 5}, {2437, 6},
10993                 {2442, 7}, {2447, 8}, {2452, 9},
10994                 {2457, 10}, {2462, 11}},
10995          .a_channels = 8,
10996          .a = {{5180, 36},
10997                {5200, 40},
10998                {5220, 44},
10999                {5240, 48},
11000                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11001                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11002                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11003                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11004          },
11005
11006         {                       /* Rest of World */
11007          "ZZD",
11008          .bg_channels = 13,
11009          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11010                 {2427, 4}, {2432, 5}, {2437, 6},
11011                 {2442, 7}, {2447, 8}, {2452, 9},
11012                 {2457, 10}, {2462, 11}, {2467, 12},
11013                 {2472, 13}},
11014          },
11015
11016         {                       /* Custom USA & Europe & High */
11017          "ZZA",
11018          .bg_channels = 11,
11019          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11020                 {2427, 4}, {2432, 5}, {2437, 6},
11021                 {2442, 7}, {2447, 8}, {2452, 9},
11022                 {2457, 10}, {2462, 11}},
11023          .a_channels = 13,
11024          .a = {{5180, 36},
11025                {5200, 40},
11026                {5220, 44},
11027                {5240, 48},
11028                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11029                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11030                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11031                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11032                {5745, 149},
11033                {5765, 153},
11034                {5785, 157},
11035                {5805, 161},
11036                {5825, 165}},
11037          },
11038
11039         {                       /* Custom NA & Europe */
11040          "ZZB",
11041          .bg_channels = 11,
11042          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11043                 {2427, 4}, {2432, 5}, {2437, 6},
11044                 {2442, 7}, {2447, 8}, {2452, 9},
11045                 {2457, 10}, {2462, 11}},
11046          .a_channels = 13,
11047          .a = {{5180, 36},
11048                {5200, 40},
11049                {5220, 44},
11050                {5240, 48},
11051                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11052                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11053                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11054                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11055                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11056                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11057                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11058                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11059                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11060          },
11061
11062         {                       /* Custom Japan */
11063          "ZZC",
11064          .bg_channels = 11,
11065          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11066                 {2427, 4}, {2432, 5}, {2437, 6},
11067                 {2442, 7}, {2447, 8}, {2452, 9},
11068                 {2457, 10}, {2462, 11}},
11069          .a_channels = 4,
11070          .a = {{5170, 34}, {5190, 38},
11071                {5210, 42}, {5230, 46}},
11072          },
11073
11074         {                       /* Custom */
11075          "ZZM",
11076          .bg_channels = 11,
11077          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11078                 {2427, 4}, {2432, 5}, {2437, 6},
11079                 {2442, 7}, {2447, 8}, {2452, 9},
11080                 {2457, 10}, {2462, 11}},
11081          },
11082
11083         {                       /* Europe */
11084          "ZZE",
11085          .bg_channels = 13,
11086          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11087                 {2427, 4}, {2432, 5}, {2437, 6},
11088                 {2442, 7}, {2447, 8}, {2452, 9},
11089                 {2457, 10}, {2462, 11}, {2467, 12},
11090                 {2472, 13}},
11091          .a_channels = 19,
11092          .a = {{5180, 36},
11093                {5200, 40},
11094                {5220, 44},
11095                {5240, 48},
11096                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11097                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11098                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11099                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11100                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11101                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11102                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11103                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11104                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11105                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11106                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11107                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11108                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11109                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11110                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11111          },
11112
11113         {                       /* Custom Japan */
11114          "ZZJ",
11115          .bg_channels = 14,
11116          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11117                 {2427, 4}, {2432, 5}, {2437, 6},
11118                 {2442, 7}, {2447, 8}, {2452, 9},
11119                 {2457, 10}, {2462, 11}, {2467, 12},
11120                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11121          .a_channels = 4,
11122          .a = {{5170, 34}, {5190, 38},
11123                {5210, 42}, {5230, 46}},
11124          },
11125
11126         {                       /* Rest of World */
11127          "ZZR",
11128          .bg_channels = 14,
11129          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11130                 {2427, 4}, {2432, 5}, {2437, 6},
11131                 {2442, 7}, {2447, 8}, {2452, 9},
11132                 {2457, 10}, {2462, 11}, {2467, 12},
11133                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11134                              IEEE80211_CH_PASSIVE_ONLY}},
11135          },
11136
11137         {                       /* High Band */
11138          "ZZH",
11139          .bg_channels = 13,
11140          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11141                 {2427, 4}, {2432, 5}, {2437, 6},
11142                 {2442, 7}, {2447, 8}, {2452, 9},
11143                 {2457, 10}, {2462, 11},
11144                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11145                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11146          .a_channels = 4,
11147          .a = {{5745, 149}, {5765, 153},
11148                {5785, 157}, {5805, 161}},
11149          },
11150
11151         {                       /* Custom Europe */
11152          "ZZG",
11153          .bg_channels = 13,
11154          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11155                 {2427, 4}, {2432, 5}, {2437, 6},
11156                 {2442, 7}, {2447, 8}, {2452, 9},
11157                 {2457, 10}, {2462, 11},
11158                 {2467, 12}, {2472, 13}},
11159          .a_channels = 4,
11160          .a = {{5180, 36}, {5200, 40},
11161                {5220, 44}, {5240, 48}},
11162          },
11163
11164         {                       /* Europe */
11165          "ZZK",
11166          .bg_channels = 13,
11167          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11168                 {2427, 4}, {2432, 5}, {2437, 6},
11169                 {2442, 7}, {2447, 8}, {2452, 9},
11170                 {2457, 10}, {2462, 11},
11171                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11172                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11173          .a_channels = 24,
11174          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11175                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11176                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11177                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11178                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11179                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11180                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11181                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11182                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11183                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11184                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11185                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11186                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11187                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11188                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11189                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11190                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11191                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11192                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11193                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11194                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11195                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11196                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11197                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11198          },
11199
11200         {                       /* Europe */
11201          "ZZL",
11202          .bg_channels = 11,
11203          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11204                 {2427, 4}, {2432, 5}, {2437, 6},
11205                 {2442, 7}, {2447, 8}, {2452, 9},
11206                 {2457, 10}, {2462, 11}},
11207          .a_channels = 13,
11208          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11209                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11210                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11211                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11212                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11213                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11214                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11215                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11216                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11217                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11218                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11219                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11220                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11221          }
11222 };
11223
11224 #define MAX_HW_RESTARTS 5
11225 static int ipw_up(struct ipw_priv *priv)
11226 {
11227         int rc, i, j;
11228
11229         /* Age scan list entries found before suspend */
11230         if (priv->suspend_time) {
11231                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11232                 priv->suspend_time = 0;
11233         }
11234
11235         if (priv->status & STATUS_EXIT_PENDING)
11236                 return -EIO;
11237
11238         if (cmdlog && !priv->cmdlog) {
11239                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11240                                        GFP_KERNEL);
11241                 if (priv->cmdlog == NULL) {
11242                         IPW_ERROR("Error allocating %d command log entries.\n",
11243                                   cmdlog);
11244                         return -ENOMEM;
11245                 } else {
11246                         priv->cmdlog_len = cmdlog;
11247                 }
11248         }
11249
11250         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11251                 /* Load the microcode, firmware, and eeprom.
11252                  * Also start the clocks. */
11253                 rc = ipw_load(priv);
11254                 if (rc) {
11255                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11256                         return rc;
11257                 }
11258
11259                 ipw_init_ordinals(priv);
11260                 if (!(priv->config & CFG_CUSTOM_MAC))
11261                         eeprom_parse_mac(priv, priv->mac_addr);
11262                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11263
11264                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11265                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11266                                     ipw_geos[j].name, 3))
11267                                 break;
11268                 }
11269                 if (j == ARRAY_SIZE(ipw_geos)) {
11270                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11271                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11272                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11273                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11274                         j = 0;
11275                 }
11276                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11277                         IPW_WARNING("Could not set geography.");
11278                         return 0;
11279                 }
11280
11281                 if (priv->status & STATUS_RF_KILL_SW) {
11282                         IPW_WARNING("Radio disabled by module parameter.\n");
11283                         return 0;
11284                 } else if (rf_kill_active(priv)) {
11285                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11286                                     "Kill switch must be turned off for "
11287                                     "wireless networking to work.\n");
11288                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11289                                            2 * HZ);
11290                         return 0;
11291                 }
11292
11293                 rc = ipw_config(priv);
11294                 if (!rc) {
11295                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11296
11297                         /* If configure to try and auto-associate, kick
11298                          * off a scan. */
11299                         queue_delayed_work(priv->workqueue,
11300                                            &priv->request_scan, 0);
11301
11302                         return 0;
11303                 }
11304
11305                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11306                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11307                                i, MAX_HW_RESTARTS);
11308
11309                 /* We had an error bringing up the hardware, so take it
11310                  * all the way back down so we can try again */
11311                 ipw_down(priv);
11312         }
11313
11314         /* tried to restart and config the device for as long as our
11315          * patience could withstand */
11316         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11317
11318         return -EIO;
11319 }
11320
11321 static void ipw_bg_up(struct work_struct *work)
11322 {
11323         struct ipw_priv *priv =
11324                 container_of(work, struct ipw_priv, up);
11325         mutex_lock(&priv->mutex);
11326         ipw_up(priv);
11327         mutex_unlock(&priv->mutex);
11328 }
11329
11330 static void ipw_deinit(struct ipw_priv *priv)
11331 {
11332         int i;
11333
11334         if (priv->status & STATUS_SCANNING) {
11335                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11336                 ipw_abort_scan(priv);
11337         }
11338
11339         if (priv->status & STATUS_ASSOCIATED) {
11340                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11341                 ipw_disassociate(priv);
11342         }
11343
11344         ipw_led_shutdown(priv);
11345
11346         /* Wait up to 1s for status to change to not scanning and not
11347          * associated (disassociation can take a while for a ful 802.11
11348          * exchange */
11349         for (i = 1000; i && (priv->status &
11350                              (STATUS_DISASSOCIATING |
11351                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11352                 udelay(10);
11353
11354         if (priv->status & (STATUS_DISASSOCIATING |
11355                             STATUS_ASSOCIATED | STATUS_SCANNING))
11356                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11357         else
11358                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11359
11360         /* Attempt to disable the card */
11361         ipw_send_card_disable(priv, 0);
11362
11363         priv->status &= ~STATUS_INIT;
11364 }
11365
11366 static void ipw_down(struct ipw_priv *priv)
11367 {
11368         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11369
11370         priv->status |= STATUS_EXIT_PENDING;
11371
11372         if (ipw_is_init(priv))
11373                 ipw_deinit(priv);
11374
11375         /* Wipe out the EXIT_PENDING status bit if we are not actually
11376          * exiting the module */
11377         if (!exit_pending)
11378                 priv->status &= ~STATUS_EXIT_PENDING;
11379
11380         /* tell the device to stop sending interrupts */
11381         ipw_disable_interrupts(priv);
11382
11383         /* Clear all bits but the RF Kill */
11384         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11385         netif_carrier_off(priv->net_dev);
11386
11387         ipw_stop_nic(priv);
11388
11389         ipw_led_radio_off(priv);
11390 }
11391
11392 static void ipw_bg_down(struct work_struct *work)
11393 {
11394         struct ipw_priv *priv =
11395                 container_of(work, struct ipw_priv, down);
11396         mutex_lock(&priv->mutex);
11397         ipw_down(priv);
11398         mutex_unlock(&priv->mutex);
11399 }
11400
11401 /* Called by register_netdev() */
11402 static int ipw_net_init(struct net_device *dev)
11403 {
11404         struct ipw_priv *priv = ieee80211_priv(dev);
11405         mutex_lock(&priv->mutex);
11406
11407         if (ipw_up(priv)) {
11408                 mutex_unlock(&priv->mutex);
11409                 return -EIO;
11410         }
11411
11412         mutex_unlock(&priv->mutex);
11413         return 0;
11414 }
11415
11416 /* PCI driver stuff */
11417 static struct pci_device_id card_ids[] = {
11418         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11419         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11420         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11421         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11422         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11423         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11424         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11425         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11426         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11427         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11428         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11435         {PCI_VDEVICE(INTEL, 0x104f), 0},
11436         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11437         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11438         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11439         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11440
11441         /* required last entry */
11442         {0,}
11443 };
11444
11445 MODULE_DEVICE_TABLE(pci, card_ids);
11446
11447 static struct attribute *ipw_sysfs_entries[] = {
11448         &dev_attr_rf_kill.attr,
11449         &dev_attr_direct_dword.attr,
11450         &dev_attr_indirect_byte.attr,
11451         &dev_attr_indirect_dword.attr,
11452         &dev_attr_mem_gpio_reg.attr,
11453         &dev_attr_command_event_reg.attr,
11454         &dev_attr_nic_type.attr,
11455         &dev_attr_status.attr,
11456         &dev_attr_cfg.attr,
11457         &dev_attr_error.attr,
11458         &dev_attr_event_log.attr,
11459         &dev_attr_cmd_log.attr,
11460         &dev_attr_eeprom_delay.attr,
11461         &dev_attr_ucode_version.attr,
11462         &dev_attr_rtc.attr,
11463         &dev_attr_scan_age.attr,
11464         &dev_attr_led.attr,
11465         &dev_attr_speed_scan.attr,
11466         &dev_attr_net_stats.attr,
11467         &dev_attr_channels.attr,
11468 #ifdef CONFIG_IPW2200_PROMISCUOUS
11469         &dev_attr_rtap_iface.attr,
11470         &dev_attr_rtap_filter.attr,
11471 #endif
11472         NULL
11473 };
11474
11475 static struct attribute_group ipw_attribute_group = {
11476         .name = NULL,           /* put in device directory */
11477         .attrs = ipw_sysfs_entries,
11478 };
11479
11480 #ifdef CONFIG_IPW2200_PROMISCUOUS
11481 static int ipw_prom_open(struct net_device *dev)
11482 {
11483         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11484         struct ipw_priv *priv = prom_priv->priv;
11485
11486         IPW_DEBUG_INFO("prom dev->open\n");
11487         netif_carrier_off(dev);
11488
11489         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11490                 priv->sys_config.accept_all_data_frames = 1;
11491                 priv->sys_config.accept_non_directed_frames = 1;
11492                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11493                 priv->sys_config.accept_all_mgmt_frames = 1;
11494
11495                 ipw_send_system_config(priv);
11496         }
11497
11498         return 0;
11499 }
11500
11501 static int ipw_prom_stop(struct net_device *dev)
11502 {
11503         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11504         struct ipw_priv *priv = prom_priv->priv;
11505
11506         IPW_DEBUG_INFO("prom dev->stop\n");
11507
11508         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11509                 priv->sys_config.accept_all_data_frames = 0;
11510                 priv->sys_config.accept_non_directed_frames = 0;
11511                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11512                 priv->sys_config.accept_all_mgmt_frames = 0;
11513
11514                 ipw_send_system_config(priv);
11515         }
11516
11517         return 0;
11518 }
11519
11520 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11521 {
11522         IPW_DEBUG_INFO("prom dev->xmit\n");
11523         dev_kfree_skb(skb);
11524         return NETDEV_TX_OK;
11525 }
11526
11527 static const struct net_device_ops ipw_prom_netdev_ops = {
11528         .ndo_open               = ipw_prom_open,
11529         .ndo_stop               = ipw_prom_stop,
11530         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11531         .ndo_change_mtu         = ieee80211_change_mtu,
11532         .ndo_set_mac_address    = eth_mac_addr,
11533         .ndo_validate_addr      = eth_validate_addr,
11534 };
11535
11536 static int ipw_prom_alloc(struct ipw_priv *priv)
11537 {
11538         int rc = 0;
11539
11540         if (priv->prom_net_dev)
11541                 return -EPERM;
11542
11543         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11544         if (priv->prom_net_dev == NULL)
11545                 return -ENOMEM;
11546
11547         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11548         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11549         priv->prom_priv->priv = priv;
11550
11551         strcpy(priv->prom_net_dev->name, "rtap%d");
11552         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11553
11554         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11555         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11556
11557         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11558         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11559
11560         rc = register_netdev(priv->prom_net_dev);
11561         if (rc) {
11562                 free_ieee80211(priv->prom_net_dev);
11563                 priv->prom_net_dev = NULL;
11564                 return rc;
11565         }
11566
11567         return 0;
11568 }
11569
11570 static void ipw_prom_free(struct ipw_priv *priv)
11571 {
11572         if (!priv->prom_net_dev)
11573                 return;
11574
11575         unregister_netdev(priv->prom_net_dev);
11576         free_ieee80211(priv->prom_net_dev);
11577
11578         priv->prom_net_dev = NULL;
11579 }
11580
11581 #endif
11582
11583 static const struct net_device_ops ipw_netdev_ops = {
11584         .ndo_init               = ipw_net_init,
11585         .ndo_open               = ipw_net_open,
11586         .ndo_stop               = ipw_net_stop,
11587         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11588         .ndo_set_mac_address    = ipw_net_set_mac_address,
11589         .ndo_start_xmit         = ieee80211_xmit,
11590         .ndo_change_mtu         = ieee80211_change_mtu,
11591         .ndo_validate_addr      = eth_validate_addr,
11592 };
11593
11594 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11595                                    const struct pci_device_id *ent)
11596 {
11597         int err = 0;
11598         struct net_device *net_dev;
11599         void __iomem *base;
11600         u32 length, val;
11601         struct ipw_priv *priv;
11602         int i;
11603
11604         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11605         if (net_dev == NULL) {
11606                 err = -ENOMEM;
11607                 goto out;
11608         }
11609
11610         priv = ieee80211_priv(net_dev);
11611         priv->ieee = netdev_priv(net_dev);
11612
11613         priv->net_dev = net_dev;
11614         priv->pci_dev = pdev;
11615         ipw_debug_level = debug;
11616         spin_lock_init(&priv->irq_lock);
11617         spin_lock_init(&priv->lock);
11618         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11619                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11620
11621         mutex_init(&priv->mutex);
11622         if (pci_enable_device(pdev)) {
11623                 err = -ENODEV;
11624                 goto out_free_ieee80211;
11625         }
11626
11627         pci_set_master(pdev);
11628
11629         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11630         if (!err)
11631                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11632         if (err) {
11633                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11634                 goto out_pci_disable_device;
11635         }
11636
11637         pci_set_drvdata(pdev, priv);
11638
11639         err = pci_request_regions(pdev, DRV_NAME);
11640         if (err)
11641                 goto out_pci_disable_device;
11642
11643         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11644          * PCI Tx retries from interfering with C3 CPU state */
11645         pci_read_config_dword(pdev, 0x40, &val);
11646         if ((val & 0x0000ff00) != 0)
11647                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11648
11649         length = pci_resource_len(pdev, 0);
11650         priv->hw_len = length;
11651
11652         base = pci_ioremap_bar(pdev, 0);
11653         if (!base) {
11654                 err = -ENODEV;
11655                 goto out_pci_release_regions;
11656         }
11657
11658         priv->hw_base = base;
11659         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11660         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11661
11662         err = ipw_setup_deferred_work(priv);
11663         if (err) {
11664                 IPW_ERROR("Unable to setup deferred work\n");
11665                 goto out_iounmap;
11666         }
11667
11668         ipw_sw_reset(priv, 1);
11669
11670         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11671         if (err) {
11672                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11673                 goto out_destroy_workqueue;
11674         }
11675
11676         SET_NETDEV_DEV(net_dev, &pdev->dev);
11677
11678         mutex_lock(&priv->mutex);
11679
11680         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11681         priv->ieee->set_security = shim__set_security;
11682         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11683
11684 #ifdef CONFIG_IPW2200_QOS
11685         priv->ieee->is_qos_active = ipw_is_qos_active;
11686         priv->ieee->handle_probe_response = ipw_handle_beacon;
11687         priv->ieee->handle_beacon = ipw_handle_probe_response;
11688         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11689 #endif                          /* CONFIG_IPW2200_QOS */
11690
11691         priv->ieee->perfect_rssi = -20;
11692         priv->ieee->worst_rssi = -85;
11693
11694         net_dev->netdev_ops = &ipw_netdev_ops;
11695         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11696         net_dev->wireless_data = &priv->wireless_data;
11697         net_dev->wireless_handlers = &ipw_wx_handler_def;
11698         net_dev->ethtool_ops = &ipw_ethtool_ops;
11699         net_dev->irq = pdev->irq;
11700         net_dev->base_addr = (unsigned long)priv->hw_base;
11701         net_dev->mem_start = pci_resource_start(pdev, 0);
11702         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11703
11704         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11705         if (err) {
11706                 IPW_ERROR("failed to create sysfs device attributes\n");
11707                 mutex_unlock(&priv->mutex);
11708                 goto out_release_irq;
11709         }
11710
11711         mutex_unlock(&priv->mutex);
11712         err = register_netdev(net_dev);
11713         if (err) {
11714                 IPW_ERROR("failed to register network device\n");
11715                 goto out_remove_sysfs;
11716         }
11717
11718 #ifdef CONFIG_IPW2200_PROMISCUOUS
11719         if (rtap_iface) {
11720                 err = ipw_prom_alloc(priv);
11721                 if (err) {
11722                         IPW_ERROR("Failed to register promiscuous network "
11723                                   "device (error %d).\n", err);
11724                         unregister_netdev(priv->net_dev);
11725                         goto out_remove_sysfs;
11726                 }
11727         }
11728 #endif
11729
11730         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11731                "channels, %d 802.11a channels)\n",
11732                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11733                priv->ieee->geo.a_channels);
11734
11735         return 0;
11736
11737       out_remove_sysfs:
11738         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11739       out_release_irq:
11740         free_irq(pdev->irq, priv);
11741       out_destroy_workqueue:
11742         destroy_workqueue(priv->workqueue);
11743         priv->workqueue = NULL;
11744       out_iounmap:
11745         iounmap(priv->hw_base);
11746       out_pci_release_regions:
11747         pci_release_regions(pdev);
11748       out_pci_disable_device:
11749         pci_disable_device(pdev);
11750         pci_set_drvdata(pdev, NULL);
11751       out_free_ieee80211:
11752         free_ieee80211(priv->net_dev);
11753       out:
11754         return err;
11755 }
11756
11757 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11758 {
11759         struct ipw_priv *priv = pci_get_drvdata(pdev);
11760         struct list_head *p, *q;
11761         int i;
11762
11763         if (!priv)
11764                 return;
11765
11766         mutex_lock(&priv->mutex);
11767
11768         priv->status |= STATUS_EXIT_PENDING;
11769         ipw_down(priv);
11770         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11771
11772         mutex_unlock(&priv->mutex);
11773
11774         unregister_netdev(priv->net_dev);
11775
11776         if (priv->rxq) {
11777                 ipw_rx_queue_free(priv, priv->rxq);
11778                 priv->rxq = NULL;
11779         }
11780         ipw_tx_queue_free(priv);
11781
11782         if (priv->cmdlog) {
11783                 kfree(priv->cmdlog);
11784                 priv->cmdlog = NULL;
11785         }
11786         /* ipw_down will ensure that there is no more pending work
11787          * in the workqueue's, so we can safely remove them now. */
11788         cancel_delayed_work(&priv->adhoc_check);
11789         cancel_delayed_work(&priv->gather_stats);
11790         cancel_delayed_work(&priv->request_scan);
11791         cancel_delayed_work(&priv->request_direct_scan);
11792         cancel_delayed_work(&priv->request_passive_scan);
11793         cancel_delayed_work(&priv->scan_event);
11794         cancel_delayed_work(&priv->rf_kill);
11795         cancel_delayed_work(&priv->scan_check);
11796         destroy_workqueue(priv->workqueue);
11797         priv->workqueue = NULL;
11798
11799         /* Free MAC hash list for ADHOC */
11800         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11801                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11802                         list_del(p);
11803                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11804                 }
11805         }
11806
11807         kfree(priv->error);
11808         priv->error = NULL;
11809
11810 #ifdef CONFIG_IPW2200_PROMISCUOUS
11811         ipw_prom_free(priv);
11812 #endif
11813
11814         free_irq(pdev->irq, priv);
11815         iounmap(priv->hw_base);
11816         pci_release_regions(pdev);
11817         pci_disable_device(pdev);
11818         pci_set_drvdata(pdev, NULL);
11819         free_ieee80211(priv->net_dev);
11820         free_firmware();
11821 }
11822
11823 #ifdef CONFIG_PM
11824 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11825 {
11826         struct ipw_priv *priv = pci_get_drvdata(pdev);
11827         struct net_device *dev = priv->net_dev;
11828
11829         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11830
11831         /* Take down the device; powers it off, etc. */
11832         ipw_down(priv);
11833
11834         /* Remove the PRESENT state of the device */
11835         netif_device_detach(dev);
11836
11837         pci_save_state(pdev);
11838         pci_disable_device(pdev);
11839         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11840
11841         priv->suspend_at = get_seconds();
11842
11843         return 0;
11844 }
11845
11846 static int ipw_pci_resume(struct pci_dev *pdev)
11847 {
11848         struct ipw_priv *priv = pci_get_drvdata(pdev);
11849         struct net_device *dev = priv->net_dev;
11850         int err;
11851         u32 val;
11852
11853         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11854
11855         pci_set_power_state(pdev, PCI_D0);
11856         err = pci_enable_device(pdev);
11857         if (err) {
11858                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11859                        dev->name);
11860                 return err;
11861         }
11862         pci_restore_state(pdev);
11863
11864         /*
11865          * Suspend/Resume resets the PCI configuration space, so we have to
11866          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11867          * from interfering with C3 CPU state. pci_restore_state won't help
11868          * here since it only restores the first 64 bytes pci config header.
11869          */
11870         pci_read_config_dword(pdev, 0x40, &val);
11871         if ((val & 0x0000ff00) != 0)
11872                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11873
11874         /* Set the device back into the PRESENT state; this will also wake
11875          * the queue of needed */
11876         netif_device_attach(dev);
11877
11878         priv->suspend_time = get_seconds() - priv->suspend_at;
11879
11880         /* Bring the device back up */
11881         queue_work(priv->workqueue, &priv->up);
11882
11883         return 0;
11884 }
11885 #endif
11886
11887 static void ipw_pci_shutdown(struct pci_dev *pdev)
11888 {
11889         struct ipw_priv *priv = pci_get_drvdata(pdev);
11890
11891         /* Take down the device; powers it off, etc. */
11892         ipw_down(priv);
11893
11894         pci_disable_device(pdev);
11895 }
11896
11897 /* driver initialization stuff */
11898 static struct pci_driver ipw_driver = {
11899         .name = DRV_NAME,
11900         .id_table = card_ids,
11901         .probe = ipw_pci_probe,
11902         .remove = __devexit_p(ipw_pci_remove),
11903 #ifdef CONFIG_PM
11904         .suspend = ipw_pci_suspend,
11905         .resume = ipw_pci_resume,
11906 #endif
11907         .shutdown = ipw_pci_shutdown,
11908 };
11909
11910 static int __init ipw_init(void)
11911 {
11912         int ret;
11913
11914         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11915         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11916
11917         ret = pci_register_driver(&ipw_driver);
11918         if (ret) {
11919                 IPW_ERROR("Unable to initialize PCI module\n");
11920                 return ret;
11921         }
11922
11923         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11924         if (ret) {
11925                 IPW_ERROR("Unable to create driver sysfs file\n");
11926                 pci_unregister_driver(&ipw_driver);
11927                 return ret;
11928         }
11929
11930         return ret;
11931 }
11932
11933 static void __exit ipw_exit(void)
11934 {
11935         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11936         pci_unregister_driver(&ipw_driver);
11937 }
11938
11939 module_param(disable, int, 0444);
11940 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11941
11942 module_param(associate, int, 0444);
11943 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11944
11945 module_param(auto_create, int, 0444);
11946 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11947
11948 module_param_named(led, led_support, int, 0444);
11949 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11950
11951 module_param(debug, int, 0444);
11952 MODULE_PARM_DESC(debug, "debug output mask");
11953
11954 module_param_named(channel, default_channel, int, 0444);
11955 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11956
11957 #ifdef CONFIG_IPW2200_PROMISCUOUS
11958 module_param(rtap_iface, int, 0444);
11959 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11960 #endif
11961
11962 #ifdef CONFIG_IPW2200_QOS
11963 module_param(qos_enable, int, 0444);
11964 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11965
11966 module_param(qos_burst_enable, int, 0444);
11967 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11968
11969 module_param(qos_no_ack_mask, int, 0444);
11970 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11971
11972 module_param(burst_duration_CCK, int, 0444);
11973 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11974
11975 module_param(burst_duration_OFDM, int, 0444);
11976 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11977 #endif                          /* CONFIG_IPW2200_QOS */
11978
11979 #ifdef CONFIG_IPW2200_MONITOR
11980 module_param_named(mode, network_mode, int, 0444);
11981 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11982 #else
11983 module_param_named(mode, network_mode, int, 0444);
11984 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11985 #endif
11986
11987 module_param(bt_coexist, int, 0444);
11988 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11989
11990 module_param(hwcrypto, int, 0444);
11991 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11992
11993 module_param(cmdlog, int, 0444);
11994 MODULE_PARM_DESC(cmdlog,
11995                  "allocate a ring buffer for logging firmware commands");
11996
11997 module_param(roaming, int, 0444);
11998 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11999
12000 module_param(antenna, int, 0444);
12001 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12002
12003 module_exit(ipw_exit);
12004 module_init(ipw_init);