Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluet...
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list *ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES" "undefined",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         queue_delayed_work(priv->workqueue, &priv->reset_work,
710                                            priv->reset_backoff * HZ);
711                 else
712                         queue_delayed_work(priv->workqueue, &priv->reset_work,
713                                            0);
714
715                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
716                         priv->reset_backoff++;
717
718                 wake_up_interruptible(&priv->wait_command_queue);
719         } else
720                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
721                                priv->net_dev->name);
722
723 }
724
725 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
726 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
727                                    struct host_command *cmd)
728 {
729         struct list_head *element;
730         struct ipw2100_tx_packet *packet;
731         unsigned long flags;
732         int err = 0;
733
734         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
735                      command_types[cmd->host_command], cmd->host_command,
736                      cmd->host_command_length);
737         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
738                    cmd->host_command_length);
739
740         spin_lock_irqsave(&priv->low_lock, flags);
741
742         if (priv->fatal_error) {
743                 IPW_DEBUG_INFO
744                     ("Attempt to send command while hardware in fatal error condition.\n");
745                 err = -EIO;
746                 goto fail_unlock;
747         }
748
749         if (!(priv->status & STATUS_RUNNING)) {
750                 IPW_DEBUG_INFO
751                     ("Attempt to send command while hardware is not running.\n");
752                 err = -EIO;
753                 goto fail_unlock;
754         }
755
756         if (priv->status & STATUS_CMD_ACTIVE) {
757                 IPW_DEBUG_INFO
758                     ("Attempt to send command while another command is pending.\n");
759                 err = -EBUSY;
760                 goto fail_unlock;
761         }
762
763         if (list_empty(&priv->msg_free_list)) {
764                 IPW_DEBUG_INFO("no available msg buffers\n");
765                 goto fail_unlock;
766         }
767
768         priv->status |= STATUS_CMD_ACTIVE;
769         priv->messages_sent++;
770
771         element = priv->msg_free_list.next;
772
773         packet = list_entry(element, struct ipw2100_tx_packet, list);
774         packet->jiffy_start = jiffies;
775
776         /* initialize the firmware command packet */
777         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
778         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
779         packet->info.c_struct.cmd->host_command_len_reg =
780             cmd->host_command_length;
781         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
782
783         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
784                cmd->host_command_parameters,
785                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
786
787         list_del(element);
788         DEC_STAT(&priv->msg_free_stat);
789
790         list_add_tail(element, &priv->msg_pend_list);
791         INC_STAT(&priv->msg_pend_stat);
792
793         ipw2100_tx_send_commands(priv);
794         ipw2100_tx_send_data(priv);
795
796         spin_unlock_irqrestore(&priv->low_lock, flags);
797
798         /*
799          * We must wait for this command to complete before another
800          * command can be sent...  but if we wait more than 3 seconds
801          * then there is a problem.
802          */
803
804         err =
805             wait_event_interruptible_timeout(priv->wait_command_queue,
806                                              !(priv->
807                                                status & STATUS_CMD_ACTIVE),
808                                              HOST_COMPLETE_TIMEOUT);
809
810         if (err == 0) {
811                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
812                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
813                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
814                 priv->status &= ~STATUS_CMD_ACTIVE;
815                 schedule_reset(priv);
816                 return -EIO;
817         }
818
819         if (priv->fatal_error) {
820                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
821                        priv->net_dev->name);
822                 return -EIO;
823         }
824
825         /* !!!!! HACK TEST !!!!!
826          * When lots of debug trace statements are enabled, the driver
827          * doesn't seem to have as many firmware restart cycles...
828          *
829          * As a test, we're sticking in a 1/100s delay here */
830         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
831
832         return 0;
833
834       fail_unlock:
835         spin_unlock_irqrestore(&priv->low_lock, flags);
836
837         return err;
838 }
839
840 /*
841  * Verify the values and data access of the hardware
842  * No locks needed or used.  No functions called.
843  */
844 static int ipw2100_verify(struct ipw2100_priv *priv)
845 {
846         u32 data1, data2;
847         u32 address;
848
849         u32 val1 = 0x76543210;
850         u32 val2 = 0xFEDCBA98;
851
852         /* Domain 0 check - all values should be DOA_DEBUG */
853         for (address = IPW_REG_DOA_DEBUG_AREA_START;
854              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
855                 read_register(priv->net_dev, address, &data1);
856                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
857                         return -EIO;
858         }
859
860         /* Domain 1 check - use arbitrary read/write compare  */
861         for (address = 0; address < 5; address++) {
862                 /* The memory area is not used now */
863                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
864                                val1);
865                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
866                                val2);
867                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
868                               &data1);
869                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
870                               &data2);
871                 if (val1 == data1 && val2 == data2)
872                         return 0;
873         }
874
875         return -EIO;
876 }
877
878 /*
879  *
880  * Loop until the CARD_DISABLED bit is the same value as the
881  * supplied parameter
882  *
883  * TODO: See if it would be more efficient to do a wait/wake
884  *       cycle and have the completion event trigger the wakeup
885  *
886  */
887 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
888 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
889 {
890         int i;
891         u32 card_state;
892         u32 len = sizeof(card_state);
893         int err;
894
895         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
896                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
897                                           &card_state, &len);
898                 if (err) {
899                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
900                                        "failed.\n");
901                         return 0;
902                 }
903
904                 /* We'll break out if either the HW state says it is
905                  * in the state we want, or if HOST_COMPLETE command
906                  * finishes */
907                 if ((card_state == state) ||
908                     ((priv->status & STATUS_ENABLED) ?
909                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
910                         if (state == IPW_HW_STATE_ENABLED)
911                                 priv->status |= STATUS_ENABLED;
912                         else
913                                 priv->status &= ~STATUS_ENABLED;
914
915                         return 0;
916                 }
917
918                 udelay(50);
919         }
920
921         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
922                        state ? "DISABLED" : "ENABLED");
923         return -EIO;
924 }
925
926 /*********************************************************************
927     Procedure   :   sw_reset_and_clock
928     Purpose     :   Asserts s/w reset, asserts clock initialization
929                     and waits for clock stabilization
930  ********************************************************************/
931 static int sw_reset_and_clock(struct ipw2100_priv *priv)
932 {
933         int i;
934         u32 r;
935
936         // assert s/w reset
937         write_register(priv->net_dev, IPW_REG_RESET_REG,
938                        IPW_AUX_HOST_RESET_REG_SW_RESET);
939
940         // wait for clock stabilization
941         for (i = 0; i < 1000; i++) {
942                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
943
944                 // check clock ready bit
945                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
946                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
947                         break;
948         }
949
950         if (i == 1000)
951                 return -EIO;    // TODO: better error value
952
953         /* set "initialization complete" bit to move adapter to
954          * D0 state */
955         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
956                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
957
958         /* wait for clock stabilization */
959         for (i = 0; i < 10000; i++) {
960                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
961
962                 /* check clock ready bit */
963                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
964                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
965                         break;
966         }
967
968         if (i == 10000)
969                 return -EIO;    /* TODO: better error value */
970
971         /* set D0 standby bit */
972         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
973         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
974                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
975
976         return 0;
977 }
978
979 /*********************************************************************
980     Procedure   :   ipw2100_download_firmware
981     Purpose     :   Initiaze adapter after power on.
982                     The sequence is:
983                     1. assert s/w reset first!
984                     2. awake clocks & wait for clock stabilization
985                     3. hold ARC (don't ask me why...)
986                     4. load Dino ucode and reset/clock init again
987                     5. zero-out shared mem
988                     6. download f/w
989  *******************************************************************/
990 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
991 {
992         u32 address;
993         int err;
994
995 #ifndef CONFIG_PM
996         /* Fetch the firmware and microcode */
997         struct ipw2100_fw ipw2100_firmware;
998 #endif
999
1000         if (priv->fatal_error) {
1001                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1002                                 "fatal error %d.  Interface must be brought down.\n",
1003                                 priv->net_dev->name, priv->fatal_error);
1004                 return -EINVAL;
1005         }
1006 #ifdef CONFIG_PM
1007         if (!ipw2100_firmware.version) {
1008                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1009                 if (err) {
1010                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1011                                         priv->net_dev->name, err);
1012                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1013                         goto fail;
1014                 }
1015         }
1016 #else
1017         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1018         if (err) {
1019                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1020                                 priv->net_dev->name, err);
1021                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1022                 goto fail;
1023         }
1024 #endif
1025         priv->firmware_version = ipw2100_firmware.version;
1026
1027         /* s/w reset and clock stabilization */
1028         err = sw_reset_and_clock(priv);
1029         if (err) {
1030                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1031                                 priv->net_dev->name, err);
1032                 goto fail;
1033         }
1034
1035         err = ipw2100_verify(priv);
1036         if (err) {
1037                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1038                                 priv->net_dev->name, err);
1039                 goto fail;
1040         }
1041
1042         /* Hold ARC */
1043         write_nic_dword(priv->net_dev,
1044                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1045
1046         /* allow ARC to run */
1047         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1048
1049         /* load microcode */
1050         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1051         if (err) {
1052                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1053                        priv->net_dev->name, err);
1054                 goto fail;
1055         }
1056
1057         /* release ARC */
1058         write_nic_dword(priv->net_dev,
1059                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1060
1061         /* s/w reset and clock stabilization (again!!!) */
1062         err = sw_reset_and_clock(priv);
1063         if (err) {
1064                 printk(KERN_ERR DRV_NAME
1065                        ": %s: sw_reset_and_clock failed: %d\n",
1066                        priv->net_dev->name, err);
1067                 goto fail;
1068         }
1069
1070         /* load f/w */
1071         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1072         if (err) {
1073                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1074                                 priv->net_dev->name, err);
1075                 goto fail;
1076         }
1077 #ifndef CONFIG_PM
1078         /*
1079          * When the .resume method of the driver is called, the other
1080          * part of the system, i.e. the ide driver could still stay in
1081          * the suspend stage. This prevents us from loading the firmware
1082          * from the disk.  --YZ
1083          */
1084
1085         /* free any storage allocated for firmware image */
1086         ipw2100_release_firmware(priv, &ipw2100_firmware);
1087 #endif
1088
1089         /* zero out Domain 1 area indirectly (Si requirement) */
1090         for (address = IPW_HOST_FW_SHARED_AREA0;
1091              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1092                 write_nic_dword(priv->net_dev, address, 0);
1093         for (address = IPW_HOST_FW_SHARED_AREA1;
1094              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA2;
1097              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA3;
1100              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1103              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105
1106         return 0;
1107
1108       fail:
1109         ipw2100_release_firmware(priv, &ipw2100_firmware);
1110         return err;
1111 }
1112
1113 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1114 {
1115         if (priv->status & STATUS_INT_ENABLED)
1116                 return;
1117         priv->status |= STATUS_INT_ENABLED;
1118         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1119 }
1120
1121 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1122 {
1123         if (!(priv->status & STATUS_INT_ENABLED))
1124                 return;
1125         priv->status &= ~STATUS_INT_ENABLED;
1126         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1127 }
1128
1129 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1130 {
1131         struct ipw2100_ordinals *ord = &priv->ordinals;
1132
1133         IPW_DEBUG_INFO("enter\n");
1134
1135         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1136                       &ord->table1_addr);
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1139                       &ord->table2_addr);
1140
1141         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1142         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1143
1144         ord->table2_size &= 0x0000FFFF;
1145
1146         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1147         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1148         IPW_DEBUG_INFO("exit\n");
1149 }
1150
1151 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1152 {
1153         u32 reg = 0;
1154         /*
1155          * Set GPIO 3 writable by FW; GPIO 1 writable
1156          * by driver and enable clock
1157          */
1158         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1159                IPW_BIT_GPIO_LED_OFF);
1160         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1161 }
1162
1163 static int rf_kill_active(struct ipw2100_priv *priv)
1164 {
1165 #define MAX_RF_KILL_CHECKS 5
1166 #define RF_KILL_CHECK_DELAY 40
1167
1168         unsigned short value = 0;
1169         u32 reg = 0;
1170         int i;
1171
1172         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1173                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1174                 priv->status &= ~STATUS_RF_KILL_HW;
1175                 return 0;
1176         }
1177
1178         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1179                 udelay(RF_KILL_CHECK_DELAY);
1180                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1181                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1182         }
1183
1184         if (value == 0) {
1185                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1186                 priv->status |= STATUS_RF_KILL_HW;
1187         } else {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1189                 priv->status &= ~STATUS_RF_KILL_HW;
1190         }
1191
1192         return (value == 0);
1193 }
1194
1195 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1196 {
1197         u32 addr, len;
1198         u32 val;
1199
1200         /*
1201          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1202          */
1203         len = sizeof(addr);
1204         if (ipw2100_get_ordinal
1205             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1206                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1207                                __LINE__);
1208                 return -EIO;
1209         }
1210
1211         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1212
1213         /*
1214          * EEPROM version is the byte at offset 0xfd in firmware
1215          * We read 4 bytes, then shift out the byte we actually want */
1216         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1217         priv->eeprom_version = (val >> 24) & 0xFF;
1218         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1219
1220         /*
1221          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1222          *
1223          *  notice that the EEPROM bit is reverse polarity, i.e.
1224          *     bit = 0  signifies HW RF kill switch is supported
1225          *     bit = 1  signifies HW RF kill switch is NOT supported
1226          */
1227         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1228         if (!((val >> 24) & 0x01))
1229                 priv->hw_features |= HW_FEATURE_RFKILL;
1230
1231         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1232                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1233
1234         return 0;
1235 }
1236
1237 /*
1238  * Start firmware execution after power on and intialization
1239  * The sequence is:
1240  *  1. Release ARC
1241  *  2. Wait for f/w initialization completes;
1242  */
1243 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1244 {
1245         int i;
1246         u32 inta, inta_mask, gpio;
1247
1248         IPW_DEBUG_INFO("enter\n");
1249
1250         if (priv->status & STATUS_RUNNING)
1251                 return 0;
1252
1253         /*
1254          * Initialize the hw - drive adapter to DO state by setting
1255          * init_done bit. Wait for clk_ready bit and Download
1256          * fw & dino ucode
1257          */
1258         if (ipw2100_download_firmware(priv)) {
1259                 printk(KERN_ERR DRV_NAME
1260                        ": %s: Failed to power on the adapter.\n",
1261                        priv->net_dev->name);
1262                 return -EIO;
1263         }
1264
1265         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1266          * in the firmware RBD and TBD ring queue */
1267         ipw2100_queues_initialize(priv);
1268
1269         ipw2100_hw_set_gpio(priv);
1270
1271         /* TODO -- Look at disabling interrupts here to make sure none
1272          * get fired during FW initialization */
1273
1274         /* Release ARC - clear reset bit */
1275         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1276
1277         /* wait for f/w intialization complete */
1278         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1279         i = 5000;
1280         do {
1281                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1282                 /* Todo... wait for sync command ... */
1283
1284                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1285
1286                 /* check "init done" bit */
1287                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1288                         /* reset "init done" bit */
1289                         write_register(priv->net_dev, IPW_REG_INTA,
1290                                        IPW2100_INTA_FW_INIT_DONE);
1291                         break;
1292                 }
1293
1294                 /* check error conditions : we check these after the firmware
1295                  * check so that if there is an error, the interrupt handler
1296                  * will see it and the adapter will be reset */
1297                 if (inta &
1298                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1299                         /* clear error conditions */
1300                         write_register(priv->net_dev, IPW_REG_INTA,
1301                                        IPW2100_INTA_FATAL_ERROR |
1302                                        IPW2100_INTA_PARITY_ERROR);
1303                 }
1304         } while (--i);
1305
1306         /* Clear out any pending INTAs since we aren't supposed to have
1307          * interrupts enabled at this point... */
1308         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1309         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1310         inta &= IPW_INTERRUPT_MASK;
1311         /* Clear out any pending interrupts */
1312         if (inta & inta_mask)
1313                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1314
1315         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1316                      i ? "SUCCESS" : "FAILED");
1317
1318         if (!i) {
1319                 printk(KERN_WARNING DRV_NAME
1320                        ": %s: Firmware did not initialize.\n",
1321                        priv->net_dev->name);
1322                 return -EIO;
1323         }
1324
1325         /* allow firmware to write to GPIO1 & GPIO3 */
1326         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1327
1328         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1329
1330         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1331
1332         /* Ready to receive commands */
1333         priv->status |= STATUS_RUNNING;
1334
1335         /* The adapter has been reset; we are not associated */
1336         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1337
1338         IPW_DEBUG_INFO("exit\n");
1339
1340         return 0;
1341 }
1342
1343 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1344 {
1345         if (!priv->fatal_error)
1346                 return;
1347
1348         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1349         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1350         priv->fatal_error = 0;
1351 }
1352
1353 /* NOTE: Our interrupt is disabled when this method is called */
1354 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1355 {
1356         u32 reg;
1357         int i;
1358
1359         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1360
1361         ipw2100_hw_set_gpio(priv);
1362
1363         /* Step 1. Stop Master Assert */
1364         write_register(priv->net_dev, IPW_REG_RESET_REG,
1365                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1366
1367         /* Step 2. Wait for stop Master Assert
1368          *         (not more than 50us, otherwise ret error */
1369         i = 5;
1370         do {
1371                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1372                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1373
1374                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1375                         break;
1376         } while (--i);
1377
1378         priv->status &= ~STATUS_RESET_PENDING;
1379
1380         if (!i) {
1381                 IPW_DEBUG_INFO
1382                     ("exit - waited too long for master assert stop\n");
1383                 return -EIO;
1384         }
1385
1386         write_register(priv->net_dev, IPW_REG_RESET_REG,
1387                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1388
1389         /* Reset any fatal_error conditions */
1390         ipw2100_reset_fatalerror(priv);
1391
1392         /* At this point, the adapter is now stopped and disabled */
1393         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1394                           STATUS_ASSOCIATED | STATUS_ENABLED);
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1401  *
1402  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1403  *
1404  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1405  * if STATUS_ASSN_LOST is sent.
1406  */
1407 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1408 {
1409
1410 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1411
1412         struct host_command cmd = {
1413                 .host_command = CARD_DISABLE_PHY_OFF,
1414                 .host_command_sequence = 0,
1415                 .host_command_length = 0,
1416         };
1417         int err, i;
1418         u32 val1, val2;
1419
1420         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1421
1422         /* Turn off the radio */
1423         err = ipw2100_hw_send_command(priv, &cmd);
1424         if (err)
1425                 return err;
1426
1427         for (i = 0; i < 2500; i++) {
1428                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1429                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1430
1431                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1432                     (val2 & IPW2100_COMMAND_PHY_OFF))
1433                         return 0;
1434
1435                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1436         }
1437
1438         return -EIO;
1439 }
1440
1441 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1442 {
1443         struct host_command cmd = {
1444                 .host_command = HOST_COMPLETE,
1445                 .host_command_sequence = 0,
1446                 .host_command_length = 0
1447         };
1448         int err = 0;
1449
1450         IPW_DEBUG_HC("HOST_COMPLETE\n");
1451
1452         if (priv->status & STATUS_ENABLED)
1453                 return 0;
1454
1455         mutex_lock(&priv->adapter_mutex);
1456
1457         if (rf_kill_active(priv)) {
1458                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1459                 goto fail_up;
1460         }
1461
1462         err = ipw2100_hw_send_command(priv, &cmd);
1463         if (err) {
1464                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1465                 goto fail_up;
1466         }
1467
1468         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1469         if (err) {
1470                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1471                                priv->net_dev->name);
1472                 goto fail_up;
1473         }
1474
1475         if (priv->stop_hang_check) {
1476                 priv->stop_hang_check = 0;
1477                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1478         }
1479
1480       fail_up:
1481         mutex_unlock(&priv->adapter_mutex);
1482         return err;
1483 }
1484
1485 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1486 {
1487 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1488
1489         struct host_command cmd = {
1490                 .host_command = HOST_PRE_POWER_DOWN,
1491                 .host_command_sequence = 0,
1492                 .host_command_length = 0,
1493         };
1494         int err, i;
1495         u32 reg;
1496
1497         if (!(priv->status & STATUS_RUNNING))
1498                 return 0;
1499
1500         priv->status |= STATUS_STOPPING;
1501
1502         /* We can only shut down the card if the firmware is operational.  So,
1503          * if we haven't reset since a fatal_error, then we can not send the
1504          * shutdown commands. */
1505         if (!priv->fatal_error) {
1506                 /* First, make sure the adapter is enabled so that the PHY_OFF
1507                  * command can shut it down */
1508                 ipw2100_enable_adapter(priv);
1509
1510                 err = ipw2100_hw_phy_off(priv);
1511                 if (err)
1512                         printk(KERN_WARNING DRV_NAME
1513                                ": Error disabling radio %d\n", err);
1514
1515                 /*
1516                  * If in D0-standby mode going directly to D3 may cause a
1517                  * PCI bus violation.  Therefore we must change out of the D0
1518                  * state.
1519                  *
1520                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1521                  * hardware from going into standby mode and will transition
1522                  * out of D0-standby if it is already in that state.
1523                  *
1524                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1525                  * driver upon completion.  Once received, the driver can
1526                  * proceed to the D3 state.
1527                  *
1528                  * Prepare for power down command to fw.  This command would
1529                  * take HW out of D0-standby and prepare it for D3 state.
1530                  *
1531                  * Currently FW does not support event notification for this
1532                  * event. Therefore, skip waiting for it.  Just wait a fixed
1533                  * 100ms
1534                  */
1535                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1536
1537                 err = ipw2100_hw_send_command(priv, &cmd);
1538                 if (err)
1539                         printk(KERN_WARNING DRV_NAME ": "
1540                                "%s: Power down command failed: Error %d\n",
1541                                priv->net_dev->name, err);
1542                 else
1543                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1544         }
1545
1546         priv->status &= ~STATUS_ENABLED;
1547
1548         /*
1549          * Set GPIO 3 writable by FW; GPIO 1 writable
1550          * by driver and enable clock
1551          */
1552         ipw2100_hw_set_gpio(priv);
1553
1554         /*
1555          * Power down adapter.  Sequence:
1556          * 1. Stop master assert (RESET_REG[9]=1)
1557          * 2. Wait for stop master (RESET_REG[8]==1)
1558          * 3. S/w reset assert (RESET_REG[7] = 1)
1559          */
1560
1561         /* Stop master assert */
1562         write_register(priv->net_dev, IPW_REG_RESET_REG,
1563                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1564
1565         /* wait stop master not more than 50 usec.
1566          * Otherwise return error. */
1567         for (i = 5; i > 0; i--) {
1568                 udelay(10);
1569
1570                 /* Check master stop bit */
1571                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1572
1573                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1574                         break;
1575         }
1576
1577         if (i == 0)
1578                 printk(KERN_WARNING DRV_NAME
1579                        ": %s: Could now power down adapter.\n",
1580                        priv->net_dev->name);
1581
1582         /* assert s/w reset */
1583         write_register(priv->net_dev, IPW_REG_RESET_REG,
1584                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1585
1586         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1587
1588         return 0;
1589 }
1590
1591 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1592 {
1593         struct host_command cmd = {
1594                 .host_command = CARD_DISABLE,
1595                 .host_command_sequence = 0,
1596                 .host_command_length = 0
1597         };
1598         int err = 0;
1599
1600         IPW_DEBUG_HC("CARD_DISABLE\n");
1601
1602         if (!(priv->status & STATUS_ENABLED))
1603                 return 0;
1604
1605         /* Make sure we clear the associated state */
1606         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1607
1608         if (!priv->stop_hang_check) {
1609                 priv->stop_hang_check = 1;
1610                 cancel_delayed_work(&priv->hang_check);
1611         }
1612
1613         mutex_lock(&priv->adapter_mutex);
1614
1615         err = ipw2100_hw_send_command(priv, &cmd);
1616         if (err) {
1617                 printk(KERN_WARNING DRV_NAME
1618                        ": exit - failed to send CARD_DISABLE command\n");
1619                 goto fail_up;
1620         }
1621
1622         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1623         if (err) {
1624                 printk(KERN_WARNING DRV_NAME
1625                        ": exit - card failed to change to DISABLED\n");
1626                 goto fail_up;
1627         }
1628
1629         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1630
1631       fail_up:
1632         mutex_unlock(&priv->adapter_mutex);
1633         return err;
1634 }
1635
1636 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1637 {
1638         struct host_command cmd = {
1639                 .host_command = SET_SCAN_OPTIONS,
1640                 .host_command_sequence = 0,
1641                 .host_command_length = 8
1642         };
1643         int err;
1644
1645         IPW_DEBUG_INFO("enter\n");
1646
1647         IPW_DEBUG_SCAN("setting scan options\n");
1648
1649         cmd.host_command_parameters[0] = 0;
1650
1651         if (!(priv->config & CFG_ASSOCIATE))
1652                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1653         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1654                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1655         if (priv->config & CFG_PASSIVE_SCAN)
1656                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1657
1658         cmd.host_command_parameters[1] = priv->channel_mask;
1659
1660         err = ipw2100_hw_send_command(priv, &cmd);
1661
1662         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1663                      cmd.host_command_parameters[0]);
1664
1665         return err;
1666 }
1667
1668 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1669 {
1670         struct host_command cmd = {
1671                 .host_command = BROADCAST_SCAN,
1672                 .host_command_sequence = 0,
1673                 .host_command_length = 4
1674         };
1675         int err;
1676
1677         IPW_DEBUG_HC("START_SCAN\n");
1678
1679         cmd.host_command_parameters[0] = 0;
1680
1681         /* No scanning if in monitor mode */
1682         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1683                 return 1;
1684
1685         if (priv->status & STATUS_SCANNING) {
1686                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1687                 return 0;
1688         }
1689
1690         IPW_DEBUG_INFO("enter\n");
1691
1692         /* Not clearing here; doing so makes iwlist always return nothing...
1693          *
1694          * We should modify the table logic to use aging tables vs. clearing
1695          * the table on each scan start.
1696          */
1697         IPW_DEBUG_SCAN("starting scan\n");
1698
1699         priv->status |= STATUS_SCANNING;
1700         err = ipw2100_hw_send_command(priv, &cmd);
1701         if (err)
1702                 priv->status &= ~STATUS_SCANNING;
1703
1704         IPW_DEBUG_INFO("exit\n");
1705
1706         return err;
1707 }
1708
1709 static const struct libipw_geo ipw_geos[] = {
1710         {                       /* Restricted */
1711          "---",
1712          .bg_channels = 14,
1713          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1714                 {2427, 4}, {2432, 5}, {2437, 6},
1715                 {2442, 7}, {2447, 8}, {2452, 9},
1716                 {2457, 10}, {2462, 11}, {2467, 12},
1717                 {2472, 13}, {2484, 14}},
1718          },
1719 };
1720
1721 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1722 {
1723         unsigned long flags;
1724         int rc = 0;
1725         u32 lock;
1726         u32 ord_len = sizeof(lock);
1727
1728         /* Age scan list entries found before suspend */
1729         if (priv->suspend_time) {
1730                 libipw_networks_age(priv->ieee, priv->suspend_time);
1731                 priv->suspend_time = 0;
1732         }
1733
1734         /* Quiet if manually disabled. */
1735         if (priv->status & STATUS_RF_KILL_SW) {
1736                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1737                                "switch\n", priv->net_dev->name);
1738                 return 0;
1739         }
1740
1741         /* the ipw2100 hardware really doesn't want power management delays
1742          * longer than 175usec
1743          */
1744         pm_qos_update_request(ipw2100_pm_qos_req, 175);
1745
1746         /* If the interrupt is enabled, turn it off... */
1747         spin_lock_irqsave(&priv->low_lock, flags);
1748         ipw2100_disable_interrupts(priv);
1749
1750         /* Reset any fatal_error conditions */
1751         ipw2100_reset_fatalerror(priv);
1752         spin_unlock_irqrestore(&priv->low_lock, flags);
1753
1754         if (priv->status & STATUS_POWERED ||
1755             (priv->status & STATUS_RESET_PENDING)) {
1756                 /* Power cycle the card ... */
1757                 if (ipw2100_power_cycle_adapter(priv)) {
1758                         printk(KERN_WARNING DRV_NAME
1759                                ": %s: Could not cycle adapter.\n",
1760                                priv->net_dev->name);
1761                         rc = 1;
1762                         goto exit;
1763                 }
1764         } else
1765                 priv->status |= STATUS_POWERED;
1766
1767         /* Load the firmware, start the clocks, etc. */
1768         if (ipw2100_start_adapter(priv)) {
1769                 printk(KERN_ERR DRV_NAME
1770                        ": %s: Failed to start the firmware.\n",
1771                        priv->net_dev->name);
1772                 rc = 1;
1773                 goto exit;
1774         }
1775
1776         ipw2100_initialize_ordinals(priv);
1777
1778         /* Determine capabilities of this particular HW configuration */
1779         if (ipw2100_get_hw_features(priv)) {
1780                 printk(KERN_ERR DRV_NAME
1781                        ": %s: Failed to determine HW features.\n",
1782                        priv->net_dev->name);
1783                 rc = 1;
1784                 goto exit;
1785         }
1786
1787         /* Initialize the geo */
1788         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1789                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1790                 return 0;
1791         }
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1812                                            round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 /* Called by register_netdev() */
1904 static int ipw2100_net_init(struct net_device *dev)
1905 {
1906         struct ipw2100_priv *priv = libipw_priv(dev);
1907         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1908         struct wireless_dev *wdev = &priv->ieee->wdev;
1909         int ret;
1910         int i;
1911
1912         ret = ipw2100_up(priv, 1);
1913         if (ret)
1914                 return ret;
1915
1916         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1917
1918         /* fill-out priv->ieee->bg_band */
1919         if (geo->bg_channels) {
1920                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1921
1922                 bg_band->band = IEEE80211_BAND_2GHZ;
1923                 bg_band->n_channels = geo->bg_channels;
1924                 bg_band->channels =
1925                         kzalloc(geo->bg_channels *
1926                                 sizeof(struct ieee80211_channel), GFP_KERNEL);
1927                 /* translate geo->bg to bg_band.channels */
1928                 for (i = 0; i < geo->bg_channels; i++) {
1929                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1930                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1931                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1932                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1933                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1934                                 bg_band->channels[i].flags |=
1935                                         IEEE80211_CHAN_PASSIVE_SCAN;
1936                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1937                                 bg_band->channels[i].flags |=
1938                                         IEEE80211_CHAN_NO_IBSS;
1939                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1940                                 bg_band->channels[i].flags |=
1941                                         IEEE80211_CHAN_RADAR;
1942                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1943                            LIBIPW_CH_UNIFORM_SPREADING, or
1944                            LIBIPW_CH_B_ONLY... */
1945                 }
1946                 /* point at bitrate info */
1947                 bg_band->bitrates = ipw2100_bg_rates;
1948                 bg_band->n_bitrates = RATE_COUNT;
1949
1950                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951         }
1952
1953         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1954         if (wiphy_register(wdev->wiphy)) {
1955                 ipw2100_down(priv);
1956                 return -EIO;
1957         }
1958         return 0;
1959 }
1960
1961 static void ipw2100_reset_adapter(struct work_struct *work)
1962 {
1963         struct ipw2100_priv *priv =
1964                 container_of(work, struct ipw2100_priv, reset_work.work);
1965         unsigned long flags;
1966         union iwreq_data wrqu = {
1967                 .ap_addr = {
1968                             .sa_family = ARPHRD_ETHER}
1969         };
1970         int associated = priv->status & STATUS_ASSOCIATED;
1971
1972         spin_lock_irqsave(&priv->low_lock, flags);
1973         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1974         priv->resets++;
1975         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1976         priv->status |= STATUS_SECURITY_UPDATED;
1977
1978         /* Force a power cycle even if interface hasn't been opened
1979          * yet */
1980         cancel_delayed_work(&priv->reset_work);
1981         priv->status |= STATUS_RESET_PENDING;
1982         spin_unlock_irqrestore(&priv->low_lock, flags);
1983
1984         mutex_lock(&priv->action_mutex);
1985         /* stop timed checks so that they don't interfere with reset */
1986         priv->stop_hang_check = 1;
1987         cancel_delayed_work(&priv->hang_check);
1988
1989         /* We have to signal any supplicant if we are disassociating */
1990         if (associated)
1991                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992
1993         ipw2100_up(priv, 0);
1994         mutex_unlock(&priv->action_mutex);
1995
1996 }
1997
1998 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1999 {
2000
2001 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2002         int ret;
2003         unsigned int len, essid_len;
2004         char essid[IW_ESSID_MAX_SIZE];
2005         u32 txrate;
2006         u32 chan;
2007         char *txratename;
2008         u8 bssid[ETH_ALEN];
2009         DECLARE_SSID_BUF(ssid);
2010
2011         /*
2012          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2013          *      an actual MAC of the AP. Seems like FW sets this
2014          *      address too late. Read it later and expose through
2015          *      /proc or schedule a later task to query and update
2016          */
2017
2018         essid_len = IW_ESSID_MAX_SIZE;
2019         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2020                                   essid, &essid_len);
2021         if (ret) {
2022                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2023                                __LINE__);
2024                 return;
2025         }
2026
2027         len = sizeof(u32);
2028         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2029         if (ret) {
2030                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2031                                __LINE__);
2032                 return;
2033         }
2034
2035         len = sizeof(u32);
2036         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2037         if (ret) {
2038                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2039                                __LINE__);
2040                 return;
2041         }
2042         len = ETH_ALEN;
2043         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2166
2167         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         cancel_delayed_work(&priv->rf_kill);
2182         queue_delayed_work(priv->workqueue, &priv->rf_kill,
2183                            round_jiffies_relative(HZ));
2184 }
2185
2186 static void send_scan_event(void *data)
2187 {
2188         struct ipw2100_priv *priv = data;
2189         union iwreq_data wrqu;
2190
2191         wrqu.data.length = 0;
2192         wrqu.data.flags = 0;
2193         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2194 }
2195
2196 static void ipw2100_scan_event_later(struct work_struct *work)
2197 {
2198         send_scan_event(container_of(work, struct ipw2100_priv,
2199                                         scan_event_later.work));
2200 }
2201
2202 static void ipw2100_scan_event_now(struct work_struct *work)
2203 {
2204         send_scan_event(container_of(work, struct ipw2100_priv,
2205                                         scan_event_now));
2206 }
2207
2208 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2209 {
2210         IPW_DEBUG_SCAN("scan complete\n");
2211         /* Age the scan results... */
2212         priv->ieee->scans++;
2213         priv->status &= ~STATUS_SCANNING;
2214
2215         /* Only userspace-requested scan completion events go out immediately */
2216         if (!priv->user_requested_scan) {
2217                 if (!delayed_work_pending(&priv->scan_event_later))
2218                         queue_delayed_work(priv->workqueue,
2219                                         &priv->scan_event_later,
2220                                         round_jiffies_relative(msecs_to_jiffies(4000)));
2221         } else {
2222                 priv->user_requested_scan = 0;
2223                 cancel_delayed_work(&priv->scan_event_later);
2224                 queue_work(priv->workqueue, &priv->scan_event_now);
2225         }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231         int status;
2232         void (*cb) (struct ipw2100_priv * priv, u32 status);
2233         char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238         int status;
2239         void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif                          /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245         IPW_DEBUG_SCAN("Scanning...\n");
2246         priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262         IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267         int i;
2268
2269         if (status == IPW_STATE_SCANNING &&
2270             priv->status & STATUS_ASSOCIATED &&
2271             !(priv->status & STATUS_SCANNING)) {
2272                 IPW_DEBUG_INFO("Scan detected while associated, with "
2273                                "no scan request.  Restarting firmware.\n");
2274
2275                 /* Wake up any sleeping jobs */
2276                 schedule_reset(priv);
2277         }
2278
2279         for (i = 0; status_handlers[i].status != -1; i++) {
2280                 if (status == status_handlers[i].status) {
2281                         IPW_DEBUG_NOTIF("Status change: %s\n",
2282                                         status_handlers[i].name);
2283                         if (status_handlers[i].cb)
2284                                 status_handlers[i].cb(priv, status);
2285                         priv->wstats.status = status;
2286                         return;
2287                 }
2288         }
2289
2290         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294                                     struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299                              command_types[cmd->host_command_reg],
2300                              cmd->host_command_reg);
2301         }
2302 #endif
2303         if (cmd->host_command_reg == HOST_COMPLETE)
2304                 priv->status |= STATUS_ENABLED;
2305
2306         if (cmd->host_command_reg == CARD_DISABLE)
2307                 priv->status &= ~STATUS_ENABLED;
2308
2309         priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311         wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316         "COMMAND_STATUS_VAL",
2317         "STATUS_CHANGE_VAL",
2318         "P80211_DATA_VAL",
2319         "P8023_DATA_VAL",
2320         "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325                                     struct ipw2100_rx_packet *packet)
2326 {
2327         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328         if (!packet->skb)
2329                 return -ENOMEM;
2330
2331         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333                                           sizeof(struct ipw2100_rx),
2334                                           PCI_DMA_FROMDEVICE);
2335         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336          *       dma_addr */
2337
2338         return 0;
2339 }
2340
2341 #define SEARCH_ERROR   0xffffffff
2342 #define SEARCH_FAIL    0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350         int i;
2351         if (!priv->snapshot[0])
2352                 return;
2353         for (i = 0; i < 0x30; i++)
2354                 kfree(priv->snapshot[i]);
2355         priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361         int i;
2362         if (priv->snapshot[0])
2363                 return 1;
2364         for (i = 0; i < 0x30; i++) {
2365                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366                 if (!priv->snapshot[i]) {
2367                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368                                        "buffer %d\n", priv->net_dev->name, i);
2369                         while (i > 0)
2370                                 kfree(priv->snapshot[--i]);
2371                         priv->snapshot[0] = NULL;
2372                         return 0;
2373                 }
2374         }
2375
2376         return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380                                     size_t len, int mode)
2381 {
2382         u32 i, j;
2383         u32 tmp;
2384         u8 *s, *d;
2385         u32 ret;
2386
2387         s = in_buf;
2388         if (mode == SEARCH_SNAPSHOT) {
2389                 if (!ipw2100_snapshot_alloc(priv))
2390                         mode = SEARCH_DISCARD;
2391         }
2392
2393         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394                 read_nic_dword(priv->net_dev, i, &tmp);
2395                 if (mode == SEARCH_SNAPSHOT)
2396                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397                 if (ret == SEARCH_FAIL) {
2398                         d = (u8 *) & tmp;
2399                         for (j = 0; j < 4; j++) {
2400                                 if (*s != *d) {
2401                                         s = in_buf;
2402                                         continue;
2403                                 }
2404
2405                                 s++;
2406                                 d++;
2407
2408                                 if ((s - in_buf) == len)
2409                                         ret = (i + j) - len + 1;
2410                         }
2411                 } else if (mode == SEARCH_DISCARD)
2412                         return ret;
2413         }
2414
2415         return ret;
2416 }
2417 #endif
2418
2419 /*
2420  *
2421  * 0) Disconnect the SKB from the firmware (just unmap)
2422  * 1) Pack the ETH header into the SKB
2423  * 2) Pass the SKB to the network stack
2424  *
2425  * When packet is provided by the firmware, it contains the following:
2426  *
2427  * .  libipw_hdr
2428  * .  libipw_snap_hdr
2429  *
2430  * The size of the constructed ethernet
2431  *
2432  */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440         struct ipw2100_status *status = &priv->status_queue.drv[i];
2441         u32 match, reg;
2442         int j;
2443 #endif
2444
2445         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446                        i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449         /* Halt the firmware so we can get a good image */
2450         write_register(priv->net_dev, IPW_REG_RESET_REG,
2451                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452         j = 5;
2453         do {
2454                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458                         break;
2459         } while (j--);
2460
2461         match = ipw2100_match_buf(priv, (u8 *) status,
2462                                   sizeof(struct ipw2100_status),
2463                                   SEARCH_SNAPSHOT);
2464         if (match < SEARCH_SUCCESS)
2465                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466                                "offset 0x%06X, length %d:\n",
2467                                priv->net_dev->name, match,
2468                                sizeof(struct ipw2100_status));
2469         else
2470                 IPW_DEBUG_INFO("%s: No DMA status match in "
2471                                "Firmware.\n", priv->net_dev->name);
2472
2473         printk_buf((u8 *) priv->status_queue.drv,
2474                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478         priv->net_dev->stats.rx_errors++;
2479         schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483                           struct libipw_rx_stats *stats)
2484 {
2485         struct net_device *dev = priv->net_dev;
2486         struct ipw2100_status *status = &priv->status_queue.drv[i];
2487         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489         IPW_DEBUG_RX("Handler...\n");
2490
2491         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493                                "  Dropping.\n",
2494                                dev->name,
2495                                status->frame_size, skb_tailroom(packet->skb));
2496                 dev->stats.rx_errors++;
2497                 return;
2498         }
2499
2500         if (unlikely(!netif_running(dev))) {
2501                 dev->stats.rx_errors++;
2502                 priv->wstats.discard.misc++;
2503                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504                 return;
2505         }
2506
2507         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508                      !(priv->status & STATUS_ASSOCIATED))) {
2509                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510                 priv->wstats.discard.misc++;
2511                 return;
2512         }
2513
2514         pci_unmap_single(priv->pci_dev,
2515                          packet->dma_addr,
2516                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518         skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521         /* Make a copy of the frame so we can dump it to the logs if
2522          * libipw_rx fails */
2523         skb_copy_from_linear_data(packet->skb, packet_data,
2524                                   min_t(u32, status->frame_size,
2525                                              IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531                                dev->name);
2532                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534                 dev->stats.rx_errors++;
2535
2536                 /* libipw_rx failed, so it didn't free the SKB */
2537                 dev_kfree_skb_any(packet->skb);
2538                 packet->skb = NULL;
2539         }
2540
2541         /* We need to allocate a new SKB and attach it to the RDB. */
2542         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543                 printk(KERN_WARNING DRV_NAME ": "
2544                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2545                        "adapter.\n", dev->name);
2546                 /* TODO: schedule adapter shutdown */
2547                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548         }
2549
2550         /* Update the RDB entry */
2551         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557                    struct libipw_rx_stats *stats)
2558 {
2559         struct net_device *dev = priv->net_dev;
2560         struct ipw2100_status *status = &priv->status_queue.drv[i];
2561         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563         /* Magic struct that slots into the radiotap header -- no reason
2564          * to build this manually element by element, we can write it much
2565          * more efficiently than we can parse it. ORDER MATTERS HERE */
2566         struct ipw_rt_hdr {
2567                 struct ieee80211_radiotap_header rt_hdr;
2568                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569         } *ipw_rt;
2570
2571         IPW_DEBUG_RX("Handler...\n");
2572
2573         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574                                 sizeof(struct ipw_rt_hdr))) {
2575                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576                                "  Dropping.\n",
2577                                dev->name,
2578                                status->frame_size,
2579                                skb_tailroom(packet->skb));
2580                 dev->stats.rx_errors++;
2581                 return;
2582         }
2583
2584         if (unlikely(!netif_running(dev))) {
2585                 dev->stats.rx_errors++;
2586                 priv->wstats.discard.misc++;
2587                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588                 return;
2589         }
2590
2591         if (unlikely(priv->config & CFG_CRC_CHECK &&
2592                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2594                 dev->stats.rx_errors++;
2595                 return;
2596         }
2597
2598         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601                 packet->skb->data, status->frame_size);
2602
2603         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616                 dev->stats.rx_errors++;
2617
2618                 /* libipw_rx failed, so it didn't free the SKB */
2619                 dev_kfree_skb_any(packet->skb);
2620                 packet->skb = NULL;
2621         }
2622
2623         /* We need to allocate a new SKB and attach it to the RDB. */
2624         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625                 IPW_DEBUG_WARNING(
2626                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2627                         "adapter.\n", dev->name);
2628                 /* TODO: schedule adapter shutdown */
2629                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630         }
2631
2632         /* Update the RDB entry */
2633         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640         struct ipw2100_status *status = &priv->status_queue.drv[i];
2641         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644         switch (frame_type) {
2645         case COMMAND_STATUS_VAL:
2646                 return (status->frame_size != sizeof(u->rx_data.command));
2647         case STATUS_CHANGE_VAL:
2648                 return (status->frame_size != sizeof(u->rx_data.status));
2649         case HOST_NOTIFICATION_VAL:
2650                 return (status->frame_size < sizeof(u->rx_data.notification));
2651         case P80211_DATA_VAL:
2652         case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654                 return 0;
2655 #else
2656                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657                 case IEEE80211_FTYPE_MGMT:
2658                 case IEEE80211_FTYPE_CTL:
2659                         return 0;
2660                 case IEEE80211_FTYPE_DATA:
2661                         return (status->frame_size >
2662                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663                 }
2664 #endif
2665         }
2666
2667         return 1;
2668 }
2669
2670 /*
2671  * ipw2100 interrupts are disabled at this point, and the ISR
2672  * is the only code that calls this method.  So, we do not need
2673  * to play with any locks.
2674  *
2675  * RX Queue works as follows:
2676  *
2677  * Read index - firmware places packet in entry identified by the
2678  *              Read index and advances Read index.  In this manner,
2679  *              Read index will always point to the next packet to
2680  *              be filled--but not yet valid.
2681  *
2682  * Write index - driver fills this entry with an unused RBD entry.
2683  *               This entry has not filled by the firmware yet.
2684  *
2685  * In between the W and R indexes are the RBDs that have been received
2686  * but not yet processed.
2687  *
2688  * The process of handling packets will start at WRITE + 1 and advance
2689  * until it reaches the READ index.
2690  *
2691  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692  *
2693  */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697         struct ipw2100_status_queue *sq = &priv->status_queue;
2698         struct ipw2100_rx_packet *packet;
2699         u16 frame_type;
2700         u32 r, w, i, s;
2701         struct ipw2100_rx *u;
2702         struct libipw_rx_stats stats = {
2703                 .mac_time = jiffies,
2704         };
2705
2706         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709         if (r >= rxq->entries) {
2710                 IPW_DEBUG_RX("exit - bad read index\n");
2711                 return;
2712         }
2713
2714         i = (rxq->next + 1) % rxq->entries;
2715         s = i;
2716         while (i != r) {
2717                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718                    r, rxq->next, i); */
2719
2720                 packet = &priv->rx_buffers[i];
2721
2722                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2723                  * the correct values */
2724                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2725                                             sq->nic +
2726                                             sizeof(struct ipw2100_status) * i,
2727                                             sizeof(struct ipw2100_status),
2728                                             PCI_DMA_FROMDEVICE);
2729
2730                 /* Sync the DMA for the RX buffer so CPU is sure to get
2731                  * the correct values */
2732                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2733                                             sizeof(struct ipw2100_rx),
2734                                             PCI_DMA_FROMDEVICE);
2735
2736                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2737                         ipw2100_corruption_detected(priv, i);
2738                         goto increment;
2739                 }
2740
2741                 u = packet->rxp;
2742                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2743                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2744                 stats.len = sq->drv[i].frame_size;
2745
2746                 stats.mask = 0;
2747                 if (stats.rssi != 0)
2748                         stats.mask |= LIBIPW_STATMASK_RSSI;
2749                 stats.freq = LIBIPW_24GHZ_BAND;
2750
2751                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2752                              priv->net_dev->name, frame_types[frame_type],
2753                              stats.len);
2754
2755                 switch (frame_type) {
2756                 case COMMAND_STATUS_VAL:
2757                         /* Reset Rx watchdog */
2758                         isr_rx_complete_command(priv, &u->rx_data.command);
2759                         break;
2760
2761                 case STATUS_CHANGE_VAL:
2762                         isr_status_change(priv, u->rx_data.status);
2763                         break;
2764
2765                 case P80211_DATA_VAL:
2766                 case P8023_DATA_VAL:
2767 #ifdef CONFIG_IPW2100_MONITOR
2768                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2769                                 isr_rx_monitor(priv, i, &stats);
2770                                 break;
2771                         }
2772 #endif
2773                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2774                                 break;
2775                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2776                         case IEEE80211_FTYPE_MGMT:
2777                                 libipw_rx_mgt(priv->ieee,
2778                                                  &u->rx_data.header, &stats);
2779                                 break;
2780
2781                         case IEEE80211_FTYPE_CTL:
2782                                 break;
2783
2784                         case IEEE80211_FTYPE_DATA:
2785                                 isr_rx(priv, i, &stats);
2786                                 break;
2787
2788                         }
2789                         break;
2790                 }
2791
2792               increment:
2793                 /* clear status field associated with this RBD */
2794                 rxq->drv[i].status.info.field = 0;
2795
2796                 i = (i + 1) % rxq->entries;
2797         }
2798
2799         if (i != s) {
2800                 /* backtrack one entry, wrapping to end if at 0 */
2801                 rxq->next = (i ? i : rxq->entries) - 1;
2802
2803                 write_register(priv->net_dev,
2804                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2805         }
2806 }
2807
2808 /*
2809  * __ipw2100_tx_process
2810  *
2811  * This routine will determine whether the next packet on
2812  * the fw_pend_list has been processed by the firmware yet.
2813  *
2814  * If not, then it does nothing and returns.
2815  *
2816  * If so, then it removes the item from the fw_pend_list, frees
2817  * any associated storage, and places the item back on the
2818  * free list of its source (either msg_free_list or tx_free_list)
2819  *
2820  * TX Queue works as follows:
2821  *
2822  * Read index - points to the next TBD that the firmware will
2823  *              process.  The firmware will read the data, and once
2824  *              done processing, it will advance the Read index.
2825  *
2826  * Write index - driver fills this entry with an constructed TBD
2827  *               entry.  The Write index is not advanced until the
2828  *               packet has been configured.
2829  *
2830  * In between the W and R indexes are the TBDs that have NOT been
2831  * processed.  Lagging behind the R index are packets that have
2832  * been processed but have not been freed by the driver.
2833  *
2834  * In order to free old storage, an internal index will be maintained
2835  * that points to the next packet to be freed.  When all used
2836  * packets have been freed, the oldest index will be the same as the
2837  * firmware's read index.
2838  *
2839  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2840  *
2841  * Because the TBD structure can not contain arbitrary data, the
2842  * driver must keep an internal queue of cached allocations such that
2843  * it can put that data back into the tx_free_list and msg_free_list
2844  * for use by future command and data packets.
2845  *
2846  */
2847 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2848 {
2849         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2850         struct ipw2100_bd *tbd;
2851         struct list_head *element;
2852         struct ipw2100_tx_packet *packet;
2853         int descriptors_used;
2854         int e, i;
2855         u32 r, w, frag_num = 0;
2856
2857         if (list_empty(&priv->fw_pend_list))
2858                 return 0;
2859
2860         element = priv->fw_pend_list.next;
2861
2862         packet = list_entry(element, struct ipw2100_tx_packet, list);
2863         tbd = &txq->drv[packet->index];
2864
2865         /* Determine how many TBD entries must be finished... */
2866         switch (packet->type) {
2867         case COMMAND:
2868                 /* COMMAND uses only one slot; don't advance */
2869                 descriptors_used = 1;
2870                 e = txq->oldest;
2871                 break;
2872
2873         case DATA:
2874                 /* DATA uses two slots; advance and loop position. */
2875                 descriptors_used = tbd->num_fragments;
2876                 frag_num = tbd->num_fragments - 1;
2877                 e = txq->oldest + frag_num;
2878                 e %= txq->entries;
2879                 break;
2880
2881         default:
2882                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2883                        priv->net_dev->name);
2884                 return 0;
2885         }
2886
2887         /* if the last TBD is not done by NIC yet, then packet is
2888          * not ready to be released.
2889          *
2890          */
2891         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2892                       &r);
2893         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2894                       &w);
2895         if (w != txq->next)
2896                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2897                        priv->net_dev->name);
2898
2899         /*
2900          * txq->next is the index of the last packet written txq->oldest is
2901          * the index of the r is the index of the next packet to be read by
2902          * firmware
2903          */
2904
2905         /*
2906          * Quick graphic to help you visualize the following
2907          * if / else statement
2908          *
2909          * ===>|                     s---->|===============
2910          *                               e>|
2911          * | a | b | c | d | e | f | g | h | i | j | k | l
2912          *       r---->|
2913          *               w
2914          *
2915          * w - updated by driver
2916          * r - updated by firmware
2917          * s - start of oldest BD entry (txq->oldest)
2918          * e - end of oldest BD entry
2919          *
2920          */
2921         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2922                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2923                 return 0;
2924         }
2925
2926         list_del(element);
2927         DEC_STAT(&priv->fw_pend_stat);
2928
2929 #ifdef CONFIG_IPW2100_DEBUG
2930         {
2931                 i = txq->oldest;
2932                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933                              &txq->drv[i],
2934                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2935                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2936
2937                 if (packet->type == DATA) {
2938                         i = (i + 1) % txq->entries;
2939
2940                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2941                                      &txq->drv[i],
2942                                      (u32) (txq->nic + i *
2943                                             sizeof(struct ipw2100_bd)),
2944                                      (u32) txq->drv[i].host_addr,
2945                                      txq->drv[i].buf_length);
2946                 }
2947         }
2948 #endif
2949
2950         switch (packet->type) {
2951         case DATA:
2952                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2953                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2954                                "Expecting DATA TBD but pulled "
2955                                "something else: ids %d=%d.\n",
2956                                priv->net_dev->name, txq->oldest, packet->index);
2957
2958                 /* DATA packet; we have to unmap and free the SKB */
2959                 for (i = 0; i < frag_num; i++) {
2960                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2961
2962                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2963                                      (packet->index + 1 + i) % txq->entries,
2964                                      tbd->host_addr, tbd->buf_length);
2965
2966                         pci_unmap_single(priv->pci_dev,
2967                                          tbd->host_addr,
2968                                          tbd->buf_length, PCI_DMA_TODEVICE);
2969                 }
2970
2971                 libipw_txb_free(packet->info.d_struct.txb);
2972                 packet->info.d_struct.txb = NULL;
2973
2974                 list_add_tail(element, &priv->tx_free_list);
2975                 INC_STAT(&priv->tx_free_stat);
2976
2977                 /* We have a free slot in the Tx queue, so wake up the
2978                  * transmit layer if it is stopped. */
2979                 if (priv->status & STATUS_ASSOCIATED)
2980                         netif_wake_queue(priv->net_dev);
2981
2982                 /* A packet was processed by the hardware, so update the
2983                  * watchdog */
2984                 priv->net_dev->trans_start = jiffies;
2985
2986                 break;
2987
2988         case COMMAND:
2989                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2990                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2991                                "Expecting COMMAND TBD but pulled "
2992                                "something else: ids %d=%d.\n",
2993                                priv->net_dev->name, txq->oldest, packet->index);
2994
2995 #ifdef CONFIG_IPW2100_DEBUG
2996                 if (packet->info.c_struct.cmd->host_command_reg <
2997                     ARRAY_SIZE(command_types))
2998                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2999                                      command_types[packet->info.c_struct.cmd->
3000                                                    host_command_reg],
3001                                      packet->info.c_struct.cmd->
3002                                      host_command_reg,
3003                                      packet->info.c_struct.cmd->cmd_status_reg);
3004 #endif
3005
3006                 list_add_tail(element, &priv->msg_free_list);
3007                 INC_STAT(&priv->msg_free_stat);
3008                 break;
3009         }
3010
3011         /* advance oldest used TBD pointer to start of next entry */
3012         txq->oldest = (e + 1) % txq->entries;
3013         /* increase available TBDs number */
3014         txq->available += descriptors_used;
3015         SET_STAT(&priv->txq_stat, txq->available);
3016
3017         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3018                      jiffies - packet->jiffy_start);
3019
3020         return (!list_empty(&priv->fw_pend_list));
3021 }
3022
3023 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3024 {
3025         int i = 0;
3026
3027         while (__ipw2100_tx_process(priv) && i < 200)
3028                 i++;
3029
3030         if (i == 200) {
3031                 printk(KERN_WARNING DRV_NAME ": "
3032                        "%s: Driver is running slow (%d iters).\n",
3033                        priv->net_dev->name, i);
3034         }
3035 }
3036
3037 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3038 {
3039         struct list_head *element;
3040         struct ipw2100_tx_packet *packet;
3041         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3042         struct ipw2100_bd *tbd;
3043         int next = txq->next;
3044
3045         while (!list_empty(&priv->msg_pend_list)) {
3046                 /* if there isn't enough space in TBD queue, then
3047                  * don't stuff a new one in.
3048                  * NOTE: 3 are needed as a command will take one,
3049                  *       and there is a minimum of 2 that must be
3050                  *       maintained between the r and w indexes
3051                  */
3052                 if (txq->available <= 3) {
3053                         IPW_DEBUG_TX("no room in tx_queue\n");
3054                         break;
3055                 }
3056
3057                 element = priv->msg_pend_list.next;
3058                 list_del(element);
3059                 DEC_STAT(&priv->msg_pend_stat);
3060
3061                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3062
3063                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
3064                              &txq->drv[txq->next],
3065                              (void *)(txq->nic + txq->next *
3066                                       sizeof(struct ipw2100_bd)));
3067
3068                 packet->index = txq->next;
3069
3070                 tbd = &txq->drv[txq->next];
3071
3072                 /* initialize TBD */
3073                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3074                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3075                 /* not marking number of fragments causes problems
3076                  * with f/w debug version */
3077                 tbd->num_fragments = 1;
3078                 tbd->status.info.field =
3079                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3080                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3081
3082                 /* update TBD queue counters */
3083                 txq->next++;
3084                 txq->next %= txq->entries;
3085                 txq->available--;
3086                 DEC_STAT(&priv->txq_stat);
3087
3088                 list_add_tail(element, &priv->fw_pend_list);
3089                 INC_STAT(&priv->fw_pend_stat);
3090         }
3091
3092         if (txq->next != next) {
3093                 /* kick off the DMA by notifying firmware the
3094                  * write index has moved; make sure TBD stores are sync'd */
3095                 wmb();
3096                 write_register(priv->net_dev,
3097                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3098                                txq->next);
3099         }
3100 }
3101
3102 /*
3103  * ipw2100_tx_send_data
3104  *
3105  */
3106 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3107 {
3108         struct list_head *element;
3109         struct ipw2100_tx_packet *packet;
3110         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3111         struct ipw2100_bd *tbd;
3112         int next = txq->next;
3113         int i = 0;
3114         struct ipw2100_data_header *ipw_hdr;
3115         struct libipw_hdr_3addr *hdr;
3116
3117         while (!list_empty(&priv->tx_pend_list)) {
3118                 /* if there isn't enough space in TBD queue, then
3119                  * don't stuff a new one in.
3120                  * NOTE: 4 are needed as a data will take two,
3121                  *       and there is a minimum of 2 that must be
3122                  *       maintained between the r and w indexes
3123                  */
3124                 element = priv->tx_pend_list.next;
3125                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3126
3127                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3128                              IPW_MAX_BDS)) {
3129                         /* TODO: Support merging buffers if more than
3130                          * IPW_MAX_BDS are used */
3131                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3132                                        "Increase fragmentation level.\n",
3133                                        priv->net_dev->name);
3134                 }
3135
3136                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3137                         IPW_DEBUG_TX("no room in tx_queue\n");
3138                         break;
3139                 }
3140
3141                 list_del(element);
3142                 DEC_STAT(&priv->tx_pend_stat);
3143
3144                 tbd = &txq->drv[txq->next];
3145
3146                 packet->index = txq->next;
3147
3148                 ipw_hdr = packet->info.d_struct.data;
3149                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3150                     fragments[0]->data;
3151
3152                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3153                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3154                            Addr3 = DA */
3155                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3156                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3157                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3158                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3159                            Addr3 = BSSID */
3160                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3161                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3162                 }
3163
3164                 ipw_hdr->host_command_reg = SEND;
3165                 ipw_hdr->host_command_reg1 = 0;
3166
3167                 /* For now we only support host based encryption */
3168                 ipw_hdr->needs_encryption = 0;
3169                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3170                 if (packet->info.d_struct.txb->nr_frags > 1)
3171                         ipw_hdr->fragment_size =
3172                             packet->info.d_struct.txb->frag_size -
3173                             LIBIPW_3ADDR_LEN;
3174                 else
3175                         ipw_hdr->fragment_size = 0;
3176
3177                 tbd->host_addr = packet->info.d_struct.data_phys;
3178                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3179                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3180                 tbd->status.info.field =
3181                     IPW_BD_STATUS_TX_FRAME_802_3 |
3182                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3183                 txq->next++;
3184                 txq->next %= txq->entries;
3185
3186                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3187                              packet->index, tbd->host_addr, tbd->buf_length);
3188 #ifdef CONFIG_IPW2100_DEBUG
3189                 if (packet->info.d_struct.txb->nr_frags > 1)
3190                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3191                                        packet->info.d_struct.txb->nr_frags);
3192 #endif
3193
3194                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3195                         tbd = &txq->drv[txq->next];
3196                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3197                                 tbd->status.info.field =
3198                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3199                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3200                         else
3201                                 tbd->status.info.field =
3202                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3203                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3204
3205                         tbd->buf_length = packet->info.d_struct.txb->
3206                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3207
3208                         tbd->host_addr = pci_map_single(priv->pci_dev,
3209                                                         packet->info.d_struct.
3210                                                         txb->fragments[i]->
3211                                                         data +
3212                                                         LIBIPW_3ADDR_LEN,
3213                                                         tbd->buf_length,
3214                                                         PCI_DMA_TODEVICE);
3215
3216                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3217                                      txq->next, tbd->host_addr,
3218                                      tbd->buf_length);
3219
3220                         pci_dma_sync_single_for_device(priv->pci_dev,
3221                                                        tbd->host_addr,
3222                                                        tbd->buf_length,
3223                                                        PCI_DMA_TODEVICE);
3224
3225                         txq->next++;
3226                         txq->next %= txq->entries;
3227                 }
3228
3229                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3230                 SET_STAT(&priv->txq_stat, txq->available);
3231
3232                 list_add_tail(element, &priv->fw_pend_list);
3233                 INC_STAT(&priv->fw_pend_stat);
3234         }
3235
3236         if (txq->next != next) {
3237                 /* kick off the DMA by notifying firmware the
3238                  * write index has moved; make sure TBD stores are sync'd */
3239                 write_register(priv->net_dev,
3240                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3241                                txq->next);
3242         }
3243 }
3244
3245 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3246 {
3247         struct net_device *dev = priv->net_dev;
3248         unsigned long flags;
3249         u32 inta, tmp;
3250
3251         spin_lock_irqsave(&priv->low_lock, flags);
3252         ipw2100_disable_interrupts(priv);
3253
3254         read_register(dev, IPW_REG_INTA, &inta);
3255
3256         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3257                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3258
3259         priv->in_isr++;
3260         priv->interrupts++;
3261
3262         /* We do not loop and keep polling for more interrupts as this
3263          * is frowned upon and doesn't play nicely with other potentially
3264          * chained IRQs */
3265         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3266                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3267
3268         if (inta & IPW2100_INTA_FATAL_ERROR) {
3269                 printk(KERN_WARNING DRV_NAME
3270                        ": Fatal interrupt. Scheduling firmware restart.\n");
3271                 priv->inta_other++;
3272                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3273
3274                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3275                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3276                                priv->net_dev->name, priv->fatal_error);
3277
3278                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3279                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3280                                priv->net_dev->name, tmp);
3281
3282                 /* Wake up any sleeping jobs */
3283                 schedule_reset(priv);
3284         }
3285
3286         if (inta & IPW2100_INTA_PARITY_ERROR) {
3287                 printk(KERN_ERR DRV_NAME
3288                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3289                 priv->inta_other++;
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3291         }
3292
3293         if (inta & IPW2100_INTA_RX_TRANSFER) {
3294                 IPW_DEBUG_ISR("RX interrupt\n");
3295
3296                 priv->rx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3299
3300                 __ipw2100_rx_process(priv);
3301                 __ipw2100_tx_complete(priv);
3302         }
3303
3304         if (inta & IPW2100_INTA_TX_TRANSFER) {
3305                 IPW_DEBUG_ISR("TX interrupt\n");
3306
3307                 priv->tx_interrupts++;
3308
3309                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3310
3311                 __ipw2100_tx_complete(priv);
3312                 ipw2100_tx_send_commands(priv);
3313                 ipw2100_tx_send_data(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_TX_COMPLETE) {
3317                 IPW_DEBUG_ISR("TX complete\n");
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3320
3321                 __ipw2100_tx_complete(priv);
3322         }
3323
3324         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3325                 /* ipw2100_handle_event(dev); */
3326                 priv->inta_other++;
3327                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3328         }
3329
3330         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3331                 IPW_DEBUG_ISR("FW init done interrupt\n");
3332                 priv->inta_other++;
3333
3334                 read_register(dev, IPW_REG_INTA, &tmp);
3335                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3336                            IPW2100_INTA_PARITY_ERROR)) {
3337                         write_register(dev, IPW_REG_INTA,
3338                                        IPW2100_INTA_FATAL_ERROR |
3339                                        IPW2100_INTA_PARITY_ERROR);
3340                 }
3341
3342                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3343         }
3344
3345         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3346                 IPW_DEBUG_ISR("Status change interrupt\n");
3347                 priv->inta_other++;
3348                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3349         }
3350
3351         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3352                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3353                 priv->inta_other++;
3354                 write_register(dev, IPW_REG_INTA,
3355                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3356         }
3357
3358         priv->in_isr--;
3359         ipw2100_enable_interrupts(priv);
3360
3361         spin_unlock_irqrestore(&priv->low_lock, flags);
3362
3363         IPW_DEBUG_ISR("exit\n");
3364 }
3365
3366 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3367 {
3368         struct ipw2100_priv *priv = data;
3369         u32 inta, inta_mask;
3370
3371         if (!data)
3372                 return IRQ_NONE;
3373
3374         spin_lock(&priv->low_lock);
3375
3376         /* We check to see if we should be ignoring interrupts before
3377          * we touch the hardware.  During ucode load if we try and handle
3378          * an interrupt we can cause keyboard problems as well as cause
3379          * the ucode to fail to initialize */
3380         if (!(priv->status & STATUS_INT_ENABLED)) {
3381                 /* Shared IRQ */
3382                 goto none;
3383         }
3384
3385         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3386         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3387
3388         if (inta == 0xFFFFFFFF) {
3389                 /* Hardware disappeared */
3390                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3391                 goto none;
3392         }
3393
3394         inta &= IPW_INTERRUPT_MASK;
3395
3396         if (!(inta & inta_mask)) {
3397                 /* Shared interrupt */
3398                 goto none;
3399         }
3400
3401         /* We disable the hardware interrupt here just to prevent unneeded
3402          * calls to be made.  We disable this again within the actual
3403          * work tasklet, so if another part of the code re-enables the
3404          * interrupt, that is fine */
3405         ipw2100_disable_interrupts(priv);
3406
3407         tasklet_schedule(&priv->irq_tasklet);
3408         spin_unlock(&priv->low_lock);
3409
3410         return IRQ_HANDLED;
3411       none:
3412         spin_unlock(&priv->low_lock);
3413         return IRQ_NONE;
3414 }
3415
3416 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3417                               struct net_device *dev, int pri)
3418 {
3419         struct ipw2100_priv *priv = libipw_priv(dev);
3420         struct list_head *element;
3421         struct ipw2100_tx_packet *packet;
3422         unsigned long flags;
3423
3424         spin_lock_irqsave(&priv->low_lock, flags);
3425
3426         if (!(priv->status & STATUS_ASSOCIATED)) {
3427                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3428                 priv->net_dev->stats.tx_carrier_errors++;
3429                 netif_stop_queue(dev);
3430                 goto fail_unlock;
3431         }
3432
3433         if (list_empty(&priv->tx_free_list))
3434                 goto fail_unlock;
3435
3436         element = priv->tx_free_list.next;
3437         packet = list_entry(element, struct ipw2100_tx_packet, list);
3438
3439         packet->info.d_struct.txb = txb;
3440
3441         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3442         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3443
3444         packet->jiffy_start = jiffies;
3445
3446         list_del(element);
3447         DEC_STAT(&priv->tx_free_stat);
3448
3449         list_add_tail(element, &priv->tx_pend_list);
3450         INC_STAT(&priv->tx_pend_stat);
3451
3452         ipw2100_tx_send_data(priv);
3453
3454         spin_unlock_irqrestore(&priv->low_lock, flags);
3455         return NETDEV_TX_OK;
3456
3457 fail_unlock:
3458         netif_stop_queue(dev);
3459         spin_unlock_irqrestore(&priv->low_lock, flags);
3460         return NETDEV_TX_BUSY;
3461 }
3462
3463 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3464 {
3465         int i, j, err = -EINVAL;
3466         void *v;
3467         dma_addr_t p;
3468
3469         priv->msg_buffers =
3470             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3471                     GFP_KERNEL);
3472         if (!priv->msg_buffers) {
3473                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3474                        "buffers.\n", priv->net_dev->name);
3475                 return -ENOMEM;
3476         }
3477
3478         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3479                 v = pci_alloc_consistent(priv->pci_dev,
3480                                          sizeof(struct ipw2100_cmd_header), &p);
3481                 if (!v) {
3482                         printk(KERN_ERR DRV_NAME ": "
3483                                "%s: PCI alloc failed for msg "
3484                                "buffers.\n", priv->net_dev->name);
3485                         err = -ENOMEM;
3486                         break;
3487                 }
3488
3489                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3490
3491                 priv->msg_buffers[i].type = COMMAND;
3492                 priv->msg_buffers[i].info.c_struct.cmd =
3493                     (struct ipw2100_cmd_header *)v;
3494                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3495         }
3496
3497         if (i == IPW_COMMAND_POOL_SIZE)
3498                 return 0;
3499
3500         for (j = 0; j < i; j++) {
3501                 pci_free_consistent(priv->pci_dev,
3502                                     sizeof(struct ipw2100_cmd_header),
3503                                     priv->msg_buffers[j].info.c_struct.cmd,
3504                                     priv->msg_buffers[j].info.c_struct.
3505                                     cmd_phys);
3506         }
3507
3508         kfree(priv->msg_buffers);
3509         priv->msg_buffers = NULL;
3510
3511         return err;
3512 }
3513
3514 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3515 {
3516         int i;
3517
3518         INIT_LIST_HEAD(&priv->msg_free_list);
3519         INIT_LIST_HEAD(&priv->msg_pend_list);
3520
3521         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3522                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3523         SET_STAT(&priv->msg_free_stat, i);
3524
3525         return 0;
3526 }
3527
3528 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3529 {
3530         int i;
3531
3532         if (!priv->msg_buffers)
3533                 return;
3534
3535         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3536                 pci_free_consistent(priv->pci_dev,
3537                                     sizeof(struct ipw2100_cmd_header),
3538                                     priv->msg_buffers[i].info.c_struct.cmd,
3539                                     priv->msg_buffers[i].info.c_struct.
3540                                     cmd_phys);
3541         }
3542
3543         kfree(priv->msg_buffers);
3544         priv->msg_buffers = NULL;
3545 }
3546
3547 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3548                         char *buf)
3549 {
3550         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3551         char *out = buf;
3552         int i, j;
3553         u32 val;
3554
3555         for (i = 0; i < 16; i++) {
3556                 out += sprintf(out, "[%08X] ", i * 16);
3557                 for (j = 0; j < 16; j += 4) {
3558                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3559                         out += sprintf(out, "%08X ", val);
3560                 }
3561                 out += sprintf(out, "\n");
3562         }
3563
3564         return out - buf;
3565 }
3566
3567 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3568
3569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3570                         char *buf)
3571 {
3572         struct ipw2100_priv *p = dev_get_drvdata(d);
3573         return sprintf(buf, "0x%08x\n", (int)p->config);
3574 }
3575
3576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3577
3578 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3579                            char *buf)
3580 {
3581         struct ipw2100_priv *p = dev_get_drvdata(d);
3582         return sprintf(buf, "0x%08x\n", (int)p->status);
3583 }
3584
3585 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3586
3587 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3588                                char *buf)
3589 {
3590         struct ipw2100_priv *p = dev_get_drvdata(d);
3591         return sprintf(buf, "0x%08x\n", (int)p->capability);
3592 }
3593
3594 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3595
3596 #define IPW2100_REG(x) { IPW_ ##x, #x }
3597 static const struct {
3598         u32 addr;
3599         const char *name;
3600 } hw_data[] = {
3601 IPW2100_REG(REG_GP_CNTRL),
3602             IPW2100_REG(REG_GPIO),
3603             IPW2100_REG(REG_INTA),
3604             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3605 #define IPW2100_NIC(x, s) { x, #x, s }
3606 static const struct {
3607         u32 addr;
3608         const char *name;
3609         size_t size;
3610 } nic_data[] = {
3611 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3612             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3613 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3614 static const struct {
3615         u8 index;
3616         const char *name;
3617         const char *desc;
3618 } ord_data[] = {
3619 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3620             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3621                                 "successful Host Tx's (MSDU)"),
3622             IPW2100_ORD(STAT_TX_DIR_DATA,
3623                                 "successful Directed Tx's (MSDU)"),
3624             IPW2100_ORD(STAT_TX_DIR_DATA1,
3625                                 "successful Directed Tx's (MSDU) @ 1MB"),
3626             IPW2100_ORD(STAT_TX_DIR_DATA2,
3627                                 "successful Directed Tx's (MSDU) @ 2MB"),
3628             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3629                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3630             IPW2100_ORD(STAT_TX_DIR_DATA11,
3631                                 "successful Directed Tx's (MSDU) @ 11MB"),
3632             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3633                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3634             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3635                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3636             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3637                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3638             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3639                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3640             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3641             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3642             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3643             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3644             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3645             IPW2100_ORD(STAT_TX_ASSN_RESP,
3646                                 "successful Association response Tx's"),
3647             IPW2100_ORD(STAT_TX_REASSN,
3648                                 "successful Reassociation Tx's"),
3649             IPW2100_ORD(STAT_TX_REASSN_RESP,
3650                                 "successful Reassociation response Tx's"),
3651             IPW2100_ORD(STAT_TX_PROBE,
3652                                 "probes successfully transmitted"),
3653             IPW2100_ORD(STAT_TX_PROBE_RESP,
3654                                 "probe responses successfully transmitted"),
3655             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3656             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3657             IPW2100_ORD(STAT_TX_DISASSN,
3658                                 "successful Disassociation TX"),
3659             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3660             IPW2100_ORD(STAT_TX_DEAUTH,
3661                                 "successful Deauthentication TX"),
3662             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3663                                 "Total successful Tx data bytes"),
3664             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3665             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3666             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3667             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3668             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3669             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3670             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3671                                 "times max tries in a hop failed"),
3672             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3673                                 "times disassociation failed"),
3674             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3675             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3676             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3677             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3678             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3679             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3680             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3681                                 "directed packets at 5.5MB"),
3682             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3683             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3684             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3685                                 "nondirected packets at 1MB"),
3686             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3687                                 "nondirected packets at 2MB"),
3688             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3689                                 "nondirected packets at 5.5MB"),
3690             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3691                                 "nondirected packets at 11MB"),
3692             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3693             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3694                                                                     "Rx CTS"),
3695             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3696             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3697             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3698             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3699             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3700             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3701             IPW2100_ORD(STAT_RX_REASSN_RESP,
3702                                 "Reassociation response Rx's"),
3703             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3704             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3705             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3706             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3707             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3708             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3709             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3710             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3711                                 "Total rx data bytes received"),
3712             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3713             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3714             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3715             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3716             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3717             IPW2100_ORD(STAT_RX_DUPLICATE1,
3718                                 "duplicate rx packets at 1MB"),
3719             IPW2100_ORD(STAT_RX_DUPLICATE2,
3720                                 "duplicate rx packets at 2MB"),
3721             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3722                                 "duplicate rx packets at 5.5MB"),
3723             IPW2100_ORD(STAT_RX_DUPLICATE11,
3724                                 "duplicate rx packets at 11MB"),
3725             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3726             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3727             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3728             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3729             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3730                                 "rx frames with invalid protocol"),
3731             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3732             IPW2100_ORD(STAT_RX_NO_BUFFER,
3733                                 "rx frames rejected due to no buffer"),
3734             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3735                                 "rx frames dropped due to missing fragment"),
3736             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3737                                 "rx frames dropped due to non-sequential fragment"),
3738             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3739                                 "rx frames dropped due to unmatched 1st frame"),
3740             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3741                                 "rx frames dropped due to uncompleted frame"),
3742             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3743                                 "ICV errors during decryption"),
3744             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3745             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3746             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3747                                 "poll response timeouts"),
3748             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3749                                 "timeouts waiting for last {broad,multi}cast pkt"),
3750             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3751             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3752             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3753             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3754             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3755                                 "current calculation of % missed beacons"),
3756             IPW2100_ORD(STAT_PERCENT_RETRIES,
3757                                 "current calculation of % missed tx retries"),
3758             IPW2100_ORD(ASSOCIATED_AP_PTR,
3759                                 "0 if not associated, else pointer to AP table entry"),
3760             IPW2100_ORD(AVAILABLE_AP_CNT,
3761                                 "AP's decsribed in the AP table"),
3762             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3763             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3764             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3765             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3766                                 "failures due to response fail"),
3767             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3768             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3769             IPW2100_ORD(STAT_ROAM_INHIBIT,
3770                                 "times roaming was inhibited due to activity"),
3771             IPW2100_ORD(RSSI_AT_ASSN,
3772                                 "RSSI of associated AP at time of association"),
3773             IPW2100_ORD(STAT_ASSN_CAUSE1,
3774                                 "reassociation: no probe response or TX on hop"),
3775             IPW2100_ORD(STAT_ASSN_CAUSE2,
3776                                 "reassociation: poor tx/rx quality"),
3777             IPW2100_ORD(STAT_ASSN_CAUSE3,
3778                                 "reassociation: tx/rx quality (excessive AP load"),
3779             IPW2100_ORD(STAT_ASSN_CAUSE4,
3780                                 "reassociation: AP RSSI level"),
3781             IPW2100_ORD(STAT_ASSN_CAUSE5,
3782                                 "reassociations due to load leveling"),
3783             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3784             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3785                                 "times authentication response failed"),
3786             IPW2100_ORD(STATION_TABLE_CNT,
3787                                 "entries in association table"),
3788             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3789             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3790             IPW2100_ORD(COUNTRY_CODE,
3791                                 "IEEE country code as recv'd from beacon"),
3792             IPW2100_ORD(COUNTRY_CHANNELS,
3793                                 "channels suported by country"),
3794             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3795             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3796             IPW2100_ORD(ANTENNA_DIVERSITY,
3797                                 "TRUE if antenna diversity is disabled"),
3798             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3799             IPW2100_ORD(OUR_FREQ,
3800                                 "current radio freq lower digits - channel ID"),
3801             IPW2100_ORD(RTC_TIME, "current RTC time"),
3802             IPW2100_ORD(PORT_TYPE, "operating mode"),
3803             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3804             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3805             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3806             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3807             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3808             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3809             IPW2100_ORD(CAPABILITIES,
3810                                 "Management frame capability field"),
3811             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3812             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3813             IPW2100_ORD(RTS_THRESHOLD,
3814                                 "Min packet length for RTS handshaking"),
3815             IPW2100_ORD(INT_MODE, "International mode"),
3816             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3817                                 "protocol frag threshold"),
3818             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3819                                 "EEPROM offset in SRAM"),
3820             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3821                                 "EEPROM size in SRAM"),
3822             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3823             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3824                                 "EEPROM IBSS 11b channel set"),
3825             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3826             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3827             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3828             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3829             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3830
3831 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3832                               char *buf)
3833 {
3834         int i;
3835         struct ipw2100_priv *priv = dev_get_drvdata(d);
3836         struct net_device *dev = priv->net_dev;
3837         char *out = buf;
3838         u32 val = 0;
3839
3840         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3841
3842         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3843                 read_register(dev, hw_data[i].addr, &val);
3844                 out += sprintf(out, "%30s [%08X] : %08X\n",
3845                                hw_data[i].name, hw_data[i].addr, val);
3846         }
3847
3848         return out - buf;
3849 }
3850
3851 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3852
3853 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3854                              char *buf)
3855 {
3856         struct ipw2100_priv *priv = dev_get_drvdata(d);
3857         struct net_device *dev = priv->net_dev;
3858         char *out = buf;
3859         int i;
3860
3861         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3862
3863         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3864                 u8 tmp8;
3865                 u16 tmp16;
3866                 u32 tmp32;
3867
3868                 switch (nic_data[i].size) {
3869                 case 1:
3870                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3871                         out += sprintf(out, "%30s [%08X] : %02X\n",
3872                                        nic_data[i].name, nic_data[i].addr,
3873                                        tmp8);
3874                         break;
3875                 case 2:
3876                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3877                         out += sprintf(out, "%30s [%08X] : %04X\n",
3878                                        nic_data[i].name, nic_data[i].addr,
3879                                        tmp16);
3880                         break;
3881                 case 4:
3882                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3883                         out += sprintf(out, "%30s [%08X] : %08X\n",
3884                                        nic_data[i].name, nic_data[i].addr,
3885                                        tmp32);
3886                         break;
3887                 }
3888         }
3889         return out - buf;
3890 }
3891
3892 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3893
3894 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3895                            char *buf)
3896 {
3897         struct ipw2100_priv *priv = dev_get_drvdata(d);
3898         struct net_device *dev = priv->net_dev;
3899         static unsigned long loop = 0;
3900         int len = 0;
3901         u32 buffer[4];
3902         int i;
3903         char line[81];
3904
3905         if (loop >= 0x30000)
3906                 loop = 0;
3907
3908         /* sysfs provides us PAGE_SIZE buffer */
3909         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3910
3911                 if (priv->snapshot[0])
3912                         for (i = 0; i < 4; i++)
3913                                 buffer[i] =
3914                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3915                 else
3916                         for (i = 0; i < 4; i++)
3917                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3918
3919                 if (priv->dump_raw)
3920                         len += sprintf(buf + len,
3921                                        "%c%c%c%c"
3922                                        "%c%c%c%c"
3923                                        "%c%c%c%c"
3924                                        "%c%c%c%c",
3925                                        ((u8 *) buffer)[0x0],
3926                                        ((u8 *) buffer)[0x1],
3927                                        ((u8 *) buffer)[0x2],
3928                                        ((u8 *) buffer)[0x3],
3929                                        ((u8 *) buffer)[0x4],
3930                                        ((u8 *) buffer)[0x5],
3931                                        ((u8 *) buffer)[0x6],
3932                                        ((u8 *) buffer)[0x7],
3933                                        ((u8 *) buffer)[0x8],
3934                                        ((u8 *) buffer)[0x9],
3935                                        ((u8 *) buffer)[0xa],
3936                                        ((u8 *) buffer)[0xb],
3937                                        ((u8 *) buffer)[0xc],
3938                                        ((u8 *) buffer)[0xd],
3939                                        ((u8 *) buffer)[0xe],
3940                                        ((u8 *) buffer)[0xf]);
3941                 else
3942                         len += sprintf(buf + len, "%s\n",
3943                                        snprint_line(line, sizeof(line),
3944                                                     (u8 *) buffer, 16, loop));
3945                 loop += 16;
3946         }
3947
3948         return len;
3949 }
3950
3951 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3952                             const char *buf, size_t count)
3953 {
3954         struct ipw2100_priv *priv = dev_get_drvdata(d);
3955         struct net_device *dev = priv->net_dev;
3956         const char *p = buf;
3957
3958         (void)dev;              /* kill unused-var warning for debug-only code */
3959
3960         if (count < 1)
3961                 return count;
3962
3963         if (p[0] == '1' ||
3964             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3965                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3966                                dev->name);
3967                 priv->dump_raw = 1;
3968
3969         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3970                                    tolower(p[1]) == 'f')) {
3971                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3972                                dev->name);
3973                 priv->dump_raw = 0;
3974
3975         } else if (tolower(p[0]) == 'r') {
3976                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3977                 ipw2100_snapshot_free(priv);
3978
3979         } else
3980                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3981                                "reset = clear memory snapshot\n", dev->name);
3982
3983         return count;
3984 }
3985
3986 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3987
3988 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3989                              char *buf)
3990 {
3991         struct ipw2100_priv *priv = dev_get_drvdata(d);
3992         u32 val = 0;
3993         int len = 0;
3994         u32 val_len;
3995         static int loop = 0;
3996
3997         if (priv->status & STATUS_RF_KILL_MASK)
3998                 return 0;
3999
4000         if (loop >= ARRAY_SIZE(ord_data))
4001                 loop = 0;
4002
4003         /* sysfs provides us PAGE_SIZE buffer */
4004         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
4005                 val_len = sizeof(u32);
4006
4007                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4008                                         &val_len))
4009                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4010                                        ord_data[loop].index,
4011                                        ord_data[loop].desc);
4012                 else
4013                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4014                                        ord_data[loop].index, val,
4015                                        ord_data[loop].desc);
4016                 loop++;
4017         }
4018
4019         return len;
4020 }
4021
4022 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4023
4024 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4025                           char *buf)
4026 {
4027         struct ipw2100_priv *priv = dev_get_drvdata(d);
4028         char *out = buf;
4029
4030         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4031                        priv->interrupts, priv->tx_interrupts,
4032                        priv->rx_interrupts, priv->inta_other);
4033         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4034         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4035 #ifdef CONFIG_IPW2100_DEBUG
4036         out += sprintf(out, "packet mismatch image: %s\n",
4037                        priv->snapshot[0] ? "YES" : "NO");
4038 #endif
4039
4040         return out - buf;
4041 }
4042
4043 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4044
4045 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4046 {
4047         int err;
4048
4049         if (mode == priv->ieee->iw_mode)
4050                 return 0;
4051
4052         err = ipw2100_disable_adapter(priv);
4053         if (err) {
4054                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4055                        priv->net_dev->name, err);
4056                 return err;
4057         }
4058
4059         switch (mode) {
4060         case IW_MODE_INFRA:
4061                 priv->net_dev->type = ARPHRD_ETHER;
4062                 break;
4063         case IW_MODE_ADHOC:
4064                 priv->net_dev->type = ARPHRD_ETHER;
4065                 break;
4066 #ifdef CONFIG_IPW2100_MONITOR
4067         case IW_MODE_MONITOR:
4068                 priv->last_mode = priv->ieee->iw_mode;
4069                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4070                 break;
4071 #endif                          /* CONFIG_IPW2100_MONITOR */
4072         }
4073
4074         priv->ieee->iw_mode = mode;
4075
4076 #ifdef CONFIG_PM
4077         /* Indicate ipw2100_download_firmware download firmware
4078          * from disk instead of memory. */
4079         ipw2100_firmware.version = 0;
4080 #endif
4081
4082         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4083         priv->reset_backoff = 0;
4084         schedule_reset(priv);
4085
4086         return 0;
4087 }
4088
4089 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4090                               char *buf)
4091 {
4092         struct ipw2100_priv *priv = dev_get_drvdata(d);
4093         int len = 0;
4094
4095 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4096
4097         if (priv->status & STATUS_ASSOCIATED)
4098                 len += sprintf(buf + len, "connected: %lu\n",
4099                                get_seconds() - priv->connect_start);
4100         else
4101                 len += sprintf(buf + len, "not connected\n");
4102
4103         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4104         DUMP_VAR(status, "08lx");
4105         DUMP_VAR(config, "08lx");
4106         DUMP_VAR(capability, "08lx");
4107
4108         len +=
4109             sprintf(buf + len, "last_rtc: %lu\n",
4110                     (unsigned long)priv->last_rtc);
4111
4112         DUMP_VAR(fatal_error, "d");
4113         DUMP_VAR(stop_hang_check, "d");
4114         DUMP_VAR(stop_rf_kill, "d");
4115         DUMP_VAR(messages_sent, "d");
4116
4117         DUMP_VAR(tx_pend_stat.value, "d");
4118         DUMP_VAR(tx_pend_stat.hi, "d");
4119
4120         DUMP_VAR(tx_free_stat.value, "d");
4121         DUMP_VAR(tx_free_stat.lo, "d");
4122
4123         DUMP_VAR(msg_free_stat.value, "d");
4124         DUMP_VAR(msg_free_stat.lo, "d");
4125
4126         DUMP_VAR(msg_pend_stat.value, "d");
4127         DUMP_VAR(msg_pend_stat.hi, "d");
4128
4129         DUMP_VAR(fw_pend_stat.value, "d");
4130         DUMP_VAR(fw_pend_stat.hi, "d");
4131
4132         DUMP_VAR(txq_stat.value, "d");
4133         DUMP_VAR(txq_stat.lo, "d");
4134
4135         DUMP_VAR(ieee->scans, "d");
4136         DUMP_VAR(reset_backoff, "d");
4137
4138         return len;
4139 }
4140
4141 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4142
4143 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4144                             char *buf)
4145 {
4146         struct ipw2100_priv *priv = dev_get_drvdata(d);
4147         char essid[IW_ESSID_MAX_SIZE + 1];
4148         u8 bssid[ETH_ALEN];
4149         u32 chan = 0;
4150         char *out = buf;
4151         unsigned int length;
4152         int ret;
4153
4154         if (priv->status & STATUS_RF_KILL_MASK)
4155                 return 0;
4156
4157         memset(essid, 0, sizeof(essid));
4158         memset(bssid, 0, sizeof(bssid));
4159
4160         length = IW_ESSID_MAX_SIZE;
4161         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4162         if (ret)
4163                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4164                                __LINE__);
4165
4166         length = sizeof(bssid);
4167         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4168                                   bssid, &length);
4169         if (ret)
4170                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4171                                __LINE__);
4172
4173         length = sizeof(u32);
4174         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4175         if (ret)
4176                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4177                                __LINE__);
4178
4179         out += sprintf(out, "ESSID: %s\n", essid);
4180         out += sprintf(out, "BSSID:   %pM\n", bssid);
4181         out += sprintf(out, "Channel: %d\n", chan);
4182
4183         return out - buf;
4184 }
4185
4186 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4187
4188 #ifdef CONFIG_IPW2100_DEBUG
4189 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4190 {
4191         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4192 }
4193
4194 static ssize_t store_debug_level(struct device_driver *d,
4195                                  const char *buf, size_t count)
4196 {
4197         char *p = (char *)buf;
4198         u32 val;
4199
4200         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4201                 p++;
4202                 if (p[0] == 'x' || p[0] == 'X')
4203                         p++;
4204                 val = simple_strtoul(p, &p, 16);
4205         } else
4206                 val = simple_strtoul(p, &p, 10);
4207         if (p == buf)
4208                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4209         else
4210                 ipw2100_debug_level = val;
4211
4212         return strnlen(buf, count);
4213 }
4214
4215 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4216                    store_debug_level);
4217 #endif                          /* CONFIG_IPW2100_DEBUG */
4218
4219 static ssize_t show_fatal_error(struct device *d,
4220                                 struct device_attribute *attr, char *buf)
4221 {
4222         struct ipw2100_priv *priv = dev_get_drvdata(d);
4223         char *out = buf;
4224         int i;
4225
4226         if (priv->fatal_error)
4227                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4228         else
4229                 out += sprintf(out, "0\n");
4230
4231         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4232                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4233                                         IPW2100_ERROR_QUEUE])
4234                         continue;
4235
4236                 out += sprintf(out, "%d. 0x%08X\n", i,
4237                                priv->fatal_errors[(priv->fatal_index - i) %
4238                                                   IPW2100_ERROR_QUEUE]);
4239         }
4240
4241         return out - buf;
4242 }
4243
4244 static ssize_t store_fatal_error(struct device *d,
4245                                  struct device_attribute *attr, const char *buf,
4246                                  size_t count)
4247 {
4248         struct ipw2100_priv *priv = dev_get_drvdata(d);
4249         schedule_reset(priv);
4250         return count;
4251 }
4252
4253 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4254                    store_fatal_error);
4255
4256 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4257                              char *buf)
4258 {
4259         struct ipw2100_priv *priv = dev_get_drvdata(d);
4260         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4261 }
4262
4263 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4264                               const char *buf, size_t count)
4265 {
4266         struct ipw2100_priv *priv = dev_get_drvdata(d);
4267         struct net_device *dev = priv->net_dev;
4268         char buffer[] = "00000000";
4269         unsigned long len =
4270             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4271         unsigned long val;
4272         char *p = buffer;
4273
4274         (void)dev;              /* kill unused-var warning for debug-only code */
4275
4276         IPW_DEBUG_INFO("enter\n");
4277
4278         strncpy(buffer, buf, len);
4279         buffer[len] = 0;
4280
4281         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4282                 p++;
4283                 if (p[0] == 'x' || p[0] == 'X')
4284                         p++;
4285                 val = simple_strtoul(p, &p, 16);
4286         } else
4287                 val = simple_strtoul(p, &p, 10);
4288         if (p == buffer) {
4289                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4290         } else {
4291                 priv->ieee->scan_age = val;
4292                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4293         }
4294
4295         IPW_DEBUG_INFO("exit\n");
4296         return len;
4297 }
4298
4299 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4300
4301 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4302                             char *buf)
4303 {
4304         /* 0 - RF kill not enabled
4305            1 - SW based RF kill active (sysfs)
4306            2 - HW based RF kill active
4307            3 - Both HW and SW baed RF kill active */
4308         struct ipw2100_priv *priv = dev_get_drvdata(d);
4309         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4310             (rf_kill_active(priv) ? 0x2 : 0x0);
4311         return sprintf(buf, "%i\n", val);
4312 }
4313
4314 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4315 {
4316         if ((disable_radio ? 1 : 0) ==
4317             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4318                 return 0;
4319
4320         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4321                           disable_radio ? "OFF" : "ON");
4322
4323         mutex_lock(&priv->action_mutex);
4324
4325         if (disable_radio) {
4326                 priv->status |= STATUS_RF_KILL_SW;
4327                 ipw2100_down(priv);
4328         } else {
4329                 priv->status &= ~STATUS_RF_KILL_SW;
4330                 if (rf_kill_active(priv)) {
4331                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4332                                           "disabled by HW switch\n");
4333                         /* Make sure the RF_KILL check timer is running */
4334                         priv->stop_rf_kill = 0;
4335                         cancel_delayed_work(&priv->rf_kill);
4336                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
4337                                            round_jiffies_relative(HZ));
4338                 } else
4339                         schedule_reset(priv);
4340         }
4341
4342         mutex_unlock(&priv->action_mutex);
4343         return 1;
4344 }
4345
4346 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4347                              const char *buf, size_t count)
4348 {
4349         struct ipw2100_priv *priv = dev_get_drvdata(d);
4350         ipw_radio_kill_sw(priv, buf[0] == '1');
4351         return count;
4352 }
4353
4354 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4355
4356 static struct attribute *ipw2100_sysfs_entries[] = {
4357         &dev_attr_hardware.attr,
4358         &dev_attr_registers.attr,
4359         &dev_attr_ordinals.attr,
4360         &dev_attr_pci.attr,
4361         &dev_attr_stats.attr,
4362         &dev_attr_internals.attr,
4363         &dev_attr_bssinfo.attr,
4364         &dev_attr_memory.attr,
4365         &dev_attr_scan_age.attr,
4366         &dev_attr_fatal_error.attr,
4367         &dev_attr_rf_kill.attr,
4368         &dev_attr_cfg.attr,
4369         &dev_attr_status.attr,
4370         &dev_attr_capability.attr,
4371         NULL,
4372 };
4373
4374 static struct attribute_group ipw2100_attribute_group = {
4375         .attrs = ipw2100_sysfs_entries,
4376 };
4377
4378 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4379 {
4380         struct ipw2100_status_queue *q = &priv->status_queue;
4381
4382         IPW_DEBUG_INFO("enter\n");
4383
4384         q->size = entries * sizeof(struct ipw2100_status);
4385         q->drv =
4386             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4387                                                           q->size, &q->nic);
4388         if (!q->drv) {
4389                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4390                 return -ENOMEM;
4391         }
4392
4393         memset(q->drv, 0, q->size);
4394
4395         IPW_DEBUG_INFO("exit\n");
4396
4397         return 0;
4398 }
4399
4400 static void status_queue_free(struct ipw2100_priv *priv)
4401 {
4402         IPW_DEBUG_INFO("enter\n");
4403
4404         if (priv->status_queue.drv) {
4405                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4406                                     priv->status_queue.drv,
4407                                     priv->status_queue.nic);
4408                 priv->status_queue.drv = NULL;
4409         }
4410
4411         IPW_DEBUG_INFO("exit\n");
4412 }
4413
4414 static int bd_queue_allocate(struct ipw2100_priv *priv,
4415                              struct ipw2100_bd_queue *q, int entries)
4416 {
4417         IPW_DEBUG_INFO("enter\n");
4418
4419         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4420
4421         q->entries = entries;
4422         q->size = entries * sizeof(struct ipw2100_bd);
4423         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4424         if (!q->drv) {
4425                 IPW_DEBUG_INFO
4426                     ("can't allocate shared memory for buffer descriptors\n");
4427                 return -ENOMEM;
4428         }
4429         memset(q->drv, 0, q->size);
4430
4431         IPW_DEBUG_INFO("exit\n");
4432
4433         return 0;
4434 }
4435
4436 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4437 {
4438         IPW_DEBUG_INFO("enter\n");
4439
4440         if (!q)
4441                 return;
4442
4443         if (q->drv) {
4444                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4445                 q->drv = NULL;
4446         }
4447
4448         IPW_DEBUG_INFO("exit\n");
4449 }
4450
4451 static void bd_queue_initialize(struct ipw2100_priv *priv,
4452                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4453                                 u32 r, u32 w)
4454 {
4455         IPW_DEBUG_INFO("enter\n");
4456
4457         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4458                        (u32) q->nic);
4459
4460         write_register(priv->net_dev, base, q->nic);
4461         write_register(priv->net_dev, size, q->entries);
4462         write_register(priv->net_dev, r, q->oldest);
4463         write_register(priv->net_dev, w, q->next);
4464
4465         IPW_DEBUG_INFO("exit\n");
4466 }
4467
4468 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4469 {
4470         if (priv->workqueue) {
4471                 priv->stop_rf_kill = 1;
4472                 priv->stop_hang_check = 1;
4473                 cancel_delayed_work(&priv->reset_work);
4474                 cancel_delayed_work(&priv->security_work);
4475                 cancel_delayed_work(&priv->wx_event_work);
4476                 cancel_delayed_work(&priv->hang_check);
4477                 cancel_delayed_work(&priv->rf_kill);
4478                 cancel_delayed_work(&priv->scan_event_later);
4479                 destroy_workqueue(priv->workqueue);
4480                 priv->workqueue = NULL;
4481         }
4482 }
4483
4484 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4485 {
4486         int i, j, err = -EINVAL;
4487         void *v;
4488         dma_addr_t p;
4489
4490         IPW_DEBUG_INFO("enter\n");
4491
4492         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4493         if (err) {
4494                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4495                                 priv->net_dev->name);
4496                 return err;
4497         }
4498
4499         priv->tx_buffers =
4500             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4501                     GFP_ATOMIC);
4502         if (!priv->tx_buffers) {
4503                 printk(KERN_ERR DRV_NAME
4504                        ": %s: alloc failed form tx buffers.\n",
4505                        priv->net_dev->name);
4506                 bd_queue_free(priv, &priv->tx_queue);
4507                 return -ENOMEM;
4508         }
4509
4510         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4511                 v = pci_alloc_consistent(priv->pci_dev,
4512                                          sizeof(struct ipw2100_data_header),
4513                                          &p);
4514                 if (!v) {
4515                         printk(KERN_ERR DRV_NAME
4516                                ": %s: PCI alloc failed for tx " "buffers.\n",
4517                                priv->net_dev->name);
4518                         err = -ENOMEM;
4519                         break;
4520                 }
4521
4522                 priv->tx_buffers[i].type = DATA;
4523                 priv->tx_buffers[i].info.d_struct.data =
4524                     (struct ipw2100_data_header *)v;
4525                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4526                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4527         }
4528
4529         if (i == TX_PENDED_QUEUE_LENGTH)
4530                 return 0;
4531
4532         for (j = 0; j < i; j++) {
4533                 pci_free_consistent(priv->pci_dev,
4534                                     sizeof(struct ipw2100_data_header),
4535                                     priv->tx_buffers[j].info.d_struct.data,
4536                                     priv->tx_buffers[j].info.d_struct.
4537                                     data_phys);
4538         }
4539
4540         kfree(priv->tx_buffers);
4541         priv->tx_buffers = NULL;
4542
4543         return err;
4544 }
4545
4546 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4547 {
4548         int i;
4549
4550         IPW_DEBUG_INFO("enter\n");
4551
4552         /*
4553          * reinitialize packet info lists
4554          */
4555         INIT_LIST_HEAD(&priv->fw_pend_list);
4556         INIT_STAT(&priv->fw_pend_stat);
4557
4558         /*
4559          * reinitialize lists
4560          */
4561         INIT_LIST_HEAD(&priv->tx_pend_list);
4562         INIT_LIST_HEAD(&priv->tx_free_list);
4563         INIT_STAT(&priv->tx_pend_stat);
4564         INIT_STAT(&priv->tx_free_stat);
4565
4566         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4567                 /* We simply drop any SKBs that have been queued for
4568                  * transmit */
4569                 if (priv->tx_buffers[i].info.d_struct.txb) {
4570                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4571                                            txb);
4572                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4573                 }
4574
4575                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4576         }
4577
4578         SET_STAT(&priv->tx_free_stat, i);
4579
4580         priv->tx_queue.oldest = 0;
4581         priv->tx_queue.available = priv->tx_queue.entries;
4582         priv->tx_queue.next = 0;
4583         INIT_STAT(&priv->txq_stat);
4584         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4585
4586         bd_queue_initialize(priv, &priv->tx_queue,
4587                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4588                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4589                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4590                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4591
4592         IPW_DEBUG_INFO("exit\n");
4593
4594 }
4595
4596 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4597 {
4598         int i;
4599
4600         IPW_DEBUG_INFO("enter\n");
4601
4602         bd_queue_free(priv, &priv->tx_queue);
4603
4604         if (!priv->tx_buffers)
4605                 return;
4606
4607         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4608                 if (priv->tx_buffers[i].info.d_struct.txb) {
4609                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4610                                            txb);
4611                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4612                 }
4613                 if (priv->tx_buffers[i].info.d_struct.data)
4614                         pci_free_consistent(priv->pci_dev,
4615                                             sizeof(struct ipw2100_data_header),
4616                                             priv->tx_buffers[i].info.d_struct.
4617                                             data,
4618                                             priv->tx_buffers[i].info.d_struct.
4619                                             data_phys);
4620         }
4621
4622         kfree(priv->tx_buffers);
4623         priv->tx_buffers = NULL;
4624
4625         IPW_DEBUG_INFO("exit\n");
4626 }
4627
4628 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4629 {
4630         int i, j, err = -EINVAL;
4631
4632         IPW_DEBUG_INFO("enter\n");
4633
4634         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4635         if (err) {
4636                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4637                 return err;
4638         }
4639
4640         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4641         if (err) {
4642                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4643                 bd_queue_free(priv, &priv->rx_queue);
4644                 return err;
4645         }
4646
4647         /*
4648          * allocate packets
4649          */
4650         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4651                                    sizeof(struct ipw2100_rx_packet),
4652                                    GFP_KERNEL);
4653         if (!priv->rx_buffers) {
4654                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4655
4656                 bd_queue_free(priv, &priv->rx_queue);
4657
4658                 status_queue_free(priv);
4659
4660                 return -ENOMEM;
4661         }
4662
4663         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4664                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4665
4666                 err = ipw2100_alloc_skb(priv, packet);
4667                 if (unlikely(err)) {
4668                         err = -ENOMEM;
4669                         break;
4670                 }
4671
4672                 /* The BD holds the cache aligned address */
4673                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4674                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4675                 priv->status_queue.drv[i].status_fields = 0;
4676         }
4677
4678         if (i == RX_QUEUE_LENGTH)
4679                 return 0;
4680
4681         for (j = 0; j < i; j++) {
4682                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4683                                  sizeof(struct ipw2100_rx_packet),
4684                                  PCI_DMA_FROMDEVICE);
4685                 dev_kfree_skb(priv->rx_buffers[j].skb);
4686         }
4687
4688         kfree(priv->rx_buffers);
4689         priv->rx_buffers = NULL;
4690
4691         bd_queue_free(priv, &priv->rx_queue);
4692
4693         status_queue_free(priv);
4694
4695         return err;
4696 }
4697
4698 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4699 {
4700         IPW_DEBUG_INFO("enter\n");
4701
4702         priv->rx_queue.oldest = 0;
4703         priv->rx_queue.available = priv->rx_queue.entries - 1;
4704         priv->rx_queue.next = priv->rx_queue.entries - 1;
4705
4706         INIT_STAT(&priv->rxq_stat);
4707         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4708
4709         bd_queue_initialize(priv, &priv->rx_queue,
4710                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4711                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4712                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4713                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4714
4715         /* set up the status queue */
4716         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4717                        priv->status_queue.nic);
4718
4719         IPW_DEBUG_INFO("exit\n");
4720 }
4721
4722 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4723 {
4724         int i;
4725
4726         IPW_DEBUG_INFO("enter\n");
4727
4728         bd_queue_free(priv, &priv->rx_queue);
4729         status_queue_free(priv);
4730
4731         if (!priv->rx_buffers)
4732                 return;
4733
4734         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4735                 if (priv->rx_buffers[i].rxp) {
4736                         pci_unmap_single(priv->pci_dev,
4737                                          priv->rx_buffers[i].dma_addr,
4738                                          sizeof(struct ipw2100_rx),
4739                                          PCI_DMA_FROMDEVICE);
4740                         dev_kfree_skb(priv->rx_buffers[i].skb);
4741                 }
4742         }
4743
4744         kfree(priv->rx_buffers);
4745         priv->rx_buffers = NULL;
4746
4747         IPW_DEBUG_INFO("exit\n");
4748 }
4749
4750 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4751 {
4752         u32 length = ETH_ALEN;
4753         u8 addr[ETH_ALEN];
4754
4755         int err;
4756
4757         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4758         if (err) {
4759                 IPW_DEBUG_INFO("MAC address read failed\n");
4760                 return -EIO;
4761         }
4762
4763         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4764         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4765
4766         return 0;
4767 }
4768
4769 /********************************************************************
4770  *
4771  * Firmware Commands
4772  *
4773  ********************************************************************/
4774
4775 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4776 {
4777         struct host_command cmd = {
4778                 .host_command = ADAPTER_ADDRESS,
4779                 .host_command_sequence = 0,
4780                 .host_command_length = ETH_ALEN
4781         };
4782         int err;
4783
4784         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4785
4786         IPW_DEBUG_INFO("enter\n");
4787
4788         if (priv->config & CFG_CUSTOM_MAC) {
4789                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4790                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4791         } else
4792                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4793                        ETH_ALEN);
4794
4795         err = ipw2100_hw_send_command(priv, &cmd);
4796
4797         IPW_DEBUG_INFO("exit\n");
4798         return err;
4799 }
4800
4801 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4802                                  int batch_mode)
4803 {
4804         struct host_command cmd = {
4805                 .host_command = PORT_TYPE,
4806                 .host_command_sequence = 0,
4807                 .host_command_length = sizeof(u32)
4808         };
4809         int err;
4810
4811         switch (port_type) {
4812         case IW_MODE_INFRA:
4813                 cmd.host_command_parameters[0] = IPW_BSS;
4814                 break;
4815         case IW_MODE_ADHOC:
4816                 cmd.host_command_parameters[0] = IPW_IBSS;
4817                 break;
4818         }
4819
4820         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4821                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4822
4823         if (!batch_mode) {
4824                 err = ipw2100_disable_adapter(priv);
4825                 if (err) {
4826                         printk(KERN_ERR DRV_NAME
4827                                ": %s: Could not disable adapter %d\n",
4828                                priv->net_dev->name, err);
4829                         return err;
4830                 }
4831         }
4832
4833         /* send cmd to firmware */
4834         err = ipw2100_hw_send_command(priv, &cmd);
4835
4836         if (!batch_mode)
4837                 ipw2100_enable_adapter(priv);
4838
4839         return err;
4840 }
4841
4842 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4843                                int batch_mode)
4844 {
4845         struct host_command cmd = {
4846                 .host_command = CHANNEL,
4847                 .host_command_sequence = 0,
4848                 .host_command_length = sizeof(u32)
4849         };
4850         int err;
4851
4852         cmd.host_command_parameters[0] = channel;
4853
4854         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4855
4856         /* If BSS then we don't support channel selection */
4857         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4858                 return 0;
4859
4860         if ((channel != 0) &&
4861             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4862                 return -EINVAL;
4863
4864         if (!batch_mode) {
4865                 err = ipw2100_disable_adapter(priv);
4866                 if (err)
4867                         return err;
4868         }
4869
4870         err = ipw2100_hw_send_command(priv, &cmd);
4871         if (err) {
4872                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4873                 return err;
4874         }
4875
4876         if (channel)
4877                 priv->config |= CFG_STATIC_CHANNEL;
4878         else
4879                 priv->config &= ~CFG_STATIC_CHANNEL;
4880
4881         priv->channel = channel;
4882
4883         if (!batch_mode) {
4884                 err = ipw2100_enable_adapter(priv);
4885                 if (err)
4886                         return err;
4887         }
4888
4889         return 0;
4890 }
4891
4892 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4893 {
4894         struct host_command cmd = {
4895                 .host_command = SYSTEM_CONFIG,
4896                 .host_command_sequence = 0,
4897                 .host_command_length = 12,
4898         };
4899         u32 ibss_mask, len = sizeof(u32);
4900         int err;
4901
4902         /* Set system configuration */
4903
4904         if (!batch_mode) {
4905                 err = ipw2100_disable_adapter(priv);
4906                 if (err)
4907                         return err;
4908         }
4909
4910         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4911                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4912
4913         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4914             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4915
4916         if (!(priv->config & CFG_LONG_PREAMBLE))
4917                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4918
4919         err = ipw2100_get_ordinal(priv,
4920                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4921                                   &ibss_mask, &len);
4922         if (err)
4923                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4924
4925         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4926         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4927
4928         /* 11b only */
4929         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4930
4931         err = ipw2100_hw_send_command(priv, &cmd);
4932         if (err)
4933                 return err;
4934
4935 /* If IPv6 is configured in the kernel then we don't want to filter out all
4936  * of the multicast packets as IPv6 needs some. */
4937 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4938         cmd.host_command = ADD_MULTICAST;
4939         cmd.host_command_sequence = 0;
4940         cmd.host_command_length = 0;
4941
4942         ipw2100_hw_send_command(priv, &cmd);
4943 #endif
4944         if (!batch_mode) {
4945                 err = ipw2100_enable_adapter(priv);
4946                 if (err)
4947                         return err;
4948         }
4949
4950         return 0;
4951 }
4952
4953 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4954                                 int batch_mode)
4955 {
4956         struct host_command cmd = {
4957                 .host_command = BASIC_TX_RATES,
4958                 .host_command_sequence = 0,
4959                 .host_command_length = 4
4960         };
4961         int err;
4962
4963         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4964
4965         if (!batch_mode) {
4966                 err = ipw2100_disable_adapter(priv);
4967                 if (err)
4968                         return err;
4969         }
4970
4971         /* Set BASIC TX Rate first */
4972         ipw2100_hw_send_command(priv, &cmd);
4973
4974         /* Set TX Rate */
4975         cmd.host_command = TX_RATES;
4976         ipw2100_hw_send_command(priv, &cmd);
4977
4978         /* Set MSDU TX Rate */
4979         cmd.host_command = MSDU_TX_RATES;
4980         ipw2100_hw_send_command(priv, &cmd);
4981
4982         if (!batch_mode) {
4983                 err = ipw2100_enable_adapter(priv);
4984                 if (err)
4985                         return err;
4986         }
4987
4988         priv->tx_rates = rate;
4989
4990         return 0;
4991 }
4992
4993 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4994 {
4995         struct host_command cmd = {
4996                 .host_command = POWER_MODE,
4997                 .host_command_sequence = 0,
4998                 .host_command_length = 4
4999         };
5000         int err;
5001
5002         cmd.host_command_parameters[0] = power_level;
5003
5004         err = ipw2100_hw_send_command(priv, &cmd);
5005         if (err)
5006                 return err;
5007
5008         if (power_level == IPW_POWER_MODE_CAM)
5009                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5010         else
5011                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5012
5013 #ifdef IPW2100_TX_POWER
5014         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5015                 /* Set beacon interval */
5016                 cmd.host_command = TX_POWER_INDEX;
5017                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5018
5019                 err = ipw2100_hw_send_command(priv, &cmd);
5020                 if (err)
5021                         return err;
5022         }
5023 #endif
5024
5025         return 0;
5026 }
5027
5028 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5029 {
5030         struct host_command cmd = {
5031                 .host_command = RTS_THRESHOLD,
5032                 .host_command_sequence = 0,
5033                 .host_command_length = 4
5034         };
5035         int err;
5036
5037         if (threshold & RTS_DISABLED)
5038                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5039         else
5040                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5041
5042         err = ipw2100_hw_send_command(priv, &cmd);
5043         if (err)
5044                 return err;
5045
5046         priv->rts_threshold = threshold;
5047
5048         return 0;
5049 }
5050
5051 #if 0
5052 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5053                                         u32 threshold, int batch_mode)
5054 {
5055         struct host_command cmd = {
5056                 .host_command = FRAG_THRESHOLD,
5057                 .host_command_sequence = 0,
5058                 .host_command_length = 4,
5059                 .host_command_parameters[0] = 0,
5060         };
5061         int err;
5062
5063         if (!batch_mode) {
5064                 err = ipw2100_disable_adapter(priv);
5065                 if (err)
5066                         return err;
5067         }
5068
5069         if (threshold == 0)
5070                 threshold = DEFAULT_FRAG_THRESHOLD;
5071         else {
5072                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5073                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5074         }
5075
5076         cmd.host_command_parameters[0] = threshold;
5077
5078         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5079
5080         err = ipw2100_hw_send_command(priv, &cmd);
5081
5082         if (!batch_mode)
5083                 ipw2100_enable_adapter(priv);
5084
5085         if (!err)
5086                 priv->frag_threshold = threshold;
5087
5088         return err;
5089 }
5090 #endif
5091
5092 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5093 {
5094         struct host_command cmd = {
5095                 .host_command = SHORT_RETRY_LIMIT,
5096                 .host_command_sequence = 0,
5097                 .host_command_length = 4
5098         };
5099         int err;
5100
5101         cmd.host_command_parameters[0] = retry;
5102
5103         err = ipw2100_hw_send_command(priv, &cmd);
5104         if (err)
5105                 return err;
5106
5107         priv->short_retry_limit = retry;
5108
5109         return 0;
5110 }
5111
5112 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5113 {
5114         struct host_command cmd = {
5115                 .host_command = LONG_RETRY_LIMIT,
5116                 .host_command_sequence = 0,
5117                 .host_command_length = 4
5118         };
5119         int err;
5120
5121         cmd.host_command_parameters[0] = retry;
5122
5123         err = ipw2100_hw_send_command(priv, &cmd);
5124         if (err)
5125                 return err;
5126
5127         priv->long_retry_limit = retry;
5128
5129         return 0;
5130 }
5131
5132 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5133                                        int batch_mode)
5134 {
5135         struct host_command cmd = {
5136                 .host_command = MANDATORY_BSSID,
5137                 .host_command_sequence = 0,
5138                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5139         };
5140         int err;
5141
5142 #ifdef CONFIG_IPW2100_DEBUG
5143         if (bssid != NULL)
5144                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5145         else
5146                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5147 #endif
5148         /* if BSSID is empty then we disable mandatory bssid mode */
5149         if (bssid != NULL)
5150                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5151
5152         if (!batch_mode) {
5153                 err = ipw2100_disable_adapter(priv);
5154                 if (err)
5155                         return err;
5156         }
5157
5158         err = ipw2100_hw_send_command(priv, &cmd);
5159
5160         if (!batch_mode)
5161                 ipw2100_enable_adapter(priv);
5162
5163         return err;
5164 }
5165
5166 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5167 {
5168         struct host_command cmd = {
5169                 .host_command = DISASSOCIATION_BSSID,
5170                 .host_command_sequence = 0,
5171                 .host_command_length = ETH_ALEN
5172         };
5173         int err;
5174         int len;
5175
5176         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5177
5178         len = ETH_ALEN;
5179         /* The Firmware currently ignores the BSSID and just disassociates from
5180          * the currently associated AP -- but in the off chance that a future
5181          * firmware does use the BSSID provided here, we go ahead and try and
5182          * set it to the currently associated AP's BSSID */
5183         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5184
5185         err = ipw2100_hw_send_command(priv, &cmd);
5186
5187         return err;
5188 }
5189
5190 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5191                               struct ipw2100_wpa_assoc_frame *, int)
5192     __attribute__ ((unused));
5193
5194 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5195                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5196                               int batch_mode)
5197 {
5198         struct host_command cmd = {
5199                 .host_command = SET_WPA_IE,
5200                 .host_command_sequence = 0,
5201                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5202         };
5203         int err;
5204
5205         IPW_DEBUG_HC("SET_WPA_IE\n");
5206
5207         if (!batch_mode) {
5208                 err = ipw2100_disable_adapter(priv);
5209                 if (err)
5210                         return err;
5211         }
5212
5213         memcpy(cmd.host_command_parameters, wpa_frame,
5214                sizeof(struct ipw2100_wpa_assoc_frame));
5215
5216         err = ipw2100_hw_send_command(priv, &cmd);
5217
5218         if (!batch_mode) {
5219                 if (ipw2100_enable_adapter(priv))
5220                         err = -EIO;
5221         }
5222
5223         return err;
5224 }
5225
5226 struct security_info_params {
5227         u32 allowed_ciphers;
5228         u16 version;
5229         u8 auth_mode;
5230         u8 replay_counters_number;
5231         u8 unicast_using_group;
5232 } __packed;
5233
5234 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5235                                             int auth_mode,
5236                                             int security_level,
5237                                             int unicast_using_group,
5238                                             int batch_mode)
5239 {
5240         struct host_command cmd = {
5241                 .host_command = SET_SECURITY_INFORMATION,
5242                 .host_command_sequence = 0,
5243                 .host_command_length = sizeof(struct security_info_params)
5244         };
5245         struct security_info_params *security =
5246             (struct security_info_params *)&cmd.host_command_parameters;
5247         int err;
5248         memset(security, 0, sizeof(*security));
5249
5250         /* If shared key AP authentication is turned on, then we need to
5251          * configure the firmware to try and use it.
5252          *
5253          * Actual data encryption/decryption is handled by the host. */
5254         security->auth_mode = auth_mode;
5255         security->unicast_using_group = unicast_using_group;
5256
5257         switch (security_level) {
5258         default:
5259         case SEC_LEVEL_0:
5260                 security->allowed_ciphers = IPW_NONE_CIPHER;
5261                 break;
5262         case SEC_LEVEL_1:
5263                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5264                     IPW_WEP104_CIPHER;
5265                 break;
5266         case SEC_LEVEL_2:
5267                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5268                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5269                 break;
5270         case SEC_LEVEL_2_CKIP:
5271                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5272                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5273                 break;
5274         case SEC_LEVEL_3:
5275                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5276                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5277                 break;
5278         }
5279
5280         IPW_DEBUG_HC
5281             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5282              security->auth_mode, security->allowed_ciphers, security_level);
5283
5284         security->replay_counters_number = 0;
5285
5286         if (!batch_mode) {
5287                 err = ipw2100_disable_adapter(priv);
5288                 if (err)
5289                         return err;
5290         }
5291
5292         err = ipw2100_hw_send_command(priv, &cmd);
5293
5294         if (!batch_mode)
5295                 ipw2100_enable_adapter(priv);
5296
5297         return err;
5298 }
5299
5300 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5301 {
5302         struct host_command cmd = {
5303                 .host_command = TX_POWER_INDEX,
5304                 .host_command_sequence = 0,
5305                 .host_command_length = 4
5306         };
5307         int err = 0;
5308         u32 tmp = tx_power;
5309
5310         if (tx_power != IPW_TX_POWER_DEFAULT)
5311                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5312                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5313
5314         cmd.host_command_parameters[0] = tmp;
5315
5316         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5317                 err = ipw2100_hw_send_command(priv, &cmd);
5318         if (!err)
5319                 priv->tx_power = tx_power;
5320
5321         return 0;
5322 }
5323
5324 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5325                                             u32 interval, int batch_mode)
5326 {
5327         struct host_command cmd = {
5328                 .host_command = BEACON_INTERVAL,
5329                 .host_command_sequence = 0,
5330                 .host_command_length = 4
5331         };
5332         int err;
5333
5334         cmd.host_command_parameters[0] = interval;
5335
5336         IPW_DEBUG_INFO("enter\n");
5337
5338         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5339                 if (!batch_mode) {
5340                         err = ipw2100_disable_adapter(priv);
5341                         if (err)
5342                                 return err;
5343                 }
5344
5345                 ipw2100_hw_send_command(priv, &cmd);
5346
5347                 if (!batch_mode) {
5348                         err = ipw2100_enable_adapter(priv);
5349                         if (err)
5350                                 return err;
5351                 }
5352         }
5353
5354         IPW_DEBUG_INFO("exit\n");
5355
5356         return 0;
5357 }
5358
5359 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5360 {
5361         ipw2100_tx_initialize(priv);
5362         ipw2100_rx_initialize(priv);
5363         ipw2100_msg_initialize(priv);
5364 }
5365
5366 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5367 {
5368         ipw2100_tx_free(priv);
5369         ipw2100_rx_free(priv);
5370         ipw2100_msg_free(priv);
5371 }
5372
5373 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5374 {
5375         if (ipw2100_tx_allocate(priv) ||
5376             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5377                 goto fail;
5378
5379         return 0;
5380
5381       fail:
5382         ipw2100_tx_free(priv);
5383         ipw2100_rx_free(priv);
5384         ipw2100_msg_free(priv);
5385         return -ENOMEM;
5386 }
5387
5388 #define IPW_PRIVACY_CAPABLE 0x0008
5389
5390 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5391                                  int batch_mode)
5392 {
5393         struct host_command cmd = {
5394                 .host_command = WEP_FLAGS,
5395                 .host_command_sequence = 0,
5396                 .host_command_length = 4
5397         };
5398         int err;
5399
5400         cmd.host_command_parameters[0] = flags;
5401
5402         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5403
5404         if (!batch_mode) {
5405                 err = ipw2100_disable_adapter(priv);
5406                 if (err) {
5407                         printk(KERN_ERR DRV_NAME
5408                                ": %s: Could not disable adapter %d\n",
5409                                priv->net_dev->name, err);
5410                         return err;
5411                 }
5412         }
5413
5414         /* send cmd to firmware */
5415         err = ipw2100_hw_send_command(priv, &cmd);
5416
5417         if (!batch_mode)
5418                 ipw2100_enable_adapter(priv);
5419
5420         return err;
5421 }
5422
5423 struct ipw2100_wep_key {
5424         u8 idx;
5425         u8 len;
5426         u8 key[13];
5427 };
5428
5429 /* Macros to ease up priting WEP keys */
5430 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5431 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5432 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5433 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5434
5435 /**
5436  * Set a the wep key
5437  *
5438  * @priv: struct to work on
5439  * @idx: index of the key we want to set
5440  * @key: ptr to the key data to set
5441  * @len: length of the buffer at @key
5442  * @batch_mode: FIXME perform the operation in batch mode, not
5443  *              disabling the device.
5444  *
5445  * @returns 0 if OK, < 0 errno code on error.
5446  *
5447  * Fill out a command structure with the new wep key, length an
5448  * index and send it down the wire.
5449  */
5450 static int ipw2100_set_key(struct ipw2100_priv *priv,
5451                            int idx, char *key, int len, int batch_mode)
5452 {
5453         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5454         struct host_command cmd = {
5455                 .host_command = WEP_KEY_INFO,
5456                 .host_command_sequence = 0,
5457                 .host_command_length = sizeof(struct ipw2100_wep_key),
5458         };
5459         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5460         int err;
5461
5462         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5463                      idx, keylen, len);
5464
5465         /* NOTE: We don't check cached values in case the firmware was reset
5466          * or some other problem is occurring.  If the user is setting the key,
5467          * then we push the change */
5468
5469         wep_key->idx = idx;
5470         wep_key->len = keylen;
5471
5472         if (keylen) {
5473                 memcpy(wep_key->key, key, len);
5474                 memset(wep_key->key + len, 0, keylen - len);
5475         }
5476
5477         /* Will be optimized out on debug not being configured in */
5478         if (keylen == 0)
5479                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5480                               priv->net_dev->name, wep_key->idx);
5481         else if (keylen == 5)
5482                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5483                               priv->net_dev->name, wep_key->idx, wep_key->len,
5484                               WEP_STR_64(wep_key->key));
5485         else
5486                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5487                               "\n",
5488                               priv->net_dev->name, wep_key->idx, wep_key->len,
5489                               WEP_STR_128(wep_key->key));
5490
5491         if (!batch_mode) {
5492                 err = ipw2100_disable_adapter(priv);
5493                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5494                 if (err) {
5495                         printk(KERN_ERR DRV_NAME
5496                                ": %s: Could not disable adapter %d\n",
5497                                priv->net_dev->name, err);
5498                         return err;
5499                 }
5500         }
5501
5502         /* send cmd to firmware */
5503         err = ipw2100_hw_send_command(priv, &cmd);
5504
5505         if (!batch_mode) {
5506                 int err2 = ipw2100_enable_adapter(priv);
5507                 if (err == 0)
5508                         err = err2;
5509         }
5510         return err;
5511 }
5512
5513 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5514                                  int idx, int batch_mode)
5515 {
5516         struct host_command cmd = {
5517                 .host_command = WEP_KEY_INDEX,
5518                 .host_command_sequence = 0,
5519                 .host_command_length = 4,
5520                 .host_command_parameters = {idx},
5521         };
5522         int err;
5523
5524         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5525
5526         if (idx < 0 || idx > 3)
5527                 return -EINVAL;
5528
5529         if (!batch_mode) {
5530                 err = ipw2100_disable_adapter(priv);
5531                 if (err) {
5532                         printk(KERN_ERR DRV_NAME
5533                                ": %s: Could not disable adapter %d\n",
5534                                priv->net_dev->name, err);
5535                         return err;
5536                 }
5537         }
5538
5539         /* send cmd to firmware */
5540         err = ipw2100_hw_send_command(priv, &cmd);
5541
5542         if (!batch_mode)
5543                 ipw2100_enable_adapter(priv);
5544
5545         return err;
5546 }
5547
5548 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5549 {
5550         int i, err, auth_mode, sec_level, use_group;
5551
5552         if (!(priv->status & STATUS_RUNNING))
5553                 return 0;
5554
5555         if (!batch_mode) {
5556                 err = ipw2100_disable_adapter(priv);
5557                 if (err)
5558                         return err;
5559         }
5560
5561         if (!priv->ieee->sec.enabled) {
5562                 err =
5563                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5564                                                      SEC_LEVEL_0, 0, 1);
5565         } else {
5566                 auth_mode = IPW_AUTH_OPEN;
5567                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5568                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5569                                 auth_mode = IPW_AUTH_SHARED;
5570                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5571                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5572                 }
5573
5574                 sec_level = SEC_LEVEL_0;
5575                 if (priv->ieee->sec.flags & SEC_LEVEL)
5576                         sec_level = priv->ieee->sec.level;
5577
5578                 use_group = 0;
5579                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5580                         use_group = priv->ieee->sec.unicast_uses_group;
5581
5582                 err =
5583                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5584                                                      use_group, 1);
5585         }
5586
5587         if (err)
5588                 goto exit;
5589
5590         if (priv->ieee->sec.enabled) {
5591                 for (i = 0; i < 4; i++) {
5592                         if (!(priv->ieee->sec.flags & (1 << i))) {
5593                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5594                                 priv->ieee->sec.key_sizes[i] = 0;
5595                         } else {
5596                                 err = ipw2100_set_key(priv, i,
5597                                                       priv->ieee->sec.keys[i],
5598                                                       priv->ieee->sec.
5599                                                       key_sizes[i], 1);
5600                                 if (err)
5601                                         goto exit;
5602                         }
5603                 }
5604
5605                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5606         }
5607
5608         /* Always enable privacy so the Host can filter WEP packets if
5609          * encrypted data is sent up */
5610         err =
5611             ipw2100_set_wep_flags(priv,
5612                                   priv->ieee->sec.
5613                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5614         if (err)
5615                 goto exit;
5616
5617         priv->status &= ~STATUS_SECURITY_UPDATED;
5618
5619       exit:
5620         if (!batch_mode)
5621                 ipw2100_enable_adapter(priv);
5622
5623         return err;
5624 }
5625
5626 static void ipw2100_security_work(struct work_struct *work)
5627 {
5628         struct ipw2100_priv *priv =
5629                 container_of(work, struct ipw2100_priv, security_work.work);
5630
5631         /* If we happen to have reconnected before we get a chance to
5632          * process this, then update the security settings--which causes
5633          * a disassociation to occur */
5634         if (!(priv->status & STATUS_ASSOCIATED) &&
5635             priv->status & STATUS_SECURITY_UPDATED)
5636                 ipw2100_configure_security(priv, 0);
5637 }
5638
5639 static void shim__set_security(struct net_device *dev,
5640                                struct libipw_security *sec)
5641 {
5642         struct ipw2100_priv *priv = libipw_priv(dev);
5643         int i, force_update = 0;
5644
5645         mutex_lock(&priv->action_mutex);
5646         if (!(priv->status & STATUS_INITIALIZED))
5647                 goto done;
5648
5649         for (i = 0; i < 4; i++) {
5650                 if (sec->flags & (1 << i)) {
5651                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5652                         if (sec->key_sizes[i] == 0)
5653                                 priv->ieee->sec.flags &= ~(1 << i);
5654                         else
5655                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5656                                        sec->key_sizes[i]);
5657                         if (sec->level == SEC_LEVEL_1) {
5658                                 priv->ieee->sec.flags |= (1 << i);
5659                                 priv->status |= STATUS_SECURITY_UPDATED;
5660                         } else
5661                                 priv->ieee->sec.flags &= ~(1 << i);
5662                 }
5663         }
5664
5665         if ((sec->flags & SEC_ACTIVE_KEY) &&
5666             priv->ieee->sec.active_key != sec->active_key) {
5667                 if (sec->active_key <= 3) {
5668                         priv->ieee->sec.active_key = sec->active_key;
5669                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5670                 } else
5671                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5672
5673                 priv->status |= STATUS_SECURITY_UPDATED;
5674         }
5675
5676         if ((sec->flags & SEC_AUTH_MODE) &&
5677             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5678                 priv->ieee->sec.auth_mode = sec->auth_mode;
5679                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5680                 priv->status |= STATUS_SECURITY_UPDATED;
5681         }
5682
5683         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5684                 priv->ieee->sec.flags |= SEC_ENABLED;
5685                 priv->ieee->sec.enabled = sec->enabled;
5686                 priv->status |= STATUS_SECURITY_UPDATED;
5687                 force_update = 1;
5688         }
5689
5690         if (sec->flags & SEC_ENCRYPT)
5691                 priv->ieee->sec.encrypt = sec->encrypt;
5692
5693         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5694                 priv->ieee->sec.level = sec->level;
5695                 priv->ieee->sec.flags |= SEC_LEVEL;
5696                 priv->status |= STATUS_SECURITY_UPDATED;
5697         }
5698
5699         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5700                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5701                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5702                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5703                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5704                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5705                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5706                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5707                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5708                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5709
5710 /* As a temporary work around to enable WPA until we figure out why
5711  * wpa_supplicant toggles the security capability of the driver, which
5712  * forces a disassocation with force_update...
5713  *
5714  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5715         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5716                 ipw2100_configure_security(priv, 0);
5717       done:
5718         mutex_unlock(&priv->action_mutex);
5719 }
5720
5721 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5722 {
5723         int err;
5724         int batch_mode = 1;
5725         u8 *bssid;
5726
5727         IPW_DEBUG_INFO("enter\n");
5728
5729         err = ipw2100_disable_adapter(priv);
5730         if (err)
5731                 return err;
5732 #ifdef CONFIG_IPW2100_MONITOR
5733         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5734                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5735                 if (err)
5736                         return err;
5737
5738                 IPW_DEBUG_INFO("exit\n");
5739
5740                 return 0;
5741         }
5742 #endif                          /* CONFIG_IPW2100_MONITOR */
5743
5744         err = ipw2100_read_mac_address(priv);
5745         if (err)
5746                 return -EIO;
5747
5748         err = ipw2100_set_mac_address(priv, batch_mode);
5749         if (err)
5750                 return err;
5751
5752         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5757                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5758                 if (err)
5759                         return err;
5760         }
5761
5762         err = ipw2100_system_config(priv, batch_mode);
5763         if (err)
5764                 return err;
5765
5766         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5767         if (err)
5768                 return err;
5769
5770         /* Default to power mode OFF */
5771         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5772         if (err)
5773                 return err;
5774
5775         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5776         if (err)
5777                 return err;
5778
5779         if (priv->config & CFG_STATIC_BSSID)
5780                 bssid = priv->bssid;
5781         else
5782                 bssid = NULL;
5783         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5784         if (err)
5785                 return err;
5786
5787         if (priv->config & CFG_STATIC_ESSID)
5788                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5789                                         batch_mode);
5790         else
5791                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5792         if (err)
5793                 return err;
5794
5795         err = ipw2100_configure_security(priv, batch_mode);
5796         if (err)
5797                 return err;
5798
5799         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5800                 err =
5801                     ipw2100_set_ibss_beacon_interval(priv,
5802                                                      priv->beacon_interval,
5803                                                      batch_mode);
5804                 if (err)
5805                         return err;
5806
5807                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5808                 if (err)
5809                         return err;
5810         }
5811
5812         /*
5813            err = ipw2100_set_fragmentation_threshold(
5814            priv, priv->frag_threshold, batch_mode);
5815            if (err)
5816            return err;
5817          */
5818
5819         IPW_DEBUG_INFO("exit\n");
5820
5821         return 0;
5822 }
5823
5824 /*************************************************************************
5825  *
5826  * EXTERNALLY CALLED METHODS
5827  *
5828  *************************************************************************/
5829
5830 /* This method is called by the network layer -- not to be confused with
5831  * ipw2100_set_mac_address() declared above called by this driver (and this
5832  * method as well) to talk to the firmware */
5833 static int ipw2100_set_address(struct net_device *dev, void *p)
5834 {
5835         struct ipw2100_priv *priv = libipw_priv(dev);
5836         struct sockaddr *addr = p;
5837         int err = 0;
5838
5839         if (!is_valid_ether_addr(addr->sa_data))
5840                 return -EADDRNOTAVAIL;
5841
5842         mutex_lock(&priv->action_mutex);
5843
5844         priv->config |= CFG_CUSTOM_MAC;
5845         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5846
5847         err = ipw2100_set_mac_address(priv, 0);
5848         if (err)
5849                 goto done;
5850
5851         priv->reset_backoff = 0;
5852         mutex_unlock(&priv->action_mutex);
5853         ipw2100_reset_adapter(&priv->reset_work.work);
5854         return 0;
5855
5856       done:
5857         mutex_unlock(&priv->action_mutex);
5858         return err;
5859 }
5860
5861 static int ipw2100_open(struct net_device *dev)
5862 {
5863         struct ipw2100_priv *priv = libipw_priv(dev);
5864         unsigned long flags;
5865         IPW_DEBUG_INFO("dev->open\n");
5866
5867         spin_lock_irqsave(&priv->low_lock, flags);
5868         if (priv->status & STATUS_ASSOCIATED) {
5869                 netif_carrier_on(dev);
5870                 netif_start_queue(dev);
5871         }
5872         spin_unlock_irqrestore(&priv->low_lock, flags);
5873
5874         return 0;
5875 }
5876
5877 static int ipw2100_close(struct net_device *dev)
5878 {
5879         struct ipw2100_priv *priv = libipw_priv(dev);
5880         unsigned long flags;
5881         struct list_head *element;
5882         struct ipw2100_tx_packet *packet;
5883
5884         IPW_DEBUG_INFO("enter\n");
5885
5886         spin_lock_irqsave(&priv->low_lock, flags);
5887
5888         if (priv->status & STATUS_ASSOCIATED)
5889                 netif_carrier_off(dev);
5890         netif_stop_queue(dev);
5891
5892         /* Flush the TX queue ... */
5893         while (!list_empty(&priv->tx_pend_list)) {
5894                 element = priv->tx_pend_list.next;
5895                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5896
5897                 list_del(element);
5898                 DEC_STAT(&priv->tx_pend_stat);
5899
5900                 libipw_txb_free(packet->info.d_struct.txb);
5901                 packet->info.d_struct.txb = NULL;
5902
5903                 list_add_tail(element, &priv->tx_free_list);
5904                 INC_STAT(&priv->tx_free_stat);
5905         }
5906         spin_unlock_irqrestore(&priv->low_lock, flags);
5907
5908         IPW_DEBUG_INFO("exit\n");
5909
5910         return 0;
5911 }
5912
5913 /*
5914  * TODO:  Fix this function... its just wrong
5915  */
5916 static void ipw2100_tx_timeout(struct net_device *dev)
5917 {
5918         struct ipw2100_priv *priv = libipw_priv(dev);
5919
5920         dev->stats.tx_errors++;
5921
5922 #ifdef CONFIG_IPW2100_MONITOR
5923         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5924                 return;
5925 #endif
5926
5927         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5928                        dev->name);
5929         schedule_reset(priv);
5930 }
5931
5932 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5933 {
5934         /* This is called when wpa_supplicant loads and closes the driver
5935          * interface. */
5936         priv->ieee->wpa_enabled = value;
5937         return 0;
5938 }
5939
5940 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5941 {
5942
5943         struct libipw_device *ieee = priv->ieee;
5944         struct libipw_security sec = {
5945                 .flags = SEC_AUTH_MODE,
5946         };
5947         int ret = 0;
5948
5949         if (value & IW_AUTH_ALG_SHARED_KEY) {
5950                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5951                 ieee->open_wep = 0;
5952         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5953                 sec.auth_mode = WLAN_AUTH_OPEN;
5954                 ieee->open_wep = 1;
5955         } else if (value & IW_AUTH_ALG_LEAP) {
5956                 sec.auth_mode = WLAN_AUTH_LEAP;
5957                 ieee->open_wep = 1;
5958         } else
5959                 return -EINVAL;
5960
5961         if (ieee->set_security)
5962                 ieee->set_security(ieee->dev, &sec);
5963         else
5964                 ret = -EOPNOTSUPP;
5965
5966         return ret;
5967 }
5968
5969 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5970                                     char *wpa_ie, int wpa_ie_len)
5971 {
5972
5973         struct ipw2100_wpa_assoc_frame frame;
5974
5975         frame.fixed_ie_mask = 0;
5976
5977         /* copy WPA IE */
5978         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5979         frame.var_ie_len = wpa_ie_len;
5980
5981         /* make sure WPA is enabled */
5982         ipw2100_wpa_enable(priv, 1);
5983         ipw2100_set_wpa_ie(priv, &frame, 0);
5984 }
5985
5986 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5987                                     struct ethtool_drvinfo *info)
5988 {
5989         struct ipw2100_priv *priv = libipw_priv(dev);
5990         char fw_ver[64], ucode_ver[64];
5991
5992         strcpy(info->driver, DRV_NAME);
5993         strcpy(info->version, DRV_VERSION);
5994
5995         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5996         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5997
5998         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5999                  fw_ver, priv->eeprom_version, ucode_ver);
6000
6001         strcpy(info->bus_info, pci_name(priv->pci_dev));
6002 }
6003
6004 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
6005 {
6006         struct ipw2100_priv *priv = libipw_priv(dev);
6007         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
6008 }
6009
6010 static const struct ethtool_ops ipw2100_ethtool_ops = {
6011         .get_link = ipw2100_ethtool_get_link,
6012         .get_drvinfo = ipw_ethtool_get_drvinfo,
6013 };
6014
6015 static void ipw2100_hang_check(struct work_struct *work)
6016 {
6017         struct ipw2100_priv *priv =
6018                 container_of(work, struct ipw2100_priv, hang_check.work);
6019         unsigned long flags;
6020         u32 rtc = 0xa5a5a5a5;
6021         u32 len = sizeof(rtc);
6022         int restart = 0;
6023
6024         spin_lock_irqsave(&priv->low_lock, flags);
6025
6026         if (priv->fatal_error != 0) {
6027                 /* If fatal_error is set then we need to restart */
6028                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6029                                priv->net_dev->name);
6030
6031                 restart = 1;
6032         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6033                    (rtc == priv->last_rtc)) {
6034                 /* Check if firmware is hung */
6035                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6036                                priv->net_dev->name);
6037
6038                 restart = 1;
6039         }
6040
6041         if (restart) {
6042                 /* Kill timer */
6043                 priv->stop_hang_check = 1;
6044                 priv->hangs++;
6045
6046                 /* Restart the NIC */
6047                 schedule_reset(priv);
6048         }
6049
6050         priv->last_rtc = rtc;
6051
6052         if (!priv->stop_hang_check)
6053                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
6054
6055         spin_unlock_irqrestore(&priv->low_lock, flags);
6056 }
6057
6058 static void ipw2100_rf_kill(struct work_struct *work)
6059 {
6060         struct ipw2100_priv *priv =
6061                 container_of(work, struct ipw2100_priv, rf_kill.work);
6062         unsigned long flags;
6063
6064         spin_lock_irqsave(&priv->low_lock, flags);
6065
6066         if (rf_kill_active(priv)) {
6067                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6068                 if (!priv->stop_rf_kill)
6069                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
6070                                            round_jiffies_relative(HZ));
6071                 goto exit_unlock;
6072         }
6073
6074         /* RF Kill is now disabled, so bring the device back up */
6075
6076         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6077                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6078                                   "device\n");
6079                 schedule_reset(priv);
6080         } else
6081                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6082                                   "enabled\n");
6083
6084       exit_unlock:
6085         spin_unlock_irqrestore(&priv->low_lock, flags);
6086 }
6087
6088 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6089
6090 static const struct net_device_ops ipw2100_netdev_ops = {
6091         .ndo_open               = ipw2100_open,
6092         .ndo_stop               = ipw2100_close,
6093         .ndo_start_xmit         = libipw_xmit,
6094         .ndo_change_mtu         = libipw_change_mtu,
6095         .ndo_init               = ipw2100_net_init,
6096         .ndo_tx_timeout         = ipw2100_tx_timeout,
6097         .ndo_set_mac_address    = ipw2100_set_address,
6098         .ndo_validate_addr      = eth_validate_addr,
6099 };
6100
6101 /* Look into using netdev destructor to shutdown libipw? */
6102
6103 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6104                                                void __iomem * base_addr,
6105                                                unsigned long mem_start,
6106                                                unsigned long mem_len)
6107 {
6108         struct ipw2100_priv *priv;
6109         struct net_device *dev;
6110
6111         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6112         if (!dev)
6113                 return NULL;
6114         priv = libipw_priv(dev);
6115         priv->ieee = netdev_priv(dev);
6116         priv->pci_dev = pci_dev;
6117         priv->net_dev = dev;
6118
6119         priv->ieee->hard_start_xmit = ipw2100_tx;
6120         priv->ieee->set_security = shim__set_security;
6121
6122         priv->ieee->perfect_rssi = -20;
6123         priv->ieee->worst_rssi = -85;
6124
6125         dev->netdev_ops = &ipw2100_netdev_ops;
6126         dev->ethtool_ops = &ipw2100_ethtool_ops;
6127         dev->wireless_handlers = &ipw2100_wx_handler_def;
6128         priv->wireless_data.libipw = priv->ieee;
6129         dev->wireless_data = &priv->wireless_data;
6130         dev->watchdog_timeo = 3 * HZ;
6131         dev->irq = 0;
6132
6133         dev->base_addr = (unsigned long)base_addr;
6134         dev->mem_start = mem_start;
6135         dev->mem_end = dev->mem_start + mem_len - 1;
6136
6137         /* NOTE: We don't use the wireless_handlers hook
6138          * in dev as the system will start throwing WX requests
6139          * to us before we're actually initialized and it just
6140          * ends up causing problems.  So, we just handle
6141          * the WX extensions through the ipw2100_ioctl interface */
6142
6143         /* memset() puts everything to 0, so we only have explicitly set
6144          * those values that need to be something else */
6145
6146         /* If power management is turned on, default to AUTO mode */
6147         priv->power_mode = IPW_POWER_AUTO;
6148
6149 #ifdef CONFIG_IPW2100_MONITOR
6150         priv->config |= CFG_CRC_CHECK;
6151 #endif
6152         priv->ieee->wpa_enabled = 0;
6153         priv->ieee->drop_unencrypted = 0;
6154         priv->ieee->privacy_invoked = 0;
6155         priv->ieee->ieee802_1x = 1;
6156
6157         /* Set module parameters */
6158         switch (network_mode) {
6159         case 1:
6160                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6161                 break;
6162 #ifdef CONFIG_IPW2100_MONITOR
6163         case 2:
6164                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6165                 break;
6166 #endif
6167         default:
6168         case 0:
6169                 priv->ieee->iw_mode = IW_MODE_INFRA;
6170                 break;
6171         }
6172
6173         if (disable == 1)
6174                 priv->status |= STATUS_RF_KILL_SW;
6175
6176         if (channel != 0 &&
6177             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6178                 priv->config |= CFG_STATIC_CHANNEL;
6179                 priv->channel = channel;
6180         }
6181
6182         if (associate)
6183                 priv->config |= CFG_ASSOCIATE;
6184
6185         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6186         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6187         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6188         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6189         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6190         priv->tx_power = IPW_TX_POWER_DEFAULT;
6191         priv->tx_rates = DEFAULT_TX_RATES;
6192
6193         strcpy(priv->nick, "ipw2100");
6194
6195         spin_lock_init(&priv->low_lock);
6196         mutex_init(&priv->action_mutex);
6197         mutex_init(&priv->adapter_mutex);
6198
6199         init_waitqueue_head(&priv->wait_command_queue);
6200
6201         netif_carrier_off(dev);
6202
6203         INIT_LIST_HEAD(&priv->msg_free_list);
6204         INIT_LIST_HEAD(&priv->msg_pend_list);
6205         INIT_STAT(&priv->msg_free_stat);
6206         INIT_STAT(&priv->msg_pend_stat);
6207
6208         INIT_LIST_HEAD(&priv->tx_free_list);
6209         INIT_LIST_HEAD(&priv->tx_pend_list);
6210         INIT_STAT(&priv->tx_free_stat);
6211         INIT_STAT(&priv->tx_pend_stat);
6212
6213         INIT_LIST_HEAD(&priv->fw_pend_list);
6214         INIT_STAT(&priv->fw_pend_stat);
6215
6216         priv->workqueue = create_workqueue(DRV_NAME);
6217
6218         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6219         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6220         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6221         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6222         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6223         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6224         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6225
6226         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6227                      ipw2100_irq_tasklet, (unsigned long)priv);
6228
6229         /* NOTE:  We do not start the deferred work for status checks yet */
6230         priv->stop_rf_kill = 1;
6231         priv->stop_hang_check = 1;
6232
6233         return dev;
6234 }
6235
6236 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6237                                 const struct pci_device_id *ent)
6238 {
6239         unsigned long mem_start, mem_len, mem_flags;
6240         void __iomem *base_addr = NULL;
6241         struct net_device *dev = NULL;
6242         struct ipw2100_priv *priv = NULL;
6243         int err = 0;
6244         int registered = 0;
6245         u32 val;
6246
6247         IPW_DEBUG_INFO("enter\n");
6248
6249         mem_start = pci_resource_start(pci_dev, 0);
6250         mem_len = pci_resource_len(pci_dev, 0);
6251         mem_flags = pci_resource_flags(pci_dev, 0);
6252
6253         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6254                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6255                 err = -ENODEV;
6256                 goto fail;
6257         }
6258
6259         base_addr = ioremap_nocache(mem_start, mem_len);
6260         if (!base_addr) {
6261                 printk(KERN_WARNING DRV_NAME
6262                        "Error calling ioremap_nocache.\n");
6263                 err = -EIO;
6264                 goto fail;
6265         }
6266
6267         /* allocate and initialize our net_device */
6268         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6269         if (!dev) {
6270                 printk(KERN_WARNING DRV_NAME
6271                        "Error calling ipw2100_alloc_device.\n");
6272                 err = -ENOMEM;
6273                 goto fail;
6274         }
6275
6276         /* set up PCI mappings for device */
6277         err = pci_enable_device(pci_dev);
6278         if (err) {
6279                 printk(KERN_WARNING DRV_NAME
6280                        "Error calling pci_enable_device.\n");
6281                 return err;
6282         }
6283
6284         priv = libipw_priv(dev);
6285
6286         pci_set_master(pci_dev);
6287         pci_set_drvdata(pci_dev, priv);
6288
6289         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6290         if (err) {
6291                 printk(KERN_WARNING DRV_NAME
6292                        "Error calling pci_set_dma_mask.\n");
6293                 pci_disable_device(pci_dev);
6294                 return err;
6295         }
6296
6297         err = pci_request_regions(pci_dev, DRV_NAME);
6298         if (err) {
6299                 printk(KERN_WARNING DRV_NAME
6300                        "Error calling pci_request_regions.\n");
6301                 pci_disable_device(pci_dev);
6302                 return err;
6303         }
6304
6305         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6306          * PCI Tx retries from interfering with C3 CPU state */
6307         pci_read_config_dword(pci_dev, 0x40, &val);
6308         if ((val & 0x0000ff00) != 0)
6309                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6310
6311         pci_set_power_state(pci_dev, PCI_D0);
6312
6313         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6314                 printk(KERN_WARNING DRV_NAME
6315                        "Device not found via register read.\n");
6316                 err = -ENODEV;
6317                 goto fail;
6318         }
6319
6320         SET_NETDEV_DEV(dev, &pci_dev->dev);
6321
6322         /* Force interrupts to be shut off on the device */
6323         priv->status |= STATUS_INT_ENABLED;
6324         ipw2100_disable_interrupts(priv);
6325
6326         /* Allocate and initialize the Tx/Rx queues and lists */
6327         if (ipw2100_queues_allocate(priv)) {
6328                 printk(KERN_WARNING DRV_NAME
6329                        "Error calling ipw2100_queues_allocate.\n");
6330                 err = -ENOMEM;
6331                 goto fail;
6332         }
6333         ipw2100_queues_initialize(priv);
6334
6335         err = request_irq(pci_dev->irq,
6336                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6337         if (err) {
6338                 printk(KERN_WARNING DRV_NAME
6339                        "Error calling request_irq: %d.\n", pci_dev->irq);
6340                 goto fail;
6341         }
6342         dev->irq = pci_dev->irq;
6343
6344         IPW_DEBUG_INFO("Attempting to register device...\n");
6345
6346         printk(KERN_INFO DRV_NAME
6347                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6348
6349         /* Bring up the interface.  Pre 0.46, after we registered the
6350          * network device we would call ipw2100_up.  This introduced a race
6351          * condition with newer hotplug configurations (network was coming
6352          * up and making calls before the device was initialized).
6353          *
6354          * If we called ipw2100_up before we registered the device, then the
6355          * device name wasn't registered.  So, we instead use the net_dev->init
6356          * member to call a function that then just turns and calls ipw2100_up.
6357          * net_dev->init is called after name allocation but before the
6358          * notifier chain is called */
6359         err = register_netdev(dev);
6360         if (err) {
6361                 printk(KERN_WARNING DRV_NAME
6362                        "Error calling register_netdev.\n");
6363                 goto fail;
6364         }
6365
6366         mutex_lock(&priv->action_mutex);
6367         registered = 1;
6368
6369         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6370
6371         /* perform this after register_netdev so that dev->name is set */
6372         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6373         if (err)
6374                 goto fail_unlock;
6375
6376         /* If the RF Kill switch is disabled, go ahead and complete the
6377          * startup sequence */
6378         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6379                 /* Enable the adapter - sends HOST_COMPLETE */
6380                 if (ipw2100_enable_adapter(priv)) {
6381                         printk(KERN_WARNING DRV_NAME
6382                                ": %s: failed in call to enable adapter.\n",
6383                                priv->net_dev->name);
6384                         ipw2100_hw_stop_adapter(priv);
6385                         err = -EIO;
6386                         goto fail_unlock;
6387                 }
6388
6389                 /* Start a scan . . . */
6390                 ipw2100_set_scan_options(priv);
6391                 ipw2100_start_scan(priv);
6392         }
6393
6394         IPW_DEBUG_INFO("exit\n");
6395
6396         priv->status |= STATUS_INITIALIZED;
6397
6398         mutex_unlock(&priv->action_mutex);
6399
6400         return 0;
6401
6402       fail_unlock:
6403         mutex_unlock(&priv->action_mutex);
6404
6405       fail:
6406         if (dev) {
6407                 if (registered)
6408                         unregister_netdev(dev);
6409
6410                 ipw2100_hw_stop_adapter(priv);
6411
6412                 ipw2100_disable_interrupts(priv);
6413
6414                 if (dev->irq)
6415                         free_irq(dev->irq, priv);
6416
6417                 ipw2100_kill_workqueue(priv);
6418
6419                 /* These are safe to call even if they weren't allocated */
6420                 ipw2100_queues_free(priv);
6421                 sysfs_remove_group(&pci_dev->dev.kobj,
6422                                    &ipw2100_attribute_group);
6423
6424                 free_libipw(dev, 0);
6425                 pci_set_drvdata(pci_dev, NULL);
6426         }
6427
6428         if (base_addr)
6429                 iounmap(base_addr);
6430
6431         pci_release_regions(pci_dev);
6432         pci_disable_device(pci_dev);
6433
6434         return err;
6435 }
6436
6437 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6438 {
6439         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6440         struct net_device *dev;
6441
6442         if (priv) {
6443                 mutex_lock(&priv->action_mutex);
6444
6445                 priv->status &= ~STATUS_INITIALIZED;
6446
6447                 dev = priv->net_dev;
6448                 sysfs_remove_group(&pci_dev->dev.kobj,
6449                                    &ipw2100_attribute_group);
6450
6451 #ifdef CONFIG_PM
6452                 if (ipw2100_firmware.version)
6453                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6454 #endif
6455                 /* Take down the hardware */
6456                 ipw2100_down(priv);
6457
6458                 /* Release the mutex so that the network subsystem can
6459                  * complete any needed calls into the driver... */
6460                 mutex_unlock(&priv->action_mutex);
6461
6462                 /* Unregister the device first - this results in close()
6463                  * being called if the device is open.  If we free storage
6464                  * first, then close() will crash. */
6465                 unregister_netdev(dev);
6466
6467                 /* ipw2100_down will ensure that there is no more pending work
6468                  * in the workqueue's, so we can safely remove them now. */
6469                 ipw2100_kill_workqueue(priv);
6470
6471                 ipw2100_queues_free(priv);
6472
6473                 /* Free potential debugging firmware snapshot */
6474                 ipw2100_snapshot_free(priv);
6475
6476                 if (dev->irq)
6477                         free_irq(dev->irq, priv);
6478
6479                 if (dev->base_addr)
6480                         iounmap((void __iomem *)dev->base_addr);
6481
6482                 /* wiphy_unregister needs to be here, before free_libipw */
6483                 wiphy_unregister(priv->ieee->wdev.wiphy);
6484                 kfree(priv->ieee->bg_band.channels);
6485                 free_libipw(dev, 0);
6486         }
6487
6488         pci_release_regions(pci_dev);
6489         pci_disable_device(pci_dev);
6490
6491         IPW_DEBUG_INFO("exit\n");
6492 }
6493
6494 #ifdef CONFIG_PM
6495 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6496 {
6497         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6498         struct net_device *dev = priv->net_dev;
6499
6500         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6501
6502         mutex_lock(&priv->action_mutex);
6503         if (priv->status & STATUS_INITIALIZED) {
6504                 /* Take down the device; powers it off, etc. */
6505                 ipw2100_down(priv);
6506         }
6507
6508         /* Remove the PRESENT state of the device */
6509         netif_device_detach(dev);
6510
6511         pci_save_state(pci_dev);
6512         pci_disable_device(pci_dev);
6513         pci_set_power_state(pci_dev, PCI_D3hot);
6514
6515         priv->suspend_at = get_seconds();
6516
6517         mutex_unlock(&priv->action_mutex);
6518
6519         return 0;
6520 }
6521
6522 static int ipw2100_resume(struct pci_dev *pci_dev)
6523 {
6524         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6525         struct net_device *dev = priv->net_dev;
6526         int err;
6527         u32 val;
6528
6529         if (IPW2100_PM_DISABLED)
6530                 return 0;
6531
6532         mutex_lock(&priv->action_mutex);
6533
6534         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6535
6536         pci_set_power_state(pci_dev, PCI_D0);
6537         err = pci_enable_device(pci_dev);
6538         if (err) {
6539                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6540                        dev->name);
6541                 mutex_unlock(&priv->action_mutex);
6542                 return err;
6543         }
6544         pci_restore_state(pci_dev);
6545
6546         /*
6547          * Suspend/Resume resets the PCI configuration space, so we have to
6548          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6549          * from interfering with C3 CPU state. pci_restore_state won't help
6550          * here since it only restores the first 64 bytes pci config header.
6551          */
6552         pci_read_config_dword(pci_dev, 0x40, &val);
6553         if ((val & 0x0000ff00) != 0)
6554                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6555
6556         /* Set the device back into the PRESENT state; this will also wake
6557          * the queue of needed */
6558         netif_device_attach(dev);
6559
6560         priv->suspend_time = get_seconds() - priv->suspend_at;
6561
6562         /* Bring the device back up */
6563         if (!(priv->status & STATUS_RF_KILL_SW))
6564                 ipw2100_up(priv, 0);
6565
6566         mutex_unlock(&priv->action_mutex);
6567
6568         return 0;
6569 }
6570 #endif
6571
6572 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6573 {
6574         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6575
6576         /* Take down the device; powers it off, etc. */
6577         ipw2100_down(priv);
6578
6579         pci_disable_device(pci_dev);
6580 }
6581
6582 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6583
6584 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6585         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6586         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6587         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6588         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6589         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6590         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6591         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6592         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6593         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6594         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6595         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6596         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6597         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6598
6599         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6600         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6601         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6602         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6603         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6604
6605         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6606         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6607         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6608         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6609         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6610         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6611         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6612
6613         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6614
6615         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6616         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6617         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6618         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6619         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6620         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6621         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6622
6623         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6624         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6625         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6626         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6627         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6628         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6629
6630         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6631         {0,},
6632 };
6633
6634 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6635
6636 static struct pci_driver ipw2100_pci_driver = {
6637         .name = DRV_NAME,
6638         .id_table = ipw2100_pci_id_table,
6639         .probe = ipw2100_pci_init_one,
6640         .remove = __devexit_p(ipw2100_pci_remove_one),
6641 #ifdef CONFIG_PM
6642         .suspend = ipw2100_suspend,
6643         .resume = ipw2100_resume,
6644 #endif
6645         .shutdown = ipw2100_shutdown,
6646 };
6647
6648 /**
6649  * Initialize the ipw2100 driver/module
6650  *
6651  * @returns 0 if ok, < 0 errno node con error.
6652  *
6653  * Note: we cannot init the /proc stuff until the PCI driver is there,
6654  * or we risk an unlikely race condition on someone accessing
6655  * uninitialized data in the PCI dev struct through /proc.
6656  */
6657 static int __init ipw2100_init(void)
6658 {
6659         int ret;
6660
6661         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6662         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6663
6664         ret = pci_register_driver(&ipw2100_pci_driver);
6665         if (ret)
6666                 goto out;
6667
6668         ipw2100_pm_qos_req = pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
6669                         PM_QOS_DEFAULT_VALUE);
6670 #ifdef CONFIG_IPW2100_DEBUG
6671         ipw2100_debug_level = debug;
6672         ret = driver_create_file(&ipw2100_pci_driver.driver,
6673                                  &driver_attr_debug_level);
6674 #endif
6675
6676 out:
6677         return ret;
6678 }
6679
6680 /**
6681  * Cleanup ipw2100 driver registration
6682  */
6683 static void __exit ipw2100_exit(void)
6684 {
6685         /* FIXME: IPG: check that we have no instances of the devices open */
6686 #ifdef CONFIG_IPW2100_DEBUG
6687         driver_remove_file(&ipw2100_pci_driver.driver,
6688                            &driver_attr_debug_level);
6689 #endif
6690         pci_unregister_driver(&ipw2100_pci_driver);
6691         pm_qos_remove_request(ipw2100_pm_qos_req);
6692 }
6693
6694 module_init(ipw2100_init);
6695 module_exit(ipw2100_exit);
6696
6697 static int ipw2100_wx_get_name(struct net_device *dev,
6698                                struct iw_request_info *info,
6699                                union iwreq_data *wrqu, char *extra)
6700 {
6701         /*
6702          * This can be called at any time.  No action lock required
6703          */
6704
6705         struct ipw2100_priv *priv = libipw_priv(dev);
6706         if (!(priv->status & STATUS_ASSOCIATED))
6707                 strcpy(wrqu->name, "unassociated");
6708         else
6709                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6710
6711         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6712         return 0;
6713 }
6714
6715 static int ipw2100_wx_set_freq(struct net_device *dev,
6716                                struct iw_request_info *info,
6717                                union iwreq_data *wrqu, char *extra)
6718 {
6719         struct ipw2100_priv *priv = libipw_priv(dev);
6720         struct iw_freq *fwrq = &wrqu->freq;
6721         int err = 0;
6722
6723         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6724                 return -EOPNOTSUPP;
6725
6726         mutex_lock(&priv->action_mutex);
6727         if (!(priv->status & STATUS_INITIALIZED)) {
6728                 err = -EIO;
6729                 goto done;
6730         }
6731
6732         /* if setting by freq convert to channel */
6733         if (fwrq->e == 1) {
6734                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6735                         int f = fwrq->m / 100000;
6736                         int c = 0;
6737
6738                         while ((c < REG_MAX_CHANNEL) &&
6739                                (f != ipw2100_frequencies[c]))
6740                                 c++;
6741
6742                         /* hack to fall through */
6743                         fwrq->e = 0;
6744                         fwrq->m = c + 1;
6745                 }
6746         }
6747
6748         if (fwrq->e > 0 || fwrq->m > 1000) {
6749                 err = -EOPNOTSUPP;
6750                 goto done;
6751         } else {                /* Set the channel */
6752                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6753                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6754         }
6755
6756       done:
6757         mutex_unlock(&priv->action_mutex);
6758         return err;
6759 }
6760
6761 static int ipw2100_wx_get_freq(struct net_device *dev,
6762                                struct iw_request_info *info,
6763                                union iwreq_data *wrqu, char *extra)
6764 {
6765         /*
6766          * This can be called at any time.  No action lock required
6767          */
6768
6769         struct ipw2100_priv *priv = libipw_priv(dev);
6770
6771         wrqu->freq.e = 0;
6772
6773         /* If we are associated, trying to associate, or have a statically
6774          * configured CHANNEL then return that; otherwise return ANY */
6775         if (priv->config & CFG_STATIC_CHANNEL ||
6776             priv->status & STATUS_ASSOCIATED)
6777                 wrqu->freq.m = priv->channel;
6778         else
6779                 wrqu->freq.m = 0;
6780
6781         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6782         return 0;
6783
6784 }
6785
6786 static int ipw2100_wx_set_mode(struct net_device *dev,
6787                                struct iw_request_info *info,
6788                                union iwreq_data *wrqu, char *extra)
6789 {
6790         struct ipw2100_priv *priv = libipw_priv(dev);
6791         int err = 0;
6792
6793         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6794
6795         if (wrqu->mode == priv->ieee->iw_mode)
6796                 return 0;
6797
6798         mutex_lock(&priv->action_mutex);
6799         if (!(priv->status & STATUS_INITIALIZED)) {
6800                 err = -EIO;
6801                 goto done;
6802         }
6803
6804         switch (wrqu->mode) {
6805 #ifdef CONFIG_IPW2100_MONITOR
6806         case IW_MODE_MONITOR:
6807                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6808                 break;
6809 #endif                          /* CONFIG_IPW2100_MONITOR */
6810         case IW_MODE_ADHOC:
6811                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6812                 break;
6813         case IW_MODE_INFRA:
6814         case IW_MODE_AUTO:
6815         default:
6816                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6817                 break;
6818         }
6819
6820       done:
6821         mutex_unlock(&priv->action_mutex);
6822         return err;
6823 }
6824
6825 static int ipw2100_wx_get_mode(struct net_device *dev,
6826                                struct iw_request_info *info,
6827                                union iwreq_data *wrqu, char *extra)
6828 {
6829         /*
6830          * This can be called at any time.  No action lock required
6831          */
6832
6833         struct ipw2100_priv *priv = libipw_priv(dev);
6834
6835         wrqu->mode = priv->ieee->iw_mode;
6836         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6837
6838         return 0;
6839 }
6840
6841 #define POWER_MODES 5
6842
6843 /* Values are in microsecond */
6844 static const s32 timeout_duration[POWER_MODES] = {
6845         350000,
6846         250000,
6847         75000,
6848         37000,
6849         25000,
6850 };
6851
6852 static const s32 period_duration[POWER_MODES] = {
6853         400000,
6854         700000,
6855         1000000,
6856         1000000,
6857         1000000
6858 };
6859
6860 static int ipw2100_wx_get_range(struct net_device *dev,
6861                                 struct iw_request_info *info,
6862                                 union iwreq_data *wrqu, char *extra)
6863 {
6864         /*
6865          * This can be called at any time.  No action lock required
6866          */
6867
6868         struct ipw2100_priv *priv = libipw_priv(dev);
6869         struct iw_range *range = (struct iw_range *)extra;
6870         u16 val;
6871         int i, level;
6872
6873         wrqu->data.length = sizeof(*range);
6874         memset(range, 0, sizeof(*range));
6875
6876         /* Let's try to keep this struct in the same order as in
6877          * linux/include/wireless.h
6878          */
6879
6880         /* TODO: See what values we can set, and remove the ones we can't
6881          * set, or fill them with some default data.
6882          */
6883
6884         /* ~5 Mb/s real (802.11b) */
6885         range->throughput = 5 * 1000 * 1000;
6886
6887 //      range->sensitivity;     /* signal level threshold range */
6888
6889         range->max_qual.qual = 100;
6890         /* TODO: Find real max RSSI and stick here */
6891         range->max_qual.level = 0;
6892         range->max_qual.noise = 0;
6893         range->max_qual.updated = 7;    /* Updated all three */
6894
6895         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6896         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6897         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6898         range->avg_qual.noise = 0;
6899         range->avg_qual.updated = 7;    /* Updated all three */
6900
6901         range->num_bitrates = RATE_COUNT;
6902
6903         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6904                 range->bitrate[i] = ipw2100_rates_11b[i];
6905         }
6906
6907         range->min_rts = MIN_RTS_THRESHOLD;
6908         range->max_rts = MAX_RTS_THRESHOLD;
6909         range->min_frag = MIN_FRAG_THRESHOLD;
6910         range->max_frag = MAX_FRAG_THRESHOLD;
6911
6912         range->min_pmp = period_duration[0];    /* Minimal PM period */
6913         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6914         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6915         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6916
6917         /* How to decode max/min PM period */
6918         range->pmp_flags = IW_POWER_PERIOD;
6919         /* How to decode max/min PM period */
6920         range->pmt_flags = IW_POWER_TIMEOUT;
6921         /* What PM options are supported */
6922         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6923
6924         range->encoding_size[0] = 5;
6925         range->encoding_size[1] = 13;   /* Different token sizes */
6926         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6927         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6928 //      range->encoding_login_index;            /* token index for login token */
6929
6930         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6931                 range->txpower_capa = IW_TXPOW_DBM;
6932                 range->num_txpower = IW_MAX_TXPOWER;
6933                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6934                      i < IW_MAX_TXPOWER;
6935                      i++, level -=
6936                      ((IPW_TX_POWER_MAX_DBM -
6937                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6938                         range->txpower[i] = level / 16;
6939         } else {
6940                 range->txpower_capa = 0;
6941                 range->num_txpower = 0;
6942         }
6943
6944         /* Set the Wireless Extension versions */
6945         range->we_version_compiled = WIRELESS_EXT;
6946         range->we_version_source = 18;
6947
6948 //      range->retry_capa;      /* What retry options are supported */
6949 //      range->retry_flags;     /* How to decode max/min retry limit */
6950 //      range->r_time_flags;    /* How to decode max/min retry life */
6951 //      range->min_retry;       /* Minimal number of retries */
6952 //      range->max_retry;       /* Maximal number of retries */
6953 //      range->min_r_time;      /* Minimal retry lifetime */
6954 //      range->max_r_time;      /* Maximal retry lifetime */
6955
6956         range->num_channels = FREQ_COUNT;
6957
6958         val = 0;
6959         for (i = 0; i < FREQ_COUNT; i++) {
6960                 // TODO: Include only legal frequencies for some countries
6961 //              if (local->channel_mask & (1 << i)) {
6962                 range->freq[val].i = i + 1;
6963                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6964                 range->freq[val].e = 1;
6965                 val++;
6966 //              }
6967                 if (val == IW_MAX_FREQUENCIES)
6968                         break;
6969         }
6970         range->num_frequency = val;
6971
6972         /* Event capability (kernel + driver) */
6973         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6974                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6975         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6976
6977         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6978                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6979
6980         IPW_DEBUG_WX("GET Range\n");
6981
6982         return 0;
6983 }
6984
6985 static int ipw2100_wx_set_wap(struct net_device *dev,
6986                               struct iw_request_info *info,
6987                               union iwreq_data *wrqu, char *extra)
6988 {
6989         struct ipw2100_priv *priv = libipw_priv(dev);
6990         int err = 0;
6991
6992         static const unsigned char any[] = {
6993                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6994         };
6995         static const unsigned char off[] = {
6996                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6997         };
6998
6999         // sanity checks
7000         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
7001                 return -EINVAL;
7002
7003         mutex_lock(&priv->action_mutex);
7004         if (!(priv->status & STATUS_INITIALIZED)) {
7005                 err = -EIO;
7006                 goto done;
7007         }
7008
7009         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
7010             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
7011                 /* we disable mandatory BSSID association */
7012                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
7013                 priv->config &= ~CFG_STATIC_BSSID;
7014                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
7015                 goto done;
7016         }
7017
7018         priv->config |= CFG_STATIC_BSSID;
7019         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
7020
7021         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
7022
7023         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
7024
7025       done:
7026         mutex_unlock(&priv->action_mutex);
7027         return err;
7028 }
7029
7030 static int ipw2100_wx_get_wap(struct net_device *dev,
7031                               struct iw_request_info *info,
7032                               union iwreq_data *wrqu, char *extra)
7033 {
7034         /*
7035          * This can be called at any time.  No action lock required
7036          */
7037
7038         struct ipw2100_priv *priv = libipw_priv(dev);
7039
7040         /* If we are associated, trying to associate, or have a statically
7041          * configured BSSID then return that; otherwise return ANY */
7042         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7043                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7044                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7045         } else
7046                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7047
7048         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7049         return 0;
7050 }
7051
7052 static int ipw2100_wx_set_essid(struct net_device *dev,
7053                                 struct iw_request_info *info,
7054                                 union iwreq_data *wrqu, char *extra)
7055 {
7056         struct ipw2100_priv *priv = libipw_priv(dev);
7057         char *essid = "";       /* ANY */
7058         int length = 0;
7059         int err = 0;
7060         DECLARE_SSID_BUF(ssid);
7061
7062         mutex_lock(&priv->action_mutex);
7063         if (!(priv->status & STATUS_INITIALIZED)) {
7064                 err = -EIO;
7065                 goto done;
7066         }
7067
7068         if (wrqu->essid.flags && wrqu->essid.length) {
7069                 length = wrqu->essid.length;
7070                 essid = extra;
7071         }
7072
7073         if (length == 0) {
7074                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7075                 priv->config &= ~CFG_STATIC_ESSID;
7076                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7077                 goto done;
7078         }
7079
7080         length = min(length, IW_ESSID_MAX_SIZE);
7081
7082         priv->config |= CFG_STATIC_ESSID;
7083
7084         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7085                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7086                 err = 0;
7087                 goto done;
7088         }
7089
7090         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7091                      print_ssid(ssid, essid, length), length);
7092
7093         priv->essid_len = length;
7094         memcpy(priv->essid, essid, priv->essid_len);
7095
7096         err = ipw2100_set_essid(priv, essid, length, 0);
7097
7098       done:
7099         mutex_unlock(&priv->action_mutex);
7100         return err;
7101 }
7102
7103 static int ipw2100_wx_get_essid(struct net_device *dev,
7104                                 struct iw_request_info *info,
7105                                 union iwreq_data *wrqu, char *extra)
7106 {
7107         /*
7108          * This can be called at any time.  No action lock required
7109          */
7110
7111         struct ipw2100_priv *priv = libipw_priv(dev);
7112         DECLARE_SSID_BUF(ssid);
7113
7114         /* If we are associated, trying to associate, or have a statically
7115          * configured ESSID then return that; otherwise return ANY */
7116         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7117                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7118                              print_ssid(ssid, priv->essid, priv->essid_len));
7119                 memcpy(extra, priv->essid, priv->essid_len);
7120                 wrqu->essid.length = priv->essid_len;
7121                 wrqu->essid.flags = 1;  /* active */
7122         } else {
7123                 IPW_DEBUG_WX("Getting essid: ANY\n");
7124                 wrqu->essid.length = 0;
7125                 wrqu->essid.flags = 0;  /* active */
7126         }
7127
7128         return 0;
7129 }
7130
7131 static int ipw2100_wx_set_nick(struct net_device *dev,
7132                                struct iw_request_info *info,
7133                                union iwreq_data *wrqu, char *extra)
7134 {
7135         /*
7136          * This can be called at any time.  No action lock required
7137          */
7138
7139         struct ipw2100_priv *priv = libipw_priv(dev);
7140
7141         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7142                 return -E2BIG;
7143
7144         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7145         memset(priv->nick, 0, sizeof(priv->nick));
7146         memcpy(priv->nick, extra, wrqu->data.length);
7147
7148         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7149
7150         return 0;
7151 }
7152
7153 static int ipw2100_wx_get_nick(struct net_device *dev,
7154                                struct iw_request_info *info,
7155                                union iwreq_data *wrqu, char *extra)
7156 {
7157         /*
7158          * This can be called at any time.  No action lock required
7159          */
7160
7161         struct ipw2100_priv *priv = libipw_priv(dev);
7162
7163         wrqu->data.length = strlen(priv->nick);
7164         memcpy(extra, priv->nick, wrqu->data.length);
7165         wrqu->data.flags = 1;   /* active */
7166
7167         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7168
7169         return 0;
7170 }
7171
7172 static int ipw2100_wx_set_rate(struct net_device *dev,
7173                                struct iw_request_info *info,
7174                                union iwreq_data *wrqu, char *extra)
7175 {
7176         struct ipw2100_priv *priv = libipw_priv(dev);
7177         u32 target_rate = wrqu->bitrate.value;
7178         u32 rate;
7179         int err = 0;
7180
7181         mutex_lock(&priv->action_mutex);
7182         if (!(priv->status & STATUS_INITIALIZED)) {
7183                 err = -EIO;
7184                 goto done;
7185         }
7186
7187         rate = 0;
7188
7189         if (target_rate == 1000000 ||
7190             (!wrqu->bitrate.fixed && target_rate > 1000000))
7191                 rate |= TX_RATE_1_MBIT;
7192         if (target_rate == 2000000 ||
7193             (!wrqu->bitrate.fixed && target_rate > 2000000))
7194                 rate |= TX_RATE_2_MBIT;
7195         if (target_rate == 5500000 ||
7196             (!wrqu->bitrate.fixed && target_rate > 5500000))
7197                 rate |= TX_RATE_5_5_MBIT;
7198         if (target_rate == 11000000 ||
7199             (!wrqu->bitrate.fixed && target_rate > 11000000))
7200                 rate |= TX_RATE_11_MBIT;
7201         if (rate == 0)
7202                 rate = DEFAULT_TX_RATES;
7203
7204         err = ipw2100_set_tx_rates(priv, rate, 0);
7205
7206         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7207       done:
7208         mutex_unlock(&priv->action_mutex);
7209         return err;
7210 }
7211
7212 static int ipw2100_wx_get_rate(struct net_device *dev,
7213                                struct iw_request_info *info,
7214                                union iwreq_data *wrqu, char *extra)
7215 {
7216         struct ipw2100_priv *priv = libipw_priv(dev);
7217         int val;
7218         unsigned int len = sizeof(val);
7219         int err = 0;
7220
7221         if (!(priv->status & STATUS_ENABLED) ||
7222             priv->status & STATUS_RF_KILL_MASK ||
7223             !(priv->status & STATUS_ASSOCIATED)) {
7224                 wrqu->bitrate.value = 0;
7225                 return 0;
7226         }
7227
7228         mutex_lock(&priv->action_mutex);
7229         if (!(priv->status & STATUS_INITIALIZED)) {
7230                 err = -EIO;
7231                 goto done;
7232         }
7233
7234         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7235         if (err) {
7236                 IPW_DEBUG_WX("failed querying ordinals.\n");
7237                 goto done;
7238         }
7239
7240         switch (val & TX_RATE_MASK) {
7241         case TX_RATE_1_MBIT:
7242                 wrqu->bitrate.value = 1000000;
7243                 break;
7244         case TX_RATE_2_MBIT:
7245                 wrqu->bitrate.value = 2000000;
7246                 break;
7247         case TX_RATE_5_5_MBIT:
7248                 wrqu->bitrate.value = 5500000;
7249                 break;
7250         case TX_RATE_11_MBIT:
7251                 wrqu->bitrate.value = 11000000;
7252                 break;
7253         default:
7254                 wrqu->bitrate.value = 0;
7255         }
7256
7257         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7258
7259       done:
7260         mutex_unlock(&priv->action_mutex);
7261         return err;
7262 }
7263
7264 static int ipw2100_wx_set_rts(struct net_device *dev,
7265                               struct iw_request_info *info,
7266                               union iwreq_data *wrqu, char *extra)
7267 {
7268         struct ipw2100_priv *priv = libipw_priv(dev);
7269         int value, err;
7270
7271         /* Auto RTS not yet supported */
7272         if (wrqu->rts.fixed == 0)
7273                 return -EINVAL;
7274
7275         mutex_lock(&priv->action_mutex);
7276         if (!(priv->status & STATUS_INITIALIZED)) {
7277                 err = -EIO;
7278                 goto done;
7279         }
7280
7281         if (wrqu->rts.disabled)
7282                 value = priv->rts_threshold | RTS_DISABLED;
7283         else {
7284                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7285                         err = -EINVAL;
7286                         goto done;
7287                 }
7288                 value = wrqu->rts.value;
7289         }
7290
7291         err = ipw2100_set_rts_threshold(priv, value);
7292
7293         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7294       done:
7295         mutex_unlock(&priv->action_mutex);
7296         return err;
7297 }
7298
7299 static int ipw2100_wx_get_rts(struct net_device *dev,
7300                               struct iw_request_info *info,
7301                               union iwreq_data *wrqu, char *extra)
7302 {
7303         /*
7304          * This can be called at any time.  No action lock required
7305          */
7306
7307         struct ipw2100_priv *priv = libipw_priv(dev);
7308
7309         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7310         wrqu->rts.fixed = 1;    /* no auto select */
7311
7312         /* If RTS is set to the default value, then it is disabled */
7313         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7314
7315         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7316
7317         return 0;
7318 }
7319
7320 static int ipw2100_wx_set_txpow(struct net_device *dev,
7321                                 struct iw_request_info *info,
7322                                 union iwreq_data *wrqu, char *extra)
7323 {
7324         struct ipw2100_priv *priv = libipw_priv(dev);
7325         int err = 0, value;
7326         
7327         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7328                 return -EINPROGRESS;
7329
7330         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7331                 return 0;
7332
7333         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7334                 return -EINVAL;
7335
7336         if (wrqu->txpower.fixed == 0)
7337                 value = IPW_TX_POWER_DEFAULT;
7338         else {
7339                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7340                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7341                         return -EINVAL;
7342
7343                 value = wrqu->txpower.value;
7344         }
7345
7346         mutex_lock(&priv->action_mutex);
7347         if (!(priv->status & STATUS_INITIALIZED)) {
7348                 err = -EIO;
7349                 goto done;
7350         }
7351
7352         err = ipw2100_set_tx_power(priv, value);
7353
7354         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7355
7356       done:
7357         mutex_unlock(&priv->action_mutex);
7358         return err;
7359 }
7360
7361 static int ipw2100_wx_get_txpow(struct net_device *dev,
7362                                 struct iw_request_info *info,
7363                                 union iwreq_data *wrqu, char *extra)
7364 {
7365         /*
7366          * This can be called at any time.  No action lock required
7367          */
7368
7369         struct ipw2100_priv *priv = libipw_priv(dev);
7370
7371         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7372
7373         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7374                 wrqu->txpower.fixed = 0;
7375                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7376         } else {
7377                 wrqu->txpower.fixed = 1;
7378                 wrqu->txpower.value = priv->tx_power;
7379         }
7380
7381         wrqu->txpower.flags = IW_TXPOW_DBM;
7382
7383         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7384
7385         return 0;
7386 }
7387
7388 static int ipw2100_wx_set_frag(struct net_device *dev,
7389                                struct iw_request_info *info,
7390                                union iwreq_data *wrqu, char *extra)
7391 {
7392         /*
7393          * This can be called at any time.  No action lock required
7394          */
7395
7396         struct ipw2100_priv *priv = libipw_priv(dev);
7397
7398         if (!wrqu->frag.fixed)
7399                 return -EINVAL;
7400
7401         if (wrqu->frag.disabled) {
7402                 priv->frag_threshold |= FRAG_DISABLED;
7403                 priv->ieee->fts = DEFAULT_FTS;
7404         } else {
7405                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7406                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7407                         return -EINVAL;
7408
7409                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7410                 priv->frag_threshold = priv->ieee->fts;
7411         }
7412
7413         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7414
7415         return 0;
7416 }
7417
7418 static int ipw2100_wx_get_frag(struct net_device *dev,
7419                                struct iw_request_info *info,
7420                                union iwreq_data *wrqu, char *extra)
7421 {
7422         /*
7423          * This can be called at any time.  No action lock required
7424          */
7425
7426         struct ipw2100_priv *priv = libipw_priv(dev);
7427         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7428         wrqu->frag.fixed = 0;   /* no auto select */
7429         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7430
7431         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7432
7433         return 0;
7434 }
7435
7436 static int ipw2100_wx_set_retry(struct net_device *dev,
7437                                 struct iw_request_info *info,
7438                                 union iwreq_data *wrqu, char *extra)
7439 {
7440         struct ipw2100_priv *priv = libipw_priv(dev);
7441         int err = 0;
7442
7443         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7444                 return -EINVAL;
7445
7446         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7447                 return 0;
7448
7449         mutex_lock(&priv->action_mutex);
7450         if (!(priv->status & STATUS_INITIALIZED)) {
7451                 err = -EIO;
7452                 goto done;
7453         }
7454
7455         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7456                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7457                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7458                              wrqu->retry.value);
7459                 goto done;
7460         }
7461
7462         if (wrqu->retry.flags & IW_RETRY_LONG) {
7463                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7464                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7465                              wrqu->retry.value);
7466                 goto done;
7467         }
7468
7469         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7470         if (!err)
7471                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7472
7473         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7474
7475       done:
7476         mutex_unlock(&priv->action_mutex);
7477         return err;
7478 }
7479
7480 static int ipw2100_wx_get_retry(struct net_device *dev,
7481                                 struct iw_request_info *info,
7482                                 union iwreq_data *wrqu, char *extra)
7483 {
7484         /*
7485          * This can be called at any time.  No action lock required
7486          */
7487
7488         struct ipw2100_priv *priv = libipw_priv(dev);
7489
7490         wrqu->retry.disabled = 0;       /* can't be disabled */
7491
7492         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7493                 return -EINVAL;
7494
7495         if (wrqu->retry.flags & IW_RETRY_LONG) {
7496                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7497                 wrqu->retry.value = priv->long_retry_limit;
7498         } else {
7499                 wrqu->retry.flags =
7500                     (priv->short_retry_limit !=
7501                      priv->long_retry_limit) ?
7502                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7503
7504                 wrqu->retry.value = priv->short_retry_limit;
7505         }
7506
7507         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7508
7509         return 0;
7510 }
7511
7512 static int ipw2100_wx_set_scan(struct net_device *dev,
7513                                struct iw_request_info *info,
7514                                union iwreq_data *wrqu, char *extra)
7515 {
7516         struct ipw2100_priv *priv = libipw_priv(dev);
7517         int err = 0;
7518
7519         mutex_lock(&priv->action_mutex);
7520         if (!(priv->status & STATUS_INITIALIZED)) {
7521                 err = -EIO;
7522                 goto done;
7523         }
7524
7525         IPW_DEBUG_WX("Initiating scan...\n");
7526
7527         priv->user_requested_scan = 1;
7528         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7529                 IPW_DEBUG_WX("Start scan failed.\n");
7530
7531                 /* TODO: Mark a scan as pending so when hardware initialized
7532                  *       a scan starts */
7533         }
7534
7535       done:
7536         mutex_unlock(&priv->action_mutex);
7537         return err;
7538 }
7539
7540 static int ipw2100_wx_get_scan(struct net_device *dev,
7541                                struct iw_request_info *info,
7542                                union iwreq_data *wrqu, char *extra)
7543 {
7544         /*
7545          * This can be called at any time.  No action lock required
7546          */
7547
7548         struct ipw2100_priv *priv = libipw_priv(dev);
7549         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7550 }
7551
7552 /*
7553  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7554  */
7555 static int ipw2100_wx_set_encode(struct net_device *dev,
7556                                  struct iw_request_info *info,
7557                                  union iwreq_data *wrqu, char *key)
7558 {
7559         /*
7560          * No check of STATUS_INITIALIZED required
7561          */
7562
7563         struct ipw2100_priv *priv = libipw_priv(dev);
7564         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7565 }
7566
7567 static int ipw2100_wx_get_encode(struct net_device *dev,
7568                                  struct iw_request_info *info,
7569                                  union iwreq_data *wrqu, char *key)
7570 {
7571         /*
7572          * This can be called at any time.  No action lock required
7573          */
7574
7575         struct ipw2100_priv *priv = libipw_priv(dev);
7576         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7577 }
7578
7579 static int ipw2100_wx_set_power(struct net_device *dev,
7580                                 struct iw_request_info *info,
7581                                 union iwreq_data *wrqu, char *extra)
7582 {
7583         struct ipw2100_priv *priv = libipw_priv(dev);
7584         int err = 0;
7585
7586         mutex_lock(&priv->action_mutex);
7587         if (!(priv->status & STATUS_INITIALIZED)) {
7588                 err = -EIO;
7589                 goto done;
7590         }
7591
7592         if (wrqu->power.disabled) {
7593                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7594                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7595                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7596                 goto done;
7597         }
7598
7599         switch (wrqu->power.flags & IW_POWER_MODE) {
7600         case IW_POWER_ON:       /* If not specified */
7601         case IW_POWER_MODE:     /* If set all mask */
7602         case IW_POWER_ALL_R:    /* If explicitly state all */
7603                 break;
7604         default:                /* Otherwise we don't support it */
7605                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7606                              wrqu->power.flags);
7607                 err = -EOPNOTSUPP;
7608                 goto done;
7609         }
7610
7611         /* If the user hasn't specified a power management mode yet, default
7612          * to BATTERY */
7613         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7614         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7615
7616         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7617
7618       done:
7619         mutex_unlock(&priv->action_mutex);
7620         return err;
7621
7622 }
7623
7624 static int ipw2100_wx_get_power(struct net_device *dev,
7625                                 struct iw_request_info *info,
7626                                 union iwreq_data *wrqu, char *extra)
7627 {
7628         /*
7629          * This can be called at any time.  No action lock required
7630          */
7631
7632         struct ipw2100_priv *priv = libipw_priv(dev);
7633
7634         if (!(priv->power_mode & IPW_POWER_ENABLED))
7635                 wrqu->power.disabled = 1;
7636         else {
7637                 wrqu->power.disabled = 0;
7638                 wrqu->power.flags = 0;
7639         }
7640
7641         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7642
7643         return 0;
7644 }
7645
7646 /*
7647  * WE-18 WPA support
7648  */
7649
7650 /* SIOCSIWGENIE */
7651 static int ipw2100_wx_set_genie(struct net_device *dev,
7652                                 struct iw_request_info *info,
7653                                 union iwreq_data *wrqu, char *extra)
7654 {
7655
7656         struct ipw2100_priv *priv = libipw_priv(dev);
7657         struct libipw_device *ieee = priv->ieee;
7658         u8 *buf;
7659
7660         if (!ieee->wpa_enabled)
7661                 return -EOPNOTSUPP;
7662
7663         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7664             (wrqu->data.length && extra == NULL))
7665                 return -EINVAL;
7666
7667         if (wrqu->data.length) {
7668                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7669                 if (buf == NULL)
7670                         return -ENOMEM;
7671
7672                 kfree(ieee->wpa_ie);
7673                 ieee->wpa_ie = buf;
7674                 ieee->wpa_ie_len = wrqu->data.length;
7675         } else {
7676                 kfree(ieee->wpa_ie);
7677                 ieee->wpa_ie = NULL;
7678                 ieee->wpa_ie_len = 0;
7679         }
7680
7681         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7682
7683         return 0;
7684 }
7685
7686 /* SIOCGIWGENIE */
7687 static int ipw2100_wx_get_genie(struct net_device *dev,
7688                                 struct iw_request_info *info,
7689                                 union iwreq_data *wrqu, char *extra)
7690 {
7691         struct ipw2100_priv *priv = libipw_priv(dev);
7692         struct libipw_device *ieee = priv->ieee;
7693
7694         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7695                 wrqu->data.length = 0;
7696                 return 0;
7697         }
7698
7699         if (wrqu->data.length < ieee->wpa_ie_len)
7700                 return -E2BIG;
7701
7702         wrqu->data.length = ieee->wpa_ie_len;
7703         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7704
7705         return 0;
7706 }
7707
7708 /* SIOCSIWAUTH */
7709 static int ipw2100_wx_set_auth(struct net_device *dev,
7710                                struct iw_request_info *info,
7711                                union iwreq_data *wrqu, char *extra)
7712 {
7713         struct ipw2100_priv *priv = libipw_priv(dev);
7714         struct libipw_device *ieee = priv->ieee;
7715         struct iw_param *param = &wrqu->param;
7716         struct lib80211_crypt_data *crypt;
7717         unsigned long flags;
7718         int ret = 0;
7719
7720         switch (param->flags & IW_AUTH_INDEX) {
7721         case IW_AUTH_WPA_VERSION:
7722         case IW_AUTH_CIPHER_PAIRWISE:
7723         case IW_AUTH_CIPHER_GROUP:
7724         case IW_AUTH_KEY_MGMT:
7725                 /*
7726                  * ipw2200 does not use these parameters
7727                  */
7728                 break;
7729
7730         case IW_AUTH_TKIP_COUNTERMEASURES:
7731                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7732                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7733                         break;
7734
7735                 flags = crypt->ops->get_flags(crypt->priv);
7736
7737                 if (param->value)
7738                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7739                 else
7740                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7741
7742                 crypt->ops->set_flags(flags, crypt->priv);
7743
7744                 break;
7745
7746         case IW_AUTH_DROP_UNENCRYPTED:{
7747                         /* HACK:
7748                          *
7749                          * wpa_supplicant calls set_wpa_enabled when the driver
7750                          * is loaded and unloaded, regardless of if WPA is being
7751                          * used.  No other calls are made which can be used to
7752                          * determine if encryption will be used or not prior to
7753                          * association being expected.  If encryption is not being
7754                          * used, drop_unencrypted is set to false, else true -- we
7755                          * can use this to determine if the CAP_PRIVACY_ON bit should
7756                          * be set.
7757                          */
7758                         struct libipw_security sec = {
7759                                 .flags = SEC_ENABLED,
7760                                 .enabled = param->value,
7761                         };
7762                         priv->ieee->drop_unencrypted = param->value;
7763                         /* We only change SEC_LEVEL for open mode. Others
7764                          * are set by ipw_wpa_set_encryption.
7765                          */
7766                         if (!param->value) {
7767                                 sec.flags |= SEC_LEVEL;
7768                                 sec.level = SEC_LEVEL_0;
7769                         } else {
7770                                 sec.flags |= SEC_LEVEL;
7771                                 sec.level = SEC_LEVEL_1;
7772                         }
7773                         if (priv->ieee->set_security)
7774                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7775                         break;
7776                 }
7777
7778         case IW_AUTH_80211_AUTH_ALG:
7779                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7780                 break;
7781
7782         case IW_AUTH_WPA_ENABLED:
7783                 ret = ipw2100_wpa_enable(priv, param->value);
7784                 break;
7785
7786         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7787                 ieee->ieee802_1x = param->value;
7788                 break;
7789
7790                 //case IW_AUTH_ROAMING_CONTROL:
7791         case IW_AUTH_PRIVACY_INVOKED:
7792                 ieee->privacy_invoked = param->value;
7793                 break;
7794
7795         default:
7796                 return -EOPNOTSUPP;
7797         }
7798         return ret;
7799 }
7800
7801 /* SIOCGIWAUTH */
7802 static int ipw2100_wx_get_auth(struct net_device *dev,
7803                                struct iw_request_info *info,
7804                                union iwreq_data *wrqu, char *extra)
7805 {
7806         struct ipw2100_priv *priv = libipw_priv(dev);
7807         struct libipw_device *ieee = priv->ieee;
7808         struct lib80211_crypt_data *crypt;
7809         struct iw_param *param = &wrqu->param;
7810         int ret = 0;
7811
7812         switch (param->flags & IW_AUTH_INDEX) {
7813         case IW_AUTH_WPA_VERSION:
7814         case IW_AUTH_CIPHER_PAIRWISE:
7815         case IW_AUTH_CIPHER_GROUP:
7816         case IW_AUTH_KEY_MGMT:
7817                 /*
7818                  * wpa_supplicant will control these internally
7819                  */
7820                 ret = -EOPNOTSUPP;
7821                 break;
7822
7823         case IW_AUTH_TKIP_COUNTERMEASURES:
7824                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7825                 if (!crypt || !crypt->ops->get_flags) {
7826                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7827                                           "crypt not set!\n");
7828                         break;
7829                 }
7830
7831                 param->value = (crypt->ops->get_flags(crypt->priv) &
7832                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7833
7834                 break;
7835
7836         case IW_AUTH_DROP_UNENCRYPTED:
7837                 param->value = ieee->drop_unencrypted;
7838                 break;
7839
7840         case IW_AUTH_80211_AUTH_ALG:
7841                 param->value = priv->ieee->sec.auth_mode;
7842                 break;
7843
7844         case IW_AUTH_WPA_ENABLED:
7845                 param->value = ieee->wpa_enabled;
7846                 break;
7847
7848         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7849                 param->value = ieee->ieee802_1x;
7850                 break;
7851
7852         case IW_AUTH_ROAMING_CONTROL:
7853         case IW_AUTH_PRIVACY_INVOKED:
7854                 param->value = ieee->privacy_invoked;
7855                 break;
7856
7857         default:
7858                 return -EOPNOTSUPP;
7859         }
7860         return 0;
7861 }
7862
7863 /* SIOCSIWENCODEEXT */
7864 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7865                                     struct iw_request_info *info,
7866                                     union iwreq_data *wrqu, char *extra)
7867 {
7868         struct ipw2100_priv *priv = libipw_priv(dev);
7869         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7870 }
7871
7872 /* SIOCGIWENCODEEXT */
7873 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7874                                     struct iw_request_info *info,
7875                                     union iwreq_data *wrqu, char *extra)
7876 {
7877         struct ipw2100_priv *priv = libipw_priv(dev);
7878         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7879 }
7880
7881 /* SIOCSIWMLME */
7882 static int ipw2100_wx_set_mlme(struct net_device *dev,
7883                                struct iw_request_info *info,
7884                                union iwreq_data *wrqu, char *extra)
7885 {
7886         struct ipw2100_priv *priv = libipw_priv(dev);
7887         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7888         __le16 reason;
7889
7890         reason = cpu_to_le16(mlme->reason_code);
7891
7892         switch (mlme->cmd) {
7893         case IW_MLME_DEAUTH:
7894                 // silently ignore
7895                 break;
7896
7897         case IW_MLME_DISASSOC:
7898                 ipw2100_disassociate_bssid(priv);
7899                 break;
7900
7901         default:
7902                 return -EOPNOTSUPP;
7903         }
7904         return 0;
7905 }
7906
7907 /*
7908  *
7909  * IWPRIV handlers
7910  *
7911  */
7912 #ifdef CONFIG_IPW2100_MONITOR
7913 static int ipw2100_wx_set_promisc(struct net_device *dev,
7914                                   struct iw_request_info *info,
7915                                   union iwreq_data *wrqu, char *extra)
7916 {
7917         struct ipw2100_priv *priv = libipw_priv(dev);
7918         int *parms = (int *)extra;
7919         int enable = (parms[0] > 0);
7920         int err = 0;
7921
7922         mutex_lock(&priv->action_mutex);
7923         if (!(priv->status & STATUS_INITIALIZED)) {
7924                 err = -EIO;
7925                 goto done;
7926         }
7927
7928         if (enable) {
7929                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7930                         err = ipw2100_set_channel(priv, parms[1], 0);
7931                         goto done;
7932                 }
7933                 priv->channel = parms[1];
7934                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7935         } else {
7936                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7937                         err = ipw2100_switch_mode(priv, priv->last_mode);
7938         }
7939       done:
7940         mutex_unlock(&priv->action_mutex);
7941         return err;
7942 }
7943
7944 static int ipw2100_wx_reset(struct net_device *dev,
7945                             struct iw_request_info *info,
7946                             union iwreq_data *wrqu, char *extra)
7947 {
7948         struct ipw2100_priv *priv = libipw_priv(dev);
7949         if (priv->status & STATUS_INITIALIZED)
7950                 schedule_reset(priv);
7951         return 0;
7952 }
7953
7954 #endif
7955
7956 static int ipw2100_wx_set_powermode(struct net_device *dev,
7957                                     struct iw_request_info *info,
7958                                     union iwreq_data *wrqu, char *extra)
7959 {
7960         struct ipw2100_priv *priv = libipw_priv(dev);
7961         int err = 0, mode = *(int *)extra;
7962
7963         mutex_lock(&priv->action_mutex);
7964         if (!(priv->status & STATUS_INITIALIZED)) {
7965                 err = -EIO;
7966                 goto done;
7967         }
7968
7969         if ((mode < 0) || (mode > POWER_MODES))
7970                 mode = IPW_POWER_AUTO;
7971
7972         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7973                 err = ipw2100_set_power_mode(priv, mode);
7974       done:
7975         mutex_unlock(&priv->action_mutex);
7976         return err;
7977 }
7978
7979 #define MAX_POWER_STRING 80
7980 static int ipw2100_wx_get_powermode(struct net_device *dev,
7981                                     struct iw_request_info *info,
7982                                     union iwreq_data *wrqu, char *extra)
7983 {
7984         /*
7985          * This can be called at any time.  No action lock required
7986          */
7987
7988         struct ipw2100_priv *priv = libipw_priv(dev);
7989         int level = IPW_POWER_LEVEL(priv->power_mode);
7990         s32 timeout, period;
7991
7992         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7993                 snprintf(extra, MAX_POWER_STRING,
7994                          "Power save level: %d (Off)", level);
7995         } else {
7996                 switch (level) {
7997                 case IPW_POWER_MODE_CAM:
7998                         snprintf(extra, MAX_POWER_STRING,
7999                                  "Power save level: %d (None)", level);
8000                         break;
8001                 case IPW_POWER_AUTO:
8002                         snprintf(extra, MAX_POWER_STRING,
8003                                  "Power save level: %d (Auto)", level);
8004                         break;
8005                 default:
8006                         timeout = timeout_duration[level - 1] / 1000;
8007                         period = period_duration[level - 1] / 1000;
8008                         snprintf(extra, MAX_POWER_STRING,
8009                                  "Power save level: %d "
8010                                  "(Timeout %dms, Period %dms)",
8011                                  level, timeout, period);
8012                 }
8013         }
8014
8015         wrqu->data.length = strlen(extra) + 1;
8016
8017         return 0;
8018 }
8019
8020 static int ipw2100_wx_set_preamble(struct net_device *dev,
8021                                    struct iw_request_info *info,
8022                                    union iwreq_data *wrqu, char *extra)
8023 {
8024         struct ipw2100_priv *priv = libipw_priv(dev);
8025         int err, mode = *(int *)extra;
8026
8027         mutex_lock(&priv->action_mutex);
8028         if (!(priv->status & STATUS_INITIALIZED)) {
8029                 err = -EIO;
8030                 goto done;
8031         }
8032
8033         if (mode == 1)
8034                 priv->config |= CFG_LONG_PREAMBLE;
8035         else if (mode == 0)
8036                 priv->config &= ~CFG_LONG_PREAMBLE;
8037         else {
8038                 err = -EINVAL;
8039                 goto done;
8040         }
8041
8042         err = ipw2100_system_config(priv, 0);
8043
8044       done:
8045         mutex_unlock(&priv->action_mutex);
8046         return err;
8047 }
8048
8049 static int ipw2100_wx_get_preamble(struct net_device *dev,
8050                                    struct iw_request_info *info,
8051                                    union iwreq_data *wrqu, char *extra)
8052 {
8053         /*
8054          * This can be called at any time.  No action lock required
8055          */
8056
8057         struct ipw2100_priv *priv = libipw_priv(dev);
8058
8059         if (priv->config & CFG_LONG_PREAMBLE)
8060                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8061         else
8062                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8063
8064         return 0;
8065 }
8066
8067 #ifdef CONFIG_IPW2100_MONITOR
8068 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8069                                     struct iw_request_info *info,
8070                                     union iwreq_data *wrqu, char *extra)
8071 {
8072         struct ipw2100_priv *priv = libipw_priv(dev);
8073         int err, mode = *(int *)extra;
8074
8075         mutex_lock(&priv->action_mutex);
8076         if (!(priv->status & STATUS_INITIALIZED)) {
8077                 err = -EIO;
8078                 goto done;
8079         }
8080
8081         if (mode == 1)
8082                 priv->config |= CFG_CRC_CHECK;
8083         else if (mode == 0)
8084                 priv->config &= ~CFG_CRC_CHECK;
8085         else {
8086                 err = -EINVAL;
8087                 goto done;
8088         }
8089         err = 0;
8090
8091       done:
8092         mutex_unlock(&priv->action_mutex);
8093         return err;
8094 }
8095
8096 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8097                                     struct iw_request_info *info,
8098                                     union iwreq_data *wrqu, char *extra)
8099 {
8100         /*
8101          * This can be called at any time.  No action lock required
8102          */
8103
8104         struct ipw2100_priv *priv = libipw_priv(dev);
8105
8106         if (priv->config & CFG_CRC_CHECK)
8107                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8108         else
8109                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8110
8111         return 0;
8112 }
8113 #endif                          /* CONFIG_IPW2100_MONITOR */
8114
8115 static iw_handler ipw2100_wx_handlers[] = {
8116         NULL,                   /* SIOCSIWCOMMIT */
8117         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8118         NULL,                   /* SIOCSIWNWID */
8119         NULL,                   /* SIOCGIWNWID */
8120         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8121         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8122         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8123         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8124         NULL,                   /* SIOCSIWSENS */
8125         NULL,                   /* SIOCGIWSENS */
8126         NULL,                   /* SIOCSIWRANGE */
8127         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8128         NULL,                   /* SIOCSIWPRIV */
8129         NULL,                   /* SIOCGIWPRIV */
8130         NULL,                   /* SIOCSIWSTATS */
8131         NULL,                   /* SIOCGIWSTATS */
8132         NULL,                   /* SIOCSIWSPY */
8133         NULL,                   /* SIOCGIWSPY */
8134         NULL,                   /* SIOCGIWTHRSPY */
8135         NULL,                   /* SIOCWIWTHRSPY */
8136         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8137         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8138         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8139         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8140         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8141         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8142         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8143         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8144         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8145         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8146         NULL,                   /* -- hole -- */
8147         NULL,                   /* -- hole -- */
8148         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8149         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8150         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8151         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8152         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8153         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8154         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8155         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8156         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8157         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8158         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8159         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8160         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8161         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8162         NULL,                   /* -- hole -- */
8163         NULL,                   /* -- hole -- */
8164         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8165         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8166         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8167         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8168         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8169         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8170         NULL,                   /* SIOCSIWPMKSA */
8171 };
8172
8173 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8174 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8175 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8176 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8177 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8178 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8179 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8180 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8181
8182 static const struct iw_priv_args ipw2100_private_args[] = {
8183
8184 #ifdef CONFIG_IPW2100_MONITOR
8185         {
8186          IPW2100_PRIV_SET_MONITOR,
8187          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8188         {
8189          IPW2100_PRIV_RESET,
8190          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8191 #endif                          /* CONFIG_IPW2100_MONITOR */
8192
8193         {
8194          IPW2100_PRIV_SET_POWER,
8195          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8196         {
8197          IPW2100_PRIV_GET_POWER,
8198          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8199          "get_power"},
8200         {
8201          IPW2100_PRIV_SET_LONGPREAMBLE,
8202          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8203         {
8204          IPW2100_PRIV_GET_LONGPREAMBLE,
8205          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8206 #ifdef CONFIG_IPW2100_MONITOR
8207         {
8208          IPW2100_PRIV_SET_CRC_CHECK,
8209          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8210         {
8211          IPW2100_PRIV_GET_CRC_CHECK,
8212          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8213 #endif                          /* CONFIG_IPW2100_MONITOR */
8214 };
8215
8216 static iw_handler ipw2100_private_handler[] = {
8217 #ifdef CONFIG_IPW2100_MONITOR
8218         ipw2100_wx_set_promisc,
8219         ipw2100_wx_reset,
8220 #else                           /* CONFIG_IPW2100_MONITOR */
8221         NULL,
8222         NULL,
8223 #endif                          /* CONFIG_IPW2100_MONITOR */
8224         ipw2100_wx_set_powermode,
8225         ipw2100_wx_get_powermode,
8226         ipw2100_wx_set_preamble,
8227         ipw2100_wx_get_preamble,
8228 #ifdef CONFIG_IPW2100_MONITOR
8229         ipw2100_wx_set_crc_check,
8230         ipw2100_wx_get_crc_check,
8231 #else                           /* CONFIG_IPW2100_MONITOR */
8232         NULL,
8233         NULL,
8234 #endif                          /* CONFIG_IPW2100_MONITOR */
8235 };
8236
8237 /*
8238  * Get wireless statistics.
8239  * Called by /proc/net/wireless
8240  * Also called by SIOCGIWSTATS
8241  */
8242 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8243 {
8244         enum {
8245                 POOR = 30,
8246                 FAIR = 60,
8247                 GOOD = 80,
8248                 VERY_GOOD = 90,
8249                 EXCELLENT = 95,
8250                 PERFECT = 100
8251         };
8252         int rssi_qual;
8253         int tx_qual;
8254         int beacon_qual;
8255         int quality;
8256
8257         struct ipw2100_priv *priv = libipw_priv(dev);
8258         struct iw_statistics *wstats;
8259         u32 rssi, tx_retries, missed_beacons, tx_failures;
8260         u32 ord_len = sizeof(u32);
8261
8262         if (!priv)
8263                 return (struct iw_statistics *)NULL;
8264
8265         wstats = &priv->wstats;
8266
8267         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8268          * ipw2100_wx_wireless_stats seems to be called before fw is
8269          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8270          * and associated; if not associcated, the values are all meaningless
8271          * anyway, so set them all to NULL and INVALID */
8272         if (!(priv->status & STATUS_ASSOCIATED)) {
8273                 wstats->miss.beacon = 0;
8274                 wstats->discard.retries = 0;
8275                 wstats->qual.qual = 0;
8276                 wstats->qual.level = 0;
8277                 wstats->qual.noise = 0;
8278                 wstats->qual.updated = 7;
8279                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8280                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8281                 return wstats;
8282         }
8283
8284         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8285                                 &missed_beacons, &ord_len))
8286                 goto fail_get_ordinal;
8287
8288         /* If we don't have a connection the quality and level is 0 */
8289         if (!(priv->status & STATUS_ASSOCIATED)) {
8290                 wstats->qual.qual = 0;
8291                 wstats->qual.level = 0;
8292         } else {
8293                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8294                                         &rssi, &ord_len))
8295                         goto fail_get_ordinal;
8296                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8297                 if (rssi < 10)
8298                         rssi_qual = rssi * POOR / 10;
8299                 else if (rssi < 15)
8300                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8301                 else if (rssi < 20)
8302                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8303                 else if (rssi < 30)
8304                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8305                             10 + GOOD;
8306                 else
8307                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8308                             10 + VERY_GOOD;
8309
8310                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8311                                         &tx_retries, &ord_len))
8312                         goto fail_get_ordinal;
8313
8314                 if (tx_retries > 75)
8315                         tx_qual = (90 - tx_retries) * POOR / 15;
8316                 else if (tx_retries > 70)
8317                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8318                 else if (tx_retries > 65)
8319                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8320                 else if (tx_retries > 50)
8321                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8322                             15 + GOOD;
8323                 else
8324                         tx_qual = (50 - tx_retries) *
8325                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8326
8327                 if (missed_beacons > 50)
8328                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8329                 else if (missed_beacons > 40)
8330                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8331                             10 + POOR;
8332                 else if (missed_beacons > 32)
8333                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8334                             18 + FAIR;
8335                 else if (missed_beacons > 20)
8336                         beacon_qual = (32 - missed_beacons) *
8337                             (VERY_GOOD - GOOD) / 20 + GOOD;
8338                 else
8339                         beacon_qual = (20 - missed_beacons) *
8340                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8341
8342                 quality = min(tx_qual, rssi_qual);
8343                 quality = min(beacon_qual, quality);
8344
8345 #ifdef CONFIG_IPW2100_DEBUG
8346                 if (beacon_qual == quality)
8347                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8348                 else if (tx_qual == quality)
8349                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8350                 else if (quality != 100)
8351                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8352                 else
8353                         IPW_DEBUG_WX("Quality not clamped.\n");
8354 #endif
8355
8356                 wstats->qual.qual = quality;
8357                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8358         }
8359
8360         wstats->qual.noise = 0;
8361         wstats->qual.updated = 7;
8362         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8363
8364         /* FIXME: this is percent and not a # */
8365         wstats->miss.beacon = missed_beacons;
8366
8367         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8368                                 &tx_failures, &ord_len))
8369                 goto fail_get_ordinal;
8370         wstats->discard.retries = tx_failures;
8371
8372         return wstats;
8373
8374       fail_get_ordinal:
8375         IPW_DEBUG_WX("failed querying ordinals.\n");
8376
8377         return (struct iw_statistics *)NULL;
8378 }
8379
8380 static struct iw_handler_def ipw2100_wx_handler_def = {
8381         .standard = ipw2100_wx_handlers,
8382         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8383         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8384         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8385         .private = (iw_handler *) ipw2100_private_handler,
8386         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8387         .get_wireless_stats = ipw2100_wx_wireless_stats,
8388 };
8389
8390 static void ipw2100_wx_event_work(struct work_struct *work)
8391 {
8392         struct ipw2100_priv *priv =
8393                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8394         union iwreq_data wrqu;
8395         unsigned int len = ETH_ALEN;
8396
8397         if (priv->status & STATUS_STOPPING)
8398                 return;
8399
8400         mutex_lock(&priv->action_mutex);
8401
8402         IPW_DEBUG_WX("enter\n");
8403
8404         mutex_unlock(&priv->action_mutex);
8405
8406         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8407
8408         /* Fetch BSSID from the hardware */
8409         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8410             priv->status & STATUS_RF_KILL_MASK ||
8411             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8412                                 &priv->bssid, &len)) {
8413                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8414         } else {
8415                 /* We now have the BSSID, so can finish setting to the full
8416                  * associated state */
8417                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8418                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8419                 priv->status &= ~STATUS_ASSOCIATING;
8420                 priv->status |= STATUS_ASSOCIATED;
8421                 netif_carrier_on(priv->net_dev);
8422                 netif_wake_queue(priv->net_dev);
8423         }
8424
8425         if (!(priv->status & STATUS_ASSOCIATED)) {
8426                 IPW_DEBUG_WX("Configuring ESSID\n");
8427                 mutex_lock(&priv->action_mutex);
8428                 /* This is a disassociation event, so kick the firmware to
8429                  * look for another AP */
8430                 if (priv->config & CFG_STATIC_ESSID)
8431                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8432                                           0);
8433                 else
8434                         ipw2100_set_essid(priv, NULL, 0, 0);
8435                 mutex_unlock(&priv->action_mutex);
8436         }
8437
8438         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8439 }
8440
8441 #define IPW2100_FW_MAJOR_VERSION 1
8442 #define IPW2100_FW_MINOR_VERSION 3
8443
8444 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8445 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8446
8447 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8448                              IPW2100_FW_MAJOR_VERSION)
8449
8450 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8451 "." __stringify(IPW2100_FW_MINOR_VERSION)
8452
8453 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8454
8455 /*
8456
8457 BINARY FIRMWARE HEADER FORMAT
8458
8459 offset      length   desc
8460 0           2        version
8461 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8462 4           4        fw_len
8463 8           4        uc_len
8464 C           fw_len   firmware data
8465 12 + fw_len uc_len   microcode data
8466
8467 */
8468
8469 struct ipw2100_fw_header {
8470         short version;
8471         short mode;
8472         unsigned int fw_size;
8473         unsigned int uc_size;
8474 } __packed;
8475
8476 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8477 {
8478         struct ipw2100_fw_header *h =
8479             (struct ipw2100_fw_header *)fw->fw_entry->data;
8480
8481         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8482                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8483                        "(detected version id of %u). "
8484                        "See Documentation/networking/README.ipw2100\n",
8485                        h->version);
8486                 return 1;
8487         }
8488
8489         fw->version = h->version;
8490         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8491         fw->fw.size = h->fw_size;
8492         fw->uc.data = fw->fw.data + h->fw_size;
8493         fw->uc.size = h->uc_size;
8494
8495         return 0;
8496 }
8497
8498 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8499                                 struct ipw2100_fw *fw)
8500 {
8501         char *fw_name;
8502         int rc;
8503
8504         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8505                        priv->net_dev->name);
8506
8507         switch (priv->ieee->iw_mode) {
8508         case IW_MODE_ADHOC:
8509                 fw_name = IPW2100_FW_NAME("-i");
8510                 break;
8511 #ifdef CONFIG_IPW2100_MONITOR
8512         case IW_MODE_MONITOR:
8513                 fw_name = IPW2100_FW_NAME("-p");
8514                 break;
8515 #endif
8516         case IW_MODE_INFRA:
8517         default:
8518                 fw_name = IPW2100_FW_NAME("");
8519                 break;
8520         }
8521
8522         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8523
8524         if (rc < 0) {
8525                 printk(KERN_ERR DRV_NAME ": "
8526                        "%s: Firmware '%s' not available or load failed.\n",
8527                        priv->net_dev->name, fw_name);
8528                 return rc;
8529         }
8530         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8531                        fw->fw_entry->size);
8532
8533         ipw2100_mod_firmware_load(fw);
8534
8535         return 0;
8536 }
8537
8538 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8539 #ifdef CONFIG_IPW2100_MONITOR
8540 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8541 #endif
8542 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8543
8544 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8545                                      struct ipw2100_fw *fw)
8546 {
8547         fw->version = 0;
8548         if (fw->fw_entry)
8549                 release_firmware(fw->fw_entry);
8550         fw->fw_entry = NULL;
8551 }
8552
8553 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8554                                  size_t max)
8555 {
8556         char ver[MAX_FW_VERSION_LEN];
8557         u32 len = MAX_FW_VERSION_LEN;
8558         u32 tmp;
8559         int i;
8560         /* firmware version is an ascii string (max len of 14) */
8561         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8562                 return -EIO;
8563         tmp = max;
8564         if (len >= max)
8565                 len = max - 1;
8566         for (i = 0; i < len; i++)
8567                 buf[i] = ver[i];
8568         buf[i] = '\0';
8569         return tmp;
8570 }
8571
8572 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8573                                     size_t max)
8574 {
8575         u32 ver;
8576         u32 len = sizeof(ver);
8577         /* microcode version is a 32 bit integer */
8578         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8579                 return -EIO;
8580         return snprintf(buf, max, "%08X", ver);
8581 }
8582
8583 /*
8584  * On exit, the firmware will have been freed from the fw list
8585  */
8586 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8587 {
8588         /* firmware is constructed of N contiguous entries, each entry is
8589          * structured as:
8590          *
8591          * offset    sie         desc
8592          * 0         4           address to write to
8593          * 4         2           length of data run
8594          * 6         length      data
8595          */
8596         unsigned int addr;
8597         unsigned short len;
8598
8599         const unsigned char *firmware_data = fw->fw.data;
8600         unsigned int firmware_data_left = fw->fw.size;
8601
8602         while (firmware_data_left > 0) {
8603                 addr = *(u32 *) (firmware_data);
8604                 firmware_data += 4;
8605                 firmware_data_left -= 4;
8606
8607                 len = *(u16 *) (firmware_data);
8608                 firmware_data += 2;
8609                 firmware_data_left -= 2;
8610
8611                 if (len > 32) {
8612                         printk(KERN_ERR DRV_NAME ": "
8613                                "Invalid firmware run-length of %d bytes\n",
8614                                len);
8615                         return -EINVAL;
8616                 }
8617
8618                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8619                 firmware_data += len;
8620                 firmware_data_left -= len;
8621         }
8622
8623         return 0;
8624 }
8625
8626 struct symbol_alive_response {
8627         u8 cmd_id;
8628         u8 seq_num;
8629         u8 ucode_rev;
8630         u8 eeprom_valid;
8631         u16 valid_flags;
8632         u8 IEEE_addr[6];
8633         u16 flags;
8634         u16 pcb_rev;
8635         u16 clock_settle_time;  // 1us LSB
8636         u16 powerup_settle_time;        // 1us LSB
8637         u16 hop_settle_time;    // 1us LSB
8638         u8 date[3];             // month, day, year
8639         u8 time[2];             // hours, minutes
8640         u8 ucode_valid;
8641 };
8642
8643 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8644                                   struct ipw2100_fw *fw)
8645 {
8646         struct net_device *dev = priv->net_dev;
8647         const unsigned char *microcode_data = fw->uc.data;
8648         unsigned int microcode_data_left = fw->uc.size;
8649         void __iomem *reg = (void __iomem *)dev->base_addr;
8650
8651         struct symbol_alive_response response;
8652         int i, j;
8653         u8 data;
8654
8655         /* Symbol control */
8656         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8657         readl(reg);
8658         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8659         readl(reg);
8660
8661         /* HW config */
8662         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8663         readl(reg);
8664         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8665         readl(reg);
8666
8667         /* EN_CS_ACCESS bit to reset control store pointer */
8668         write_nic_byte(dev, 0x210000, 0x40);
8669         readl(reg);
8670         write_nic_byte(dev, 0x210000, 0x0);
8671         readl(reg);
8672         write_nic_byte(dev, 0x210000, 0x40);
8673         readl(reg);
8674
8675         /* copy microcode from buffer into Symbol */
8676
8677         while (microcode_data_left > 0) {
8678                 write_nic_byte(dev, 0x210010, *microcode_data++);
8679                 write_nic_byte(dev, 0x210010, *microcode_data++);
8680                 microcode_data_left -= 2;
8681         }
8682
8683         /* EN_CS_ACCESS bit to reset the control store pointer */
8684         write_nic_byte(dev, 0x210000, 0x0);
8685         readl(reg);
8686
8687         /* Enable System (Reg 0)
8688          * first enable causes garbage in RX FIFO */
8689         write_nic_byte(dev, 0x210000, 0x0);
8690         readl(reg);
8691         write_nic_byte(dev, 0x210000, 0x80);
8692         readl(reg);
8693
8694         /* Reset External Baseband Reg */
8695         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8696         readl(reg);
8697         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8698         readl(reg);
8699
8700         /* HW Config (Reg 5) */
8701         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8702         readl(reg);
8703         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8704         readl(reg);
8705
8706         /* Enable System (Reg 0)
8707          * second enable should be OK */
8708         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8709         readl(reg);
8710         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8711
8712         /* check Symbol is enabled - upped this from 5 as it wasn't always
8713          * catching the update */
8714         for (i = 0; i < 10; i++) {
8715                 udelay(10);
8716
8717                 /* check Dino is enabled bit */
8718                 read_nic_byte(dev, 0x210000, &data);
8719                 if (data & 0x1)
8720                         break;
8721         }
8722
8723         if (i == 10) {
8724                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8725                        dev->name);
8726                 return -EIO;
8727         }
8728
8729         /* Get Symbol alive response */
8730         for (i = 0; i < 30; i++) {
8731                 /* Read alive response structure */
8732                 for (j = 0;
8733                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8734                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8735
8736                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8737                         break;
8738                 udelay(10);
8739         }
8740
8741         if (i == 30) {
8742                 printk(KERN_ERR DRV_NAME
8743                        ": %s: No response from Symbol - hw not alive\n",
8744                        dev->name);
8745                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8746                 return -EIO;
8747         }
8748
8749         return 0;
8750 }