Merge branch 'x86-kbuild-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34
35
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
41
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
47
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
53
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
59
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
65
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
71
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION     IPW2200_VERSION
76
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
78
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
83
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
88
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98         'a', 'b', 'g', '?'
99 };
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
101
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
104 #endif
105
106
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
113
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116          QOS_TX3_CW_MIN_OFDM},
117         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118          QOS_TX3_CW_MAX_OFDM},
119         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
123 };
124
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127          QOS_TX3_CW_MIN_CCK},
128         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129          QOS_TX3_CW_MAX_CCK},
130         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133          QOS_TX3_TXOP_LIMIT_CCK}
134 };
135
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138          DEF_TX3_CW_MIN_OFDM},
139         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140          DEF_TX3_CW_MAX_OFDM},
141         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149          DEF_TX3_CW_MIN_CCK},
150         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151          DEF_TX3_CW_MAX_CCK},
152         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155          DEF_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
159
160 static int from_priority_to_tx_queue[] = {
161         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
163 };
164
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
166
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168                                        *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170                                      *qos_param);
171 #endif                          /* CONFIG_IPW2200_QOS */
172
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177                                 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
179
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181                              int len, int sync);
182
183 static void ipw_tx_queue_free(struct ipw_priv *);
184
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194                                 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
197
198 static int snprint_line(char *buf, size_t count,
199                         const u8 * data, u32 len, u32 ofs)
200 {
201         int out, i, j, l;
202         char c;
203
204         out = snprintf(buf, count, "%08X", ofs);
205
206         for (l = 0, i = 0; i < 2; i++) {
207                 out += snprintf(buf + out, count - out, " ");
208                 for (j = 0; j < 8 && l < len; j++, l++)
209                         out += snprintf(buf + out, count - out, "%02X ",
210                                         data[(i * 8 + j)]);
211                 for (; j < 8; j++)
212                         out += snprintf(buf + out, count - out, "   ");
213         }
214
215         out += snprintf(buf + out, count - out, " ");
216         for (l = 0, i = 0; i < 2; i++) {
217                 out += snprintf(buf + out, count - out, " ");
218                 for (j = 0; j < 8 && l < len; j++, l++) {
219                         c = data[(i * 8 + j)];
220                         if (!isascii(c) || !isprint(c))
221                                 c = '.';
222
223                         out += snprintf(buf + out, count - out, "%c", c);
224                 }
225
226                 for (; j < 8; j++)
227                         out += snprintf(buf + out, count - out, " ");
228         }
229
230         return out;
231 }
232
233 static void printk_buf(int level, const u8 * data, u32 len)
234 {
235         char line[81];
236         u32 ofs = 0;
237         if (!(ipw_debug_level & level))
238                 return;
239
240         while (len) {
241                 snprint_line(line, sizeof(line), &data[ofs],
242                              min(len, 16U), ofs);
243                 printk(KERN_DEBUG "%s\n", line);
244                 ofs += 16;
245                 len -= min(len, 16U);
246         }
247 }
248
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
250 {
251         size_t out = size;
252         u32 ofs = 0;
253         int total = 0;
254
255         while (size && len) {
256                 out = snprint_line(output, size, &data[ofs],
257                                    min_t(size_t, len, 16U), ofs);
258
259                 ofs += 16;
260                 output += out;
261                 size -= out;
262                 len -= min_t(size_t, len, 16U);
263                 total += out;
264         }
265         return total;
266 }
267
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
271
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
275
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
279 {
280         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281                      __LINE__, (u32) (b), (u32) (c));
282         _ipw_write_reg8(a, b, c);
283 }
284
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
288 {
289         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290                      __LINE__, (u32) (b), (u32) (c));
291         _ipw_write_reg16(a, b, c);
292 }
293
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
297 {
298         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299                      __LINE__, (u32) (b), (u32) (c));
300         _ipw_write_reg32(a, b, c);
301 }
302
303 /* 8-bit direct write (low 4K) */
304 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
305                 u8 val)
306 {
307         writeb(val, ipw->hw_base + ofs);
308 }
309
310 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
311 #define ipw_write8(ipw, ofs, val) do { \
312         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
313                         __LINE__, (u32)(ofs), (u32)(val)); \
314         _ipw_write8(ipw, ofs, val); \
315 } while (0)
316
317 /* 16-bit direct write (low 4K) */
318 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
319                 u16 val)
320 {
321         writew(val, ipw->hw_base + ofs);
322 }
323
324 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write16(ipw, ofs, val) do { \
326         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
327                         __LINE__, (u32)(ofs), (u32)(val)); \
328         _ipw_write16(ipw, ofs, val); \
329 } while (0)
330
331 /* 32-bit direct write (low 4K) */
332 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
333                 u32 val)
334 {
335         writel(val, ipw->hw_base + ofs);
336 }
337
338 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_write32(ipw, ofs, val) do { \
340         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
341                         __LINE__, (u32)(ofs), (u32)(val)); \
342         _ipw_write32(ipw, ofs, val); \
343 } while (0)
344
345 /* 8-bit direct read (low 4K) */
346 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
347 {
348         return readb(ipw->hw_base + ofs);
349 }
350
351 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read8(ipw, ofs) ({ \
353         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
354                         (u32)(ofs)); \
355         _ipw_read8(ipw, ofs); \
356 })
357
358 /* 16-bit direct read (low 4K) */
359 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
360 {
361         return readw(ipw->hw_base + ofs);
362 }
363
364 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read16(ipw, ofs) ({ \
366         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
367                         (u32)(ofs)); \
368         _ipw_read16(ipw, ofs); \
369 })
370
371 /* 32-bit direct read (low 4K) */
372 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
373 {
374         return readl(ipw->hw_base + ofs);
375 }
376
377 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
378 #define ipw_read32(ipw, ofs) ({ \
379         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
380                         (u32)(ofs)); \
381         _ipw_read32(ipw, ofs); \
382 })
383
384 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
385 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
386 #define ipw_read_indirect(a, b, c, d) ({ \
387         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
388                         __LINE__, (u32)(b), (u32)(d)); \
389         _ipw_read_indirect(a, b, c, d); \
390 })
391
392 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
393 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
394                                 int num);
395 #define ipw_write_indirect(a, b, c, d) do { \
396         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
397                         __LINE__, (u32)(b), (u32)(d)); \
398         _ipw_write_indirect(a, b, c, d); \
399 } while (0)
400
401 /* 32-bit indirect write (above 4K) */
402 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
403 {
404         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
405         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
406         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
407 }
408
409 /* 8-bit indirect write (above 4K) */
410 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
411 {
412         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
413         u32 dif_len = reg - aligned_addr;
414
415         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
416         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
417         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
418 }
419
420 /* 16-bit indirect write (above 4K) */
421 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
422 {
423         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
424         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
425
426         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
427         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
429 }
430
431 /* 8-bit indirect read (above 4K) */
432 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
433 {
434         u32 word;
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
436         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
437         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         return (word >> ((reg & 0x3) * 8)) & 0xff;
439 }
440
441 /* 32-bit indirect read (above 4K) */
442 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
443 {
444         u32 value;
445
446         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
447
448         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
449         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
450         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
451         return value;
452 }
453
454 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
455 /*    for area above 1st 4K of SRAM/reg space */
456 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
457                                int num)
458 {
459         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
460         u32 dif_len = addr - aligned_addr;
461         u32 i;
462
463         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
464
465         if (num <= 0) {
466                 return;
467         }
468
469         /* Read the first dword (or portion) byte by byte */
470         if (unlikely(dif_len)) {
471                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472                 /* Start reading at aligned_addr + dif_len */
473                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
474                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
475                 aligned_addr += 4;
476         }
477
478         /* Read all of the middle dwords as dwords, with auto-increment */
479         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
480         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
481                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
482
483         /* Read the last dword (or portion) byte by byte */
484         if (unlikely(num)) {
485                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
486                 for (i = 0; num > 0; i++, num--)
487                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
488         }
489 }
490
491 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
492 /*    for area above 1st 4K of SRAM/reg space */
493 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
494                                 int num)
495 {
496         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
497         u32 dif_len = addr - aligned_addr;
498         u32 i;
499
500         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
501
502         if (num <= 0) {
503                 return;
504         }
505
506         /* Write the first dword (or portion) byte by byte */
507         if (unlikely(dif_len)) {
508                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509                 /* Start writing at aligned_addr + dif_len */
510                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512                 aligned_addr += 4;
513         }
514
515         /* Write all of the middle dwords as dwords, with auto-increment */
516         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
517         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
518                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
519
520         /* Write the last dword (or portion) byte by byte */
521         if (unlikely(num)) {
522                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
523                 for (i = 0; num > 0; i++, num--, buf++)
524                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
525         }
526 }
527
528 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
529 /*    for 1st 4K of SRAM/regs space */
530 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
531                              int num)
532 {
533         memcpy_toio((priv->hw_base + addr), buf, num);
534 }
535
536 /* Set bit(s) in low 4K of SRAM/regs */
537 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
538 {
539         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
540 }
541
542 /* Clear bit(s) in low 4K of SRAM/regs */
543 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
544 {
545         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
546 }
547
548 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
549 {
550         if (priv->status & STATUS_INT_ENABLED)
551                 return;
552         priv->status |= STATUS_INT_ENABLED;
553         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
554 }
555
556 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
557 {
558         if (!(priv->status & STATUS_INT_ENABLED))
559                 return;
560         priv->status &= ~STATUS_INT_ENABLED;
561         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
562 }
563
564 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
565 {
566         unsigned long flags;
567
568         spin_lock_irqsave(&priv->irq_lock, flags);
569         __ipw_enable_interrupts(priv);
570         spin_unlock_irqrestore(&priv->irq_lock, flags);
571 }
572
573 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
574 {
575         unsigned long flags;
576
577         spin_lock_irqsave(&priv->irq_lock, flags);
578         __ipw_disable_interrupts(priv);
579         spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
582 static char *ipw_error_desc(u32 val)
583 {
584         switch (val) {
585         case IPW_FW_ERROR_OK:
586                 return "ERROR_OK";
587         case IPW_FW_ERROR_FAIL:
588                 return "ERROR_FAIL";
589         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
590                 return "MEMORY_UNDERFLOW";
591         case IPW_FW_ERROR_MEMORY_OVERFLOW:
592                 return "MEMORY_OVERFLOW";
593         case IPW_FW_ERROR_BAD_PARAM:
594                 return "BAD_PARAM";
595         case IPW_FW_ERROR_BAD_CHECKSUM:
596                 return "BAD_CHECKSUM";
597         case IPW_FW_ERROR_NMI_INTERRUPT:
598                 return "NMI_INTERRUPT";
599         case IPW_FW_ERROR_BAD_DATABASE:
600                 return "BAD_DATABASE";
601         case IPW_FW_ERROR_ALLOC_FAIL:
602                 return "ALLOC_FAIL";
603         case IPW_FW_ERROR_DMA_UNDERRUN:
604                 return "DMA_UNDERRUN";
605         case IPW_FW_ERROR_DMA_STATUS:
606                 return "DMA_STATUS";
607         case IPW_FW_ERROR_DINO_ERROR:
608                 return "DINO_ERROR";
609         case IPW_FW_ERROR_EEPROM_ERROR:
610                 return "EEPROM_ERROR";
611         case IPW_FW_ERROR_SYSASSERT:
612                 return "SYSASSERT";
613         case IPW_FW_ERROR_FATAL_ERROR:
614                 return "FATAL_ERROR";
615         default:
616                 return "UNKNOWN_ERROR";
617         }
618 }
619
620 static void ipw_dump_error_log(struct ipw_priv *priv,
621                                struct ipw_fw_error *error)
622 {
623         u32 i;
624
625         if (!error) {
626                 IPW_ERROR("Error allocating and capturing error log.  "
627                           "Nothing to dump.\n");
628                 return;
629         }
630
631         IPW_ERROR("Start IPW Error Log Dump:\n");
632         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
633                   error->status, error->config);
634
635         for (i = 0; i < error->elem_len; i++)
636                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
637                           ipw_error_desc(error->elem[i].desc),
638                           error->elem[i].time,
639                           error->elem[i].blink1,
640                           error->elem[i].blink2,
641                           error->elem[i].link1,
642                           error->elem[i].link2, error->elem[i].data);
643         for (i = 0; i < error->log_len; i++)
644                 IPW_ERROR("%i\t0x%08x\t%i\n",
645                           error->log[i].time,
646                           error->log[i].data, error->log[i].event);
647 }
648
649 static inline int ipw_is_init(struct ipw_priv *priv)
650 {
651         return (priv->status & STATUS_INIT) ? 1 : 0;
652 }
653
654 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
655 {
656         u32 addr, field_info, field_len, field_count, total_len;
657
658         IPW_DEBUG_ORD("ordinal = %i\n", ord);
659
660         if (!priv || !val || !len) {
661                 IPW_DEBUG_ORD("Invalid argument\n");
662                 return -EINVAL;
663         }
664
665         /* verify device ordinal tables have been initialized */
666         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
667                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
668                 return -EINVAL;
669         }
670
671         switch (IPW_ORD_TABLE_ID_MASK & ord) {
672         case IPW_ORD_TABLE_0_MASK:
673                 /*
674                  * TABLE 0: Direct access to a table of 32 bit values
675                  *
676                  * This is a very simple table with the data directly
677                  * read from the table
678                  */
679
680                 /* remove the table id from the ordinal */
681                 ord &= IPW_ORD_TABLE_VALUE_MASK;
682
683                 /* boundary check */
684                 if (ord > priv->table0_len) {
685                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
686                                       "max (%i)\n", ord, priv->table0_len);
687                         return -EINVAL;
688                 }
689
690                 /* verify we have enough room to store the value */
691                 if (*len < sizeof(u32)) {
692                         IPW_DEBUG_ORD("ordinal buffer length too small, "
693                                       "need %zd\n", sizeof(u32));
694                         return -EINVAL;
695                 }
696
697                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
698                               ord, priv->table0_addr + (ord << 2));
699
700                 *len = sizeof(u32);
701                 ord <<= 2;
702                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
703                 break;
704
705         case IPW_ORD_TABLE_1_MASK:
706                 /*
707                  * TABLE 1: Indirect access to a table of 32 bit values
708                  *
709                  * This is a fairly large table of u32 values each
710                  * representing starting addr for the data (which is
711                  * also a u32)
712                  */
713
714                 /* remove the table id from the ordinal */
715                 ord &= IPW_ORD_TABLE_VALUE_MASK;
716
717                 /* boundary check */
718                 if (ord > priv->table1_len) {
719                         IPW_DEBUG_ORD("ordinal value too long\n");
720                         return -EINVAL;
721                 }
722
723                 /* verify we have enough room to store the value */
724                 if (*len < sizeof(u32)) {
725                         IPW_DEBUG_ORD("ordinal buffer length too small, "
726                                       "need %zd\n", sizeof(u32));
727                         return -EINVAL;
728                 }
729
730                 *((u32 *) val) =
731                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
732                 *len = sizeof(u32);
733                 break;
734
735         case IPW_ORD_TABLE_2_MASK:
736                 /*
737                  * TABLE 2: Indirect access to a table of variable sized values
738                  *
739                  * This table consist of six values, each containing
740                  *     - dword containing the starting offset of the data
741                  *     - dword containing the lengh in the first 16bits
742                  *       and the count in the second 16bits
743                  */
744
745                 /* remove the table id from the ordinal */
746                 ord &= IPW_ORD_TABLE_VALUE_MASK;
747
748                 /* boundary check */
749                 if (ord > priv->table2_len) {
750                         IPW_DEBUG_ORD("ordinal value too long\n");
751                         return -EINVAL;
752                 }
753
754                 /* get the address of statistic */
755                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
756
757                 /* get the second DW of statistics ;
758                  * two 16-bit words - first is length, second is count */
759                 field_info =
760                     ipw_read_reg32(priv,
761                                    priv->table2_addr + (ord << 3) +
762                                    sizeof(u32));
763
764                 /* get each entry length */
765                 field_len = *((u16 *) & field_info);
766
767                 /* get number of entries */
768                 field_count = *(((u16 *) & field_info) + 1);
769
770                 /* abort if not enought memory */
771                 total_len = field_len * field_count;
772                 if (total_len > *len) {
773                         *len = total_len;
774                         return -EINVAL;
775                 }
776
777                 *len = total_len;
778                 if (!total_len)
779                         return 0;
780
781                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
782                               "field_info = 0x%08x\n",
783                               addr, total_len, field_info);
784                 ipw_read_indirect(priv, addr, val, total_len);
785                 break;
786
787         default:
788                 IPW_DEBUG_ORD("Invalid ordinal!\n");
789                 return -EINVAL;
790
791         }
792
793         return 0;
794 }
795
796 static void ipw_init_ordinals(struct ipw_priv *priv)
797 {
798         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
799         priv->table0_len = ipw_read32(priv, priv->table0_addr);
800
801         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
802                       priv->table0_addr, priv->table0_len);
803
804         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
805         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
806
807         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
808                       priv->table1_addr, priv->table1_len);
809
810         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
811         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
812         priv->table2_len &= 0x0000ffff; /* use first two bytes */
813
814         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
815                       priv->table2_addr, priv->table2_len);
816
817 }
818
819 static u32 ipw_register_toggle(u32 reg)
820 {
821         reg &= ~IPW_START_STANDBY;
822         if (reg & IPW_GATE_ODMA)
823                 reg &= ~IPW_GATE_ODMA;
824         if (reg & IPW_GATE_IDMA)
825                 reg &= ~IPW_GATE_IDMA;
826         if (reg & IPW_GATE_ADMA)
827                 reg &= ~IPW_GATE_ADMA;
828         return reg;
829 }
830
831 /*
832  * LED behavior:
833  * - On radio ON, turn on any LEDs that require to be on during start
834  * - On initialization, start unassociated blink
835  * - On association, disable unassociated blink
836  * - On disassociation, start unassociated blink
837  * - On radio OFF, turn off any LEDs started during radio on
838  *
839  */
840 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
841 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
842 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
843
844 static void ipw_led_link_on(struct ipw_priv *priv)
845 {
846         unsigned long flags;
847         u32 led;
848
849         /* If configured to not use LEDs, or nic_type is 1,
850          * then we don't toggle a LINK led */
851         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
852                 return;
853
854         spin_lock_irqsave(&priv->lock, flags);
855
856         if (!(priv->status & STATUS_RF_KILL_MASK) &&
857             !(priv->status & STATUS_LED_LINK_ON)) {
858                 IPW_DEBUG_LED("Link LED On\n");
859                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
860                 led |= priv->led_association_on;
861
862                 led = ipw_register_toggle(led);
863
864                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
865                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
866
867                 priv->status |= STATUS_LED_LINK_ON;
868
869                 /* If we aren't associated, schedule turning the LED off */
870                 if (!(priv->status & STATUS_ASSOCIATED))
871                         queue_delayed_work(priv->workqueue,
872                                            &priv->led_link_off,
873                                            LD_TIME_LINK_ON);
874         }
875
876         spin_unlock_irqrestore(&priv->lock, flags);
877 }
878
879 static void ipw_bg_led_link_on(struct work_struct *work)
880 {
881         struct ipw_priv *priv =
882                 container_of(work, struct ipw_priv, led_link_on.work);
883         mutex_lock(&priv->mutex);
884         ipw_led_link_on(priv);
885         mutex_unlock(&priv->mutex);
886 }
887
888 static void ipw_led_link_off(struct ipw_priv *priv)
889 {
890         unsigned long flags;
891         u32 led;
892
893         /* If configured not to use LEDs, or nic type is 1,
894          * then we don't goggle the LINK led. */
895         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
896                 return;
897
898         spin_lock_irqsave(&priv->lock, flags);
899
900         if (priv->status & STATUS_LED_LINK_ON) {
901                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
902                 led &= priv->led_association_off;
903                 led = ipw_register_toggle(led);
904
905                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
906                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
907
908                 IPW_DEBUG_LED("Link LED Off\n");
909
910                 priv->status &= ~STATUS_LED_LINK_ON;
911
912                 /* If we aren't associated and the radio is on, schedule
913                  * turning the LED on (blink while unassociated) */
914                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
915                     !(priv->status & STATUS_ASSOCIATED))
916                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
917                                            LD_TIME_LINK_OFF);
918
919         }
920
921         spin_unlock_irqrestore(&priv->lock, flags);
922 }
923
924 static void ipw_bg_led_link_off(struct work_struct *work)
925 {
926         struct ipw_priv *priv =
927                 container_of(work, struct ipw_priv, led_link_off.work);
928         mutex_lock(&priv->mutex);
929         ipw_led_link_off(priv);
930         mutex_unlock(&priv->mutex);
931 }
932
933 static void __ipw_led_activity_on(struct ipw_priv *priv)
934 {
935         u32 led;
936
937         if (priv->config & CFG_NO_LED)
938                 return;
939
940         if (priv->status & STATUS_RF_KILL_MASK)
941                 return;
942
943         if (!(priv->status & STATUS_LED_ACT_ON)) {
944                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
945                 led |= priv->led_activity_on;
946
947                 led = ipw_register_toggle(led);
948
949                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
950                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
951
952                 IPW_DEBUG_LED("Activity LED On\n");
953
954                 priv->status |= STATUS_LED_ACT_ON;
955
956                 cancel_delayed_work(&priv->led_act_off);
957                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
958                                    LD_TIME_ACT_ON);
959         } else {
960                 /* Reschedule LED off for full time period */
961                 cancel_delayed_work(&priv->led_act_off);
962                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
963                                    LD_TIME_ACT_ON);
964         }
965 }
966
967 #if 0
968 void ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&priv->lock, flags);
972         __ipw_led_activity_on(priv);
973         spin_unlock_irqrestore(&priv->lock, flags);
974 }
975 #endif  /*  0  */
976
977 static void ipw_led_activity_off(struct ipw_priv *priv)
978 {
979         unsigned long flags;
980         u32 led;
981
982         if (priv->config & CFG_NO_LED)
983                 return;
984
985         spin_lock_irqsave(&priv->lock, flags);
986
987         if (priv->status & STATUS_LED_ACT_ON) {
988                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
989                 led &= priv->led_activity_off;
990
991                 led = ipw_register_toggle(led);
992
993                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
994                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
995
996                 IPW_DEBUG_LED("Activity LED Off\n");
997
998                 priv->status &= ~STATUS_LED_ACT_ON;
999         }
1000
1001         spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 static void ipw_bg_led_activity_off(struct work_struct *work)
1005 {
1006         struct ipw_priv *priv =
1007                 container_of(work, struct ipw_priv, led_act_off.work);
1008         mutex_lock(&priv->mutex);
1009         ipw_led_activity_off(priv);
1010         mutex_unlock(&priv->mutex);
1011 }
1012
1013 static void ipw_led_band_on(struct ipw_priv *priv)
1014 {
1015         unsigned long flags;
1016         u32 led;
1017
1018         /* Only nic type 1 supports mode LEDs */
1019         if (priv->config & CFG_NO_LED ||
1020             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1021                 return;
1022
1023         spin_lock_irqsave(&priv->lock, flags);
1024
1025         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1026         if (priv->assoc_network->mode == IEEE_A) {
1027                 led |= priv->led_ofdm_on;
1028                 led &= priv->led_association_off;
1029                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1030         } else if (priv->assoc_network->mode == IEEE_G) {
1031                 led |= priv->led_ofdm_on;
1032                 led |= priv->led_association_on;
1033                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1034         } else {
1035                 led &= priv->led_ofdm_off;
1036                 led |= priv->led_association_on;
1037                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1038         }
1039
1040         led = ipw_register_toggle(led);
1041
1042         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1043         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1044
1045         spin_unlock_irqrestore(&priv->lock, flags);
1046 }
1047
1048 static void ipw_led_band_off(struct ipw_priv *priv)
1049 {
1050         unsigned long flags;
1051         u32 led;
1052
1053         /* Only nic type 1 supports mode LEDs */
1054         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1055                 return;
1056
1057         spin_lock_irqsave(&priv->lock, flags);
1058
1059         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1060         led &= priv->led_ofdm_off;
1061         led &= priv->led_association_off;
1062
1063         led = ipw_register_toggle(led);
1064
1065         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1066         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1067
1068         spin_unlock_irqrestore(&priv->lock, flags);
1069 }
1070
1071 static void ipw_led_radio_on(struct ipw_priv *priv)
1072 {
1073         ipw_led_link_on(priv);
1074 }
1075
1076 static void ipw_led_radio_off(struct ipw_priv *priv)
1077 {
1078         ipw_led_activity_off(priv);
1079         ipw_led_link_off(priv);
1080 }
1081
1082 static void ipw_led_link_up(struct ipw_priv *priv)
1083 {
1084         /* Set the Link Led on for all nic types */
1085         ipw_led_link_on(priv);
1086 }
1087
1088 static void ipw_led_link_down(struct ipw_priv *priv)
1089 {
1090         ipw_led_activity_off(priv);
1091         ipw_led_link_off(priv);
1092
1093         if (priv->status & STATUS_RF_KILL_MASK)
1094                 ipw_led_radio_off(priv);
1095 }
1096
1097 static void ipw_led_init(struct ipw_priv *priv)
1098 {
1099         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1100
1101         /* Set the default PINs for the link and activity leds */
1102         priv->led_activity_on = IPW_ACTIVITY_LED;
1103         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1104
1105         priv->led_association_on = IPW_ASSOCIATED_LED;
1106         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1107
1108         /* Set the default PINs for the OFDM leds */
1109         priv->led_ofdm_on = IPW_OFDM_LED;
1110         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1111
1112         switch (priv->nic_type) {
1113         case EEPROM_NIC_TYPE_1:
1114                 /* In this NIC type, the LEDs are reversed.... */
1115                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1116                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1117                 priv->led_association_on = IPW_ACTIVITY_LED;
1118                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1119
1120                 if (!(priv->config & CFG_NO_LED))
1121                         ipw_led_band_on(priv);
1122
1123                 /* And we don't blink link LEDs for this nic, so
1124                  * just return here */
1125                 return;
1126
1127         case EEPROM_NIC_TYPE_3:
1128         case EEPROM_NIC_TYPE_2:
1129         case EEPROM_NIC_TYPE_4:
1130         case EEPROM_NIC_TYPE_0:
1131                 break;
1132
1133         default:
1134                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1135                                priv->nic_type);
1136                 priv->nic_type = EEPROM_NIC_TYPE_0;
1137                 break;
1138         }
1139
1140         if (!(priv->config & CFG_NO_LED)) {
1141                 if (priv->status & STATUS_ASSOCIATED)
1142                         ipw_led_link_on(priv);
1143                 else
1144                         ipw_led_link_off(priv);
1145         }
1146 }
1147
1148 static void ipw_led_shutdown(struct ipw_priv *priv)
1149 {
1150         ipw_led_activity_off(priv);
1151         ipw_led_link_off(priv);
1152         ipw_led_band_off(priv);
1153         cancel_delayed_work(&priv->led_link_on);
1154         cancel_delayed_work(&priv->led_link_off);
1155         cancel_delayed_work(&priv->led_act_off);
1156 }
1157
1158 /*
1159  * The following adds a new attribute to the sysfs representation
1160  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1161  * used for controling the debug level.
1162  *
1163  * See the level definitions in ipw for details.
1164  */
1165 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1166 {
1167         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1168 }
1169
1170 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1171                                  size_t count)
1172 {
1173         char *p = (char *)buf;
1174         u32 val;
1175
1176         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1177                 p++;
1178                 if (p[0] == 'x' || p[0] == 'X')
1179                         p++;
1180                 val = simple_strtoul(p, &p, 16);
1181         } else
1182                 val = simple_strtoul(p, &p, 10);
1183         if (p == buf)
1184                 printk(KERN_INFO DRV_NAME
1185                        ": %s is not in hex or decimal form.\n", buf);
1186         else
1187                 ipw_debug_level = val;
1188
1189         return strnlen(buf, count);
1190 }
1191
1192 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1193                    show_debug_level, store_debug_level);
1194
1195 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1196 {
1197         /* length = 1st dword in log */
1198         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1199 }
1200
1201 static void ipw_capture_event_log(struct ipw_priv *priv,
1202                                   u32 log_len, struct ipw_event *log)
1203 {
1204         u32 base;
1205
1206         if (log_len) {
1207                 base = ipw_read32(priv, IPW_EVENT_LOG);
1208                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1209                                   (u8 *) log, sizeof(*log) * log_len);
1210         }
1211 }
1212
1213 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1214 {
1215         struct ipw_fw_error *error;
1216         u32 log_len = ipw_get_event_log_len(priv);
1217         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1218         u32 elem_len = ipw_read_reg32(priv, base);
1219
1220         error = kmalloc(sizeof(*error) +
1221                         sizeof(*error->elem) * elem_len +
1222                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1223         if (!error) {
1224                 IPW_ERROR("Memory allocation for firmware error log "
1225                           "failed.\n");
1226                 return NULL;
1227         }
1228         error->jiffies = jiffies;
1229         error->status = priv->status;
1230         error->config = priv->config;
1231         error->elem_len = elem_len;
1232         error->log_len = log_len;
1233         error->elem = (struct ipw_error_elem *)error->payload;
1234         error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236         ipw_capture_event_log(priv, log_len, error->log);
1237
1238         if (elem_len)
1239                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240                                   sizeof(*error->elem) * elem_len);
1241
1242         return error;
1243 }
1244
1245 static ssize_t show_event_log(struct device *d,
1246                               struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 log_size;
1251         struct ipw_event *log;
1252         u32 len = 0, i;
1253
1254         /* not using min() because of its strict type checking */
1255         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256                         sizeof(*log) * log_len : PAGE_SIZE;
1257         log = kzalloc(log_size, GFP_KERNEL);
1258         if (!log) {
1259                 IPW_ERROR("Unable to allocate memory for log\n");
1260                 return 0;
1261         }
1262         log_len = log_size / sizeof(*log);
1263         ipw_capture_event_log(priv, log_len, log);
1264
1265         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266         for (i = 0; i < log_len; i++)
1267                 len += snprintf(buf + len, PAGE_SIZE - len,
1268                                 "\n%08X%08X%08X",
1269                                 log[i].time, log[i].event, log[i].data);
1270         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1271         kfree(log);
1272         return len;
1273 }
1274
1275 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1276
1277 static ssize_t show_error(struct device *d,
1278                           struct device_attribute *attr, char *buf)
1279 {
1280         struct ipw_priv *priv = dev_get_drvdata(d);
1281         u32 len = 0, i;
1282         if (!priv->error)
1283                 return 0;
1284         len += snprintf(buf + len, PAGE_SIZE - len,
1285                         "%08lX%08X%08X%08X",
1286                         priv->error->jiffies,
1287                         priv->error->status,
1288                         priv->error->config, priv->error->elem_len);
1289         for (i = 0; i < priv->error->elem_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1292                                 priv->error->elem[i].time,
1293                                 priv->error->elem[i].desc,
1294                                 priv->error->elem[i].blink1,
1295                                 priv->error->elem[i].blink2,
1296                                 priv->error->elem[i].link1,
1297                                 priv->error->elem[i].link2,
1298                                 priv->error->elem[i].data);
1299
1300         len += snprintf(buf + len, PAGE_SIZE - len,
1301                         "\n%08X", priv->error->log_len);
1302         for (i = 0; i < priv->error->log_len; i++)
1303                 len += snprintf(buf + len, PAGE_SIZE - len,
1304                                 "\n%08X%08X%08X",
1305                                 priv->error->log[i].time,
1306                                 priv->error->log[i].event,
1307                                 priv->error->log[i].data);
1308         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1309         return len;
1310 }
1311
1312 static ssize_t clear_error(struct device *d,
1313                            struct device_attribute *attr,
1314                            const char *buf, size_t count)
1315 {
1316         struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318         kfree(priv->error);
1319         priv->error = NULL;
1320         return count;
1321 }
1322
1323 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1324
1325 static ssize_t show_cmd_log(struct device *d,
1326                             struct device_attribute *attr, char *buf)
1327 {
1328         struct ipw_priv *priv = dev_get_drvdata(d);
1329         u32 len = 0, i;
1330         if (!priv->cmdlog)
1331                 return 0;
1332         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1334              i = (i + 1) % priv->cmdlog_len) {
1335                 len +=
1336                     snprintf(buf + len, PAGE_SIZE - len,
1337                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339                              priv->cmdlog[i].cmd.len);
1340                 len +=
1341                     snprintk_buf(buf + len, PAGE_SIZE - len,
1342                                  (u8 *) priv->cmdlog[i].cmd.param,
1343                                  priv->cmdlog[i].cmd.len);
1344                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1345         }
1346         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1347         return len;
1348 }
1349
1350 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
1355 static ssize_t store_rtap_iface(struct device *d,
1356                          struct device_attribute *attr,
1357                          const char *buf, size_t count)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         int rc = 0;
1361
1362         if (count < 1)
1363                 return -EINVAL;
1364
1365         switch (buf[0]) {
1366         case '0':
1367                 if (!rtap_iface)
1368                         return count;
1369
1370                 if (netif_running(priv->prom_net_dev)) {
1371                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1372                         return count;
1373                 }
1374
1375                 ipw_prom_free(priv);
1376                 rtap_iface = 0;
1377                 break;
1378
1379         case '1':
1380                 if (rtap_iface)
1381                         return count;
1382
1383                 rc = ipw_prom_alloc(priv);
1384                 if (!rc)
1385                         rtap_iface = 1;
1386                 break;
1387
1388         default:
1389                 return -EINVAL;
1390         }
1391
1392         if (rc) {
1393                 IPW_ERROR("Failed to register promiscuous network "
1394                           "device (error %d).\n", rc);
1395         }
1396
1397         return count;
1398 }
1399
1400 static ssize_t show_rtap_iface(struct device *d,
1401                         struct device_attribute *attr,
1402                         char *buf)
1403 {
1404         struct ipw_priv *priv = dev_get_drvdata(d);
1405         if (rtap_iface)
1406                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407         else {
1408                 buf[0] = '-';
1409                 buf[1] = '1';
1410                 buf[2] = '\0';
1411                 return 3;
1412         }
1413 }
1414
1415 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1416                    store_rtap_iface);
1417
1418 static ssize_t store_rtap_filter(struct device *d,
1419                          struct device_attribute *attr,
1420                          const char *buf, size_t count)
1421 {
1422         struct ipw_priv *priv = dev_get_drvdata(d);
1423
1424         if (!priv->prom_priv) {
1425                 IPW_ERROR("Attempting to set filter without "
1426                           "rtap_iface enabled.\n");
1427                 return -EPERM;
1428         }
1429
1430         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1431
1432         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1433                        BIT_ARG16(priv->prom_priv->filter));
1434
1435         return count;
1436 }
1437
1438 static ssize_t show_rtap_filter(struct device *d,
1439                         struct device_attribute *attr,
1440                         char *buf)
1441 {
1442         struct ipw_priv *priv = dev_get_drvdata(d);
1443         return sprintf(buf, "0x%04X",
1444                        priv->prom_priv ? priv->prom_priv->filter : 0);
1445 }
1446
1447 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1448                    store_rtap_filter);
1449 #endif
1450
1451 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1452                              char *buf)
1453 {
1454         struct ipw_priv *priv = dev_get_drvdata(d);
1455         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1456 }
1457
1458 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1459                               const char *buf, size_t count)
1460 {
1461         struct ipw_priv *priv = dev_get_drvdata(d);
1462         struct net_device *dev = priv->net_dev;
1463         char buffer[] = "00000000";
1464         unsigned long len =
1465             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1466         unsigned long val;
1467         char *p = buffer;
1468
1469         IPW_DEBUG_INFO("enter\n");
1470
1471         strncpy(buffer, buf, len);
1472         buffer[len] = 0;
1473
1474         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1475                 p++;
1476                 if (p[0] == 'x' || p[0] == 'X')
1477                         p++;
1478                 val = simple_strtoul(p, &p, 16);
1479         } else
1480                 val = simple_strtoul(p, &p, 10);
1481         if (p == buffer) {
1482                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1483         } else {
1484                 priv->ieee->scan_age = val;
1485                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1486         }
1487
1488         IPW_DEBUG_INFO("exit\n");
1489         return len;
1490 }
1491
1492 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1493
1494 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1495                         char *buf)
1496 {
1497         struct ipw_priv *priv = dev_get_drvdata(d);
1498         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1499 }
1500
1501 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         struct ipw_priv *priv = dev_get_drvdata(d);
1505
1506         IPW_DEBUG_INFO("enter\n");
1507
1508         if (count == 0)
1509                 return 0;
1510
1511         if (*buf == 0) {
1512                 IPW_DEBUG_LED("Disabling LED control.\n");
1513                 priv->config |= CFG_NO_LED;
1514                 ipw_led_shutdown(priv);
1515         } else {
1516                 IPW_DEBUG_LED("Enabling LED control.\n");
1517                 priv->config &= ~CFG_NO_LED;
1518                 ipw_led_init(priv);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return count;
1523 }
1524
1525 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1526
1527 static ssize_t show_status(struct device *d,
1528                            struct device_attribute *attr, char *buf)
1529 {
1530         struct ipw_priv *p = dev_get_drvdata(d);
1531         return sprintf(buf, "0x%08x\n", (int)p->status);
1532 }
1533
1534 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1535
1536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1537                         char *buf)
1538 {
1539         struct ipw_priv *p = dev_get_drvdata(d);
1540         return sprintf(buf, "0x%08x\n", (int)p->config);
1541 }
1542
1543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1544
1545 static ssize_t show_nic_type(struct device *d,
1546                              struct device_attribute *attr, char *buf)
1547 {
1548         struct ipw_priv *priv = dev_get_drvdata(d);
1549         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1550 }
1551
1552 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1553
1554 static ssize_t show_ucode_version(struct device *d,
1555                                   struct device_attribute *attr, char *buf)
1556 {
1557         u32 len = sizeof(u32), tmp = 0;
1558         struct ipw_priv *p = dev_get_drvdata(d);
1559
1560         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1561                 return 0;
1562
1563         return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1567
1568 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1569                         char *buf)
1570 {
1571         u32 len = sizeof(u32), tmp = 0;
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573
1574         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1575                 return 0;
1576
1577         return sprintf(buf, "0x%08x\n", tmp);
1578 }
1579
1580 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1581
1582 /*
1583  * Add a device attribute to view/control the delay between eeprom
1584  * operations.
1585  */
1586 static ssize_t show_eeprom_delay(struct device *d,
1587                                  struct device_attribute *attr, char *buf)
1588 {
1589         struct ipw_priv *p = dev_get_drvdata(d);
1590         int n = p->eeprom_delay;
1591         return sprintf(buf, "%i\n", n);
1592 }
1593 static ssize_t store_eeprom_delay(struct device *d,
1594                                   struct device_attribute *attr,
1595                                   const char *buf, size_t count)
1596 {
1597         struct ipw_priv *p = dev_get_drvdata(d);
1598         sscanf(buf, "%i", &p->eeprom_delay);
1599         return strnlen(buf, count);
1600 }
1601
1602 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1603                    show_eeprom_delay, store_eeprom_delay);
1604
1605 static ssize_t show_command_event_reg(struct device *d,
1606                                       struct device_attribute *attr, char *buf)
1607 {
1608         u32 reg = 0;
1609         struct ipw_priv *p = dev_get_drvdata(d);
1610
1611         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1612         return sprintf(buf, "0x%08x\n", reg);
1613 }
1614 static ssize_t store_command_event_reg(struct device *d,
1615                                        struct device_attribute *attr,
1616                                        const char *buf, size_t count)
1617 {
1618         u32 reg;
1619         struct ipw_priv *p = dev_get_drvdata(d);
1620
1621         sscanf(buf, "%x", &reg);
1622         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1623         return strnlen(buf, count);
1624 }
1625
1626 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1627                    show_command_event_reg, store_command_event_reg);
1628
1629 static ssize_t show_mem_gpio_reg(struct device *d,
1630                                  struct device_attribute *attr, char *buf)
1631 {
1632         u32 reg = 0;
1633         struct ipw_priv *p = dev_get_drvdata(d);
1634
1635         reg = ipw_read_reg32(p, 0x301100);
1636         return sprintf(buf, "0x%08x\n", reg);
1637 }
1638 static ssize_t store_mem_gpio_reg(struct device *d,
1639                                   struct device_attribute *attr,
1640                                   const char *buf, size_t count)
1641 {
1642         u32 reg;
1643         struct ipw_priv *p = dev_get_drvdata(d);
1644
1645         sscanf(buf, "%x", &reg);
1646         ipw_write_reg32(p, 0x301100, reg);
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1651                    show_mem_gpio_reg, store_mem_gpio_reg);
1652
1653 static ssize_t show_indirect_dword(struct device *d,
1654                                    struct device_attribute *attr, char *buf)
1655 {
1656         u32 reg = 0;
1657         struct ipw_priv *priv = dev_get_drvdata(d);
1658
1659         if (priv->status & STATUS_INDIRECT_DWORD)
1660                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_indirect_dword(struct device *d,
1667                                     struct device_attribute *attr,
1668                                     const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = dev_get_drvdata(d);
1671
1672         sscanf(buf, "%x", &priv->indirect_dword);
1673         priv->status |= STATUS_INDIRECT_DWORD;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1678                    show_indirect_dword, store_indirect_dword);
1679
1680 static ssize_t show_indirect_byte(struct device *d,
1681                                   struct device_attribute *attr, char *buf)
1682 {
1683         u8 reg = 0;
1684         struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686         if (priv->status & STATUS_INDIRECT_BYTE)
1687                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%02x\n", reg);
1692 }
1693 static ssize_t store_indirect_byte(struct device *d,
1694                                    struct device_attribute *attr,
1695                                    const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         sscanf(buf, "%x", &priv->indirect_byte);
1700         priv->status |= STATUS_INDIRECT_BYTE;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1705                    show_indirect_byte, store_indirect_byte);
1706
1707 static ssize_t show_direct_dword(struct device *d,
1708                                  struct device_attribute *attr, char *buf)
1709 {
1710         u32 reg = 0;
1711         struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713         if (priv->status & STATUS_DIRECT_DWORD)
1714                 reg = ipw_read32(priv, priv->direct_dword);
1715         else
1716                 reg = 0;
1717
1718         return sprintf(buf, "0x%08x\n", reg);
1719 }
1720 static ssize_t store_direct_dword(struct device *d,
1721                                   struct device_attribute *attr,
1722                                   const char *buf, size_t count)
1723 {
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         sscanf(buf, "%x", &priv->direct_dword);
1727         priv->status |= STATUS_DIRECT_DWORD;
1728         return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1732                    show_direct_dword, store_direct_dword);
1733
1734 static int rf_kill_active(struct ipw_priv *priv)
1735 {
1736         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1737                 priv->status |= STATUS_RF_KILL_HW;
1738         else
1739                 priv->status &= ~STATUS_RF_KILL_HW;
1740
1741         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1742 }
1743
1744 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1745                             char *buf)
1746 {
1747         /* 0 - RF kill not enabled
1748            1 - SW based RF kill active (sysfs)
1749            2 - HW based RF kill active
1750            3 - Both HW and SW baed RF kill active */
1751         struct ipw_priv *priv = dev_get_drvdata(d);
1752         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1753             (rf_kill_active(priv) ? 0x2 : 0x0);
1754         return sprintf(buf, "%i\n", val);
1755 }
1756
1757 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1758 {
1759         if ((disable_radio ? 1 : 0) ==
1760             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1761                 return 0;
1762
1763         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1764                           disable_radio ? "OFF" : "ON");
1765
1766         if (disable_radio) {
1767                 priv->status |= STATUS_RF_KILL_SW;
1768
1769                 if (priv->workqueue) {
1770                         cancel_delayed_work(&priv->request_scan);
1771                         cancel_delayed_work(&priv->request_direct_scan);
1772                         cancel_delayed_work(&priv->request_passive_scan);
1773                         cancel_delayed_work(&priv->scan_event);
1774                 }
1775                 queue_work(priv->workqueue, &priv->down);
1776         } else {
1777                 priv->status &= ~STATUS_RF_KILL_SW;
1778                 if (rf_kill_active(priv)) {
1779                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1780                                           "disabled by HW switch\n");
1781                         /* Make sure the RF_KILL check timer is running */
1782                         cancel_delayed_work(&priv->rf_kill);
1783                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1784                                            round_jiffies_relative(2 * HZ));
1785                 } else
1786                         queue_work(priv->workqueue, &priv->up);
1787         }
1788
1789         return 1;
1790 }
1791
1792 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1793                              const char *buf, size_t count)
1794 {
1795         struct ipw_priv *priv = dev_get_drvdata(d);
1796
1797         ipw_radio_kill_sw(priv, buf[0] == '1');
1798
1799         return count;
1800 }
1801
1802 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1803
1804 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1805                                char *buf)
1806 {
1807         struct ipw_priv *priv = dev_get_drvdata(d);
1808         int pos = 0, len = 0;
1809         if (priv->config & CFG_SPEED_SCAN) {
1810                 while (priv->speed_scan[pos] != 0)
1811                         len += sprintf(&buf[len], "%d ",
1812                                        priv->speed_scan[pos++]);
1813                 return len + sprintf(&buf[len], "\n");
1814         }
1815
1816         return sprintf(buf, "0\n");
1817 }
1818
1819 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1820                                 const char *buf, size_t count)
1821 {
1822         struct ipw_priv *priv = dev_get_drvdata(d);
1823         int channel, pos = 0;
1824         const char *p = buf;
1825
1826         /* list of space separated channels to scan, optionally ending with 0 */
1827         while ((channel = simple_strtol(p, NULL, 0))) {
1828                 if (pos == MAX_SPEED_SCAN - 1) {
1829                         priv->speed_scan[pos] = 0;
1830                         break;
1831                 }
1832
1833                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1834                         priv->speed_scan[pos++] = channel;
1835                 else
1836                         IPW_WARNING("Skipping invalid channel request: %d\n",
1837                                     channel);
1838                 p = strchr(p, ' ');
1839                 if (!p)
1840                         break;
1841                 while (*p == ' ' || *p == '\t')
1842                         p++;
1843         }
1844
1845         if (pos == 0)
1846                 priv->config &= ~CFG_SPEED_SCAN;
1847         else {
1848                 priv->speed_scan_pos = 0;
1849                 priv->config |= CFG_SPEED_SCAN;
1850         }
1851
1852         return count;
1853 }
1854
1855 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1856                    store_speed_scan);
1857
1858 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1859                               char *buf)
1860 {
1861         struct ipw_priv *priv = dev_get_drvdata(d);
1862         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1863 }
1864
1865 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1866                                const char *buf, size_t count)
1867 {
1868         struct ipw_priv *priv = dev_get_drvdata(d);
1869         if (buf[0] == '1')
1870                 priv->config |= CFG_NET_STATS;
1871         else
1872                 priv->config &= ~CFG_NET_STATS;
1873
1874         return count;
1875 }
1876
1877 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1878                    show_net_stats, store_net_stats);
1879
1880 static ssize_t show_channels(struct device *d,
1881                              struct device_attribute *attr,
1882                              char *buf)
1883 {
1884         struct ipw_priv *priv = dev_get_drvdata(d);
1885         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1886         int len = 0, i;
1887
1888         len = sprintf(&buf[len],
1889                       "Displaying %d channels in 2.4Ghz band "
1890                       "(802.11bg):\n", geo->bg_channels);
1891
1892         for (i = 0; i < geo->bg_channels; i++) {
1893                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1894                                geo->bg[i].channel,
1895                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1896                                " (radar spectrum)" : "",
1897                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1898                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1899                                ? "" : ", IBSS",
1900                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1901                                "passive only" : "active/passive",
1902                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1903                                "B" : "B/G");
1904         }
1905
1906         len += sprintf(&buf[len],
1907                        "Displaying %d channels in 5.2Ghz band "
1908                        "(802.11a):\n", geo->a_channels);
1909         for (i = 0; i < geo->a_channels; i++) {
1910                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1911                                geo->a[i].channel,
1912                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1913                                " (radar spectrum)" : "",
1914                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1915                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1916                                ? "" : ", IBSS",
1917                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1918                                "passive only" : "active/passive");
1919         }
1920
1921         return len;
1922 }
1923
1924 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1925
1926 static void notify_wx_assoc_event(struct ipw_priv *priv)
1927 {
1928         union iwreq_data wrqu;
1929         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1930         if (priv->status & STATUS_ASSOCIATED)
1931                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1932         else
1933                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1934         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1935 }
1936
1937 static void ipw_irq_tasklet(struct ipw_priv *priv)
1938 {
1939         u32 inta, inta_mask, handled = 0;
1940         unsigned long flags;
1941         int rc = 0;
1942
1943         spin_lock_irqsave(&priv->irq_lock, flags);
1944
1945         inta = ipw_read32(priv, IPW_INTA_RW);
1946         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1947         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1948
1949         /* Add any cached INTA values that need to be handled */
1950         inta |= priv->isr_inta;
1951
1952         spin_unlock_irqrestore(&priv->irq_lock, flags);
1953
1954         spin_lock_irqsave(&priv->lock, flags);
1955
1956         /* handle all the justifications for the interrupt */
1957         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1958                 ipw_rx(priv);
1959                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1960         }
1961
1962         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1963                 IPW_DEBUG_HC("Command completed.\n");
1964                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1965                 priv->status &= ~STATUS_HCMD_ACTIVE;
1966                 wake_up_interruptible(&priv->wait_command_queue);
1967                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1968         }
1969
1970         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1971                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1972                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1973                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1974         }
1975
1976         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1977                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1978                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1979                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1980         }
1981
1982         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1983                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1984                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1985                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1986         }
1987
1988         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1989                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1990                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1991                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1995                 IPW_WARNING("STATUS_CHANGE\n");
1996                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1997         }
1998
1999         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2000                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2001                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2002         }
2003
2004         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2005                 IPW_WARNING("HOST_CMD_DONE\n");
2006                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2007         }
2008
2009         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2010                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2011                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2012         }
2013
2014         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2015                 IPW_WARNING("PHY_OFF_DONE\n");
2016                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2017         }
2018
2019         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2020                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2021                 priv->status |= STATUS_RF_KILL_HW;
2022                 wake_up_interruptible(&priv->wait_command_queue);
2023                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2024                 cancel_delayed_work(&priv->request_scan);
2025                 cancel_delayed_work(&priv->request_direct_scan);
2026                 cancel_delayed_work(&priv->request_passive_scan);
2027                 cancel_delayed_work(&priv->scan_event);
2028                 schedule_work(&priv->link_down);
2029                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2030                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2031         }
2032
2033         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2034                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2035                 if (priv->error) {
2036                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2037                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2038                                 struct ipw_fw_error *error =
2039                                     ipw_alloc_error_log(priv);
2040                                 ipw_dump_error_log(priv, error);
2041                                 kfree(error);
2042                         }
2043                 } else {
2044                         priv->error = ipw_alloc_error_log(priv);
2045                         if (priv->error)
2046                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2047                         else
2048                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2049                                              "log.\n");
2050                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2051                                 ipw_dump_error_log(priv, priv->error);
2052                 }
2053
2054                 /* XXX: If hardware encryption is for WPA/WPA2,
2055                  * we have to notify the supplicant. */
2056                 if (priv->ieee->sec.encrypt) {
2057                         priv->status &= ~STATUS_ASSOCIATED;
2058                         notify_wx_assoc_event(priv);
2059                 }
2060
2061                 /* Keep the restart process from trying to send host
2062                  * commands by clearing the INIT status bit */
2063                 priv->status &= ~STATUS_INIT;
2064
2065                 /* Cancel currently queued command. */
2066                 priv->status &= ~STATUS_HCMD_ACTIVE;
2067                 wake_up_interruptible(&priv->wait_command_queue);
2068
2069                 queue_work(priv->workqueue, &priv->adapter_restart);
2070                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2071         }
2072
2073         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2074                 IPW_ERROR("Parity error\n");
2075                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2076         }
2077
2078         if (handled != inta) {
2079                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2080         }
2081
2082         spin_unlock_irqrestore(&priv->lock, flags);
2083
2084         /* enable all interrupts */
2085         ipw_enable_interrupts(priv);
2086 }
2087
2088 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2089 static char *get_cmd_string(u8 cmd)
2090 {
2091         switch (cmd) {
2092                 IPW_CMD(HOST_COMPLETE);
2093                 IPW_CMD(POWER_DOWN);
2094                 IPW_CMD(SYSTEM_CONFIG);
2095                 IPW_CMD(MULTICAST_ADDRESS);
2096                 IPW_CMD(SSID);
2097                 IPW_CMD(ADAPTER_ADDRESS);
2098                 IPW_CMD(PORT_TYPE);
2099                 IPW_CMD(RTS_THRESHOLD);
2100                 IPW_CMD(FRAG_THRESHOLD);
2101                 IPW_CMD(POWER_MODE);
2102                 IPW_CMD(WEP_KEY);
2103                 IPW_CMD(TGI_TX_KEY);
2104                 IPW_CMD(SCAN_REQUEST);
2105                 IPW_CMD(SCAN_REQUEST_EXT);
2106                 IPW_CMD(ASSOCIATE);
2107                 IPW_CMD(SUPPORTED_RATES);
2108                 IPW_CMD(SCAN_ABORT);
2109                 IPW_CMD(TX_FLUSH);
2110                 IPW_CMD(QOS_PARAMETERS);
2111                 IPW_CMD(DINO_CONFIG);
2112                 IPW_CMD(RSN_CAPABILITIES);
2113                 IPW_CMD(RX_KEY);
2114                 IPW_CMD(CARD_DISABLE);
2115                 IPW_CMD(SEED_NUMBER);
2116                 IPW_CMD(TX_POWER);
2117                 IPW_CMD(COUNTRY_INFO);
2118                 IPW_CMD(AIRONET_INFO);
2119                 IPW_CMD(AP_TX_POWER);
2120                 IPW_CMD(CCKM_INFO);
2121                 IPW_CMD(CCX_VER_INFO);
2122                 IPW_CMD(SET_CALIBRATION);
2123                 IPW_CMD(SENSITIVITY_CALIB);
2124                 IPW_CMD(RETRY_LIMIT);
2125                 IPW_CMD(IPW_PRE_POWER_DOWN);
2126                 IPW_CMD(VAP_BEACON_TEMPLATE);
2127                 IPW_CMD(VAP_DTIM_PERIOD);
2128                 IPW_CMD(EXT_SUPPORTED_RATES);
2129                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2130                 IPW_CMD(VAP_QUIET_INTERVALS);
2131                 IPW_CMD(VAP_CHANNEL_SWITCH);
2132                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2133                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2134                 IPW_CMD(VAP_CF_PARAM_SET);
2135                 IPW_CMD(VAP_SET_BEACONING_STATE);
2136                 IPW_CMD(MEASUREMENT);
2137                 IPW_CMD(POWER_CAPABILITY);
2138                 IPW_CMD(SUPPORTED_CHANNELS);
2139                 IPW_CMD(TPC_REPORT);
2140                 IPW_CMD(WME_INFO);
2141                 IPW_CMD(PRODUCTION_COMMAND);
2142         default:
2143                 return "UNKNOWN";
2144         }
2145 }
2146
2147 #define HOST_COMPLETE_TIMEOUT HZ
2148
2149 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2150 {
2151         int rc = 0;
2152         unsigned long flags;
2153
2154         spin_lock_irqsave(&priv->lock, flags);
2155         if (priv->status & STATUS_HCMD_ACTIVE) {
2156                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2157                           get_cmd_string(cmd->cmd));
2158                 spin_unlock_irqrestore(&priv->lock, flags);
2159                 return -EAGAIN;
2160         }
2161
2162         priv->status |= STATUS_HCMD_ACTIVE;
2163
2164         if (priv->cmdlog) {
2165                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2166                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2167                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2168                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2169                        cmd->len);
2170                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2171         }
2172
2173         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2174                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2175                      priv->status);
2176
2177 #ifndef DEBUG_CMD_WEP_KEY
2178         if (cmd->cmd == IPW_CMD_WEP_KEY)
2179                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2180         else
2181 #endif
2182                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2183
2184         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2185         if (rc) {
2186                 priv->status &= ~STATUS_HCMD_ACTIVE;
2187                 IPW_ERROR("Failed to send %s: Reason %d\n",
2188                           get_cmd_string(cmd->cmd), rc);
2189                 spin_unlock_irqrestore(&priv->lock, flags);
2190                 goto exit;
2191         }
2192         spin_unlock_irqrestore(&priv->lock, flags);
2193
2194         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2195                                               !(priv->
2196                                                 status & STATUS_HCMD_ACTIVE),
2197                                               HOST_COMPLETE_TIMEOUT);
2198         if (rc == 0) {
2199                 spin_lock_irqsave(&priv->lock, flags);
2200                 if (priv->status & STATUS_HCMD_ACTIVE) {
2201                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2202                                   get_cmd_string(cmd->cmd));
2203                         priv->status &= ~STATUS_HCMD_ACTIVE;
2204                         spin_unlock_irqrestore(&priv->lock, flags);
2205                         rc = -EIO;
2206                         goto exit;
2207                 }
2208                 spin_unlock_irqrestore(&priv->lock, flags);
2209         } else
2210                 rc = 0;
2211
2212         if (priv->status & STATUS_RF_KILL_HW) {
2213                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2214                           get_cmd_string(cmd->cmd));
2215                 rc = -EIO;
2216                 goto exit;
2217         }
2218
2219       exit:
2220         if (priv->cmdlog) {
2221                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2222                 priv->cmdlog_pos %= priv->cmdlog_len;
2223         }
2224         return rc;
2225 }
2226
2227 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2228 {
2229         struct host_cmd cmd = {
2230                 .cmd = command,
2231         };
2232
2233         return __ipw_send_cmd(priv, &cmd);
2234 }
2235
2236 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2237                             void *data)
2238 {
2239         struct host_cmd cmd = {
2240                 .cmd = command,
2241                 .len = len,
2242                 .param = data,
2243         };
2244
2245         return __ipw_send_cmd(priv, &cmd);
2246 }
2247
2248 static int ipw_send_host_complete(struct ipw_priv *priv)
2249 {
2250         if (!priv) {
2251                 IPW_ERROR("Invalid args\n");
2252                 return -1;
2253         }
2254
2255         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2256 }
2257
2258 static int ipw_send_system_config(struct ipw_priv *priv)
2259 {
2260         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2261                                 sizeof(priv->sys_config),
2262                                 &priv->sys_config);
2263 }
2264
2265 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2266 {
2267         if (!priv || !ssid) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2273                                 ssid);
2274 }
2275
2276 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2277 {
2278         if (!priv || !mac) {
2279                 IPW_ERROR("Invalid args\n");
2280                 return -1;
2281         }
2282
2283         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2284                        priv->net_dev->name, mac);
2285
2286         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2287 }
2288
2289 /*
2290  * NOTE: This must be executed from our workqueue as it results in udelay
2291  * being called which may corrupt the keyboard if executed on default
2292  * workqueue
2293  */
2294 static void ipw_adapter_restart(void *adapter)
2295 {
2296         struct ipw_priv *priv = adapter;
2297
2298         if (priv->status & STATUS_RF_KILL_MASK)
2299                 return;
2300
2301         ipw_down(priv);
2302
2303         if (priv->assoc_network &&
2304             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2305                 ipw_remove_current_network(priv);
2306
2307         if (ipw_up(priv)) {
2308                 IPW_ERROR("Failed to up device\n");
2309                 return;
2310         }
2311 }
2312
2313 static void ipw_bg_adapter_restart(struct work_struct *work)
2314 {
2315         struct ipw_priv *priv =
2316                 container_of(work, struct ipw_priv, adapter_restart);
2317         mutex_lock(&priv->mutex);
2318         ipw_adapter_restart(priv);
2319         mutex_unlock(&priv->mutex);
2320 }
2321
2322 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2323
2324 static void ipw_scan_check(void *data)
2325 {
2326         struct ipw_priv *priv = data;
2327         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2328                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2329                                "adapter after (%dms).\n",
2330                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2331                 queue_work(priv->workqueue, &priv->adapter_restart);
2332         }
2333 }
2334
2335 static void ipw_bg_scan_check(struct work_struct *work)
2336 {
2337         struct ipw_priv *priv =
2338                 container_of(work, struct ipw_priv, scan_check.work);
2339         mutex_lock(&priv->mutex);
2340         ipw_scan_check(priv);
2341         mutex_unlock(&priv->mutex);
2342 }
2343
2344 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2345                                      struct ipw_scan_request_ext *request)
2346 {
2347         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2348                                 sizeof(*request), request);
2349 }
2350
2351 static int ipw_send_scan_abort(struct ipw_priv *priv)
2352 {
2353         if (!priv) {
2354                 IPW_ERROR("Invalid args\n");
2355                 return -1;
2356         }
2357
2358         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2359 }
2360
2361 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2362 {
2363         struct ipw_sensitivity_calib calib = {
2364                 .beacon_rssi_raw = cpu_to_le16(sens),
2365         };
2366
2367         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2368                                 &calib);
2369 }
2370
2371 static int ipw_send_associate(struct ipw_priv *priv,
2372                               struct ipw_associate *associate)
2373 {
2374         if (!priv || !associate) {
2375                 IPW_ERROR("Invalid args\n");
2376                 return -1;
2377         }
2378
2379         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2380                                 associate);
2381 }
2382
2383 static int ipw_send_supported_rates(struct ipw_priv *priv,
2384                                     struct ipw_supported_rates *rates)
2385 {
2386         if (!priv || !rates) {
2387                 IPW_ERROR("Invalid args\n");
2388                 return -1;
2389         }
2390
2391         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2392                                 rates);
2393 }
2394
2395 static int ipw_set_random_seed(struct ipw_priv *priv)
2396 {
2397         u32 val;
2398
2399         if (!priv) {
2400                 IPW_ERROR("Invalid args\n");
2401                 return -1;
2402         }
2403
2404         get_random_bytes(&val, sizeof(val));
2405
2406         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2407 }
2408
2409 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2410 {
2411         __le32 v = cpu_to_le32(phy_off);
2412         if (!priv) {
2413                 IPW_ERROR("Invalid args\n");
2414                 return -1;
2415         }
2416
2417         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2418 }
2419
2420 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2421 {
2422         if (!priv || !power) {
2423                 IPW_ERROR("Invalid args\n");
2424                 return -1;
2425         }
2426
2427         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2428 }
2429
2430 static int ipw_set_tx_power(struct ipw_priv *priv)
2431 {
2432         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2433         struct ipw_tx_power tx_power;
2434         s8 max_power;
2435         int i;
2436
2437         memset(&tx_power, 0, sizeof(tx_power));
2438
2439         /* configure device for 'G' band */
2440         tx_power.ieee_mode = IPW_G_MODE;
2441         tx_power.num_channels = geo->bg_channels;
2442         for (i = 0; i < geo->bg_channels; i++) {
2443                 max_power = geo->bg[i].max_power;
2444                 tx_power.channels_tx_power[i].channel_number =
2445                     geo->bg[i].channel;
2446                 tx_power.channels_tx_power[i].tx_power = max_power ?
2447                     min(max_power, priv->tx_power) : priv->tx_power;
2448         }
2449         if (ipw_send_tx_power(priv, &tx_power))
2450                 return -EIO;
2451
2452         /* configure device to also handle 'B' band */
2453         tx_power.ieee_mode = IPW_B_MODE;
2454         if (ipw_send_tx_power(priv, &tx_power))
2455                 return -EIO;
2456
2457         /* configure device to also handle 'A' band */
2458         if (priv->ieee->abg_true) {
2459                 tx_power.ieee_mode = IPW_A_MODE;
2460                 tx_power.num_channels = geo->a_channels;
2461                 for (i = 0; i < tx_power.num_channels; i++) {
2462                         max_power = geo->a[i].max_power;
2463                         tx_power.channels_tx_power[i].channel_number =
2464                             geo->a[i].channel;
2465                         tx_power.channels_tx_power[i].tx_power = max_power ?
2466                             min(max_power, priv->tx_power) : priv->tx_power;
2467                 }
2468                 if (ipw_send_tx_power(priv, &tx_power))
2469                         return -EIO;
2470         }
2471         return 0;
2472 }
2473
2474 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2475 {
2476         struct ipw_rts_threshold rts_threshold = {
2477                 .rts_threshold = cpu_to_le16(rts),
2478         };
2479
2480         if (!priv) {
2481                 IPW_ERROR("Invalid args\n");
2482                 return -1;
2483         }
2484
2485         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2486                                 sizeof(rts_threshold), &rts_threshold);
2487 }
2488
2489 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2490 {
2491         struct ipw_frag_threshold frag_threshold = {
2492                 .frag_threshold = cpu_to_le16(frag),
2493         };
2494
2495         if (!priv) {
2496                 IPW_ERROR("Invalid args\n");
2497                 return -1;
2498         }
2499
2500         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2501                                 sizeof(frag_threshold), &frag_threshold);
2502 }
2503
2504 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2505 {
2506         __le32 param;
2507
2508         if (!priv) {
2509                 IPW_ERROR("Invalid args\n");
2510                 return -1;
2511         }
2512
2513         /* If on battery, set to 3, if AC set to CAM, else user
2514          * level */
2515         switch (mode) {
2516         case IPW_POWER_BATTERY:
2517                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2518                 break;
2519         case IPW_POWER_AC:
2520                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2521                 break;
2522         default:
2523                 param = cpu_to_le32(mode);
2524                 break;
2525         }
2526
2527         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2528                                 &param);
2529 }
2530
2531 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2532 {
2533         struct ipw_retry_limit retry_limit = {
2534                 .short_retry_limit = slimit,
2535                 .long_retry_limit = llimit
2536         };
2537
2538         if (!priv) {
2539                 IPW_ERROR("Invalid args\n");
2540                 return -1;
2541         }
2542
2543         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2544                                 &retry_limit);
2545 }
2546
2547 /*
2548  * The IPW device contains a Microwire compatible EEPROM that stores
2549  * various data like the MAC address.  Usually the firmware has exclusive
2550  * access to the eeprom, but during device initialization (before the
2551  * device driver has sent the HostComplete command to the firmware) the
2552  * device driver has read access to the EEPROM by way of indirect addressing
2553  * through a couple of memory mapped registers.
2554  *
2555  * The following is a simplified implementation for pulling data out of the
2556  * the eeprom, along with some helper functions to find information in
2557  * the per device private data's copy of the eeprom.
2558  *
2559  * NOTE: To better understand how these functions work (i.e what is a chip
2560  *       select and why do have to keep driving the eeprom clock?), read
2561  *       just about any data sheet for a Microwire compatible EEPROM.
2562  */
2563
2564 /* write a 32 bit value into the indirect accessor register */
2565 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2566 {
2567         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2568
2569         /* the eeprom requires some time to complete the operation */
2570         udelay(p->eeprom_delay);
2571
2572         return;
2573 }
2574
2575 /* perform a chip select operation */
2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578         eeprom_write_reg(priv, 0);
2579         eeprom_write_reg(priv, EEPROM_BIT_CS);
2580         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581         eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583
2584 /* perform a chip select operation */
2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587         eeprom_write_reg(priv, EEPROM_BIT_CS);
2588         eeprom_write_reg(priv, 0);
2589         eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591
2592 /* push a single bit down to the eeprom */
2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595         int d = (bit ? EEPROM_BIT_DI : 0);
2596         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599
2600 /* push an opcode followed by an address down to the eeprom */
2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603         int i;
2604
2605         eeprom_cs(priv);
2606         eeprom_write_bit(priv, 1);
2607         eeprom_write_bit(priv, op & 2);
2608         eeprom_write_bit(priv, op & 1);
2609         for (i = 7; i >= 0; i--) {
2610                 eeprom_write_bit(priv, addr & (1 << i));
2611         }
2612 }
2613
2614 /* pull 16 bits off the eeprom, one bit at a time */
2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617         int i;
2618         u16 r = 0;
2619
2620         /* Send READ Opcode */
2621         eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623         /* Send dummy bit */
2624         eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626         /* Read the byte off the eeprom one bit at a time */
2627         for (i = 0; i < 16; i++) {
2628                 u32 data = 0;
2629                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2631                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633         }
2634
2635         /* Send another dummy bit */
2636         eeprom_write_reg(priv, 0);
2637         eeprom_disable_cs(priv);
2638
2639         return r;
2640 }
2641
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data                                 */
2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2647 }
2648
2649 /*
2650  * Either the device driver (i.e. the host) or the firmware can
2651  * load eeprom data into the designated region in SRAM.  If neither
2652  * happens then the FW will shutdown with a fatal error.
2653  *
2654  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2655  * bit needs region of shared SRAM needs to be non-zero.
2656  */
2657 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2658 {
2659         int i;
2660         __le16 *eeprom = (__le16 *) priv->eeprom;
2661
2662         IPW_DEBUG_TRACE(">>\n");
2663
2664         /* read entire contents of eeprom into private buffer */
2665         for (i = 0; i < 128; i++)
2666                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2667
2668         /*
2669            If the data looks correct, then copy it to our private
2670            copy.  Otherwise let the firmware know to perform the operation
2671            on its own.
2672          */
2673         if (priv->eeprom[EEPROM_VERSION] != 0) {
2674                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2675
2676                 /* write the eeprom data to sram */
2677                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2678                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2679
2680                 /* Do not load eeprom data on fatal error or suspend */
2681                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2682         } else {
2683                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2684
2685                 /* Load eeprom data on fatal error or suspend */
2686                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2687         }
2688
2689         IPW_DEBUG_TRACE("<<\n");
2690 }
2691
2692 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2693 {
2694         count >>= 2;
2695         if (!count)
2696                 return;
2697         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2698         while (count--)
2699                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2700 }
2701
2702 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2703 {
2704         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2705                         CB_NUMBER_OF_ELEMENTS_SMALL *
2706                         sizeof(struct command_block));
2707 }
2708
2709 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2710 {                               /* start dma engine but no transfers yet */
2711
2712         IPW_DEBUG_FW(">> : \n");
2713
2714         /* Start the dma */
2715         ipw_fw_dma_reset_command_blocks(priv);
2716
2717         /* Write CB base address */
2718         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2719
2720         IPW_DEBUG_FW("<< : \n");
2721         return 0;
2722 }
2723
2724 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2725 {
2726         u32 control = 0;
2727
2728         IPW_DEBUG_FW(">> :\n");
2729
2730         /* set the Stop and Abort bit */
2731         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2732         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2733         priv->sram_desc.last_cb_index = 0;
2734
2735         IPW_DEBUG_FW("<< \n");
2736 }
2737
2738 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2739                                           struct command_block *cb)
2740 {
2741         u32 address =
2742             IPW_SHARED_SRAM_DMA_CONTROL +
2743             (sizeof(struct command_block) * index);
2744         IPW_DEBUG_FW(">> :\n");
2745
2746         ipw_write_indirect(priv, address, (u8 *) cb,
2747                            (int)sizeof(struct command_block));
2748
2749         IPW_DEBUG_FW("<< :\n");
2750         return 0;
2751
2752 }
2753
2754 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2755 {
2756         u32 control = 0;
2757         u32 index = 0;
2758
2759         IPW_DEBUG_FW(">> :\n");
2760
2761         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2762                 ipw_fw_dma_write_command_block(priv, index,
2763                                                &priv->sram_desc.cb_list[index]);
2764
2765         /* Enable the DMA in the CSR register */
2766         ipw_clear_bit(priv, IPW_RESET_REG,
2767                       IPW_RESET_REG_MASTER_DISABLED |
2768                       IPW_RESET_REG_STOP_MASTER);
2769
2770         /* Set the Start bit. */
2771         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2772         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2773
2774         IPW_DEBUG_FW("<< :\n");
2775         return 0;
2776 }
2777
2778 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2779 {
2780         u32 address;
2781         u32 register_value = 0;
2782         u32 cb_fields_address = 0;
2783
2784         IPW_DEBUG_FW(">> :\n");
2785         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2786         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2787
2788         /* Read the DMA Controlor register */
2789         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2790         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2791
2792         /* Print the CB values */
2793         cb_fields_address = address;
2794         register_value = ipw_read_reg32(priv, cb_fields_address);
2795         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2796
2797         cb_fields_address += sizeof(u32);
2798         register_value = ipw_read_reg32(priv, cb_fields_address);
2799         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2800
2801         cb_fields_address += sizeof(u32);
2802         register_value = ipw_read_reg32(priv, cb_fields_address);
2803         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2804                           register_value);
2805
2806         cb_fields_address += sizeof(u32);
2807         register_value = ipw_read_reg32(priv, cb_fields_address);
2808         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2809
2810         IPW_DEBUG_FW(">> :\n");
2811 }
2812
2813 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2814 {
2815         u32 current_cb_address = 0;
2816         u32 current_cb_index = 0;
2817
2818         IPW_DEBUG_FW("<< :\n");
2819         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2820
2821         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2822             sizeof(struct command_block);
2823
2824         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2825                           current_cb_index, current_cb_address);
2826
2827         IPW_DEBUG_FW(">> :\n");
2828         return current_cb_index;
2829
2830 }
2831
2832 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2833                                         u32 src_address,
2834                                         u32 dest_address,
2835                                         u32 length,
2836                                         int interrupt_enabled, int is_last)
2837 {
2838
2839         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2840             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2841             CB_DEST_SIZE_LONG;
2842         struct command_block *cb;
2843         u32 last_cb_element = 0;
2844
2845         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2846                           src_address, dest_address, length);
2847
2848         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2849                 return -1;
2850
2851         last_cb_element = priv->sram_desc.last_cb_index;
2852         cb = &priv->sram_desc.cb_list[last_cb_element];
2853         priv->sram_desc.last_cb_index++;
2854
2855         /* Calculate the new CB control word */
2856         if (interrupt_enabled)
2857                 control |= CB_INT_ENABLED;
2858
2859         if (is_last)
2860                 control |= CB_LAST_VALID;
2861
2862         control |= length;
2863
2864         /* Calculate the CB Element's checksum value */
2865         cb->status = control ^ src_address ^ dest_address;
2866
2867         /* Copy the Source and Destination addresses */
2868         cb->dest_addr = dest_address;
2869         cb->source_addr = src_address;
2870
2871         /* Copy the Control Word last */
2872         cb->control = control;
2873
2874         return 0;
2875 }
2876
2877 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2878                                  int nr, u32 dest_address, u32 len)
2879 {
2880         int ret, i;
2881         u32 size;
2882
2883         IPW_DEBUG_FW(">> \n");
2884         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2885                           nr, dest_address, len);
2886
2887         for (i = 0; i < nr; i++) {
2888                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2889                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2890                                                    dest_address +
2891                                                    i * CB_MAX_LENGTH, size,
2892                                                    0, 0);
2893                 if (ret) {
2894                         IPW_DEBUG_FW_INFO(": Failed\n");
2895                         return -1;
2896                 } else
2897                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2898         }
2899
2900         IPW_DEBUG_FW("<< \n");
2901         return 0;
2902 }
2903
2904 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2905 {
2906         u32 current_index = 0, previous_index;
2907         u32 watchdog = 0;
2908
2909         IPW_DEBUG_FW(">> : \n");
2910
2911         current_index = ipw_fw_dma_command_block_index(priv);
2912         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2913                           (int)priv->sram_desc.last_cb_index);
2914
2915         while (current_index < priv->sram_desc.last_cb_index) {
2916                 udelay(50);
2917                 previous_index = current_index;
2918                 current_index = ipw_fw_dma_command_block_index(priv);
2919
2920                 if (previous_index < current_index) {
2921                         watchdog = 0;
2922                         continue;
2923                 }
2924                 if (++watchdog > 400) {
2925                         IPW_DEBUG_FW_INFO("Timeout\n");
2926                         ipw_fw_dma_dump_command_block(priv);
2927                         ipw_fw_dma_abort(priv);
2928                         return -1;
2929                 }
2930         }
2931
2932         ipw_fw_dma_abort(priv);
2933
2934         /*Disable the DMA in the CSR register */
2935         ipw_set_bit(priv, IPW_RESET_REG,
2936                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2937
2938         IPW_DEBUG_FW("<< dmaWaitSync \n");
2939         return 0;
2940 }
2941
2942 static void ipw_remove_current_network(struct ipw_priv *priv)
2943 {
2944         struct list_head *element, *safe;
2945         struct ieee80211_network *network = NULL;
2946         unsigned long flags;
2947
2948         spin_lock_irqsave(&priv->ieee->lock, flags);
2949         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2950                 network = list_entry(element, struct ieee80211_network, list);
2951                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2952                         list_del(element);
2953                         list_add_tail(&network->list,
2954                                       &priv->ieee->network_free_list);
2955                 }
2956         }
2957         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2958 }
2959
2960 /**
2961  * Check that card is still alive.
2962  * Reads debug register from domain0.
2963  * If card is present, pre-defined value should
2964  * be found there.
2965  *
2966  * @param priv
2967  * @return 1 if card is present, 0 otherwise
2968  */
2969 static inline int ipw_alive(struct ipw_priv *priv)
2970 {
2971         return ipw_read32(priv, 0x90) == 0xd55555d5;
2972 }
2973
2974 /* timeout in msec, attempted in 10-msec quanta */
2975 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2976                                int timeout)
2977 {
2978         int i = 0;
2979
2980         do {
2981                 if ((ipw_read32(priv, addr) & mask) == mask)
2982                         return i;
2983                 mdelay(10);
2984                 i += 10;
2985         } while (i < timeout);
2986
2987         return -ETIME;
2988 }
2989
2990 /* These functions load the firmware and micro code for the operation of
2991  * the ipw hardware.  It assumes the buffer has all the bits for the
2992  * image and the caller is handling the memory allocation and clean up.
2993  */
2994
2995 static int ipw_stop_master(struct ipw_priv *priv)
2996 {
2997         int rc;
2998
2999         IPW_DEBUG_TRACE(">> \n");
3000         /* stop master. typical delay - 0 */
3001         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3002
3003         /* timeout is in msec, polled in 10-msec quanta */
3004         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3005                           IPW_RESET_REG_MASTER_DISABLED, 100);
3006         if (rc < 0) {
3007                 IPW_ERROR("wait for stop master failed after 100ms\n");
3008                 return -1;
3009         }
3010
3011         IPW_DEBUG_INFO("stop master %dms\n", rc);
3012
3013         return rc;
3014 }
3015
3016 static void ipw_arc_release(struct ipw_priv *priv)
3017 {
3018         IPW_DEBUG_TRACE(">> \n");
3019         mdelay(5);
3020
3021         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3022
3023         /* no one knows timing, for safety add some delay */
3024         mdelay(5);
3025 }
3026
3027 struct fw_chunk {
3028         __le32 address;
3029         __le32 length;
3030 };
3031
3032 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3033 {
3034         int rc = 0, i, addr;
3035         u8 cr = 0;
3036         __le16 *image;
3037
3038         image = (__le16 *) data;
3039
3040         IPW_DEBUG_TRACE(">> \n");
3041
3042         rc = ipw_stop_master(priv);
3043
3044         if (rc < 0)
3045                 return rc;
3046
3047         for (addr = IPW_SHARED_LOWER_BOUND;
3048              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3049                 ipw_write32(priv, addr, 0);
3050         }
3051
3052         /* no ucode (yet) */
3053         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3054         /* destroy DMA queues */
3055         /* reset sequence */
3056
3057         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3058         ipw_arc_release(priv);
3059         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3060         mdelay(1);
3061
3062         /* reset PHY */
3063         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3064         mdelay(1);
3065
3066         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3067         mdelay(1);
3068
3069         /* enable ucode store */
3070         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3071         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3072         mdelay(1);
3073
3074         /* write ucode */
3075         /**
3076          * @bug
3077          * Do NOT set indirect address register once and then
3078          * store data to indirect data register in the loop.
3079          * It seems very reasonable, but in this case DINO do not
3080          * accept ucode. It is essential to set address each time.
3081          */
3082         /* load new ipw uCode */
3083         for (i = 0; i < len / 2; i++)
3084                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3085                                 le16_to_cpu(image[i]));
3086
3087         /* enable DINO */
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3089         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3090
3091         /* this is where the igx / win driver deveates from the VAP driver. */
3092
3093         /* wait for alive response */
3094         for (i = 0; i < 100; i++) {
3095                 /* poll for incoming data */
3096                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3097                 if (cr & DINO_RXFIFO_DATA)
3098                         break;
3099                 mdelay(1);
3100         }
3101
3102         if (cr & DINO_RXFIFO_DATA) {
3103                 /* alive_command_responce size is NOT multiple of 4 */
3104                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3105
3106                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3107                         response_buffer[i] =
3108                             cpu_to_le32(ipw_read_reg32(priv,
3109                                                        IPW_BASEBAND_RX_FIFO_READ));
3110                 memcpy(&priv->dino_alive, response_buffer,
3111                        sizeof(priv->dino_alive));
3112                 if (priv->dino_alive.alive_command == 1
3113                     && priv->dino_alive.ucode_valid == 1) {
3114                         rc = 0;
3115                         IPW_DEBUG_INFO
3116                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3117                              "of %02d/%02d/%02d %02d:%02d\n",
3118                              priv->dino_alive.software_revision,
3119                              priv->dino_alive.software_revision,
3120                              priv->dino_alive.device_identifier,
3121                              priv->dino_alive.device_identifier,
3122                              priv->dino_alive.time_stamp[0],
3123                              priv->dino_alive.time_stamp[1],
3124                              priv->dino_alive.time_stamp[2],
3125                              priv->dino_alive.time_stamp[3],
3126                              priv->dino_alive.time_stamp[4]);
3127                 } else {
3128                         IPW_DEBUG_INFO("Microcode is not alive\n");
3129                         rc = -EINVAL;
3130                 }
3131         } else {
3132                 IPW_DEBUG_INFO("No alive response from DINO\n");
3133                 rc = -ETIME;
3134         }
3135
3136         /* disable DINO, otherwise for some reason
3137            firmware have problem getting alive resp. */
3138         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3139
3140         return rc;
3141 }
3142
3143 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3144 {
3145         int ret = -1;
3146         int offset = 0;
3147         struct fw_chunk *chunk;
3148         int total_nr = 0;
3149         int i;
3150         struct pci_pool *pool;
3151         u32 *virts[CB_NUMBER_OF_ELEMENTS_SMALL];
3152         dma_addr_t phys[CB_NUMBER_OF_ELEMENTS_SMALL];
3153
3154         IPW_DEBUG_TRACE("<< : \n");
3155
3156         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3157         if (!pool) {
3158                 IPW_ERROR("pci_pool_create failed\n");
3159                 return -ENOMEM;
3160         }
3161
3162         /* Start the Dma */
3163         ret = ipw_fw_dma_enable(priv);
3164
3165         /* the DMA is already ready this would be a bug. */
3166         BUG_ON(priv->sram_desc.last_cb_index > 0);
3167
3168         do {
3169                 u32 chunk_len;
3170                 u8 *start;
3171                 int size;
3172                 int nr = 0;
3173
3174                 chunk = (struct fw_chunk *)(data + offset);
3175                 offset += sizeof(struct fw_chunk);
3176                 chunk_len = le32_to_cpu(chunk->length);
3177                 start = data + offset;
3178
3179                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3180                 for (i = 0; i < nr; i++) {
3181                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3182                                                          &phys[total_nr]);
3183                         if (!virts[total_nr]) {
3184                                 ret = -ENOMEM;
3185                                 goto out;
3186                         }
3187                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3188                                      CB_MAX_LENGTH);
3189                         memcpy(virts[total_nr], start, size);
3190                         start += size;
3191                         total_nr++;
3192                         /* We don't support fw chunk larger than 64*8K */
3193                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3194                 }
3195
3196                 /* build DMA packet and queue up for sending */
3197                 /* dma to chunk->address, the chunk->length bytes from data +
3198                  * offeset*/
3199                 /* Dma loading */
3200                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3201                                             nr, le32_to_cpu(chunk->address),
3202                                             chunk_len);
3203                 if (ret) {
3204                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3205                         goto out;
3206                 }
3207
3208                 offset += chunk_len;
3209         } while (offset < len);
3210
3211         /* Run the DMA and wait for the answer */
3212         ret = ipw_fw_dma_kick(priv);
3213         if (ret) {
3214                 IPW_ERROR("dmaKick Failed\n");
3215                 goto out;
3216         }
3217
3218         ret = ipw_fw_dma_wait(priv);
3219         if (ret) {
3220                 IPW_ERROR("dmaWaitSync Failed\n");
3221                 goto out;
3222         }
3223  out:
3224         for (i = 0; i < total_nr; i++)
3225                 pci_pool_free(pool, virts[i], phys[i]);
3226
3227         pci_pool_destroy(pool);
3228
3229         return ret;
3230 }
3231
3232 /* stop nic */
3233 static int ipw_stop_nic(struct ipw_priv *priv)
3234 {
3235         int rc = 0;
3236
3237         /* stop */
3238         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3239
3240         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3241                           IPW_RESET_REG_MASTER_DISABLED, 500);
3242         if (rc < 0) {
3243                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3244                 return rc;
3245         }
3246
3247         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3248
3249         return rc;
3250 }
3251
3252 static void ipw_start_nic(struct ipw_priv *priv)
3253 {
3254         IPW_DEBUG_TRACE(">>\n");
3255
3256         /* prvHwStartNic  release ARC */
3257         ipw_clear_bit(priv, IPW_RESET_REG,
3258                       IPW_RESET_REG_MASTER_DISABLED |
3259                       IPW_RESET_REG_STOP_MASTER |
3260                       CBD_RESET_REG_PRINCETON_RESET);
3261
3262         /* enable power management */
3263         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3264                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3265
3266         IPW_DEBUG_TRACE("<<\n");
3267 }
3268
3269 static int ipw_init_nic(struct ipw_priv *priv)
3270 {
3271         int rc;
3272
3273         IPW_DEBUG_TRACE(">>\n");
3274         /* reset */
3275         /*prvHwInitNic */
3276         /* set "initialization complete" bit to move adapter to D0 state */
3277         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3278
3279         /* low-level PLL activation */
3280         ipw_write32(priv, IPW_READ_INT_REGISTER,
3281                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3282
3283         /* wait for clock stabilization */
3284         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3285                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3286         if (rc < 0)
3287                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3288
3289         /* assert SW reset */
3290         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3291
3292         udelay(10);
3293
3294         /* set "initialization complete" bit to move adapter to D0 state */
3295         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3296
3297         IPW_DEBUG_TRACE(">>\n");
3298         return 0;
3299 }
3300
3301 /* Call this function from process context, it will sleep in request_firmware.
3302  * Probe is an ok place to call this from.
3303  */
3304 static int ipw_reset_nic(struct ipw_priv *priv)
3305 {
3306         int rc = 0;
3307         unsigned long flags;
3308
3309         IPW_DEBUG_TRACE(">>\n");
3310
3311         rc = ipw_init_nic(priv);
3312
3313         spin_lock_irqsave(&priv->lock, flags);
3314         /* Clear the 'host command active' bit... */
3315         priv->status &= ~STATUS_HCMD_ACTIVE;
3316         wake_up_interruptible(&priv->wait_command_queue);
3317         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3318         wake_up_interruptible(&priv->wait_state);
3319         spin_unlock_irqrestore(&priv->lock, flags);
3320
3321         IPW_DEBUG_TRACE("<<\n");
3322         return rc;
3323 }
3324
3325
3326 struct ipw_fw {
3327         __le32 ver;
3328         __le32 boot_size;
3329         __le32 ucode_size;
3330         __le32 fw_size;
3331         u8 data[0];
3332 };
3333
3334 static int ipw_get_fw(struct ipw_priv *priv,
3335                       const struct firmware **raw, const char *name)
3336 {
3337         struct ipw_fw *fw;
3338         int rc;
3339
3340         /* ask firmware_class module to get the boot firmware off disk */
3341         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3342         if (rc < 0) {
3343                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3344                 return rc;
3345         }
3346
3347         if ((*raw)->size < sizeof(*fw)) {
3348                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3349                 return -EINVAL;
3350         }
3351
3352         fw = (void *)(*raw)->data;
3353
3354         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3355             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3356                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3357                           name, (*raw)->size);
3358                 return -EINVAL;
3359         }
3360
3361         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3362                        name,
3363                        le32_to_cpu(fw->ver) >> 16,
3364                        le32_to_cpu(fw->ver) & 0xff,
3365                        (*raw)->size - sizeof(*fw));
3366         return 0;
3367 }
3368
3369 #define IPW_RX_BUF_SIZE (3000)
3370
3371 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3372                                       struct ipw_rx_queue *rxq)
3373 {
3374         unsigned long flags;
3375         int i;
3376
3377         spin_lock_irqsave(&rxq->lock, flags);
3378
3379         INIT_LIST_HEAD(&rxq->rx_free);
3380         INIT_LIST_HEAD(&rxq->rx_used);
3381
3382         /* Fill the rx_used queue with _all_ of the Rx buffers */
3383         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3384                 /* In the reset function, these buffers may have been allocated
3385                  * to an SKB, so we need to unmap and free potential storage */
3386                 if (rxq->pool[i].skb != NULL) {
3387                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3388                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3389                         dev_kfree_skb(rxq->pool[i].skb);
3390                         rxq->pool[i].skb = NULL;
3391                 }
3392                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3393         }
3394
3395         /* Set us so that we have processed and used all buffers, but have
3396          * not restocked the Rx queue with fresh buffers */
3397         rxq->read = rxq->write = 0;
3398         rxq->free_count = 0;
3399         spin_unlock_irqrestore(&rxq->lock, flags);
3400 }
3401
3402 #ifdef CONFIG_PM
3403 static int fw_loaded = 0;
3404 static const struct firmware *raw = NULL;
3405
3406 static void free_firmware(void)
3407 {
3408         if (fw_loaded) {
3409                 release_firmware(raw);
3410                 raw = NULL;
3411                 fw_loaded = 0;
3412         }
3413 }
3414 #else
3415 #define free_firmware() do {} while (0)
3416 #endif
3417
3418 static int ipw_load(struct ipw_priv *priv)
3419 {
3420 #ifndef CONFIG_PM
3421         const struct firmware *raw = NULL;
3422 #endif
3423         struct ipw_fw *fw;
3424         u8 *boot_img, *ucode_img, *fw_img;
3425         u8 *name = NULL;
3426         int rc = 0, retries = 3;
3427
3428         switch (priv->ieee->iw_mode) {
3429         case IW_MODE_ADHOC:
3430                 name = "ipw2200-ibss.fw";
3431                 break;
3432 #ifdef CONFIG_IPW2200_MONITOR
3433         case IW_MODE_MONITOR:
3434                 name = "ipw2200-sniffer.fw";
3435                 break;
3436 #endif
3437         case IW_MODE_INFRA:
3438                 name = "ipw2200-bss.fw";
3439                 break;
3440         }
3441
3442         if (!name) {
3443                 rc = -EINVAL;
3444                 goto error;
3445         }
3446
3447 #ifdef CONFIG_PM
3448         if (!fw_loaded) {
3449 #endif
3450                 rc = ipw_get_fw(priv, &raw, name);
3451                 if (rc < 0)
3452                         goto error;
3453 #ifdef CONFIG_PM
3454         }
3455 #endif
3456
3457         fw = (void *)raw->data;
3458         boot_img = &fw->data[0];
3459         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3460         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3461                            le32_to_cpu(fw->ucode_size)];
3462
3463         if (rc < 0)
3464                 goto error;
3465
3466         if (!priv->rxq)
3467                 priv->rxq = ipw_rx_queue_alloc(priv);
3468         else
3469                 ipw_rx_queue_reset(priv, priv->rxq);
3470         if (!priv->rxq) {
3471                 IPW_ERROR("Unable to initialize Rx queue\n");
3472                 goto error;
3473         }
3474
3475       retry:
3476         /* Ensure interrupts are disabled */
3477         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3478         priv->status &= ~STATUS_INT_ENABLED;
3479
3480         /* ack pending interrupts */
3481         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3482
3483         ipw_stop_nic(priv);
3484
3485         rc = ipw_reset_nic(priv);
3486         if (rc < 0) {
3487                 IPW_ERROR("Unable to reset NIC\n");
3488                 goto error;
3489         }
3490
3491         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3492                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3493
3494         /* DMA the initial boot firmware into the device */
3495         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3496         if (rc < 0) {
3497                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3498                 goto error;
3499         }
3500
3501         /* kick start the device */
3502         ipw_start_nic(priv);
3503
3504         /* wait for the device to finish its initial startup sequence */
3505         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3506                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3507         if (rc < 0) {
3508                 IPW_ERROR("device failed to boot initial fw image\n");
3509                 goto error;
3510         }
3511         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3512
3513         /* ack fw init done interrupt */
3514         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3515
3516         /* DMA the ucode into the device */
3517         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3518         if (rc < 0) {
3519                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3520                 goto error;
3521         }
3522
3523         /* stop nic */
3524         ipw_stop_nic(priv);
3525
3526         /* DMA bss firmware into the device */
3527         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3528         if (rc < 0) {
3529                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3530                 goto error;
3531         }
3532 #ifdef CONFIG_PM
3533         fw_loaded = 1;
3534 #endif
3535
3536         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3537
3538         rc = ipw_queue_reset(priv);
3539         if (rc < 0) {
3540                 IPW_ERROR("Unable to initialize queues\n");
3541                 goto error;
3542         }
3543
3544         /* Ensure interrupts are disabled */
3545         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3546         /* ack pending interrupts */
3547         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3548
3549         /* kick start the device */
3550         ipw_start_nic(priv);
3551
3552         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3553                 if (retries > 0) {
3554                         IPW_WARNING("Parity error.  Retrying init.\n");
3555                         retries--;
3556                         goto retry;
3557                 }
3558
3559                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3560                 rc = -EIO;
3561                 goto error;
3562         }
3563
3564         /* wait for the device */
3565         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3566                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3567         if (rc < 0) {
3568                 IPW_ERROR("device failed to start within 500ms\n");
3569                 goto error;
3570         }
3571         IPW_DEBUG_INFO("device response after %dms\n", rc);
3572
3573         /* ack fw init done interrupt */
3574         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3575
3576         /* read eeprom data and initialize the eeprom region of sram */
3577         priv->eeprom_delay = 1;
3578         ipw_eeprom_init_sram(priv);
3579
3580         /* enable interrupts */
3581         ipw_enable_interrupts(priv);
3582
3583         /* Ensure our queue has valid packets */
3584         ipw_rx_queue_replenish(priv);
3585
3586         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3587
3588         /* ack pending interrupts */
3589         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3590
3591 #ifndef CONFIG_PM
3592         release_firmware(raw);
3593 #endif
3594         return 0;
3595
3596       error:
3597         if (priv->rxq) {
3598                 ipw_rx_queue_free(priv, priv->rxq);
3599                 priv->rxq = NULL;
3600         }
3601         ipw_tx_queue_free(priv);
3602         if (raw)
3603                 release_firmware(raw);
3604 #ifdef CONFIG_PM
3605         fw_loaded = 0;
3606         raw = NULL;
3607 #endif
3608
3609         return rc;
3610 }
3611
3612 /**
3613  * DMA services
3614  *
3615  * Theory of operation
3616  *
3617  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3618  * 2 empty entries always kept in the buffer to protect from overflow.
3619  *
3620  * For Tx queue, there are low mark and high mark limits. If, after queuing
3621  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3622  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3623  * Tx queue resumed.
3624  *
3625  * The IPW operates with six queues, one receive queue in the device's
3626  * sram, one transmit queue for sending commands to the device firmware,
3627  * and four transmit queues for data.
3628  *
3629  * The four transmit queues allow for performing quality of service (qos)
3630  * transmissions as per the 802.11 protocol.  Currently Linux does not
3631  * provide a mechanism to the user for utilizing prioritized queues, so
3632  * we only utilize the first data transmit queue (queue1).
3633  */
3634
3635 /**
3636  * Driver allocates buffers of this size for Rx
3637  */
3638
3639 /**
3640  * ipw_rx_queue_space - Return number of free slots available in queue.
3641  */
3642 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3643 {
3644         int s = q->read - q->write;
3645         if (s <= 0)
3646                 s += RX_QUEUE_SIZE;
3647         /* keep some buffer to not confuse full and empty queue */
3648         s -= 2;
3649         if (s < 0)
3650                 s = 0;
3651         return s;
3652 }
3653
3654 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3655 {
3656         int s = q->last_used - q->first_empty;
3657         if (s <= 0)
3658                 s += q->n_bd;
3659         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3660         if (s < 0)
3661                 s = 0;
3662         return s;
3663 }
3664
3665 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3666 {
3667         return (++index == n_bd) ? 0 : index;
3668 }
3669
3670 /**
3671  * Initialize common DMA queue structure
3672  *
3673  * @param q                queue to init
3674  * @param count            Number of BD's to allocate. Should be power of 2
3675  * @param read_register    Address for 'read' register
3676  *                         (not offset within BAR, full address)
3677  * @param write_register   Address for 'write' register
3678  *                         (not offset within BAR, full address)
3679  * @param base_register    Address for 'base' register
3680  *                         (not offset within BAR, full address)
3681  * @param size             Address for 'size' register
3682  *                         (not offset within BAR, full address)
3683  */
3684 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3685                            int count, u32 read, u32 write, u32 base, u32 size)
3686 {
3687         q->n_bd = count;
3688
3689         q->low_mark = q->n_bd / 4;
3690         if (q->low_mark < 4)
3691                 q->low_mark = 4;
3692
3693         q->high_mark = q->n_bd / 8;
3694         if (q->high_mark < 2)
3695                 q->high_mark = 2;
3696
3697         q->first_empty = q->last_used = 0;
3698         q->reg_r = read;
3699         q->reg_w = write;
3700
3701         ipw_write32(priv, base, q->dma_addr);
3702         ipw_write32(priv, size, count);
3703         ipw_write32(priv, read, 0);
3704         ipw_write32(priv, write, 0);
3705
3706         _ipw_read32(priv, 0x90);
3707 }
3708
3709 static int ipw_queue_tx_init(struct ipw_priv *priv,
3710                              struct clx2_tx_queue *q,
3711                              int count, u32 read, u32 write, u32 base, u32 size)
3712 {
3713         struct pci_dev *dev = priv->pci_dev;
3714
3715         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3716         if (!q->txb) {
3717                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3718                 return -ENOMEM;
3719         }
3720
3721         q->bd =
3722             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3723         if (!q->bd) {
3724                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3725                           sizeof(q->bd[0]) * count);
3726                 kfree(q->txb);
3727                 q->txb = NULL;
3728                 return -ENOMEM;
3729         }
3730
3731         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3732         return 0;
3733 }
3734
3735 /**
3736  * Free one TFD, those at index [txq->q.last_used].
3737  * Do NOT advance any indexes
3738  *
3739  * @param dev
3740  * @param txq
3741  */
3742 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3743                                   struct clx2_tx_queue *txq)
3744 {
3745         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3746         struct pci_dev *dev = priv->pci_dev;
3747         int i;
3748
3749         /* classify bd */
3750         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3751                 /* nothing to cleanup after for host commands */
3752                 return;
3753
3754         /* sanity check */
3755         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3756                 IPW_ERROR("Too many chunks: %i\n",
3757                           le32_to_cpu(bd->u.data.num_chunks));
3758                 /** @todo issue fatal error, it is quite serious situation */
3759                 return;
3760         }
3761
3762         /* unmap chunks if any */
3763         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3764                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3765                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3766                                  PCI_DMA_TODEVICE);
3767                 if (txq->txb[txq->q.last_used]) {
3768                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3769                         txq->txb[txq->q.last_used] = NULL;
3770                 }
3771         }
3772 }
3773
3774 /**
3775  * Deallocate DMA queue.
3776  *
3777  * Empty queue by removing and destroying all BD's.
3778  * Free all buffers.
3779  *
3780  * @param dev
3781  * @param q
3782  */
3783 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3784 {
3785         struct clx2_queue *q = &txq->q;
3786         struct pci_dev *dev = priv->pci_dev;
3787
3788         if (q->n_bd == 0)
3789                 return;
3790
3791         /* first, empty all BD's */
3792         for (; q->first_empty != q->last_used;
3793              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3794                 ipw_queue_tx_free_tfd(priv, txq);
3795         }
3796
3797         /* free buffers belonging to queue itself */
3798         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3799                             q->dma_addr);
3800         kfree(txq->txb);
3801
3802         /* 0 fill whole structure */
3803         memset(txq, 0, sizeof(*txq));
3804 }
3805
3806 /**
3807  * Destroy all DMA queues and structures
3808  *
3809  * @param priv
3810  */
3811 static void ipw_tx_queue_free(struct ipw_priv *priv)
3812 {
3813         /* Tx CMD queue */
3814         ipw_queue_tx_free(priv, &priv->txq_cmd);
3815
3816         /* Tx queues */
3817         ipw_queue_tx_free(priv, &priv->txq[0]);
3818         ipw_queue_tx_free(priv, &priv->txq[1]);
3819         ipw_queue_tx_free(priv, &priv->txq[2]);
3820         ipw_queue_tx_free(priv, &priv->txq[3]);
3821 }
3822
3823 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3824 {
3825         /* First 3 bytes are manufacturer */
3826         bssid[0] = priv->mac_addr[0];
3827         bssid[1] = priv->mac_addr[1];
3828         bssid[2] = priv->mac_addr[2];
3829
3830         /* Last bytes are random */
3831         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3832
3833         bssid[0] &= 0xfe;       /* clear multicast bit */
3834         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3835 }
3836
3837 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3838 {
3839         struct ipw_station_entry entry;
3840         int i;
3841
3842         for (i = 0; i < priv->num_stations; i++) {
3843                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3844                         /* Another node is active in network */
3845                         priv->missed_adhoc_beacons = 0;
3846                         if (!(priv->config & CFG_STATIC_CHANNEL))
3847                                 /* when other nodes drop out, we drop out */
3848                                 priv->config &= ~CFG_ADHOC_PERSIST;
3849
3850                         return i;
3851                 }
3852         }
3853
3854         if (i == MAX_STATIONS)
3855                 return IPW_INVALID_STATION;
3856
3857         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3858
3859         entry.reserved = 0;
3860         entry.support_mode = 0;
3861         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3862         memcpy(priv->stations[i], bssid, ETH_ALEN);
3863         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3864                          &entry, sizeof(entry));
3865         priv->num_stations++;
3866
3867         return i;
3868 }
3869
3870 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3871 {
3872         int i;
3873
3874         for (i = 0; i < priv->num_stations; i++)
3875                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3876                         return i;
3877
3878         return IPW_INVALID_STATION;
3879 }
3880
3881 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3882 {
3883         int err;
3884
3885         if (priv->status & STATUS_ASSOCIATING) {
3886                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3887                 queue_work(priv->workqueue, &priv->disassociate);
3888                 return;
3889         }
3890
3891         if (!(priv->status & STATUS_ASSOCIATED)) {
3892                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3893                 return;
3894         }
3895
3896         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3897                         "on channel %d.\n",
3898                         priv->assoc_request.bssid,
3899                         priv->assoc_request.channel);
3900
3901         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3902         priv->status |= STATUS_DISASSOCIATING;
3903
3904         if (quiet)
3905                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3906         else
3907                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3908
3909         err = ipw_send_associate(priv, &priv->assoc_request);
3910         if (err) {
3911                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3912                              "failed.\n");
3913                 return;
3914         }
3915
3916 }
3917
3918 static int ipw_disassociate(void *data)
3919 {
3920         struct ipw_priv *priv = data;
3921         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3922                 return 0;
3923         ipw_send_disassociate(data, 0);
3924         netif_carrier_off(priv->net_dev);
3925         return 1;
3926 }
3927
3928 static void ipw_bg_disassociate(struct work_struct *work)
3929 {
3930         struct ipw_priv *priv =
3931                 container_of(work, struct ipw_priv, disassociate);
3932         mutex_lock(&priv->mutex);
3933         ipw_disassociate(priv);
3934         mutex_unlock(&priv->mutex);
3935 }
3936
3937 static void ipw_system_config(struct work_struct *work)
3938 {
3939         struct ipw_priv *priv =
3940                 container_of(work, struct ipw_priv, system_config);
3941
3942 #ifdef CONFIG_IPW2200_PROMISCUOUS
3943         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3944                 priv->sys_config.accept_all_data_frames = 1;
3945                 priv->sys_config.accept_non_directed_frames = 1;
3946                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3947                 priv->sys_config.accept_all_mgmt_frames = 1;
3948         }
3949 #endif
3950
3951         ipw_send_system_config(priv);
3952 }
3953
3954 struct ipw_status_code {
3955         u16 status;
3956         const char *reason;
3957 };
3958
3959 static const struct ipw_status_code ipw_status_codes[] = {
3960         {0x00, "Successful"},
3961         {0x01, "Unspecified failure"},
3962         {0x0A, "Cannot support all requested capabilities in the "
3963          "Capability information field"},
3964         {0x0B, "Reassociation denied due to inability to confirm that "
3965          "association exists"},
3966         {0x0C, "Association denied due to reason outside the scope of this "
3967          "standard"},
3968         {0x0D,
3969          "Responding station does not support the specified authentication "
3970          "algorithm"},
3971         {0x0E,
3972          "Received an Authentication frame with authentication sequence "
3973          "transaction sequence number out of expected sequence"},
3974         {0x0F, "Authentication rejected because of challenge failure"},
3975         {0x10, "Authentication rejected due to timeout waiting for next "
3976          "frame in sequence"},
3977         {0x11, "Association denied because AP is unable to handle additional "
3978          "associated stations"},
3979         {0x12,
3980          "Association denied due to requesting station not supporting all "
3981          "of the datarates in the BSSBasicServiceSet Parameter"},
3982         {0x13,
3983          "Association denied due to requesting station not supporting "
3984          "short preamble operation"},
3985         {0x14,
3986          "Association denied due to requesting station not supporting "
3987          "PBCC encoding"},
3988         {0x15,
3989          "Association denied due to requesting station not supporting "
3990          "channel agility"},
3991         {0x19,
3992          "Association denied due to requesting station not supporting "
3993          "short slot operation"},
3994         {0x1A,
3995          "Association denied due to requesting station not supporting "
3996          "DSSS-OFDM operation"},
3997         {0x28, "Invalid Information Element"},
3998         {0x29, "Group Cipher is not valid"},
3999         {0x2A, "Pairwise Cipher is not valid"},
4000         {0x2B, "AKMP is not valid"},
4001         {0x2C, "Unsupported RSN IE version"},
4002         {0x2D, "Invalid RSN IE Capabilities"},
4003         {0x2E, "Cipher suite is rejected per security policy"},
4004 };
4005
4006 static const char *ipw_get_status_code(u16 status)
4007 {
4008         int i;
4009         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4010                 if (ipw_status_codes[i].status == (status & 0xff))
4011                         return ipw_status_codes[i].reason;
4012         return "Unknown status value.";
4013 }
4014
4015 static void inline average_init(struct average *avg)
4016 {
4017         memset(avg, 0, sizeof(*avg));
4018 }
4019
4020 #define DEPTH_RSSI 8
4021 #define DEPTH_NOISE 16
4022 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4023 {
4024         return ((depth-1)*prev_avg +  val)/depth;
4025 }
4026
4027 static void average_add(struct average *avg, s16 val)
4028 {
4029         avg->sum -= avg->entries[avg->pos];
4030         avg->sum += val;
4031         avg->entries[avg->pos++] = val;
4032         if (unlikely(avg->pos == AVG_ENTRIES)) {
4033                 avg->init = 1;
4034                 avg->pos = 0;
4035         }
4036 }
4037
4038 static s16 average_value(struct average *avg)
4039 {
4040         if (!unlikely(avg->init)) {
4041                 if (avg->pos)
4042                         return avg->sum / avg->pos;
4043                 return 0;
4044         }
4045
4046         return avg->sum / AVG_ENTRIES;
4047 }
4048
4049 static void ipw_reset_stats(struct ipw_priv *priv)
4050 {
4051         u32 len = sizeof(u32);
4052
4053         priv->quality = 0;
4054
4055         average_init(&priv->average_missed_beacons);
4056         priv->exp_avg_rssi = -60;
4057         priv->exp_avg_noise = -85 + 0x100;
4058
4059         priv->last_rate = 0;
4060         priv->last_missed_beacons = 0;
4061         priv->last_rx_packets = 0;
4062         priv->last_tx_packets = 0;
4063         priv->last_tx_failures = 0;
4064
4065         /* Firmware managed, reset only when NIC is restarted, so we have to
4066          * normalize on the current value */
4067         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4068                         &priv->last_rx_err, &len);
4069         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4070                         &priv->last_tx_failures, &len);
4071
4072         /* Driver managed, reset with each association */
4073         priv->missed_adhoc_beacons = 0;
4074         priv->missed_beacons = 0;
4075         priv->tx_packets = 0;
4076         priv->rx_packets = 0;
4077
4078 }
4079
4080 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4081 {
4082         u32 i = 0x80000000;
4083         u32 mask = priv->rates_mask;
4084         /* If currently associated in B mode, restrict the maximum
4085          * rate match to B rates */
4086         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4087                 mask &= IEEE80211_CCK_RATES_MASK;
4088
4089         /* TODO: Verify that the rate is supported by the current rates
4090          * list. */
4091
4092         while (i && !(mask & i))
4093                 i >>= 1;
4094         switch (i) {
4095         case IEEE80211_CCK_RATE_1MB_MASK:
4096                 return 1000000;
4097         case IEEE80211_CCK_RATE_2MB_MASK:
4098                 return 2000000;
4099         case IEEE80211_CCK_RATE_5MB_MASK:
4100                 return 5500000;
4101         case IEEE80211_OFDM_RATE_6MB_MASK:
4102                 return 6000000;
4103         case IEEE80211_OFDM_RATE_9MB_MASK:
4104                 return 9000000;
4105         case IEEE80211_CCK_RATE_11MB_MASK:
4106                 return 11000000;
4107         case IEEE80211_OFDM_RATE_12MB_MASK:
4108                 return 12000000;
4109         case IEEE80211_OFDM_RATE_18MB_MASK:
4110                 return 18000000;
4111         case IEEE80211_OFDM_RATE_24MB_MASK:
4112                 return 24000000;
4113         case IEEE80211_OFDM_RATE_36MB_MASK:
4114                 return 36000000;
4115         case IEEE80211_OFDM_RATE_48MB_MASK:
4116                 return 48000000;
4117         case IEEE80211_OFDM_RATE_54MB_MASK:
4118                 return 54000000;
4119         }
4120
4121         if (priv->ieee->mode == IEEE_B)
4122                 return 11000000;
4123         else
4124                 return 54000000;
4125 }
4126
4127 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4128 {
4129         u32 rate, len = sizeof(rate);
4130         int err;
4131
4132         if (!(priv->status & STATUS_ASSOCIATED))
4133                 return 0;
4134
4135         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4136                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4137                                       &len);
4138                 if (err) {
4139                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4140                         return 0;
4141                 }
4142         } else
4143                 return ipw_get_max_rate(priv);
4144
4145         switch (rate) {
4146         case IPW_TX_RATE_1MB:
4147                 return 1000000;
4148         case IPW_TX_RATE_2MB:
4149                 return 2000000;
4150         case IPW_TX_RATE_5MB:
4151                 return 5500000;
4152         case IPW_TX_RATE_6MB:
4153                 return 6000000;
4154         case IPW_TX_RATE_9MB:
4155                 return 9000000;
4156         case IPW_TX_RATE_11MB:
4157                 return 11000000;
4158         case IPW_TX_RATE_12MB:
4159                 return 12000000;
4160         case IPW_TX_RATE_18MB:
4161                 return 18000000;
4162         case IPW_TX_RATE_24MB:
4163                 return 24000000;
4164         case IPW_TX_RATE_36MB:
4165                 return 36000000;
4166         case IPW_TX_RATE_48MB:
4167                 return 48000000;
4168         case IPW_TX_RATE_54MB:
4169                 return 54000000;
4170         }
4171
4172         return 0;
4173 }
4174
4175 #define IPW_STATS_INTERVAL (2 * HZ)
4176 static void ipw_gather_stats(struct ipw_priv *priv)
4177 {
4178         u32 rx_err, rx_err_delta, rx_packets_delta;
4179         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4180         u32 missed_beacons_percent, missed_beacons_delta;
4181         u32 quality = 0;
4182         u32 len = sizeof(u32);
4183         s16 rssi;
4184         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4185             rate_quality;
4186         u32 max_rate;
4187
4188         if (!(priv->status & STATUS_ASSOCIATED)) {
4189                 priv->quality = 0;
4190                 return;
4191         }
4192
4193         /* Update the statistics */
4194         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4195                         &priv->missed_beacons, &len);
4196         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4197         priv->last_missed_beacons = priv->missed_beacons;
4198         if (priv->assoc_request.beacon_interval) {
4199                 missed_beacons_percent = missed_beacons_delta *
4200                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4201                     (IPW_STATS_INTERVAL * 10);
4202         } else {
4203                 missed_beacons_percent = 0;
4204         }
4205         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4206
4207         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4208         rx_err_delta = rx_err - priv->last_rx_err;
4209         priv->last_rx_err = rx_err;
4210
4211         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4212         tx_failures_delta = tx_failures - priv->last_tx_failures;
4213         priv->last_tx_failures = tx_failures;
4214
4215         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4216         priv->last_rx_packets = priv->rx_packets;
4217
4218         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4219         priv->last_tx_packets = priv->tx_packets;
4220
4221         /* Calculate quality based on the following:
4222          *
4223          * Missed beacon: 100% = 0, 0% = 70% missed
4224          * Rate: 60% = 1Mbs, 100% = Max
4225          * Rx and Tx errors represent a straight % of total Rx/Tx
4226          * RSSI: 100% = > -50,  0% = < -80
4227          * Rx errors: 100% = 0, 0% = 50% missed
4228          *
4229          * The lowest computed quality is used.
4230          *
4231          */
4232 #define BEACON_THRESHOLD 5
4233         beacon_quality = 100 - missed_beacons_percent;
4234         if (beacon_quality < BEACON_THRESHOLD)
4235                 beacon_quality = 0;
4236         else
4237                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4238                     (100 - BEACON_THRESHOLD);
4239         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4240                         beacon_quality, missed_beacons_percent);
4241
4242         priv->last_rate = ipw_get_current_rate(priv);
4243         max_rate = ipw_get_max_rate(priv);
4244         rate_quality = priv->last_rate * 40 / max_rate + 60;
4245         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4246                         rate_quality, priv->last_rate / 1000000);
4247
4248         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4249                 rx_quality = 100 - (rx_err_delta * 100) /
4250                     (rx_packets_delta + rx_err_delta);
4251         else
4252                 rx_quality = 100;
4253         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4254                         rx_quality, rx_err_delta, rx_packets_delta);
4255
4256         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4257                 tx_quality = 100 - (tx_failures_delta * 100) /
4258                     (tx_packets_delta + tx_failures_delta);
4259         else
4260                 tx_quality = 100;
4261         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4262                         tx_quality, tx_failures_delta, tx_packets_delta);
4263
4264         rssi = priv->exp_avg_rssi;
4265         signal_quality =
4266             (100 *
4267              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4268              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4269              (priv->ieee->perfect_rssi - rssi) *
4270              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4271               62 * (priv->ieee->perfect_rssi - rssi))) /
4272             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4273              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4274         if (signal_quality > 100)
4275                 signal_quality = 100;
4276         else if (signal_quality < 1)
4277                 signal_quality = 0;
4278
4279         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4280                         signal_quality, rssi);
4281
4282         quality = min(beacon_quality,
4283                       min(rate_quality,
4284                           min(tx_quality, min(rx_quality, signal_quality))));
4285         if (quality == beacon_quality)
4286                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4287                                 quality);
4288         if (quality == rate_quality)
4289                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4290                                 quality);
4291         if (quality == tx_quality)
4292                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4293                                 quality);
4294         if (quality == rx_quality)
4295                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4296                                 quality);
4297         if (quality == signal_quality)
4298                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4299                                 quality);
4300
4301         priv->quality = quality;
4302
4303         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4304                            IPW_STATS_INTERVAL);
4305 }
4306
4307 static void ipw_bg_gather_stats(struct work_struct *work)
4308 {
4309         struct ipw_priv *priv =
4310                 container_of(work, struct ipw_priv, gather_stats.work);
4311         mutex_lock(&priv->mutex);
4312         ipw_gather_stats(priv);
4313         mutex_unlock(&priv->mutex);
4314 }
4315
4316 /* Missed beacon behavior:
4317  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4318  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4319  * Above disassociate threshold, give up and stop scanning.
4320  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4321 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4322                                             int missed_count)
4323 {
4324         priv->notif_missed_beacons = missed_count;
4325
4326         if (missed_count > priv->disassociate_threshold &&
4327             priv->status & STATUS_ASSOCIATED) {
4328                 /* If associated and we've hit the missed
4329                  * beacon threshold, disassociate, turn
4330                  * off roaming, and abort any active scans */
4331                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4332                           IPW_DL_STATE | IPW_DL_ASSOC,
4333                           "Missed beacon: %d - disassociate\n", missed_count);
4334                 priv->status &= ~STATUS_ROAMING;
4335                 if (priv->status & STATUS_SCANNING) {
4336                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4337                                   IPW_DL_STATE,
4338                                   "Aborting scan with missed beacon.\n");
4339                         queue_work(priv->workqueue, &priv->abort_scan);
4340                 }
4341
4342                 queue_work(priv->workqueue, &priv->disassociate);
4343                 return;
4344         }
4345
4346         if (priv->status & STATUS_ROAMING) {
4347                 /* If we are currently roaming, then just
4348                  * print a debug statement... */
4349                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4350                           "Missed beacon: %d - roam in progress\n",
4351                           missed_count);
4352                 return;
4353         }
4354
4355         if (roaming &&
4356             (missed_count > priv->roaming_threshold &&
4357              missed_count <= priv->disassociate_threshold)) {
4358                 /* If we are not already roaming, set the ROAM
4359                  * bit in the status and kick off a scan.
4360                  * This can happen several times before we reach
4361                  * disassociate_threshold. */
4362                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4363                           "Missed beacon: %d - initiate "
4364                           "roaming\n", missed_count);
4365                 if (!(priv->status & STATUS_ROAMING)) {
4366                         priv->status |= STATUS_ROAMING;
4367                         if (!(priv->status & STATUS_SCANNING))
4368                                 queue_delayed_work(priv->workqueue,
4369                                                    &priv->request_scan, 0);
4370                 }
4371                 return;
4372         }
4373
4374         if (priv->status & STATUS_SCANNING &&
4375             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4376                 /* Stop scan to keep fw from getting
4377                  * stuck (only if we aren't roaming --
4378                  * otherwise we'll never scan more than 2 or 3
4379                  * channels..) */
4380                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4381                           "Aborting scan with missed beacon.\n");
4382                 queue_work(priv->workqueue, &priv->abort_scan);
4383         }
4384
4385         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4386 }
4387
4388 static void ipw_scan_event(struct work_struct *work)
4389 {
4390         union iwreq_data wrqu;
4391
4392         struct ipw_priv *priv =
4393                 container_of(work, struct ipw_priv, scan_event.work);
4394
4395         wrqu.data.length = 0;
4396         wrqu.data.flags = 0;
4397         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4398 }
4399
4400 static void handle_scan_event(struct ipw_priv *priv)
4401 {
4402         /* Only userspace-requested scan completion events go out immediately */
4403         if (!priv->user_requested_scan) {
4404                 if (!delayed_work_pending(&priv->scan_event))
4405                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4406                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4407         } else {
4408                 union iwreq_data wrqu;
4409
4410                 priv->user_requested_scan = 0;
4411                 cancel_delayed_work(&priv->scan_event);
4412
4413                 wrqu.data.length = 0;
4414                 wrqu.data.flags = 0;
4415                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4416         }
4417 }
4418
4419 /**
4420  * Handle host notification packet.
4421  * Called from interrupt routine
4422  */
4423 static void ipw_rx_notification(struct ipw_priv *priv,
4424                                        struct ipw_rx_notification *notif)
4425 {
4426         DECLARE_SSID_BUF(ssid);
4427         u16 size = le16_to_cpu(notif->size);
4428         notif->size = le16_to_cpu(notif->size);
4429
4430         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4431
4432         switch (notif->subtype) {
4433         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4434                         struct notif_association *assoc = &notif->u.assoc;
4435
4436                         switch (assoc->state) {
4437                         case CMAS_ASSOCIATED:{
4438                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4439                                                   IPW_DL_ASSOC,
4440                                                   "associated: '%s' %pM \n",
4441                                                   print_ssid(ssid, priv->essid,
4442                                                              priv->essid_len),
4443                                                   priv->bssid);
4444
4445                                         switch (priv->ieee->iw_mode) {
4446                                         case IW_MODE_INFRA:
4447                                                 memcpy(priv->ieee->bssid,
4448                                                        priv->bssid, ETH_ALEN);
4449                                                 break;
4450
4451                                         case IW_MODE_ADHOC:
4452                                                 memcpy(priv->ieee->bssid,
4453                                                        priv->bssid, ETH_ALEN);
4454
4455                                                 /* clear out the station table */
4456                                                 priv->num_stations = 0;
4457
4458                                                 IPW_DEBUG_ASSOC
4459                                                     ("queueing adhoc check\n");
4460                                                 queue_delayed_work(priv->
4461                                                                    workqueue,
4462                                                                    &priv->
4463                                                                    adhoc_check,
4464                                                                    le16_to_cpu(priv->
4465                                                                    assoc_request.
4466                                                                    beacon_interval));
4467                                                 break;
4468                                         }
4469
4470                                         priv->status &= ~STATUS_ASSOCIATING;
4471                                         priv->status |= STATUS_ASSOCIATED;
4472                                         queue_work(priv->workqueue,
4473                                                    &priv->system_config);
4474
4475 #ifdef CONFIG_IPW2200_QOS
4476 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4477                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4478                                         if ((priv->status & STATUS_AUTH) &&
4479                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4480                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4481                                                 if ((sizeof
4482                                                      (struct
4483                                                       ieee80211_assoc_response)
4484                                                      <= size)
4485                                                     && (size <= 2314)) {
4486                                                         struct
4487                                                         ieee80211_rx_stats
4488                                                             stats = {
4489                                                                 .len = size - 1,
4490                                                         };
4491
4492                                                         IPW_DEBUG_QOS
4493                                                             ("QoS Associate "
4494                                                              "size %d\n", size);
4495                                                         ieee80211_rx_mgt(priv->
4496                                                                          ieee,
4497                                                                          (struct
4498                                                                           ieee80211_hdr_4addr
4499                                                                           *)
4500                                                                          &notif->u.raw, &stats);
4501                                                 }
4502                                         }
4503 #endif
4504
4505                                         schedule_work(&priv->link_up);
4506
4507                                         break;
4508                                 }
4509
4510                         case CMAS_AUTHENTICATED:{
4511                                         if (priv->
4512                                             status & (STATUS_ASSOCIATED |
4513                                                       STATUS_AUTH)) {
4514                                                 struct notif_authenticate *auth
4515                                                     = &notif->u.auth;
4516                                                 IPW_DEBUG(IPW_DL_NOTIF |
4517                                                           IPW_DL_STATE |
4518                                                           IPW_DL_ASSOC,
4519                                                           "deauthenticated: '%s' "
4520                                                           "%pM"
4521                                                           ": (0x%04X) - %s \n",
4522                                                           print_ssid(ssid,
4523                                                                      priv->
4524                                                                      essid,
4525                                                                      priv->
4526                                                                      essid_len),
4527                                                           priv->bssid,
4528                                                           le16_to_cpu(auth->status),
4529                                                           ipw_get_status_code
4530                                                           (le16_to_cpu
4531                                                            (auth->status)));
4532
4533                                                 priv->status &=
4534                                                     ~(STATUS_ASSOCIATING |
4535                                                       STATUS_AUTH |
4536                                                       STATUS_ASSOCIATED);
4537
4538                                                 schedule_work(&priv->link_down);
4539                                                 break;
4540                                         }
4541
4542                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543                                                   IPW_DL_ASSOC,
4544                                                   "authenticated: '%s' %pM\n",
4545                                                   print_ssid(ssid, priv->essid,
4546                                                              priv->essid_len),
4547                                                   priv->bssid);
4548                                         break;
4549                                 }
4550
4551                         case CMAS_INIT:{
4552                                         if (priv->status & STATUS_AUTH) {
4553                                                 struct
4554                                                     ieee80211_assoc_response
4555                                                 *resp;
4556                                                 resp =
4557                                                     (struct
4558                                                      ieee80211_assoc_response
4559                                                      *)&notif->u.raw;
4560                                                 IPW_DEBUG(IPW_DL_NOTIF |
4561                                                           IPW_DL_STATE |
4562                                                           IPW_DL_ASSOC,
4563                                                           "association failed (0x%04X): %s\n",
4564                                                           le16_to_cpu(resp->status),
4565                                                           ipw_get_status_code
4566                                                           (le16_to_cpu
4567                                                            (resp->status)));
4568                                         }
4569
4570                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4571                                                   IPW_DL_ASSOC,
4572                                                   "disassociated: '%s' %pM \n",
4573                                                   print_ssid(ssid, priv->essid,
4574                                                              priv->essid_len),
4575                                                   priv->bssid);
4576
4577                                         priv->status &=
4578                                             ~(STATUS_DISASSOCIATING |
4579                                               STATUS_ASSOCIATING |
4580                                               STATUS_ASSOCIATED | STATUS_AUTH);
4581                                         if (priv->assoc_network
4582                                             && (priv->assoc_network->
4583                                                 capability &
4584                                                 WLAN_CAPABILITY_IBSS))
4585                                                 ipw_remove_current_network
4586                                                     (priv);
4587
4588                                         schedule_work(&priv->link_down);
4589
4590                                         break;
4591                                 }
4592
4593                         case CMAS_RX_ASSOC_RESP:
4594                                 break;
4595
4596                         default:
4597                                 IPW_ERROR("assoc: unknown (%d)\n",
4598                                           assoc->state);
4599                                 break;
4600                         }
4601
4602                         break;
4603                 }
4604
4605         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4606                         struct notif_authenticate *auth = &notif->u.auth;
4607                         switch (auth->state) {
4608                         case CMAS_AUTHENTICATED:
4609                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4610                                           "authenticated: '%s' %pM \n",
4611                                           print_ssid(ssid, priv->essid,
4612                                                      priv->essid_len),
4613                                           priv->bssid);
4614                                 priv->status |= STATUS_AUTH;
4615                                 break;
4616
4617                         case CMAS_INIT:
4618                                 if (priv->status & STATUS_AUTH) {
4619                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4620                                                   IPW_DL_ASSOC,
4621                                                   "authentication failed (0x%04X): %s\n",
4622                                                   le16_to_cpu(auth->status),
4623                                                   ipw_get_status_code(le16_to_cpu
4624                                                                       (auth->
4625                                                                        status)));
4626                                 }
4627                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628                                           IPW_DL_ASSOC,
4629                                           "deauthenticated: '%s' %pM\n",
4630                                           print_ssid(ssid, priv->essid,
4631                                                      priv->essid_len),
4632                                           priv->bssid);
4633
4634                                 priv->status &= ~(STATUS_ASSOCIATING |
4635                                                   STATUS_AUTH |
4636                                                   STATUS_ASSOCIATED);
4637
4638                                 schedule_work(&priv->link_down);
4639                                 break;
4640
4641                         case CMAS_TX_AUTH_SEQ_1:
4642                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4644                                 break;
4645                         case CMAS_RX_AUTH_SEQ_2:
4646                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4648                                 break;
4649                         case CMAS_AUTH_SEQ_1_PASS:
4650                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4652                                 break;
4653                         case CMAS_AUTH_SEQ_1_FAIL:
4654                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4656                                 break;
4657                         case CMAS_TX_AUTH_SEQ_3:
4658                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4660                                 break;
4661                         case CMAS_RX_AUTH_SEQ_4:
4662                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4664                                 break;
4665                         case CMAS_AUTH_SEQ_2_PASS:
4666                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4668                                 break;
4669                         case CMAS_AUTH_SEQ_2_FAIL:
4670                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4671                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4672                                 break;
4673                         case CMAS_TX_ASSOC:
4674                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4675                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4676                                 break;
4677                         case CMAS_RX_ASSOC_RESP:
4678                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4679                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4680
4681                                 break;
4682                         case CMAS_ASSOCIATED:
4683                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4684                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4685                                 break;
4686                         default:
4687                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4688                                                 auth->state);
4689                                 break;
4690                         }
4691                         break;
4692                 }
4693
4694         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4695                         struct notif_channel_result *x =
4696                             &notif->u.channel_result;
4697
4698                         if (size == sizeof(*x)) {
4699                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4700                                                x->channel_num);
4701                         } else {
4702                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4703                                                "(should be %zd)\n",
4704                                                size, sizeof(*x));
4705                         }
4706                         break;
4707                 }
4708
4709         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4710                         struct notif_scan_complete *x = &notif->u.scan_complete;
4711                         if (size == sizeof(*x)) {
4712                                 IPW_DEBUG_SCAN
4713                                     ("Scan completed: type %d, %d channels, "
4714                                      "%d status\n", x->scan_type,
4715                                      x->num_channels, x->status);
4716                         } else {
4717                                 IPW_ERROR("Scan completed of wrong size %d "
4718                                           "(should be %zd)\n",
4719                                           size, sizeof(*x));
4720                         }
4721
4722                         priv->status &=
4723                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4724
4725                         wake_up_interruptible(&priv->wait_state);
4726                         cancel_delayed_work(&priv->scan_check);
4727
4728                         if (priv->status & STATUS_EXIT_PENDING)
4729                                 break;
4730
4731                         priv->ieee->scans++;
4732
4733 #ifdef CONFIG_IPW2200_MONITOR
4734                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4735                                 priv->status |= STATUS_SCAN_FORCED;
4736                                 queue_delayed_work(priv->workqueue,
4737                                                    &priv->request_scan, 0);
4738                                 break;
4739                         }
4740                         priv->status &= ~STATUS_SCAN_FORCED;
4741 #endif                          /* CONFIG_IPW2200_MONITOR */
4742
4743                         /* Do queued direct scans first */
4744                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4745                                 queue_delayed_work(priv->workqueue,
4746                                                    &priv->request_direct_scan, 0);
4747                         }
4748
4749                         if (!(priv->status & (STATUS_ASSOCIATED |
4750                                               STATUS_ASSOCIATING |
4751                                               STATUS_ROAMING |
4752                                               STATUS_DISASSOCIATING)))
4753                                 queue_work(priv->workqueue, &priv->associate);
4754                         else if (priv->status & STATUS_ROAMING) {
4755                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4756                                         /* If a scan completed and we are in roam mode, then
4757                                          * the scan that completed was the one requested as a
4758                                          * result of entering roam... so, schedule the
4759                                          * roam work */
4760                                         queue_work(priv->workqueue,
4761                                                    &priv->roam);
4762                                 else
4763                                         /* Don't schedule if we aborted the scan */
4764                                         priv->status &= ~STATUS_ROAMING;
4765                         } else if (priv->status & STATUS_SCAN_PENDING)
4766                                 queue_delayed_work(priv->workqueue,
4767                                                    &priv->request_scan, 0);
4768                         else if (priv->config & CFG_BACKGROUND_SCAN
4769                                  && priv->status & STATUS_ASSOCIATED)
4770                                 queue_delayed_work(priv->workqueue,
4771                                                    &priv->request_scan,
4772                                                    round_jiffies_relative(HZ));
4773
4774                         /* Send an empty event to user space.
4775                          * We don't send the received data on the event because
4776                          * it would require us to do complex transcoding, and
4777                          * we want to minimise the work done in the irq handler
4778                          * Use a request to extract the data.
4779                          * Also, we generate this even for any scan, regardless
4780                          * on how the scan was initiated. User space can just
4781                          * sync on periodic scan to get fresh data...
4782                          * Jean II */
4783                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4784                                 handle_scan_event(priv);
4785                         break;
4786                 }
4787
4788         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4789                         struct notif_frag_length *x = &notif->u.frag_len;
4790
4791                         if (size == sizeof(*x))
4792                                 IPW_ERROR("Frag length: %d\n",
4793                                           le16_to_cpu(x->frag_length));
4794                         else
4795                                 IPW_ERROR("Frag length of wrong size %d "
4796                                           "(should be %zd)\n",
4797                                           size, sizeof(*x));
4798                         break;
4799                 }
4800
4801         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4802                         struct notif_link_deterioration *x =
4803                             &notif->u.link_deterioration;
4804
4805                         if (size == sizeof(*x)) {
4806                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4807                                         "link deterioration: type %d, cnt %d\n",
4808                                         x->silence_notification_type,
4809                                         x->silence_count);
4810                                 memcpy(&priv->last_link_deterioration, x,
4811                                        sizeof(*x));
4812                         } else {
4813                                 IPW_ERROR("Link Deterioration of wrong size %d "
4814                                           "(should be %zd)\n",
4815                                           size, sizeof(*x));
4816                         }
4817                         break;
4818                 }
4819
4820         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4821                         IPW_ERROR("Dino config\n");
4822                         if (priv->hcmd
4823                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4824                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4825
4826                         break;
4827                 }
4828
4829         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4830                         struct notif_beacon_state *x = &notif->u.beacon_state;
4831                         if (size != sizeof(*x)) {
4832                                 IPW_ERROR
4833                                     ("Beacon state of wrong size %d (should "
4834                                      "be %zd)\n", size, sizeof(*x));
4835                                 break;
4836                         }
4837
4838                         if (le32_to_cpu(x->state) ==
4839                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4840                                 ipw_handle_missed_beacon(priv,
4841                                                          le32_to_cpu(x->
4842                                                                      number));
4843
4844                         break;
4845                 }
4846
4847         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4848                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4849                         if (size == sizeof(*x)) {
4850                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4851                                           "0x%02x station %d\n",
4852                                           x->key_state, x->security_type,
4853                                           x->station_index);
4854                                 break;
4855                         }
4856
4857                         IPW_ERROR
4858                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4859                              size, sizeof(*x));
4860                         break;
4861                 }
4862
4863         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4864                         struct notif_calibration *x = &notif->u.calibration;
4865
4866                         if (size == sizeof(*x)) {
4867                                 memcpy(&priv->calib, x, sizeof(*x));
4868                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4869                                 break;
4870                         }
4871
4872                         IPW_ERROR
4873                             ("Calibration of wrong size %d (should be %zd)\n",
4874                              size, sizeof(*x));
4875                         break;
4876                 }
4877
4878         case HOST_NOTIFICATION_NOISE_STATS:{
4879                         if (size == sizeof(u32)) {
4880                                 priv->exp_avg_noise =
4881                                     exponential_average(priv->exp_avg_noise,
4882                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4883                                     DEPTH_NOISE);
4884                                 break;
4885                         }
4886
4887                         IPW_ERROR
4888                             ("Noise stat is wrong size %d (should be %zd)\n",
4889                              size, sizeof(u32));
4890                         break;
4891                 }
4892
4893         default:
4894                 IPW_DEBUG_NOTIF("Unknown notification: "
4895                                 "subtype=%d,flags=0x%2x,size=%d\n",
4896                                 notif->subtype, notif->flags, size);
4897         }
4898 }
4899
4900 /**
4901  * Destroys all DMA structures and initialise them again
4902  *
4903  * @param priv
4904  * @return error code
4905  */
4906 static int ipw_queue_reset(struct ipw_priv *priv)
4907 {
4908         int rc = 0;
4909         /** @todo customize queue sizes */
4910         int nTx = 64, nTxCmd = 8;
4911         ipw_tx_queue_free(priv);
4912         /* Tx CMD queue */
4913         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4914                                IPW_TX_CMD_QUEUE_READ_INDEX,
4915                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4916                                IPW_TX_CMD_QUEUE_BD_BASE,
4917                                IPW_TX_CMD_QUEUE_BD_SIZE);
4918         if (rc) {
4919                 IPW_ERROR("Tx Cmd queue init failed\n");
4920                 goto error;
4921         }
4922         /* Tx queue(s) */
4923         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4924                                IPW_TX_QUEUE_0_READ_INDEX,
4925                                IPW_TX_QUEUE_0_WRITE_INDEX,
4926                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4927         if (rc) {
4928                 IPW_ERROR("Tx 0 queue init failed\n");
4929                 goto error;
4930         }
4931         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4932                                IPW_TX_QUEUE_1_READ_INDEX,
4933                                IPW_TX_QUEUE_1_WRITE_INDEX,
4934                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4935         if (rc) {
4936                 IPW_ERROR("Tx 1 queue init failed\n");
4937                 goto error;
4938         }
4939         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4940                                IPW_TX_QUEUE_2_READ_INDEX,
4941                                IPW_TX_QUEUE_2_WRITE_INDEX,
4942                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4943         if (rc) {
4944                 IPW_ERROR("Tx 2 queue init failed\n");
4945                 goto error;
4946         }
4947         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4948                                IPW_TX_QUEUE_3_READ_INDEX,
4949                                IPW_TX_QUEUE_3_WRITE_INDEX,
4950                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4951         if (rc) {
4952                 IPW_ERROR("Tx 3 queue init failed\n");
4953                 goto error;
4954         }
4955         /* statistics */
4956         priv->rx_bufs_min = 0;
4957         priv->rx_pend_max = 0;
4958         return rc;
4959
4960       error:
4961         ipw_tx_queue_free(priv);
4962         return rc;
4963 }
4964
4965 /**
4966  * Reclaim Tx queue entries no more used by NIC.
4967  *
4968  * When FW advances 'R' index, all entries between old and
4969  * new 'R' index need to be reclaimed. As result, some free space
4970  * forms. If there is enough free space (> low mark), wake Tx queue.
4971  *
4972  * @note Need to protect against garbage in 'R' index
4973  * @param priv
4974  * @param txq
4975  * @param qindex
4976  * @return Number of used entries remains in the queue
4977  */
4978 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4979                                 struct clx2_tx_queue *txq, int qindex)
4980 {
4981         u32 hw_tail;
4982         int used;
4983         struct clx2_queue *q = &txq->q;
4984
4985         hw_tail = ipw_read32(priv, q->reg_r);
4986         if (hw_tail >= q->n_bd) {
4987                 IPW_ERROR
4988                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4989                      hw_tail, q->n_bd);
4990                 goto done;
4991         }
4992         for (; q->last_used != hw_tail;
4993              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4994                 ipw_queue_tx_free_tfd(priv, txq);
4995                 priv->tx_packets++;
4996         }
4997       done:
4998         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4999             (qindex >= 0))
5000                 netif_wake_queue(priv->net_dev);
5001         used = q->first_empty - q->last_used;
5002         if (used < 0)
5003                 used += q->n_bd;
5004
5005         return used;
5006 }
5007
5008 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5009                              int len, int sync)
5010 {
5011         struct clx2_tx_queue *txq = &priv->txq_cmd;
5012         struct clx2_queue *q = &txq->q;
5013         struct tfd_frame *tfd;
5014
5015         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5016                 IPW_ERROR("No space for Tx\n");
5017                 return -EBUSY;
5018         }
5019
5020         tfd = &txq->bd[q->first_empty];
5021         txq->txb[q->first_empty] = NULL;
5022
5023         memset(tfd, 0, sizeof(*tfd));
5024         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5025         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5026         priv->hcmd_seq++;
5027         tfd->u.cmd.index = hcmd;
5028         tfd->u.cmd.length = len;
5029         memcpy(tfd->u.cmd.payload, buf, len);
5030         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5031         ipw_write32(priv, q->reg_w, q->first_empty);
5032         _ipw_read32(priv, 0x90);
5033
5034         return 0;
5035 }
5036
5037 /*
5038  * Rx theory of operation
5039  *
5040  * The host allocates 32 DMA target addresses and passes the host address
5041  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5042  * 0 to 31
5043  *
5044  * Rx Queue Indexes
5045  * The host/firmware share two index registers for managing the Rx buffers.
5046  *
5047  * The READ index maps to the first position that the firmware may be writing
5048  * to -- the driver can read up to (but not including) this position and get
5049  * good data.
5050  * The READ index is managed by the firmware once the card is enabled.
5051  *
5052  * The WRITE index maps to the last position the driver has read from -- the
5053  * position preceding WRITE is the last slot the firmware can place a packet.
5054  *
5055  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5056  * WRITE = READ.
5057  *
5058  * During initialization the host sets up the READ queue position to the first
5059  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5060  *
5061  * When the firmware places a packet in a buffer it will advance the READ index
5062  * and fire the RX interrupt.  The driver can then query the READ index and
5063  * process as many packets as possible, moving the WRITE index forward as it
5064  * resets the Rx queue buffers with new memory.
5065  *
5066  * The management in the driver is as follows:
5067  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5068  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5069  *   to replensish the ipw->rxq->rx_free.
5070  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5071  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5072  *   'processed' and 'read' driver indexes as well)
5073  * + A received packet is processed and handed to the kernel network stack,
5074  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5075  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5076  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5077  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5078  *   were enough free buffers and RX_STALLED is set it is cleared.
5079  *
5080  *
5081  * Driver sequence:
5082  *
5083  * ipw_rx_queue_alloc()       Allocates rx_free
5084  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5085  *                            ipw_rx_queue_restock
5086  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5087  *                            queue, updates firmware pointers, and updates
5088  *                            the WRITE index.  If insufficient rx_free buffers
5089  *                            are available, schedules ipw_rx_queue_replenish
5090  *
5091  * -- enable interrupts --
5092  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5093  *                            READ INDEX, detaching the SKB from the pool.
5094  *                            Moves the packet buffer from queue to rx_used.
5095  *                            Calls ipw_rx_queue_restock to refill any empty
5096  *                            slots.
5097  * ...
5098  *
5099  */
5100
5101 /*
5102  * If there are slots in the RX queue that  need to be restocked,
5103  * and we have free pre-allocated buffers, fill the ranks as much
5104  * as we can pulling from rx_free.
5105  *
5106  * This moves the 'write' index forward to catch up with 'processed', and
5107  * also updates the memory address in the firmware to reference the new
5108  * target buffer.
5109  */
5110 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5111 {
5112         struct ipw_rx_queue *rxq = priv->rxq;
5113         struct list_head *element;
5114         struct ipw_rx_mem_buffer *rxb;
5115         unsigned long flags;
5116         int write;
5117
5118         spin_lock_irqsave(&rxq->lock, flags);
5119         write = rxq->write;
5120         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5121                 element = rxq->rx_free.next;
5122                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5123                 list_del(element);
5124
5125                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5126                             rxb->dma_addr);
5127                 rxq->queue[rxq->write] = rxb;
5128                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5129                 rxq->free_count--;
5130         }
5131         spin_unlock_irqrestore(&rxq->lock, flags);
5132
5133         /* If the pre-allocated buffer pool is dropping low, schedule to
5134          * refill it */
5135         if (rxq->free_count <= RX_LOW_WATERMARK)
5136                 queue_work(priv->workqueue, &priv->rx_replenish);
5137
5138         /* If we've added more space for the firmware to place data, tell it */
5139         if (write != rxq->write)
5140                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5141 }
5142
5143 /*
5144  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5145  * Also restock the Rx queue via ipw_rx_queue_restock.
5146  *
5147  * This is called as a scheduled work item (except for during intialization)
5148  */
5149 static void ipw_rx_queue_replenish(void *data)
5150 {
5151         struct ipw_priv *priv = data;
5152         struct ipw_rx_queue *rxq = priv->rxq;
5153         struct list_head *element;
5154         struct ipw_rx_mem_buffer *rxb;
5155         unsigned long flags;
5156
5157         spin_lock_irqsave(&rxq->lock, flags);
5158         while (!list_empty(&rxq->rx_used)) {
5159                 element = rxq->rx_used.next;
5160                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5161                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5162                 if (!rxb->skb) {
5163                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5164                                priv->net_dev->name);
5165                         /* We don't reschedule replenish work here -- we will
5166                          * call the restock method and if it still needs
5167                          * more buffers it will schedule replenish */
5168                         break;
5169                 }
5170                 list_del(element);
5171
5172                 rxb->dma_addr =
5173                     pci_map_single(priv->pci_dev, rxb->skb->data,
5174                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5175
5176                 list_add_tail(&rxb->list, &rxq->rx_free);
5177                 rxq->free_count++;
5178         }
5179         spin_unlock_irqrestore(&rxq->lock, flags);
5180
5181         ipw_rx_queue_restock(priv);
5182 }
5183
5184 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5185 {
5186         struct ipw_priv *priv =
5187                 container_of(work, struct ipw_priv, rx_replenish);
5188         mutex_lock(&priv->mutex);
5189         ipw_rx_queue_replenish(priv);
5190         mutex_unlock(&priv->mutex);
5191 }
5192
5193 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5194  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5195  * This free routine walks the list of POOL entries and if SKB is set to
5196  * non NULL it is unmapped and freed
5197  */
5198 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5199 {
5200         int i;
5201
5202         if (!rxq)
5203                 return;
5204
5205         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5206                 if (rxq->pool[i].skb != NULL) {
5207                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5208                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5209                         dev_kfree_skb(rxq->pool[i].skb);
5210                 }
5211         }
5212
5213         kfree(rxq);
5214 }
5215
5216 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5217 {
5218         struct ipw_rx_queue *rxq;
5219         int i;
5220
5221         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5222         if (unlikely(!rxq)) {
5223                 IPW_ERROR("memory allocation failed\n");
5224                 return NULL;
5225         }
5226         spin_lock_init(&rxq->lock);
5227         INIT_LIST_HEAD(&rxq->rx_free);
5228         INIT_LIST_HEAD(&rxq->rx_used);
5229
5230         /* Fill the rx_used queue with _all_ of the Rx buffers */
5231         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5232                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5233
5234         /* Set us so that we have processed and used all buffers, but have
5235          * not restocked the Rx queue with fresh buffers */
5236         rxq->read = rxq->write = 0;
5237         rxq->free_count = 0;
5238
5239         return rxq;
5240 }
5241
5242 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5243 {
5244         rate &= ~IEEE80211_BASIC_RATE_MASK;
5245         if (ieee_mode == IEEE_A) {
5246                 switch (rate) {
5247                 case IEEE80211_OFDM_RATE_6MB:
5248                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5249                             1 : 0;
5250                 case IEEE80211_OFDM_RATE_9MB:
5251                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5252                             1 : 0;
5253                 case IEEE80211_OFDM_RATE_12MB:
5254                         return priv->
5255                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5256                 case IEEE80211_OFDM_RATE_18MB:
5257                         return priv->
5258                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5259                 case IEEE80211_OFDM_RATE_24MB:
5260                         return priv->
5261                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5262                 case IEEE80211_OFDM_RATE_36MB:
5263                         return priv->
5264                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5265                 case IEEE80211_OFDM_RATE_48MB:
5266                         return priv->
5267                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5268                 case IEEE80211_OFDM_RATE_54MB:
5269                         return priv->
5270                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5271                 default:
5272                         return 0;
5273                 }
5274         }
5275
5276         /* B and G mixed */
5277         switch (rate) {
5278         case IEEE80211_CCK_RATE_1MB:
5279                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5280         case IEEE80211_CCK_RATE_2MB:
5281                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5282         case IEEE80211_CCK_RATE_5MB:
5283                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5284         case IEEE80211_CCK_RATE_11MB:
5285                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5286         }
5287
5288         /* If we are limited to B modulations, bail at this point */
5289         if (ieee_mode == IEEE_B)
5290                 return 0;
5291
5292         /* G */
5293         switch (rate) {
5294         case IEEE80211_OFDM_RATE_6MB:
5295                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5296         case IEEE80211_OFDM_RATE_9MB:
5297                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5298         case IEEE80211_OFDM_RATE_12MB:
5299                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5300         case IEEE80211_OFDM_RATE_18MB:
5301                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5302         case IEEE80211_OFDM_RATE_24MB:
5303                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5304         case IEEE80211_OFDM_RATE_36MB:
5305                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5306         case IEEE80211_OFDM_RATE_48MB:
5307                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5308         case IEEE80211_OFDM_RATE_54MB:
5309                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5310         }
5311
5312         return 0;
5313 }
5314
5315 static int ipw_compatible_rates(struct ipw_priv *priv,
5316                                 const struct ieee80211_network *network,
5317                                 struct ipw_supported_rates *rates)
5318 {
5319         int num_rates, i;
5320
5321         memset(rates, 0, sizeof(*rates));
5322         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5323         rates->num_rates = 0;
5324         for (i = 0; i < num_rates; i++) {
5325                 if (!ipw_is_rate_in_mask(priv, network->mode,
5326                                          network->rates[i])) {
5327
5328                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5329                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5330                                                "rate %02X\n",
5331                                                network->rates[i]);
5332                                 rates->supported_rates[rates->num_rates++] =
5333                                     network->rates[i];
5334                                 continue;
5335                         }
5336
5337                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5338                                        network->rates[i], priv->rates_mask);
5339                         continue;
5340                 }
5341
5342                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5343         }
5344
5345         num_rates = min(network->rates_ex_len,
5346                         (u8) (IPW_MAX_RATES - num_rates));
5347         for (i = 0; i < num_rates; i++) {
5348                 if (!ipw_is_rate_in_mask(priv, network->mode,
5349                                          network->rates_ex[i])) {
5350                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5351                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5352                                                "rate %02X\n",
5353                                                network->rates_ex[i]);
5354                                 rates->supported_rates[rates->num_rates++] =
5355                                     network->rates[i];
5356                                 continue;
5357                         }
5358
5359                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5360                                        network->rates_ex[i], priv->rates_mask);
5361                         continue;
5362                 }
5363
5364                 rates->supported_rates[rates->num_rates++] =
5365                     network->rates_ex[i];
5366         }
5367
5368         return 1;
5369 }
5370
5371 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5372                                   const struct ipw_supported_rates *src)
5373 {
5374         u8 i;
5375         for (i = 0; i < src->num_rates; i++)
5376                 dest->supported_rates[i] = src->supported_rates[i];
5377         dest->num_rates = src->num_rates;
5378 }
5379
5380 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5381  * mask should ever be used -- right now all callers to add the scan rates are
5382  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5383 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5384                                    u8 modulation, u32 rate_mask)
5385 {
5386         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5387             IEEE80211_BASIC_RATE_MASK : 0;
5388
5389         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5390                 rates->supported_rates[rates->num_rates++] =
5391                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5392
5393         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5394                 rates->supported_rates[rates->num_rates++] =
5395                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5396
5397         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5398                 rates->supported_rates[rates->num_rates++] = basic_mask |
5399                     IEEE80211_CCK_RATE_5MB;
5400
5401         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5402                 rates->supported_rates[rates->num_rates++] = basic_mask |
5403                     IEEE80211_CCK_RATE_11MB;
5404 }
5405
5406 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5407                                     u8 modulation, u32 rate_mask)
5408 {
5409         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5410             IEEE80211_BASIC_RATE_MASK : 0;
5411
5412         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5413                 rates->supported_rates[rates->num_rates++] = basic_mask |
5414                     IEEE80211_OFDM_RATE_6MB;
5415
5416         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5417                 rates->supported_rates[rates->num_rates++] =
5418                     IEEE80211_OFDM_RATE_9MB;
5419
5420         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5421                 rates->supported_rates[rates->num_rates++] = basic_mask |
5422                     IEEE80211_OFDM_RATE_12MB;
5423
5424         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5425                 rates->supported_rates[rates->num_rates++] =
5426                     IEEE80211_OFDM_RATE_18MB;
5427
5428         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5429                 rates->supported_rates[rates->num_rates++] = basic_mask |
5430                     IEEE80211_OFDM_RATE_24MB;
5431
5432         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5433                 rates->supported_rates[rates->num_rates++] =
5434                     IEEE80211_OFDM_RATE_36MB;
5435
5436         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5437                 rates->supported_rates[rates->num_rates++] =
5438                     IEEE80211_OFDM_RATE_48MB;
5439
5440         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5441                 rates->supported_rates[rates->num_rates++] =
5442                     IEEE80211_OFDM_RATE_54MB;
5443 }
5444
5445 struct ipw_network_match {
5446         struct ieee80211_network *network;
5447         struct ipw_supported_rates rates;
5448 };
5449
5450 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5451                                   struct ipw_network_match *match,
5452                                   struct ieee80211_network *network,
5453                                   int roaming)
5454 {
5455         struct ipw_supported_rates rates;
5456         DECLARE_SSID_BUF(ssid);
5457
5458         /* Verify that this network's capability is compatible with the
5459          * current mode (AdHoc or Infrastructure) */
5460         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5461              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5462                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5463                                 "capability mismatch.\n",
5464                                 print_ssid(ssid, network->ssid,
5465                                            network->ssid_len),
5466                                 network->bssid);
5467                 return 0;
5468         }
5469
5470         if (unlikely(roaming)) {
5471                 /* If we are roaming, then ensure check if this is a valid
5472                  * network to try and roam to */
5473                 if ((network->ssid_len != match->network->ssid_len) ||
5474                     memcmp(network->ssid, match->network->ssid,
5475                            network->ssid_len)) {
5476                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5477                                         "because of non-network ESSID.\n",
5478                                         print_ssid(ssid, network->ssid,
5479                                                    network->ssid_len),
5480                                         network->bssid);
5481                         return 0;
5482                 }
5483         } else {
5484                 /* If an ESSID has been configured then compare the broadcast
5485                  * ESSID to ours */
5486                 if ((priv->config & CFG_STATIC_ESSID) &&
5487                     ((network->ssid_len != priv->essid_len) ||
5488                      memcmp(network->ssid, priv->essid,
5489                             min(network->ssid_len, priv->essid_len)))) {
5490                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5491
5492                         strncpy(escaped,
5493                                 print_ssid(ssid, network->ssid,
5494                                            network->ssid_len),
5495                                 sizeof(escaped));
5496                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5497                                         "because of ESSID mismatch: '%s'.\n",
5498                                         escaped, network->bssid,
5499                                         print_ssid(ssid, priv->essid,
5500                                                    priv->essid_len));
5501                         return 0;
5502                 }
5503         }
5504
5505         /* If the old network rate is better than this one, don't bother
5506          * testing everything else. */
5507
5508         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5509                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5510                                 "current network.\n",
5511                                 print_ssid(ssid, match->network->ssid,
5512                                            match->network->ssid_len));
5513                 return 0;
5514         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5515                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5516                                 "current network.\n",
5517                                 print_ssid(ssid, match->network->ssid,
5518                                            match->network->ssid_len));
5519                 return 0;
5520         }
5521
5522         /* Now go through and see if the requested network is valid... */
5523         if (priv->ieee->scan_age != 0 &&
5524             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5525                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5526                                 "because of age: %ums.\n",
5527                                 print_ssid(ssid, network->ssid,
5528                                            network->ssid_len),
5529                                 network->bssid,
5530                                 jiffies_to_msecs(jiffies -
5531                                                  network->last_scanned));
5532                 return 0;
5533         }
5534
5535         if ((priv->config & CFG_STATIC_CHANNEL) &&
5536             (network->channel != priv->channel)) {
5537                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538                                 "because of channel mismatch: %d != %d.\n",
5539                                 print_ssid(ssid, network->ssid,
5540                                            network->ssid_len),
5541                                 network->bssid,
5542                                 network->channel, priv->channel);
5543                 return 0;
5544         }
5545
5546         /* Verify privacy compatability */
5547         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5548             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5549                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5550                                 "because of privacy mismatch: %s != %s.\n",
5551                                 print_ssid(ssid, network->ssid,
5552                                            network->ssid_len),
5553                                 network->bssid,
5554                                 priv->
5555                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5556                                 network->
5557                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5558                                 "off");
5559                 return 0;
5560         }
5561
5562         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5563                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5564                                 "because of the same BSSID match: %pM"
5565                                 ".\n", print_ssid(ssid, network->ssid,
5566                                                   network->ssid_len),
5567                                 network->bssid,
5568                                 priv->bssid);
5569                 return 0;
5570         }
5571
5572         /* Filter out any incompatible freq / mode combinations */
5573         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5574                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5575                                 "because of invalid frequency/mode "
5576                                 "combination.\n",
5577                                 print_ssid(ssid, network->ssid,
5578                                            network->ssid_len),
5579                                 network->bssid);
5580                 return 0;
5581         }
5582
5583         /* Ensure that the rates supported by the driver are compatible with
5584          * this AP, including verification of basic rates (mandatory) */
5585         if (!ipw_compatible_rates(priv, network, &rates)) {
5586                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5587                                 "because configured rate mask excludes "
5588                                 "AP mandatory rate.\n",
5589                                 print_ssid(ssid, network->ssid,
5590                                            network->ssid_len),
5591                                 network->bssid);
5592                 return 0;
5593         }
5594
5595         if (rates.num_rates == 0) {
5596                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5597                                 "because of no compatible rates.\n",
5598                                 print_ssid(ssid, network->ssid,
5599                                            network->ssid_len),
5600                                 network->bssid);
5601                 return 0;
5602         }
5603
5604         /* TODO: Perform any further minimal comparititive tests.  We do not
5605          * want to put too much policy logic here; intelligent scan selection
5606          * should occur within a generic IEEE 802.11 user space tool.  */
5607
5608         /* Set up 'new' AP to this network */
5609         ipw_copy_rates(&match->rates, &rates);
5610         match->network = network;
5611         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5612                         print_ssid(ssid, network->ssid, network->ssid_len),
5613                         network->bssid);
5614
5615         return 1;
5616 }
5617
5618 static void ipw_merge_adhoc_network(struct work_struct *work)
5619 {
5620         DECLARE_SSID_BUF(ssid);
5621         struct ipw_priv *priv =
5622                 container_of(work, struct ipw_priv, merge_networks);
5623         struct ieee80211_network *network = NULL;
5624         struct ipw_network_match match = {
5625                 .network = priv->assoc_network
5626         };
5627
5628         if ((priv->status & STATUS_ASSOCIATED) &&
5629             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5630                 /* First pass through ROAM process -- look for a better
5631                  * network */
5632                 unsigned long flags;
5633
5634                 spin_lock_irqsave(&priv->ieee->lock, flags);
5635                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5636                         if (network != priv->assoc_network)
5637                                 ipw_find_adhoc_network(priv, &match, network,
5638                                                        1);
5639                 }
5640                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5641
5642                 if (match.network == priv->assoc_network) {
5643                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5644                                         "merge to.\n");
5645                         return;
5646                 }
5647
5648                 mutex_lock(&priv->mutex);
5649                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5650                         IPW_DEBUG_MERGE("remove network %s\n",
5651                                         print_ssid(ssid, priv->essid,
5652                                                    priv->essid_len));
5653                         ipw_remove_current_network(priv);
5654                 }
5655
5656                 ipw_disassociate(priv);
5657                 priv->assoc_network = match.network;
5658                 mutex_unlock(&priv->mutex);
5659                 return;
5660         }
5661 }
5662
5663 static int ipw_best_network(struct ipw_priv *priv,
5664                             struct ipw_network_match *match,
5665                             struct ieee80211_network *network, int roaming)
5666 {
5667         struct ipw_supported_rates rates;
5668         DECLARE_SSID_BUF(ssid);
5669
5670         /* Verify that this network's capability is compatible with the
5671          * current mode (AdHoc or Infrastructure) */
5672         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5673              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5674             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5675              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5676                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5677                                 "capability mismatch.\n",
5678                                 print_ssid(ssid, network->ssid,
5679                                            network->ssid_len),
5680                                 network->bssid);
5681                 return 0;
5682         }
5683
5684         if (unlikely(roaming)) {
5685                 /* If we are roaming, then ensure check if this is a valid
5686                  * network to try and roam to */
5687                 if ((network->ssid_len != match->network->ssid_len) ||
5688                     memcmp(network->ssid, match->network->ssid,
5689                            network->ssid_len)) {
5690                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5691                                         "because of non-network ESSID.\n",
5692                                         print_ssid(ssid, network->ssid,
5693                                                    network->ssid_len),
5694                                         network->bssid);
5695                         return 0;
5696                 }
5697         } else {
5698                 /* If an ESSID has been configured then compare the broadcast
5699                  * ESSID to ours */
5700                 if ((priv->config & CFG_STATIC_ESSID) &&
5701                     ((network->ssid_len != priv->essid_len) ||
5702                      memcmp(network->ssid, priv->essid,
5703                             min(network->ssid_len, priv->essid_len)))) {
5704                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5705                         strncpy(escaped,
5706                                 print_ssid(ssid, network->ssid,
5707                                            network->ssid_len),
5708                                 sizeof(escaped));
5709                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5710                                         "because of ESSID mismatch: '%s'.\n",
5711                                         escaped, network->bssid,
5712                                         print_ssid(ssid, priv->essid,
5713                                                    priv->essid_len));
5714                         return 0;
5715                 }
5716         }
5717
5718         /* If the old network rate is better than this one, don't bother
5719          * testing everything else. */
5720         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5721                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5722                 strncpy(escaped,
5723                         print_ssid(ssid, network->ssid, network->ssid_len),
5724                         sizeof(escaped));
5725                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5726                                 "'%s (%pM)' has a stronger signal.\n",
5727                                 escaped, network->bssid,
5728                                 print_ssid(ssid, match->network->ssid,
5729                                            match->network->ssid_len),
5730                                 match->network->bssid);
5731                 return 0;
5732         }
5733
5734         /* If this network has already had an association attempt within the
5735          * last 3 seconds, do not try and associate again... */
5736         if (network->last_associate &&
5737             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739                                 "because of storming (%ums since last "
5740                                 "assoc attempt).\n",
5741                                 print_ssid(ssid, network->ssid,
5742                                            network->ssid_len),
5743                                 network->bssid,
5744                                 jiffies_to_msecs(jiffies -
5745                                                  network->last_associate));
5746                 return 0;
5747         }
5748
5749         /* Now go through and see if the requested network is valid... */
5750         if (priv->ieee->scan_age != 0 &&
5751             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5752                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5753                                 "because of age: %ums.\n",
5754                                 print_ssid(ssid, network->ssid,
5755                                            network->ssid_len),
5756                                 network->bssid,
5757                                 jiffies_to_msecs(jiffies -
5758                                                  network->last_scanned));
5759                 return 0;
5760         }
5761
5762         if ((priv->config & CFG_STATIC_CHANNEL) &&
5763             (network->channel != priv->channel)) {
5764                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5765                                 "because of channel mismatch: %d != %d.\n",
5766                                 print_ssid(ssid, network->ssid,
5767                                            network->ssid_len),
5768                                 network->bssid,
5769                                 network->channel, priv->channel);
5770                 return 0;
5771         }
5772
5773         /* Verify privacy compatability */
5774         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5775             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5776                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5777                                 "because of privacy mismatch: %s != %s.\n",
5778                                 print_ssid(ssid, network->ssid,
5779                                            network->ssid_len),
5780                                 network->bssid,
5781                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5782                                 "off",
5783                                 network->capability &
5784                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5785                 return 0;
5786         }
5787
5788         if ((priv->config & CFG_STATIC_BSSID) &&
5789             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5790                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5791                                 "because of BSSID mismatch: %pM.\n",
5792                                 print_ssid(ssid, network->ssid,
5793                                            network->ssid_len),
5794                                 network->bssid, priv->bssid);
5795                 return 0;
5796         }
5797
5798         /* Filter out any incompatible freq / mode combinations */
5799         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5800                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5801                                 "because of invalid frequency/mode "
5802                                 "combination.\n",
5803                                 print_ssid(ssid, network->ssid,
5804                                            network->ssid_len),
5805                                 network->bssid);
5806                 return 0;
5807         }
5808
5809         /* Filter out invalid channel in current GEO */
5810         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5811                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5812                                 "because of invalid channel in current GEO\n",
5813                                 print_ssid(ssid, network->ssid,
5814                                            network->ssid_len),
5815                                 network->bssid);
5816                 return 0;
5817         }
5818
5819         /* Ensure that the rates supported by the driver are compatible with
5820          * this AP, including verification of basic rates (mandatory) */
5821         if (!ipw_compatible_rates(priv, network, &rates)) {
5822                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5823                                 "because configured rate mask excludes "
5824                                 "AP mandatory rate.\n",
5825                                 print_ssid(ssid, network->ssid,
5826                                            network->ssid_len),
5827                                 network->bssid);
5828                 return 0;
5829         }
5830
5831         if (rates.num_rates == 0) {
5832                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5833                                 "because of no compatible rates.\n",
5834                                 print_ssid(ssid, network->ssid,
5835                                            network->ssid_len),
5836                                 network->bssid);
5837                 return 0;
5838         }
5839
5840         /* TODO: Perform any further minimal comparititive tests.  We do not
5841          * want to put too much policy logic here; intelligent scan selection
5842          * should occur within a generic IEEE 802.11 user space tool.  */
5843
5844         /* Set up 'new' AP to this network */
5845         ipw_copy_rates(&match->rates, &rates);
5846         match->network = network;
5847
5848         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5849                         print_ssid(ssid, network->ssid, network->ssid_len),
5850                         network->bssid);
5851
5852         return 1;
5853 }
5854
5855 static void ipw_adhoc_create(struct ipw_priv *priv,
5856                              struct ieee80211_network *network)
5857 {
5858         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5859         int i;
5860
5861         /*
5862          * For the purposes of scanning, we can set our wireless mode
5863          * to trigger scans across combinations of bands, but when it
5864          * comes to creating a new ad-hoc network, we have tell the FW
5865          * exactly which band to use.
5866          *
5867          * We also have the possibility of an invalid channel for the
5868          * chossen band.  Attempting to create a new ad-hoc network
5869          * with an invalid channel for wireless mode will trigger a
5870          * FW fatal error.
5871          *
5872          */
5873         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5874         case IEEE80211_52GHZ_BAND:
5875                 network->mode = IEEE_A;
5876                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5877                 BUG_ON(i == -1);
5878                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5879                         IPW_WARNING("Overriding invalid channel\n");
5880                         priv->channel = geo->a[0].channel;
5881                 }
5882                 break;
5883
5884         case IEEE80211_24GHZ_BAND:
5885                 if (priv->ieee->mode & IEEE_G)
5886                         network->mode = IEEE_G;
5887                 else
5888                         network->mode = IEEE_B;
5889                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5890                 BUG_ON(i == -1);
5891                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5892                         IPW_WARNING("Overriding invalid channel\n");
5893                         priv->channel = geo->bg[0].channel;
5894                 }
5895                 break;
5896
5897         default:
5898                 IPW_WARNING("Overriding invalid channel\n");
5899                 if (priv->ieee->mode & IEEE_A) {
5900                         network->mode = IEEE_A;
5901                         priv->channel = geo->a[0].channel;
5902                 } else if (priv->ieee->mode & IEEE_G) {
5903                         network->mode = IEEE_G;
5904                         priv->channel = geo->bg[0].channel;
5905                 } else {
5906                         network->mode = IEEE_B;
5907                         priv->channel = geo->bg[0].channel;
5908                 }
5909                 break;
5910         }
5911
5912         network->channel = priv->channel;
5913         priv->config |= CFG_ADHOC_PERSIST;
5914         ipw_create_bssid(priv, network->bssid);
5915         network->ssid_len = priv->essid_len;
5916         memcpy(network->ssid, priv->essid, priv->essid_len);
5917         memset(&network->stats, 0, sizeof(network->stats));
5918         network->capability = WLAN_CAPABILITY_IBSS;
5919         if (!(priv->config & CFG_PREAMBLE_LONG))
5920                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5921         if (priv->capability & CAP_PRIVACY_ON)
5922                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5923         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5924         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5925         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5926         memcpy(network->rates_ex,
5927                &priv->rates.supported_rates[network->rates_len],
5928                network->rates_ex_len);
5929         network->last_scanned = 0;
5930         network->flags = 0;
5931         network->last_associate = 0;
5932         network->time_stamp[0] = 0;
5933         network->time_stamp[1] = 0;
5934         network->beacon_interval = 100; /* Default */
5935         network->listen_interval = 10;  /* Default */
5936         network->atim_window = 0;       /* Default */
5937         network->wpa_ie_len = 0;
5938         network->rsn_ie_len = 0;
5939 }
5940
5941 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5942 {
5943         struct ipw_tgi_tx_key key;
5944
5945         if (!(priv->ieee->sec.flags & (1 << index)))
5946                 return;
5947
5948         key.key_id = index;
5949         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5950         key.security_type = type;
5951         key.station_index = 0;  /* always 0 for BSS */
5952         key.flags = 0;
5953         /* 0 for new key; previous value of counter (after fatal error) */
5954         key.tx_counter[0] = cpu_to_le32(0);
5955         key.tx_counter[1] = cpu_to_le32(0);
5956
5957         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5958 }
5959
5960 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5961 {
5962         struct ipw_wep_key key;
5963         int i;
5964
5965         key.cmd_id = DINO_CMD_WEP_KEY;
5966         key.seq_num = 0;
5967
5968         /* Note: AES keys cannot be set for multiple times.
5969          * Only set it at the first time. */
5970         for (i = 0; i < 4; i++) {
5971                 key.key_index = i | type;
5972                 if (!(priv->ieee->sec.flags & (1 << i))) {
5973                         key.key_size = 0;
5974                         continue;
5975                 }
5976
5977                 key.key_size = priv->ieee->sec.key_sizes[i];
5978                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5979
5980                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5981         }
5982 }
5983
5984 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5985 {
5986         if (priv->ieee->host_encrypt)
5987                 return;
5988
5989         switch (level) {
5990         case SEC_LEVEL_3:
5991                 priv->sys_config.disable_unicast_decryption = 0;
5992                 priv->ieee->host_decrypt = 0;
5993                 break;
5994         case SEC_LEVEL_2:
5995                 priv->sys_config.disable_unicast_decryption = 1;
5996                 priv->ieee->host_decrypt = 1;
5997                 break;
5998         case SEC_LEVEL_1:
5999                 priv->sys_config.disable_unicast_decryption = 0;
6000                 priv->ieee->host_decrypt = 0;
6001                 break;
6002         case SEC_LEVEL_0:
6003                 priv->sys_config.disable_unicast_decryption = 1;
6004                 break;
6005         default:
6006                 break;
6007         }
6008 }
6009
6010 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6011 {
6012         if (priv->ieee->host_encrypt)
6013                 return;
6014
6015         switch (level) {
6016         case SEC_LEVEL_3:
6017                 priv->sys_config.disable_multicast_decryption = 0;
6018                 break;
6019         case SEC_LEVEL_2:
6020                 priv->sys_config.disable_multicast_decryption = 1;
6021                 break;
6022         case SEC_LEVEL_1:
6023                 priv->sys_config.disable_multicast_decryption = 0;
6024                 break;
6025         case SEC_LEVEL_0:
6026                 priv->sys_config.disable_multicast_decryption = 1;
6027                 break;
6028         default:
6029                 break;
6030         }
6031 }
6032
6033 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6034 {
6035         switch (priv->ieee->sec.level) {
6036         case SEC_LEVEL_3:
6037                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6038                         ipw_send_tgi_tx_key(priv,
6039                                             DCT_FLAG_EXT_SECURITY_CCM,
6040                                             priv->ieee->sec.active_key);
6041
6042                 if (!priv->ieee->host_mc_decrypt)
6043                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6044                 break;
6045         case SEC_LEVEL_2:
6046                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6047                         ipw_send_tgi_tx_key(priv,
6048                                             DCT_FLAG_EXT_SECURITY_TKIP,
6049                                             priv->ieee->sec.active_key);
6050                 break;
6051         case SEC_LEVEL_1:
6052                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6053                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6054                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6055                 break;
6056         case SEC_LEVEL_0:
6057         default:
6058                 break;
6059         }
6060 }
6061
6062 static void ipw_adhoc_check(void *data)
6063 {
6064         struct ipw_priv *priv = data;
6065
6066         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6067             !(priv->config & CFG_ADHOC_PERSIST)) {
6068                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6069                           IPW_DL_STATE | IPW_DL_ASSOC,
6070                           "Missed beacon: %d - disassociate\n",
6071                           priv->missed_adhoc_beacons);
6072                 ipw_remove_current_network(priv);
6073                 ipw_disassociate(priv);
6074                 return;
6075         }
6076
6077         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6078                            le16_to_cpu(priv->assoc_request.beacon_interval));
6079 }
6080
6081 static void ipw_bg_adhoc_check(struct work_struct *work)
6082 {
6083         struct ipw_priv *priv =
6084                 container_of(work, struct ipw_priv, adhoc_check.work);
6085         mutex_lock(&priv->mutex);
6086         ipw_adhoc_check(priv);
6087         mutex_unlock(&priv->mutex);
6088 }
6089
6090 static void ipw_debug_config(struct ipw_priv *priv)
6091 {
6092         DECLARE_SSID_BUF(ssid);
6093         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6094                        "[CFG 0x%08X]\n", priv->config);
6095         if (priv->config & CFG_STATIC_CHANNEL)
6096                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6097         else
6098                 IPW_DEBUG_INFO("Channel unlocked.\n");
6099         if (priv->config & CFG_STATIC_ESSID)
6100                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6101                                print_ssid(ssid, priv->essid, priv->essid_len));
6102         else
6103                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6104         if (priv->config & CFG_STATIC_BSSID)
6105                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6106         else
6107                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6108         if (priv->capability & CAP_PRIVACY_ON)
6109                 IPW_DEBUG_INFO("PRIVACY on\n");
6110         else
6111                 IPW_DEBUG_INFO("PRIVACY off\n");
6112         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6113 }
6114
6115 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6116 {
6117         /* TODO: Verify that this works... */
6118         struct ipw_fixed_rate fr = {
6119                 .tx_rates = priv->rates_mask
6120         };
6121         u32 reg;
6122         u16 mask = 0;
6123
6124         /* Identify 'current FW band' and match it with the fixed
6125          * Tx rates */
6126
6127         switch (priv->ieee->freq_band) {
6128         case IEEE80211_52GHZ_BAND:      /* A only */
6129                 /* IEEE_A */
6130                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6131                         /* Invalid fixed rate mask */
6132                         IPW_DEBUG_WX
6133                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6134                         fr.tx_rates = 0;
6135                         break;
6136                 }
6137
6138                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6139                 break;
6140
6141         default:                /* 2.4Ghz or Mixed */
6142                 /* IEEE_B */
6143                 if (mode == IEEE_B) {
6144                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6145                                 /* Invalid fixed rate mask */
6146                                 IPW_DEBUG_WX
6147                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6148                                 fr.tx_rates = 0;
6149                         }
6150                         break;
6151                 }
6152
6153                 /* IEEE_G */
6154                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6155                                     IEEE80211_OFDM_RATES_MASK)) {
6156                         /* Invalid fixed rate mask */
6157                         IPW_DEBUG_WX
6158                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6159                         fr.tx_rates = 0;
6160                         break;
6161                 }
6162
6163                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6164                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6165                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6166                 }
6167
6168                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6169                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6170                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6171                 }
6172
6173                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6174                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6175                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6176                 }
6177
6178                 fr.tx_rates |= mask;
6179                 break;
6180         }
6181
6182         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6183         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6184 }
6185
6186 static void ipw_abort_scan(struct ipw_priv *priv)
6187 {
6188         int err;
6189
6190         if (priv->status & STATUS_SCAN_ABORTING) {
6191                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6192                 return;
6193         }
6194         priv->status |= STATUS_SCAN_ABORTING;
6195
6196         err = ipw_send_scan_abort(priv);
6197         if (err)
6198                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6199 }
6200
6201 static void ipw_add_scan_channels(struct ipw_priv *priv,
6202                                   struct ipw_scan_request_ext *scan,
6203                                   int scan_type)
6204 {
6205         int channel_index = 0;
6206         const struct ieee80211_geo *geo;
6207         int i;
6208
6209         geo = ieee80211_get_geo(priv->ieee);
6210
6211         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6212                 int start = channel_index;
6213                 for (i = 0; i < geo->a_channels; i++) {
6214                         if ((priv->status & STATUS_ASSOCIATED) &&
6215                             geo->a[i].channel == priv->channel)
6216                                 continue;
6217                         channel_index++;
6218                         scan->channels_list[channel_index] = geo->a[i].channel;
6219                         ipw_set_scan_type(scan, channel_index,
6220                                           geo->a[i].
6221                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6222                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6223                                           scan_type);
6224                 }
6225
6226                 if (start != channel_index) {
6227                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6228                             (channel_index - start);
6229                         channel_index++;
6230                 }
6231         }
6232
6233         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6234                 int start = channel_index;
6235                 if (priv->config & CFG_SPEED_SCAN) {
6236                         int index;
6237                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6238                                 /* nop out the list */
6239                                 [0] = 0
6240                         };
6241
6242                         u8 channel;
6243                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6244                                 channel =
6245                                     priv->speed_scan[priv->speed_scan_pos];
6246                                 if (channel == 0) {
6247                                         priv->speed_scan_pos = 0;
6248                                         channel = priv->speed_scan[0];
6249                                 }
6250                                 if ((priv->status & STATUS_ASSOCIATED) &&
6251                                     channel == priv->channel) {
6252                                         priv->speed_scan_pos++;
6253                                         continue;
6254                                 }
6255
6256                                 /* If this channel has already been
6257                                  * added in scan, break from loop
6258                                  * and this will be the first channel
6259                                  * in the next scan.
6260                                  */
6261                                 if (channels[channel - 1] != 0)
6262                                         break;
6263
6264                                 channels[channel - 1] = 1;
6265                                 priv->speed_scan_pos++;
6266                                 channel_index++;
6267                                 scan->channels_list[channel_index] = channel;
6268                                 index =
6269                                     ieee80211_channel_to_index(priv->ieee, channel);
6270                                 ipw_set_scan_type(scan, channel_index,
6271                                                   geo->bg[index].
6272                                                   flags &
6273                                                   IEEE80211_CH_PASSIVE_ONLY ?
6274                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6275                                                   : scan_type);
6276                         }
6277                 } else {
6278                         for (i = 0; i < geo->bg_channels; i++) {
6279                                 if ((priv->status & STATUS_ASSOCIATED) &&
6280                                     geo->bg[i].channel == priv->channel)
6281                                         continue;
6282                                 channel_index++;
6283                                 scan->channels_list[channel_index] =
6284                                     geo->bg[i].channel;
6285                                 ipw_set_scan_type(scan, channel_index,
6286                                                   geo->bg[i].
6287                                                   flags &
6288                                                   IEEE80211_CH_PASSIVE_ONLY ?
6289                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6290                                                   : scan_type);
6291                         }
6292                 }
6293
6294                 if (start != channel_index) {
6295                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6296                             (channel_index - start);
6297                 }
6298         }
6299 }
6300
6301 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6302 {
6303         /* staying on passive channels longer than the DTIM interval during a
6304          * scan, while associated, causes the firmware to cancel the scan
6305          * without notification. Hence, don't stay on passive channels longer
6306          * than the beacon interval.
6307          */
6308         if (priv->status & STATUS_ASSOCIATED
6309             && priv->assoc_network->beacon_interval > 10)
6310                 return priv->assoc_network->beacon_interval - 10;
6311         else
6312                 return 120;
6313 }
6314
6315 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6316 {
6317         struct ipw_scan_request_ext scan;
6318         int err = 0, scan_type;
6319
6320         if (!(priv->status & STATUS_INIT) ||
6321             (priv->status & STATUS_EXIT_PENDING))
6322                 return 0;
6323
6324         mutex_lock(&priv->mutex);
6325
6326         if (direct && (priv->direct_scan_ssid_len == 0)) {
6327                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6328                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6329                 goto done;
6330         }
6331
6332         if (priv->status & STATUS_SCANNING) {
6333                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6334                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6335                                         STATUS_SCAN_PENDING;
6336                 goto done;
6337         }
6338
6339         if (!(priv->status & STATUS_SCAN_FORCED) &&
6340             priv->status & STATUS_SCAN_ABORTING) {
6341                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6342                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6343                                         STATUS_SCAN_PENDING;
6344                 goto done;
6345         }
6346
6347         if (priv->status & STATUS_RF_KILL_MASK) {
6348                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6349                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6350                                         STATUS_SCAN_PENDING;
6351                 goto done;
6352         }
6353
6354         memset(&scan, 0, sizeof(scan));
6355         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6356
6357         if (type == IW_SCAN_TYPE_PASSIVE) {
6358                 IPW_DEBUG_WX("use passive scanning\n");
6359                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6360                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6361                         cpu_to_le16(ipw_passive_dwell_time(priv));
6362                 ipw_add_scan_channels(priv, &scan, scan_type);
6363                 goto send_request;
6364         }
6365
6366         /* Use active scan by default. */
6367         if (priv->config & CFG_SPEED_SCAN)
6368                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6369                         cpu_to_le16(30);
6370         else
6371                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6372                         cpu_to_le16(20);
6373
6374         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6375                 cpu_to_le16(20);
6376
6377         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6378                 cpu_to_le16(ipw_passive_dwell_time(priv));
6379         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6380
6381 #ifdef CONFIG_IPW2200_MONITOR
6382         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6383                 u8 channel;
6384                 u8 band = 0;
6385
6386                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6387                 case IEEE80211_52GHZ_BAND:
6388                         band = (u8) (IPW_A_MODE << 6) | 1;
6389                         channel = priv->channel;
6390                         break;
6391
6392                 case IEEE80211_24GHZ_BAND:
6393                         band = (u8) (IPW_B_MODE << 6) | 1;
6394                         channel = priv->channel;
6395                         break;
6396
6397                 default:
6398                         band = (u8) (IPW_B_MODE << 6) | 1;
6399                         channel = 9;
6400                         break;
6401                 }
6402
6403                 scan.channels_list[0] = band;
6404                 scan.channels_list[1] = channel;
6405                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6406
6407                 /* NOTE:  The card will sit on this channel for this time
6408                  * period.  Scan aborts are timing sensitive and frequently
6409                  * result in firmware restarts.  As such, it is best to
6410                  * set a small dwell_time here and just keep re-issuing
6411                  * scans.  Otherwise fast channel hopping will not actually
6412                  * hop channels.
6413                  *
6414                  * TODO: Move SPEED SCAN support to all modes and bands */
6415                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6416                         cpu_to_le16(2000);
6417         } else {
6418 #endif                          /* CONFIG_IPW2200_MONITOR */
6419                 /* Honor direct scans first, otherwise if we are roaming make
6420                  * this a direct scan for the current network.  Finally,
6421                  * ensure that every other scan is a fast channel hop scan */
6422                 if (direct) {
6423                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6424                                             priv->direct_scan_ssid_len);
6425                         if (err) {
6426                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6427                                              "failed\n");
6428                                 goto done;
6429                         }
6430
6431                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6432                 } else if ((priv->status & STATUS_ROAMING)
6433                            || (!(priv->status & STATUS_ASSOCIATED)
6434                                && (priv->config & CFG_STATIC_ESSID)
6435                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6436                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6437                         if (err) {
6438                                 IPW_DEBUG_HC("Attempt to send SSID command "
6439                                              "failed.\n");
6440                                 goto done;
6441                         }
6442
6443                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6444                 } else
6445                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6446
6447                 ipw_add_scan_channels(priv, &scan, scan_type);
6448 #ifdef CONFIG_IPW2200_MONITOR
6449         }
6450 #endif
6451
6452 send_request:
6453         err = ipw_send_scan_request_ext(priv, &scan);
6454         if (err) {
6455                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6456                 goto done;
6457         }
6458
6459         priv->status |= STATUS_SCANNING;
6460         if (direct) {
6461                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6462                 priv->direct_scan_ssid_len = 0;
6463         } else
6464                 priv->status &= ~STATUS_SCAN_PENDING;
6465
6466         queue_delayed_work(priv->workqueue, &priv->scan_check,
6467                            IPW_SCAN_CHECK_WATCHDOG);
6468 done:
6469         mutex_unlock(&priv->mutex);
6470         return err;
6471 }
6472
6473 static void ipw_request_passive_scan(struct work_struct *work)
6474 {
6475         struct ipw_priv *priv =
6476                 container_of(work, struct ipw_priv, request_passive_scan.work);
6477         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6478 }
6479
6480 static void ipw_request_scan(struct work_struct *work)
6481 {
6482         struct ipw_priv *priv =
6483                 container_of(work, struct ipw_priv, request_scan.work);
6484         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6485 }
6486
6487 static void ipw_request_direct_scan(struct work_struct *work)
6488 {
6489         struct ipw_priv *priv =
6490                 container_of(work, struct ipw_priv, request_direct_scan.work);
6491         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6492 }
6493
6494 static void ipw_bg_abort_scan(struct work_struct *work)
6495 {
6496         struct ipw_priv *priv =
6497                 container_of(work, struct ipw_priv, abort_scan);
6498         mutex_lock(&priv->mutex);
6499         ipw_abort_scan(priv);
6500         mutex_unlock(&priv->mutex);
6501 }
6502
6503 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6504 {
6505         /* This is called when wpa_supplicant loads and closes the driver
6506          * interface. */
6507         priv->ieee->wpa_enabled = value;
6508         return 0;
6509 }
6510
6511 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6512 {
6513         struct ieee80211_device *ieee = priv->ieee;
6514         struct ieee80211_security sec = {
6515                 .flags = SEC_AUTH_MODE,
6516         };
6517         int ret = 0;
6518
6519         if (value & IW_AUTH_ALG_SHARED_KEY) {
6520                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6521                 ieee->open_wep = 0;
6522         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6523                 sec.auth_mode = WLAN_AUTH_OPEN;
6524                 ieee->open_wep = 1;
6525         } else if (value & IW_AUTH_ALG_LEAP) {
6526                 sec.auth_mode = WLAN_AUTH_LEAP;
6527                 ieee->open_wep = 1;
6528         } else
6529                 return -EINVAL;
6530
6531         if (ieee->set_security)
6532                 ieee->set_security(ieee->dev, &sec);
6533         else
6534                 ret = -EOPNOTSUPP;
6535
6536         return ret;
6537 }
6538
6539 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6540                                 int wpa_ie_len)
6541 {
6542         /* make sure WPA is enabled */
6543         ipw_wpa_enable(priv, 1);
6544 }
6545
6546 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6547                             char *capabilities, int length)
6548 {
6549         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6550
6551         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6552                                 capabilities);
6553 }
6554
6555 /*
6556  * WE-18 support
6557  */
6558
6559 /* SIOCSIWGENIE */
6560 static int ipw_wx_set_genie(struct net_device *dev,
6561                             struct iw_request_info *info,
6562                             union iwreq_data *wrqu, char *extra)
6563 {
6564         struct ipw_priv *priv = ieee80211_priv(dev);
6565         struct ieee80211_device *ieee = priv->ieee;
6566         u8 *buf;
6567         int err = 0;
6568
6569         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6570             (wrqu->data.length && extra == NULL))
6571                 return -EINVAL;
6572
6573         if (wrqu->data.length) {
6574                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6575                 if (buf == NULL) {
6576                         err = -ENOMEM;
6577                         goto out;
6578                 }
6579
6580                 memcpy(buf, extra, wrqu->data.length);
6581                 kfree(ieee->wpa_ie);
6582                 ieee->wpa_ie = buf;
6583                 ieee->wpa_ie_len = wrqu->data.length;
6584         } else {
6585                 kfree(ieee->wpa_ie);
6586                 ieee->wpa_ie = NULL;
6587                 ieee->wpa_ie_len = 0;
6588         }
6589
6590         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6591       out:
6592         return err;
6593 }
6594
6595 /* SIOCGIWGENIE */
6596 static int ipw_wx_get_genie(struct net_device *dev,
6597                             struct iw_request_info *info,
6598                             union iwreq_data *wrqu, char *extra)
6599 {
6600         struct ipw_priv *priv = ieee80211_priv(dev);
6601         struct ieee80211_device *ieee = priv->ieee;
6602         int err = 0;
6603
6604         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6605                 wrqu->data.length = 0;
6606                 goto out;
6607         }
6608
6609         if (wrqu->data.length < ieee->wpa_ie_len) {
6610                 err = -E2BIG;
6611                 goto out;
6612         }
6613
6614         wrqu->data.length = ieee->wpa_ie_len;
6615         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6616
6617       out:
6618         return err;
6619 }
6620
6621 static int wext_cipher2level(int cipher)
6622 {
6623         switch (cipher) {
6624         case IW_AUTH_CIPHER_NONE:
6625                 return SEC_LEVEL_0;
6626         case IW_AUTH_CIPHER_WEP40:
6627         case IW_AUTH_CIPHER_WEP104:
6628                 return SEC_LEVEL_1;
6629         case IW_AUTH_CIPHER_TKIP:
6630                 return SEC_LEVEL_2;
6631         case IW_AUTH_CIPHER_CCMP:
6632                 return SEC_LEVEL_3;
6633         default:
6634                 return -1;
6635         }
6636 }
6637
6638 /* SIOCSIWAUTH */
6639 static int ipw_wx_set_auth(struct net_device *dev,
6640                            struct iw_request_info *info,
6641                            union iwreq_data *wrqu, char *extra)
6642 {
6643         struct ipw_priv *priv = ieee80211_priv(dev);
6644         struct ieee80211_device *ieee = priv->ieee;
6645         struct iw_param *param = &wrqu->param;
6646         struct lib80211_crypt_data *crypt;
6647         unsigned long flags;
6648         int ret = 0;
6649
6650         switch (param->flags & IW_AUTH_INDEX) {
6651         case IW_AUTH_WPA_VERSION:
6652                 break;
6653         case IW_AUTH_CIPHER_PAIRWISE:
6654                 ipw_set_hw_decrypt_unicast(priv,
6655                                            wext_cipher2level(param->value));
6656                 break;
6657         case IW_AUTH_CIPHER_GROUP:
6658                 ipw_set_hw_decrypt_multicast(priv,
6659                                              wext_cipher2level(param->value));
6660                 break;
6661         case IW_AUTH_KEY_MGMT:
6662                 /*
6663                  * ipw2200 does not use these parameters
6664                  */
6665                 break;
6666
6667         case IW_AUTH_TKIP_COUNTERMEASURES:
6668                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6669                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6670                         break;
6671
6672                 flags = crypt->ops->get_flags(crypt->priv);
6673
6674                 if (param->value)
6675                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6676                 else
6677                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6678
6679                 crypt->ops->set_flags(flags, crypt->priv);
6680
6681                 break;
6682
6683         case IW_AUTH_DROP_UNENCRYPTED:{
6684                         /* HACK:
6685                          *
6686                          * wpa_supplicant calls set_wpa_enabled when the driver
6687                          * is loaded and unloaded, regardless of if WPA is being
6688                          * used.  No other calls are made which can be used to
6689                          * determine if encryption will be used or not prior to
6690                          * association being expected.  If encryption is not being
6691                          * used, drop_unencrypted is set to false, else true -- we
6692                          * can use this to determine if the CAP_PRIVACY_ON bit should
6693                          * be set.
6694                          */
6695                         struct ieee80211_security sec = {
6696                                 .flags = SEC_ENABLED,
6697                                 .enabled = param->value,
6698                         };
6699                         priv->ieee->drop_unencrypted = param->value;
6700                         /* We only change SEC_LEVEL for open mode. Others
6701                          * are set by ipw_wpa_set_encryption.
6702                          */
6703                         if (!param->value) {
6704                                 sec.flags |= SEC_LEVEL;
6705                                 sec.level = SEC_LEVEL_0;
6706                         } else {
6707                                 sec.flags |= SEC_LEVEL;
6708                                 sec.level = SEC_LEVEL_1;
6709                         }
6710                         if (priv->ieee->set_security)
6711                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6712                         break;
6713                 }
6714
6715         case IW_AUTH_80211_AUTH_ALG:
6716                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6717                 break;
6718
6719         case IW_AUTH_WPA_ENABLED:
6720                 ret = ipw_wpa_enable(priv, param->value);
6721                 ipw_disassociate(priv);
6722                 break;
6723
6724         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6725                 ieee->ieee802_1x = param->value;
6726                 break;
6727
6728         case IW_AUTH_PRIVACY_INVOKED:
6729                 ieee->privacy_invoked = param->value;
6730                 break;
6731
6732         default:
6733                 return -EOPNOTSUPP;
6734         }
6735         return ret;
6736 }
6737
6738 /* SIOCGIWAUTH */
6739 static int ipw_wx_get_auth(struct net_device *dev,
6740                            struct iw_request_info *info,
6741                            union iwreq_data *wrqu, char *extra)
6742 {
6743         struct ipw_priv *priv = ieee80211_priv(dev);
6744         struct ieee80211_device *ieee = priv->ieee;
6745         struct lib80211_crypt_data *crypt;
6746         struct iw_param *param = &wrqu->param;
6747         int ret = 0;
6748
6749         switch (param->flags & IW_AUTH_INDEX) {
6750         case IW_AUTH_WPA_VERSION:
6751         case IW_AUTH_CIPHER_PAIRWISE:
6752         case IW_AUTH_CIPHER_GROUP:
6753         case IW_AUTH_KEY_MGMT:
6754                 /*
6755                  * wpa_supplicant will control these internally
6756                  */
6757                 ret = -EOPNOTSUPP;
6758                 break;
6759
6760         case IW_AUTH_TKIP_COUNTERMEASURES:
6761                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6762                 if (!crypt || !crypt->ops->get_flags)
6763                         break;
6764
6765                 param->value = (crypt->ops->get_flags(crypt->priv) &
6766                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6767
6768                 break;
6769
6770         case IW_AUTH_DROP_UNENCRYPTED:
6771                 param->value = ieee->drop_unencrypted;
6772                 break;
6773
6774         case IW_AUTH_80211_AUTH_ALG:
6775                 param->value = ieee->sec.auth_mode;
6776                 break;
6777
6778         case IW_AUTH_WPA_ENABLED:
6779                 param->value = ieee->wpa_enabled;
6780                 break;
6781
6782         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6783                 param->value = ieee->ieee802_1x;
6784                 break;
6785
6786         case IW_AUTH_ROAMING_CONTROL:
6787         case IW_AUTH_PRIVACY_INVOKED:
6788                 param->value = ieee->privacy_invoked;
6789                 break;
6790
6791         default:
6792                 return -EOPNOTSUPP;
6793         }
6794         return 0;
6795 }
6796
6797 /* SIOCSIWENCODEEXT */
6798 static int ipw_wx_set_encodeext(struct net_device *dev,
6799                                 struct iw_request_info *info,
6800                                 union iwreq_data *wrqu, char *extra)
6801 {
6802         struct ipw_priv *priv = ieee80211_priv(dev);
6803         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6804
6805         if (hwcrypto) {
6806                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6807                         /* IPW HW can't build TKIP MIC,
6808                            host decryption still needed */
6809                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6810                                 priv->ieee->host_mc_decrypt = 1;
6811                         else {
6812                                 priv->ieee->host_encrypt = 0;
6813                                 priv->ieee->host_encrypt_msdu = 1;
6814                                 priv->ieee->host_decrypt = 1;
6815                         }
6816                 } else {
6817                         priv->ieee->host_encrypt = 0;
6818                         priv->ieee->host_encrypt_msdu = 0;
6819                         priv->ieee->host_decrypt = 0;
6820                         priv->ieee->host_mc_decrypt = 0;
6821                 }
6822         }
6823
6824         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6825 }
6826
6827 /* SIOCGIWENCODEEXT */
6828 static int ipw_wx_get_encodeext(struct net_device *dev,
6829                                 struct iw_request_info *info,
6830                                 union iwreq_data *wrqu, char *extra)
6831 {
6832         struct ipw_priv *priv = ieee80211_priv(dev);
6833         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6834 }
6835
6836 /* SIOCSIWMLME */
6837 static int ipw_wx_set_mlme(struct net_device *dev,
6838                            struct iw_request_info *info,
6839                            union iwreq_data *wrqu, char *extra)
6840 {
6841         struct ipw_priv *priv = ieee80211_priv(dev);
6842         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6843         __le16 reason;
6844
6845         reason = cpu_to_le16(mlme->reason_code);
6846
6847         switch (mlme->cmd) {
6848         case IW_MLME_DEAUTH:
6849                 /* silently ignore */
6850                 break;
6851
6852         case IW_MLME_DISASSOC:
6853                 ipw_disassociate(priv);
6854                 break;
6855
6856         default:
6857                 return -EOPNOTSUPP;
6858         }
6859         return 0;
6860 }
6861
6862 #ifdef CONFIG_IPW2200_QOS
6863
6864 /* QoS */
6865 /*
6866 * get the modulation type of the current network or
6867 * the card current mode
6868 */
6869 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6870 {
6871         u8 mode = 0;
6872
6873         if (priv->status & STATUS_ASSOCIATED) {
6874                 unsigned long flags;
6875
6876                 spin_lock_irqsave(&priv->ieee->lock, flags);
6877                 mode = priv->assoc_network->mode;
6878                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6879         } else {
6880                 mode = priv->ieee->mode;
6881         }
6882         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6883         return mode;
6884 }
6885
6886 /*
6887 * Handle management frame beacon and probe response
6888 */
6889 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6890                                          int active_network,
6891                                          struct ieee80211_network *network)
6892 {
6893         u32 size = sizeof(struct ieee80211_qos_parameters);
6894
6895         if (network->capability & WLAN_CAPABILITY_IBSS)
6896                 network->qos_data.active = network->qos_data.supported;
6897
6898         if (network->flags & NETWORK_HAS_QOS_MASK) {
6899                 if (active_network &&
6900                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6901                         network->qos_data.active = network->qos_data.supported;
6902
6903                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6904                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6905                     (network->qos_data.old_param_count !=
6906                      network->qos_data.param_count)) {
6907                         network->qos_data.old_param_count =
6908                             network->qos_data.param_count;
6909                         schedule_work(&priv->qos_activate);
6910                         IPW_DEBUG_QOS("QoS parameters change call "
6911                                       "qos_activate\n");
6912                 }
6913         } else {
6914                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6915                         memcpy(&network->qos_data.parameters,
6916                                &def_parameters_CCK, size);
6917                 else
6918                         memcpy(&network->qos_data.parameters,
6919                                &def_parameters_OFDM, size);
6920
6921                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6922                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6923                         schedule_work(&priv->qos_activate);
6924                 }
6925
6926                 network->qos_data.active = 0;
6927                 network->qos_data.supported = 0;
6928         }
6929         if ((priv->status & STATUS_ASSOCIATED) &&
6930             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6931                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6932                         if (network->capability & WLAN_CAPABILITY_IBSS)
6933                                 if ((network->ssid_len ==
6934                                      priv->assoc_network->ssid_len) &&
6935                                     !memcmp(network->ssid,
6936                                             priv->assoc_network->ssid,
6937                                             network->ssid_len)) {
6938                                         queue_work(priv->workqueue,
6939                                                    &priv->merge_networks);
6940                                 }
6941         }
6942
6943         return 0;
6944 }
6945
6946 /*
6947 * This function set up the firmware to support QoS. It sends
6948 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6949 */
6950 static int ipw_qos_activate(struct ipw_priv *priv,
6951                             struct ieee80211_qos_data *qos_network_data)
6952 {
6953         int err;
6954         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6955         struct ieee80211_qos_parameters *active_one = NULL;
6956         u32 size = sizeof(struct ieee80211_qos_parameters);
6957         u32 burst_duration;
6958         int i;
6959         u8 type;
6960
6961         type = ipw_qos_current_mode(priv);
6962
6963         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6964         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6965         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6966         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6967
6968         if (qos_network_data == NULL) {
6969                 if (type == IEEE_B) {
6970                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6971                         active_one = &def_parameters_CCK;
6972                 } else
6973                         active_one = &def_parameters_OFDM;
6974
6975                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6976                 burst_duration = ipw_qos_get_burst_duration(priv);
6977                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6978                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6979                             cpu_to_le16(burst_duration);
6980         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6981                 if (type == IEEE_B) {
6982                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6983                                       type);
6984                         if (priv->qos_data.qos_enable == 0)
6985                                 active_one = &def_parameters_CCK;
6986                         else
6987                                 active_one = priv->qos_data.def_qos_parm_CCK;
6988                 } else {
6989                         if (priv->qos_data.qos_enable == 0)
6990                                 active_one = &def_parameters_OFDM;
6991                         else
6992                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6993                 }
6994                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6995         } else {
6996                 unsigned long flags;
6997                 int active;
6998
6999                 spin_lock_irqsave(&priv->ieee->lock, flags);
7000                 active_one = &(qos_network_data->parameters);
7001                 qos_network_data->old_param_count =
7002                     qos_network_data->param_count;
7003                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7004                 active = qos_network_data->supported;
7005                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7006
7007                 if (active == 0) {
7008                         burst_duration = ipw_qos_get_burst_duration(priv);
7009                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7010                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7011                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7012                 }
7013         }
7014
7015         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7016         err = ipw_send_qos_params_command(priv,
7017                                           (struct ieee80211_qos_parameters *)
7018                                           &(qos_parameters[0]));
7019         if (err)
7020                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7021
7022         return err;
7023 }
7024
7025 /*
7026 * send IPW_CMD_WME_INFO to the firmware
7027 */
7028 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7029 {
7030         int ret = 0;
7031         struct ieee80211_qos_information_element qos_info;
7032
7033         if (priv == NULL)
7034                 return -1;
7035
7036         qos_info.elementID = QOS_ELEMENT_ID;
7037         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7038
7039         qos_info.version = QOS_VERSION_1;
7040         qos_info.ac_info = 0;
7041
7042         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7043         qos_info.qui_type = QOS_OUI_TYPE;
7044         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7045
7046         ret = ipw_send_qos_info_command(priv, &qos_info);
7047         if (ret != 0) {
7048                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7049         }
7050         return ret;
7051 }
7052
7053 /*
7054 * Set the QoS parameter with the association request structure
7055 */
7056 static int ipw_qos_association(struct ipw_priv *priv,
7057                                struct ieee80211_network *network)
7058 {
7059         int err = 0;
7060         struct ieee80211_qos_data *qos_data = NULL;
7061         struct ieee80211_qos_data ibss_data = {
7062                 .supported = 1,
7063                 .active = 1,
7064         };
7065
7066         switch (priv->ieee->iw_mode) {
7067         case IW_MODE_ADHOC:
7068                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7069
7070                 qos_data = &ibss_data;
7071                 break;
7072
7073         case IW_MODE_INFRA:
7074                 qos_data = &network->qos_data;
7075                 break;
7076
7077         default:
7078                 BUG();
7079                 break;
7080         }
7081
7082         err = ipw_qos_activate(priv, qos_data);
7083         if (err) {
7084                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7085                 return err;
7086         }
7087
7088         if (priv->qos_data.qos_enable && qos_data->supported) {
7089                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7090                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7091                 return ipw_qos_set_info_element(priv);
7092         }
7093
7094         return 0;
7095 }
7096
7097 /*
7098 * handling the beaconing responses. if we get different QoS setting
7099 * off the network from the associated setting, adjust the QoS
7100 * setting
7101 */
7102 static int ipw_qos_association_resp(struct ipw_priv *priv,
7103                                     struct ieee80211_network *network)
7104 {
7105         int ret = 0;
7106         unsigned long flags;
7107         u32 size = sizeof(struct ieee80211_qos_parameters);
7108         int set_qos_param = 0;
7109
7110         if ((priv == NULL) || (network == NULL) ||
7111             (priv->assoc_network == NULL))
7112                 return ret;
7113
7114         if (!(priv->status & STATUS_ASSOCIATED))
7115                 return ret;
7116
7117         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7118                 return ret;
7119
7120         spin_lock_irqsave(&priv->ieee->lock, flags);
7121         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7122                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7123                        sizeof(struct ieee80211_qos_data));
7124                 priv->assoc_network->qos_data.active = 1;
7125                 if ((network->qos_data.old_param_count !=
7126                      network->qos_data.param_count)) {
7127                         set_qos_param = 1;
7128                         network->qos_data.old_param_count =
7129                             network->qos_data.param_count;
7130                 }
7131
7132         } else {
7133                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7134                         memcpy(&priv->assoc_network->qos_data.parameters,
7135                                &def_parameters_CCK, size);
7136                 else
7137                         memcpy(&priv->assoc_network->qos_data.parameters,
7138                                &def_parameters_OFDM, size);
7139                 priv->assoc_network->qos_data.active = 0;
7140                 priv->assoc_network->qos_data.supported = 0;
7141                 set_qos_param = 1;
7142         }
7143
7144         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7145
7146         if (set_qos_param == 1)
7147                 schedule_work(&priv->qos_activate);
7148
7149         return ret;
7150 }
7151
7152 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7153 {
7154         u32 ret = 0;
7155
7156         if ((priv == NULL))
7157                 return 0;
7158
7159         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7160                 ret = priv->qos_data.burst_duration_CCK;
7161         else
7162                 ret = priv->qos_data.burst_duration_OFDM;
7163
7164         return ret;
7165 }
7166
7167 /*
7168 * Initialize the setting of QoS global
7169 */
7170 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7171                          int burst_enable, u32 burst_duration_CCK,
7172                          u32 burst_duration_OFDM)
7173 {
7174         priv->qos_data.qos_enable = enable;
7175
7176         if (priv->qos_data.qos_enable) {
7177                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7178                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7179                 IPW_DEBUG_QOS("QoS is enabled\n");
7180         } else {
7181                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7182                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7183                 IPW_DEBUG_QOS("QoS is not enabled\n");
7184         }
7185
7186         priv->qos_data.burst_enable = burst_enable;
7187
7188         if (burst_enable) {
7189                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7190                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7191         } else {
7192                 priv->qos_data.burst_duration_CCK = 0;
7193                 priv->qos_data.burst_duration_OFDM = 0;
7194         }
7195 }
7196
7197 /*
7198 * map the packet priority to the right TX Queue
7199 */
7200 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7201 {
7202         if (priority > 7 || !priv->qos_data.qos_enable)
7203                 priority = 0;
7204
7205         return from_priority_to_tx_queue[priority] - 1;
7206 }
7207
7208 static int ipw_is_qos_active(struct net_device *dev,
7209                              struct sk_buff *skb)
7210 {
7211         struct ipw_priv *priv = ieee80211_priv(dev);
7212         struct ieee80211_qos_data *qos_data = NULL;
7213         int active, supported;
7214         u8 *daddr = skb->data + ETH_ALEN;
7215         int unicast = !is_multicast_ether_addr(daddr);
7216
7217         if (!(priv->status & STATUS_ASSOCIATED))
7218                 return 0;
7219
7220         qos_data = &priv->assoc_network->qos_data;
7221
7222         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7223                 if (unicast == 0)
7224                         qos_data->active = 0;
7225                 else
7226                         qos_data->active = qos_data->supported;
7227         }
7228         active = qos_data->active;
7229         supported = qos_data->supported;
7230         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7231                       "unicast %d\n",
7232                       priv->qos_data.qos_enable, active, supported, unicast);
7233         if (active && priv->qos_data.qos_enable)
7234                 return 1;
7235
7236         return 0;
7237
7238 }
7239 /*
7240 * add QoS parameter to the TX command
7241 */
7242 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7243                                         u16 priority,
7244                                         struct tfd_data *tfd)
7245 {
7246         int tx_queue_id = 0;
7247
7248
7249         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7250         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7251
7252         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7253                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7254                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7255         }
7256         return 0;
7257 }
7258
7259 /*
7260 * background support to run QoS activate functionality
7261 */
7262 static void ipw_bg_qos_activate(struct work_struct *work)
7263 {
7264         struct ipw_priv *priv =
7265                 container_of(work, struct ipw_priv, qos_activate);
7266
7267         if (priv == NULL)
7268                 return;
7269
7270         mutex_lock(&priv->mutex);
7271
7272         if (priv->status & STATUS_ASSOCIATED)
7273                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7274
7275         mutex_unlock(&priv->mutex);
7276 }
7277
7278 static int ipw_handle_probe_response(struct net_device *dev,
7279                                      struct ieee80211_probe_response *resp,
7280                                      struct ieee80211_network *network)
7281 {
7282         struct ipw_priv *priv = ieee80211_priv(dev);
7283         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7284                               (network == priv->assoc_network));
7285
7286         ipw_qos_handle_probe_response(priv, active_network, network);
7287
7288         return 0;
7289 }
7290
7291 static int ipw_handle_beacon(struct net_device *dev,
7292                              struct ieee80211_beacon *resp,
7293                              struct ieee80211_network *network)
7294 {
7295         struct ipw_priv *priv = ieee80211_priv(dev);
7296         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7297                               (network == priv->assoc_network));
7298
7299         ipw_qos_handle_probe_response(priv, active_network, network);
7300
7301         return 0;
7302 }
7303
7304 static int ipw_handle_assoc_response(struct net_device *dev,
7305                                      struct ieee80211_assoc_response *resp,
7306                                      struct ieee80211_network *network)
7307 {
7308         struct ipw_priv *priv = ieee80211_priv(dev);
7309         ipw_qos_association_resp(priv, network);
7310         return 0;
7311 }
7312
7313 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7314                                        *qos_param)
7315 {
7316         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7317                                 sizeof(*qos_param) * 3, qos_param);
7318 }
7319
7320 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7321                                      *qos_param)
7322 {
7323         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7324                                 qos_param);
7325 }
7326
7327 #endif                          /* CONFIG_IPW2200_QOS */
7328
7329 static int ipw_associate_network(struct ipw_priv *priv,
7330                                  struct ieee80211_network *network,
7331                                  struct ipw_supported_rates *rates, int roaming)
7332 {
7333         int err;
7334         DECLARE_SSID_BUF(ssid);
7335
7336         if (priv->config & CFG_FIXED_RATE)
7337                 ipw_set_fixed_rate(priv, network->mode);
7338
7339         if (!(priv->config & CFG_STATIC_ESSID)) {
7340                 priv->essid_len = min(network->ssid_len,
7341                                       (u8) IW_ESSID_MAX_SIZE);
7342                 memcpy(priv->essid, network->ssid, priv->essid_len);
7343         }
7344
7345         network->last_associate = jiffies;
7346
7347         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7348         priv->assoc_request.channel = network->channel;
7349         priv->assoc_request.auth_key = 0;
7350
7351         if ((priv->capability & CAP_PRIVACY_ON) &&
7352             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7353                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7354                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7355
7356                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7357                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7358
7359         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7360                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7361                 priv->assoc_request.auth_type = AUTH_LEAP;
7362         else
7363                 priv->assoc_request.auth_type = AUTH_OPEN;
7364
7365         if (priv->ieee->wpa_ie_len) {
7366                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7367                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7368                                  priv->ieee->wpa_ie_len);
7369         }
7370
7371         /*
7372          * It is valid for our ieee device to support multiple modes, but
7373          * when it comes to associating to a given network we have to choose
7374          * just one mode.
7375          */
7376         if (network->mode & priv->ieee->mode & IEEE_A)
7377                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7378         else if (network->mode & priv->ieee->mode & IEEE_G)
7379                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7380         else if (network->mode & priv->ieee->mode & IEEE_B)
7381                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7382
7383         priv->assoc_request.capability = cpu_to_le16(network->capability);
7384         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7385             && !(priv->config & CFG_PREAMBLE_LONG)) {
7386                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7387         } else {
7388                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7389
7390                 /* Clear the short preamble if we won't be supporting it */
7391                 priv->assoc_request.capability &=
7392                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7393         }
7394
7395         /* Clear capability bits that aren't used in Ad Hoc */
7396         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7397                 priv->assoc_request.capability &=
7398                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7399
7400         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7401                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7402                         roaming ? "Rea" : "A",
7403                         print_ssid(ssid, priv->essid, priv->essid_len),
7404                         network->channel,
7405                         ipw_modes[priv->assoc_request.ieee_mode],
7406                         rates->num_rates,
7407                         (priv->assoc_request.preamble_length ==
7408                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7409                         network->capability &
7410                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7411                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7412                         priv->capability & CAP_PRIVACY_ON ?
7413                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7414                          "(open)") : "",
7415                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7416                         priv->capability & CAP_PRIVACY_ON ?
7417                         '1' + priv->ieee->sec.active_key : '.',
7418                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7419
7420         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7421         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7422             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7423                 priv->assoc_request.assoc_type = HC_IBSS_START;
7424                 priv->assoc_request.assoc_tsf_msw = 0;
7425                 priv->assoc_request.assoc_tsf_lsw = 0;
7426         } else {
7427                 if (unlikely(roaming))
7428                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7429                 else
7430                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7431                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7432                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7433         }
7434
7435         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7436
7437         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7438                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7439                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7440         } else {
7441                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7442                 priv->assoc_request.atim_window = 0;
7443         }
7444
7445         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7446
7447         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7448         if (err) {
7449                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7450                 return err;
7451         }
7452
7453         rates->ieee_mode = priv->assoc_request.ieee_mode;
7454         rates->purpose = IPW_RATE_CONNECT;
7455         ipw_send_supported_rates(priv, rates);
7456
7457         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7458                 priv->sys_config.dot11g_auto_detection = 1;
7459         else
7460                 priv->sys_config.dot11g_auto_detection = 0;
7461
7462         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7463                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7464         else
7465                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7466
7467         err = ipw_send_system_config(priv);
7468         if (err) {
7469                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7470                 return err;
7471         }
7472
7473         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7474         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7475         if (err) {
7476                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7477                 return err;
7478         }
7479
7480         /*
7481          * If preemption is enabled, it is possible for the association
7482          * to complete before we return from ipw_send_associate.  Therefore
7483          * we have to be sure and update our priviate data first.
7484          */
7485         priv->channel = network->channel;
7486         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7487         priv->status |= STATUS_ASSOCIATING;
7488         priv->status &= ~STATUS_SECURITY_UPDATED;
7489
7490         priv->assoc_network = network;
7491
7492 #ifdef CONFIG_IPW2200_QOS
7493         ipw_qos_association(priv, network);
7494 #endif
7495
7496         err = ipw_send_associate(priv, &priv->assoc_request);
7497         if (err) {
7498                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7499                 return err;
7500         }
7501
7502         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7503                   print_ssid(ssid, priv->essid, priv->essid_len),
7504                   priv->bssid);
7505
7506         return 0;
7507 }
7508
7509 static void ipw_roam(void *data)
7510 {
7511         struct ipw_priv *priv = data;
7512         struct ieee80211_network *network = NULL;
7513         struct ipw_network_match match = {
7514                 .network = priv->assoc_network
7515         };
7516
7517         /* The roaming process is as follows:
7518          *
7519          * 1.  Missed beacon threshold triggers the roaming process by
7520          *     setting the status ROAM bit and requesting a scan.
7521          * 2.  When the scan completes, it schedules the ROAM work
7522          * 3.  The ROAM work looks at all of the known networks for one that
7523          *     is a better network than the currently associated.  If none
7524          *     found, the ROAM process is over (ROAM bit cleared)
7525          * 4.  If a better network is found, a disassociation request is
7526          *     sent.
7527          * 5.  When the disassociation completes, the roam work is again
7528          *     scheduled.  The second time through, the driver is no longer
7529          *     associated, and the newly selected network is sent an
7530          *     association request.
7531          * 6.  At this point ,the roaming process is complete and the ROAM
7532          *     status bit is cleared.
7533          */
7534
7535         /* If we are no longer associated, and the roaming bit is no longer
7536          * set, then we are not actively roaming, so just return */
7537         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7538                 return;
7539
7540         if (priv->status & STATUS_ASSOCIATED) {
7541                 /* First pass through ROAM process -- look for a better
7542                  * network */
7543                 unsigned long flags;
7544                 u8 rssi = priv->assoc_network->stats.rssi;
7545                 priv->assoc_network->stats.rssi = -128;
7546                 spin_lock_irqsave(&priv->ieee->lock, flags);
7547                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7548                         if (network != priv->assoc_network)
7549                                 ipw_best_network(priv, &match, network, 1);
7550                 }
7551                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7552                 priv->assoc_network->stats.rssi = rssi;
7553
7554                 if (match.network == priv->assoc_network) {
7555                         IPW_DEBUG_ASSOC("No better APs in this network to "
7556                                         "roam to.\n");
7557                         priv->status &= ~STATUS_ROAMING;
7558                         ipw_debug_config(priv);
7559                         return;
7560                 }
7561
7562                 ipw_send_disassociate(priv, 1);
7563                 priv->assoc_network = match.network;
7564
7565                 return;
7566         }
7567
7568         /* Second pass through ROAM process -- request association */
7569         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7570         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7571         priv->status &= ~STATUS_ROAMING;
7572 }
7573
7574 static void ipw_bg_roam(struct work_struct *work)
7575 {
7576         struct ipw_priv *priv =
7577                 container_of(work, struct ipw_priv, roam);
7578         mutex_lock(&priv->mutex);
7579         ipw_roam(priv);
7580         mutex_unlock(&priv->mutex);
7581 }
7582
7583 static int ipw_associate(void *data)
7584 {
7585         struct ipw_priv *priv = data;
7586
7587         struct ieee80211_network *network = NULL;
7588         struct ipw_network_match match = {
7589                 .network = NULL
7590         };
7591         struct ipw_supported_rates *rates;
7592         struct list_head *element;
7593         unsigned long flags;
7594         DECLARE_SSID_BUF(ssid);
7595
7596         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7597                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7598                 return 0;
7599         }
7600
7601         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7602                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7603                                 "progress)\n");
7604                 return 0;
7605         }
7606
7607         if (priv->status & STATUS_DISASSOCIATING) {
7608                 IPW_DEBUG_ASSOC("Not attempting association (in "
7609                                 "disassociating)\n ");
7610                 queue_work(priv->workqueue, &priv->associate);
7611                 return 0;
7612         }
7613
7614         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7615                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7616                                 "initialized)\n");
7617                 return 0;
7618         }
7619
7620         if (!(priv->config & CFG_ASSOCIATE) &&
7621             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7622                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7623                 return 0;
7624         }
7625
7626         /* Protect our use of the network_list */
7627         spin_lock_irqsave(&priv->ieee->lock, flags);
7628         list_for_each_entry(network, &priv->ieee->network_list, list)
7629             ipw_best_network(priv, &match, network, 0);
7630
7631         network = match.network;
7632         rates = &match.rates;
7633
7634         if (network == NULL &&
7635             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7636             priv->config & CFG_ADHOC_CREATE &&
7637             priv->config & CFG_STATIC_ESSID &&
7638             priv->config & CFG_STATIC_CHANNEL) {
7639                 /* Use oldest network if the free list is empty */
7640                 if (list_empty(&priv->ieee->network_free_list)) {
7641                         struct ieee80211_network *oldest = NULL;
7642                         struct ieee80211_network *target;
7643
7644                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7645                                 if ((oldest == NULL) ||
7646                                     (target->last_scanned < oldest->last_scanned))
7647                                         oldest = target;
7648                         }
7649
7650                         /* If there are no more slots, expire the oldest */
7651                         list_del(&oldest->list);
7652                         target = oldest;
7653                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7654                                         "network list.\n",
7655                                         print_ssid(ssid, target->ssid,
7656                                                    target->ssid_len),
7657                                         target->bssid);
7658                         list_add_tail(&target->list,
7659                                       &priv->ieee->network_free_list);
7660                 }
7661
7662                 element = priv->ieee->network_free_list.next;
7663                 network = list_entry(element, struct ieee80211_network, list);
7664                 ipw_adhoc_create(priv, network);
7665                 rates = &priv->rates;
7666                 list_del(element);
7667                 list_add_tail(&network->list, &priv->ieee->network_list);
7668         }
7669         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7670
7671         /* If we reached the end of the list, then we don't have any valid
7672          * matching APs */
7673         if (!network) {
7674                 ipw_debug_config(priv);
7675
7676                 if (!(priv->status & STATUS_SCANNING)) {
7677                         if (!(priv->config & CFG_SPEED_SCAN))
7678                                 queue_delayed_work(priv->workqueue,
7679                                                    &priv->request_scan,
7680                                                    SCAN_INTERVAL);
7681                         else
7682                                 queue_delayed_work(priv->workqueue,
7683                                                    &priv->request_scan, 0);
7684                 }
7685
7686                 return 0;
7687         }
7688
7689         ipw_associate_network(priv, network, rates, 0);
7690
7691         return 1;
7692 }
7693
7694 static void ipw_bg_associate(struct work_struct *work)
7695 {
7696         struct ipw_priv *priv =
7697                 container_of(work, struct ipw_priv, associate);
7698         mutex_lock(&priv->mutex);
7699         ipw_associate(priv);
7700         mutex_unlock(&priv->mutex);
7701 }
7702
7703 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7704                                       struct sk_buff *skb)
7705 {
7706         struct ieee80211_hdr *hdr;
7707         u16 fc;
7708
7709         hdr = (struct ieee80211_hdr *)skb->data;
7710         fc = le16_to_cpu(hdr->frame_control);
7711         if (!(fc & IEEE80211_FCTL_PROTECTED))
7712                 return;
7713
7714         fc &= ~IEEE80211_FCTL_PROTECTED;
7715         hdr->frame_control = cpu_to_le16(fc);
7716         switch (priv->ieee->sec.level) {
7717         case SEC_LEVEL_3:
7718                 /* Remove CCMP HDR */
7719                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7720                         skb->data + IEEE80211_3ADDR_LEN + 8,
7721                         skb->len - IEEE80211_3ADDR_LEN - 8);
7722                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7723                 break;
7724         case SEC_LEVEL_2:
7725                 break;
7726         case SEC_LEVEL_1:
7727                 /* Remove IV */
7728                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7729                         skb->data + IEEE80211_3ADDR_LEN + 4,
7730                         skb->len - IEEE80211_3ADDR_LEN - 4);
7731                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7732                 break;
7733         case SEC_LEVEL_0:
7734                 break;
7735         default:
7736                 printk(KERN_ERR "Unknow security level %d\n",
7737                        priv->ieee->sec.level);
7738                 break;
7739         }
7740 }
7741
7742 static void ipw_handle_data_packet(struct ipw_priv *priv,
7743                                    struct ipw_rx_mem_buffer *rxb,
7744                                    struct ieee80211_rx_stats *stats)
7745 {
7746         struct net_device *dev = priv->net_dev;
7747         struct ieee80211_hdr_4addr *hdr;
7748         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7749
7750         /* We received data from the HW, so stop the watchdog */
7751         dev->trans_start = jiffies;
7752
7753         /* We only process data packets if the
7754          * interface is open */
7755         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7756                      skb_tailroom(rxb->skb))) {
7757                 dev->stats.rx_errors++;
7758                 priv->wstats.discard.misc++;
7759                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7760                 return;
7761         } else if (unlikely(!netif_running(priv->net_dev))) {
7762                 dev->stats.rx_dropped++;
7763                 priv->wstats.discard.misc++;
7764                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7765                 return;
7766         }
7767
7768         /* Advance skb->data to the start of the actual payload */
7769         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7770
7771         /* Set the size of the skb to the size of the frame */
7772         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7773
7774         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7775
7776         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7777         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7778         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7779             (is_multicast_ether_addr(hdr->addr1) ?
7780              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7781                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7782
7783         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7784                 dev->stats.rx_errors++;
7785         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7786                 rxb->skb = NULL;
7787                 __ipw_led_activity_on(priv);
7788         }
7789 }
7790
7791 #ifdef CONFIG_IPW2200_RADIOTAP
7792 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7793                                            struct ipw_rx_mem_buffer *rxb,
7794                                            struct ieee80211_rx_stats *stats)
7795 {
7796         struct net_device *dev = priv->net_dev;
7797         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7798         struct ipw_rx_frame *frame = &pkt->u.frame;
7799
7800         /* initial pull of some data */
7801         u16 received_channel = frame->received_channel;
7802         u8 antennaAndPhy = frame->antennaAndPhy;
7803         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7804         u16 pktrate = frame->rate;
7805
7806         /* Magic struct that slots into the radiotap header -- no reason
7807          * to build this manually element by element, we can write it much
7808          * more efficiently than we can parse it. ORDER MATTERS HERE */
7809         struct ipw_rt_hdr *ipw_rt;
7810
7811         short len = le16_to_cpu(pkt->u.frame.length);
7812
7813         /* We received data from the HW, so stop the watchdog */
7814         dev->trans_start = jiffies;
7815
7816         /* We only process data packets if the
7817          * interface is open */
7818         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7819                      skb_tailroom(rxb->skb))) {
7820                 dev->stats.rx_errors++;
7821                 priv->wstats.discard.misc++;
7822                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7823                 return;
7824         } else if (unlikely(!netif_running(priv->net_dev))) {
7825                 dev->stats.rx_dropped++;
7826                 priv->wstats.discard.misc++;
7827                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7828                 return;
7829         }
7830
7831         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7832          * that now */
7833         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7834                 /* FIXME: Should alloc bigger skb instead */
7835                 dev->stats.rx_dropped++;
7836                 priv->wstats.discard.misc++;
7837                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7838                 return;
7839         }
7840
7841         /* copy the frame itself */
7842         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7843                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7844
7845         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7846
7847         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7848         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7849         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7850
7851         /* Big bitfield of all the fields we provide in radiotap */
7852         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7853              (1 << IEEE80211_RADIOTAP_TSFT) |
7854              (1 << IEEE80211_RADIOTAP_FLAGS) |
7855              (1 << IEEE80211_RADIOTAP_RATE) |
7856              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7857              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7858              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7859              (1 << IEEE80211_RADIOTAP_ANTENNA));
7860
7861         /* Zero the flags, we'll add to them as we go */
7862         ipw_rt->rt_flags = 0;
7863         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7864                                frame->parent_tsf[2] << 16 |
7865                                frame->parent_tsf[1] << 8  |
7866                                frame->parent_tsf[0]);
7867
7868         /* Convert signal to DBM */
7869         ipw_rt->rt_dbmsignal = antsignal;
7870         ipw_rt->rt_dbmnoise = frame->noise;
7871
7872         /* Convert the channel data and set the flags */
7873         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7874         if (received_channel > 14) {    /* 802.11a */
7875                 ipw_rt->rt_chbitmask =
7876                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7877         } else if (antennaAndPhy & 32) {        /* 802.11b */
7878                 ipw_rt->rt_chbitmask =
7879                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7880         } else {                /* 802.11g */
7881                 ipw_rt->rt_chbitmask =
7882                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7883         }
7884
7885         /* set the rate in multiples of 500k/s */
7886         switch (pktrate) {
7887         case IPW_TX_RATE_1MB:
7888                 ipw_rt->rt_rate = 2;
7889                 break;
7890         case IPW_TX_RATE_2MB:
7891                 ipw_rt->rt_rate = 4;
7892                 break;
7893         case IPW_TX_RATE_5MB:
7894                 ipw_rt->rt_rate = 10;
7895                 break;
7896         case IPW_TX_RATE_6MB:
7897                 ipw_rt->rt_rate = 12;
7898                 break;
7899         case IPW_TX_RATE_9MB:
7900                 ipw_rt->rt_rate = 18;
7901                 break;
7902         case IPW_TX_RATE_11MB:
7903                 ipw_rt->rt_rate = 22;
7904                 break;
7905         case IPW_TX_RATE_12MB:
7906                 ipw_rt->rt_rate = 24;
7907                 break;
7908         case IPW_TX_RATE_18MB:
7909                 ipw_rt->rt_rate = 36;
7910                 break;
7911         case IPW_TX_RATE_24MB:
7912                 ipw_rt->rt_rate = 48;
7913                 break;
7914         case IPW_TX_RATE_36MB:
7915                 ipw_rt->rt_rate = 72;
7916                 break;
7917         case IPW_TX_RATE_48MB:
7918                 ipw_rt->rt_rate = 96;
7919                 break;
7920         case IPW_TX_RATE_54MB:
7921                 ipw_rt->rt_rate = 108;
7922                 break;
7923         default:
7924                 ipw_rt->rt_rate = 0;
7925                 break;
7926         }
7927
7928         /* antenna number */
7929         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7930
7931         /* set the preamble flag if we have it */
7932         if ((antennaAndPhy & 64))
7933                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7934
7935         /* Set the size of the skb to the size of the frame */
7936         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7937
7938         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7939
7940         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7941                 dev->stats.rx_errors++;
7942         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7943                 rxb->skb = NULL;
7944                 /* no LED during capture */
7945         }
7946 }
7947 #endif
7948
7949 #ifdef CONFIG_IPW2200_PROMISCUOUS
7950 #define ieee80211_is_probe_response(fc) \
7951    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7952     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7953
7954 #define ieee80211_is_management(fc) \
7955    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7956
7957 #define ieee80211_is_control(fc) \
7958    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7959
7960 #define ieee80211_is_data(fc) \
7961    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7962
7963 #define ieee80211_is_assoc_request(fc) \
7964    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7965
7966 #define ieee80211_is_reassoc_request(fc) \
7967    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7968
7969 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7970                                       struct ipw_rx_mem_buffer *rxb,
7971                                       struct ieee80211_rx_stats *stats)
7972 {
7973         struct net_device *dev = priv->prom_net_dev;
7974         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7975         struct ipw_rx_frame *frame = &pkt->u.frame;
7976         struct ipw_rt_hdr *ipw_rt;
7977
7978         /* First cache any information we need before we overwrite
7979          * the information provided in the skb from the hardware */
7980         struct ieee80211_hdr *hdr;
7981         u16 channel = frame->received_channel;
7982         u8 phy_flags = frame->antennaAndPhy;
7983         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7984         s8 noise = frame->noise;
7985         u8 rate = frame->rate;
7986         short len = le16_to_cpu(pkt->u.frame.length);
7987         struct sk_buff *skb;
7988         int hdr_only = 0;
7989         u16 filter = priv->prom_priv->filter;
7990
7991         /* If the filter is set to not include Rx frames then return */
7992         if (filter & IPW_PROM_NO_RX)
7993                 return;
7994
7995         /* We received data from the HW, so stop the watchdog */
7996         dev->trans_start = jiffies;
7997
7998         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7999                 dev->stats.rx_errors++;
8000                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8001                 return;
8002         }
8003
8004         /* We only process data packets if the interface is open */
8005         if (unlikely(!netif_running(dev))) {
8006                 dev->stats.rx_dropped++;
8007                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8008                 return;
8009         }
8010
8011         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8012          * that now */
8013         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8014                 /* FIXME: Should alloc bigger skb instead */
8015                 dev->stats.rx_dropped++;
8016                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8017                 return;
8018         }
8019
8020         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8021         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
8022                 if (filter & IPW_PROM_NO_MGMT)
8023                         return;
8024                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8025                         hdr_only = 1;
8026         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
8027                 if (filter & IPW_PROM_NO_CTL)
8028                         return;
8029                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8030                         hdr_only = 1;
8031         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8032                 if (filter & IPW_PROM_NO_DATA)
8033                         return;
8034                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8035                         hdr_only = 1;
8036         }
8037
8038         /* Copy the SKB since this is for the promiscuous side */
8039         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8040         if (skb == NULL) {
8041                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8042                 return;
8043         }
8044
8045         /* copy the frame data to write after where the radiotap header goes */
8046         ipw_rt = (void *)skb->data;
8047
8048         if (hdr_only)
8049                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8050
8051         memcpy(ipw_rt->payload, hdr, len);
8052
8053         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8054         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8055         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8056
8057         /* Set the size of the skb to the size of the frame */
8058         skb_put(skb, sizeof(*ipw_rt) + len);
8059
8060         /* Big bitfield of all the fields we provide in radiotap */
8061         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8062              (1 << IEEE80211_RADIOTAP_TSFT) |
8063              (1 << IEEE80211_RADIOTAP_FLAGS) |
8064              (1 << IEEE80211_RADIOTAP_RATE) |
8065              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8066              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8067              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8068              (1 << IEEE80211_RADIOTAP_ANTENNA));
8069
8070         /* Zero the flags, we'll add to them as we go */
8071         ipw_rt->rt_flags = 0;
8072         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8073                                frame->parent_tsf[2] << 16 |
8074                                frame->parent_tsf[1] << 8  |
8075                                frame->parent_tsf[0]);
8076
8077         /* Convert to DBM */
8078         ipw_rt->rt_dbmsignal = signal;
8079         ipw_rt->rt_dbmnoise = noise;
8080
8081         /* Convert the channel data and set the flags */
8082         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8083         if (channel > 14) {     /* 802.11a */
8084                 ipw_rt->rt_chbitmask =
8085                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8086         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8087                 ipw_rt->rt_chbitmask =
8088                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8089         } else {                /* 802.11g */
8090                 ipw_rt->rt_chbitmask =
8091                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8092         }
8093
8094         /* set the rate in multiples of 500k/s */
8095         switch (rate) {
8096         case IPW_TX_RATE_1MB:
8097                 ipw_rt->rt_rate = 2;
8098                 break;
8099         case IPW_TX_RATE_2MB:
8100                 ipw_rt->rt_rate = 4;
8101                 break;
8102         case IPW_TX_RATE_5MB:
8103                 ipw_rt->rt_rate = 10;
8104                 break;
8105         case IPW_TX_RATE_6MB:
8106                 ipw_rt->rt_rate = 12;
8107                 break;
8108         case IPW_TX_RATE_9MB:
8109                 ipw_rt->rt_rate = 18;
8110                 break;
8111         case IPW_TX_RATE_11MB:
8112                 ipw_rt->rt_rate = 22;
8113                 break;
8114         case IPW_TX_RATE_12MB:
8115                 ipw_rt->rt_rate = 24;
8116                 break;
8117         case IPW_TX_RATE_18MB:
8118                 ipw_rt->rt_rate = 36;
8119                 break;
8120         case IPW_TX_RATE_24MB:
8121                 ipw_rt->rt_rate = 48;
8122                 break;
8123         case IPW_TX_RATE_36MB:
8124                 ipw_rt->rt_rate = 72;
8125                 break;
8126         case IPW_TX_RATE_48MB:
8127                 ipw_rt->rt_rate = 96;
8128                 break;
8129         case IPW_TX_RATE_54MB:
8130                 ipw_rt->rt_rate = 108;
8131                 break;
8132         default:
8133                 ipw_rt->rt_rate = 0;
8134                 break;
8135         }
8136
8137         /* antenna number */
8138         ipw_rt->rt_antenna = (phy_flags & 3);
8139
8140         /* set the preamble flag if we have it */
8141         if (phy_flags & (1 << 6))
8142                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8143
8144         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8145
8146         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8147                 dev->stats.rx_errors++;
8148                 dev_kfree_skb_any(skb);
8149         }
8150 }
8151 #endif
8152
8153 static int is_network_packet(struct ipw_priv *priv,
8154                                     struct ieee80211_hdr_4addr *header)
8155 {
8156         /* Filter incoming packets to determine if they are targetted toward
8157          * this network, discarding packets coming from ourselves */
8158         switch (priv->ieee->iw_mode) {
8159         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8160                 /* packets from our adapter are dropped (echo) */
8161                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8162                         return 0;
8163
8164                 /* {broad,multi}cast packets to our BSSID go through */
8165                 if (is_multicast_ether_addr(header->addr1))
8166                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8167
8168                 /* packets to our adapter go through */
8169                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8170                                ETH_ALEN);
8171
8172         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8173                 /* packets from our adapter are dropped (echo) */
8174                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8175                         return 0;
8176
8177                 /* {broad,multi}cast packets to our BSS go through */
8178                 if (is_multicast_ether_addr(header->addr1))
8179                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8180
8181                 /* packets to our adapter go through */
8182                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8183                                ETH_ALEN);
8184         }
8185
8186         return 1;
8187 }
8188
8189 #define IPW_PACKET_RETRY_TIME HZ
8190
8191 static  int is_duplicate_packet(struct ipw_priv *priv,
8192                                       struct ieee80211_hdr_4addr *header)
8193 {
8194         u16 sc = le16_to_cpu(header->seq_ctl);
8195         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8196         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8197         u16 *last_seq, *last_frag;
8198         unsigned long *last_time;
8199
8200         switch (priv->ieee->iw_mode) {
8201         case IW_MODE_ADHOC:
8202                 {
8203                         struct list_head *p;
8204                         struct ipw_ibss_seq *entry = NULL;
8205                         u8 *mac = header->addr2;
8206                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8207
8208                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8209                                 entry =
8210                                     list_entry(p, struct ipw_ibss_seq, list);
8211                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8212                                         break;
8213                         }
8214                         if (p == &priv->ibss_mac_hash[index]) {
8215                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8216                                 if (!entry) {
8217                                         IPW_ERROR
8218                                             ("Cannot malloc new mac entry\n");
8219                                         return 0;
8220                                 }
8221                                 memcpy(entry->mac, mac, ETH_ALEN);
8222                                 entry->seq_num = seq;
8223                                 entry->frag_num = frag;
8224                                 entry->packet_time = jiffies;
8225                                 list_add(&entry->list,
8226                                          &priv->ibss_mac_hash[index]);
8227                                 return 0;
8228                         }
8229                         last_seq = &entry->seq_num;
8230                         last_frag = &entry->frag_num;
8231                         last_time = &entry->packet_time;
8232                         break;
8233                 }
8234         case IW_MODE_INFRA:
8235                 last_seq = &priv->last_seq_num;
8236                 last_frag = &priv->last_frag_num;
8237                 last_time = &priv->last_packet_time;
8238                 break;
8239         default:
8240                 return 0;
8241         }
8242         if ((*last_seq == seq) &&
8243             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8244                 if (*last_frag == frag)
8245                         goto drop;
8246                 if (*last_frag + 1 != frag)
8247                         /* out-of-order fragment */
8248                         goto drop;
8249         } else
8250                 *last_seq = seq;
8251
8252         *last_frag = frag;
8253         *last_time = jiffies;
8254         return 0;
8255
8256       drop:
8257         /* Comment this line now since we observed the card receives
8258          * duplicate packets but the FCTL_RETRY bit is not set in the
8259          * IBSS mode with fragmentation enabled.
8260          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8261         return 1;
8262 }
8263
8264 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8265                                    struct ipw_rx_mem_buffer *rxb,
8266                                    struct ieee80211_rx_stats *stats)
8267 {
8268         struct sk_buff *skb = rxb->skb;
8269         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8270         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8271             (skb->data + IPW_RX_FRAME_SIZE);
8272
8273         ieee80211_rx_mgt(priv->ieee, header, stats);
8274
8275         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8276             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8277               IEEE80211_STYPE_PROBE_RESP) ||
8278              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8279               IEEE80211_STYPE_BEACON))) {
8280                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8281                         ipw_add_station(priv, header->addr2);
8282         }
8283
8284         if (priv->config & CFG_NET_STATS) {
8285                 IPW_DEBUG_HC("sending stat packet\n");
8286
8287                 /* Set the size of the skb to the size of the full
8288                  * ipw header and 802.11 frame */
8289                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8290                         IPW_RX_FRAME_SIZE);
8291
8292                 /* Advance past the ipw packet header to the 802.11 frame */
8293                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8294
8295                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8296                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8297
8298                 skb->dev = priv->ieee->dev;
8299
8300                 /* Point raw at the ieee80211_stats */
8301                 skb_reset_mac_header(skb);
8302
8303                 skb->pkt_type = PACKET_OTHERHOST;
8304                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8305                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8306                 netif_rx(skb);
8307                 rxb->skb = NULL;
8308         }
8309 }
8310
8311 /*
8312  * Main entry function for recieving a packet with 80211 headers.  This
8313  * should be called when ever the FW has notified us that there is a new
8314  * skb in the recieve queue.
8315  */
8316 static void ipw_rx(struct ipw_priv *priv)
8317 {
8318         struct ipw_rx_mem_buffer *rxb;
8319         struct ipw_rx_packet *pkt;
8320         struct ieee80211_hdr_4addr *header;
8321         u32 r, w, i;
8322         u8 network_packet;
8323         u8 fill_rx = 0;
8324
8325         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8326         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8327         i = priv->rxq->read;
8328
8329         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8330                 fill_rx = 1;
8331
8332         while (i != r) {
8333                 rxb = priv->rxq->queue[i];
8334                 if (unlikely(rxb == NULL)) {
8335                         printk(KERN_CRIT "Queue not allocated!\n");
8336                         break;
8337                 }
8338                 priv->rxq->queue[i] = NULL;
8339
8340                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8341                                             IPW_RX_BUF_SIZE,
8342                                             PCI_DMA_FROMDEVICE);
8343
8344                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8345                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8346                              pkt->header.message_type,
8347                              pkt->header.rx_seq_num, pkt->header.control_bits);
8348
8349                 switch (pkt->header.message_type) {
8350                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8351                                 struct ieee80211_rx_stats stats = {
8352                                         .rssi = pkt->u.frame.rssi_dbm -
8353                                             IPW_RSSI_TO_DBM,
8354                                         .signal =
8355                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8356                                             IPW_RSSI_TO_DBM + 0x100,
8357                                         .noise =
8358                                             le16_to_cpu(pkt->u.frame.noise),
8359                                         .rate = pkt->u.frame.rate,
8360                                         .mac_time = jiffies,
8361                                         .received_channel =
8362                                             pkt->u.frame.received_channel,
8363                                         .freq =
8364                                             (pkt->u.frame.
8365                                              control & (1 << 0)) ?
8366                                             IEEE80211_24GHZ_BAND :
8367                                             IEEE80211_52GHZ_BAND,
8368                                         .len = le16_to_cpu(pkt->u.frame.length),
8369                                 };
8370
8371                                 if (stats.rssi != 0)
8372                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8373                                 if (stats.signal != 0)
8374                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8375                                 if (stats.noise != 0)
8376                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8377                                 if (stats.rate != 0)
8378                                         stats.mask |= IEEE80211_STATMASK_RATE;
8379
8380                                 priv->rx_packets++;
8381
8382 #ifdef CONFIG_IPW2200_PROMISCUOUS
8383         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8384                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8385 #endif
8386
8387 #ifdef CONFIG_IPW2200_MONITOR
8388                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8389 #ifdef CONFIG_IPW2200_RADIOTAP
8390
8391                 ipw_handle_data_packet_monitor(priv,
8392                                                rxb,
8393                                                &stats);
8394 #else
8395                 ipw_handle_data_packet(priv, rxb,
8396                                        &stats);
8397 #endif
8398                                         break;
8399                                 }
8400 #endif
8401
8402                                 header =
8403                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8404                                                                    data +
8405                                                                    IPW_RX_FRAME_SIZE);
8406                                 /* TODO: Check Ad-Hoc dest/source and make sure
8407                                  * that we are actually parsing these packets
8408                                  * correctly -- we should probably use the
8409                                  * frame control of the packet and disregard
8410                                  * the current iw_mode */
8411
8412                                 network_packet =
8413                                     is_network_packet(priv, header);
8414                                 if (network_packet && priv->assoc_network) {
8415                                         priv->assoc_network->stats.rssi =
8416                                             stats.rssi;
8417                                         priv->exp_avg_rssi =
8418                                             exponential_average(priv->exp_avg_rssi,
8419                                             stats.rssi, DEPTH_RSSI);
8420                                 }
8421
8422                                 IPW_DEBUG_RX("Frame: len=%u\n",
8423                                              le16_to_cpu(pkt->u.frame.length));
8424
8425                                 if (le16_to_cpu(pkt->u.frame.length) <
8426                                     ieee80211_get_hdrlen(le16_to_cpu(
8427                                                     header->frame_ctl))) {
8428                                         IPW_DEBUG_DROP
8429                                             ("Received packet is too small. "
8430                                              "Dropping.\n");
8431                                         priv->net_dev->stats.rx_errors++;
8432                                         priv->wstats.discard.misc++;
8433                                         break;
8434                                 }
8435
8436                                 switch (WLAN_FC_GET_TYPE
8437                                         (le16_to_cpu(header->frame_ctl))) {
8438
8439                                 case IEEE80211_FTYPE_MGMT:
8440                                         ipw_handle_mgmt_packet(priv, rxb,
8441                                                                &stats);
8442                                         break;
8443
8444                                 case IEEE80211_FTYPE_CTL:
8445                                         break;
8446
8447                                 case IEEE80211_FTYPE_DATA:
8448                                         if (unlikely(!network_packet ||
8449                                                      is_duplicate_packet(priv,
8450                                                                          header)))
8451                                         {
8452                                                 IPW_DEBUG_DROP("Dropping: "
8453                                                                "%pM, "
8454                                                                "%pM, "
8455                                                                "%pM\n",
8456                                                                header->addr1,
8457                                                                header->addr2,
8458                                                                header->addr3);
8459                                                 break;
8460                                         }
8461
8462                                         ipw_handle_data_packet(priv, rxb,
8463                                                                &stats);
8464
8465                                         break;
8466                                 }
8467                                 break;
8468                         }
8469
8470                 case RX_HOST_NOTIFICATION_TYPE:{
8471                                 IPW_DEBUG_RX
8472                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8473                                      pkt->u.notification.subtype,
8474                                      pkt->u.notification.flags,
8475                                      le16_to_cpu(pkt->u.notification.size));
8476                                 ipw_rx_notification(priv, &pkt->u.notification);
8477                                 break;
8478                         }
8479
8480                 default:
8481                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8482                                      pkt->header.message_type);
8483                         break;
8484                 }
8485
8486                 /* For now we just don't re-use anything.  We can tweak this
8487                  * later to try and re-use notification packets and SKBs that
8488                  * fail to Rx correctly */
8489                 if (rxb->skb != NULL) {
8490                         dev_kfree_skb_any(rxb->skb);
8491                         rxb->skb = NULL;
8492                 }
8493
8494                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8495                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8496                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8497
8498                 i = (i + 1) % RX_QUEUE_SIZE;
8499
8500                 /* If there are a lot of unsued frames, restock the Rx queue
8501                  * so the ucode won't assert */
8502                 if (fill_rx) {
8503                         priv->rxq->read = i;
8504                         ipw_rx_queue_replenish(priv);
8505                 }
8506         }
8507
8508         /* Backtrack one entry */
8509         priv->rxq->read = i;
8510         ipw_rx_queue_restock(priv);
8511 }
8512
8513 #define DEFAULT_RTS_THRESHOLD     2304U
8514 #define MIN_RTS_THRESHOLD         1U
8515 #define MAX_RTS_THRESHOLD         2304U
8516 #define DEFAULT_BEACON_INTERVAL   100U
8517 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8518 #define DEFAULT_LONG_RETRY_LIMIT  4U
8519
8520 /**
8521  * ipw_sw_reset
8522  * @option: options to control different reset behaviour
8523  *          0 = reset everything except the 'disable' module_param
8524  *          1 = reset everything and print out driver info (for probe only)
8525  *          2 = reset everything
8526  */
8527 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8528 {
8529         int band, modulation;
8530         int old_mode = priv->ieee->iw_mode;
8531
8532         /* Initialize module parameter values here */
8533         priv->config = 0;
8534
8535         /* We default to disabling the LED code as right now it causes
8536          * too many systems to lock up... */
8537         if (!led)
8538                 priv->config |= CFG_NO_LED;
8539
8540         if (associate)
8541                 priv->config |= CFG_ASSOCIATE;
8542         else
8543                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8544
8545         if (auto_create)
8546                 priv->config |= CFG_ADHOC_CREATE;
8547         else
8548                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8549
8550         priv->config &= ~CFG_STATIC_ESSID;
8551         priv->essid_len = 0;
8552         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8553
8554         if (disable && option) {
8555                 priv->status |= STATUS_RF_KILL_SW;
8556                 IPW_DEBUG_INFO("Radio disabled.\n");
8557         }
8558
8559         if (channel != 0) {
8560                 priv->config |= CFG_STATIC_CHANNEL;
8561                 priv->channel = channel;
8562                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8563                 /* TODO: Validate that provided channel is in range */
8564         }
8565 #ifdef CONFIG_IPW2200_QOS
8566         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8567                      burst_duration_CCK, burst_duration_OFDM);
8568 #endif                          /* CONFIG_IPW2200_QOS */
8569
8570         switch (mode) {
8571         case 1:
8572                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8573                 priv->net_dev->type = ARPHRD_ETHER;
8574
8575                 break;
8576 #ifdef CONFIG_IPW2200_MONITOR
8577         case 2:
8578                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8579 #ifdef CONFIG_IPW2200_RADIOTAP
8580                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8581 #else
8582                 priv->net_dev->type = ARPHRD_IEEE80211;
8583 #endif
8584                 break;
8585 #endif
8586         default:
8587         case 0:
8588                 priv->net_dev->type = ARPHRD_ETHER;
8589                 priv->ieee->iw_mode = IW_MODE_INFRA;
8590                 break;
8591         }
8592
8593         if (hwcrypto) {
8594                 priv->ieee->host_encrypt = 0;
8595                 priv->ieee->host_encrypt_msdu = 0;
8596                 priv->ieee->host_decrypt = 0;
8597                 priv->ieee->host_mc_decrypt = 0;
8598         }
8599         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8600
8601         /* IPW2200/2915 is abled to do hardware fragmentation. */
8602         priv->ieee->host_open_frag = 0;
8603
8604         if ((priv->pci_dev->device == 0x4223) ||
8605             (priv->pci_dev->device == 0x4224)) {
8606                 if (option == 1)
8607                         printk(KERN_INFO DRV_NAME
8608                                ": Detected Intel PRO/Wireless 2915ABG Network "
8609                                "Connection\n");
8610                 priv->ieee->abg_true = 1;
8611                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8612                 modulation = IEEE80211_OFDM_MODULATION |
8613                     IEEE80211_CCK_MODULATION;
8614                 priv->adapter = IPW_2915ABG;
8615                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8616         } else {
8617                 if (option == 1)
8618                         printk(KERN_INFO DRV_NAME
8619                                ": Detected Intel PRO/Wireless 2200BG Network "
8620                                "Connection\n");
8621
8622                 priv->ieee->abg_true = 0;
8623                 band = IEEE80211_24GHZ_BAND;
8624                 modulation = IEEE80211_OFDM_MODULATION |
8625                     IEEE80211_CCK_MODULATION;
8626                 priv->adapter = IPW_2200BG;
8627                 priv->ieee->mode = IEEE_G | IEEE_B;
8628         }
8629
8630         priv->ieee->freq_band = band;
8631         priv->ieee->modulation = modulation;
8632
8633         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8634
8635         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8636         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8637
8638         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8639         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8640         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8641
8642         /* If power management is turned on, default to AC mode */
8643         priv->power_mode = IPW_POWER_AC;
8644         priv->tx_power = IPW_TX_POWER_DEFAULT;
8645
8646         return old_mode == priv->ieee->iw_mode;
8647 }
8648
8649 /*
8650  * This file defines the Wireless Extension handlers.  It does not
8651  * define any methods of hardware manipulation and relies on the
8652  * functions defined in ipw_main to provide the HW interaction.
8653  *
8654  * The exception to this is the use of the ipw_get_ordinal()
8655  * function used to poll the hardware vs. making unecessary calls.
8656  *
8657  */
8658
8659 static int ipw_wx_get_name(struct net_device *dev,
8660                            struct iw_request_info *info,
8661                            union iwreq_data *wrqu, char *extra)
8662 {
8663         struct ipw_priv *priv = ieee80211_priv(dev);
8664         mutex_lock(&priv->mutex);
8665         if (priv->status & STATUS_RF_KILL_MASK)
8666                 strcpy(wrqu->name, "radio off");
8667         else if (!(priv->status & STATUS_ASSOCIATED))
8668                 strcpy(wrqu->name, "unassociated");
8669         else
8670                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8671                          ipw_modes[priv->assoc_request.ieee_mode]);
8672         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8673         mutex_unlock(&priv->mutex);
8674         return 0;
8675 }
8676
8677 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8678 {
8679         if (channel == 0) {
8680                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8681                 priv->config &= ~CFG_STATIC_CHANNEL;
8682                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8683                                 "parameters.\n");
8684                 ipw_associate(priv);
8685                 return 0;
8686         }
8687
8688         priv->config |= CFG_STATIC_CHANNEL;
8689
8690         if (priv->channel == channel) {
8691                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8692                                channel);
8693                 return 0;
8694         }
8695
8696         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8697         priv->channel = channel;
8698
8699 #ifdef CONFIG_IPW2200_MONITOR
8700         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8701                 int i;
8702                 if (priv->status & STATUS_SCANNING) {
8703                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8704                                        "channel change.\n");
8705                         ipw_abort_scan(priv);
8706                 }
8707
8708                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8709                         udelay(10);
8710
8711                 if (priv->status & STATUS_SCANNING)
8712                         IPW_DEBUG_SCAN("Still scanning...\n");
8713                 else
8714                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8715                                        1000 - i);
8716
8717                 return 0;
8718         }
8719 #endif                          /* CONFIG_IPW2200_MONITOR */
8720
8721         /* Network configuration changed -- force [re]association */
8722         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8723         if (!ipw_disassociate(priv))
8724                 ipw_associate(priv);
8725
8726         return 0;
8727 }
8728
8729 static int ipw_wx_set_freq(struct net_device *dev,
8730                            struct iw_request_info *info,
8731                            union iwreq_data *wrqu, char *extra)
8732 {
8733         struct ipw_priv *priv = ieee80211_priv(dev);
8734         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8735         struct iw_freq *fwrq = &wrqu->freq;
8736         int ret = 0, i;
8737         u8 channel, flags;
8738         int band;
8739
8740         if (fwrq->m == 0) {
8741                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8742                 mutex_lock(&priv->mutex);
8743                 ret = ipw_set_channel(priv, 0);
8744                 mutex_unlock(&priv->mutex);
8745                 return ret;
8746         }
8747         /* if setting by freq convert to channel */
8748         if (fwrq->e == 1) {
8749                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8750                 if (channel == 0)
8751                         return -EINVAL;
8752         } else
8753                 channel = fwrq->m;
8754
8755         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8756                 return -EINVAL;
8757
8758         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8759                 i = ieee80211_channel_to_index(priv->ieee, channel);
8760                 if (i == -1)
8761                         return -EINVAL;
8762
8763                 flags = (band == IEEE80211_24GHZ_BAND) ?
8764                     geo->bg[i].flags : geo->a[i].flags;
8765                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8766                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8767                         return -EINVAL;
8768                 }
8769         }
8770
8771         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8772         mutex_lock(&priv->mutex);
8773         ret = ipw_set_channel(priv, channel);
8774         mutex_unlock(&priv->mutex);
8775         return ret;
8776 }
8777
8778 static int ipw_wx_get_freq(struct net_device *dev,
8779                            struct iw_request_info *info,
8780                            union iwreq_data *wrqu, char *extra)
8781 {
8782         struct ipw_priv *priv = ieee80211_priv(dev);
8783
8784         wrqu->freq.e = 0;
8785
8786         /* If we are associated, trying to associate, or have a statically
8787          * configured CHANNEL then return that; otherwise return ANY */
8788         mutex_lock(&priv->mutex);
8789         if (priv->config & CFG_STATIC_CHANNEL ||
8790             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8791                 int i;
8792
8793                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8794                 BUG_ON(i == -1);
8795                 wrqu->freq.e = 1;
8796
8797                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8798                 case IEEE80211_52GHZ_BAND:
8799                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8800                         break;
8801
8802                 case IEEE80211_24GHZ_BAND:
8803                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8804                         break;
8805
8806                 default:
8807                         BUG();
8808                 }
8809         } else
8810                 wrqu->freq.m = 0;
8811
8812         mutex_unlock(&priv->mutex);
8813         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8814         return 0;
8815 }
8816
8817 static int ipw_wx_set_mode(struct net_device *dev,
8818                            struct iw_request_info *info,
8819                            union iwreq_data *wrqu, char *extra)
8820 {
8821         struct ipw_priv *priv = ieee80211_priv(dev);
8822         int err = 0;
8823
8824         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8825
8826         switch (wrqu->mode) {
8827 #ifdef CONFIG_IPW2200_MONITOR
8828         case IW_MODE_MONITOR:
8829 #endif
8830         case IW_MODE_ADHOC:
8831         case IW_MODE_INFRA:
8832                 break;
8833         case IW_MODE_AUTO:
8834                 wrqu->mode = IW_MODE_INFRA;
8835                 break;
8836         default:
8837                 return -EINVAL;
8838         }
8839         if (wrqu->mode == priv->ieee->iw_mode)
8840                 return 0;
8841
8842         mutex_lock(&priv->mutex);
8843
8844         ipw_sw_reset(priv, 0);
8845
8846 #ifdef CONFIG_IPW2200_MONITOR
8847         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8848                 priv->net_dev->type = ARPHRD_ETHER;
8849
8850         if (wrqu->mode == IW_MODE_MONITOR)
8851 #ifdef CONFIG_IPW2200_RADIOTAP
8852                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8853 #else
8854                 priv->net_dev->type = ARPHRD_IEEE80211;
8855 #endif
8856 #endif                          /* CONFIG_IPW2200_MONITOR */
8857
8858         /* Free the existing firmware and reset the fw_loaded
8859          * flag so ipw_load() will bring in the new firmware */
8860         free_firmware();
8861
8862         priv->ieee->iw_mode = wrqu->mode;
8863
8864         queue_work(priv->workqueue, &priv->adapter_restart);
8865         mutex_unlock(&priv->mutex);
8866         return err;
8867 }
8868
8869 static int ipw_wx_get_mode(struct net_device *dev,
8870                            struct iw_request_info *info,
8871                            union iwreq_data *wrqu, char *extra)
8872 {
8873         struct ipw_priv *priv = ieee80211_priv(dev);
8874         mutex_lock(&priv->mutex);
8875         wrqu->mode = priv->ieee->iw_mode;
8876         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8877         mutex_unlock(&priv->mutex);
8878         return 0;
8879 }
8880
8881 /* Values are in microsecond */
8882 static const s32 timeout_duration[] = {
8883         350000,
8884         250000,
8885         75000,
8886         37000,
8887         25000,
8888 };
8889
8890 static const s32 period_duration[] = {
8891         400000,
8892         700000,
8893         1000000,
8894         1000000,
8895         1000000
8896 };
8897
8898 static int ipw_wx_get_range(struct net_device *dev,
8899                             struct iw_request_info *info,
8900                             union iwreq_data *wrqu, char *extra)
8901 {
8902         struct ipw_priv *priv = ieee80211_priv(dev);
8903         struct iw_range *range = (struct iw_range *)extra;
8904         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8905         int i = 0, j;
8906
8907         wrqu->data.length = sizeof(*range);
8908         memset(range, 0, sizeof(*range));
8909
8910         /* 54Mbs == ~27 Mb/s real (802.11g) */
8911         range->throughput = 27 * 1000 * 1000;
8912
8913         range->max_qual.qual = 100;
8914         /* TODO: Find real max RSSI and stick here */
8915         range->max_qual.level = 0;
8916         range->max_qual.noise = 0;
8917         range->max_qual.updated = 7;    /* Updated all three */
8918
8919         range->avg_qual.qual = 70;
8920         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8921         range->avg_qual.level = 0;      /* FIXME to real average level */
8922         range->avg_qual.noise = 0;
8923         range->avg_qual.updated = 7;    /* Updated all three */
8924         mutex_lock(&priv->mutex);
8925         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8926
8927         for (i = 0; i < range->num_bitrates; i++)
8928                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8929                     500000;
8930
8931         range->max_rts = DEFAULT_RTS_THRESHOLD;
8932         range->min_frag = MIN_FRAG_THRESHOLD;
8933         range->max_frag = MAX_FRAG_THRESHOLD;
8934
8935         range->encoding_size[0] = 5;
8936         range->encoding_size[1] = 13;
8937         range->num_encoding_sizes = 2;
8938         range->max_encoding_tokens = WEP_KEYS;
8939
8940         /* Set the Wireless Extension versions */
8941         range->we_version_compiled = WIRELESS_EXT;
8942         range->we_version_source = 18;
8943
8944         i = 0;
8945         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8946                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8947                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8948                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8949                                 continue;
8950
8951                         range->freq[i].i = geo->bg[j].channel;
8952                         range->freq[i].m = geo->bg[j].freq * 100000;
8953                         range->freq[i].e = 1;
8954                         i++;
8955                 }
8956         }
8957
8958         if (priv->ieee->mode & IEEE_A) {
8959                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8960                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8961                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8962                                 continue;
8963
8964                         range->freq[i].i = geo->a[j].channel;
8965                         range->freq[i].m = geo->a[j].freq * 100000;
8966                         range->freq[i].e = 1;
8967                         i++;
8968                 }
8969         }
8970
8971         range->num_channels = i;
8972         range->num_frequency = i;
8973
8974         mutex_unlock(&priv->mutex);
8975
8976         /* Event capability (kernel + driver) */
8977         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8978                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8979                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8980                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8981         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8982
8983         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8984                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8985
8986         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8987
8988         IPW_DEBUG_WX("GET Range\n");
8989         return 0;
8990 }
8991
8992 static int ipw_wx_set_wap(struct net_device *dev,
8993                           struct iw_request_info *info,
8994                           union iwreq_data *wrqu, char *extra)
8995 {
8996         struct ipw_priv *priv = ieee80211_priv(dev);
8997
8998         static const unsigned char any[] = {
8999                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9000         };
9001         static const unsigned char off[] = {
9002                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9003         };
9004
9005         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9006                 return -EINVAL;
9007         mutex_lock(&priv->mutex);
9008         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9009             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9010                 /* we disable mandatory BSSID association */
9011                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9012                 priv->config &= ~CFG_STATIC_BSSID;
9013                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9014                                 "parameters.\n");
9015                 ipw_associate(priv);
9016                 mutex_unlock(&priv->mutex);
9017                 return 0;
9018         }
9019
9020         priv->config |= CFG_STATIC_BSSID;
9021         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9022                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9023                 mutex_unlock(&priv->mutex);
9024                 return 0;
9025         }
9026
9027         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9028                      wrqu->ap_addr.sa_data);
9029
9030         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9031
9032         /* Network configuration changed -- force [re]association */
9033         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9034         if (!ipw_disassociate(priv))
9035                 ipw_associate(priv);
9036
9037         mutex_unlock(&priv->mutex);
9038         return 0;
9039 }
9040
9041 static int ipw_wx_get_wap(struct net_device *dev,
9042                           struct iw_request_info *info,
9043                           union iwreq_data *wrqu, char *extra)
9044 {
9045         struct ipw_priv *priv = ieee80211_priv(dev);
9046
9047         /* If we are associated, trying to associate, or have a statically
9048          * configured BSSID then return that; otherwise return ANY */
9049         mutex_lock(&priv->mutex);
9050         if (priv->config & CFG_STATIC_BSSID ||
9051             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9052                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9053                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9054         } else
9055                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9056
9057         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9058                      wrqu->ap_addr.sa_data);
9059         mutex_unlock(&priv->mutex);
9060         return 0;
9061 }
9062
9063 static int ipw_wx_set_essid(struct net_device *dev,
9064                             struct iw_request_info *info,
9065                             union iwreq_data *wrqu, char *extra)
9066 {
9067         struct ipw_priv *priv = ieee80211_priv(dev);
9068         int length;
9069         DECLARE_SSID_BUF(ssid);
9070
9071         mutex_lock(&priv->mutex);
9072
9073         if (!wrqu->essid.flags)
9074         {
9075                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9076                 ipw_disassociate(priv);
9077                 priv->config &= ~CFG_STATIC_ESSID;
9078                 ipw_associate(priv);
9079                 mutex_unlock(&priv->mutex);
9080                 return 0;
9081         }
9082
9083         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9084
9085         priv->config |= CFG_STATIC_ESSID;
9086
9087         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9088             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9089                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9090                 mutex_unlock(&priv->mutex);
9091                 return 0;
9092         }
9093
9094         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9095                      print_ssid(ssid, extra, length), length);
9096
9097         priv->essid_len = length;
9098         memcpy(priv->essid, extra, priv->essid_len);
9099
9100         /* Network configuration changed -- force [re]association */
9101         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9102         if (!ipw_disassociate(priv))
9103                 ipw_associate(priv);
9104
9105         mutex_unlock(&priv->mutex);
9106         return 0;
9107 }
9108
9109 static int ipw_wx_get_essid(struct net_device *dev,
9110                             struct iw_request_info *info,
9111                             union iwreq_data *wrqu, char *extra)
9112 {
9113         struct ipw_priv *priv = ieee80211_priv(dev);
9114         DECLARE_SSID_BUF(ssid);
9115
9116         /* If we are associated, trying to associate, or have a statically
9117          * configured ESSID then return that; otherwise return ANY */
9118         mutex_lock(&priv->mutex);
9119         if (priv->config & CFG_STATIC_ESSID ||
9120             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9121                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9122                              print_ssid(ssid, priv->essid, priv->essid_len));
9123                 memcpy(extra, priv->essid, priv->essid_len);
9124                 wrqu->essid.length = priv->essid_len;
9125                 wrqu->essid.flags = 1;  /* active */
9126         } else {
9127                 IPW_DEBUG_WX("Getting essid: ANY\n");
9128                 wrqu->essid.length = 0;
9129                 wrqu->essid.flags = 0;  /* active */
9130         }
9131         mutex_unlock(&priv->mutex);
9132         return 0;
9133 }
9134
9135 static int ipw_wx_set_nick(struct net_device *dev,
9136                            struct iw_request_info *info,
9137                            union iwreq_data *wrqu, char *extra)
9138 {
9139         struct ipw_priv *priv = ieee80211_priv(dev);
9140
9141         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9142         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9143                 return -E2BIG;
9144         mutex_lock(&priv->mutex);
9145         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9146         memset(priv->nick, 0, sizeof(priv->nick));
9147         memcpy(priv->nick, extra, wrqu->data.length);
9148         IPW_DEBUG_TRACE("<<\n");
9149         mutex_unlock(&priv->mutex);
9150         return 0;
9151
9152 }
9153
9154 static int ipw_wx_get_nick(struct net_device *dev,
9155                            struct iw_request_info *info,
9156                            union iwreq_data *wrqu, char *extra)
9157 {
9158         struct ipw_priv *priv = ieee80211_priv(dev);
9159         IPW_DEBUG_WX("Getting nick\n");
9160         mutex_lock(&priv->mutex);
9161         wrqu->data.length = strlen(priv->nick);
9162         memcpy(extra, priv->nick, wrqu->data.length);
9163         wrqu->data.flags = 1;   /* active */
9164         mutex_unlock(&priv->mutex);
9165         return 0;
9166 }
9167
9168 static int ipw_wx_set_sens(struct net_device *dev,
9169                             struct iw_request_info *info,
9170                             union iwreq_data *wrqu, char *extra)
9171 {
9172         struct ipw_priv *priv = ieee80211_priv(dev);
9173         int err = 0;
9174
9175         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9176         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9177         mutex_lock(&priv->mutex);
9178
9179         if (wrqu->sens.fixed == 0)
9180         {
9181                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9182                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9183                 goto out;
9184         }
9185         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9186             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9187                 err = -EINVAL;
9188                 goto out;
9189         }
9190
9191         priv->roaming_threshold = wrqu->sens.value;
9192         priv->disassociate_threshold = 3*wrqu->sens.value;
9193       out:
9194         mutex_unlock(&priv->mutex);
9195         return err;
9196 }
9197
9198 static int ipw_wx_get_sens(struct net_device *dev,
9199                             struct iw_request_info *info,
9200                             union iwreq_data *wrqu, char *extra)
9201 {
9202         struct ipw_priv *priv = ieee80211_priv(dev);
9203         mutex_lock(&priv->mutex);
9204         wrqu->sens.fixed = 1;
9205         wrqu->sens.value = priv->roaming_threshold;
9206         mutex_unlock(&priv->mutex);
9207
9208         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9209                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9210
9211         return 0;
9212 }
9213
9214 static int ipw_wx_set_rate(struct net_device *dev,
9215                            struct iw_request_info *info,
9216                            union iwreq_data *wrqu, char *extra)
9217 {
9218         /* TODO: We should use semaphores or locks for access to priv */
9219         struct ipw_priv *priv = ieee80211_priv(dev);
9220         u32 target_rate = wrqu->bitrate.value;
9221         u32 fixed, mask;
9222
9223         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9224         /* value = X, fixed = 1 means only rate X */
9225         /* value = X, fixed = 0 means all rates lower equal X */
9226
9227         if (target_rate == -1) {
9228                 fixed = 0;
9229                 mask = IEEE80211_DEFAULT_RATES_MASK;
9230                 /* Now we should reassociate */
9231                 goto apply;
9232         }
9233
9234         mask = 0;
9235         fixed = wrqu->bitrate.fixed;
9236
9237         if (target_rate == 1000000 || !fixed)
9238                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9239         if (target_rate == 1000000)
9240                 goto apply;
9241
9242         if (target_rate == 2000000 || !fixed)
9243                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9244         if (target_rate == 2000000)
9245                 goto apply;
9246
9247         if (target_rate == 5500000 || !fixed)
9248                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9249         if (target_rate == 5500000)
9250                 goto apply;
9251
9252         if (target_rate == 6000000 || !fixed)
9253                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9254         if (target_rate == 6000000)
9255                 goto apply;
9256
9257         if (target_rate == 9000000 || !fixed)
9258                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9259         if (target_rate == 9000000)
9260                 goto apply;
9261
9262         if (target_rate == 11000000 || !fixed)
9263                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9264         if (target_rate == 11000000)
9265                 goto apply;
9266
9267         if (target_rate == 12000000 || !fixed)
9268                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9269         if (target_rate == 12000000)
9270                 goto apply;
9271
9272         if (target_rate == 18000000 || !fixed)
9273                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9274         if (target_rate == 18000000)
9275                 goto apply;
9276
9277         if (target_rate == 24000000 || !fixed)
9278                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9279         if (target_rate == 24000000)
9280                 goto apply;
9281
9282         if (target_rate == 36000000 || !fixed)
9283                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9284         if (target_rate == 36000000)
9285                 goto apply;
9286
9287         if (target_rate == 48000000 || !fixed)
9288                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9289         if (target_rate == 48000000)
9290                 goto apply;
9291
9292         if (target_rate == 54000000 || !fixed)
9293                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9294         if (target_rate == 54000000)
9295                 goto apply;
9296
9297         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9298         return -EINVAL;
9299
9300       apply:
9301         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9302                      mask, fixed ? "fixed" : "sub-rates");
9303         mutex_lock(&priv->mutex);
9304         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9305                 priv->config &= ~CFG_FIXED_RATE;
9306                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9307         } else
9308                 priv->config |= CFG_FIXED_RATE;
9309
9310         if (priv->rates_mask == mask) {
9311                 IPW_DEBUG_WX("Mask set to current mask.\n");
9312                 mutex_unlock(&priv->mutex);
9313                 return 0;
9314         }
9315
9316         priv->rates_mask = mask;
9317
9318         /* Network configuration changed -- force [re]association */
9319         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9320         if (!ipw_disassociate(priv))
9321                 ipw_associate(priv);
9322
9323         mutex_unlock(&priv->mutex);
9324         return 0;
9325 }
9326
9327 static int ipw_wx_get_rate(struct net_device *dev,
9328                            struct iw_request_info *info,
9329                            union iwreq_data *wrqu, char *extra)
9330 {
9331         struct ipw_priv *priv = ieee80211_priv(dev);
9332         mutex_lock(&priv->mutex);
9333         wrqu->bitrate.value = priv->last_rate;
9334         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9335         mutex_unlock(&priv->mutex);
9336         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9337         return 0;
9338 }
9339
9340 static int ipw_wx_set_rts(struct net_device *dev,
9341                           struct iw_request_info *info,
9342                           union iwreq_data *wrqu, char *extra)
9343 {
9344         struct ipw_priv *priv = ieee80211_priv(dev);
9345         mutex_lock(&priv->mutex);
9346         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9347                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9348         else {
9349                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9350                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9351                         mutex_unlock(&priv->mutex);
9352                         return -EINVAL;
9353                 }
9354                 priv->rts_threshold = wrqu->rts.value;
9355         }
9356
9357         ipw_send_rts_threshold(priv, priv->rts_threshold);
9358         mutex_unlock(&priv->mutex);
9359         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9360         return 0;
9361 }
9362
9363 static int ipw_wx_get_rts(struct net_device *dev,
9364                           struct iw_request_info *info,
9365                           union iwreq_data *wrqu, char *extra)
9366 {
9367         struct ipw_priv *priv = ieee80211_priv(dev);
9368         mutex_lock(&priv->mutex);
9369         wrqu->rts.value = priv->rts_threshold;
9370         wrqu->rts.fixed = 0;    /* no auto select */
9371         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9372         mutex_unlock(&priv->mutex);
9373         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9374         return 0;
9375 }
9376
9377 static int ipw_wx_set_txpow(struct net_device *dev,
9378                             struct iw_request_info *info,
9379                             union iwreq_data *wrqu, char *extra)
9380 {
9381         struct ipw_priv *priv = ieee80211_priv(dev);
9382         int err = 0;
9383
9384         mutex_lock(&priv->mutex);
9385         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9386                 err = -EINPROGRESS;
9387                 goto out;
9388         }
9389
9390         if (!wrqu->power.fixed)
9391                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9392
9393         if (wrqu->power.flags != IW_TXPOW_DBM) {
9394                 err = -EINVAL;
9395                 goto out;
9396         }
9397
9398         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9399             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9400                 err = -EINVAL;
9401                 goto out;
9402         }
9403
9404         priv->tx_power = wrqu->power.value;
9405         err = ipw_set_tx_power(priv);
9406       out:
9407         mutex_unlock(&priv->mutex);
9408         return err;
9409 }
9410
9411 static int ipw_wx_get_txpow(struct net_device *dev,
9412                             struct iw_request_info *info,
9413                             union iwreq_data *wrqu, char *extra)
9414 {
9415         struct ipw_priv *priv = ieee80211_priv(dev);
9416         mutex_lock(&priv->mutex);
9417         wrqu->power.value = priv->tx_power;
9418         wrqu->power.fixed = 1;
9419         wrqu->power.flags = IW_TXPOW_DBM;
9420         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9421         mutex_unlock(&priv->mutex);
9422
9423         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9424                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9425
9426         return 0;
9427 }
9428
9429 static int ipw_wx_set_frag(struct net_device *dev,
9430                            struct iw_request_info *info,
9431                            union iwreq_data *wrqu, char *extra)
9432 {
9433         struct ipw_priv *priv = ieee80211_priv(dev);
9434         mutex_lock(&priv->mutex);
9435         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9436                 priv->ieee->fts = DEFAULT_FTS;
9437         else {
9438                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9439                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9440                         mutex_unlock(&priv->mutex);
9441                         return -EINVAL;
9442                 }
9443
9444                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9445         }
9446
9447         ipw_send_frag_threshold(priv, wrqu->frag.value);
9448         mutex_unlock(&priv->mutex);
9449         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9450         return 0;
9451 }
9452
9453 static int ipw_wx_get_frag(struct net_device *dev,
9454                            struct iw_request_info *info,
9455                            union iwreq_data *wrqu, char *extra)
9456 {
9457         struct ipw_priv *priv = ieee80211_priv(dev);
9458         mutex_lock(&priv->mutex);
9459         wrqu->frag.value = priv->ieee->fts;
9460         wrqu->frag.fixed = 0;   /* no auto select */
9461         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9462         mutex_unlock(&priv->mutex);
9463         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9464
9465         return 0;
9466 }
9467
9468 static int ipw_wx_set_retry(struct net_device *dev,
9469                             struct iw_request_info *info,
9470                             union iwreq_data *wrqu, char *extra)
9471 {
9472         struct ipw_priv *priv = ieee80211_priv(dev);
9473
9474         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9475                 return -EINVAL;
9476
9477         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9478                 return 0;
9479
9480         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9481                 return -EINVAL;
9482
9483         mutex_lock(&priv->mutex);
9484         if (wrqu->retry.flags & IW_RETRY_SHORT)
9485                 priv->short_retry_limit = (u8) wrqu->retry.value;
9486         else if (wrqu->retry.flags & IW_RETRY_LONG)
9487                 priv->long_retry_limit = (u8) wrqu->retry.value;
9488         else {
9489                 priv->short_retry_limit = (u8) wrqu->retry.value;
9490                 priv->long_retry_limit = (u8) wrqu->retry.value;
9491         }
9492
9493         ipw_send_retry_limit(priv, priv->short_retry_limit,
9494                              priv->long_retry_limit);
9495         mutex_unlock(&priv->mutex);
9496         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9497                      priv->short_retry_limit, priv->long_retry_limit);
9498         return 0;
9499 }
9500
9501 static int ipw_wx_get_retry(struct net_device *dev,
9502                             struct iw_request_info *info,
9503                             union iwreq_data *wrqu, char *extra)
9504 {
9505         struct ipw_priv *priv = ieee80211_priv(dev);
9506
9507         mutex_lock(&priv->mutex);
9508         wrqu->retry.disabled = 0;
9509
9510         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9511                 mutex_unlock(&priv->mutex);
9512                 return -EINVAL;
9513         }
9514
9515         if (wrqu->retry.flags & IW_RETRY_LONG) {
9516                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9517                 wrqu->retry.value = priv->long_retry_limit;
9518         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9519                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9520                 wrqu->retry.value = priv->short_retry_limit;
9521         } else {
9522                 wrqu->retry.flags = IW_RETRY_LIMIT;
9523                 wrqu->retry.value = priv->short_retry_limit;
9524         }
9525         mutex_unlock(&priv->mutex);
9526
9527         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9528
9529         return 0;
9530 }
9531
9532 static int ipw_wx_set_scan(struct net_device *dev,
9533                            struct iw_request_info *info,
9534                            union iwreq_data *wrqu, char *extra)
9535 {
9536         struct ipw_priv *priv = ieee80211_priv(dev);
9537         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9538         struct delayed_work *work = NULL;
9539
9540         mutex_lock(&priv->mutex);
9541
9542         priv->user_requested_scan = 1;
9543
9544         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9545                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9546                         int len = min((int)req->essid_len,
9547                                       (int)sizeof(priv->direct_scan_ssid));
9548                         memcpy(priv->direct_scan_ssid, req->essid, len);
9549                         priv->direct_scan_ssid_len = len;
9550                         work = &priv->request_direct_scan;
9551                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9552                         work = &priv->request_passive_scan;
9553                 }
9554         } else {
9555                 /* Normal active broadcast scan */
9556                 work = &priv->request_scan;
9557         }
9558
9559         mutex_unlock(&priv->mutex);
9560
9561         IPW_DEBUG_WX("Start scan\n");
9562
9563         queue_delayed_work(priv->workqueue, work, 0);
9564
9565         return 0;
9566 }
9567
9568 static int ipw_wx_get_scan(struct net_device *dev,
9569                            struct iw_request_info *info,
9570                            union iwreq_data *wrqu, char *extra)
9571 {
9572         struct ipw_priv *priv = ieee80211_priv(dev);
9573         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9574 }
9575
9576 static int ipw_wx_set_encode(struct net_device *dev,
9577                              struct iw_request_info *info,
9578                              union iwreq_data *wrqu, char *key)
9579 {
9580         struct ipw_priv *priv = ieee80211_priv(dev);
9581         int ret;
9582         u32 cap = priv->capability;
9583
9584         mutex_lock(&priv->mutex);
9585         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9586
9587         /* In IBSS mode, we need to notify the firmware to update
9588          * the beacon info after we changed the capability. */
9589         if (cap != priv->capability &&
9590             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9591             priv->status & STATUS_ASSOCIATED)
9592                 ipw_disassociate(priv);
9593
9594         mutex_unlock(&priv->mutex);
9595         return ret;
9596 }
9597
9598 static int ipw_wx_get_encode(struct net_device *dev,
9599                              struct iw_request_info *info,
9600                              union iwreq_data *wrqu, char *key)
9601 {
9602         struct ipw_priv *priv = ieee80211_priv(dev);
9603         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9604 }
9605
9606 static int ipw_wx_set_power(struct net_device *dev,
9607                             struct iw_request_info *info,
9608                             union iwreq_data *wrqu, char *extra)
9609 {
9610         struct ipw_priv *priv = ieee80211_priv(dev);
9611         int err;
9612         mutex_lock(&priv->mutex);
9613         if (wrqu->power.disabled) {
9614                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9615                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9616                 if (err) {
9617                         IPW_DEBUG_WX("failed setting power mode.\n");
9618                         mutex_unlock(&priv->mutex);
9619                         return err;
9620                 }
9621                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9622                 mutex_unlock(&priv->mutex);
9623                 return 0;
9624         }
9625
9626         switch (wrqu->power.flags & IW_POWER_MODE) {
9627         case IW_POWER_ON:       /* If not specified */
9628         case IW_POWER_MODE:     /* If set all mask */
9629         case IW_POWER_ALL_R:    /* If explicitly state all */
9630                 break;
9631         default:                /* Otherwise we don't support it */
9632                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9633                              wrqu->power.flags);
9634                 mutex_unlock(&priv->mutex);
9635                 return -EOPNOTSUPP;
9636         }
9637
9638         /* If the user hasn't specified a power management mode yet, default
9639          * to BATTERY */
9640         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9641                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9642         else
9643                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9644
9645         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9646         if (err) {
9647                 IPW_DEBUG_WX("failed setting power mode.\n");
9648                 mutex_unlock(&priv->mutex);
9649                 return err;
9650         }
9651
9652         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9653         mutex_unlock(&priv->mutex);
9654         return 0;
9655 }
9656
9657 static int ipw_wx_get_power(struct net_device *dev,
9658                             struct iw_request_info *info,
9659                             union iwreq_data *wrqu, char *extra)
9660 {
9661         struct ipw_priv *priv = ieee80211_priv(dev);
9662         mutex_lock(&priv->mutex);
9663         if (!(priv->power_mode & IPW_POWER_ENABLED))
9664                 wrqu->power.disabled = 1;
9665         else
9666                 wrqu->power.disabled = 0;
9667
9668         mutex_unlock(&priv->mutex);
9669         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9670
9671         return 0;
9672 }
9673
9674 static int ipw_wx_set_powermode(struct net_device *dev,
9675                                 struct iw_request_info *info,
9676                                 union iwreq_data *wrqu, char *extra)
9677 {
9678         struct ipw_priv *priv = ieee80211_priv(dev);
9679         int mode = *(int *)extra;
9680         int err;
9681
9682         mutex_lock(&priv->mutex);
9683         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9684                 mode = IPW_POWER_AC;
9685
9686         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9687                 err = ipw_send_power_mode(priv, mode);
9688                 if (err) {
9689                         IPW_DEBUG_WX("failed setting power mode.\n");
9690                         mutex_unlock(&priv->mutex);
9691                         return err;
9692                 }
9693                 priv->power_mode = IPW_POWER_ENABLED | mode;
9694         }
9695         mutex_unlock(&priv->mutex);
9696         return 0;
9697 }
9698
9699 #define MAX_WX_STRING 80
9700 static int ipw_wx_get_powermode(struct net_device *dev,
9701                                 struct iw_request_info *info,
9702                                 union iwreq_data *wrqu, char *extra)
9703 {
9704         struct ipw_priv *priv = ieee80211_priv(dev);
9705         int level = IPW_POWER_LEVEL(priv->power_mode);
9706         char *p = extra;
9707
9708         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9709
9710         switch (level) {
9711         case IPW_POWER_AC:
9712                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9713                 break;
9714         case IPW_POWER_BATTERY:
9715                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9716                 break;
9717         default:
9718                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9719                               "(Timeout %dms, Period %dms)",
9720                               timeout_duration[level - 1] / 1000,
9721                               period_duration[level - 1] / 1000);
9722         }
9723
9724         if (!(priv->power_mode & IPW_POWER_ENABLED))
9725                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9726
9727         wrqu->data.length = p - extra + 1;
9728
9729         return 0;
9730 }
9731
9732 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9733                                     struct iw_request_info *info,
9734                                     union iwreq_data *wrqu, char *extra)
9735 {
9736         struct ipw_priv *priv = ieee80211_priv(dev);
9737         int mode = *(int *)extra;
9738         u8 band = 0, modulation = 0;
9739
9740         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9741                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9742                 return -EINVAL;
9743         }
9744         mutex_lock(&priv->mutex);
9745         if (priv->adapter == IPW_2915ABG) {
9746                 priv->ieee->abg_true = 1;
9747                 if (mode & IEEE_A) {
9748                         band |= IEEE80211_52GHZ_BAND;
9749                         modulation |= IEEE80211_OFDM_MODULATION;
9750                 } else
9751                         priv->ieee->abg_true = 0;
9752         } else {
9753                 if (mode & IEEE_A) {
9754                         IPW_WARNING("Attempt to set 2200BG into "
9755                                     "802.11a mode\n");
9756                         mutex_unlock(&priv->mutex);
9757                         return -EINVAL;
9758                 }
9759
9760                 priv->ieee->abg_true = 0;
9761         }
9762
9763         if (mode & IEEE_B) {
9764                 band |= IEEE80211_24GHZ_BAND;
9765                 modulation |= IEEE80211_CCK_MODULATION;
9766         } else
9767                 priv->ieee->abg_true = 0;
9768
9769         if (mode & IEEE_G) {
9770                 band |= IEEE80211_24GHZ_BAND;
9771                 modulation |= IEEE80211_OFDM_MODULATION;
9772         } else
9773                 priv->ieee->abg_true = 0;
9774
9775         priv->ieee->mode = mode;
9776         priv->ieee->freq_band = band;
9777         priv->ieee->modulation = modulation;
9778         init_supported_rates(priv, &priv->rates);
9779
9780         /* Network configuration changed -- force [re]association */
9781         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9782         if (!ipw_disassociate(priv)) {
9783                 ipw_send_supported_rates(priv, &priv->rates);
9784                 ipw_associate(priv);
9785         }
9786
9787         /* Update the band LEDs */
9788         ipw_led_band_on(priv);
9789
9790         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9791                      mode & IEEE_A ? 'a' : '.',
9792                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9793         mutex_unlock(&priv->mutex);
9794         return 0;
9795 }
9796
9797 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9798                                     struct iw_request_info *info,
9799                                     union iwreq_data *wrqu, char *extra)
9800 {
9801         struct ipw_priv *priv = ieee80211_priv(dev);
9802         mutex_lock(&priv->mutex);
9803         switch (priv->ieee->mode) {
9804         case IEEE_A:
9805                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9806                 break;
9807         case IEEE_B:
9808                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9809                 break;
9810         case IEEE_A | IEEE_B:
9811                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9812                 break;
9813         case IEEE_G:
9814                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9815                 break;
9816         case IEEE_A | IEEE_G:
9817                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9818                 break;
9819         case IEEE_B | IEEE_G:
9820                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9821                 break;
9822         case IEEE_A | IEEE_B | IEEE_G:
9823                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9824                 break;
9825         default:
9826                 strncpy(extra, "unknown", MAX_WX_STRING);
9827                 break;
9828         }
9829
9830         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9831
9832         wrqu->data.length = strlen(extra) + 1;
9833         mutex_unlock(&priv->mutex);
9834
9835         return 0;
9836 }
9837
9838 static int ipw_wx_set_preamble(struct net_device *dev,
9839                                struct iw_request_info *info,
9840                                union iwreq_data *wrqu, char *extra)
9841 {
9842         struct ipw_priv *priv = ieee80211_priv(dev);
9843         int mode = *(int *)extra;
9844         mutex_lock(&priv->mutex);
9845         /* Switching from SHORT -> LONG requires a disassociation */
9846         if (mode == 1) {
9847                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9848                         priv->config |= CFG_PREAMBLE_LONG;
9849
9850                         /* Network configuration changed -- force [re]association */
9851                         IPW_DEBUG_ASSOC
9852                             ("[re]association triggered due to preamble change.\n");
9853                         if (!ipw_disassociate(priv))
9854                                 ipw_associate(priv);
9855                 }
9856                 goto done;
9857         }
9858
9859         if (mode == 0) {
9860                 priv->config &= ~CFG_PREAMBLE_LONG;
9861                 goto done;
9862         }
9863         mutex_unlock(&priv->mutex);
9864         return -EINVAL;
9865
9866       done:
9867         mutex_unlock(&priv->mutex);
9868         return 0;
9869 }
9870
9871 static int ipw_wx_get_preamble(struct net_device *dev,
9872                                struct iw_request_info *info,
9873                                union iwreq_data *wrqu, char *extra)
9874 {
9875         struct ipw_priv *priv = ieee80211_priv(dev);
9876         mutex_lock(&priv->mutex);
9877         if (priv->config & CFG_PREAMBLE_LONG)
9878                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9879         else
9880                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9881         mutex_unlock(&priv->mutex);
9882         return 0;
9883 }
9884
9885 #ifdef CONFIG_IPW2200_MONITOR
9886 static int ipw_wx_set_monitor(struct net_device *dev,
9887                               struct iw_request_info *info,
9888                               union iwreq_data *wrqu, char *extra)
9889 {
9890         struct ipw_priv *priv = ieee80211_priv(dev);
9891         int *parms = (int *)extra;
9892         int enable = (parms[0] > 0);
9893         mutex_lock(&priv->mutex);
9894         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9895         if (enable) {
9896                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9897 #ifdef CONFIG_IPW2200_RADIOTAP
9898                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9899 #else
9900                         priv->net_dev->type = ARPHRD_IEEE80211;
9901 #endif
9902                         queue_work(priv->workqueue, &priv->adapter_restart);
9903                 }
9904
9905                 ipw_set_channel(priv, parms[1]);
9906         } else {
9907                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9908                         mutex_unlock(&priv->mutex);
9909                         return 0;
9910                 }
9911                 priv->net_dev->type = ARPHRD_ETHER;
9912                 queue_work(priv->workqueue, &priv->adapter_restart);
9913         }
9914         mutex_unlock(&priv->mutex);
9915         return 0;
9916 }
9917
9918 #endif                          /* CONFIG_IPW2200_MONITOR */
9919
9920 static int ipw_wx_reset(struct net_device *dev,
9921                         struct iw_request_info *info,
9922                         union iwreq_data *wrqu, char *extra)
9923 {
9924         struct ipw_priv *priv = ieee80211_priv(dev);
9925         IPW_DEBUG_WX("RESET\n");
9926         queue_work(priv->workqueue, &priv->adapter_restart);
9927         return 0;
9928 }
9929
9930 static int ipw_wx_sw_reset(struct net_device *dev,
9931                            struct iw_request_info *info,
9932                            union iwreq_data *wrqu, char *extra)
9933 {
9934         struct ipw_priv *priv = ieee80211_priv(dev);
9935         union iwreq_data wrqu_sec = {
9936                 .encoding = {
9937                              .flags = IW_ENCODE_DISABLED,
9938                              },
9939         };
9940         int ret;
9941
9942         IPW_DEBUG_WX("SW_RESET\n");
9943
9944         mutex_lock(&priv->mutex);
9945
9946         ret = ipw_sw_reset(priv, 2);
9947         if (!ret) {
9948                 free_firmware();
9949                 ipw_adapter_restart(priv);
9950         }
9951
9952         /* The SW reset bit might have been toggled on by the 'disable'
9953          * module parameter, so take appropriate action */
9954         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9955
9956         mutex_unlock(&priv->mutex);
9957         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9958         mutex_lock(&priv->mutex);
9959
9960         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9961                 /* Configuration likely changed -- force [re]association */
9962                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9963                                 "reset.\n");
9964                 if (!ipw_disassociate(priv))
9965                         ipw_associate(priv);
9966         }
9967
9968         mutex_unlock(&priv->mutex);
9969
9970         return 0;
9971 }
9972
9973 /* Rebase the WE IOCTLs to zero for the handler array */
9974 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9975 static iw_handler ipw_wx_handlers[] = {
9976         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9977         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9978         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9979         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9980         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9981         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9982         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9983         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9984         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9985         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9986         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9987         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9988         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9989         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9990         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9991         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9992         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9993         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9994         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9995         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9996         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9997         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9998         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9999         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
10000         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
10001         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
10002         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
10003         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
10004         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
10005         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
10006         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
10007         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
10008         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
10009         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10010         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10011         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10012         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10013         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10014         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10015         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10016         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10017 };
10018
10019 enum {
10020         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10021         IPW_PRIV_GET_POWER,
10022         IPW_PRIV_SET_MODE,
10023         IPW_PRIV_GET_MODE,
10024         IPW_PRIV_SET_PREAMBLE,
10025         IPW_PRIV_GET_PREAMBLE,
10026         IPW_PRIV_RESET,
10027         IPW_PRIV_SW_RESET,
10028 #ifdef CONFIG_IPW2200_MONITOR
10029         IPW_PRIV_SET_MONITOR,
10030 #endif
10031 };
10032
10033 static struct iw_priv_args ipw_priv_args[] = {
10034         {
10035          .cmd = IPW_PRIV_SET_POWER,
10036          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10037          .name = "set_power"},
10038         {
10039          .cmd = IPW_PRIV_GET_POWER,
10040          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10041          .name = "get_power"},
10042         {
10043          .cmd = IPW_PRIV_SET_MODE,
10044          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10045          .name = "set_mode"},
10046         {
10047          .cmd = IPW_PRIV_GET_MODE,
10048          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10049          .name = "get_mode"},
10050         {
10051          .cmd = IPW_PRIV_SET_PREAMBLE,
10052          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10053          .name = "set_preamble"},
10054         {
10055          .cmd = IPW_PRIV_GET_PREAMBLE,
10056          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10057          .name = "get_preamble"},
10058         {
10059          IPW_PRIV_RESET,
10060          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10061         {
10062          IPW_PRIV_SW_RESET,
10063          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10064 #ifdef CONFIG_IPW2200_MONITOR
10065         {
10066          IPW_PRIV_SET_MONITOR,
10067          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10068 #endif                          /* CONFIG_IPW2200_MONITOR */
10069 };
10070
10071 static iw_handler ipw_priv_handler[] = {
10072         ipw_wx_set_powermode,
10073         ipw_wx_get_powermode,
10074         ipw_wx_set_wireless_mode,
10075         ipw_wx_get_wireless_mode,
10076         ipw_wx_set_preamble,
10077         ipw_wx_get_preamble,
10078         ipw_wx_reset,
10079         ipw_wx_sw_reset,
10080 #ifdef CONFIG_IPW2200_MONITOR
10081         ipw_wx_set_monitor,
10082 #endif
10083 };
10084
10085 static struct iw_handler_def ipw_wx_handler_def = {
10086         .standard = ipw_wx_handlers,
10087         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10088         .num_private = ARRAY_SIZE(ipw_priv_handler),
10089         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10090         .private = ipw_priv_handler,
10091         .private_args = ipw_priv_args,
10092         .get_wireless_stats = ipw_get_wireless_stats,
10093 };
10094
10095 /*
10096  * Get wireless statistics.
10097  * Called by /proc/net/wireless
10098  * Also called by SIOCGIWSTATS
10099  */
10100 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10101 {
10102         struct ipw_priv *priv = ieee80211_priv(dev);
10103         struct iw_statistics *wstats;
10104
10105         wstats = &priv->wstats;
10106
10107         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10108          * netdev->get_wireless_stats seems to be called before fw is
10109          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10110          * and associated; if not associcated, the values are all meaningless
10111          * anyway, so set them all to NULL and INVALID */
10112         if (!(priv->status & STATUS_ASSOCIATED)) {
10113                 wstats->miss.beacon = 0;
10114                 wstats->discard.retries = 0;
10115                 wstats->qual.qual = 0;
10116                 wstats->qual.level = 0;
10117                 wstats->qual.noise = 0;
10118                 wstats->qual.updated = 7;
10119                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10120                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10121                 return wstats;
10122         }
10123
10124         wstats->qual.qual = priv->quality;
10125         wstats->qual.level = priv->exp_avg_rssi;
10126         wstats->qual.noise = priv->exp_avg_noise;
10127         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10128             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10129
10130         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10131         wstats->discard.retries = priv->last_tx_failures;
10132         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10133
10134 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10135         goto fail_get_ordinal;
10136         wstats->discard.retries += tx_retry; */
10137
10138         return wstats;
10139 }
10140
10141 /* net device stuff */
10142
10143 static  void init_sys_config(struct ipw_sys_config *sys_config)
10144 {
10145         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10146         sys_config->bt_coexistence = 0;
10147         sys_config->answer_broadcast_ssid_probe = 0;
10148         sys_config->accept_all_data_frames = 0;
10149         sys_config->accept_non_directed_frames = 1;
10150         sys_config->exclude_unicast_unencrypted = 0;
10151         sys_config->disable_unicast_decryption = 1;
10152         sys_config->exclude_multicast_unencrypted = 0;
10153         sys_config->disable_multicast_decryption = 1;
10154         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10155                 antenna = CFG_SYS_ANTENNA_BOTH;
10156         sys_config->antenna_diversity = antenna;
10157         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10158         sys_config->dot11g_auto_detection = 0;
10159         sys_config->enable_cts_to_self = 0;
10160         sys_config->bt_coexist_collision_thr = 0;
10161         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10162         sys_config->silence_threshold = 0x1e;
10163 }
10164
10165 static int ipw_net_open(struct net_device *dev)
10166 {
10167         IPW_DEBUG_INFO("dev->open\n");
10168         netif_start_queue(dev);
10169         return 0;
10170 }
10171
10172 static int ipw_net_stop(struct net_device *dev)
10173 {
10174         IPW_DEBUG_INFO("dev->close\n");
10175         netif_stop_queue(dev);
10176         return 0;
10177 }
10178
10179 /*
10180 todo:
10181
10182 modify to send one tfd per fragment instead of using chunking.  otherwise
10183 we need to heavily modify the ieee80211_skb_to_txb.
10184 */
10185
10186 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10187                              int pri)
10188 {
10189         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10190             txb->fragments[0]->data;
10191         int i = 0;
10192         struct tfd_frame *tfd;
10193 #ifdef CONFIG_IPW2200_QOS
10194         int tx_id = ipw_get_tx_queue_number(priv, pri);
10195         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10196 #else
10197         struct clx2_tx_queue *txq = &priv->txq[0];
10198 #endif
10199         struct clx2_queue *q = &txq->q;
10200         u8 id, hdr_len, unicast;
10201         u16 remaining_bytes;
10202         int fc;
10203
10204         if (!(priv->status & STATUS_ASSOCIATED))
10205                 goto drop;
10206
10207         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10208         switch (priv->ieee->iw_mode) {
10209         case IW_MODE_ADHOC:
10210                 unicast = !is_multicast_ether_addr(hdr->addr1);
10211                 id = ipw_find_station(priv, hdr->addr1);
10212                 if (id == IPW_INVALID_STATION) {
10213                         id = ipw_add_station(priv, hdr->addr1);
10214                         if (id == IPW_INVALID_STATION) {
10215                                 IPW_WARNING("Attempt to send data to "
10216                                             "invalid cell: %pM\n",
10217                                             hdr->addr1);
10218                                 goto drop;
10219                         }
10220                 }
10221                 break;
10222
10223         case IW_MODE_INFRA:
10224         default:
10225                 unicast = !is_multicast_ether_addr(hdr->addr3);
10226                 id = 0;
10227                 break;
10228         }
10229
10230         tfd = &txq->bd[q->first_empty];
10231         txq->txb[q->first_empty] = txb;
10232         memset(tfd, 0, sizeof(*tfd));
10233         tfd->u.data.station_number = id;
10234
10235         tfd->control_flags.message_type = TX_FRAME_TYPE;
10236         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10237
10238         tfd->u.data.cmd_id = DINO_CMD_TX;
10239         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10240         remaining_bytes = txb->payload_size;
10241
10242         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10243                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10244         else
10245                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10246
10247         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10248                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10249
10250         fc = le16_to_cpu(hdr->frame_ctl);
10251         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10252
10253         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10254
10255         if (likely(unicast))
10256                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10257
10258         if (txb->encrypted && !priv->ieee->host_encrypt) {
10259                 switch (priv->ieee->sec.level) {
10260                 case SEC_LEVEL_3:
10261                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10262                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10263                         /* XXX: ACK flag must be set for CCMP even if it
10264                          * is a multicast/broadcast packet, because CCMP
10265                          * group communication encrypted by GTK is
10266                          * actually done by the AP. */
10267                         if (!unicast)
10268                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10269
10270                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10271                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10272                         tfd->u.data.key_index = 0;
10273                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10274                         break;
10275                 case SEC_LEVEL_2:
10276                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10277                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10278                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10279                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10280                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10281                         break;
10282                 case SEC_LEVEL_1:
10283                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10284                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10285                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10286                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10287                             40)
10288                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10289                         else
10290                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10291                         break;
10292                 case SEC_LEVEL_0:
10293                         break;
10294                 default:
10295                         printk(KERN_ERR "Unknow security level %d\n",
10296                                priv->ieee->sec.level);
10297                         break;
10298                 }
10299         } else
10300                 /* No hardware encryption */
10301                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10302
10303 #ifdef CONFIG_IPW2200_QOS
10304         if (fc & IEEE80211_STYPE_QOS_DATA)
10305                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10306 #endif                          /* CONFIG_IPW2200_QOS */
10307
10308         /* payload */
10309         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10310                                                  txb->nr_frags));
10311         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10312                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10313         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10314                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10315                                i, le32_to_cpu(tfd->u.data.num_chunks),
10316                                txb->fragments[i]->len - hdr_len);
10317                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10318                              i, tfd->u.data.num_chunks,
10319                              txb->fragments[i]->len - hdr_len);
10320                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10321                            txb->fragments[i]->len - hdr_len);
10322
10323                 tfd->u.data.chunk_ptr[i] =
10324                     cpu_to_le32(pci_map_single
10325                                 (priv->pci_dev,
10326                                  txb->fragments[i]->data + hdr_len,
10327                                  txb->fragments[i]->len - hdr_len,
10328                                  PCI_DMA_TODEVICE));
10329                 tfd->u.data.chunk_len[i] =
10330                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10331         }
10332
10333         if (i != txb->nr_frags) {
10334                 struct sk_buff *skb;
10335                 u16 remaining_bytes = 0;
10336                 int j;
10337
10338                 for (j = i; j < txb->nr_frags; j++)
10339                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10340
10341                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10342                        remaining_bytes);
10343                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10344                 if (skb != NULL) {
10345                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10346                         for (j = i; j < txb->nr_frags; j++) {
10347                                 int size = txb->fragments[j]->len - hdr_len;
10348
10349                                 printk(KERN_INFO "Adding frag %d %d...\n",
10350                                        j, size);
10351                                 memcpy(skb_put(skb, size),
10352                                        txb->fragments[j]->data + hdr_len, size);
10353                         }
10354                         dev_kfree_skb_any(txb->fragments[i]);
10355                         txb->fragments[i] = skb;
10356                         tfd->u.data.chunk_ptr[i] =
10357                             cpu_to_le32(pci_map_single
10358                                         (priv->pci_dev, skb->data,
10359                                          remaining_bytes,
10360                                          PCI_DMA_TODEVICE));
10361
10362                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10363                 }
10364         }
10365
10366         /* kick DMA */
10367         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10368         ipw_write32(priv, q->reg_w, q->first_empty);
10369
10370         if (ipw_tx_queue_space(q) < q->high_mark)
10371                 netif_stop_queue(priv->net_dev);
10372
10373         return NETDEV_TX_OK;
10374
10375       drop:
10376         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10377         ieee80211_txb_free(txb);
10378         return NETDEV_TX_OK;
10379 }
10380
10381 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10382 {
10383         struct ipw_priv *priv = ieee80211_priv(dev);
10384 #ifdef CONFIG_IPW2200_QOS
10385         int tx_id = ipw_get_tx_queue_number(priv, pri);
10386         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10387 #else
10388         struct clx2_tx_queue *txq = &priv->txq[0];
10389 #endif                          /* CONFIG_IPW2200_QOS */
10390
10391         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10392                 return 1;
10393
10394         return 0;
10395 }
10396
10397 #ifdef CONFIG_IPW2200_PROMISCUOUS
10398 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10399                                       struct ieee80211_txb *txb)
10400 {
10401         struct ieee80211_rx_stats dummystats;
10402         struct ieee80211_hdr *hdr;
10403         u8 n;
10404         u16 filter = priv->prom_priv->filter;
10405         int hdr_only = 0;
10406
10407         if (filter & IPW_PROM_NO_TX)
10408                 return;
10409
10410         memset(&dummystats, 0, sizeof(dummystats));
10411
10412         /* Filtering of fragment chains is done agains the first fragment */
10413         hdr = (void *)txb->fragments[0]->data;
10414         if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10415                 if (filter & IPW_PROM_NO_MGMT)
10416                         return;
10417                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10418                         hdr_only = 1;
10419         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10420                 if (filter & IPW_PROM_NO_CTL)
10421                         return;
10422                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10423                         hdr_only = 1;
10424         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10425                 if (filter & IPW_PROM_NO_DATA)
10426                         return;
10427                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10428                         hdr_only = 1;
10429         }
10430
10431         for(n=0; n<txb->nr_frags; ++n) {
10432                 struct sk_buff *src = txb->fragments[n];
10433                 struct sk_buff *dst;
10434                 struct ieee80211_radiotap_header *rt_hdr;
10435                 int len;
10436
10437                 if (hdr_only) {
10438                         hdr = (void *)src->data;
10439                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10440                 } else
10441                         len = src->len;
10442
10443                 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10444                 if (!dst)
10445                         continue;
10446
10447                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10448
10449                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10450                 rt_hdr->it_pad = 0;
10451                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10452                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10453
10454                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10455                         ieee80211chan2mhz(priv->channel));
10456                 if (priv->channel > 14)         /* 802.11a */
10457                         *(__le16*)skb_put(dst, sizeof(u16)) =
10458                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10459                                              IEEE80211_CHAN_5GHZ);
10460                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10461                         *(__le16*)skb_put(dst, sizeof(u16)) =
10462                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10463                                              IEEE80211_CHAN_2GHZ);
10464                 else            /* 802.11g */
10465                         *(__le16*)skb_put(dst, sizeof(u16)) =
10466                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10467                                  IEEE80211_CHAN_2GHZ);
10468
10469                 rt_hdr->it_len = cpu_to_le16(dst->len);
10470
10471                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10472
10473                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10474                         dev_kfree_skb_any(dst);
10475         }
10476 }
10477 #endif
10478
10479 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10480                                    struct net_device *dev, int pri)
10481 {
10482         struct ipw_priv *priv = ieee80211_priv(dev);
10483         unsigned long flags;
10484         int ret;
10485
10486         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10487         spin_lock_irqsave(&priv->lock, flags);
10488
10489 #ifdef CONFIG_IPW2200_PROMISCUOUS
10490         if (rtap_iface && netif_running(priv->prom_net_dev))
10491                 ipw_handle_promiscuous_tx(priv, txb);
10492 #endif
10493
10494         ret = ipw_tx_skb(priv, txb, pri);
10495         if (ret == NETDEV_TX_OK)
10496                 __ipw_led_activity_on(priv);
10497         spin_unlock_irqrestore(&priv->lock, flags);
10498
10499         return ret;
10500 }
10501
10502 static void ipw_net_set_multicast_list(struct net_device *dev)
10503 {
10504
10505 }
10506
10507 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10508 {
10509         struct ipw_priv *priv = ieee80211_priv(dev);
10510         struct sockaddr *addr = p;
10511
10512         if (!is_valid_ether_addr(addr->sa_data))
10513                 return -EADDRNOTAVAIL;
10514         mutex_lock(&priv->mutex);
10515         priv->config |= CFG_CUSTOM_MAC;
10516         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10517         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10518                priv->net_dev->name, priv->mac_addr);
10519         queue_work(priv->workqueue, &priv->adapter_restart);
10520         mutex_unlock(&priv->mutex);
10521         return 0;
10522 }
10523
10524 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10525                                     struct ethtool_drvinfo *info)
10526 {
10527         struct ipw_priv *p = ieee80211_priv(dev);
10528         char vers[64];
10529         char date[32];
10530         u32 len;
10531
10532         strcpy(info->driver, DRV_NAME);
10533         strcpy(info->version, DRV_VERSION);
10534
10535         len = sizeof(vers);
10536         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10537         len = sizeof(date);
10538         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10539
10540         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10541                  vers, date);
10542         strcpy(info->bus_info, pci_name(p->pci_dev));
10543         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10544 }
10545
10546 static u32 ipw_ethtool_get_link(struct net_device *dev)
10547 {
10548         struct ipw_priv *priv = ieee80211_priv(dev);
10549         return (priv->status & STATUS_ASSOCIATED) != 0;
10550 }
10551
10552 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10553 {
10554         return IPW_EEPROM_IMAGE_SIZE;
10555 }
10556
10557 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10558                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10559 {
10560         struct ipw_priv *p = ieee80211_priv(dev);
10561
10562         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10563                 return -EINVAL;
10564         mutex_lock(&p->mutex);
10565         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10566         mutex_unlock(&p->mutex);
10567         return 0;
10568 }
10569
10570 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10571                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10572 {
10573         struct ipw_priv *p = ieee80211_priv(dev);
10574         int i;
10575
10576         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10577                 return -EINVAL;
10578         mutex_lock(&p->mutex);
10579         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10580         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10581                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10582         mutex_unlock(&p->mutex);
10583         return 0;
10584 }
10585
10586 static const struct ethtool_ops ipw_ethtool_ops = {
10587         .get_link = ipw_ethtool_get_link,
10588         .get_drvinfo = ipw_ethtool_get_drvinfo,
10589         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10590         .get_eeprom = ipw_ethtool_get_eeprom,
10591         .set_eeprom = ipw_ethtool_set_eeprom,
10592 };
10593
10594 static irqreturn_t ipw_isr(int irq, void *data)
10595 {
10596         struct ipw_priv *priv = data;
10597         u32 inta, inta_mask;
10598
10599         if (!priv)
10600                 return IRQ_NONE;
10601
10602         spin_lock(&priv->irq_lock);
10603
10604         if (!(priv->status & STATUS_INT_ENABLED)) {
10605                 /* IRQ is disabled */
10606                 goto none;
10607         }
10608
10609         inta = ipw_read32(priv, IPW_INTA_RW);
10610         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10611
10612         if (inta == 0xFFFFFFFF) {
10613                 /* Hardware disappeared */
10614                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10615                 goto none;
10616         }
10617
10618         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10619                 /* Shared interrupt */
10620                 goto none;
10621         }
10622
10623         /* tell the device to stop sending interrupts */
10624         __ipw_disable_interrupts(priv);
10625
10626         /* ack current interrupts */
10627         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10628         ipw_write32(priv, IPW_INTA_RW, inta);
10629
10630         /* Cache INTA value for our tasklet */
10631         priv->isr_inta = inta;
10632
10633         tasklet_schedule(&priv->irq_tasklet);
10634
10635         spin_unlock(&priv->irq_lock);
10636
10637         return IRQ_HANDLED;
10638       none:
10639         spin_unlock(&priv->irq_lock);
10640         return IRQ_NONE;
10641 }
10642
10643 static void ipw_rf_kill(void *adapter)
10644 {
10645         struct ipw_priv *priv = adapter;
10646         unsigned long flags;
10647
10648         spin_lock_irqsave(&priv->lock, flags);
10649
10650         if (rf_kill_active(priv)) {
10651                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10652                 if (priv->workqueue)
10653                         queue_delayed_work(priv->workqueue,
10654                                            &priv->rf_kill, 2 * HZ);
10655                 goto exit_unlock;
10656         }
10657
10658         /* RF Kill is now disabled, so bring the device back up */
10659
10660         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10661                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10662                                   "device\n");
10663
10664                 /* we can not do an adapter restart while inside an irq lock */
10665                 queue_work(priv->workqueue, &priv->adapter_restart);
10666         } else
10667                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10668                                   "enabled\n");
10669
10670       exit_unlock:
10671         spin_unlock_irqrestore(&priv->lock, flags);
10672 }
10673
10674 static void ipw_bg_rf_kill(struct work_struct *work)
10675 {
10676         struct ipw_priv *priv =
10677                 container_of(work, struct ipw_priv, rf_kill.work);
10678         mutex_lock(&priv->mutex);
10679         ipw_rf_kill(priv);
10680         mutex_unlock(&priv->mutex);
10681 }
10682
10683 static void ipw_link_up(struct ipw_priv *priv)
10684 {
10685         priv->last_seq_num = -1;
10686         priv->last_frag_num = -1;
10687         priv->last_packet_time = 0;
10688
10689         netif_carrier_on(priv->net_dev);
10690
10691         cancel_delayed_work(&priv->request_scan);
10692         cancel_delayed_work(&priv->request_direct_scan);
10693         cancel_delayed_work(&priv->request_passive_scan);
10694         cancel_delayed_work(&priv->scan_event);
10695         ipw_reset_stats(priv);
10696         /* Ensure the rate is updated immediately */
10697         priv->last_rate = ipw_get_current_rate(priv);
10698         ipw_gather_stats(priv);
10699         ipw_led_link_up(priv);
10700         notify_wx_assoc_event(priv);
10701
10702         if (priv->config & CFG_BACKGROUND_SCAN)
10703                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10704 }
10705
10706 static void ipw_bg_link_up(struct work_struct *work)
10707 {
10708         struct ipw_priv *priv =
10709                 container_of(work, struct ipw_priv, link_up);
10710         mutex_lock(&priv->mutex);
10711         ipw_link_up(priv);
10712         mutex_unlock(&priv->mutex);
10713 }
10714
10715 static void ipw_link_down(struct ipw_priv *priv)
10716 {
10717         ipw_led_link_down(priv);
10718         netif_carrier_off(priv->net_dev);
10719         notify_wx_assoc_event(priv);
10720
10721         /* Cancel any queued work ... */
10722         cancel_delayed_work(&priv->request_scan);
10723         cancel_delayed_work(&priv->request_direct_scan);
10724         cancel_delayed_work(&priv->request_passive_scan);
10725         cancel_delayed_work(&priv->adhoc_check);
10726         cancel_delayed_work(&priv->gather_stats);
10727
10728         ipw_reset_stats(priv);
10729
10730         if (!(priv->status & STATUS_EXIT_PENDING)) {
10731                 /* Queue up another scan... */
10732                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10733         } else
10734                 cancel_delayed_work(&priv->scan_event);
10735 }
10736
10737 static void ipw_bg_link_down(struct work_struct *work)
10738 {
10739         struct ipw_priv *priv =
10740                 container_of(work, struct ipw_priv, link_down);
10741         mutex_lock(&priv->mutex);
10742         ipw_link_down(priv);
10743         mutex_unlock(&priv->mutex);
10744 }
10745
10746 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10747 {
10748         int ret = 0;
10749
10750         priv->workqueue = create_workqueue(DRV_NAME);
10751         init_waitqueue_head(&priv->wait_command_queue);
10752         init_waitqueue_head(&priv->wait_state);
10753
10754         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10755         INIT_WORK(&priv->associate, ipw_bg_associate);
10756         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10757         INIT_WORK(&priv->system_config, ipw_system_config);
10758         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10759         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10760         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10761         INIT_WORK(&priv->up, ipw_bg_up);
10762         INIT_WORK(&priv->down, ipw_bg_down);
10763         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10764         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10765         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10766         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10767         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10768         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10769         INIT_WORK(&priv->roam, ipw_bg_roam);
10770         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10771         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10772         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10773         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10774         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10775         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10776         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10777
10778 #ifdef CONFIG_IPW2200_QOS
10779         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10780 #endif                          /* CONFIG_IPW2200_QOS */
10781
10782         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10783                      ipw_irq_tasklet, (unsigned long)priv);
10784
10785         return ret;
10786 }
10787
10788 static void shim__set_security(struct net_device *dev,
10789                                struct ieee80211_security *sec)
10790 {
10791         struct ipw_priv *priv = ieee80211_priv(dev);
10792         int i;
10793         for (i = 0; i < 4; i++) {
10794                 if (sec->flags & (1 << i)) {
10795                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10796                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10797                         if (sec->key_sizes[i] == 0)
10798                                 priv->ieee->sec.flags &= ~(1 << i);
10799                         else {
10800                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10801                                        sec->key_sizes[i]);
10802                                 priv->ieee->sec.flags |= (1 << i);
10803                         }
10804                         priv->status |= STATUS_SECURITY_UPDATED;
10805                 } else if (sec->level != SEC_LEVEL_1)
10806                         priv->ieee->sec.flags &= ~(1 << i);
10807         }
10808
10809         if (sec->flags & SEC_ACTIVE_KEY) {
10810                 if (sec->active_key <= 3) {
10811                         priv->ieee->sec.active_key = sec->active_key;
10812                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10813                 } else
10814                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10815                 priv->status |= STATUS_SECURITY_UPDATED;
10816         } else
10817                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10818
10819         if ((sec->flags & SEC_AUTH_MODE) &&
10820             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10821                 priv->ieee->sec.auth_mode = sec->auth_mode;
10822                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10823                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10824                         priv->capability |= CAP_SHARED_KEY;
10825                 else
10826                         priv->capability &= ~CAP_SHARED_KEY;
10827                 priv->status |= STATUS_SECURITY_UPDATED;
10828         }
10829
10830         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10831                 priv->ieee->sec.flags |= SEC_ENABLED;
10832                 priv->ieee->sec.enabled = sec->enabled;
10833                 priv->status |= STATUS_SECURITY_UPDATED;
10834                 if (sec->enabled)
10835                         priv->capability |= CAP_PRIVACY_ON;
10836                 else
10837                         priv->capability &= ~CAP_PRIVACY_ON;
10838         }
10839
10840         if (sec->flags & SEC_ENCRYPT)
10841                 priv->ieee->sec.encrypt = sec->encrypt;
10842
10843         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10844                 priv->ieee->sec.level = sec->level;
10845                 priv->ieee->sec.flags |= SEC_LEVEL;
10846                 priv->status |= STATUS_SECURITY_UPDATED;
10847         }
10848
10849         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10850                 ipw_set_hwcrypto_keys(priv);
10851
10852         /* To match current functionality of ipw2100 (which works well w/
10853          * various supplicants, we don't force a disassociate if the
10854          * privacy capability changes ... */
10855 #if 0
10856         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10857             (((priv->assoc_request.capability &
10858                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10859              (!(priv->assoc_request.capability &
10860                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10861                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10862                                 "change.\n");
10863                 ipw_disassociate(priv);
10864         }
10865 #endif
10866 }
10867
10868 static int init_supported_rates(struct ipw_priv *priv,
10869                                 struct ipw_supported_rates *rates)
10870 {
10871         /* TODO: Mask out rates based on priv->rates_mask */
10872
10873         memset(rates, 0, sizeof(*rates));
10874         /* configure supported rates */
10875         switch (priv->ieee->freq_band) {
10876         case IEEE80211_52GHZ_BAND:
10877                 rates->ieee_mode = IPW_A_MODE;
10878                 rates->purpose = IPW_RATE_CAPABILITIES;
10879                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10880                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10881                 break;
10882
10883         default:                /* Mixed or 2.4Ghz */
10884                 rates->ieee_mode = IPW_G_MODE;
10885                 rates->purpose = IPW_RATE_CAPABILITIES;
10886                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10887                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10888                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10889                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10890                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10891                 }
10892                 break;
10893         }
10894
10895         return 0;
10896 }
10897
10898 static int ipw_config(struct ipw_priv *priv)
10899 {
10900         /* This is only called from ipw_up, which resets/reloads the firmware
10901            so, we don't need to first disable the card before we configure
10902            it */
10903         if (ipw_set_tx_power(priv))
10904                 goto error;
10905
10906         /* initialize adapter address */
10907         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10908                 goto error;
10909
10910         /* set basic system config settings */
10911         init_sys_config(&priv->sys_config);
10912
10913         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10914          * Does not support BT priority yet (don't abort or defer our Tx) */
10915         if (bt_coexist) {
10916                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10917
10918                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10919                         priv->sys_config.bt_coexistence
10920                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10921                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10922                         priv->sys_config.bt_coexistence
10923                             |= CFG_BT_COEXISTENCE_OOB;
10924         }
10925
10926 #ifdef CONFIG_IPW2200_PROMISCUOUS
10927         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10928                 priv->sys_config.accept_all_data_frames = 1;
10929                 priv->sys_config.accept_non_directed_frames = 1;
10930                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10931                 priv->sys_config.accept_all_mgmt_frames = 1;
10932         }
10933 #endif
10934
10935         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10936                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10937         else
10938                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10939
10940         if (ipw_send_system_config(priv))
10941                 goto error;
10942
10943         init_supported_rates(priv, &priv->rates);
10944         if (ipw_send_supported_rates(priv, &priv->rates))
10945                 goto error;
10946
10947         /* Set request-to-send threshold */
10948         if (priv->rts_threshold) {
10949                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10950                         goto error;
10951         }
10952 #ifdef CONFIG_IPW2200_QOS
10953         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10954         ipw_qos_activate(priv, NULL);
10955 #endif                          /* CONFIG_IPW2200_QOS */
10956
10957         if (ipw_set_random_seed(priv))
10958                 goto error;
10959
10960         /* final state transition to the RUN state */
10961         if (ipw_send_host_complete(priv))
10962                 goto error;
10963
10964         priv->status |= STATUS_INIT;
10965
10966         ipw_led_init(priv);
10967         ipw_led_radio_on(priv);
10968         priv->notif_missed_beacons = 0;
10969
10970         /* Set hardware WEP key if it is configured. */
10971         if ((priv->capability & CAP_PRIVACY_ON) &&
10972             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10973             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10974                 ipw_set_hwcrypto_keys(priv);
10975
10976         return 0;
10977
10978       error:
10979         return -EIO;
10980 }
10981
10982 /*
10983  * NOTE:
10984  *
10985  * These tables have been tested in conjunction with the
10986  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10987  *
10988  * Altering this values, using it on other hardware, or in geographies
10989  * not intended for resale of the above mentioned Intel adapters has
10990  * not been tested.
10991  *
10992  * Remember to update the table in README.ipw2200 when changing this
10993  * table.
10994  *
10995  */
10996 static const struct ieee80211_geo ipw_geos[] = {
10997         {                       /* Restricted */
10998          "---",
10999          .bg_channels = 11,
11000          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11001                 {2427, 4}, {2432, 5}, {2437, 6},
11002                 {2442, 7}, {2447, 8}, {2452, 9},
11003                 {2457, 10}, {2462, 11}},
11004          },
11005
11006         {                       /* Custom US/Canada */
11007          "ZZF",
11008          .bg_channels = 11,
11009          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11010                 {2427, 4}, {2432, 5}, {2437, 6},
11011                 {2442, 7}, {2447, 8}, {2452, 9},
11012                 {2457, 10}, {2462, 11}},
11013          .a_channels = 8,
11014          .a = {{5180, 36},
11015                {5200, 40},
11016                {5220, 44},
11017                {5240, 48},
11018                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11019                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11020                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11021                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11022          },
11023
11024         {                       /* Rest of World */
11025          "ZZD",
11026          .bg_channels = 13,
11027          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11028                 {2427, 4}, {2432, 5}, {2437, 6},
11029                 {2442, 7}, {2447, 8}, {2452, 9},
11030                 {2457, 10}, {2462, 11}, {2467, 12},
11031                 {2472, 13}},
11032          },
11033
11034         {                       /* Custom USA & Europe & High */
11035          "ZZA",
11036          .bg_channels = 11,
11037          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11038                 {2427, 4}, {2432, 5}, {2437, 6},
11039                 {2442, 7}, {2447, 8}, {2452, 9},
11040                 {2457, 10}, {2462, 11}},
11041          .a_channels = 13,
11042          .a = {{5180, 36},
11043                {5200, 40},
11044                {5220, 44},
11045                {5240, 48},
11046                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11047                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11048                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11049                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11050                {5745, 149},
11051                {5765, 153},
11052                {5785, 157},
11053                {5805, 161},
11054                {5825, 165}},
11055          },
11056
11057         {                       /* Custom NA & Europe */
11058          "ZZB",
11059          .bg_channels = 11,
11060          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11061                 {2427, 4}, {2432, 5}, {2437, 6},
11062                 {2442, 7}, {2447, 8}, {2452, 9},
11063                 {2457, 10}, {2462, 11}},
11064          .a_channels = 13,
11065          .a = {{5180, 36},
11066                {5200, 40},
11067                {5220, 44},
11068                {5240, 48},
11069                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11070                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11071                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11072                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11073                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11074                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11075                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11076                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11077                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11078          },
11079
11080         {                       /* Custom Japan */
11081          "ZZC",
11082          .bg_channels = 11,
11083          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11084                 {2427, 4}, {2432, 5}, {2437, 6},
11085                 {2442, 7}, {2447, 8}, {2452, 9},
11086                 {2457, 10}, {2462, 11}},
11087          .a_channels = 4,
11088          .a = {{5170, 34}, {5190, 38},
11089                {5210, 42}, {5230, 46}},
11090          },
11091
11092         {                       /* Custom */
11093          "ZZM",
11094          .bg_channels = 11,
11095          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11096                 {2427, 4}, {2432, 5}, {2437, 6},
11097                 {2442, 7}, {2447, 8}, {2452, 9},
11098                 {2457, 10}, {2462, 11}},
11099          },
11100
11101         {                       /* Europe */
11102          "ZZE",
11103          .bg_channels = 13,
11104          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11105                 {2427, 4}, {2432, 5}, {2437, 6},
11106                 {2442, 7}, {2447, 8}, {2452, 9},
11107                 {2457, 10}, {2462, 11}, {2467, 12},
11108                 {2472, 13}},
11109          .a_channels = 19,
11110          .a = {{5180, 36},
11111                {5200, 40},
11112                {5220, 44},
11113                {5240, 48},
11114                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11115                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11116                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11117                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11118                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11119                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11120                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11121                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11122                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11123                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11124                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11125                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11126                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11127                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11128                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11129          },
11130
11131         {                       /* Custom Japan */
11132          "ZZJ",
11133          .bg_channels = 14,
11134          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11135                 {2427, 4}, {2432, 5}, {2437, 6},
11136                 {2442, 7}, {2447, 8}, {2452, 9},
11137                 {2457, 10}, {2462, 11}, {2467, 12},
11138                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11139          .a_channels = 4,
11140          .a = {{5170, 34}, {5190, 38},
11141                {5210, 42}, {5230, 46}},
11142          },
11143
11144         {                       /* Rest of World */
11145          "ZZR",
11146          .bg_channels = 14,
11147          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11148                 {2427, 4}, {2432, 5}, {2437, 6},
11149                 {2442, 7}, {2447, 8}, {2452, 9},
11150                 {2457, 10}, {2462, 11}, {2467, 12},
11151                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11152                              IEEE80211_CH_PASSIVE_ONLY}},
11153          },
11154
11155         {                       /* High Band */
11156          "ZZH",
11157          .bg_channels = 13,
11158          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11159                 {2427, 4}, {2432, 5}, {2437, 6},
11160                 {2442, 7}, {2447, 8}, {2452, 9},
11161                 {2457, 10}, {2462, 11},
11162                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11163                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11164          .a_channels = 4,
11165          .a = {{5745, 149}, {5765, 153},
11166                {5785, 157}, {5805, 161}},
11167          },
11168
11169         {                       /* Custom Europe */
11170          "ZZG",
11171          .bg_channels = 13,
11172          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11173                 {2427, 4}, {2432, 5}, {2437, 6},
11174                 {2442, 7}, {2447, 8}, {2452, 9},
11175                 {2457, 10}, {2462, 11},
11176                 {2467, 12}, {2472, 13}},
11177          .a_channels = 4,
11178          .a = {{5180, 36}, {5200, 40},
11179                {5220, 44}, {5240, 48}},
11180          },
11181
11182         {                       /* Europe */
11183          "ZZK",
11184          .bg_channels = 13,
11185          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11186                 {2427, 4}, {2432, 5}, {2437, 6},
11187                 {2442, 7}, {2447, 8}, {2452, 9},
11188                 {2457, 10}, {2462, 11},
11189                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11190                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11191          .a_channels = 24,
11192          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11193                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11194                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11195                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11196                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11197                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11198                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11199                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11200                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11201                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11202                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11203                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11204                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11205                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11206                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11207                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11208                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11209                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11210                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11211                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11212                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11213                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11214                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11215                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11216          },
11217
11218         {                       /* Europe */
11219          "ZZL",
11220          .bg_channels = 11,
11221          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11222                 {2427, 4}, {2432, 5}, {2437, 6},
11223                 {2442, 7}, {2447, 8}, {2452, 9},
11224                 {2457, 10}, {2462, 11}},
11225          .a_channels = 13,
11226          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11227                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11228                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11229                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11230                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11231                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11232                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11233                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11234                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11235                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11236                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11237                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11238                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11239          }
11240 };
11241
11242 #define MAX_HW_RESTARTS 5
11243 static int ipw_up(struct ipw_priv *priv)
11244 {
11245         int rc, i, j;
11246
11247         /* Age scan list entries found before suspend */
11248         if (priv->suspend_time) {
11249                 ieee80211_networks_age(priv->ieee, priv->suspend_time);
11250                 priv->suspend_time = 0;
11251         }
11252
11253         if (priv->status & STATUS_EXIT_PENDING)
11254                 return -EIO;
11255
11256         if (cmdlog && !priv->cmdlog) {
11257                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11258                                        GFP_KERNEL);
11259                 if (priv->cmdlog == NULL) {
11260                         IPW_ERROR("Error allocating %d command log entries.\n",
11261                                   cmdlog);
11262                         return -ENOMEM;
11263                 } else {
11264                         priv->cmdlog_len = cmdlog;
11265                 }
11266         }
11267
11268         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11269                 /* Load the microcode, firmware, and eeprom.
11270                  * Also start the clocks. */
11271                 rc = ipw_load(priv);
11272                 if (rc) {
11273                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11274                         return rc;
11275                 }
11276
11277                 ipw_init_ordinals(priv);
11278                 if (!(priv->config & CFG_CUSTOM_MAC))
11279                         eeprom_parse_mac(priv, priv->mac_addr);
11280                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11281
11282                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11283                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11284                                     ipw_geos[j].name, 3))
11285                                 break;
11286                 }
11287                 if (j == ARRAY_SIZE(ipw_geos)) {
11288                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11289                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11290                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11291                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11292                         j = 0;
11293                 }
11294                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11295                         IPW_WARNING("Could not set geography.");
11296                         return 0;
11297                 }
11298
11299                 if (priv->status & STATUS_RF_KILL_SW) {
11300                         IPW_WARNING("Radio disabled by module parameter.\n");
11301                         return 0;
11302                 } else if (rf_kill_active(priv)) {
11303                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11304                                     "Kill switch must be turned off for "
11305                                     "wireless networking to work.\n");
11306                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11307                                            2 * HZ);
11308                         return 0;
11309                 }
11310
11311                 rc = ipw_config(priv);
11312                 if (!rc) {
11313                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11314
11315                         /* If configure to try and auto-associate, kick
11316                          * off a scan. */
11317                         queue_delayed_work(priv->workqueue,
11318                                            &priv->request_scan, 0);
11319
11320                         return 0;
11321                 }
11322
11323                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11324                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11325                                i, MAX_HW_RESTARTS);
11326
11327                 /* We had an error bringing up the hardware, so take it
11328                  * all the way back down so we can try again */
11329                 ipw_down(priv);
11330         }
11331
11332         /* tried to restart and config the device for as long as our
11333          * patience could withstand */
11334         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11335
11336         return -EIO;
11337 }
11338
11339 static void ipw_bg_up(struct work_struct *work)
11340 {
11341         struct ipw_priv *priv =
11342                 container_of(work, struct ipw_priv, up);
11343         mutex_lock(&priv->mutex);
11344         ipw_up(priv);
11345         mutex_unlock(&priv->mutex);
11346 }
11347
11348 static void ipw_deinit(struct ipw_priv *priv)
11349 {
11350         int i;
11351
11352         if (priv->status & STATUS_SCANNING) {
11353                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11354                 ipw_abort_scan(priv);
11355         }
11356
11357         if (priv->status & STATUS_ASSOCIATED) {
11358                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11359                 ipw_disassociate(priv);
11360         }
11361
11362         ipw_led_shutdown(priv);
11363
11364         /* Wait up to 1s for status to change to not scanning and not
11365          * associated (disassociation can take a while for a ful 802.11
11366          * exchange */
11367         for (i = 1000; i && (priv->status &
11368                              (STATUS_DISASSOCIATING |
11369                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11370                 udelay(10);
11371
11372         if (priv->status & (STATUS_DISASSOCIATING |
11373                             STATUS_ASSOCIATED | STATUS_SCANNING))
11374                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11375         else
11376                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11377
11378         /* Attempt to disable the card */
11379         ipw_send_card_disable(priv, 0);
11380
11381         priv->status &= ~STATUS_INIT;
11382 }
11383
11384 static void ipw_down(struct ipw_priv *priv)
11385 {
11386         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11387
11388         priv->status |= STATUS_EXIT_PENDING;
11389
11390         if (ipw_is_init(priv))
11391                 ipw_deinit(priv);
11392
11393         /* Wipe out the EXIT_PENDING status bit if we are not actually
11394          * exiting the module */
11395         if (!exit_pending)
11396                 priv->status &= ~STATUS_EXIT_PENDING;
11397
11398         /* tell the device to stop sending interrupts */
11399         ipw_disable_interrupts(priv);
11400
11401         /* Clear all bits but the RF Kill */
11402         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11403         netif_carrier_off(priv->net_dev);
11404
11405         ipw_stop_nic(priv);
11406
11407         ipw_led_radio_off(priv);
11408 }
11409
11410 static void ipw_bg_down(struct work_struct *work)
11411 {
11412         struct ipw_priv *priv =
11413                 container_of(work, struct ipw_priv, down);
11414         mutex_lock(&priv->mutex);
11415         ipw_down(priv);
11416         mutex_unlock(&priv->mutex);
11417 }
11418
11419 /* Called by register_netdev() */
11420 static int ipw_net_init(struct net_device *dev)
11421 {
11422         struct ipw_priv *priv = ieee80211_priv(dev);
11423         mutex_lock(&priv->mutex);
11424
11425         if (ipw_up(priv)) {
11426                 mutex_unlock(&priv->mutex);
11427                 return -EIO;
11428         }
11429
11430         mutex_unlock(&priv->mutex);
11431         return 0;
11432 }
11433
11434 /* PCI driver stuff */
11435 static struct pci_device_id card_ids[] = {
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11443         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11444         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11445         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11446         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11447         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11455         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11456         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11457         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11458
11459         /* required last entry */
11460         {0,}
11461 };
11462
11463 MODULE_DEVICE_TABLE(pci, card_ids);
11464
11465 static struct attribute *ipw_sysfs_entries[] = {
11466         &dev_attr_rf_kill.attr,
11467         &dev_attr_direct_dword.attr,
11468         &dev_attr_indirect_byte.attr,
11469         &dev_attr_indirect_dword.attr,
11470         &dev_attr_mem_gpio_reg.attr,
11471         &dev_attr_command_event_reg.attr,
11472         &dev_attr_nic_type.attr,
11473         &dev_attr_status.attr,
11474         &dev_attr_cfg.attr,
11475         &dev_attr_error.attr,
11476         &dev_attr_event_log.attr,
11477         &dev_attr_cmd_log.attr,
11478         &dev_attr_eeprom_delay.attr,
11479         &dev_attr_ucode_version.attr,
11480         &dev_attr_rtc.attr,
11481         &dev_attr_scan_age.attr,
11482         &dev_attr_led.attr,
11483         &dev_attr_speed_scan.attr,
11484         &dev_attr_net_stats.attr,
11485         &dev_attr_channels.attr,
11486 #ifdef CONFIG_IPW2200_PROMISCUOUS
11487         &dev_attr_rtap_iface.attr,
11488         &dev_attr_rtap_filter.attr,
11489 #endif
11490         NULL
11491 };
11492
11493 static struct attribute_group ipw_attribute_group = {
11494         .name = NULL,           /* put in device directory */
11495         .attrs = ipw_sysfs_entries,
11496 };
11497
11498 #ifdef CONFIG_IPW2200_PROMISCUOUS
11499 static int ipw_prom_open(struct net_device *dev)
11500 {
11501         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11502         struct ipw_priv *priv = prom_priv->priv;
11503
11504         IPW_DEBUG_INFO("prom dev->open\n");
11505         netif_carrier_off(dev);
11506
11507         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11508                 priv->sys_config.accept_all_data_frames = 1;
11509                 priv->sys_config.accept_non_directed_frames = 1;
11510                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11511                 priv->sys_config.accept_all_mgmt_frames = 1;
11512
11513                 ipw_send_system_config(priv);
11514         }
11515
11516         return 0;
11517 }
11518
11519 static int ipw_prom_stop(struct net_device *dev)
11520 {
11521         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11522         struct ipw_priv *priv = prom_priv->priv;
11523
11524         IPW_DEBUG_INFO("prom dev->stop\n");
11525
11526         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11527                 priv->sys_config.accept_all_data_frames = 0;
11528                 priv->sys_config.accept_non_directed_frames = 0;
11529                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11530                 priv->sys_config.accept_all_mgmt_frames = 0;
11531
11532                 ipw_send_system_config(priv);
11533         }
11534
11535         return 0;
11536 }
11537
11538 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11539 {
11540         IPW_DEBUG_INFO("prom dev->xmit\n");
11541         dev_kfree_skb(skb);
11542         return NETDEV_TX_OK;
11543 }
11544
11545 static const struct net_device_ops ipw_prom_netdev_ops = {
11546         .ndo_open               = ipw_prom_open,
11547         .ndo_stop               = ipw_prom_stop,
11548         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11549         .ndo_change_mtu         = ieee80211_change_mtu,
11550         .ndo_set_mac_address    = eth_mac_addr,
11551         .ndo_validate_addr      = eth_validate_addr,
11552 };
11553
11554 static int ipw_prom_alloc(struct ipw_priv *priv)
11555 {
11556         int rc = 0;
11557
11558         if (priv->prom_net_dev)
11559                 return -EPERM;
11560
11561         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11562         if (priv->prom_net_dev == NULL)
11563                 return -ENOMEM;
11564
11565         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11566         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11567         priv->prom_priv->priv = priv;
11568
11569         strcpy(priv->prom_net_dev->name, "rtap%d");
11570         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11571
11572         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11573         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11574
11575         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11576         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11577
11578         rc = register_netdev(priv->prom_net_dev);
11579         if (rc) {
11580                 free_ieee80211(priv->prom_net_dev);
11581                 priv->prom_net_dev = NULL;
11582                 return rc;
11583         }
11584
11585         return 0;
11586 }
11587
11588 static void ipw_prom_free(struct ipw_priv *priv)
11589 {
11590         if (!priv->prom_net_dev)
11591                 return;
11592
11593         unregister_netdev(priv->prom_net_dev);
11594         free_ieee80211(priv->prom_net_dev);
11595
11596         priv->prom_net_dev = NULL;
11597 }
11598
11599 #endif
11600
11601 static const struct net_device_ops ipw_netdev_ops = {
11602         .ndo_init               = ipw_net_init,
11603         .ndo_open               = ipw_net_open,
11604         .ndo_stop               = ipw_net_stop,
11605         .ndo_set_multicast_list = ipw_net_set_multicast_list,
11606         .ndo_set_mac_address    = ipw_net_set_mac_address,
11607         .ndo_start_xmit         = ieee80211_xmit,
11608         .ndo_change_mtu         = ieee80211_change_mtu,
11609         .ndo_validate_addr      = eth_validate_addr,
11610 };
11611
11612 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11613                                    const struct pci_device_id *ent)
11614 {
11615         int err = 0;
11616         struct net_device *net_dev;
11617         void __iomem *base;
11618         u32 length, val;
11619         struct ipw_priv *priv;
11620         int i;
11621
11622         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11623         if (net_dev == NULL) {
11624                 err = -ENOMEM;
11625                 goto out;
11626         }
11627
11628         priv = ieee80211_priv(net_dev);
11629         priv->ieee = netdev_priv(net_dev);
11630
11631         priv->net_dev = net_dev;
11632         priv->pci_dev = pdev;
11633         ipw_debug_level = debug;
11634         spin_lock_init(&priv->irq_lock);
11635         spin_lock_init(&priv->lock);
11636         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11637                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11638
11639         mutex_init(&priv->mutex);
11640         if (pci_enable_device(pdev)) {
11641                 err = -ENODEV;
11642                 goto out_free_ieee80211;
11643         }
11644
11645         pci_set_master(pdev);
11646
11647         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11648         if (!err)
11649                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11650         if (err) {
11651                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11652                 goto out_pci_disable_device;
11653         }
11654
11655         pci_set_drvdata(pdev, priv);
11656
11657         err = pci_request_regions(pdev, DRV_NAME);
11658         if (err)
11659                 goto out_pci_disable_device;
11660
11661         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11662          * PCI Tx retries from interfering with C3 CPU state */
11663         pci_read_config_dword(pdev, 0x40, &val);
11664         if ((val & 0x0000ff00) != 0)
11665                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11666
11667         length = pci_resource_len(pdev, 0);
11668         priv->hw_len = length;
11669
11670         base = pci_ioremap_bar(pdev, 0);
11671         if (!base) {
11672                 err = -ENODEV;
11673                 goto out_pci_release_regions;
11674         }
11675
11676         priv->hw_base = base;
11677         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11678         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11679
11680         err = ipw_setup_deferred_work(priv);
11681         if (err) {
11682                 IPW_ERROR("Unable to setup deferred work\n");
11683                 goto out_iounmap;
11684         }
11685
11686         ipw_sw_reset(priv, 1);
11687
11688         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11689         if (err) {
11690                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11691                 goto out_destroy_workqueue;
11692         }
11693
11694         SET_NETDEV_DEV(net_dev, &pdev->dev);
11695
11696         mutex_lock(&priv->mutex);
11697
11698         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11699         priv->ieee->set_security = shim__set_security;
11700         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11701
11702 #ifdef CONFIG_IPW2200_QOS
11703         priv->ieee->is_qos_active = ipw_is_qos_active;
11704         priv->ieee->handle_probe_response = ipw_handle_beacon;
11705         priv->ieee->handle_beacon = ipw_handle_probe_response;
11706         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11707 #endif                          /* CONFIG_IPW2200_QOS */
11708
11709         priv->ieee->perfect_rssi = -20;
11710         priv->ieee->worst_rssi = -85;
11711
11712         net_dev->netdev_ops = &ipw_netdev_ops;
11713         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11714         net_dev->wireless_data = &priv->wireless_data;
11715         net_dev->wireless_handlers = &ipw_wx_handler_def;
11716         net_dev->ethtool_ops = &ipw_ethtool_ops;
11717         net_dev->irq = pdev->irq;
11718         net_dev->base_addr = (unsigned long)priv->hw_base;
11719         net_dev->mem_start = pci_resource_start(pdev, 0);
11720         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11721
11722         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11723         if (err) {
11724                 IPW_ERROR("failed to create sysfs device attributes\n");
11725                 mutex_unlock(&priv->mutex);
11726                 goto out_release_irq;
11727         }
11728
11729         mutex_unlock(&priv->mutex);
11730         err = register_netdev(net_dev);
11731         if (err) {
11732                 IPW_ERROR("failed to register network device\n");
11733                 goto out_remove_sysfs;
11734         }
11735
11736 #ifdef CONFIG_IPW2200_PROMISCUOUS
11737         if (rtap_iface) {
11738                 err = ipw_prom_alloc(priv);
11739                 if (err) {
11740                         IPW_ERROR("Failed to register promiscuous network "
11741                                   "device (error %d).\n", err);
11742                         unregister_netdev(priv->net_dev);
11743                         goto out_remove_sysfs;
11744                 }
11745         }
11746 #endif
11747
11748         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11749                "channels, %d 802.11a channels)\n",
11750                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11751                priv->ieee->geo.a_channels);
11752
11753         return 0;
11754
11755       out_remove_sysfs:
11756         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11757       out_release_irq:
11758         free_irq(pdev->irq, priv);
11759       out_destroy_workqueue:
11760         destroy_workqueue(priv->workqueue);
11761         priv->workqueue = NULL;
11762       out_iounmap:
11763         iounmap(priv->hw_base);
11764       out_pci_release_regions:
11765         pci_release_regions(pdev);
11766       out_pci_disable_device:
11767         pci_disable_device(pdev);
11768         pci_set_drvdata(pdev, NULL);
11769       out_free_ieee80211:
11770         free_ieee80211(priv->net_dev);
11771       out:
11772         return err;
11773 }
11774
11775 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11776 {
11777         struct ipw_priv *priv = pci_get_drvdata(pdev);
11778         struct list_head *p, *q;
11779         int i;
11780
11781         if (!priv)
11782                 return;
11783
11784         mutex_lock(&priv->mutex);
11785
11786         priv->status |= STATUS_EXIT_PENDING;
11787         ipw_down(priv);
11788         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11789
11790         mutex_unlock(&priv->mutex);
11791
11792         unregister_netdev(priv->net_dev);
11793
11794         if (priv->rxq) {
11795                 ipw_rx_queue_free(priv, priv->rxq);
11796                 priv->rxq = NULL;
11797         }
11798         ipw_tx_queue_free(priv);
11799
11800         if (priv->cmdlog) {
11801                 kfree(priv->cmdlog);
11802                 priv->cmdlog = NULL;
11803         }
11804         /* ipw_down will ensure that there is no more pending work
11805          * in the workqueue's, so we can safely remove them now. */
11806         cancel_delayed_work(&priv->adhoc_check);
11807         cancel_delayed_work(&priv->gather_stats);
11808         cancel_delayed_work(&priv->request_scan);
11809         cancel_delayed_work(&priv->request_direct_scan);
11810         cancel_delayed_work(&priv->request_passive_scan);
11811         cancel_delayed_work(&priv->scan_event);
11812         cancel_delayed_work(&priv->rf_kill);
11813         cancel_delayed_work(&priv->scan_check);
11814         destroy_workqueue(priv->workqueue);
11815         priv->workqueue = NULL;
11816
11817         /* Free MAC hash list for ADHOC */
11818         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11819                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11820                         list_del(p);
11821                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11822                 }
11823         }
11824
11825         kfree(priv->error);
11826         priv->error = NULL;
11827
11828 #ifdef CONFIG_IPW2200_PROMISCUOUS
11829         ipw_prom_free(priv);
11830 #endif
11831
11832         free_irq(pdev->irq, priv);
11833         iounmap(priv->hw_base);
11834         pci_release_regions(pdev);
11835         pci_disable_device(pdev);
11836         pci_set_drvdata(pdev, NULL);
11837         free_ieee80211(priv->net_dev);
11838         free_firmware();
11839 }
11840
11841 #ifdef CONFIG_PM
11842 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11843 {
11844         struct ipw_priv *priv = pci_get_drvdata(pdev);
11845         struct net_device *dev = priv->net_dev;
11846
11847         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11848
11849         /* Take down the device; powers it off, etc. */
11850         ipw_down(priv);
11851
11852         /* Remove the PRESENT state of the device */
11853         netif_device_detach(dev);
11854
11855         pci_save_state(pdev);
11856         pci_disable_device(pdev);
11857         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11858
11859         priv->suspend_at = get_seconds();
11860
11861         return 0;
11862 }
11863
11864 static int ipw_pci_resume(struct pci_dev *pdev)
11865 {
11866         struct ipw_priv *priv = pci_get_drvdata(pdev);
11867         struct net_device *dev = priv->net_dev;
11868         int err;
11869         u32 val;
11870
11871         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11872
11873         pci_set_power_state(pdev, PCI_D0);
11874         err = pci_enable_device(pdev);
11875         if (err) {
11876                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11877                        dev->name);
11878                 return err;
11879         }
11880         pci_restore_state(pdev);
11881
11882         /*
11883          * Suspend/Resume resets the PCI configuration space, so we have to
11884          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11885          * from interfering with C3 CPU state. pci_restore_state won't help
11886          * here since it only restores the first 64 bytes pci config header.
11887          */
11888         pci_read_config_dword(pdev, 0x40, &val);
11889         if ((val & 0x0000ff00) != 0)
11890                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11891
11892         /* Set the device back into the PRESENT state; this will also wake
11893          * the queue of needed */
11894         netif_device_attach(dev);
11895
11896         priv->suspend_time = get_seconds() - priv->suspend_at;
11897
11898         /* Bring the device back up */
11899         queue_work(priv->workqueue, &priv->up);
11900
11901         return 0;
11902 }
11903 #endif
11904
11905 static void ipw_pci_shutdown(struct pci_dev *pdev)
11906 {
11907         struct ipw_priv *priv = pci_get_drvdata(pdev);
11908
11909         /* Take down the device; powers it off, etc. */
11910         ipw_down(priv);
11911
11912         pci_disable_device(pdev);
11913 }
11914
11915 /* driver initialization stuff */
11916 static struct pci_driver ipw_driver = {
11917         .name = DRV_NAME,
11918         .id_table = card_ids,
11919         .probe = ipw_pci_probe,
11920         .remove = __devexit_p(ipw_pci_remove),
11921 #ifdef CONFIG_PM
11922         .suspend = ipw_pci_suspend,
11923         .resume = ipw_pci_resume,
11924 #endif
11925         .shutdown = ipw_pci_shutdown,
11926 };
11927
11928 static int __init ipw_init(void)
11929 {
11930         int ret;
11931
11932         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11933         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11934
11935         ret = pci_register_driver(&ipw_driver);
11936         if (ret) {
11937                 IPW_ERROR("Unable to initialize PCI module\n");
11938                 return ret;
11939         }
11940
11941         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11942         if (ret) {
11943                 IPW_ERROR("Unable to create driver sysfs file\n");
11944                 pci_unregister_driver(&ipw_driver);
11945                 return ret;
11946         }
11947
11948         return ret;
11949 }
11950
11951 static void __exit ipw_exit(void)
11952 {
11953         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11954         pci_unregister_driver(&ipw_driver);
11955 }
11956
11957 module_param(disable, int, 0444);
11958 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11959
11960 module_param(associate, int, 0444);
11961 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11962
11963 module_param(auto_create, int, 0444);
11964 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11965
11966 module_param(led, int, 0444);
11967 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11968
11969 module_param(debug, int, 0444);
11970 MODULE_PARM_DESC(debug, "debug output mask");
11971
11972 module_param(channel, int, 0444);
11973 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11974
11975 #ifdef CONFIG_IPW2200_PROMISCUOUS
11976 module_param(rtap_iface, int, 0444);
11977 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11978 #endif
11979
11980 #ifdef CONFIG_IPW2200_QOS
11981 module_param(qos_enable, int, 0444);
11982 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11983
11984 module_param(qos_burst_enable, int, 0444);
11985 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11986
11987 module_param(qos_no_ack_mask, int, 0444);
11988 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11989
11990 module_param(burst_duration_CCK, int, 0444);
11991 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11992
11993 module_param(burst_duration_OFDM, int, 0444);
11994 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11995 #endif                          /* CONFIG_IPW2200_QOS */
11996
11997 #ifdef CONFIG_IPW2200_MONITOR
11998 module_param(mode, int, 0444);
11999 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12000 #else
12001 module_param(mode, int, 0444);
12002 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12003 #endif
12004
12005 module_param(bt_coexist, int, 0444);
12006 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12007
12008 module_param(hwcrypto, int, 0444);
12009 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12010
12011 module_param(cmdlog, int, 0444);
12012 MODULE_PARM_DESC(cmdlog,
12013                  "allocate a ring buffer for logging firmware commands");
12014
12015 module_param(roaming, int, 0444);
12016 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12017
12018 module_param(antenna, int, 0444);
12019 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12020
12021 module_exit(ipw_exit);
12022 module_init(ipw_init);