Merge commit 'v2.6.27-rc3' into x86/prototypes
[pandora-kernel.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
89
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99         'a', 'b', 'g', '?'
100 };
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
102
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
105 #endif
106
107
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
114
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117          QOS_TX3_CW_MIN_OFDM},
118         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119          QOS_TX3_CW_MAX_OFDM},
120         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
124 };
125
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128          QOS_TX3_CW_MIN_CCK},
129         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130          QOS_TX3_CW_MAX_CCK},
131         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134          QOS_TX3_TXOP_LIMIT_CCK}
135 };
136
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139          DEF_TX3_CW_MIN_OFDM},
140         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141          DEF_TX3_CW_MAX_OFDM},
142         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
146 };
147
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150          DEF_TX3_CW_MIN_CCK},
151         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152          DEF_TX3_CW_MAX_CCK},
153         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156          DEF_TX3_TXOP_LIMIT_CCK}
157 };
158
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160
161 static int from_priority_to_tx_queue[] = {
162         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
164 };
165
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169                                        *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171                                      *qos_param);
172 #endif                          /* CONFIG_IPW2200_QOS */
173
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178                                 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
180
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182                              int len, int sync);
183
184 static void ipw_tx_queue_free(struct ipw_priv *);
185
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195                                 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
198
199 static int snprint_line(char *buf, size_t count,
200                         const u8 * data, u32 len, u32 ofs)
201 {
202         int out, i, j, l;
203         char c;
204
205         out = snprintf(buf, count, "%08X", ofs);
206
207         for (l = 0, i = 0; i < 2; i++) {
208                 out += snprintf(buf + out, count - out, " ");
209                 for (j = 0; j < 8 && l < len; j++, l++)
210                         out += snprintf(buf + out, count - out, "%02X ",
211                                         data[(i * 8 + j)]);
212                 for (; j < 8; j++)
213                         out += snprintf(buf + out, count - out, "   ");
214         }
215
216         out += snprintf(buf + out, count - out, " ");
217         for (l = 0, i = 0; i < 2; i++) {
218                 out += snprintf(buf + out, count - out, " ");
219                 for (j = 0; j < 8 && l < len; j++, l++) {
220                         c = data[(i * 8 + j)];
221                         if (!isascii(c) || !isprint(c))
222                                 c = '.';
223
224                         out += snprintf(buf + out, count - out, "%c", c);
225                 }
226
227                 for (; j < 8; j++)
228                         out += snprintf(buf + out, count - out, " ");
229         }
230
231         return out;
232 }
233
234 static void printk_buf(int level, const u8 * data, u32 len)
235 {
236         char line[81];
237         u32 ofs = 0;
238         if (!(ipw_debug_level & level))
239                 return;
240
241         while (len) {
242                 snprint_line(line, sizeof(line), &data[ofs],
243                              min(len, 16U), ofs);
244                 printk(KERN_DEBUG "%s\n", line);
245                 ofs += 16;
246                 len -= min(len, 16U);
247         }
248 }
249
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 {
252         size_t out = size;
253         u32 ofs = 0;
254         int total = 0;
255
256         while (size && len) {
257                 out = snprint_line(output, size, &data[ofs],
258                                    min_t(size_t, len, 16U), ofs);
259
260                 ofs += 16;
261                 output += out;
262                 size -= out;
263                 len -= min_t(size_t, len, 16U);
264                 total += out;
265         }
266         return total;
267 }
268
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 {
281         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282                      __LINE__, (u32) (b), (u32) (c));
283         _ipw_write_reg8(a, b, c);
284 }
285
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 {
290         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291                      __LINE__, (u32) (b), (u32) (c));
292         _ipw_write_reg16(a, b, c);
293 }
294
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 {
299         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300                      __LINE__, (u32) (b), (u32) (c));
301         _ipw_write_reg32(a, b, c);
302 }
303
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) do { \
309  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310  _ipw_write8(ipw, ofs, val); \
311  } while (0)
312
313 /* 16-bit direct write (low 4K) */
314 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315
316 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
317 #define ipw_write16(ipw, ofs, val) \
318  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
319  _ipw_write16(ipw, ofs, val)
320
321 /* 32-bit direct write (low 4K) */
322 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323
324 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write32(ipw, ofs, val) \
326  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
327  _ipw_write32(ipw, ofs, val)
328
329 /* 8-bit direct read (low 4K) */
330 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331
332 /* 8-bit direct read (low 4K), with debug wrapper */
333 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 {
335         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
336         return _ipw_read8(ipw, ofs);
337 }
338
339 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
340 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341
342 /* 16-bit direct read (low 4K) */
343 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344
345 /* 16-bit direct read (low 4K), with debug wrapper */
346 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 {
348         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
349         return _ipw_read16(ipw, ofs);
350 }
351
352 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
353 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354
355 /* 32-bit direct read (low 4K) */
356 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357
358 /* 32-bit direct read (low 4K), with debug wrapper */
359 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 {
361         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
362         return _ipw_read32(ipw, ofs);
363 }
364
365 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
366 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367
368 /* multi-byte read (above 4K), with debug wrapper */
369 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
370 static inline void __ipw_read_indirect(const char *f, int l,
371                                        struct ipw_priv *a, u32 b, u8 * c, int d)
372 {
373         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374                      d);
375         _ipw_read_indirect(a, b, c, d);
376 }
377
378 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
379 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380
381 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
382 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383                                 int num);
384 #define ipw_write_indirect(a, b, c, d) \
385         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
386         _ipw_write_indirect(a, b, c, d)
387
388 /* 32-bit indirect write (above 4K) */
389 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 {
391         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
392         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
393         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
394 }
395
396 /* 8-bit indirect write (above 4K) */
397 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 {
399         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
400         u32 dif_len = reg - aligned_addr;
401
402         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
403         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
404         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
405 }
406
407 /* 16-bit indirect write (above 4K) */
408 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 {
410         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
411         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412
413         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
414         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
416 }
417
418 /* 8-bit indirect read (above 4K) */
419 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
420 {
421         u32 word;
422         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
423         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
424         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
425         return (word >> ((reg & 0x3) * 8)) & 0xff;
426 }
427
428 /* 32-bit indirect read (above 4K) */
429 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
430 {
431         u32 value;
432
433         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434
435         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
436         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
437         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
438         return value;
439 }
440
441 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
442 /*    for area above 1st 4K of SRAM/reg space */
443 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
444                                int num)
445 {
446         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
447         u32 dif_len = addr - aligned_addr;
448         u32 i;
449
450         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
451
452         if (num <= 0) {
453                 return;
454         }
455
456         /* Read the first dword (or portion) byte by byte */
457         if (unlikely(dif_len)) {
458                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
459                 /* Start reading at aligned_addr + dif_len */
460                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
461                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
462                 aligned_addr += 4;
463         }
464
465         /* Read all of the middle dwords as dwords, with auto-increment */
466         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
467         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
468                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469
470         /* Read the last dword (or portion) byte by byte */
471         if (unlikely(num)) {
472                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
473                 for (i = 0; num > 0; i++, num--)
474                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
475         }
476 }
477
478 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
479 /*    for area above 1st 4K of SRAM/reg space */
480 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
481                                 int num)
482 {
483         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
484         u32 dif_len = addr - aligned_addr;
485         u32 i;
486
487         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
488
489         if (num <= 0) {
490                 return;
491         }
492
493         /* Write the first dword (or portion) byte by byte */
494         if (unlikely(dif_len)) {
495                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
496                 /* Start writing at aligned_addr + dif_len */
497                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
498                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
499                 aligned_addr += 4;
500         }
501
502         /* Write all of the middle dwords as dwords, with auto-increment */
503         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
504         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
505                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506
507         /* Write the last dword (or portion) byte by byte */
508         if (unlikely(num)) {
509                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
510                 for (i = 0; num > 0; i++, num--, buf++)
511                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
512         }
513 }
514
515 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
516 /*    for 1st 4K of SRAM/regs space */
517 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
518                              int num)
519 {
520         memcpy_toio((priv->hw_base + addr), buf, num);
521 }
522
523 /* Set bit(s) in low 4K of SRAM/regs */
524 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 {
526         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
527 }
528
529 /* Clear bit(s) in low 4K of SRAM/regs */
530 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 {
532         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
533 }
534
535 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 {
537         if (priv->status & STATUS_INT_ENABLED)
538                 return;
539         priv->status |= STATUS_INT_ENABLED;
540         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
541 }
542
543 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 {
545         if (!(priv->status & STATUS_INT_ENABLED))
546                 return;
547         priv->status &= ~STATUS_INT_ENABLED;
548         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
549 }
550
551 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
552 {
553         unsigned long flags;
554
555         spin_lock_irqsave(&priv->irq_lock, flags);
556         __ipw_enable_interrupts(priv);
557         spin_unlock_irqrestore(&priv->irq_lock, flags);
558 }
559
560 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
561 {
562         unsigned long flags;
563
564         spin_lock_irqsave(&priv->irq_lock, flags);
565         __ipw_disable_interrupts(priv);
566         spin_unlock_irqrestore(&priv->irq_lock, flags);
567 }
568
569 static char *ipw_error_desc(u32 val)
570 {
571         switch (val) {
572         case IPW_FW_ERROR_OK:
573                 return "ERROR_OK";
574         case IPW_FW_ERROR_FAIL:
575                 return "ERROR_FAIL";
576         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
577                 return "MEMORY_UNDERFLOW";
578         case IPW_FW_ERROR_MEMORY_OVERFLOW:
579                 return "MEMORY_OVERFLOW";
580         case IPW_FW_ERROR_BAD_PARAM:
581                 return "BAD_PARAM";
582         case IPW_FW_ERROR_BAD_CHECKSUM:
583                 return "BAD_CHECKSUM";
584         case IPW_FW_ERROR_NMI_INTERRUPT:
585                 return "NMI_INTERRUPT";
586         case IPW_FW_ERROR_BAD_DATABASE:
587                 return "BAD_DATABASE";
588         case IPW_FW_ERROR_ALLOC_FAIL:
589                 return "ALLOC_FAIL";
590         case IPW_FW_ERROR_DMA_UNDERRUN:
591                 return "DMA_UNDERRUN";
592         case IPW_FW_ERROR_DMA_STATUS:
593                 return "DMA_STATUS";
594         case IPW_FW_ERROR_DINO_ERROR:
595                 return "DINO_ERROR";
596         case IPW_FW_ERROR_EEPROM_ERROR:
597                 return "EEPROM_ERROR";
598         case IPW_FW_ERROR_SYSASSERT:
599                 return "SYSASSERT";
600         case IPW_FW_ERROR_FATAL_ERROR:
601                 return "FATAL_ERROR";
602         default:
603                 return "UNKNOWN_ERROR";
604         }
605 }
606
607 static void ipw_dump_error_log(struct ipw_priv *priv,
608                                struct ipw_fw_error *error)
609 {
610         u32 i;
611
612         if (!error) {
613                 IPW_ERROR("Error allocating and capturing error log.  "
614                           "Nothing to dump.\n");
615                 return;
616         }
617
618         IPW_ERROR("Start IPW Error Log Dump:\n");
619         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
620                   error->status, error->config);
621
622         for (i = 0; i < error->elem_len; i++)
623                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
624                           ipw_error_desc(error->elem[i].desc),
625                           error->elem[i].time,
626                           error->elem[i].blink1,
627                           error->elem[i].blink2,
628                           error->elem[i].link1,
629                           error->elem[i].link2, error->elem[i].data);
630         for (i = 0; i < error->log_len; i++)
631                 IPW_ERROR("%i\t0x%08x\t%i\n",
632                           error->log[i].time,
633                           error->log[i].data, error->log[i].event);
634 }
635
636 static inline int ipw_is_init(struct ipw_priv *priv)
637 {
638         return (priv->status & STATUS_INIT) ? 1 : 0;
639 }
640
641 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 {
643         u32 addr, field_info, field_len, field_count, total_len;
644
645         IPW_DEBUG_ORD("ordinal = %i\n", ord);
646
647         if (!priv || !val || !len) {
648                 IPW_DEBUG_ORD("Invalid argument\n");
649                 return -EINVAL;
650         }
651
652         /* verify device ordinal tables have been initialized */
653         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
654                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
655                 return -EINVAL;
656         }
657
658         switch (IPW_ORD_TABLE_ID_MASK & ord) {
659         case IPW_ORD_TABLE_0_MASK:
660                 /*
661                  * TABLE 0: Direct access to a table of 32 bit values
662                  *
663                  * This is a very simple table with the data directly
664                  * read from the table
665                  */
666
667                 /* remove the table id from the ordinal */
668                 ord &= IPW_ORD_TABLE_VALUE_MASK;
669
670                 /* boundary check */
671                 if (ord > priv->table0_len) {
672                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
673                                       "max (%i)\n", ord, priv->table0_len);
674                         return -EINVAL;
675                 }
676
677                 /* verify we have enough room to store the value */
678                 if (*len < sizeof(u32)) {
679                         IPW_DEBUG_ORD("ordinal buffer length too small, "
680                                       "need %zd\n", sizeof(u32));
681                         return -EINVAL;
682                 }
683
684                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
685                               ord, priv->table0_addr + (ord << 2));
686
687                 *len = sizeof(u32);
688                 ord <<= 2;
689                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
690                 break;
691
692         case IPW_ORD_TABLE_1_MASK:
693                 /*
694                  * TABLE 1: Indirect access to a table of 32 bit values
695                  *
696                  * This is a fairly large table of u32 values each
697                  * representing starting addr for the data (which is
698                  * also a u32)
699                  */
700
701                 /* remove the table id from the ordinal */
702                 ord &= IPW_ORD_TABLE_VALUE_MASK;
703
704                 /* boundary check */
705                 if (ord > priv->table1_len) {
706                         IPW_DEBUG_ORD("ordinal value too long\n");
707                         return -EINVAL;
708                 }
709
710                 /* verify we have enough room to store the value */
711                 if (*len < sizeof(u32)) {
712                         IPW_DEBUG_ORD("ordinal buffer length too small, "
713                                       "need %zd\n", sizeof(u32));
714                         return -EINVAL;
715                 }
716
717                 *((u32 *) val) =
718                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
719                 *len = sizeof(u32);
720                 break;
721
722         case IPW_ORD_TABLE_2_MASK:
723                 /*
724                  * TABLE 2: Indirect access to a table of variable sized values
725                  *
726                  * This table consist of six values, each containing
727                  *     - dword containing the starting offset of the data
728                  *     - dword containing the lengh in the first 16bits
729                  *       and the count in the second 16bits
730                  */
731
732                 /* remove the table id from the ordinal */
733                 ord &= IPW_ORD_TABLE_VALUE_MASK;
734
735                 /* boundary check */
736                 if (ord > priv->table2_len) {
737                         IPW_DEBUG_ORD("ordinal value too long\n");
738                         return -EINVAL;
739                 }
740
741                 /* get the address of statistic */
742                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743
744                 /* get the second DW of statistics ;
745                  * two 16-bit words - first is length, second is count */
746                 field_info =
747                     ipw_read_reg32(priv,
748                                    priv->table2_addr + (ord << 3) +
749                                    sizeof(u32));
750
751                 /* get each entry length */
752                 field_len = *((u16 *) & field_info);
753
754                 /* get number of entries */
755                 field_count = *(((u16 *) & field_info) + 1);
756
757                 /* abort if not enought memory */
758                 total_len = field_len * field_count;
759                 if (total_len > *len) {
760                         *len = total_len;
761                         return -EINVAL;
762                 }
763
764                 *len = total_len;
765                 if (!total_len)
766                         return 0;
767
768                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
769                               "field_info = 0x%08x\n",
770                               addr, total_len, field_info);
771                 ipw_read_indirect(priv, addr, val, total_len);
772                 break;
773
774         default:
775                 IPW_DEBUG_ORD("Invalid ordinal!\n");
776                 return -EINVAL;
777
778         }
779
780         return 0;
781 }
782
783 static void ipw_init_ordinals(struct ipw_priv *priv)
784 {
785         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
786         priv->table0_len = ipw_read32(priv, priv->table0_addr);
787
788         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
789                       priv->table0_addr, priv->table0_len);
790
791         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
792         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793
794         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
795                       priv->table1_addr, priv->table1_len);
796
797         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
798         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
799         priv->table2_len &= 0x0000ffff; /* use first two bytes */
800
801         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
802                       priv->table2_addr, priv->table2_len);
803
804 }
805
806 static u32 ipw_register_toggle(u32 reg)
807 {
808         reg &= ~IPW_START_STANDBY;
809         if (reg & IPW_GATE_ODMA)
810                 reg &= ~IPW_GATE_ODMA;
811         if (reg & IPW_GATE_IDMA)
812                 reg &= ~IPW_GATE_IDMA;
813         if (reg & IPW_GATE_ADMA)
814                 reg &= ~IPW_GATE_ADMA;
815         return reg;
816 }
817
818 /*
819  * LED behavior:
820  * - On radio ON, turn on any LEDs that require to be on during start
821  * - On initialization, start unassociated blink
822  * - On association, disable unassociated blink
823  * - On disassociation, start unassociated blink
824  * - On radio OFF, turn off any LEDs started during radio on
825  *
826  */
827 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
828 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
829 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830
831 static void ipw_led_link_on(struct ipw_priv *priv)
832 {
833         unsigned long flags;
834         u32 led;
835
836         /* If configured to not use LEDs, or nic_type is 1,
837          * then we don't toggle a LINK led */
838         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
839                 return;
840
841         spin_lock_irqsave(&priv->lock, flags);
842
843         if (!(priv->status & STATUS_RF_KILL_MASK) &&
844             !(priv->status & STATUS_LED_LINK_ON)) {
845                 IPW_DEBUG_LED("Link LED On\n");
846                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
847                 led |= priv->led_association_on;
848
849                 led = ipw_register_toggle(led);
850
851                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
852                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853
854                 priv->status |= STATUS_LED_LINK_ON;
855
856                 /* If we aren't associated, schedule turning the LED off */
857                 if (!(priv->status & STATUS_ASSOCIATED))
858                         queue_delayed_work(priv->workqueue,
859                                            &priv->led_link_off,
860                                            LD_TIME_LINK_ON);
861         }
862
863         spin_unlock_irqrestore(&priv->lock, flags);
864 }
865
866 static void ipw_bg_led_link_on(struct work_struct *work)
867 {
868         struct ipw_priv *priv =
869                 container_of(work, struct ipw_priv, led_link_on.work);
870         mutex_lock(&priv->mutex);
871         ipw_led_link_on(priv);
872         mutex_unlock(&priv->mutex);
873 }
874
875 static void ipw_led_link_off(struct ipw_priv *priv)
876 {
877         unsigned long flags;
878         u32 led;
879
880         /* If configured not to use LEDs, or nic type is 1,
881          * then we don't goggle the LINK led. */
882         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883                 return;
884
885         spin_lock_irqsave(&priv->lock, flags);
886
887         if (priv->status & STATUS_LED_LINK_ON) {
888                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889                 led &= priv->led_association_off;
890                 led = ipw_register_toggle(led);
891
892                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894
895                 IPW_DEBUG_LED("Link LED Off\n");
896
897                 priv->status &= ~STATUS_LED_LINK_ON;
898
899                 /* If we aren't associated and the radio is on, schedule
900                  * turning the LED on (blink while unassociated) */
901                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902                     !(priv->status & STATUS_ASSOCIATED))
903                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
904                                            LD_TIME_LINK_OFF);
905
906         }
907
908         spin_unlock_irqrestore(&priv->lock, flags);
909 }
910
911 static void ipw_bg_led_link_off(struct work_struct *work)
912 {
913         struct ipw_priv *priv =
914                 container_of(work, struct ipw_priv, led_link_off.work);
915         mutex_lock(&priv->mutex);
916         ipw_led_link_off(priv);
917         mutex_unlock(&priv->mutex);
918 }
919
920 static void __ipw_led_activity_on(struct ipw_priv *priv)
921 {
922         u32 led;
923
924         if (priv->config & CFG_NO_LED)
925                 return;
926
927         if (priv->status & STATUS_RF_KILL_MASK)
928                 return;
929
930         if (!(priv->status & STATUS_LED_ACT_ON)) {
931                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
932                 led |= priv->led_activity_on;
933
934                 led = ipw_register_toggle(led);
935
936                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
937                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938
939                 IPW_DEBUG_LED("Activity LED On\n");
940
941                 priv->status |= STATUS_LED_ACT_ON;
942
943                 cancel_delayed_work(&priv->led_act_off);
944                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
945                                    LD_TIME_ACT_ON);
946         } else {
947                 /* Reschedule LED off for full time period */
948                 cancel_delayed_work(&priv->led_act_off);
949                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
950                                    LD_TIME_ACT_ON);
951         }
952 }
953
954 #if 0
955 void ipw_led_activity_on(struct ipw_priv *priv)
956 {
957         unsigned long flags;
958         spin_lock_irqsave(&priv->lock, flags);
959         __ipw_led_activity_on(priv);
960         spin_unlock_irqrestore(&priv->lock, flags);
961 }
962 #endif  /*  0  */
963
964 static void ipw_led_activity_off(struct ipw_priv *priv)
965 {
966         unsigned long flags;
967         u32 led;
968
969         if (priv->config & CFG_NO_LED)
970                 return;
971
972         spin_lock_irqsave(&priv->lock, flags);
973
974         if (priv->status & STATUS_LED_ACT_ON) {
975                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
976                 led &= priv->led_activity_off;
977
978                 led = ipw_register_toggle(led);
979
980                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
981                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982
983                 IPW_DEBUG_LED("Activity LED Off\n");
984
985                 priv->status &= ~STATUS_LED_ACT_ON;
986         }
987
988         spin_unlock_irqrestore(&priv->lock, flags);
989 }
990
991 static void ipw_bg_led_activity_off(struct work_struct *work)
992 {
993         struct ipw_priv *priv =
994                 container_of(work, struct ipw_priv, led_act_off.work);
995         mutex_lock(&priv->mutex);
996         ipw_led_activity_off(priv);
997         mutex_unlock(&priv->mutex);
998 }
999
1000 static void ipw_led_band_on(struct ipw_priv *priv)
1001 {
1002         unsigned long flags;
1003         u32 led;
1004
1005         /* Only nic type 1 supports mode LEDs */
1006         if (priv->config & CFG_NO_LED ||
1007             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1008                 return;
1009
1010         spin_lock_irqsave(&priv->lock, flags);
1011
1012         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1013         if (priv->assoc_network->mode == IEEE_A) {
1014                 led |= priv->led_ofdm_on;
1015                 led &= priv->led_association_off;
1016                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1017         } else if (priv->assoc_network->mode == IEEE_G) {
1018                 led |= priv->led_ofdm_on;
1019                 led |= priv->led_association_on;
1020                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021         } else {
1022                 led &= priv->led_ofdm_off;
1023                 led |= priv->led_association_on;
1024                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1025         }
1026
1027         led = ipw_register_toggle(led);
1028
1029         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1030         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031
1032         spin_unlock_irqrestore(&priv->lock, flags);
1033 }
1034
1035 static void ipw_led_band_off(struct ipw_priv *priv)
1036 {
1037         unsigned long flags;
1038         u32 led;
1039
1040         /* Only nic type 1 supports mode LEDs */
1041         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1042                 return;
1043
1044         spin_lock_irqsave(&priv->lock, flags);
1045
1046         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1047         led &= priv->led_ofdm_off;
1048         led &= priv->led_association_off;
1049
1050         led = ipw_register_toggle(led);
1051
1052         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1053         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054
1055         spin_unlock_irqrestore(&priv->lock, flags);
1056 }
1057
1058 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 {
1060         ipw_led_link_on(priv);
1061 }
1062
1063 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 {
1065         ipw_led_activity_off(priv);
1066         ipw_led_link_off(priv);
1067 }
1068
1069 static void ipw_led_link_up(struct ipw_priv *priv)
1070 {
1071         /* Set the Link Led on for all nic types */
1072         ipw_led_link_on(priv);
1073 }
1074
1075 static void ipw_led_link_down(struct ipw_priv *priv)
1076 {
1077         ipw_led_activity_off(priv);
1078         ipw_led_link_off(priv);
1079
1080         if (priv->status & STATUS_RF_KILL_MASK)
1081                 ipw_led_radio_off(priv);
1082 }
1083
1084 static void ipw_led_init(struct ipw_priv *priv)
1085 {
1086         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087
1088         /* Set the default PINs for the link and activity leds */
1089         priv->led_activity_on = IPW_ACTIVITY_LED;
1090         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091
1092         priv->led_association_on = IPW_ASSOCIATED_LED;
1093         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094
1095         /* Set the default PINs for the OFDM leds */
1096         priv->led_ofdm_on = IPW_OFDM_LED;
1097         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098
1099         switch (priv->nic_type) {
1100         case EEPROM_NIC_TYPE_1:
1101                 /* In this NIC type, the LEDs are reversed.... */
1102                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1103                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1104                 priv->led_association_on = IPW_ACTIVITY_LED;
1105                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106
1107                 if (!(priv->config & CFG_NO_LED))
1108                         ipw_led_band_on(priv);
1109
1110                 /* And we don't blink link LEDs for this nic, so
1111                  * just return here */
1112                 return;
1113
1114         case EEPROM_NIC_TYPE_3:
1115         case EEPROM_NIC_TYPE_2:
1116         case EEPROM_NIC_TYPE_4:
1117         case EEPROM_NIC_TYPE_0:
1118                 break;
1119
1120         default:
1121                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122                                priv->nic_type);
1123                 priv->nic_type = EEPROM_NIC_TYPE_0;
1124                 break;
1125         }
1126
1127         if (!(priv->config & CFG_NO_LED)) {
1128                 if (priv->status & STATUS_ASSOCIATED)
1129                         ipw_led_link_on(priv);
1130                 else
1131                         ipw_led_link_off(priv);
1132         }
1133 }
1134
1135 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 {
1137         ipw_led_activity_off(priv);
1138         ipw_led_link_off(priv);
1139         ipw_led_band_off(priv);
1140         cancel_delayed_work(&priv->led_link_on);
1141         cancel_delayed_work(&priv->led_link_off);
1142         cancel_delayed_work(&priv->led_act_off);
1143 }
1144
1145 /*
1146  * The following adds a new attribute to the sysfs representation
1147  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1148  * used for controling the debug level.
1149  *
1150  * See the level definitions in ipw for details.
1151  */
1152 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 {
1154         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1155 }
1156
1157 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1158                                  size_t count)
1159 {
1160         char *p = (char *)buf;
1161         u32 val;
1162
1163         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164                 p++;
1165                 if (p[0] == 'x' || p[0] == 'X')
1166                         p++;
1167                 val = simple_strtoul(p, &p, 16);
1168         } else
1169                 val = simple_strtoul(p, &p, 10);
1170         if (p == buf)
1171                 printk(KERN_INFO DRV_NAME
1172                        ": %s is not in hex or decimal form.\n", buf);
1173         else
1174                 ipw_debug_level = val;
1175
1176         return strnlen(buf, count);
1177 }
1178
1179 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1180                    show_debug_level, store_debug_level);
1181
1182 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 {
1184         /* length = 1st dword in log */
1185         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1186 }
1187
1188 static void ipw_capture_event_log(struct ipw_priv *priv,
1189                                   u32 log_len, struct ipw_event *log)
1190 {
1191         u32 base;
1192
1193         if (log_len) {
1194                 base = ipw_read32(priv, IPW_EVENT_LOG);
1195                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1196                                   (u8 *) log, sizeof(*log) * log_len);
1197         }
1198 }
1199
1200 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 {
1202         struct ipw_fw_error *error;
1203         u32 log_len = ipw_get_event_log_len(priv);
1204         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1205         u32 elem_len = ipw_read_reg32(priv, base);
1206
1207         error = kmalloc(sizeof(*error) +
1208                         sizeof(*error->elem) * elem_len +
1209                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1210         if (!error) {
1211                 IPW_ERROR("Memory allocation for firmware error log "
1212                           "failed.\n");
1213                 return NULL;
1214         }
1215         error->jiffies = jiffies;
1216         error->status = priv->status;
1217         error->config = priv->config;
1218         error->elem_len = elem_len;
1219         error->log_len = log_len;
1220         error->elem = (struct ipw_error_elem *)error->payload;
1221         error->log = (struct ipw_event *)(error->elem + elem_len);
1222
1223         ipw_capture_event_log(priv, log_len, error->log);
1224
1225         if (elem_len)
1226                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1227                                   sizeof(*error->elem) * elem_len);
1228
1229         return error;
1230 }
1231
1232 static ssize_t show_event_log(struct device *d,
1233                               struct device_attribute *attr, char *buf)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         u32 log_len = ipw_get_event_log_len(priv);
1237         u32 log_size;
1238         struct ipw_event *log;
1239         u32 len = 0, i;
1240
1241         /* not using min() because of its strict type checking */
1242         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1243                         sizeof(*log) * log_len : PAGE_SIZE;
1244         log = kzalloc(log_size, GFP_KERNEL);
1245         if (!log) {
1246                 IPW_ERROR("Unable to allocate memory for log\n");
1247                 return 0;
1248         }
1249         log_len = log_size / sizeof(*log);
1250         ipw_capture_event_log(priv, log_len, log);
1251
1252         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1253         for (i = 0; i < log_len; i++)
1254                 len += snprintf(buf + len, PAGE_SIZE - len,
1255                                 "\n%08X%08X%08X",
1256                                 log[i].time, log[i].event, log[i].data);
1257         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1258         kfree(log);
1259         return len;
1260 }
1261
1262 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263
1264 static ssize_t show_error(struct device *d,
1265                           struct device_attribute *attr, char *buf)
1266 {
1267         struct ipw_priv *priv = dev_get_drvdata(d);
1268         u32 len = 0, i;
1269         if (!priv->error)
1270                 return 0;
1271         len += snprintf(buf + len, PAGE_SIZE - len,
1272                         "%08lX%08X%08X%08X",
1273                         priv->error->jiffies,
1274                         priv->error->status,
1275                         priv->error->config, priv->error->elem_len);
1276         for (i = 0; i < priv->error->elem_len; i++)
1277                 len += snprintf(buf + len, PAGE_SIZE - len,
1278                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1279                                 priv->error->elem[i].time,
1280                                 priv->error->elem[i].desc,
1281                                 priv->error->elem[i].blink1,
1282                                 priv->error->elem[i].blink2,
1283                                 priv->error->elem[i].link1,
1284                                 priv->error->elem[i].link2,
1285                                 priv->error->elem[i].data);
1286
1287         len += snprintf(buf + len, PAGE_SIZE - len,
1288                         "\n%08X", priv->error->log_len);
1289         for (i = 0; i < priv->error->log_len; i++)
1290                 len += snprintf(buf + len, PAGE_SIZE - len,
1291                                 "\n%08X%08X%08X",
1292                                 priv->error->log[i].time,
1293                                 priv->error->log[i].event,
1294                                 priv->error->log[i].data);
1295         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1296         return len;
1297 }
1298
1299 static ssize_t clear_error(struct device *d,
1300                            struct device_attribute *attr,
1301                            const char *buf, size_t count)
1302 {
1303         struct ipw_priv *priv = dev_get_drvdata(d);
1304
1305         kfree(priv->error);
1306         priv->error = NULL;
1307         return count;
1308 }
1309
1310 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311
1312 static ssize_t show_cmd_log(struct device *d,
1313                             struct device_attribute *attr, char *buf)
1314 {
1315         struct ipw_priv *priv = dev_get_drvdata(d);
1316         u32 len = 0, i;
1317         if (!priv->cmdlog)
1318                 return 0;
1319         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1320              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1321              i = (i + 1) % priv->cmdlog_len) {
1322                 len +=
1323                     snprintf(buf + len, PAGE_SIZE - len,
1324                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1325                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1326                              priv->cmdlog[i].cmd.len);
1327                 len +=
1328                     snprintk_buf(buf + len, PAGE_SIZE - len,
1329                                  (u8 *) priv->cmdlog[i].cmd.param,
1330                                  priv->cmdlog[i].cmd.len);
1331                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332         }
1333         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1334         return len;
1335 }
1336
1337 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338
1339 #ifdef CONFIG_IPW2200_PROMISCUOUS
1340 static void ipw_prom_free(struct ipw_priv *priv);
1341 static int ipw_prom_alloc(struct ipw_priv *priv);
1342 static ssize_t store_rtap_iface(struct device *d,
1343                          struct device_attribute *attr,
1344                          const char *buf, size_t count)
1345 {
1346         struct ipw_priv *priv = dev_get_drvdata(d);
1347         int rc = 0;
1348
1349         if (count < 1)
1350                 return -EINVAL;
1351
1352         switch (buf[0]) {
1353         case '0':
1354                 if (!rtap_iface)
1355                         return count;
1356
1357                 if (netif_running(priv->prom_net_dev)) {
1358                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1359                         return count;
1360                 }
1361
1362                 ipw_prom_free(priv);
1363                 rtap_iface = 0;
1364                 break;
1365
1366         case '1':
1367                 if (rtap_iface)
1368                         return count;
1369
1370                 rc = ipw_prom_alloc(priv);
1371                 if (!rc)
1372                         rtap_iface = 1;
1373                 break;
1374
1375         default:
1376                 return -EINVAL;
1377         }
1378
1379         if (rc) {
1380                 IPW_ERROR("Failed to register promiscuous network "
1381                           "device (error %d).\n", rc);
1382         }
1383
1384         return count;
1385 }
1386
1387 static ssize_t show_rtap_iface(struct device *d,
1388                         struct device_attribute *attr,
1389                         char *buf)
1390 {
1391         struct ipw_priv *priv = dev_get_drvdata(d);
1392         if (rtap_iface)
1393                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1394         else {
1395                 buf[0] = '-';
1396                 buf[1] = '1';
1397                 buf[2] = '\0';
1398                 return 3;
1399         }
1400 }
1401
1402 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1403                    store_rtap_iface);
1404
1405 static ssize_t store_rtap_filter(struct device *d,
1406                          struct device_attribute *attr,
1407                          const char *buf, size_t count)
1408 {
1409         struct ipw_priv *priv = dev_get_drvdata(d);
1410
1411         if (!priv->prom_priv) {
1412                 IPW_ERROR("Attempting to set filter without "
1413                           "rtap_iface enabled.\n");
1414                 return -EPERM;
1415         }
1416
1417         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418
1419         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1420                        BIT_ARG16(priv->prom_priv->filter));
1421
1422         return count;
1423 }
1424
1425 static ssize_t show_rtap_filter(struct device *d,
1426                         struct device_attribute *attr,
1427                         char *buf)
1428 {
1429         struct ipw_priv *priv = dev_get_drvdata(d);
1430         return sprintf(buf, "0x%04X",
1431                        priv->prom_priv ? priv->prom_priv->filter : 0);
1432 }
1433
1434 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1435                    store_rtap_filter);
1436 #endif
1437
1438 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1439                              char *buf)
1440 {
1441         struct ipw_priv *priv = dev_get_drvdata(d);
1442         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1443 }
1444
1445 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1446                               const char *buf, size_t count)
1447 {
1448         struct ipw_priv *priv = dev_get_drvdata(d);
1449         struct net_device *dev = priv->net_dev;
1450         char buffer[] = "00000000";
1451         unsigned long len =
1452             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1453         unsigned long val;
1454         char *p = buffer;
1455
1456         IPW_DEBUG_INFO("enter\n");
1457
1458         strncpy(buffer, buf, len);
1459         buffer[len] = 0;
1460
1461         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1462                 p++;
1463                 if (p[0] == 'x' || p[0] == 'X')
1464                         p++;
1465                 val = simple_strtoul(p, &p, 16);
1466         } else
1467                 val = simple_strtoul(p, &p, 10);
1468         if (p == buffer) {
1469                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1470         } else {
1471                 priv->ieee->scan_age = val;
1472                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1473         }
1474
1475         IPW_DEBUG_INFO("exit\n");
1476         return len;
1477 }
1478
1479 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480
1481 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1482                         char *buf)
1483 {
1484         struct ipw_priv *priv = dev_get_drvdata(d);
1485         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1486 }
1487
1488 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1489                          const char *buf, size_t count)
1490 {
1491         struct ipw_priv *priv = dev_get_drvdata(d);
1492
1493         IPW_DEBUG_INFO("enter\n");
1494
1495         if (count == 0)
1496                 return 0;
1497
1498         if (*buf == 0) {
1499                 IPW_DEBUG_LED("Disabling LED control.\n");
1500                 priv->config |= CFG_NO_LED;
1501                 ipw_led_shutdown(priv);
1502         } else {
1503                 IPW_DEBUG_LED("Enabling LED control.\n");
1504                 priv->config &= ~CFG_NO_LED;
1505                 ipw_led_init(priv);
1506         }
1507
1508         IPW_DEBUG_INFO("exit\n");
1509         return count;
1510 }
1511
1512 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513
1514 static ssize_t show_status(struct device *d,
1515                            struct device_attribute *attr, char *buf)
1516 {
1517         struct ipw_priv *p = d->driver_data;
1518         return sprintf(buf, "0x%08x\n", (int)p->status);
1519 }
1520
1521 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522
1523 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1524                         char *buf)
1525 {
1526         struct ipw_priv *p = d->driver_data;
1527         return sprintf(buf, "0x%08x\n", (int)p->config);
1528 }
1529
1530 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531
1532 static ssize_t show_nic_type(struct device *d,
1533                              struct device_attribute *attr, char *buf)
1534 {
1535         struct ipw_priv *priv = d->driver_data;
1536         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1537 }
1538
1539 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540
1541 static ssize_t show_ucode_version(struct device *d,
1542                                   struct device_attribute *attr, char *buf)
1543 {
1544         u32 len = sizeof(u32), tmp = 0;
1545         struct ipw_priv *p = d->driver_data;
1546
1547         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1548                 return 0;
1549
1550         return sprintf(buf, "0x%08x\n", tmp);
1551 }
1552
1553 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554
1555 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1556                         char *buf)
1557 {
1558         u32 len = sizeof(u32), tmp = 0;
1559         struct ipw_priv *p = d->driver_data;
1560
1561         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1562                 return 0;
1563
1564         return sprintf(buf, "0x%08x\n", tmp);
1565 }
1566
1567 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1568
1569 /*
1570  * Add a device attribute to view/control the delay between eeprom
1571  * operations.
1572  */
1573 static ssize_t show_eeprom_delay(struct device *d,
1574                                  struct device_attribute *attr, char *buf)
1575 {
1576         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1577         return sprintf(buf, "%i\n", n);
1578 }
1579 static ssize_t store_eeprom_delay(struct device *d,
1580                                   struct device_attribute *attr,
1581                                   const char *buf, size_t count)
1582 {
1583         struct ipw_priv *p = d->driver_data;
1584         sscanf(buf, "%i", &p->eeprom_delay);
1585         return strnlen(buf, count);
1586 }
1587
1588 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1589                    show_eeprom_delay, store_eeprom_delay);
1590
1591 static ssize_t show_command_event_reg(struct device *d,
1592                                       struct device_attribute *attr, char *buf)
1593 {
1594         u32 reg = 0;
1595         struct ipw_priv *p = d->driver_data;
1596
1597         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1598         return sprintf(buf, "0x%08x\n", reg);
1599 }
1600 static ssize_t store_command_event_reg(struct device *d,
1601                                        struct device_attribute *attr,
1602                                        const char *buf, size_t count)
1603 {
1604         u32 reg;
1605         struct ipw_priv *p = d->driver_data;
1606
1607         sscanf(buf, "%x", &reg);
1608         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1609         return strnlen(buf, count);
1610 }
1611
1612 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1613                    show_command_event_reg, store_command_event_reg);
1614
1615 static ssize_t show_mem_gpio_reg(struct device *d,
1616                                  struct device_attribute *attr, char *buf)
1617 {
1618         u32 reg = 0;
1619         struct ipw_priv *p = d->driver_data;
1620
1621         reg = ipw_read_reg32(p, 0x301100);
1622         return sprintf(buf, "0x%08x\n", reg);
1623 }
1624 static ssize_t store_mem_gpio_reg(struct device *d,
1625                                   struct device_attribute *attr,
1626                                   const char *buf, size_t count)
1627 {
1628         u32 reg;
1629         struct ipw_priv *p = d->driver_data;
1630
1631         sscanf(buf, "%x", &reg);
1632         ipw_write_reg32(p, 0x301100, reg);
1633         return strnlen(buf, count);
1634 }
1635
1636 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1637                    show_mem_gpio_reg, store_mem_gpio_reg);
1638
1639 static ssize_t show_indirect_dword(struct device *d,
1640                                    struct device_attribute *attr, char *buf)
1641 {
1642         u32 reg = 0;
1643         struct ipw_priv *priv = d->driver_data;
1644
1645         if (priv->status & STATUS_INDIRECT_DWORD)
1646                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1647         else
1648                 reg = 0;
1649
1650         return sprintf(buf, "0x%08x\n", reg);
1651 }
1652 static ssize_t store_indirect_dword(struct device *d,
1653                                     struct device_attribute *attr,
1654                                     const char *buf, size_t count)
1655 {
1656         struct ipw_priv *priv = d->driver_data;
1657
1658         sscanf(buf, "%x", &priv->indirect_dword);
1659         priv->status |= STATUS_INDIRECT_DWORD;
1660         return strnlen(buf, count);
1661 }
1662
1663 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1664                    show_indirect_dword, store_indirect_dword);
1665
1666 static ssize_t show_indirect_byte(struct device *d,
1667                                   struct device_attribute *attr, char *buf)
1668 {
1669         u8 reg = 0;
1670         struct ipw_priv *priv = d->driver_data;
1671
1672         if (priv->status & STATUS_INDIRECT_BYTE)
1673                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1674         else
1675                 reg = 0;
1676
1677         return sprintf(buf, "0x%02x\n", reg);
1678 }
1679 static ssize_t store_indirect_byte(struct device *d,
1680                                    struct device_attribute *attr,
1681                                    const char *buf, size_t count)
1682 {
1683         struct ipw_priv *priv = d->driver_data;
1684
1685         sscanf(buf, "%x", &priv->indirect_byte);
1686         priv->status |= STATUS_INDIRECT_BYTE;
1687         return strnlen(buf, count);
1688 }
1689
1690 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1691                    show_indirect_byte, store_indirect_byte);
1692
1693 static ssize_t show_direct_dword(struct device *d,
1694                                  struct device_attribute *attr, char *buf)
1695 {
1696         u32 reg = 0;
1697         struct ipw_priv *priv = d->driver_data;
1698
1699         if (priv->status & STATUS_DIRECT_DWORD)
1700                 reg = ipw_read32(priv, priv->direct_dword);
1701         else
1702                 reg = 0;
1703
1704         return sprintf(buf, "0x%08x\n", reg);
1705 }
1706 static ssize_t store_direct_dword(struct device *d,
1707                                   struct device_attribute *attr,
1708                                   const char *buf, size_t count)
1709 {
1710         struct ipw_priv *priv = d->driver_data;
1711
1712         sscanf(buf, "%x", &priv->direct_dword);
1713         priv->status |= STATUS_DIRECT_DWORD;
1714         return strnlen(buf, count);
1715 }
1716
1717 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1718                    show_direct_dword, store_direct_dword);
1719
1720 static int rf_kill_active(struct ipw_priv *priv)
1721 {
1722         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1723                 priv->status |= STATUS_RF_KILL_HW;
1724         else
1725                 priv->status &= ~STATUS_RF_KILL_HW;
1726
1727         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1728 }
1729
1730 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1731                             char *buf)
1732 {
1733         /* 0 - RF kill not enabled
1734            1 - SW based RF kill active (sysfs)
1735            2 - HW based RF kill active
1736            3 - Both HW and SW baed RF kill active */
1737         struct ipw_priv *priv = d->driver_data;
1738         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1739             (rf_kill_active(priv) ? 0x2 : 0x0);
1740         return sprintf(buf, "%i\n", val);
1741 }
1742
1743 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 {
1745         if ((disable_radio ? 1 : 0) ==
1746             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1747                 return 0;
1748
1749         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1750                           disable_radio ? "OFF" : "ON");
1751
1752         if (disable_radio) {
1753                 priv->status |= STATUS_RF_KILL_SW;
1754
1755                 if (priv->workqueue) {
1756                         cancel_delayed_work(&priv->request_scan);
1757                         cancel_delayed_work(&priv->request_direct_scan);
1758                         cancel_delayed_work(&priv->request_passive_scan);
1759                         cancel_delayed_work(&priv->scan_event);
1760                 }
1761                 queue_work(priv->workqueue, &priv->down);
1762         } else {
1763                 priv->status &= ~STATUS_RF_KILL_SW;
1764                 if (rf_kill_active(priv)) {
1765                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1766                                           "disabled by HW switch\n");
1767                         /* Make sure the RF_KILL check timer is running */
1768                         cancel_delayed_work(&priv->rf_kill);
1769                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1770                                            round_jiffies_relative(2 * HZ));
1771                 } else
1772                         queue_work(priv->workqueue, &priv->up);
1773         }
1774
1775         return 1;
1776 }
1777
1778 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1779                              const char *buf, size_t count)
1780 {
1781         struct ipw_priv *priv = d->driver_data;
1782
1783         ipw_radio_kill_sw(priv, buf[0] == '1');
1784
1785         return count;
1786 }
1787
1788 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1789
1790 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1791                                char *buf)
1792 {
1793         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1794         int pos = 0, len = 0;
1795         if (priv->config & CFG_SPEED_SCAN) {
1796                 while (priv->speed_scan[pos] != 0)
1797                         len += sprintf(&buf[len], "%d ",
1798                                        priv->speed_scan[pos++]);
1799                 return len + sprintf(&buf[len], "\n");
1800         }
1801
1802         return sprintf(buf, "0\n");
1803 }
1804
1805 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1806                                 const char *buf, size_t count)
1807 {
1808         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1809         int channel, pos = 0;
1810         const char *p = buf;
1811
1812         /* list of space separated channels to scan, optionally ending with 0 */
1813         while ((channel = simple_strtol(p, NULL, 0))) {
1814                 if (pos == MAX_SPEED_SCAN - 1) {
1815                         priv->speed_scan[pos] = 0;
1816                         break;
1817                 }
1818
1819                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1820                         priv->speed_scan[pos++] = channel;
1821                 else
1822                         IPW_WARNING("Skipping invalid channel request: %d\n",
1823                                     channel);
1824                 p = strchr(p, ' ');
1825                 if (!p)
1826                         break;
1827                 while (*p == ' ' || *p == '\t')
1828                         p++;
1829         }
1830
1831         if (pos == 0)
1832                 priv->config &= ~CFG_SPEED_SCAN;
1833         else {
1834                 priv->speed_scan_pos = 0;
1835                 priv->config |= CFG_SPEED_SCAN;
1836         }
1837
1838         return count;
1839 }
1840
1841 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1842                    store_speed_scan);
1843
1844 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1845                               char *buf)
1846 {
1847         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1848         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1849 }
1850
1851 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1852                                const char *buf, size_t count)
1853 {
1854         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1855         if (buf[0] == '1')
1856                 priv->config |= CFG_NET_STATS;
1857         else
1858                 priv->config &= ~CFG_NET_STATS;
1859
1860         return count;
1861 }
1862
1863 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1864                    show_net_stats, store_net_stats);
1865
1866 static ssize_t show_channels(struct device *d,
1867                              struct device_attribute *attr,
1868                              char *buf)
1869 {
1870         struct ipw_priv *priv = dev_get_drvdata(d);
1871         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1872         int len = 0, i;
1873
1874         len = sprintf(&buf[len],
1875                       "Displaying %d channels in 2.4Ghz band "
1876                       "(802.11bg):\n", geo->bg_channels);
1877
1878         for (i = 0; i < geo->bg_channels; i++) {
1879                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1880                                geo->bg[i].channel,
1881                                geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1882                                " (radar spectrum)" : "",
1883                                ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1884                                 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1885                                ? "" : ", IBSS",
1886                                geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1887                                "passive only" : "active/passive",
1888                                geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1889                                "B" : "B/G");
1890         }
1891
1892         len += sprintf(&buf[len],
1893                        "Displaying %d channels in 5.2Ghz band "
1894                        "(802.11a):\n", geo->a_channels);
1895         for (i = 0; i < geo->a_channels; i++) {
1896                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1897                                geo->a[i].channel,
1898                                geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1899                                " (radar spectrum)" : "",
1900                                ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1901                                 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1902                                ? "" : ", IBSS",
1903                                geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1904                                "passive only" : "active/passive");
1905         }
1906
1907         return len;
1908 }
1909
1910 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1911
1912 static void notify_wx_assoc_event(struct ipw_priv *priv)
1913 {
1914         union iwreq_data wrqu;
1915         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1916         if (priv->status & STATUS_ASSOCIATED)
1917                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1918         else
1919                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1920         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1921 }
1922
1923 static void ipw_irq_tasklet(struct ipw_priv *priv)
1924 {
1925         u32 inta, inta_mask, handled = 0;
1926         unsigned long flags;
1927         int rc = 0;
1928
1929         spin_lock_irqsave(&priv->irq_lock, flags);
1930
1931         inta = ipw_read32(priv, IPW_INTA_RW);
1932         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1933         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934
1935         /* Add any cached INTA values that need to be handled */
1936         inta |= priv->isr_inta;
1937
1938         spin_unlock_irqrestore(&priv->irq_lock, flags);
1939
1940         spin_lock_irqsave(&priv->lock, flags);
1941
1942         /* handle all the justifications for the interrupt */
1943         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944                 ipw_rx(priv);
1945                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1946         }
1947
1948         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1949                 IPW_DEBUG_HC("Command completed.\n");
1950                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1951                 priv->status &= ~STATUS_HCMD_ACTIVE;
1952                 wake_up_interruptible(&priv->wait_command_queue);
1953                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1954         }
1955
1956         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1957                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1958                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1959                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1960         }
1961
1962         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1963                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1964                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1965                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1966         }
1967
1968         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1969                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1970                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1971                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1972         }
1973
1974         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1975                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1976                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1977                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1978         }
1979
1980         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1981                 IPW_WARNING("STATUS_CHANGE\n");
1982                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1983         }
1984
1985         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1986                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1987                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1988         }
1989
1990         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1991                 IPW_WARNING("HOST_CMD_DONE\n");
1992                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1993         }
1994
1995         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1996                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1997                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1998         }
1999
2000         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2001                 IPW_WARNING("PHY_OFF_DONE\n");
2002                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2003         }
2004
2005         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2006                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2007                 priv->status |= STATUS_RF_KILL_HW;
2008                 wake_up_interruptible(&priv->wait_command_queue);
2009                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2010                 cancel_delayed_work(&priv->request_scan);
2011                 cancel_delayed_work(&priv->request_direct_scan);
2012                 cancel_delayed_work(&priv->request_passive_scan);
2013                 cancel_delayed_work(&priv->scan_event);
2014                 schedule_work(&priv->link_down);
2015                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2016                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2017         }
2018
2019         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2020                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2021                 if (priv->error) {
2022                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2023                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2024                                 struct ipw_fw_error *error =
2025                                     ipw_alloc_error_log(priv);
2026                                 ipw_dump_error_log(priv, error);
2027                                 kfree(error);
2028                         }
2029                 } else {
2030                         priv->error = ipw_alloc_error_log(priv);
2031                         if (priv->error)
2032                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2033                         else
2034                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2035                                              "log.\n");
2036                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2037                                 ipw_dump_error_log(priv, priv->error);
2038                 }
2039
2040                 /* XXX: If hardware encryption is for WPA/WPA2,
2041                  * we have to notify the supplicant. */
2042                 if (priv->ieee->sec.encrypt) {
2043                         priv->status &= ~STATUS_ASSOCIATED;
2044                         notify_wx_assoc_event(priv);
2045                 }
2046
2047                 /* Keep the restart process from trying to send host
2048                  * commands by clearing the INIT status bit */
2049                 priv->status &= ~STATUS_INIT;
2050
2051                 /* Cancel currently queued command. */
2052                 priv->status &= ~STATUS_HCMD_ACTIVE;
2053                 wake_up_interruptible(&priv->wait_command_queue);
2054
2055                 queue_work(priv->workqueue, &priv->adapter_restart);
2056                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2057         }
2058
2059         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2060                 IPW_ERROR("Parity error\n");
2061                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2062         }
2063
2064         if (handled != inta) {
2065                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2066         }
2067
2068         spin_unlock_irqrestore(&priv->lock, flags);
2069
2070         /* enable all interrupts */
2071         ipw_enable_interrupts(priv);
2072 }
2073
2074 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2075 static char *get_cmd_string(u8 cmd)
2076 {
2077         switch (cmd) {
2078                 IPW_CMD(HOST_COMPLETE);
2079                 IPW_CMD(POWER_DOWN);
2080                 IPW_CMD(SYSTEM_CONFIG);
2081                 IPW_CMD(MULTICAST_ADDRESS);
2082                 IPW_CMD(SSID);
2083                 IPW_CMD(ADAPTER_ADDRESS);
2084                 IPW_CMD(PORT_TYPE);
2085                 IPW_CMD(RTS_THRESHOLD);
2086                 IPW_CMD(FRAG_THRESHOLD);
2087                 IPW_CMD(POWER_MODE);
2088                 IPW_CMD(WEP_KEY);
2089                 IPW_CMD(TGI_TX_KEY);
2090                 IPW_CMD(SCAN_REQUEST);
2091                 IPW_CMD(SCAN_REQUEST_EXT);
2092                 IPW_CMD(ASSOCIATE);
2093                 IPW_CMD(SUPPORTED_RATES);
2094                 IPW_CMD(SCAN_ABORT);
2095                 IPW_CMD(TX_FLUSH);
2096                 IPW_CMD(QOS_PARAMETERS);
2097                 IPW_CMD(DINO_CONFIG);
2098                 IPW_CMD(RSN_CAPABILITIES);
2099                 IPW_CMD(RX_KEY);
2100                 IPW_CMD(CARD_DISABLE);
2101                 IPW_CMD(SEED_NUMBER);
2102                 IPW_CMD(TX_POWER);
2103                 IPW_CMD(COUNTRY_INFO);
2104                 IPW_CMD(AIRONET_INFO);
2105                 IPW_CMD(AP_TX_POWER);
2106                 IPW_CMD(CCKM_INFO);
2107                 IPW_CMD(CCX_VER_INFO);
2108                 IPW_CMD(SET_CALIBRATION);
2109                 IPW_CMD(SENSITIVITY_CALIB);
2110                 IPW_CMD(RETRY_LIMIT);
2111                 IPW_CMD(IPW_PRE_POWER_DOWN);
2112                 IPW_CMD(VAP_BEACON_TEMPLATE);
2113                 IPW_CMD(VAP_DTIM_PERIOD);
2114                 IPW_CMD(EXT_SUPPORTED_RATES);
2115                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2116                 IPW_CMD(VAP_QUIET_INTERVALS);
2117                 IPW_CMD(VAP_CHANNEL_SWITCH);
2118                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2119                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2120                 IPW_CMD(VAP_CF_PARAM_SET);
2121                 IPW_CMD(VAP_SET_BEACONING_STATE);
2122                 IPW_CMD(MEASUREMENT);
2123                 IPW_CMD(POWER_CAPABILITY);
2124                 IPW_CMD(SUPPORTED_CHANNELS);
2125                 IPW_CMD(TPC_REPORT);
2126                 IPW_CMD(WME_INFO);
2127                 IPW_CMD(PRODUCTION_COMMAND);
2128         default:
2129                 return "UNKNOWN";
2130         }
2131 }
2132
2133 #define HOST_COMPLETE_TIMEOUT HZ
2134
2135 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2136 {
2137         int rc = 0;
2138         unsigned long flags;
2139
2140         spin_lock_irqsave(&priv->lock, flags);
2141         if (priv->status & STATUS_HCMD_ACTIVE) {
2142                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2143                           get_cmd_string(cmd->cmd));
2144                 spin_unlock_irqrestore(&priv->lock, flags);
2145                 return -EAGAIN;
2146         }
2147
2148         priv->status |= STATUS_HCMD_ACTIVE;
2149
2150         if (priv->cmdlog) {
2151                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2152                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2153                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2154                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2155                        cmd->len);
2156                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2157         }
2158
2159         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2160                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2161                      priv->status);
2162
2163 #ifndef DEBUG_CMD_WEP_KEY
2164         if (cmd->cmd == IPW_CMD_WEP_KEY)
2165                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2166         else
2167 #endif
2168                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2169
2170         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2171         if (rc) {
2172                 priv->status &= ~STATUS_HCMD_ACTIVE;
2173                 IPW_ERROR("Failed to send %s: Reason %d\n",
2174                           get_cmd_string(cmd->cmd), rc);
2175                 spin_unlock_irqrestore(&priv->lock, flags);
2176                 goto exit;
2177         }
2178         spin_unlock_irqrestore(&priv->lock, flags);
2179
2180         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2181                                               !(priv->
2182                                                 status & STATUS_HCMD_ACTIVE),
2183                                               HOST_COMPLETE_TIMEOUT);
2184         if (rc == 0) {
2185                 spin_lock_irqsave(&priv->lock, flags);
2186                 if (priv->status & STATUS_HCMD_ACTIVE) {
2187                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2188                                   get_cmd_string(cmd->cmd));
2189                         priv->status &= ~STATUS_HCMD_ACTIVE;
2190                         spin_unlock_irqrestore(&priv->lock, flags);
2191                         rc = -EIO;
2192                         goto exit;
2193                 }
2194                 spin_unlock_irqrestore(&priv->lock, flags);
2195         } else
2196                 rc = 0;
2197
2198         if (priv->status & STATUS_RF_KILL_HW) {
2199                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 rc = -EIO;
2202                 goto exit;
2203         }
2204
2205       exit:
2206         if (priv->cmdlog) {
2207                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2208                 priv->cmdlog_pos %= priv->cmdlog_len;
2209         }
2210         return rc;
2211 }
2212
2213 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2214 {
2215         struct host_cmd cmd = {
2216                 .cmd = command,
2217         };
2218
2219         return __ipw_send_cmd(priv, &cmd);
2220 }
2221
2222 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2223                             void *data)
2224 {
2225         struct host_cmd cmd = {
2226                 .cmd = command,
2227                 .len = len,
2228                 .param = data,
2229         };
2230
2231         return __ipw_send_cmd(priv, &cmd);
2232 }
2233
2234 static int ipw_send_host_complete(struct ipw_priv *priv)
2235 {
2236         if (!priv) {
2237                 IPW_ERROR("Invalid args\n");
2238                 return -1;
2239         }
2240
2241         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2242 }
2243
2244 static int ipw_send_system_config(struct ipw_priv *priv)
2245 {
2246         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2247                                 sizeof(priv->sys_config),
2248                                 &priv->sys_config);
2249 }
2250
2251 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2252 {
2253         if (!priv || !ssid) {
2254                 IPW_ERROR("Invalid args\n");
2255                 return -1;
2256         }
2257
2258         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2259                                 ssid);
2260 }
2261
2262 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2263 {
2264         if (!priv || !mac) {
2265                 IPW_ERROR("Invalid args\n");
2266                 return -1;
2267         }
2268
2269         IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2270                        priv->net_dev->name, print_mac(mac, mac));
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2273 }
2274
2275 /*
2276  * NOTE: This must be executed from our workqueue as it results in udelay
2277  * being called which may corrupt the keyboard if executed on default
2278  * workqueue
2279  */
2280 static void ipw_adapter_restart(void *adapter)
2281 {
2282         struct ipw_priv *priv = adapter;
2283
2284         if (priv->status & STATUS_RF_KILL_MASK)
2285                 return;
2286
2287         ipw_down(priv);
2288
2289         if (priv->assoc_network &&
2290             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2291                 ipw_remove_current_network(priv);
2292
2293         if (ipw_up(priv)) {
2294                 IPW_ERROR("Failed to up device\n");
2295                 return;
2296         }
2297 }
2298
2299 static void ipw_bg_adapter_restart(struct work_struct *work)
2300 {
2301         struct ipw_priv *priv =
2302                 container_of(work, struct ipw_priv, adapter_restart);
2303         mutex_lock(&priv->mutex);
2304         ipw_adapter_restart(priv);
2305         mutex_unlock(&priv->mutex);
2306 }
2307
2308 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2309
2310 static void ipw_scan_check(void *data)
2311 {
2312         struct ipw_priv *priv = data;
2313         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2314                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2315                                "adapter after (%dms).\n",
2316                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2317                 queue_work(priv->workqueue, &priv->adapter_restart);
2318         }
2319 }
2320
2321 static void ipw_bg_scan_check(struct work_struct *work)
2322 {
2323         struct ipw_priv *priv =
2324                 container_of(work, struct ipw_priv, scan_check.work);
2325         mutex_lock(&priv->mutex);
2326         ipw_scan_check(priv);
2327         mutex_unlock(&priv->mutex);
2328 }
2329
2330 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2331                                      struct ipw_scan_request_ext *request)
2332 {
2333         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2334                                 sizeof(*request), request);
2335 }
2336
2337 static int ipw_send_scan_abort(struct ipw_priv *priv)
2338 {
2339         if (!priv) {
2340                 IPW_ERROR("Invalid args\n");
2341                 return -1;
2342         }
2343
2344         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2345 }
2346
2347 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2348 {
2349         struct ipw_sensitivity_calib calib = {
2350                 .beacon_rssi_raw = cpu_to_le16(sens),
2351         };
2352
2353         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2354                                 &calib);
2355 }
2356
2357 static int ipw_send_associate(struct ipw_priv *priv,
2358                               struct ipw_associate *associate)
2359 {
2360         if (!priv || !associate) {
2361                 IPW_ERROR("Invalid args\n");
2362                 return -1;
2363         }
2364
2365         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2366                                 associate);
2367 }
2368
2369 static int ipw_send_supported_rates(struct ipw_priv *priv,
2370                                     struct ipw_supported_rates *rates)
2371 {
2372         if (!priv || !rates) {
2373                 IPW_ERROR("Invalid args\n");
2374                 return -1;
2375         }
2376
2377         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2378                                 rates);
2379 }
2380
2381 static int ipw_set_random_seed(struct ipw_priv *priv)
2382 {
2383         u32 val;
2384
2385         if (!priv) {
2386                 IPW_ERROR("Invalid args\n");
2387                 return -1;
2388         }
2389
2390         get_random_bytes(&val, sizeof(val));
2391
2392         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2393 }
2394
2395 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2396 {
2397         __le32 v = cpu_to_le32(phy_off);
2398         if (!priv) {
2399                 IPW_ERROR("Invalid args\n");
2400                 return -1;
2401         }
2402
2403         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2404 }
2405
2406 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2407 {
2408         if (!priv || !power) {
2409                 IPW_ERROR("Invalid args\n");
2410                 return -1;
2411         }
2412
2413         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2414 }
2415
2416 static int ipw_set_tx_power(struct ipw_priv *priv)
2417 {
2418         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2419         struct ipw_tx_power tx_power;
2420         s8 max_power;
2421         int i;
2422
2423         memset(&tx_power, 0, sizeof(tx_power));
2424
2425         /* configure device for 'G' band */
2426         tx_power.ieee_mode = IPW_G_MODE;
2427         tx_power.num_channels = geo->bg_channels;
2428         for (i = 0; i < geo->bg_channels; i++) {
2429                 max_power = geo->bg[i].max_power;
2430                 tx_power.channels_tx_power[i].channel_number =
2431                     geo->bg[i].channel;
2432                 tx_power.channels_tx_power[i].tx_power = max_power ?
2433                     min(max_power, priv->tx_power) : priv->tx_power;
2434         }
2435         if (ipw_send_tx_power(priv, &tx_power))
2436                 return -EIO;
2437
2438         /* configure device to also handle 'B' band */
2439         tx_power.ieee_mode = IPW_B_MODE;
2440         if (ipw_send_tx_power(priv, &tx_power))
2441                 return -EIO;
2442
2443         /* configure device to also handle 'A' band */
2444         if (priv->ieee->abg_true) {
2445                 tx_power.ieee_mode = IPW_A_MODE;
2446                 tx_power.num_channels = geo->a_channels;
2447                 for (i = 0; i < tx_power.num_channels; i++) {
2448                         max_power = geo->a[i].max_power;
2449                         tx_power.channels_tx_power[i].channel_number =
2450                             geo->a[i].channel;
2451                         tx_power.channels_tx_power[i].tx_power = max_power ?
2452                             min(max_power, priv->tx_power) : priv->tx_power;
2453                 }
2454                 if (ipw_send_tx_power(priv, &tx_power))
2455                         return -EIO;
2456         }
2457         return 0;
2458 }
2459
2460 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2461 {
2462         struct ipw_rts_threshold rts_threshold = {
2463                 .rts_threshold = cpu_to_le16(rts),
2464         };
2465
2466         if (!priv) {
2467                 IPW_ERROR("Invalid args\n");
2468                 return -1;
2469         }
2470
2471         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2472                                 sizeof(rts_threshold), &rts_threshold);
2473 }
2474
2475 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2476 {
2477         struct ipw_frag_threshold frag_threshold = {
2478                 .frag_threshold = cpu_to_le16(frag),
2479         };
2480
2481         if (!priv) {
2482                 IPW_ERROR("Invalid args\n");
2483                 return -1;
2484         }
2485
2486         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2487                                 sizeof(frag_threshold), &frag_threshold);
2488 }
2489
2490 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2491 {
2492         __le32 param;
2493
2494         if (!priv) {
2495                 IPW_ERROR("Invalid args\n");
2496                 return -1;
2497         }
2498
2499         /* If on battery, set to 3, if AC set to CAM, else user
2500          * level */
2501         switch (mode) {
2502         case IPW_POWER_BATTERY:
2503                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2504                 break;
2505         case IPW_POWER_AC:
2506                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2507                 break;
2508         default:
2509                 param = cpu_to_le32(mode);
2510                 break;
2511         }
2512
2513         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2514                                 &param);
2515 }
2516
2517 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2518 {
2519         struct ipw_retry_limit retry_limit = {
2520                 .short_retry_limit = slimit,
2521                 .long_retry_limit = llimit
2522         };
2523
2524         if (!priv) {
2525                 IPW_ERROR("Invalid args\n");
2526                 return -1;
2527         }
2528
2529         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2530                                 &retry_limit);
2531 }
2532
2533 /*
2534  * The IPW device contains a Microwire compatible EEPROM that stores
2535  * various data like the MAC address.  Usually the firmware has exclusive
2536  * access to the eeprom, but during device initialization (before the
2537  * device driver has sent the HostComplete command to the firmware) the
2538  * device driver has read access to the EEPROM by way of indirect addressing
2539  * through a couple of memory mapped registers.
2540  *
2541  * The following is a simplified implementation for pulling data out of the
2542  * the eeprom, along with some helper functions to find information in
2543  * the per device private data's copy of the eeprom.
2544  *
2545  * NOTE: To better understand how these functions work (i.e what is a chip
2546  *       select and why do have to keep driving the eeprom clock?), read
2547  *       just about any data sheet for a Microwire compatible EEPROM.
2548  */
2549
2550 /* write a 32 bit value into the indirect accessor register */
2551 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2552 {
2553         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2554
2555         /* the eeprom requires some time to complete the operation */
2556         udelay(p->eeprom_delay);
2557
2558         return;
2559 }
2560
2561 /* perform a chip select operation */
2562 static void eeprom_cs(struct ipw_priv *priv)
2563 {
2564         eeprom_write_reg(priv, 0);
2565         eeprom_write_reg(priv, EEPROM_BIT_CS);
2566         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2567         eeprom_write_reg(priv, EEPROM_BIT_CS);
2568 }
2569
2570 /* perform a chip select operation */
2571 static void eeprom_disable_cs(struct ipw_priv *priv)
2572 {
2573         eeprom_write_reg(priv, EEPROM_BIT_CS);
2574         eeprom_write_reg(priv, 0);
2575         eeprom_write_reg(priv, EEPROM_BIT_SK);
2576 }
2577
2578 /* push a single bit down to the eeprom */
2579 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2580 {
2581         int d = (bit ? EEPROM_BIT_DI : 0);
2582         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2583         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2584 }
2585
2586 /* push an opcode followed by an address down to the eeprom */
2587 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2588 {
2589         int i;
2590
2591         eeprom_cs(priv);
2592         eeprom_write_bit(priv, 1);
2593         eeprom_write_bit(priv, op & 2);
2594         eeprom_write_bit(priv, op & 1);
2595         for (i = 7; i >= 0; i--) {
2596                 eeprom_write_bit(priv, addr & (1 << i));
2597         }
2598 }
2599
2600 /* pull 16 bits off the eeprom, one bit at a time */
2601 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2602 {
2603         int i;
2604         u16 r = 0;
2605
2606         /* Send READ Opcode */
2607         eeprom_op(priv, EEPROM_CMD_READ, addr);
2608
2609         /* Send dummy bit */
2610         eeprom_write_reg(priv, EEPROM_BIT_CS);
2611
2612         /* Read the byte off the eeprom one bit at a time */
2613         for (i = 0; i < 16; i++) {
2614                 u32 data = 0;
2615                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2616                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2618                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2619         }
2620
2621         /* Send another dummy bit */
2622         eeprom_write_reg(priv, 0);
2623         eeprom_disable_cs(priv);
2624
2625         return r;
2626 }
2627
2628 /* helper function for pulling the mac address out of the private */
2629 /* data's copy of the eeprom data                                 */
2630 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2631 {
2632         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2633 }
2634
2635 /*
2636  * Either the device driver (i.e. the host) or the firmware can
2637  * load eeprom data into the designated region in SRAM.  If neither
2638  * happens then the FW will shutdown with a fatal error.
2639  *
2640  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2641  * bit needs region of shared SRAM needs to be non-zero.
2642  */
2643 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2644 {
2645         int i;
2646         __le16 *eeprom = (__le16 *) priv->eeprom;
2647
2648         IPW_DEBUG_TRACE(">>\n");
2649
2650         /* read entire contents of eeprom into private buffer */
2651         for (i = 0; i < 128; i++)
2652                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2653
2654         /*
2655            If the data looks correct, then copy it to our private
2656            copy.  Otherwise let the firmware know to perform the operation
2657            on its own.
2658          */
2659         if (priv->eeprom[EEPROM_VERSION] != 0) {
2660                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2661
2662                 /* write the eeprom data to sram */
2663                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2664                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2665
2666                 /* Do not load eeprom data on fatal error or suspend */
2667                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2668         } else {
2669                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2670
2671                 /* Load eeprom data on fatal error or suspend */
2672                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2673         }
2674
2675         IPW_DEBUG_TRACE("<<\n");
2676 }
2677
2678 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2679 {
2680         count >>= 2;
2681         if (!count)
2682                 return;
2683         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2684         while (count--)
2685                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2686 }
2687
2688 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2689 {
2690         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2691                         CB_NUMBER_OF_ELEMENTS_SMALL *
2692                         sizeof(struct command_block));
2693 }
2694
2695 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2696 {                               /* start dma engine but no transfers yet */
2697
2698         IPW_DEBUG_FW(">> : \n");
2699
2700         /* Start the dma */
2701         ipw_fw_dma_reset_command_blocks(priv);
2702
2703         /* Write CB base address */
2704         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2705
2706         IPW_DEBUG_FW("<< : \n");
2707         return 0;
2708 }
2709
2710 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 {
2712         u32 control = 0;
2713
2714         IPW_DEBUG_FW(">> :\n");
2715
2716         /* set the Stop and Abort bit */
2717         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2718         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2719         priv->sram_desc.last_cb_index = 0;
2720
2721         IPW_DEBUG_FW("<< \n");
2722 }
2723
2724 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2725                                           struct command_block *cb)
2726 {
2727         u32 address =
2728             IPW_SHARED_SRAM_DMA_CONTROL +
2729             (sizeof(struct command_block) * index);
2730         IPW_DEBUG_FW(">> :\n");
2731
2732         ipw_write_indirect(priv, address, (u8 *) cb,
2733                            (int)sizeof(struct command_block));
2734
2735         IPW_DEBUG_FW("<< :\n");
2736         return 0;
2737
2738 }
2739
2740 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2741 {
2742         u32 control = 0;
2743         u32 index = 0;
2744
2745         IPW_DEBUG_FW(">> :\n");
2746
2747         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2748                 ipw_fw_dma_write_command_block(priv, index,
2749                                                &priv->sram_desc.cb_list[index]);
2750
2751         /* Enable the DMA in the CSR register */
2752         ipw_clear_bit(priv, IPW_RESET_REG,
2753                       IPW_RESET_REG_MASTER_DISABLED |
2754                       IPW_RESET_REG_STOP_MASTER);
2755
2756         /* Set the Start bit. */
2757         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2758         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759
2760         IPW_DEBUG_FW("<< :\n");
2761         return 0;
2762 }
2763
2764 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2765 {
2766         u32 address;
2767         u32 register_value = 0;
2768         u32 cb_fields_address = 0;
2769
2770         IPW_DEBUG_FW(">> :\n");
2771         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2772         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2773
2774         /* Read the DMA Controlor register */
2775         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2776         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2777
2778         /* Print the CB values */
2779         cb_fields_address = address;
2780         register_value = ipw_read_reg32(priv, cb_fields_address);
2781         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2782
2783         cb_fields_address += sizeof(u32);
2784         register_value = ipw_read_reg32(priv, cb_fields_address);
2785         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2786
2787         cb_fields_address += sizeof(u32);
2788         register_value = ipw_read_reg32(priv, cb_fields_address);
2789         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2790                           register_value);
2791
2792         cb_fields_address += sizeof(u32);
2793         register_value = ipw_read_reg32(priv, cb_fields_address);
2794         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2795
2796         IPW_DEBUG_FW(">> :\n");
2797 }
2798
2799 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2800 {
2801         u32 current_cb_address = 0;
2802         u32 current_cb_index = 0;
2803
2804         IPW_DEBUG_FW("<< :\n");
2805         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2806
2807         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2808             sizeof(struct command_block);
2809
2810         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2811                           current_cb_index, current_cb_address);
2812
2813         IPW_DEBUG_FW(">> :\n");
2814         return current_cb_index;
2815
2816 }
2817
2818 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2819                                         u32 src_address,
2820                                         u32 dest_address,
2821                                         u32 length,
2822                                         int interrupt_enabled, int is_last)
2823 {
2824
2825         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2826             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2827             CB_DEST_SIZE_LONG;
2828         struct command_block *cb;
2829         u32 last_cb_element = 0;
2830
2831         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2832                           src_address, dest_address, length);
2833
2834         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2835                 return -1;
2836
2837         last_cb_element = priv->sram_desc.last_cb_index;
2838         cb = &priv->sram_desc.cb_list[last_cb_element];
2839         priv->sram_desc.last_cb_index++;
2840
2841         /* Calculate the new CB control word */
2842         if (interrupt_enabled)
2843                 control |= CB_INT_ENABLED;
2844
2845         if (is_last)
2846                 control |= CB_LAST_VALID;
2847
2848         control |= length;
2849
2850         /* Calculate the CB Element's checksum value */
2851         cb->status = control ^ src_address ^ dest_address;
2852
2853         /* Copy the Source and Destination addresses */
2854         cb->dest_addr = dest_address;
2855         cb->source_addr = src_address;
2856
2857         /* Copy the Control Word last */
2858         cb->control = control;
2859
2860         return 0;
2861 }
2862
2863 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2864                                  u32 src_phys, u32 dest_address, u32 length)
2865 {
2866         u32 bytes_left = length;
2867         u32 src_offset = 0;
2868         u32 dest_offset = 0;
2869         int status = 0;
2870         IPW_DEBUG_FW(">> \n");
2871         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2872                           src_phys, dest_address, length);
2873         while (bytes_left > CB_MAX_LENGTH) {
2874                 status = ipw_fw_dma_add_command_block(priv,
2875                                                       src_phys + src_offset,
2876                                                       dest_address +
2877                                                       dest_offset,
2878                                                       CB_MAX_LENGTH, 0, 0);
2879                 if (status) {
2880                         IPW_DEBUG_FW_INFO(": Failed\n");
2881                         return -1;
2882                 } else
2883                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2884
2885                 src_offset += CB_MAX_LENGTH;
2886                 dest_offset += CB_MAX_LENGTH;
2887                 bytes_left -= CB_MAX_LENGTH;
2888         }
2889
2890         /* add the buffer tail */
2891         if (bytes_left > 0) {
2892                 status =
2893                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2894                                                  dest_address + dest_offset,
2895                                                  bytes_left, 0, 0);
2896                 if (status) {
2897                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2898                         return -1;
2899                 } else
2900                         IPW_DEBUG_FW_INFO
2901                             (": Adding new cb - the buffer tail\n");
2902         }
2903
2904         IPW_DEBUG_FW("<< \n");
2905         return 0;
2906 }
2907
2908 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2909 {
2910         u32 current_index = 0, previous_index;
2911         u32 watchdog = 0;
2912
2913         IPW_DEBUG_FW(">> : \n");
2914
2915         current_index = ipw_fw_dma_command_block_index(priv);
2916         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2917                           (int)priv->sram_desc.last_cb_index);
2918
2919         while (current_index < priv->sram_desc.last_cb_index) {
2920                 udelay(50);
2921                 previous_index = current_index;
2922                 current_index = ipw_fw_dma_command_block_index(priv);
2923
2924                 if (previous_index < current_index) {
2925                         watchdog = 0;
2926                         continue;
2927                 }
2928                 if (++watchdog > 400) {
2929                         IPW_DEBUG_FW_INFO("Timeout\n");
2930                         ipw_fw_dma_dump_command_block(priv);
2931                         ipw_fw_dma_abort(priv);
2932                         return -1;
2933                 }
2934         }
2935
2936         ipw_fw_dma_abort(priv);
2937
2938         /*Disable the DMA in the CSR register */
2939         ipw_set_bit(priv, IPW_RESET_REG,
2940                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2941
2942         IPW_DEBUG_FW("<< dmaWaitSync \n");
2943         return 0;
2944 }
2945
2946 static void ipw_remove_current_network(struct ipw_priv *priv)
2947 {
2948         struct list_head *element, *safe;
2949         struct ieee80211_network *network = NULL;
2950         unsigned long flags;
2951
2952         spin_lock_irqsave(&priv->ieee->lock, flags);
2953         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2954                 network = list_entry(element, struct ieee80211_network, list);
2955                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2956                         list_del(element);
2957                         list_add_tail(&network->list,
2958                                       &priv->ieee->network_free_list);
2959                 }
2960         }
2961         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2962 }
2963
2964 /**
2965  * Check that card is still alive.
2966  * Reads debug register from domain0.
2967  * If card is present, pre-defined value should
2968  * be found there.
2969  *
2970  * @param priv
2971  * @return 1 if card is present, 0 otherwise
2972  */
2973 static inline int ipw_alive(struct ipw_priv *priv)
2974 {
2975         return ipw_read32(priv, 0x90) == 0xd55555d5;
2976 }
2977
2978 /* timeout in msec, attempted in 10-msec quanta */
2979 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2980                                int timeout)
2981 {
2982         int i = 0;
2983
2984         do {
2985                 if ((ipw_read32(priv, addr) & mask) == mask)
2986                         return i;
2987                 mdelay(10);
2988                 i += 10;
2989         } while (i < timeout);
2990
2991         return -ETIME;
2992 }
2993
2994 /* These functions load the firmware and micro code for the operation of
2995  * the ipw hardware.  It assumes the buffer has all the bits for the
2996  * image and the caller is handling the memory allocation and clean up.
2997  */
2998
2999 static int ipw_stop_master(struct ipw_priv *priv)
3000 {
3001         int rc;
3002
3003         IPW_DEBUG_TRACE(">> \n");
3004         /* stop master. typical delay - 0 */
3005         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3006
3007         /* timeout is in msec, polled in 10-msec quanta */
3008         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3009                           IPW_RESET_REG_MASTER_DISABLED, 100);
3010         if (rc < 0) {
3011                 IPW_ERROR("wait for stop master failed after 100ms\n");
3012                 return -1;
3013         }
3014
3015         IPW_DEBUG_INFO("stop master %dms\n", rc);
3016
3017         return rc;
3018 }
3019
3020 static void ipw_arc_release(struct ipw_priv *priv)
3021 {
3022         IPW_DEBUG_TRACE(">> \n");
3023         mdelay(5);
3024
3025         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3026
3027         /* no one knows timing, for safety add some delay */
3028         mdelay(5);
3029 }
3030
3031 struct fw_chunk {
3032         __le32 address;
3033         __le32 length;
3034 };
3035
3036 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3037 {
3038         int rc = 0, i, addr;
3039         u8 cr = 0;
3040         __le16 *image;
3041
3042         image = (__le16 *) data;
3043
3044         IPW_DEBUG_TRACE(">> \n");
3045
3046         rc = ipw_stop_master(priv);
3047
3048         if (rc < 0)
3049                 return rc;
3050
3051         for (addr = IPW_SHARED_LOWER_BOUND;
3052              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3053                 ipw_write32(priv, addr, 0);
3054         }
3055
3056         /* no ucode (yet) */
3057         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3058         /* destroy DMA queues */
3059         /* reset sequence */
3060
3061         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3062         ipw_arc_release(priv);
3063         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3064         mdelay(1);
3065
3066         /* reset PHY */
3067         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3068         mdelay(1);
3069
3070         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3071         mdelay(1);
3072
3073         /* enable ucode store */
3074         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3075         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3076         mdelay(1);
3077
3078         /* write ucode */
3079         /**
3080          * @bug
3081          * Do NOT set indirect address register once and then
3082          * store data to indirect data register in the loop.
3083          * It seems very reasonable, but in this case DINO do not
3084          * accept ucode. It is essential to set address each time.
3085          */
3086         /* load new ipw uCode */
3087         for (i = 0; i < len / 2; i++)
3088                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3089                                 le16_to_cpu(image[i]));
3090
3091         /* enable DINO */
3092         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3093         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3094
3095         /* this is where the igx / win driver deveates from the VAP driver. */
3096
3097         /* wait for alive response */
3098         for (i = 0; i < 100; i++) {
3099                 /* poll for incoming data */
3100                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3101                 if (cr & DINO_RXFIFO_DATA)
3102                         break;
3103                 mdelay(1);
3104         }
3105
3106         if (cr & DINO_RXFIFO_DATA) {
3107                 /* alive_command_responce size is NOT multiple of 4 */
3108                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3109
3110                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3111                         response_buffer[i] =
3112                             cpu_to_le32(ipw_read_reg32(priv,
3113                                                        IPW_BASEBAND_RX_FIFO_READ));
3114                 memcpy(&priv->dino_alive, response_buffer,
3115                        sizeof(priv->dino_alive));
3116                 if (priv->dino_alive.alive_command == 1
3117                     && priv->dino_alive.ucode_valid == 1) {
3118                         rc = 0;
3119                         IPW_DEBUG_INFO
3120                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3121                              "of %02d/%02d/%02d %02d:%02d\n",
3122                              priv->dino_alive.software_revision,
3123                              priv->dino_alive.software_revision,
3124                              priv->dino_alive.device_identifier,
3125                              priv->dino_alive.device_identifier,
3126                              priv->dino_alive.time_stamp[0],
3127                              priv->dino_alive.time_stamp[1],
3128                              priv->dino_alive.time_stamp[2],
3129                              priv->dino_alive.time_stamp[3],
3130                              priv->dino_alive.time_stamp[4]);
3131                 } else {
3132                         IPW_DEBUG_INFO("Microcode is not alive\n");
3133                         rc = -EINVAL;
3134                 }
3135         } else {
3136                 IPW_DEBUG_INFO("No alive response from DINO\n");
3137                 rc = -ETIME;
3138         }
3139
3140         /* disable DINO, otherwise for some reason
3141            firmware have problem getting alive resp. */
3142         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3143
3144         return rc;
3145 }
3146
3147 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 {
3149         int rc = -1;
3150         int offset = 0;
3151         struct fw_chunk *chunk;
3152         dma_addr_t shared_phys;
3153         u8 *shared_virt;
3154
3155         IPW_DEBUG_TRACE("<< : \n");
3156         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3157
3158         if (!shared_virt)
3159                 return -ENOMEM;
3160
3161         memmove(shared_virt, data, len);
3162
3163         /* Start the Dma */
3164         rc = ipw_fw_dma_enable(priv);
3165
3166         if (priv->sram_desc.last_cb_index > 0) {
3167                 /* the DMA is already ready this would be a bug. */
3168                 BUG();
3169                 goto out;
3170         }
3171
3172         do {
3173                 chunk = (struct fw_chunk *)(data + offset);
3174                 offset += sizeof(struct fw_chunk);
3175                 /* build DMA packet and queue up for sending */
3176                 /* dma to chunk->address, the chunk->length bytes from data +
3177                  * offeset*/
3178                 /* Dma loading */
3179                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3180                                            le32_to_cpu(chunk->address),
3181                                            le32_to_cpu(chunk->length));
3182                 if (rc) {
3183                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3184                         goto out;
3185                 }
3186
3187                 offset += le32_to_cpu(chunk->length);
3188         } while (offset < len);
3189
3190         /* Run the DMA and wait for the answer */
3191         rc = ipw_fw_dma_kick(priv);
3192         if (rc) {
3193                 IPW_ERROR("dmaKick Failed\n");
3194                 goto out;
3195         }
3196
3197         rc = ipw_fw_dma_wait(priv);
3198         if (rc) {
3199                 IPW_ERROR("dmaWaitSync Failed\n");
3200                 goto out;
3201         }
3202       out:
3203         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3204         return rc;
3205 }
3206
3207 /* stop nic */
3208 static int ipw_stop_nic(struct ipw_priv *priv)
3209 {
3210         int rc = 0;
3211
3212         /* stop */
3213         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3214
3215         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3216                           IPW_RESET_REG_MASTER_DISABLED, 500);
3217         if (rc < 0) {
3218                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3219                 return rc;
3220         }
3221
3222         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3223
3224         return rc;
3225 }
3226
3227 static void ipw_start_nic(struct ipw_priv *priv)
3228 {
3229         IPW_DEBUG_TRACE(">>\n");
3230
3231         /* prvHwStartNic  release ARC */
3232         ipw_clear_bit(priv, IPW_RESET_REG,
3233                       IPW_RESET_REG_MASTER_DISABLED |
3234                       IPW_RESET_REG_STOP_MASTER |
3235                       CBD_RESET_REG_PRINCETON_RESET);
3236
3237         /* enable power management */
3238         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3239                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3240
3241         IPW_DEBUG_TRACE("<<\n");
3242 }
3243
3244 static int ipw_init_nic(struct ipw_priv *priv)
3245 {
3246         int rc;
3247
3248         IPW_DEBUG_TRACE(">>\n");
3249         /* reset */
3250         /*prvHwInitNic */
3251         /* set "initialization complete" bit to move adapter to D0 state */
3252         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3253
3254         /* low-level PLL activation */
3255         ipw_write32(priv, IPW_READ_INT_REGISTER,
3256                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3257
3258         /* wait for clock stabilization */
3259         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3260                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3261         if (rc < 0)
3262                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3263
3264         /* assert SW reset */
3265         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266
3267         udelay(10);
3268
3269         /* set "initialization complete" bit to move adapter to D0 state */
3270         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3271
3272         IPW_DEBUG_TRACE(">>\n");
3273         return 0;
3274 }
3275
3276 /* Call this function from process context, it will sleep in request_firmware.
3277  * Probe is an ok place to call this from.
3278  */
3279 static int ipw_reset_nic(struct ipw_priv *priv)
3280 {
3281         int rc = 0;
3282         unsigned long flags;
3283
3284         IPW_DEBUG_TRACE(">>\n");
3285
3286         rc = ipw_init_nic(priv);
3287
3288         spin_lock_irqsave(&priv->lock, flags);
3289         /* Clear the 'host command active' bit... */
3290         priv->status &= ~STATUS_HCMD_ACTIVE;
3291         wake_up_interruptible(&priv->wait_command_queue);
3292         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3293         wake_up_interruptible(&priv->wait_state);
3294         spin_unlock_irqrestore(&priv->lock, flags);
3295
3296         IPW_DEBUG_TRACE("<<\n");
3297         return rc;
3298 }
3299
3300
3301 struct ipw_fw {
3302         __le32 ver;
3303         __le32 boot_size;
3304         __le32 ucode_size;
3305         __le32 fw_size;
3306         u8 data[0];
3307 };
3308
3309 static int ipw_get_fw(struct ipw_priv *priv,
3310                       const struct firmware **raw, const char *name)
3311 {
3312         struct ipw_fw *fw;
3313         int rc;
3314
3315         /* ask firmware_class module to get the boot firmware off disk */
3316         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3317         if (rc < 0) {
3318                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3319                 return rc;
3320         }
3321
3322         if ((*raw)->size < sizeof(*fw)) {
3323                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3324                 return -EINVAL;
3325         }
3326
3327         fw = (void *)(*raw)->data;
3328
3329         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3330             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3331                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3332                           name, (*raw)->size);
3333                 return -EINVAL;
3334         }
3335
3336         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3337                        name,
3338                        le32_to_cpu(fw->ver) >> 16,
3339                        le32_to_cpu(fw->ver) & 0xff,
3340                        (*raw)->size - sizeof(*fw));
3341         return 0;
3342 }
3343
3344 #define IPW_RX_BUF_SIZE (3000)
3345
3346 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3347                                       struct ipw_rx_queue *rxq)
3348 {
3349         unsigned long flags;
3350         int i;
3351
3352         spin_lock_irqsave(&rxq->lock, flags);
3353
3354         INIT_LIST_HEAD(&rxq->rx_free);
3355         INIT_LIST_HEAD(&rxq->rx_used);
3356
3357         /* Fill the rx_used queue with _all_ of the Rx buffers */
3358         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3359                 /* In the reset function, these buffers may have been allocated
3360                  * to an SKB, so we need to unmap and free potential storage */
3361                 if (rxq->pool[i].skb != NULL) {
3362                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3363                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3364                         dev_kfree_skb(rxq->pool[i].skb);
3365                         rxq->pool[i].skb = NULL;
3366                 }
3367                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3368         }
3369
3370         /* Set us so that we have processed and used all buffers, but have
3371          * not restocked the Rx queue with fresh buffers */
3372         rxq->read = rxq->write = 0;
3373         rxq->free_count = 0;
3374         spin_unlock_irqrestore(&rxq->lock, flags);
3375 }
3376
3377 #ifdef CONFIG_PM
3378 static int fw_loaded = 0;
3379 static const struct firmware *raw = NULL;
3380
3381 static void free_firmware(void)
3382 {
3383         if (fw_loaded) {
3384                 release_firmware(raw);
3385                 raw = NULL;
3386                 fw_loaded = 0;
3387         }
3388 }
3389 #else
3390 #define free_firmware() do {} while (0)
3391 #endif
3392
3393 static int ipw_load(struct ipw_priv *priv)
3394 {
3395 #ifndef CONFIG_PM
3396         const struct firmware *raw = NULL;
3397 #endif
3398         struct ipw_fw *fw;
3399         u8 *boot_img, *ucode_img, *fw_img;
3400         u8 *name = NULL;
3401         int rc = 0, retries = 3;
3402
3403         switch (priv->ieee->iw_mode) {
3404         case IW_MODE_ADHOC:
3405                 name = "ipw2200-ibss.fw";
3406                 break;
3407 #ifdef CONFIG_IPW2200_MONITOR
3408         case IW_MODE_MONITOR:
3409                 name = "ipw2200-sniffer.fw";
3410                 break;
3411 #endif
3412         case IW_MODE_INFRA:
3413                 name = "ipw2200-bss.fw";
3414                 break;
3415         }
3416
3417         if (!name) {
3418                 rc = -EINVAL;
3419                 goto error;
3420         }
3421
3422 #ifdef CONFIG_PM
3423         if (!fw_loaded) {
3424 #endif
3425                 rc = ipw_get_fw(priv, &raw, name);
3426                 if (rc < 0)
3427                         goto error;
3428 #ifdef CONFIG_PM
3429         }
3430 #endif
3431
3432         fw = (void *)raw->data;
3433         boot_img = &fw->data[0];
3434         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3435         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3436                            le32_to_cpu(fw->ucode_size)];
3437
3438         if (rc < 0)
3439                 goto error;
3440
3441         if (!priv->rxq)
3442                 priv->rxq = ipw_rx_queue_alloc(priv);
3443         else
3444                 ipw_rx_queue_reset(priv, priv->rxq);
3445         if (!priv->rxq) {
3446                 IPW_ERROR("Unable to initialize Rx queue\n");
3447                 goto error;
3448         }
3449
3450       retry:
3451         /* Ensure interrupts are disabled */
3452         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3453         priv->status &= ~STATUS_INT_ENABLED;
3454
3455         /* ack pending interrupts */
3456         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3457
3458         ipw_stop_nic(priv);
3459
3460         rc = ipw_reset_nic(priv);
3461         if (rc < 0) {
3462                 IPW_ERROR("Unable to reset NIC\n");
3463                 goto error;
3464         }
3465
3466         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3467                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3468
3469         /* DMA the initial boot firmware into the device */
3470         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3471         if (rc < 0) {
3472                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3473                 goto error;
3474         }
3475
3476         /* kick start the device */
3477         ipw_start_nic(priv);
3478
3479         /* wait for the device to finish its initial startup sequence */
3480         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3481                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3482         if (rc < 0) {
3483                 IPW_ERROR("device failed to boot initial fw image\n");
3484                 goto error;
3485         }
3486         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3487
3488         /* ack fw init done interrupt */
3489         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3490
3491         /* DMA the ucode into the device */
3492         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3493         if (rc < 0) {
3494                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3495                 goto error;
3496         }
3497
3498         /* stop nic */
3499         ipw_stop_nic(priv);
3500
3501         /* DMA bss firmware into the device */
3502         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3503         if (rc < 0) {
3504                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3505                 goto error;
3506         }
3507 #ifdef CONFIG_PM
3508         fw_loaded = 1;
3509 #endif
3510
3511         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3512
3513         rc = ipw_queue_reset(priv);
3514         if (rc < 0) {
3515                 IPW_ERROR("Unable to initialize queues\n");
3516                 goto error;
3517         }
3518
3519         /* Ensure interrupts are disabled */
3520         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3521         /* ack pending interrupts */
3522         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3523
3524         /* kick start the device */
3525         ipw_start_nic(priv);
3526
3527         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3528                 if (retries > 0) {
3529                         IPW_WARNING("Parity error.  Retrying init.\n");
3530                         retries--;
3531                         goto retry;
3532                 }
3533
3534                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3535                 rc = -EIO;
3536                 goto error;
3537         }
3538
3539         /* wait for the device */
3540         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3541                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3542         if (rc < 0) {
3543                 IPW_ERROR("device failed to start within 500ms\n");
3544                 goto error;
3545         }
3546         IPW_DEBUG_INFO("device response after %dms\n", rc);
3547
3548         /* ack fw init done interrupt */
3549         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3550
3551         /* read eeprom data and initialize the eeprom region of sram */
3552         priv->eeprom_delay = 1;
3553         ipw_eeprom_init_sram(priv);
3554
3555         /* enable interrupts */
3556         ipw_enable_interrupts(priv);
3557
3558         /* Ensure our queue has valid packets */
3559         ipw_rx_queue_replenish(priv);
3560
3561         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3562
3563         /* ack pending interrupts */
3564         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3565
3566 #ifndef CONFIG_PM
3567         release_firmware(raw);
3568 #endif
3569         return 0;
3570
3571       error:
3572         if (priv->rxq) {
3573                 ipw_rx_queue_free(priv, priv->rxq);
3574                 priv->rxq = NULL;
3575         }
3576         ipw_tx_queue_free(priv);
3577         if (raw)
3578                 release_firmware(raw);
3579 #ifdef CONFIG_PM
3580         fw_loaded = 0;
3581         raw = NULL;
3582 #endif
3583
3584         return rc;
3585 }
3586
3587 /**
3588  * DMA services
3589  *
3590  * Theory of operation
3591  *
3592  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3593  * 2 empty entries always kept in the buffer to protect from overflow.
3594  *
3595  * For Tx queue, there are low mark and high mark limits. If, after queuing
3596  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3597  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3598  * Tx queue resumed.
3599  *
3600  * The IPW operates with six queues, one receive queue in the device's
3601  * sram, one transmit queue for sending commands to the device firmware,
3602  * and four transmit queues for data.
3603  *
3604  * The four transmit queues allow for performing quality of service (qos)
3605  * transmissions as per the 802.11 protocol.  Currently Linux does not
3606  * provide a mechanism to the user for utilizing prioritized queues, so
3607  * we only utilize the first data transmit queue (queue1).
3608  */
3609
3610 /**
3611  * Driver allocates buffers of this size for Rx
3612  */
3613
3614 /**
3615  * ipw_rx_queue_space - Return number of free slots available in queue.
3616  */
3617 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3618 {
3619         int s = q->read - q->write;
3620         if (s <= 0)
3621                 s += RX_QUEUE_SIZE;
3622         /* keep some buffer to not confuse full and empty queue */
3623         s -= 2;
3624         if (s < 0)
3625                 s = 0;
3626         return s;
3627 }
3628
3629 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3630 {
3631         int s = q->last_used - q->first_empty;
3632         if (s <= 0)
3633                 s += q->n_bd;
3634         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3635         if (s < 0)
3636                 s = 0;
3637         return s;
3638 }
3639
3640 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3641 {
3642         return (++index == n_bd) ? 0 : index;
3643 }
3644
3645 /**
3646  * Initialize common DMA queue structure
3647  *
3648  * @param q                queue to init
3649  * @param count            Number of BD's to allocate. Should be power of 2
3650  * @param read_register    Address for 'read' register
3651  *                         (not offset within BAR, full address)
3652  * @param write_register   Address for 'write' register
3653  *                         (not offset within BAR, full address)
3654  * @param base_register    Address for 'base' register
3655  *                         (not offset within BAR, full address)
3656  * @param size             Address for 'size' register
3657  *                         (not offset within BAR, full address)
3658  */
3659 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3660                            int count, u32 read, u32 write, u32 base, u32 size)
3661 {
3662         q->n_bd = count;
3663
3664         q->low_mark = q->n_bd / 4;
3665         if (q->low_mark < 4)
3666                 q->low_mark = 4;
3667
3668         q->high_mark = q->n_bd / 8;
3669         if (q->high_mark < 2)
3670                 q->high_mark = 2;
3671
3672         q->first_empty = q->last_used = 0;
3673         q->reg_r = read;
3674         q->reg_w = write;
3675
3676         ipw_write32(priv, base, q->dma_addr);
3677         ipw_write32(priv, size, count);
3678         ipw_write32(priv, read, 0);
3679         ipw_write32(priv, write, 0);
3680
3681         _ipw_read32(priv, 0x90);
3682 }
3683
3684 static int ipw_queue_tx_init(struct ipw_priv *priv,
3685                              struct clx2_tx_queue *q,
3686                              int count, u32 read, u32 write, u32 base, u32 size)
3687 {
3688         struct pci_dev *dev = priv->pci_dev;
3689
3690         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3691         if (!q->txb) {
3692                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3693                 return -ENOMEM;
3694         }
3695
3696         q->bd =
3697             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3698         if (!q->bd) {
3699                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3700                           sizeof(q->bd[0]) * count);
3701                 kfree(q->txb);
3702                 q->txb = NULL;
3703                 return -ENOMEM;
3704         }
3705
3706         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3707         return 0;
3708 }
3709
3710 /**
3711  * Free one TFD, those at index [txq->q.last_used].
3712  * Do NOT advance any indexes
3713  *
3714  * @param dev
3715  * @param txq
3716  */
3717 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3718                                   struct clx2_tx_queue *txq)
3719 {
3720         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3721         struct pci_dev *dev = priv->pci_dev;
3722         int i;
3723
3724         /* classify bd */
3725         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3726                 /* nothing to cleanup after for host commands */
3727                 return;
3728
3729         /* sanity check */
3730         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3731                 IPW_ERROR("Too many chunks: %i\n",
3732                           le32_to_cpu(bd->u.data.num_chunks));
3733                 /** @todo issue fatal error, it is quite serious situation */
3734                 return;
3735         }
3736
3737         /* unmap chunks if any */
3738         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3739                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3740                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3741                                  PCI_DMA_TODEVICE);
3742                 if (txq->txb[txq->q.last_used]) {
3743                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3744                         txq->txb[txq->q.last_used] = NULL;
3745                 }
3746         }
3747 }
3748
3749 /**
3750  * Deallocate DMA queue.
3751  *
3752  * Empty queue by removing and destroying all BD's.
3753  * Free all buffers.
3754  *
3755  * @param dev
3756  * @param q
3757  */
3758 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3759 {
3760         struct clx2_queue *q = &txq->q;
3761         struct pci_dev *dev = priv->pci_dev;
3762
3763         if (q->n_bd == 0)
3764                 return;
3765
3766         /* first, empty all BD's */
3767         for (; q->first_empty != q->last_used;
3768              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3769                 ipw_queue_tx_free_tfd(priv, txq);
3770         }
3771
3772         /* free buffers belonging to queue itself */
3773         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3774                             q->dma_addr);
3775         kfree(txq->txb);
3776
3777         /* 0 fill whole structure */
3778         memset(txq, 0, sizeof(*txq));
3779 }
3780
3781 /**
3782  * Destroy all DMA queues and structures
3783  *
3784  * @param priv
3785  */
3786 static void ipw_tx_queue_free(struct ipw_priv *priv)
3787 {
3788         /* Tx CMD queue */
3789         ipw_queue_tx_free(priv, &priv->txq_cmd);
3790
3791         /* Tx queues */
3792         ipw_queue_tx_free(priv, &priv->txq[0]);
3793         ipw_queue_tx_free(priv, &priv->txq[1]);
3794         ipw_queue_tx_free(priv, &priv->txq[2]);
3795         ipw_queue_tx_free(priv, &priv->txq[3]);
3796 }
3797
3798 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3799 {
3800         /* First 3 bytes are manufacturer */
3801         bssid[0] = priv->mac_addr[0];
3802         bssid[1] = priv->mac_addr[1];
3803         bssid[2] = priv->mac_addr[2];
3804
3805         /* Last bytes are random */
3806         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3807
3808         bssid[0] &= 0xfe;       /* clear multicast bit */
3809         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3810 }
3811
3812 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3813 {
3814         struct ipw_station_entry entry;
3815         int i;
3816         DECLARE_MAC_BUF(mac);
3817
3818         for (i = 0; i < priv->num_stations; i++) {
3819                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3820                         /* Another node is active in network */
3821                         priv->missed_adhoc_beacons = 0;
3822                         if (!(priv->config & CFG_STATIC_CHANNEL))
3823                                 /* when other nodes drop out, we drop out */
3824                                 priv->config &= ~CFG_ADHOC_PERSIST;
3825
3826                         return i;
3827                 }
3828         }
3829
3830         if (i == MAX_STATIONS)
3831                 return IPW_INVALID_STATION;
3832
3833         IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3834
3835         entry.reserved = 0;
3836         entry.support_mode = 0;
3837         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3838         memcpy(priv->stations[i], bssid, ETH_ALEN);
3839         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3840                          &entry, sizeof(entry));
3841         priv->num_stations++;
3842
3843         return i;
3844 }
3845
3846 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3847 {
3848         int i;
3849
3850         for (i = 0; i < priv->num_stations; i++)
3851                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3852                         return i;
3853
3854         return IPW_INVALID_STATION;
3855 }
3856
3857 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3858 {
3859         int err;
3860         DECLARE_MAC_BUF(mac);
3861
3862         if (priv->status & STATUS_ASSOCIATING) {
3863                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3864                 queue_work(priv->workqueue, &priv->disassociate);
3865                 return;
3866         }
3867
3868         if (!(priv->status & STATUS_ASSOCIATED)) {
3869                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3870                 return;
3871         }
3872
3873         IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3874                         "on channel %d.\n",
3875                         print_mac(mac, priv->assoc_request.bssid),
3876                         priv->assoc_request.channel);
3877
3878         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3879         priv->status |= STATUS_DISASSOCIATING;
3880
3881         if (quiet)
3882                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3883         else
3884                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3885
3886         err = ipw_send_associate(priv, &priv->assoc_request);
3887         if (err) {
3888                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3889                              "failed.\n");
3890                 return;
3891         }
3892
3893 }
3894
3895 static int ipw_disassociate(void *data)
3896 {
3897         struct ipw_priv *priv = data;
3898         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3899                 return 0;
3900         ipw_send_disassociate(data, 0);
3901         return 1;
3902 }
3903
3904 static void ipw_bg_disassociate(struct work_struct *work)
3905 {
3906         struct ipw_priv *priv =
3907                 container_of(work, struct ipw_priv, disassociate);
3908         mutex_lock(&priv->mutex);
3909         ipw_disassociate(priv);
3910         mutex_unlock(&priv->mutex);
3911 }
3912
3913 static void ipw_system_config(struct work_struct *work)
3914 {
3915         struct ipw_priv *priv =
3916                 container_of(work, struct ipw_priv, system_config);
3917
3918 #ifdef CONFIG_IPW2200_PROMISCUOUS
3919         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3920                 priv->sys_config.accept_all_data_frames = 1;
3921                 priv->sys_config.accept_non_directed_frames = 1;
3922                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3923                 priv->sys_config.accept_all_mgmt_frames = 1;
3924         }
3925 #endif
3926
3927         ipw_send_system_config(priv);
3928 }
3929
3930 struct ipw_status_code {
3931         u16 status;
3932         const char *reason;
3933 };
3934
3935 static const struct ipw_status_code ipw_status_codes[] = {
3936         {0x00, "Successful"},
3937         {0x01, "Unspecified failure"},
3938         {0x0A, "Cannot support all requested capabilities in the "
3939          "Capability information field"},
3940         {0x0B, "Reassociation denied due to inability to confirm that "
3941          "association exists"},
3942         {0x0C, "Association denied due to reason outside the scope of this "
3943          "standard"},
3944         {0x0D,
3945          "Responding station does not support the specified authentication "
3946          "algorithm"},
3947         {0x0E,
3948          "Received an Authentication frame with authentication sequence "
3949          "transaction sequence number out of expected sequence"},
3950         {0x0F, "Authentication rejected because of challenge failure"},
3951         {0x10, "Authentication rejected due to timeout waiting for next "
3952          "frame in sequence"},
3953         {0x11, "Association denied because AP is unable to handle additional "
3954          "associated stations"},
3955         {0x12,
3956          "Association denied due to requesting station not supporting all "
3957          "of the datarates in the BSSBasicServiceSet Parameter"},
3958         {0x13,
3959          "Association denied due to requesting station not supporting "
3960          "short preamble operation"},
3961         {0x14,
3962          "Association denied due to requesting station not supporting "
3963          "PBCC encoding"},
3964         {0x15,
3965          "Association denied due to requesting station not supporting "
3966          "channel agility"},
3967         {0x19,
3968          "Association denied due to requesting station not supporting "
3969          "short slot operation"},
3970         {0x1A,
3971          "Association denied due to requesting station not supporting "
3972          "DSSS-OFDM operation"},
3973         {0x28, "Invalid Information Element"},
3974         {0x29, "Group Cipher is not valid"},
3975         {0x2A, "Pairwise Cipher is not valid"},
3976         {0x2B, "AKMP is not valid"},
3977         {0x2C, "Unsupported RSN IE version"},
3978         {0x2D, "Invalid RSN IE Capabilities"},
3979         {0x2E, "Cipher suite is rejected per security policy"},
3980 };
3981
3982 static const char *ipw_get_status_code(u16 status)
3983 {
3984         int i;
3985         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3986                 if (ipw_status_codes[i].status == (status & 0xff))
3987                         return ipw_status_codes[i].reason;
3988         return "Unknown status value.";
3989 }
3990
3991 static void inline average_init(struct average *avg)
3992 {
3993         memset(avg, 0, sizeof(*avg));
3994 }
3995
3996 #define DEPTH_RSSI 8
3997 #define DEPTH_NOISE 16
3998 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3999 {
4000         return ((depth-1)*prev_avg +  val)/depth;
4001 }
4002
4003 static void average_add(struct average *avg, s16 val)
4004 {
4005         avg->sum -= avg->entries[avg->pos];
4006         avg->sum += val;
4007         avg->entries[avg->pos++] = val;
4008         if (unlikely(avg->pos == AVG_ENTRIES)) {
4009                 avg->init = 1;
4010                 avg->pos = 0;
4011         }
4012 }
4013
4014 static s16 average_value(struct average *avg)
4015 {
4016         if (!unlikely(avg->init)) {
4017                 if (avg->pos)
4018                         return avg->sum / avg->pos;
4019                 return 0;
4020         }
4021
4022         return avg->sum / AVG_ENTRIES;
4023 }
4024
4025 static void ipw_reset_stats(struct ipw_priv *priv)
4026 {
4027         u32 len = sizeof(u32);
4028
4029         priv->quality = 0;
4030
4031         average_init(&priv->average_missed_beacons);
4032         priv->exp_avg_rssi = -60;
4033         priv->exp_avg_noise = -85 + 0x100;
4034
4035         priv->last_rate = 0;
4036         priv->last_missed_beacons = 0;
4037         priv->last_rx_packets = 0;
4038         priv->last_tx_packets = 0;
4039         priv->last_tx_failures = 0;
4040
4041         /* Firmware managed, reset only when NIC is restarted, so we have to
4042          * normalize on the current value */
4043         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4044                         &priv->last_rx_err, &len);
4045         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4046                         &priv->last_tx_failures, &len);
4047
4048         /* Driver managed, reset with each association */
4049         priv->missed_adhoc_beacons = 0;
4050         priv->missed_beacons = 0;
4051         priv->tx_packets = 0;
4052         priv->rx_packets = 0;
4053
4054 }
4055
4056 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4057 {
4058         u32 i = 0x80000000;
4059         u32 mask = priv->rates_mask;
4060         /* If currently associated in B mode, restrict the maximum
4061          * rate match to B rates */
4062         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4063                 mask &= IEEE80211_CCK_RATES_MASK;
4064
4065         /* TODO: Verify that the rate is supported by the current rates
4066          * list. */
4067
4068         while (i && !(mask & i))
4069                 i >>= 1;
4070         switch (i) {
4071         case IEEE80211_CCK_RATE_1MB_MASK:
4072                 return 1000000;
4073         case IEEE80211_CCK_RATE_2MB_MASK:
4074                 return 2000000;
4075         case IEEE80211_CCK_RATE_5MB_MASK:
4076                 return 5500000;
4077         case IEEE80211_OFDM_RATE_6MB_MASK:
4078                 return 6000000;
4079         case IEEE80211_OFDM_RATE_9MB_MASK:
4080                 return 9000000;
4081         case IEEE80211_CCK_RATE_11MB_MASK:
4082                 return 11000000;
4083         case IEEE80211_OFDM_RATE_12MB_MASK:
4084                 return 12000000;
4085         case IEEE80211_OFDM_RATE_18MB_MASK:
4086                 return 18000000;
4087         case IEEE80211_OFDM_RATE_24MB_MASK:
4088                 return 24000000;
4089         case IEEE80211_OFDM_RATE_36MB_MASK:
4090                 return 36000000;
4091         case IEEE80211_OFDM_RATE_48MB_MASK:
4092                 return 48000000;
4093         case IEEE80211_OFDM_RATE_54MB_MASK:
4094                 return 54000000;
4095         }
4096
4097         if (priv->ieee->mode == IEEE_B)
4098                 return 11000000;
4099         else
4100                 return 54000000;
4101 }
4102
4103 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4104 {
4105         u32 rate, len = sizeof(rate);
4106         int err;
4107
4108         if (!(priv->status & STATUS_ASSOCIATED))
4109                 return 0;
4110
4111         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4112                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4113                                       &len);
4114                 if (err) {
4115                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4116                         return 0;
4117                 }
4118         } else
4119                 return ipw_get_max_rate(priv);
4120
4121         switch (rate) {
4122         case IPW_TX_RATE_1MB:
4123                 return 1000000;
4124         case IPW_TX_RATE_2MB:
4125                 return 2000000;
4126         case IPW_TX_RATE_5MB:
4127                 return 5500000;
4128         case IPW_TX_RATE_6MB:
4129                 return 6000000;
4130         case IPW_TX_RATE_9MB:
4131                 return 9000000;
4132         case IPW_TX_RATE_11MB:
4133                 return 11000000;
4134         case IPW_TX_RATE_12MB:
4135                 return 12000000;
4136         case IPW_TX_RATE_18MB:
4137                 return 18000000;
4138         case IPW_TX_RATE_24MB:
4139                 return 24000000;
4140         case IPW_TX_RATE_36MB:
4141                 return 36000000;
4142         case IPW_TX_RATE_48MB:
4143                 return 48000000;
4144         case IPW_TX_RATE_54MB:
4145                 return 54000000;
4146         }
4147
4148         return 0;
4149 }
4150
4151 #define IPW_STATS_INTERVAL (2 * HZ)
4152 static void ipw_gather_stats(struct ipw_priv *priv)
4153 {
4154         u32 rx_err, rx_err_delta, rx_packets_delta;
4155         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4156         u32 missed_beacons_percent, missed_beacons_delta;
4157         u32 quality = 0;
4158         u32 len = sizeof(u32);
4159         s16 rssi;
4160         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4161             rate_quality;
4162         u32 max_rate;
4163
4164         if (!(priv->status & STATUS_ASSOCIATED)) {
4165                 priv->quality = 0;
4166                 return;
4167         }
4168
4169         /* Update the statistics */
4170         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4171                         &priv->missed_beacons, &len);
4172         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4173         priv->last_missed_beacons = priv->missed_beacons;
4174         if (priv->assoc_request.beacon_interval) {
4175                 missed_beacons_percent = missed_beacons_delta *
4176                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4177                     (IPW_STATS_INTERVAL * 10);
4178         } else {
4179                 missed_beacons_percent = 0;
4180         }
4181         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4182
4183         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4184         rx_err_delta = rx_err - priv->last_rx_err;
4185         priv->last_rx_err = rx_err;
4186
4187         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4188         tx_failures_delta = tx_failures - priv->last_tx_failures;
4189         priv->last_tx_failures = tx_failures;
4190
4191         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4192         priv->last_rx_packets = priv->rx_packets;
4193
4194         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4195         priv->last_tx_packets = priv->tx_packets;
4196
4197         /* Calculate quality based on the following:
4198          *
4199          * Missed beacon: 100% = 0, 0% = 70% missed
4200          * Rate: 60% = 1Mbs, 100% = Max
4201          * Rx and Tx errors represent a straight % of total Rx/Tx
4202          * RSSI: 100% = > -50,  0% = < -80
4203          * Rx errors: 100% = 0, 0% = 50% missed
4204          *
4205          * The lowest computed quality is used.
4206          *
4207          */
4208 #define BEACON_THRESHOLD 5
4209         beacon_quality = 100 - missed_beacons_percent;
4210         if (beacon_quality < BEACON_THRESHOLD)
4211                 beacon_quality = 0;
4212         else
4213                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4214                     (100 - BEACON_THRESHOLD);
4215         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4216                         beacon_quality, missed_beacons_percent);
4217
4218         priv->last_rate = ipw_get_current_rate(priv);
4219         max_rate = ipw_get_max_rate(priv);
4220         rate_quality = priv->last_rate * 40 / max_rate + 60;
4221         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4222                         rate_quality, priv->last_rate / 1000000);
4223
4224         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4225                 rx_quality = 100 - (rx_err_delta * 100) /
4226                     (rx_packets_delta + rx_err_delta);
4227         else
4228                 rx_quality = 100;
4229         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4230                         rx_quality, rx_err_delta, rx_packets_delta);
4231
4232         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4233                 tx_quality = 100 - (tx_failures_delta * 100) /
4234                     (tx_packets_delta + tx_failures_delta);
4235         else
4236                 tx_quality = 100;
4237         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4238                         tx_quality, tx_failures_delta, tx_packets_delta);
4239
4240         rssi = priv->exp_avg_rssi;
4241         signal_quality =
4242             (100 *
4243              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4244              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4245              (priv->ieee->perfect_rssi - rssi) *
4246              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4247               62 * (priv->ieee->perfect_rssi - rssi))) /
4248             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4249              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4250         if (signal_quality > 100)
4251                 signal_quality = 100;
4252         else if (signal_quality < 1)
4253                 signal_quality = 0;
4254
4255         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4256                         signal_quality, rssi);
4257
4258         quality = min(beacon_quality,
4259                       min(rate_quality,
4260                           min(tx_quality, min(rx_quality, signal_quality))));
4261         if (quality == beacon_quality)
4262                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4263                                 quality);
4264         if (quality == rate_quality)
4265                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4266                                 quality);
4267         if (quality == tx_quality)
4268                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4269                                 quality);
4270         if (quality == rx_quality)
4271                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4272                                 quality);
4273         if (quality == signal_quality)
4274                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4275                                 quality);
4276
4277         priv->quality = quality;
4278
4279         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4280                            IPW_STATS_INTERVAL);
4281 }
4282
4283 static void ipw_bg_gather_stats(struct work_struct *work)
4284 {
4285         struct ipw_priv *priv =
4286                 container_of(work, struct ipw_priv, gather_stats.work);
4287         mutex_lock(&priv->mutex);
4288         ipw_gather_stats(priv);
4289         mutex_unlock(&priv->mutex);
4290 }
4291
4292 /* Missed beacon behavior:
4293  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4294  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4295  * Above disassociate threshold, give up and stop scanning.
4296  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4297 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4298                                             int missed_count)
4299 {
4300         priv->notif_missed_beacons = missed_count;
4301
4302         if (missed_count > priv->disassociate_threshold &&
4303             priv->status & STATUS_ASSOCIATED) {
4304                 /* If associated and we've hit the missed
4305                  * beacon threshold, disassociate, turn
4306                  * off roaming, and abort any active scans */
4307                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4308                           IPW_DL_STATE | IPW_DL_ASSOC,
4309                           "Missed beacon: %d - disassociate\n", missed_count);
4310                 priv->status &= ~STATUS_ROAMING;
4311                 if (priv->status & STATUS_SCANNING) {
4312                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4313                                   IPW_DL_STATE,
4314                                   "Aborting scan with missed beacon.\n");
4315                         queue_work(priv->workqueue, &priv->abort_scan);
4316                 }
4317
4318                 queue_work(priv->workqueue, &priv->disassociate);
4319                 return;
4320         }
4321
4322         if (priv->status & STATUS_ROAMING) {
4323                 /* If we are currently roaming, then just
4324                  * print a debug statement... */
4325                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4326                           "Missed beacon: %d - roam in progress\n",
4327                           missed_count);
4328                 return;
4329         }
4330
4331         if (roaming &&
4332             (missed_count > priv->roaming_threshold &&
4333              missed_count <= priv->disassociate_threshold)) {
4334                 /* If we are not already roaming, set the ROAM
4335                  * bit in the status and kick off a scan.
4336                  * This can happen several times before we reach
4337                  * disassociate_threshold. */
4338                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4339                           "Missed beacon: %d - initiate "
4340                           "roaming\n", missed_count);
4341                 if (!(priv->status & STATUS_ROAMING)) {
4342                         priv->status |= STATUS_ROAMING;
4343                         if (!(priv->status & STATUS_SCANNING))
4344                                 queue_delayed_work(priv->workqueue,
4345                                                    &priv->request_scan, 0);
4346                 }
4347                 return;
4348         }
4349
4350         if (priv->status & STATUS_SCANNING) {
4351                 /* Stop scan to keep fw from getting
4352                  * stuck (only if we aren't roaming --
4353                  * otherwise we'll never scan more than 2 or 3
4354                  * channels..) */
4355                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4356                           "Aborting scan with missed beacon.\n");
4357                 queue_work(priv->workqueue, &priv->abort_scan);
4358         }
4359
4360         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4361 }
4362
4363 static void ipw_scan_event(struct work_struct *work)
4364 {
4365         union iwreq_data wrqu;
4366
4367         struct ipw_priv *priv =
4368                 container_of(work, struct ipw_priv, scan_event.work);
4369
4370         wrqu.data.length = 0;
4371         wrqu.data.flags = 0;
4372         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4373 }
4374
4375 static void handle_scan_event(struct ipw_priv *priv)
4376 {
4377         /* Only userspace-requested scan completion events go out immediately */
4378         if (!priv->user_requested_scan) {
4379                 if (!delayed_work_pending(&priv->scan_event))
4380                         queue_delayed_work(priv->workqueue, &priv->scan_event,
4381                                          round_jiffies_relative(msecs_to_jiffies(4000)));
4382         } else {
4383                 union iwreq_data wrqu;
4384
4385                 priv->user_requested_scan = 0;
4386                 cancel_delayed_work(&priv->scan_event);
4387
4388                 wrqu.data.length = 0;
4389                 wrqu.data.flags = 0;
4390                 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4391         }
4392 }
4393
4394 /**
4395  * Handle host notification packet.
4396  * Called from interrupt routine
4397  */
4398 static void ipw_rx_notification(struct ipw_priv *priv,
4399                                        struct ipw_rx_notification *notif)
4400 {
4401         DECLARE_MAC_BUF(mac);
4402         u16 size = le16_to_cpu(notif->size);
4403         notif->size = le16_to_cpu(notif->size);
4404
4405         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4406
4407         switch (notif->subtype) {
4408         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4409                         struct notif_association *assoc = &notif->u.assoc;
4410
4411                         switch (assoc->state) {
4412                         case CMAS_ASSOCIATED:{
4413                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4414                                                   IPW_DL_ASSOC,
4415                                                   "associated: '%s' %s"
4416                                                   " \n",
4417                                                   escape_essid(priv->essid,
4418                                                                priv->essid_len),
4419                                                   print_mac(mac, priv->bssid));
4420
4421                                         switch (priv->ieee->iw_mode) {
4422                                         case IW_MODE_INFRA:
4423                                                 memcpy(priv->ieee->bssid,
4424                                                        priv->bssid, ETH_ALEN);
4425                                                 break;
4426
4427                                         case IW_MODE_ADHOC:
4428                                                 memcpy(priv->ieee->bssid,
4429                                                        priv->bssid, ETH_ALEN);
4430
4431                                                 /* clear out the station table */
4432                                                 priv->num_stations = 0;
4433
4434                                                 IPW_DEBUG_ASSOC
4435                                                     ("queueing adhoc check\n");
4436                                                 queue_delayed_work(priv->
4437                                                                    workqueue,
4438                                                                    &priv->
4439                                                                    adhoc_check,
4440                                                                    le16_to_cpu(priv->
4441                                                                    assoc_request.
4442                                                                    beacon_interval));
4443                                                 break;
4444                                         }
4445
4446                                         priv->status &= ~STATUS_ASSOCIATING;
4447                                         priv->status |= STATUS_ASSOCIATED;
4448                                         queue_work(priv->workqueue,
4449                                                    &priv->system_config);
4450
4451 #ifdef CONFIG_IPW2200_QOS
4452 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4453                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4454                                         if ((priv->status & STATUS_AUTH) &&
4455                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4456                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4457                                                 if ((sizeof
4458                                                      (struct
4459                                                       ieee80211_assoc_response)
4460                                                      <= size)
4461                                                     && (size <= 2314)) {
4462                                                         struct
4463                                                         ieee80211_rx_stats
4464                                                             stats = {
4465                                                                 .len = size - 1,
4466                                                         };
4467
4468                                                         IPW_DEBUG_QOS
4469                                                             ("QoS Associate "
4470                                                              "size %d\n", size);
4471                                                         ieee80211_rx_mgt(priv->
4472                                                                          ieee,
4473                                                                          (struct
4474                                                                           ieee80211_hdr_4addr
4475                                                                           *)
4476                                                                          &notif->u.raw, &stats);
4477                                                 }
4478                                         }
4479 #endif
4480
4481                                         schedule_work(&priv->link_up);
4482
4483                                         break;
4484                                 }
4485
4486                         case CMAS_AUTHENTICATED:{
4487                                         if (priv->
4488                                             status & (STATUS_ASSOCIATED |
4489                                                       STATUS_AUTH)) {
4490                                                 struct notif_authenticate *auth
4491                                                     = &notif->u.auth;
4492                                                 IPW_DEBUG(IPW_DL_NOTIF |
4493                                                           IPW_DL_STATE |
4494                                                           IPW_DL_ASSOC,
4495                                                           "deauthenticated: '%s' "
4496                                                           "%s"
4497                                                           ": (0x%04X) - %s \n",
4498                                                           escape_essid(priv->
4499                                                                        essid,
4500                                                                        priv->
4501                                                                        essid_len),
4502                                                           print_mac(mac, priv->bssid),
4503                                                           le16_to_cpu(auth->status),
4504                                                           ipw_get_status_code
4505                                                           (le16_to_cpu
4506                                                            (auth->status)));
4507
4508                                                 priv->status &=
4509                                                     ~(STATUS_ASSOCIATING |
4510                                                       STATUS_AUTH |
4511                                                       STATUS_ASSOCIATED);
4512
4513                                                 schedule_work(&priv->link_down);
4514                                                 break;
4515                                         }
4516
4517                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4518                                                   IPW_DL_ASSOC,
4519                                                   "authenticated: '%s' %s"
4520                                                   "\n",
4521                                                   escape_essid(priv->essid,
4522                                                                priv->essid_len),
4523                                                   print_mac(mac, priv->bssid));
4524                                         break;
4525                                 }
4526
4527                         case CMAS_INIT:{
4528                                         if (priv->status & STATUS_AUTH) {
4529                                                 struct
4530                                                     ieee80211_assoc_response
4531                                                 *resp;
4532                                                 resp =
4533                                                     (struct
4534                                                      ieee80211_assoc_response
4535                                                      *)&notif->u.raw;
4536                                                 IPW_DEBUG(IPW_DL_NOTIF |
4537                                                           IPW_DL_STATE |
4538                                                           IPW_DL_ASSOC,
4539                                                           "association failed (0x%04X): %s\n",
4540                                                           le16_to_cpu(resp->status),
4541                                                           ipw_get_status_code
4542                                                           (le16_to_cpu
4543                                                            (resp->status)));
4544                                         }
4545
4546                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547                                                   IPW_DL_ASSOC,
4548                                                   "disassociated: '%s' %s"
4549                                                   " \n",
4550                                                   escape_essid(priv->essid,
4551                                                                priv->essid_len),
4552                                                   print_mac(mac, priv->bssid));
4553
4554                                         priv->status &=
4555                                             ~(STATUS_DISASSOCIATING |
4556                                               STATUS_ASSOCIATING |
4557                                               STATUS_ASSOCIATED | STATUS_AUTH);
4558                                         if (priv->assoc_network
4559                                             && (priv->assoc_network->
4560                                                 capability &
4561                                                 WLAN_CAPABILITY_IBSS))
4562                                                 ipw_remove_current_network
4563                                                     (priv);
4564
4565                                         schedule_work(&priv->link_down);
4566
4567                                         break;
4568                                 }
4569
4570                         case CMAS_RX_ASSOC_RESP:
4571                                 break;
4572
4573                         default:
4574                                 IPW_ERROR("assoc: unknown (%d)\n",
4575                                           assoc->state);
4576                                 break;
4577                         }
4578
4579                         break;
4580                 }
4581
4582         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4583                         struct notif_authenticate *auth = &notif->u.auth;
4584                         switch (auth->state) {
4585                         case CMAS_AUTHENTICATED:
4586                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4587                                           "authenticated: '%s' %s \n",
4588                                           escape_essid(priv->essid,
4589                                                        priv->essid_len),
4590                                           print_mac(mac, priv->bssid));
4591                                 priv->status |= STATUS_AUTH;
4592                                 break;
4593
4594                         case CMAS_INIT:
4595                                 if (priv->status & STATUS_AUTH) {
4596                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4597                                                   IPW_DL_ASSOC,
4598                                                   "authentication failed (0x%04X): %s\n",
4599                                                   le16_to_cpu(auth->status),
4600                                                   ipw_get_status_code(le16_to_cpu
4601                                                                       (auth->
4602                                                                        status)));
4603                                 }
4604                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605                                           IPW_DL_ASSOC,
4606                                           "deauthenticated: '%s' %s\n",
4607                                           escape_essid(priv->essid,
4608                                                        priv->essid_len),
4609                                           print_mac(mac, priv->bssid));
4610
4611                                 priv->status &= ~(STATUS_ASSOCIATING |
4612                                                   STATUS_AUTH |
4613                                                   STATUS_ASSOCIATED);
4614
4615                                 schedule_work(&priv->link_down);
4616                                 break;
4617
4618                         case CMAS_TX_AUTH_SEQ_1:
4619                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4620                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4621                                 break;
4622                         case CMAS_RX_AUTH_SEQ_2:
4623                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4624                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4625                                 break;
4626                         case CMAS_AUTH_SEQ_1_PASS:
4627                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4629                                 break;
4630                         case CMAS_AUTH_SEQ_1_FAIL:
4631                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4633                                 break;
4634                         case CMAS_TX_AUTH_SEQ_3:
4635                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4637                                 break;
4638                         case CMAS_RX_AUTH_SEQ_4:
4639                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4641                                 break;
4642                         case CMAS_AUTH_SEQ_2_PASS:
4643                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4645                                 break;
4646                         case CMAS_AUTH_SEQ_2_FAIL:
4647                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4648                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4649                                 break;
4650                         case CMAS_TX_ASSOC:
4651                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4653                                 break;
4654                         case CMAS_RX_ASSOC_RESP:
4655                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4657
4658                                 break;
4659                         case CMAS_ASSOCIATED:
4660                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4662                                 break;
4663                         default:
4664                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4665                                                 auth->state);
4666                                 break;
4667                         }
4668                         break;
4669                 }
4670
4671         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4672                         struct notif_channel_result *x =
4673                             &notif->u.channel_result;
4674
4675                         if (size == sizeof(*x)) {
4676                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4677                                                x->channel_num);
4678                         } else {
4679                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4680                                                "(should be %zd)\n",
4681                                                size, sizeof(*x));
4682                         }
4683                         break;
4684                 }
4685
4686         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4687                         struct notif_scan_complete *x = &notif->u.scan_complete;
4688                         if (size == sizeof(*x)) {
4689                                 IPW_DEBUG_SCAN
4690                                     ("Scan completed: type %d, %d channels, "
4691                                      "%d status\n", x->scan_type,
4692                                      x->num_channels, x->status);
4693                         } else {
4694                                 IPW_ERROR("Scan completed of wrong size %d "
4695                                           "(should be %zd)\n",
4696                                           size, sizeof(*x));
4697                         }
4698
4699                         priv->status &=
4700                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4701
4702                         wake_up_interruptible(&priv->wait_state);
4703                         cancel_delayed_work(&priv->scan_check);
4704
4705                         if (priv->status & STATUS_EXIT_PENDING)
4706                                 break;
4707
4708                         priv->ieee->scans++;
4709
4710 #ifdef CONFIG_IPW2200_MONITOR
4711                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4712                                 priv->status |= STATUS_SCAN_FORCED;
4713                                 queue_delayed_work(priv->workqueue,
4714                                                    &priv->request_scan, 0);
4715                                 break;
4716                         }
4717                         priv->status &= ~STATUS_SCAN_FORCED;
4718 #endif                          /* CONFIG_IPW2200_MONITOR */
4719
4720                         /* Do queued direct scans first */
4721                         if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4722                                 queue_delayed_work(priv->workqueue,
4723                                                    &priv->request_direct_scan, 0);
4724                         }
4725
4726                         if (!(priv->status & (STATUS_ASSOCIATED |
4727                                               STATUS_ASSOCIATING |
4728                                               STATUS_ROAMING |
4729                                               STATUS_DISASSOCIATING)))
4730                                 queue_work(priv->workqueue, &priv->associate);
4731                         else if (priv->status & STATUS_ROAMING) {
4732                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4733                                         /* If a scan completed and we are in roam mode, then
4734                                          * the scan that completed was the one requested as a
4735                                          * result of entering roam... so, schedule the
4736                                          * roam work */
4737                                         queue_work(priv->workqueue,
4738                                                    &priv->roam);
4739                                 else
4740                                         /* Don't schedule if we aborted the scan */
4741                                         priv->status &= ~STATUS_ROAMING;
4742                         } else if (priv->status & STATUS_SCAN_PENDING)
4743                                 queue_delayed_work(priv->workqueue,
4744                                                    &priv->request_scan, 0);
4745                         else if (priv->config & CFG_BACKGROUND_SCAN
4746                                  && priv->status & STATUS_ASSOCIATED)
4747                                 queue_delayed_work(priv->workqueue,
4748                                                    &priv->request_scan,
4749                                                    round_jiffies_relative(HZ));
4750
4751                         /* Send an empty event to user space.
4752                          * We don't send the received data on the event because
4753                          * it would require us to do complex transcoding, and
4754                          * we want to minimise the work done in the irq handler
4755                          * Use a request to extract the data.
4756                          * Also, we generate this even for any scan, regardless
4757                          * on how the scan was initiated. User space can just
4758                          * sync on periodic scan to get fresh data...
4759                          * Jean II */
4760                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4761                                 handle_scan_event(priv);
4762                         break;
4763                 }
4764
4765         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4766                         struct notif_frag_length *x = &notif->u.frag_len;
4767
4768                         if (size == sizeof(*x))
4769                                 IPW_ERROR("Frag length: %d\n",
4770                                           le16_to_cpu(x->frag_length));
4771                         else
4772                                 IPW_ERROR("Frag length of wrong size %d "
4773                                           "(should be %zd)\n",
4774                                           size, sizeof(*x));
4775                         break;
4776                 }
4777
4778         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4779                         struct notif_link_deterioration *x =
4780                             &notif->u.link_deterioration;
4781
4782                         if (size == sizeof(*x)) {
4783                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4784                                         "link deterioration: type %d, cnt %d\n",
4785                                         x->silence_notification_type,
4786                                         x->silence_count);
4787                                 memcpy(&priv->last_link_deterioration, x,
4788                                        sizeof(*x));
4789                         } else {
4790                                 IPW_ERROR("Link Deterioration of wrong size %d "
4791                                           "(should be %zd)\n",
4792                                           size, sizeof(*x));
4793                         }
4794                         break;
4795                 }
4796
4797         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4798                         IPW_ERROR("Dino config\n");
4799                         if (priv->hcmd
4800                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4801                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4802
4803                         break;
4804                 }
4805
4806         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4807                         struct notif_beacon_state *x = &notif->u.beacon_state;
4808                         if (size != sizeof(*x)) {
4809                                 IPW_ERROR
4810                                     ("Beacon state of wrong size %d (should "
4811                                      "be %zd)\n", size, sizeof(*x));
4812                                 break;
4813                         }
4814
4815                         if (le32_to_cpu(x->state) ==
4816                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4817                                 ipw_handle_missed_beacon(priv,
4818                                                          le32_to_cpu(x->
4819                                                                      number));
4820
4821                         break;
4822                 }
4823
4824         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4825                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4826                         if (size == sizeof(*x)) {
4827                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4828                                           "0x%02x station %d\n",
4829                                           x->key_state, x->security_type,
4830                                           x->station_index);
4831                                 break;
4832                         }
4833
4834                         IPW_ERROR
4835                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4836                              size, sizeof(*x));
4837                         break;
4838                 }
4839
4840         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4841                         struct notif_calibration *x = &notif->u.calibration;
4842
4843                         if (size == sizeof(*x)) {
4844                                 memcpy(&priv->calib, x, sizeof(*x));
4845                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4846                                 break;
4847                         }
4848
4849                         IPW_ERROR
4850                             ("Calibration of wrong size %d (should be %zd)\n",
4851                              size, sizeof(*x));
4852                         break;
4853                 }
4854
4855         case HOST_NOTIFICATION_NOISE_STATS:{
4856                         if (size == sizeof(u32)) {
4857                                 priv->exp_avg_noise =
4858                                     exponential_average(priv->exp_avg_noise,
4859                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4860                                     DEPTH_NOISE);
4861                                 break;
4862                         }
4863
4864                         IPW_ERROR
4865                             ("Noise stat is wrong size %d (should be %zd)\n",
4866                              size, sizeof(u32));
4867                         break;
4868                 }
4869
4870         default:
4871                 IPW_DEBUG_NOTIF("Unknown notification: "
4872                                 "subtype=%d,flags=0x%2x,size=%d\n",
4873                                 notif->subtype, notif->flags, size);
4874         }
4875 }
4876
4877 /**
4878  * Destroys all DMA structures and initialise them again
4879  *
4880  * @param priv
4881  * @return error code
4882  */
4883 static int ipw_queue_reset(struct ipw_priv *priv)
4884 {
4885         int rc = 0;
4886         /** @todo customize queue sizes */
4887         int nTx = 64, nTxCmd = 8;
4888         ipw_tx_queue_free(priv);
4889         /* Tx CMD queue */
4890         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4891                                IPW_TX_CMD_QUEUE_READ_INDEX,
4892                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4893                                IPW_TX_CMD_QUEUE_BD_BASE,
4894                                IPW_TX_CMD_QUEUE_BD_SIZE);
4895         if (rc) {
4896                 IPW_ERROR("Tx Cmd queue init failed\n");
4897                 goto error;
4898         }
4899         /* Tx queue(s) */
4900         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4901                                IPW_TX_QUEUE_0_READ_INDEX,
4902                                IPW_TX_QUEUE_0_WRITE_INDEX,
4903                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4904         if (rc) {
4905                 IPW_ERROR("Tx 0 queue init failed\n");
4906                 goto error;
4907         }
4908         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4909                                IPW_TX_QUEUE_1_READ_INDEX,
4910                                IPW_TX_QUEUE_1_WRITE_INDEX,
4911                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4912         if (rc) {
4913                 IPW_ERROR("Tx 1 queue init failed\n");
4914                 goto error;
4915         }
4916         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4917                                IPW_TX_QUEUE_2_READ_INDEX,
4918                                IPW_TX_QUEUE_2_WRITE_INDEX,
4919                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4920         if (rc) {
4921                 IPW_ERROR("Tx 2 queue init failed\n");
4922                 goto error;
4923         }
4924         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4925                                IPW_TX_QUEUE_3_READ_INDEX,
4926                                IPW_TX_QUEUE_3_WRITE_INDEX,
4927                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4928         if (rc) {
4929                 IPW_ERROR("Tx 3 queue init failed\n");
4930                 goto error;
4931         }
4932         /* statistics */
4933         priv->rx_bufs_min = 0;
4934         priv->rx_pend_max = 0;
4935         return rc;
4936
4937       error:
4938         ipw_tx_queue_free(priv);
4939         return rc;
4940 }
4941
4942 /**
4943  * Reclaim Tx queue entries no more used by NIC.
4944  *
4945  * When FW advances 'R' index, all entries between old and
4946  * new 'R' index need to be reclaimed. As result, some free space
4947  * forms. If there is enough free space (> low mark), wake Tx queue.
4948  *
4949  * @note Need to protect against garbage in 'R' index
4950  * @param priv
4951  * @param txq
4952  * @param qindex
4953  * @return Number of used entries remains in the queue
4954  */
4955 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4956                                 struct clx2_tx_queue *txq, int qindex)
4957 {
4958         u32 hw_tail;
4959         int used;
4960         struct clx2_queue *q = &txq->q;
4961
4962         hw_tail = ipw_read32(priv, q->reg_r);
4963         if (hw_tail >= q->n_bd) {
4964                 IPW_ERROR
4965                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4966                      hw_tail, q->n_bd);
4967                 goto done;
4968         }
4969         for (; q->last_used != hw_tail;
4970              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4971                 ipw_queue_tx_free_tfd(priv, txq);
4972                 priv->tx_packets++;
4973         }
4974       done:
4975         if ((ipw_tx_queue_space(q) > q->low_mark) &&
4976             (qindex >= 0))
4977                 netif_wake_queue(priv->net_dev);
4978         used = q->first_empty - q->last_used;
4979         if (used < 0)
4980                 used += q->n_bd;
4981
4982         return used;
4983 }
4984
4985 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4986                              int len, int sync)
4987 {
4988         struct clx2_tx_queue *txq = &priv->txq_cmd;
4989         struct clx2_queue *q = &txq->q;
4990         struct tfd_frame *tfd;
4991
4992         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4993                 IPW_ERROR("No space for Tx\n");
4994                 return -EBUSY;
4995         }
4996
4997         tfd = &txq->bd[q->first_empty];
4998         txq->txb[q->first_empty] = NULL;
4999
5000         memset(tfd, 0, sizeof(*tfd));
5001         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5002         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5003         priv->hcmd_seq++;
5004         tfd->u.cmd.index = hcmd;
5005         tfd->u.cmd.length = len;
5006         memcpy(tfd->u.cmd.payload, buf, len);
5007         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5008         ipw_write32(priv, q->reg_w, q->first_empty);
5009         _ipw_read32(priv, 0x90);
5010
5011         return 0;
5012 }
5013
5014 /*
5015  * Rx theory of operation
5016  *
5017  * The host allocates 32 DMA target addresses and passes the host address
5018  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5019  * 0 to 31
5020  *
5021  * Rx Queue Indexes
5022  * The host/firmware share two index registers for managing the Rx buffers.
5023  *
5024  * The READ index maps to the first position that the firmware may be writing
5025  * to -- the driver can read up to (but not including) this position and get
5026  * good data.
5027  * The READ index is managed by the firmware once the card is enabled.
5028  *
5029  * The WRITE index maps to the last position the driver has read from -- the
5030  * position preceding WRITE is the last slot the firmware can place a packet.
5031  *
5032  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5033  * WRITE = READ.
5034  *
5035  * During initialization the host sets up the READ queue position to the first
5036  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5037  *
5038  * When the firmware places a packet in a buffer it will advance the READ index
5039  * and fire the RX interrupt.  The driver can then query the READ index and
5040  * process as many packets as possible, moving the WRITE index forward as it
5041  * resets the Rx queue buffers with new memory.
5042  *
5043  * The management in the driver is as follows:
5044  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5045  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5046  *   to replensish the ipw->rxq->rx_free.
5047  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5048  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5049  *   'processed' and 'read' driver indexes as well)
5050  * + A received packet is processed and handed to the kernel network stack,
5051  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5052  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5053  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5054  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5055  *   were enough free buffers and RX_STALLED is set it is cleared.
5056  *
5057  *
5058  * Driver sequence:
5059  *
5060  * ipw_rx_queue_alloc()       Allocates rx_free
5061  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5062  *                            ipw_rx_queue_restock
5063  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5064  *                            queue, updates firmware pointers, and updates
5065  *                            the WRITE index.  If insufficient rx_free buffers
5066  *                            are available, schedules ipw_rx_queue_replenish
5067  *
5068  * -- enable interrupts --
5069  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5070  *                            READ INDEX, detaching the SKB from the pool.
5071  *                            Moves the packet buffer from queue to rx_used.
5072  *                            Calls ipw_rx_queue_restock to refill any empty
5073  *                            slots.
5074  * ...
5075  *
5076  */
5077
5078 /*
5079  * If there are slots in the RX queue that  need to be restocked,
5080  * and we have free pre-allocated buffers, fill the ranks as much
5081  * as we can pulling from rx_free.
5082  *
5083  * This moves the 'write' index forward to catch up with 'processed', and
5084  * also updates the memory address in the firmware to reference the new
5085  * target buffer.
5086  */
5087 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5088 {
5089         struct ipw_rx_queue *rxq = priv->rxq;
5090         struct list_head *element;
5091         struct ipw_rx_mem_buffer *rxb;
5092         unsigned long flags;
5093         int write;
5094
5095         spin_lock_irqsave(&rxq->lock, flags);
5096         write = rxq->write;
5097         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5098                 element = rxq->rx_free.next;
5099                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5100                 list_del(element);
5101
5102                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5103                             rxb->dma_addr);
5104                 rxq->queue[rxq->write] = rxb;
5105                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5106                 rxq->free_count--;
5107         }
5108         spin_unlock_irqrestore(&rxq->lock, flags);
5109
5110         /* If the pre-allocated buffer pool is dropping low, schedule to
5111          * refill it */
5112         if (rxq->free_count <= RX_LOW_WATERMARK)
5113                 queue_work(priv->workqueue, &priv->rx_replenish);
5114
5115         /* If we've added more space for the firmware to place data, tell it */
5116         if (write != rxq->write)
5117                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5118 }
5119
5120 /*
5121  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5122  * Also restock the Rx queue via ipw_rx_queue_restock.
5123  *
5124  * This is called as a scheduled work item (except for during intialization)
5125  */
5126 static void ipw_rx_queue_replenish(void *data)
5127 {
5128         struct ipw_priv *priv = data;
5129         struct ipw_rx_queue *rxq = priv->rxq;
5130         struct list_head *element;
5131         struct ipw_rx_mem_buffer *rxb;
5132         unsigned long flags;
5133
5134         spin_lock_irqsave(&rxq->lock, flags);
5135         while (!list_empty(&rxq->rx_used)) {
5136                 element = rxq->rx_used.next;
5137                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5138                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5139                 if (!rxb->skb) {
5140                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5141                                priv->net_dev->name);
5142                         /* We don't reschedule replenish work here -- we will
5143                          * call the restock method and if it still needs
5144                          * more buffers it will schedule replenish */
5145                         break;
5146                 }
5147                 list_del(element);
5148
5149                 rxb->dma_addr =
5150                     pci_map_single(priv->pci_dev, rxb->skb->data,
5151                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5152
5153                 list_add_tail(&rxb->list, &rxq->rx_free);
5154                 rxq->free_count++;
5155         }
5156         spin_unlock_irqrestore(&rxq->lock, flags);
5157
5158         ipw_rx_queue_restock(priv);
5159 }
5160
5161 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5162 {
5163         struct ipw_priv *priv =
5164                 container_of(work, struct ipw_priv, rx_replenish);
5165         mutex_lock(&priv->mutex);
5166         ipw_rx_queue_replenish(priv);
5167         mutex_unlock(&priv->mutex);
5168 }
5169
5170 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5171  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5172  * This free routine walks the list of POOL entries and if SKB is set to
5173  * non NULL it is unmapped and freed
5174  */
5175 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5176 {
5177         int i;
5178
5179         if (!rxq)
5180                 return;
5181
5182         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5183                 if (rxq->pool[i].skb != NULL) {
5184                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5185                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5186                         dev_kfree_skb(rxq->pool[i].skb);
5187                 }
5188         }
5189
5190         kfree(rxq);
5191 }
5192
5193 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5194 {
5195         struct ipw_rx_queue *rxq;
5196         int i;
5197
5198         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5199         if (unlikely(!rxq)) {
5200                 IPW_ERROR("memory allocation failed\n");
5201                 return NULL;
5202         }
5203         spin_lock_init(&rxq->lock);
5204         INIT_LIST_HEAD(&rxq->rx_free);
5205         INIT_LIST_HEAD(&rxq->rx_used);
5206
5207         /* Fill the rx_used queue with _all_ of the Rx buffers */
5208         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5209                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5210
5211         /* Set us so that we have processed and used all buffers, but have
5212          * not restocked the Rx queue with fresh buffers */
5213         rxq->read = rxq->write = 0;
5214         rxq->free_count = 0;
5215
5216         return rxq;
5217 }
5218
5219 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5220 {
5221         rate &= ~IEEE80211_BASIC_RATE_MASK;
5222         if (ieee_mode == IEEE_A) {
5223                 switch (rate) {
5224                 case IEEE80211_OFDM_RATE_6MB:
5225                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5226                             1 : 0;
5227                 case IEEE80211_OFDM_RATE_9MB:
5228                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5229                             1 : 0;
5230                 case IEEE80211_OFDM_RATE_12MB:
5231                         return priv->
5232                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5233                 case IEEE80211_OFDM_RATE_18MB:
5234                         return priv->
5235                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5236                 case IEEE80211_OFDM_RATE_24MB:
5237                         return priv->
5238                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5239                 case IEEE80211_OFDM_RATE_36MB:
5240                         return priv->
5241                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5242                 case IEEE80211_OFDM_RATE_48MB:
5243                         return priv->
5244                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5245                 case IEEE80211_OFDM_RATE_54MB:
5246                         return priv->
5247                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5248                 default:
5249                         return 0;
5250                 }
5251         }
5252
5253         /* B and G mixed */
5254         switch (rate) {
5255         case IEEE80211_CCK_RATE_1MB:
5256                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5257         case IEEE80211_CCK_RATE_2MB:
5258                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5259         case IEEE80211_CCK_RATE_5MB:
5260                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5261         case IEEE80211_CCK_RATE_11MB:
5262                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5263         }
5264
5265         /* If we are limited to B modulations, bail at this point */
5266         if (ieee_mode == IEEE_B)
5267                 return 0;
5268
5269         /* G */
5270         switch (rate) {
5271         case IEEE80211_OFDM_RATE_6MB:
5272                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5273         case IEEE80211_OFDM_RATE_9MB:
5274                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5275         case IEEE80211_OFDM_RATE_12MB:
5276                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5277         case IEEE80211_OFDM_RATE_18MB:
5278                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5279         case IEEE80211_OFDM_RATE_24MB:
5280                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5281         case IEEE80211_OFDM_RATE_36MB:
5282                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5283         case IEEE80211_OFDM_RATE_48MB:
5284                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5285         case IEEE80211_OFDM_RATE_54MB:
5286                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5287         }
5288
5289         return 0;
5290 }
5291
5292 static int ipw_compatible_rates(struct ipw_priv *priv,
5293                                 const struct ieee80211_network *network,
5294                                 struct ipw_supported_rates *rates)
5295 {
5296         int num_rates, i;
5297
5298         memset(rates, 0, sizeof(*rates));
5299         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5300         rates->num_rates = 0;
5301         for (i = 0; i < num_rates; i++) {
5302                 if (!ipw_is_rate_in_mask(priv, network->mode,
5303                                          network->rates[i])) {
5304
5305                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5306                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5307                                                "rate %02X\n",
5308                                                network->rates[i]);
5309                                 rates->supported_rates[rates->num_rates++] =
5310                                     network->rates[i];
5311                                 continue;
5312                         }
5313
5314                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5315                                        network->rates[i], priv->rates_mask);
5316                         continue;
5317                 }
5318
5319                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5320         }
5321
5322         num_rates = min(network->rates_ex_len,
5323                         (u8) (IPW_MAX_RATES - num_rates));
5324         for (i = 0; i < num_rates; i++) {
5325                 if (!ipw_is_rate_in_mask(priv, network->mode,
5326                                          network->rates_ex[i])) {
5327                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5328                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5329                                                "rate %02X\n",
5330                                                network->rates_ex[i]);
5331                                 rates->supported_rates[rates->num_rates++] =
5332                                     network->rates[i];
5333                                 continue;
5334                         }
5335
5336                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5337                                        network->rates_ex[i], priv->rates_mask);
5338                         continue;
5339                 }
5340
5341                 rates->supported_rates[rates->num_rates++] =
5342                     network->rates_ex[i];
5343         }
5344
5345         return 1;
5346 }
5347
5348 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5349                                   const struct ipw_supported_rates *src)
5350 {
5351         u8 i;
5352         for (i = 0; i < src->num_rates; i++)
5353                 dest->supported_rates[i] = src->supported_rates[i];
5354         dest->num_rates = src->num_rates;
5355 }
5356
5357 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5358  * mask should ever be used -- right now all callers to add the scan rates are
5359  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5360 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5361                                    u8 modulation, u32 rate_mask)
5362 {
5363         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5364             IEEE80211_BASIC_RATE_MASK : 0;
5365
5366         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5367                 rates->supported_rates[rates->num_rates++] =
5368                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5369
5370         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5371                 rates->supported_rates[rates->num_rates++] =
5372                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5373
5374         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5375                 rates->supported_rates[rates->num_rates++] = basic_mask |
5376                     IEEE80211_CCK_RATE_5MB;
5377
5378         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5379                 rates->supported_rates[rates->num_rates++] = basic_mask |
5380                     IEEE80211_CCK_RATE_11MB;
5381 }
5382
5383 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5384                                     u8 modulation, u32 rate_mask)
5385 {
5386         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5387             IEEE80211_BASIC_RATE_MASK : 0;
5388
5389         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5390                 rates->supported_rates[rates->num_rates++] = basic_mask |
5391                     IEEE80211_OFDM_RATE_6MB;
5392
5393         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5394                 rates->supported_rates[rates->num_rates++] =
5395                     IEEE80211_OFDM_RATE_9MB;
5396
5397         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5398                 rates->supported_rates[rates->num_rates++] = basic_mask |
5399                     IEEE80211_OFDM_RATE_12MB;
5400
5401         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5402                 rates->supported_rates[rates->num_rates++] =
5403                     IEEE80211_OFDM_RATE_18MB;
5404
5405         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5406                 rates->supported_rates[rates->num_rates++] = basic_mask |
5407                     IEEE80211_OFDM_RATE_24MB;
5408
5409         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5410                 rates->supported_rates[rates->num_rates++] =
5411                     IEEE80211_OFDM_RATE_36MB;
5412
5413         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5414                 rates->supported_rates[rates->num_rates++] =
5415                     IEEE80211_OFDM_RATE_48MB;
5416
5417         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5418                 rates->supported_rates[rates->num_rates++] =
5419                     IEEE80211_OFDM_RATE_54MB;
5420 }
5421
5422 struct ipw_network_match {
5423         struct ieee80211_network *network;
5424         struct ipw_supported_rates rates;
5425 };
5426
5427 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5428                                   struct ipw_network_match *match,
5429                                   struct ieee80211_network *network,
5430                                   int roaming)
5431 {
5432         struct ipw_supported_rates rates;
5433         DECLARE_MAC_BUF(mac);
5434         DECLARE_MAC_BUF(mac2);
5435
5436         /* Verify that this network's capability is compatible with the
5437          * current mode (AdHoc or Infrastructure) */
5438         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5439              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5440                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5441                                 "capability mismatch.\n",
5442                                 escape_essid(network->ssid, network->ssid_len),
5443                                 print_mac(mac, network->bssid));
5444                 return 0;
5445         }
5446
5447         /* If we do not have an ESSID for this AP, we can not associate with
5448          * it */
5449         if (network->flags & NETWORK_EMPTY_ESSID) {
5450                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5451                                 "because of hidden ESSID.\n",
5452                                 escape_essid(network->ssid, network->ssid_len),
5453                                 print_mac(mac, network->bssid));
5454                 return 0;
5455         }
5456
5457         if (unlikely(roaming)) {
5458                 /* If we are roaming, then ensure check if this is a valid
5459                  * network to try and roam to */
5460                 if ((network->ssid_len != match->network->ssid_len) ||
5461                     memcmp(network->ssid, match->network->ssid,
5462                            network->ssid_len)) {
5463                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5464                                         "because of non-network ESSID.\n",
5465                                         escape_essid(network->ssid,
5466                                                      network->ssid_len),
5467                                         print_mac(mac, network->bssid));
5468                         return 0;
5469                 }
5470         } else {
5471                 /* If an ESSID has been configured then compare the broadcast
5472                  * ESSID to ours */
5473                 if ((priv->config & CFG_STATIC_ESSID) &&
5474                     ((network->ssid_len != priv->essid_len) ||
5475                      memcmp(network->ssid, priv->essid,
5476                             min(network->ssid_len, priv->essid_len)))) {
5477                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5478
5479                         strncpy(escaped,
5480                                 escape_essid(network->ssid, network->ssid_len),
5481                                 sizeof(escaped));
5482                         IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5483                                         "because of ESSID mismatch: '%s'.\n",
5484                                         escaped, print_mac(mac, network->bssid),
5485                                         escape_essid(priv->essid,
5486                                                      priv->essid_len));
5487                         return 0;
5488                 }
5489         }
5490
5491         /* If the old network rate is better than this one, don't bother
5492          * testing everything else. */
5493
5494         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496                                 "current network.\n",
5497                                 escape_essid(match->network->ssid,
5498                                              match->network->ssid_len));
5499                 return 0;
5500         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502                                 "current network.\n",
5503                                 escape_essid(match->network->ssid,
5504                                              match->network->ssid_len));
5505                 return 0;
5506         }
5507
5508         /* Now go through and see if the requested network is valid... */
5509         if (priv->ieee->scan_age != 0 &&
5510             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5512                                 "because of age: %ums.\n",
5513                                 escape_essid(network->ssid, network->ssid_len),
5514                                 print_mac(mac, network->bssid),
5515                                 jiffies_to_msecs(jiffies -
5516                                                  network->last_scanned));
5517                 return 0;
5518         }
5519
5520         if ((priv->config & CFG_STATIC_CHANNEL) &&
5521             (network->channel != priv->channel)) {
5522                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5523                                 "because of channel mismatch: %d != %d.\n",
5524                                 escape_essid(network->ssid, network->ssid_len),
5525                                 print_mac(mac, network->bssid),
5526                                 network->channel, priv->channel);
5527                 return 0;
5528         }
5529
5530         /* Verify privacy compatability */
5531         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5532             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5533                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5534                                 "because of privacy mismatch: %s != %s.\n",
5535                                 escape_essid(network->ssid, network->ssid_len),
5536                                 print_mac(mac, network->bssid),
5537                                 priv->
5538                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5539                                 network->
5540                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5541                                 "off");
5542                 return 0;
5543         }
5544
5545         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5546                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5547                                 "because of the same BSSID match: %s"
5548                                 ".\n", escape_essid(network->ssid,
5549                                                     network->ssid_len),
5550                                 print_mac(mac, network->bssid),
5551                                 print_mac(mac2, priv->bssid));
5552                 return 0;
5553         }
5554
5555         /* Filter out any incompatible freq / mode combinations */
5556         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5557                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5558                                 "because of invalid frequency/mode "
5559                                 "combination.\n",
5560                                 escape_essid(network->ssid, network->ssid_len),
5561                                 print_mac(mac, network->bssid));
5562                 return 0;
5563         }
5564
5565         /* Ensure that the rates supported by the driver are compatible with
5566          * this AP, including verification of basic rates (mandatory) */
5567         if (!ipw_compatible_rates(priv, network, &rates)) {
5568                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5569                                 "because configured rate mask excludes "
5570                                 "AP mandatory rate.\n",
5571                                 escape_essid(network->ssid, network->ssid_len),
5572                                 print_mac(mac, network->bssid));
5573                 return 0;
5574         }
5575
5576         if (rates.num_rates == 0) {
5577                 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5578                                 "because of no compatible rates.\n",
5579                                 escape_essid(network->ssid, network->ssid_len),
5580                                 print_mac(mac, network->bssid));
5581                 return 0;
5582         }
5583
5584         /* TODO: Perform any further minimal comparititive tests.  We do not
5585          * want to put too much policy logic here; intelligent scan selection
5586          * should occur within a generic IEEE 802.11 user space tool.  */
5587
5588         /* Set up 'new' AP to this network */
5589         ipw_copy_rates(&match->rates, &rates);
5590         match->network = network;
5591         IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5592                         escape_essid(network->ssid, network->ssid_len),
5593                         print_mac(mac, network->bssid));
5594
5595         return 1;
5596 }
5597
5598 static void ipw_merge_adhoc_network(struct work_struct *work)
5599 {
5600         struct ipw_priv *priv =
5601                 container_of(work, struct ipw_priv, merge_networks);
5602         struct ieee80211_network *network = NULL;
5603         struct ipw_network_match match = {
5604                 .network = priv->assoc_network
5605         };
5606
5607         if ((priv->status & STATUS_ASSOCIATED) &&
5608             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5609                 /* First pass through ROAM process -- look for a better
5610                  * network */
5611                 unsigned long flags;
5612
5613                 spin_lock_irqsave(&priv->ieee->lock, flags);
5614                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5615                         if (network != priv->assoc_network)
5616                                 ipw_find_adhoc_network(priv, &match, network,
5617                                                        1);
5618                 }
5619                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5620
5621                 if (match.network == priv->assoc_network) {
5622                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5623                                         "merge to.\n");
5624                         return;
5625                 }
5626
5627                 mutex_lock(&priv->mutex);
5628                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5629                         IPW_DEBUG_MERGE("remove network %s\n",
5630                                         escape_essid(priv->essid,
5631                                                      priv->essid_len));
5632                         ipw_remove_current_network(priv);
5633                 }
5634
5635                 ipw_disassociate(priv);
5636                 priv->assoc_network = match.network;
5637                 mutex_unlock(&priv->mutex);
5638                 return;
5639         }
5640 }
5641
5642 static int ipw_best_network(struct ipw_priv *priv,
5643                             struct ipw_network_match *match,
5644                             struct ieee80211_network *network, int roaming)
5645 {
5646         struct ipw_supported_rates rates;
5647         DECLARE_MAC_BUF(mac);
5648
5649         /* Verify that this network's capability is compatible with the
5650          * current mode (AdHoc or Infrastructure) */
5651         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5652              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5653             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5654              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5655                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5656                                 "capability mismatch.\n",
5657                                 escape_essid(network->ssid, network->ssid_len),
5658                                 print_mac(mac, network->bssid));
5659                 return 0;
5660         }
5661
5662         /* If we do not have an ESSID for this AP, we can not associate with
5663          * it */
5664         if (network->flags & NETWORK_EMPTY_ESSID) {
5665                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5666                                 "because of hidden ESSID.\n",
5667                                 escape_essid(network->ssid, network->ssid_len),
5668                                 print_mac(mac, network->bssid));
5669                 return 0;
5670         }
5671
5672         if (unlikely(roaming)) {
5673                 /* If we are roaming, then ensure check if this is a valid
5674                  * network to try and roam to */
5675                 if ((network->ssid_len != match->network->ssid_len) ||
5676                     memcmp(network->ssid, match->network->ssid,
5677                            network->ssid_len)) {
5678                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5679                                         "because of non-network ESSID.\n",
5680                                         escape_essid(network->ssid,
5681                                                      network->ssid_len),
5682                                         print_mac(mac, network->bssid));
5683                         return 0;
5684                 }
5685         } else {
5686                 /* If an ESSID has been configured then compare the broadcast
5687                  * ESSID to ours */
5688                 if ((priv->config & CFG_STATIC_ESSID) &&
5689                     ((network->ssid_len != priv->essid_len) ||
5690                      memcmp(network->ssid, priv->essid,
5691                             min(network->ssid_len, priv->essid_len)))) {
5692                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693                         strncpy(escaped,
5694                                 escape_essid(network->ssid, network->ssid_len),
5695                                 sizeof(escaped));
5696                         IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5697                                         "because of ESSID mismatch: '%s'.\n",
5698                                         escaped, print_mac(mac, network->bssid),
5699                                         escape_essid(priv->essid,
5700                                                      priv->essid_len));
5701                         return 0;
5702                 }
5703         }
5704
5705         /* If the old network rate is better than this one, don't bother
5706          * testing everything else. */
5707         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5708                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5709                 strncpy(escaped,
5710                         escape_essid(network->ssid, network->ssid_len),
5711                         sizeof(escaped));
5712                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5713                                 "'%s (%s)' has a stronger signal.\n",
5714                                 escaped, print_mac(mac, network->bssid),
5715                                 escape_essid(match->network->ssid,
5716                                              match->network->ssid_len),
5717                                 print_mac(mac, match->network->bssid));
5718                 return 0;
5719         }
5720
5721         /* If this network has already had an association attempt within the
5722          * last 3 seconds, do not try and associate again... */
5723         if (network->last_associate &&
5724             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5725                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5726                                 "because of storming (%ums since last "
5727                                 "assoc attempt).\n",
5728                                 escape_essid(network->ssid, network->ssid_len),
5729                                 print_mac(mac, network->bssid),
5730                                 jiffies_to_msecs(jiffies -
5731                                                  network->last_associate));
5732                 return 0;
5733         }
5734
5735         /* Now go through and see if the requested network is valid... */
5736         if (priv->ieee->scan_age != 0 &&
5737             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5739                                 "because of age: %ums.\n",
5740                                 escape_essid(network->ssid, network->ssid_len),
5741                                 print_mac(mac, network->bssid),
5742                                 jiffies_to_msecs(jiffies -
5743                                                  network->last_scanned));
5744                 return 0;
5745         }
5746
5747         if ((priv->config & CFG_STATIC_CHANNEL) &&
5748             (network->channel != priv->channel)) {
5749                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5750                                 "because of channel mismatch: %d != %d.\n",
5751                                 escape_essid(network->ssid, network->ssid_len),
5752                                 print_mac(mac, network->bssid),
5753                                 network->channel, priv->channel);
5754                 return 0;
5755         }
5756
5757         /* Verify privacy compatability */
5758         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5759             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5760                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5761                                 "because of privacy mismatch: %s != %s.\n",
5762                                 escape_essid(network->ssid, network->ssid_len),
5763                                 print_mac(mac, network->bssid),
5764                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5765                                 "off",
5766                                 network->capability &
5767                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5768                 return 0;
5769         }
5770
5771         if ((priv->config & CFG_STATIC_BSSID) &&
5772             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5773                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5774                                 "because of BSSID mismatch: %s.\n",
5775                                 escape_essid(network->ssid, network->ssid_len),
5776                                 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5777                 return 0;
5778         }
5779
5780         /* Filter out any incompatible freq / mode combinations */
5781         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5782                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5783                                 "because of invalid frequency/mode "
5784                                 "combination.\n",
5785                                 escape_essid(network->ssid, network->ssid_len),
5786                                 print_mac(mac, network->bssid));
5787                 return 0;
5788         }
5789
5790         /* Filter out invalid channel in current GEO */
5791         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5792                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5793                                 "because of invalid channel in current GEO\n",
5794                                 escape_essid(network->ssid, network->ssid_len),
5795                                 print_mac(mac, network->bssid));
5796                 return 0;
5797         }
5798
5799         /* Ensure that the rates supported by the driver are compatible with
5800          * this AP, including verification of basic rates (mandatory) */
5801         if (!ipw_compatible_rates(priv, network, &rates)) {
5802                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5803                                 "because configured rate mask excludes "
5804                                 "AP mandatory rate.\n",
5805                                 escape_essid(network->ssid, network->ssid_len),
5806                                 print_mac(mac, network->bssid));
5807                 return 0;
5808         }
5809
5810         if (rates.num_rates == 0) {
5811                 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5812                                 "because of no compatible rates.\n",
5813                                 escape_essid(network->ssid, network->ssid_len),
5814                                 print_mac(mac, network->bssid));
5815                 return 0;
5816         }
5817
5818         /* TODO: Perform any further minimal comparititive tests.  We do not
5819          * want to put too much policy logic here; intelligent scan selection
5820          * should occur within a generic IEEE 802.11 user space tool.  */
5821
5822         /* Set up 'new' AP to this network */
5823         ipw_copy_rates(&match->rates, &rates);
5824         match->network = network;
5825
5826         IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5827                         escape_essid(network->ssid, network->ssid_len),
5828                         print_mac(mac, network->bssid));
5829
5830         return 1;
5831 }
5832
5833 static void ipw_adhoc_create(struct ipw_priv *priv,
5834                              struct ieee80211_network *network)
5835 {
5836         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5837         int i;
5838
5839         /*
5840          * For the purposes of scanning, we can set our wireless mode
5841          * to trigger scans across combinations of bands, but when it
5842          * comes to creating a new ad-hoc network, we have tell the FW
5843          * exactly which band to use.
5844          *
5845          * We also have the possibility of an invalid channel for the
5846          * chossen band.  Attempting to create a new ad-hoc network
5847          * with an invalid channel for wireless mode will trigger a
5848          * FW fatal error.
5849          *
5850          */
5851         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5852         case IEEE80211_52GHZ_BAND:
5853                 network->mode = IEEE_A;
5854                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5855                 BUG_ON(i == -1);
5856                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5857                         IPW_WARNING("Overriding invalid channel\n");
5858                         priv->channel = geo->a[0].channel;
5859                 }
5860                 break;
5861
5862         case IEEE80211_24GHZ_BAND:
5863                 if (priv->ieee->mode & IEEE_G)
5864                         network->mode = IEEE_G;
5865                 else
5866                         network->mode = IEEE_B;
5867                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5868                 BUG_ON(i == -1);
5869                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5870                         IPW_WARNING("Overriding invalid channel\n");
5871                         priv->channel = geo->bg[0].channel;
5872                 }
5873                 break;
5874
5875         default:
5876                 IPW_WARNING("Overriding invalid channel\n");
5877                 if (priv->ieee->mode & IEEE_A) {
5878                         network->mode = IEEE_A;
5879                         priv->channel = geo->a[0].channel;
5880                 } else if (priv->ieee->mode & IEEE_G) {
5881                         network->mode = IEEE_G;
5882                         priv->channel = geo->bg[0].channel;
5883                 } else {
5884                         network->mode = IEEE_B;
5885                         priv->channel = geo->bg[0].channel;
5886                 }
5887                 break;
5888         }
5889
5890         network->channel = priv->channel;
5891         priv->config |= CFG_ADHOC_PERSIST;
5892         ipw_create_bssid(priv, network->bssid);
5893         network->ssid_len = priv->essid_len;
5894         memcpy(network->ssid, priv->essid, priv->essid_len);
5895         memset(&network->stats, 0, sizeof(network->stats));
5896         network->capability = WLAN_CAPABILITY_IBSS;
5897         if (!(priv->config & CFG_PREAMBLE_LONG))
5898                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5899         if (priv->capability & CAP_PRIVACY_ON)
5900                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5901         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5902         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5903         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5904         memcpy(network->rates_ex,
5905                &priv->rates.supported_rates[network->rates_len],
5906                network->rates_ex_len);
5907         network->last_scanned = 0;
5908         network->flags = 0;
5909         network->last_associate = 0;
5910         network->time_stamp[0] = 0;
5911         network->time_stamp[1] = 0;
5912         network->beacon_interval = 100; /* Default */
5913         network->listen_interval = 10;  /* Default */
5914         network->atim_window = 0;       /* Default */
5915         network->wpa_ie_len = 0;
5916         network->rsn_ie_len = 0;
5917 }
5918
5919 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5920 {
5921         struct ipw_tgi_tx_key key;
5922
5923         if (!(priv->ieee->sec.flags & (1 << index)))
5924                 return;
5925
5926         key.key_id = index;
5927         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5928         key.security_type = type;
5929         key.station_index = 0;  /* always 0 for BSS */
5930         key.flags = 0;
5931         /* 0 for new key; previous value of counter (after fatal error) */
5932         key.tx_counter[0] = cpu_to_le32(0);
5933         key.tx_counter[1] = cpu_to_le32(0);
5934
5935         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5936 }
5937
5938 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5939 {
5940         struct ipw_wep_key key;
5941         int i;
5942
5943         key.cmd_id = DINO_CMD_WEP_KEY;
5944         key.seq_num = 0;
5945
5946         /* Note: AES keys cannot be set for multiple times.
5947          * Only set it at the first time. */
5948         for (i = 0; i < 4; i++) {
5949                 key.key_index = i | type;
5950                 if (!(priv->ieee->sec.flags & (1 << i))) {
5951                         key.key_size = 0;
5952                         continue;
5953                 }
5954
5955                 key.key_size = priv->ieee->sec.key_sizes[i];
5956                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5957
5958                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5959         }
5960 }
5961
5962 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5963 {
5964         if (priv->ieee->host_encrypt)
5965                 return;
5966
5967         switch (level) {
5968         case SEC_LEVEL_3:
5969                 priv->sys_config.disable_unicast_decryption = 0;
5970                 priv->ieee->host_decrypt = 0;
5971                 break;
5972         case SEC_LEVEL_2:
5973                 priv->sys_config.disable_unicast_decryption = 1;
5974                 priv->ieee->host_decrypt = 1;
5975                 break;
5976         case SEC_LEVEL_1:
5977                 priv->sys_config.disable_unicast_decryption = 0;
5978                 priv->ieee->host_decrypt = 0;
5979                 break;
5980         case SEC_LEVEL_0:
5981                 priv->sys_config.disable_unicast_decryption = 1;
5982                 break;
5983         default:
5984                 break;
5985         }
5986 }
5987
5988 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5989 {
5990         if (priv->ieee->host_encrypt)
5991                 return;
5992
5993         switch (level) {
5994         case SEC_LEVEL_3:
5995                 priv->sys_config.disable_multicast_decryption = 0;
5996                 break;
5997         case SEC_LEVEL_2:
5998                 priv->sys_config.disable_multicast_decryption = 1;
5999                 break;
6000         case SEC_LEVEL_1:
6001                 priv->sys_config.disable_multicast_decryption = 0;
6002                 break;
6003         case SEC_LEVEL_0:
6004                 priv->sys_config.disable_multicast_decryption = 1;
6005                 break;
6006         default:
6007                 break;
6008         }
6009 }
6010
6011 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6012 {
6013         switch (priv->ieee->sec.level) {
6014         case SEC_LEVEL_3:
6015                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6016                         ipw_send_tgi_tx_key(priv,
6017                                             DCT_FLAG_EXT_SECURITY_CCM,
6018                                             priv->ieee->sec.active_key);
6019
6020                 if (!priv->ieee->host_mc_decrypt)
6021                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6022                 break;
6023         case SEC_LEVEL_2:
6024                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6025                         ipw_send_tgi_tx_key(priv,
6026                                             DCT_FLAG_EXT_SECURITY_TKIP,
6027                                             priv->ieee->sec.active_key);
6028                 break;
6029         case SEC_LEVEL_1:
6030                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6031                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6032                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6033                 break;
6034         case SEC_LEVEL_0:
6035         default:
6036                 break;
6037         }
6038 }
6039
6040 static void ipw_adhoc_check(void *data)
6041 {
6042         struct ipw_priv *priv = data;
6043
6044         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6045             !(priv->config & CFG_ADHOC_PERSIST)) {
6046                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6047                           IPW_DL_STATE | IPW_DL_ASSOC,
6048                           "Missed beacon: %d - disassociate\n",
6049                           priv->missed_adhoc_beacons);
6050                 ipw_remove_current_network(priv);
6051                 ipw_disassociate(priv);
6052                 return;
6053         }
6054
6055         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6056                            le16_to_cpu(priv->assoc_request.beacon_interval));
6057 }
6058
6059 static void ipw_bg_adhoc_check(struct work_struct *work)
6060 {
6061         struct ipw_priv *priv =
6062                 container_of(work, struct ipw_priv, adhoc_check.work);
6063         mutex_lock(&priv->mutex);
6064         ipw_adhoc_check(priv);
6065         mutex_unlock(&priv->mutex);
6066 }
6067
6068 static void ipw_debug_config(struct ipw_priv *priv)
6069 {
6070         DECLARE_MAC_BUF(mac);
6071         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6072                        "[CFG 0x%08X]\n", priv->config);
6073         if (priv->config & CFG_STATIC_CHANNEL)
6074                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6075         else
6076                 IPW_DEBUG_INFO("Channel unlocked.\n");
6077         if (priv->config & CFG_STATIC_ESSID)
6078                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6079                                escape_essid(priv->essid, priv->essid_len));
6080         else
6081                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6082         if (priv->config & CFG_STATIC_BSSID)
6083                 IPW_DEBUG_INFO("BSSID locked to %s\n",
6084                                print_mac(mac, priv->bssid));
6085         else
6086                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6087         if (priv->capability & CAP_PRIVACY_ON)
6088                 IPW_DEBUG_INFO("PRIVACY on\n");
6089         else
6090                 IPW_DEBUG_INFO("PRIVACY off\n");
6091         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6092 }
6093
6094 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6095 {
6096         /* TODO: Verify that this works... */
6097         struct ipw_fixed_rate fr = {
6098                 .tx_rates = priv->rates_mask
6099         };
6100         u32 reg;
6101         u16 mask = 0;
6102
6103         /* Identify 'current FW band' and match it with the fixed
6104          * Tx rates */
6105
6106         switch (priv->ieee->freq_band) {
6107         case IEEE80211_52GHZ_BAND:      /* A only */
6108                 /* IEEE_A */
6109                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6110                         /* Invalid fixed rate mask */
6111                         IPW_DEBUG_WX
6112                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6113                         fr.tx_rates = 0;
6114                         break;
6115                 }
6116
6117                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6118                 break;
6119
6120         default:                /* 2.4Ghz or Mixed */
6121                 /* IEEE_B */
6122                 if (mode == IEEE_B) {
6123                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6124                                 /* Invalid fixed rate mask */
6125                                 IPW_DEBUG_WX
6126                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6127                                 fr.tx_rates = 0;
6128                         }
6129                         break;
6130                 }
6131
6132                 /* IEEE_G */
6133                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6134                                     IEEE80211_OFDM_RATES_MASK)) {
6135                         /* Invalid fixed rate mask */
6136                         IPW_DEBUG_WX
6137                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6138                         fr.tx_rates = 0;
6139                         break;
6140                 }
6141
6142                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6143                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6144                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6145                 }
6146
6147                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6148                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6149                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6150                 }
6151
6152                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6153                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6154                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6155                 }
6156
6157                 fr.tx_rates |= mask;
6158                 break;
6159         }
6160
6161         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6162         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6163 }
6164
6165 static void ipw_abort_scan(struct ipw_priv *priv)
6166 {
6167         int err;
6168
6169         if (priv->status & STATUS_SCAN_ABORTING) {
6170                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6171                 return;
6172         }
6173         priv->status |= STATUS_SCAN_ABORTING;
6174
6175         err = ipw_send_scan_abort(priv);
6176         if (err)
6177                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6178 }
6179
6180 static void ipw_add_scan_channels(struct ipw_priv *priv,
6181                                   struct ipw_scan_request_ext *scan,
6182                                   int scan_type)
6183 {
6184         int channel_index = 0;
6185         const struct ieee80211_geo *geo;
6186         int i;
6187
6188         geo = ieee80211_get_geo(priv->ieee);
6189
6190         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6191                 int start = channel_index;
6192                 for (i = 0; i < geo->a_channels; i++) {
6193                         if ((priv->status & STATUS_ASSOCIATED) &&
6194                             geo->a[i].channel == priv->channel)
6195                                 continue;
6196                         channel_index++;
6197                         scan->channels_list[channel_index] = geo->a[i].channel;
6198                         ipw_set_scan_type(scan, channel_index,
6199                                           geo->a[i].
6200                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6201                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6202                                           scan_type);
6203                 }
6204
6205                 if (start != channel_index) {
6206                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6207                             (channel_index - start);
6208                         channel_index++;
6209                 }
6210         }
6211
6212         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6213                 int start = channel_index;
6214                 if (priv->config & CFG_SPEED_SCAN) {
6215                         int index;
6216                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6217                                 /* nop out the list */
6218                                 [0] = 0
6219                         };
6220
6221                         u8 channel;
6222                         while (channel_index < IPW_SCAN_CHANNELS) {
6223                                 channel =
6224                                     priv->speed_scan[priv->speed_scan_pos];
6225                                 if (channel == 0) {
6226                                         priv->speed_scan_pos = 0;
6227                                         channel = priv->speed_scan[0];
6228                                 }
6229                                 if ((priv->status & STATUS_ASSOCIATED) &&
6230                                     channel == priv->channel) {
6231                                         priv->speed_scan_pos++;
6232                                         continue;
6233                                 }
6234
6235                                 /* If this channel has already been
6236                                  * added in scan, break from loop
6237                                  * and this will be the first channel
6238                                  * in the next scan.
6239                                  */
6240                                 if (channels[channel - 1] != 0)
6241                                         break;
6242
6243                                 channels[channel - 1] = 1;
6244                                 priv->speed_scan_pos++;
6245                                 channel_index++;
6246                                 scan->channels_list[channel_index] = channel;
6247                                 index =
6248                                     ieee80211_channel_to_index(priv->ieee, channel);
6249                                 ipw_set_scan_type(scan, channel_index,
6250                                                   geo->bg[index].
6251                                                   flags &
6252                                                   IEEE80211_CH_PASSIVE_ONLY ?
6253                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6254                                                   : scan_type);
6255                         }
6256                 } else {
6257                         for (i = 0; i < geo->bg_channels; i++) {
6258                                 if ((priv->status & STATUS_ASSOCIATED) &&
6259                                     geo->bg[i].channel == priv->channel)
6260                                         continue;
6261                                 channel_index++;
6262                                 scan->channels_list[channel_index] =
6263                                     geo->bg[i].channel;
6264                                 ipw_set_scan_type(scan, channel_index,
6265                                                   geo->bg[i].
6266                                                   flags &
6267                                                   IEEE80211_CH_PASSIVE_ONLY ?
6268                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6269                                                   : scan_type);
6270                         }
6271                 }
6272
6273                 if (start != channel_index) {
6274                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6275                             (channel_index - start);
6276                 }
6277         }
6278 }
6279
6280 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6281 {
6282         struct ipw_scan_request_ext scan;
6283         int err = 0, scan_type;
6284
6285         if (!(priv->status & STATUS_INIT) ||
6286             (priv->status & STATUS_EXIT_PENDING))
6287                 return 0;
6288
6289         mutex_lock(&priv->mutex);
6290
6291         if (direct && (priv->direct_scan_ssid_len == 0)) {
6292                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6293                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6294                 goto done;
6295         }
6296
6297         if (priv->status & STATUS_SCANNING) {
6298                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6299                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6300                                         STATUS_SCAN_PENDING;
6301                 goto done;
6302         }
6303
6304         if (!(priv->status & STATUS_SCAN_FORCED) &&
6305             priv->status & STATUS_SCAN_ABORTING) {
6306                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6307                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308                                         STATUS_SCAN_PENDING;
6309                 goto done;
6310         }
6311
6312         if (priv->status & STATUS_RF_KILL_MASK) {
6313                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6314                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6315                                         STATUS_SCAN_PENDING;
6316                 goto done;
6317         }
6318
6319         memset(&scan, 0, sizeof(scan));
6320         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6321
6322         if (type == IW_SCAN_TYPE_PASSIVE) {
6323                 IPW_DEBUG_WX("use passive scanning\n");
6324                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6325                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6326                         cpu_to_le16(120);
6327                 ipw_add_scan_channels(priv, &scan, scan_type);
6328                 goto send_request;
6329         }
6330
6331         /* Use active scan by default. */
6332         if (priv->config & CFG_SPEED_SCAN)
6333                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6334                         cpu_to_le16(30);
6335         else
6336                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6337                         cpu_to_le16(20);
6338
6339         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6340                 cpu_to_le16(20);
6341
6342         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6343         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6344
6345 #ifdef CONFIG_IPW2200_MONITOR
6346         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6347                 u8 channel;
6348                 u8 band = 0;
6349
6350                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6351                 case IEEE80211_52GHZ_BAND:
6352                         band = (u8) (IPW_A_MODE << 6) | 1;
6353                         channel = priv->channel;
6354                         break;
6355
6356                 case IEEE80211_24GHZ_BAND:
6357                         band = (u8) (IPW_B_MODE << 6) | 1;
6358                         channel = priv->channel;
6359                         break;
6360
6361                 default:
6362                         band = (u8) (IPW_B_MODE << 6) | 1;
6363                         channel = 9;
6364                         break;
6365                 }
6366
6367                 scan.channels_list[0] = band;
6368                 scan.channels_list[1] = channel;
6369                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6370
6371                 /* NOTE:  The card will sit on this channel for this time
6372                  * period.  Scan aborts are timing sensitive and frequently
6373                  * result in firmware restarts.  As such, it is best to
6374                  * set a small dwell_time here and just keep re-issuing
6375                  * scans.  Otherwise fast channel hopping will not actually
6376                  * hop channels.
6377                  *
6378                  * TODO: Move SPEED SCAN support to all modes and bands */
6379                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6380                         cpu_to_le16(2000);
6381         } else {
6382 #endif                          /* CONFIG_IPW2200_MONITOR */
6383                 /* Honor direct scans first, otherwise if we are roaming make
6384                  * this a direct scan for the current network.  Finally,
6385                  * ensure that every other scan is a fast channel hop scan */
6386                 if (direct) {
6387                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6388                                             priv->direct_scan_ssid_len);
6389                         if (err) {
6390                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6391                                              "failed\n");
6392                                 goto done;
6393                         }
6394
6395                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396                 } else if ((priv->status & STATUS_ROAMING)
6397                            || (!(priv->status & STATUS_ASSOCIATED)
6398                                && (priv->config & CFG_STATIC_ESSID)
6399                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6400                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6401                         if (err) {
6402                                 IPW_DEBUG_HC("Attempt to send SSID command "
6403                                              "failed.\n");
6404                                 goto done;
6405                         }
6406
6407                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6408                 } else
6409                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6410
6411                 ipw_add_scan_channels(priv, &scan, scan_type);
6412 #ifdef CONFIG_IPW2200_MONITOR
6413         }
6414 #endif
6415
6416 send_request:
6417         err = ipw_send_scan_request_ext(priv, &scan);
6418         if (err) {
6419                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6420                 goto done;
6421         }
6422
6423         priv->status |= STATUS_SCANNING;
6424         if (direct) {
6425                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6426                 priv->direct_scan_ssid_len = 0;
6427         } else
6428                 priv->status &= ~STATUS_SCAN_PENDING;
6429
6430         queue_delayed_work(priv->workqueue, &priv->scan_check,
6431                            IPW_SCAN_CHECK_WATCHDOG);
6432 done:
6433         mutex_unlock(&priv->mutex);
6434         return err;
6435 }
6436
6437 static void ipw_request_passive_scan(struct work_struct *work)
6438 {
6439         struct ipw_priv *priv =
6440                 container_of(work, struct ipw_priv, request_passive_scan.work);
6441         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6442 }
6443
6444 static void ipw_request_scan(struct work_struct *work)
6445 {
6446         struct ipw_priv *priv =
6447                 container_of(work, struct ipw_priv, request_scan.work);
6448         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6449 }
6450
6451 static void ipw_request_direct_scan(struct work_struct *work)
6452 {
6453         struct ipw_priv *priv =
6454                 container_of(work, struct ipw_priv, request_direct_scan.work);
6455         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6456 }
6457
6458 static void ipw_bg_abort_scan(struct work_struct *work)
6459 {
6460         struct ipw_priv *priv =
6461                 container_of(work, struct ipw_priv, abort_scan);
6462         mutex_lock(&priv->mutex);
6463         ipw_abort_scan(priv);
6464         mutex_unlock(&priv->mutex);
6465 }
6466
6467 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6468 {
6469         /* This is called when wpa_supplicant loads and closes the driver
6470          * interface. */
6471         priv->ieee->wpa_enabled = value;
6472         return 0;
6473 }
6474
6475 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6476 {
6477         struct ieee80211_device *ieee = priv->ieee;
6478         struct ieee80211_security sec = {
6479                 .flags = SEC_AUTH_MODE,
6480         };
6481         int ret = 0;
6482
6483         if (value & IW_AUTH_ALG_SHARED_KEY) {
6484                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6485                 ieee->open_wep = 0;
6486         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6487                 sec.auth_mode = WLAN_AUTH_OPEN;
6488                 ieee->open_wep = 1;
6489         } else if (value & IW_AUTH_ALG_LEAP) {
6490                 sec.auth_mode = WLAN_AUTH_LEAP;
6491                 ieee->open_wep = 1;
6492         } else
6493                 return -EINVAL;
6494
6495         if (ieee->set_security)
6496                 ieee->set_security(ieee->dev, &sec);
6497         else
6498                 ret = -EOPNOTSUPP;
6499
6500         return ret;
6501 }
6502
6503 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6504                                 int wpa_ie_len)
6505 {
6506         /* make sure WPA is enabled */
6507         ipw_wpa_enable(priv, 1);
6508 }
6509
6510 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6511                             char *capabilities, int length)
6512 {
6513         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6514
6515         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6516                                 capabilities);
6517 }
6518
6519 /*
6520  * WE-18 support
6521  */
6522
6523 /* SIOCSIWGENIE */
6524 static int ipw_wx_set_genie(struct net_device *dev,
6525                             struct iw_request_info *info,
6526                             union iwreq_data *wrqu, char *extra)
6527 {
6528         struct ipw_priv *priv = ieee80211_priv(dev);
6529         struct ieee80211_device *ieee = priv->ieee;
6530         u8 *buf;
6531         int err = 0;
6532
6533         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6534             (wrqu->data.length && extra == NULL))
6535                 return -EINVAL;
6536
6537         if (wrqu->data.length) {
6538                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6539                 if (buf == NULL) {
6540                         err = -ENOMEM;
6541                         goto out;
6542                 }
6543
6544                 memcpy(buf, extra, wrqu->data.length);
6545                 kfree(ieee->wpa_ie);
6546                 ieee->wpa_ie = buf;
6547                 ieee->wpa_ie_len = wrqu->data.length;
6548         } else {
6549                 kfree(ieee->wpa_ie);
6550                 ieee->wpa_ie = NULL;
6551                 ieee->wpa_ie_len = 0;
6552         }
6553
6554         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6555       out:
6556         return err;
6557 }
6558
6559 /* SIOCGIWGENIE */
6560 static int ipw_wx_get_genie(struct net_device *dev,
6561                             struct iw_request_info *info,
6562                             union iwreq_data *wrqu, char *extra)
6563 {
6564         struct ipw_priv *priv = ieee80211_priv(dev);
6565         struct ieee80211_device *ieee = priv->ieee;
6566         int err = 0;
6567
6568         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6569                 wrqu->data.length = 0;
6570                 goto out;
6571         }
6572
6573         if (wrqu->data.length < ieee->wpa_ie_len) {
6574                 err = -E2BIG;
6575                 goto out;
6576         }
6577
6578         wrqu->data.length = ieee->wpa_ie_len;
6579         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6580
6581       out:
6582         return err;
6583 }
6584
6585 static int wext_cipher2level(int cipher)
6586 {
6587         switch (cipher) {
6588         case IW_AUTH_CIPHER_NONE:
6589                 return SEC_LEVEL_0;
6590         case IW_AUTH_CIPHER_WEP40:
6591         case IW_AUTH_CIPHER_WEP104:
6592                 return SEC_LEVEL_1;
6593         case IW_AUTH_CIPHER_TKIP:
6594                 return SEC_LEVEL_2;
6595         case IW_AUTH_CIPHER_CCMP:
6596                 return SEC_LEVEL_3;
6597         default:
6598                 return -1;
6599         }
6600 }
6601
6602 /* SIOCSIWAUTH */
6603 static int ipw_wx_set_auth(struct net_device *dev,
6604                            struct iw_request_info *info,
6605                            union iwreq_data *wrqu, char *extra)
6606 {
6607         struct ipw_priv *priv = ieee80211_priv(dev);
6608         struct ieee80211_device *ieee = priv->ieee;
6609         struct iw_param *param = &wrqu->param;
6610         struct ieee80211_crypt_data *crypt;
6611         unsigned long flags;
6612         int ret = 0;
6613
6614         switch (param->flags & IW_AUTH_INDEX) {
6615         case IW_AUTH_WPA_VERSION:
6616                 break;
6617         case IW_AUTH_CIPHER_PAIRWISE:
6618                 ipw_set_hw_decrypt_unicast(priv,
6619                                            wext_cipher2level(param->value));
6620                 break;
6621         case IW_AUTH_CIPHER_GROUP:
6622                 ipw_set_hw_decrypt_multicast(priv,
6623                                              wext_cipher2level(param->value));
6624                 break;
6625         case IW_AUTH_KEY_MGMT:
6626                 /*
6627                  * ipw2200 does not use these parameters
6628                  */
6629                 break;
6630
6631         case IW_AUTH_TKIP_COUNTERMEASURES:
6632                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6633                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6634                         break;
6635
6636                 flags = crypt->ops->get_flags(crypt->priv);
6637
6638                 if (param->value)
6639                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640                 else
6641                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6642
6643                 crypt->ops->set_flags(flags, crypt->priv);
6644
6645                 break;
6646
6647         case IW_AUTH_DROP_UNENCRYPTED:{
6648                         /* HACK:
6649                          *
6650                          * wpa_supplicant calls set_wpa_enabled when the driver
6651                          * is loaded and unloaded, regardless of if WPA is being
6652                          * used.  No other calls are made which can be used to
6653                          * determine if encryption will be used or not prior to
6654                          * association being expected.  If encryption is not being
6655                          * used, drop_unencrypted is set to false, else true -- we
6656                          * can use this to determine if the CAP_PRIVACY_ON bit should
6657                          * be set.
6658                          */
6659                         struct ieee80211_security sec = {
6660                                 .flags = SEC_ENABLED,
6661                                 .enabled = param->value,
6662                         };
6663                         priv->ieee->drop_unencrypted = param->value;
6664                         /* We only change SEC_LEVEL for open mode. Others
6665                          * are set by ipw_wpa_set_encryption.
6666                          */
6667                         if (!param->value) {
6668                                 sec.flags |= SEC_LEVEL;
6669                                 sec.level = SEC_LEVEL_0;
6670                         } else {
6671                                 sec.flags |= SEC_LEVEL;
6672                                 sec.level = SEC_LEVEL_1;
6673                         }
6674                         if (priv->ieee->set_security)
6675                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6676                         break;
6677                 }
6678
6679         case IW_AUTH_80211_AUTH_ALG:
6680                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6681                 break;
6682
6683         case IW_AUTH_WPA_ENABLED:
6684                 ret = ipw_wpa_enable(priv, param->value);
6685                 ipw_disassociate(priv);
6686                 break;
6687
6688         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6689                 ieee->ieee802_1x = param->value;
6690                 break;
6691
6692         case IW_AUTH_PRIVACY_INVOKED:
6693                 ieee->privacy_invoked = param->value;
6694                 break;
6695
6696         default:
6697                 return -EOPNOTSUPP;
6698         }
6699         return ret;
6700 }
6701
6702 /* SIOCGIWAUTH */
6703 static int ipw_wx_get_auth(struct net_device *dev,
6704                            struct iw_request_info *info,
6705                            union iwreq_data *wrqu, char *extra)
6706 {
6707         struct ipw_priv *priv = ieee80211_priv(dev);
6708         struct ieee80211_device *ieee = priv->ieee;
6709         struct ieee80211_crypt_data *crypt;
6710         struct iw_param *param = &wrqu->param;
6711         int ret = 0;
6712
6713         switch (param->flags & IW_AUTH_INDEX) {
6714         case IW_AUTH_WPA_VERSION:
6715         case IW_AUTH_CIPHER_PAIRWISE:
6716         case IW_AUTH_CIPHER_GROUP:
6717         case IW_AUTH_KEY_MGMT:
6718                 /*
6719                  * wpa_supplicant will control these internally
6720                  */
6721                 ret = -EOPNOTSUPP;
6722                 break;
6723
6724         case IW_AUTH_TKIP_COUNTERMEASURES:
6725                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6726                 if (!crypt || !crypt->ops->get_flags)
6727                         break;
6728
6729                 param->value = (crypt->ops->get_flags(crypt->priv) &
6730                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6731
6732                 break;
6733
6734         case IW_AUTH_DROP_UNENCRYPTED:
6735                 param->value = ieee->drop_unencrypted;
6736                 break;
6737
6738         case IW_AUTH_80211_AUTH_ALG:
6739                 param->value = ieee->sec.auth_mode;
6740                 break;
6741
6742         case IW_AUTH_WPA_ENABLED:
6743                 param->value = ieee->wpa_enabled;
6744                 break;
6745
6746         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6747                 param->value = ieee->ieee802_1x;
6748                 break;
6749
6750         case IW_AUTH_ROAMING_CONTROL:
6751         case IW_AUTH_PRIVACY_INVOKED:
6752                 param->value = ieee->privacy_invoked;
6753                 break;
6754
6755         default:
6756                 return -EOPNOTSUPP;
6757         }
6758         return 0;
6759 }
6760
6761 /* SIOCSIWENCODEEXT */
6762 static int ipw_wx_set_encodeext(struct net_device *dev,
6763                                 struct iw_request_info *info,
6764                                 union iwreq_data *wrqu, char *extra)
6765 {
6766         struct ipw_priv *priv = ieee80211_priv(dev);
6767         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6768
6769         if (hwcrypto) {
6770                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6771                         /* IPW HW can't build TKIP MIC,
6772                            host decryption still needed */
6773                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6774                                 priv->ieee->host_mc_decrypt = 1;
6775                         else {
6776                                 priv->ieee->host_encrypt = 0;
6777                                 priv->ieee->host_encrypt_msdu = 1;
6778                                 priv->ieee->host_decrypt = 1;
6779                         }
6780                 } else {
6781                         priv->ieee->host_encrypt = 0;
6782                         priv->ieee->host_encrypt_msdu = 0;
6783                         priv->ieee->host_decrypt = 0;
6784                         priv->ieee->host_mc_decrypt = 0;
6785                 }
6786         }
6787
6788         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6789 }
6790
6791 /* SIOCGIWENCODEEXT */
6792 static int ipw_wx_get_encodeext(struct net_device *dev,
6793                                 struct iw_request_info *info,
6794                                 union iwreq_data *wrqu, char *extra)
6795 {
6796         struct ipw_priv *priv = ieee80211_priv(dev);
6797         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6798 }
6799
6800 /* SIOCSIWMLME */
6801 static int ipw_wx_set_mlme(struct net_device *dev,
6802                            struct iw_request_info *info,
6803                            union iwreq_data *wrqu, char *extra)
6804 {
6805         struct ipw_priv *priv = ieee80211_priv(dev);
6806         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6807         __le16 reason;
6808
6809         reason = cpu_to_le16(mlme->reason_code);
6810
6811         switch (mlme->cmd) {
6812         case IW_MLME_DEAUTH:
6813                 /* silently ignore */
6814                 break;
6815
6816         case IW_MLME_DISASSOC:
6817                 ipw_disassociate(priv);
6818                 break;
6819
6820         default:
6821                 return -EOPNOTSUPP;
6822         }
6823         return 0;
6824 }
6825
6826 #ifdef CONFIG_IPW2200_QOS
6827
6828 /* QoS */
6829 /*
6830 * get the modulation type of the current network or
6831 * the card current mode
6832 */
6833 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6834 {
6835         u8 mode = 0;
6836
6837         if (priv->status & STATUS_ASSOCIATED) {
6838                 unsigned long flags;
6839
6840                 spin_lock_irqsave(&priv->ieee->lock, flags);
6841                 mode = priv->assoc_network->mode;
6842                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6843         } else {
6844                 mode = priv->ieee->mode;
6845         }
6846         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6847         return mode;
6848 }
6849
6850 /*
6851 * Handle management frame beacon and probe response
6852 */
6853 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6854                                          int active_network,
6855                                          struct ieee80211_network *network)
6856 {
6857         u32 size = sizeof(struct ieee80211_qos_parameters);
6858
6859         if (network->capability & WLAN_CAPABILITY_IBSS)
6860                 network->qos_data.active = network->qos_data.supported;
6861
6862         if (network->flags & NETWORK_HAS_QOS_MASK) {
6863                 if (active_network &&
6864                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6865                         network->qos_data.active = network->qos_data.supported;
6866
6867                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6868                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6869                     (network->qos_data.old_param_count !=
6870                      network->qos_data.param_count)) {
6871                         network->qos_data.old_param_count =
6872                             network->qos_data.param_count;
6873                         schedule_work(&priv->qos_activate);
6874                         IPW_DEBUG_QOS("QoS parameters change call "
6875                                       "qos_activate\n");
6876                 }
6877         } else {
6878                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6879                         memcpy(&network->qos_data.parameters,
6880                                &def_parameters_CCK, size);
6881                 else
6882                         memcpy(&network->qos_data.parameters,
6883                                &def_parameters_OFDM, size);
6884
6885                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6886                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6887                         schedule_work(&priv->qos_activate);
6888                 }
6889
6890                 network->qos_data.active = 0;
6891                 network->qos_data.supported = 0;
6892         }
6893         if ((priv->status & STATUS_ASSOCIATED) &&
6894             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6895                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6896                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6897                             !(network->flags & NETWORK_EMPTY_ESSID))
6898                                 if ((network->ssid_len ==
6899                                      priv->assoc_network->ssid_len) &&
6900                                     !memcmp(network->ssid,
6901                                             priv->assoc_network->ssid,
6902                                             network->ssid_len)) {
6903                                         queue_work(priv->workqueue,
6904                                                    &priv->merge_networks);
6905                                 }
6906         }
6907
6908         return 0;
6909 }
6910
6911 /*
6912 * This function set up the firmware to support QoS. It sends
6913 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6914 */
6915 static int ipw_qos_activate(struct ipw_priv *priv,
6916                             struct ieee80211_qos_data *qos_network_data)
6917 {
6918         int err;
6919         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6920         struct ieee80211_qos_parameters *active_one = NULL;
6921         u32 size = sizeof(struct ieee80211_qos_parameters);
6922         u32 burst_duration;
6923         int i;
6924         u8 type;
6925
6926         type = ipw_qos_current_mode(priv);
6927
6928         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6929         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6930         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6931         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6932
6933         if (qos_network_data == NULL) {
6934                 if (type == IEEE_B) {
6935                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6936                         active_one = &def_parameters_CCK;
6937                 } else
6938                         active_one = &def_parameters_OFDM;
6939
6940                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941                 burst_duration = ipw_qos_get_burst_duration(priv);
6942                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6943                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6944                             cpu_to_le16(burst_duration);
6945         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6946                 if (type == IEEE_B) {
6947                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6948                                       type);
6949                         if (priv->qos_data.qos_enable == 0)
6950                                 active_one = &def_parameters_CCK;
6951                         else
6952                                 active_one = priv->qos_data.def_qos_parm_CCK;
6953                 } else {
6954                         if (priv->qos_data.qos_enable == 0)
6955                                 active_one = &def_parameters_OFDM;
6956                         else
6957                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6958                 }
6959                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6960         } else {
6961                 unsigned long flags;
6962                 int active;
6963
6964                 spin_lock_irqsave(&priv->ieee->lock, flags);
6965                 active_one = &(qos_network_data->parameters);
6966                 qos_network_data->old_param_count =
6967                     qos_network_data->param_count;
6968                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6969                 active = qos_network_data->supported;
6970                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6971
6972                 if (active == 0) {
6973                         burst_duration = ipw_qos_get_burst_duration(priv);
6974                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6975                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6976                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6977                 }
6978         }
6979
6980         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6981         err = ipw_send_qos_params_command(priv,
6982                                           (struct ieee80211_qos_parameters *)
6983                                           &(qos_parameters[0]));
6984         if (err)
6985                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6986
6987         return err;
6988 }
6989
6990 /*
6991 * send IPW_CMD_WME_INFO to the firmware
6992 */
6993 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6994 {
6995         int ret = 0;
6996         struct ieee80211_qos_information_element qos_info;
6997
6998         if (priv == NULL)
6999                 return -1;
7000
7001         qos_info.elementID = QOS_ELEMENT_ID;
7002         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7003
7004         qos_info.version = QOS_VERSION_1;
7005         qos_info.ac_info = 0;
7006
7007         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7008         qos_info.qui_type = QOS_OUI_TYPE;
7009         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7010
7011         ret = ipw_send_qos_info_command(priv, &qos_info);
7012         if (ret != 0) {
7013                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7014         }
7015         return ret;
7016 }
7017
7018 /*
7019 * Set the QoS parameter with the association request structure
7020 */
7021 static int ipw_qos_association(struct ipw_priv *priv,
7022                                struct ieee80211_network *network)
7023 {
7024         int err = 0;
7025         struct ieee80211_qos_data *qos_data = NULL;
7026         struct ieee80211_qos_data ibss_data = {
7027                 .supported = 1,
7028                 .active = 1,
7029         };
7030
7031         switch (priv->ieee->iw_mode) {
7032         case IW_MODE_ADHOC:
7033                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7034
7035                 qos_data = &ibss_data;
7036                 break;
7037
7038         case IW_MODE_INFRA:
7039                 qos_data = &network->qos_data;
7040                 break;
7041
7042         default:
7043                 BUG();
7044                 break;
7045         }
7046
7047         err = ipw_qos_activate(priv, qos_data);
7048         if (err) {
7049                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7050                 return err;
7051         }
7052
7053         if (priv->qos_data.qos_enable && qos_data->supported) {
7054                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7055                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7056                 return ipw_qos_set_info_element(priv);
7057         }
7058
7059         return 0;
7060 }
7061
7062 /*
7063 * handling the beaconing responses. if we get different QoS setting
7064 * off the network from the associated setting, adjust the QoS
7065 * setting
7066 */
7067 static int ipw_qos_association_resp(struct ipw_priv *priv,
7068                                     struct ieee80211_network *network)
7069 {
7070         int ret = 0;
7071         unsigned long flags;
7072         u32 size = sizeof(struct ieee80211_qos_parameters);
7073         int set_qos_param = 0;
7074
7075         if ((priv == NULL) || (network == NULL) ||
7076             (priv->assoc_network == NULL))
7077                 return ret;
7078
7079         if (!(priv->status & STATUS_ASSOCIATED))
7080                 return ret;
7081
7082         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7083                 return ret;
7084
7085         spin_lock_irqsave(&priv->ieee->lock, flags);
7086         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7087                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7088                        sizeof(struct ieee80211_qos_data));
7089                 priv->assoc_network->qos_data.active = 1;
7090                 if ((network->qos_data.old_param_count !=
7091                      network->qos_data.param_count)) {
7092                         set_qos_param = 1;
7093                         network->qos_data.old_param_count =
7094                             network->qos_data.param_count;
7095                 }
7096
7097         } else {
7098                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7099                         memcpy(&priv->assoc_network->qos_data.parameters,
7100                                &def_parameters_CCK, size);
7101                 else
7102                         memcpy(&priv->assoc_network->qos_data.parameters,
7103                                &def_parameters_OFDM, size);
7104                 priv->assoc_network->qos_data.active = 0;
7105                 priv->assoc_network->qos_data.supported = 0;
7106                 set_qos_param = 1;
7107         }
7108
7109         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7110
7111         if (set_qos_param == 1)
7112                 schedule_work(&priv->qos_activate);
7113
7114         return ret;
7115 }
7116
7117 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7118 {
7119         u32 ret = 0;
7120
7121         if ((priv == NULL))
7122                 return 0;
7123
7124         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7125                 ret = priv->qos_data.burst_duration_CCK;
7126         else
7127                 ret = priv->qos_data.burst_duration_OFDM;
7128
7129         return ret;
7130 }
7131
7132 /*
7133 * Initialize the setting of QoS global
7134 */
7135 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7136                          int burst_enable, u32 burst_duration_CCK,
7137                          u32 burst_duration_OFDM)
7138 {
7139         priv->qos_data.qos_enable = enable;
7140
7141         if (priv->qos_data.qos_enable) {
7142                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7143                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7144                 IPW_DEBUG_QOS("QoS is enabled\n");
7145         } else {
7146                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7147                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7148                 IPW_DEBUG_QOS("QoS is not enabled\n");
7149         }
7150
7151         priv->qos_data.burst_enable = burst_enable;
7152
7153         if (burst_enable) {
7154                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7155                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7156         } else {
7157                 priv->qos_data.burst_duration_CCK = 0;
7158                 priv->qos_data.burst_duration_OFDM = 0;
7159         }
7160 }
7161
7162 /*
7163 * map the packet priority to the right TX Queue
7164 */
7165 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7166 {
7167         if (priority > 7 || !priv->qos_data.qos_enable)
7168                 priority = 0;
7169
7170         return from_priority_to_tx_queue[priority] - 1;
7171 }
7172
7173 static int ipw_is_qos_active(struct net_device *dev,
7174                              struct sk_buff *skb)
7175 {
7176         struct ipw_priv *priv = ieee80211_priv(dev);
7177         struct ieee80211_qos_data *qos_data = NULL;
7178         int active, supported;
7179         u8 *daddr = skb->data + ETH_ALEN;
7180         int unicast = !is_multicast_ether_addr(daddr);
7181
7182         if (!(priv->status & STATUS_ASSOCIATED))
7183                 return 0;
7184
7185         qos_data = &priv->assoc_network->qos_data;
7186
7187         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7188                 if (unicast == 0)
7189                         qos_data->active = 0;
7190                 else
7191                         qos_data->active = qos_data->supported;
7192         }
7193         active = qos_data->active;
7194         supported = qos_data->supported;
7195         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7196                       "unicast %d\n",
7197                       priv->qos_data.qos_enable, active, supported, unicast);
7198         if (active && priv->qos_data.qos_enable)
7199                 return 1;
7200
7201         return 0;
7202
7203 }
7204 /*
7205 * add QoS parameter to the TX command
7206 */
7207 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7208                                         u16 priority,
7209                                         struct tfd_data *tfd)
7210 {
7211         int tx_queue_id = 0;
7212
7213
7214         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7215         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7216
7217         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7218                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7219                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7220         }
7221         return 0;
7222 }
7223
7224 /*
7225 * background support to run QoS activate functionality
7226 */
7227 static void ipw_bg_qos_activate(struct work_struct *work)
7228 {
7229         struct ipw_priv *priv =
7230                 container_of(work, struct ipw_priv, qos_activate);
7231
7232         if (priv == NULL)
7233                 return;
7234
7235         mutex_lock(&priv->mutex);
7236
7237         if (priv->status & STATUS_ASSOCIATED)
7238                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7239
7240         mutex_unlock(&priv->mutex);
7241 }
7242
7243 static int ipw_handle_probe_response(struct net_device *dev,
7244                                      struct ieee80211_probe_response *resp,
7245                                      struct ieee80211_network *network)
7246 {
7247         struct ipw_priv *priv = ieee80211_priv(dev);
7248         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7249                               (network == priv->assoc_network));
7250
7251         ipw_qos_handle_probe_response(priv, active_network, network);
7252
7253         return 0;
7254 }
7255
7256 static int ipw_handle_beacon(struct net_device *dev,
7257                              struct ieee80211_beacon *resp,
7258                              struct ieee80211_network *network)
7259 {
7260         struct ipw_priv *priv = ieee80211_priv(dev);
7261         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7262                               (network == priv->assoc_network));
7263
7264         ipw_qos_handle_probe_response(priv, active_network, network);
7265
7266         return 0;
7267 }
7268
7269 static int ipw_handle_assoc_response(struct net_device *dev,
7270                                      struct ieee80211_assoc_response *resp,
7271                                      struct ieee80211_network *network)
7272 {
7273         struct ipw_priv *priv = ieee80211_priv(dev);
7274         ipw_qos_association_resp(priv, network);
7275         return 0;
7276 }
7277
7278 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7279                                        *qos_param)
7280 {
7281         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7282                                 sizeof(*qos_param) * 3, qos_param);
7283 }
7284
7285 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7286                                      *qos_param)
7287 {
7288         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7289                                 qos_param);
7290 }
7291
7292 #endif                          /* CONFIG_IPW2200_QOS */
7293
7294 static int ipw_associate_network(struct ipw_priv *priv,
7295                                  struct ieee80211_network *network,
7296                                  struct ipw_supported_rates *rates, int roaming)
7297 {
7298         int err;
7299         DECLARE_MAC_BUF(mac);
7300
7301         if (priv->config & CFG_FIXED_RATE)
7302                 ipw_set_fixed_rate(priv, network->mode);
7303
7304         if (!(priv->config & CFG_STATIC_ESSID)) {
7305                 priv->essid_len = min(network->ssid_len,
7306                                       (u8) IW_ESSID_MAX_SIZE);
7307                 memcpy(priv->essid, network->ssid, priv->essid_len);
7308         }
7309
7310         network->last_associate = jiffies;
7311
7312         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7313         priv->assoc_request.channel = network->channel;
7314         priv->assoc_request.auth_key = 0;
7315
7316         if ((priv->capability & CAP_PRIVACY_ON) &&
7317             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7318                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7319                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7320
7321                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7322                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7323
7324         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7325                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7326                 priv->assoc_request.auth_type = AUTH_LEAP;
7327         else
7328                 priv->assoc_request.auth_type = AUTH_OPEN;
7329
7330         if (priv->ieee->wpa_ie_len) {
7331                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7332                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7333                                  priv->ieee->wpa_ie_len);
7334         }
7335
7336         /*
7337          * It is valid for our ieee device to support multiple modes, but
7338          * when it comes to associating to a given network we have to choose
7339          * just one mode.
7340          */
7341         if (network->mode & priv->ieee->mode & IEEE_A)
7342                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7343         else if (network->mode & priv->ieee->mode & IEEE_G)
7344                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7345         else if (network->mode & priv->ieee->mode & IEEE_B)
7346                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7347
7348         priv->assoc_request.capability = cpu_to_le16(network->capability);
7349         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7350             && !(priv->config & CFG_PREAMBLE_LONG)) {
7351                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7352         } else {
7353                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7354
7355                 /* Clear the short preamble if we won't be supporting it */
7356                 priv->assoc_request.capability &=
7357                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7358         }
7359
7360         /* Clear capability bits that aren't used in Ad Hoc */
7361         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7362                 priv->assoc_request.capability &=
7363                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7364
7365         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7366                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7367                         roaming ? "Rea" : "A",
7368                         escape_essid(priv->essid, priv->essid_len),
7369                         network->channel,
7370                         ipw_modes[priv->assoc_request.ieee_mode],
7371                         rates->num_rates,
7372                         (priv->assoc_request.preamble_length ==
7373                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7374                         network->capability &
7375                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7376                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7377                         priv->capability & CAP_PRIVACY_ON ?
7378                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379                          "(open)") : "",
7380                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7381                         priv->capability & CAP_PRIVACY_ON ?
7382                         '1' + priv->ieee->sec.active_key : '.',
7383                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7384
7385         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7386         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7387             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7388                 priv->assoc_request.assoc_type = HC_IBSS_START;
7389                 priv->assoc_request.assoc_tsf_msw = 0;
7390                 priv->assoc_request.assoc_tsf_lsw = 0;
7391         } else {
7392                 if (unlikely(roaming))
7393                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394                 else
7395                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7396                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7397                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7398         }
7399
7400         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7401
7402         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7403                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7404                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405         } else {
7406                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7407                 priv->assoc_request.atim_window = 0;
7408         }
7409
7410         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7411
7412         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413         if (err) {
7414                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7415                 return err;
7416         }
7417
7418         rates->ieee_mode = priv->assoc_request.ieee_mode;
7419         rates->purpose = IPW_RATE_CONNECT;
7420         ipw_send_supported_rates(priv, rates);
7421
7422         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7423                 priv->sys_config.dot11g_auto_detection = 1;
7424         else
7425                 priv->sys_config.dot11g_auto_detection = 0;
7426
7427         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7428                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7429         else
7430                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7431
7432         err = ipw_send_system_config(priv);
7433         if (err) {
7434                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7435                 return err;
7436         }
7437
7438         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7439         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440         if (err) {
7441                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442                 return err;
7443         }
7444
7445         /*
7446          * If preemption is enabled, it is possible for the association
7447          * to complete before we return from ipw_send_associate.  Therefore
7448          * we have to be sure and update our priviate data first.
7449          */
7450         priv->channel = network->channel;
7451         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7452         priv->status |= STATUS_ASSOCIATING;
7453         priv->status &= ~STATUS_SECURITY_UPDATED;
7454
7455         priv->assoc_network = network;
7456
7457 #ifdef CONFIG_IPW2200_QOS
7458         ipw_qos_association(priv, network);
7459 #endif
7460
7461         err = ipw_send_associate(priv, &priv->assoc_request);
7462         if (err) {
7463                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7464                 return err;
7465         }
7466
7467         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7468                   escape_essid(priv->essid, priv->essid_len),
7469                   print_mac(mac, priv->bssid));
7470
7471         return 0;
7472 }
7473
7474 static void ipw_roam(void *data)
7475 {
7476         struct ipw_priv *priv = data;
7477         struct ieee80211_network *network = NULL;
7478         struct ipw_network_match match = {
7479                 .network = priv->assoc_network
7480         };
7481
7482         /* The roaming process is as follows:
7483          *
7484          * 1.  Missed beacon threshold triggers the roaming process by
7485          *     setting the status ROAM bit and requesting a scan.
7486          * 2.  When the scan completes, it schedules the ROAM work
7487          * 3.  The ROAM work looks at all of the known networks for one that
7488          *     is a better network than the currently associated.  If none
7489          *     found, the ROAM process is over (ROAM bit cleared)
7490          * 4.  If a better network is found, a disassociation request is
7491          *     sent.
7492          * 5.  When the disassociation completes, the roam work is again
7493          *     scheduled.  The second time through, the driver is no longer
7494          *     associated, and the newly selected network is sent an
7495          *     association request.
7496          * 6.  At this point ,the roaming process is complete and the ROAM
7497          *     status bit is cleared.
7498          */
7499
7500         /* If we are no longer associated, and the roaming bit is no longer
7501          * set, then we are not actively roaming, so just return */
7502         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7503                 return;
7504
7505         if (priv->status & STATUS_ASSOCIATED) {
7506                 /* First pass through ROAM process -- look for a better
7507                  * network */
7508                 unsigned long flags;
7509                 u8 rssi = priv->assoc_network->stats.rssi;
7510                 priv->assoc_network->stats.rssi = -128;
7511                 spin_lock_irqsave(&priv->ieee->lock, flags);
7512                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7513                         if (network != priv->assoc_network)
7514                                 ipw_best_network(priv, &match, network, 1);
7515                 }
7516                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7517                 priv->assoc_network->stats.rssi = rssi;
7518
7519                 if (match.network == priv->assoc_network) {
7520                         IPW_DEBUG_ASSOC("No better APs in this network to "
7521                                         "roam to.\n");
7522                         priv->status &= ~STATUS_ROAMING;
7523                         ipw_debug_config(priv);
7524                         return;
7525                 }
7526
7527                 ipw_send_disassociate(priv, 1);
7528                 priv->assoc_network = match.network;
7529
7530                 return;
7531         }
7532
7533         /* Second pass through ROAM process -- request association */
7534         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7535         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7536         priv->status &= ~STATUS_ROAMING;
7537 }
7538
7539 static void ipw_bg_roam(struct work_struct *work)
7540 {
7541         struct ipw_priv *priv =
7542                 container_of(work, struct ipw_priv, roam);
7543         mutex_lock(&priv->mutex);
7544         ipw_roam(priv);
7545         mutex_unlock(&priv->mutex);
7546 }
7547
7548 static int ipw_associate(void *data)
7549 {
7550         struct ipw_priv *priv = data;
7551
7552         struct ieee80211_network *network = NULL;
7553         struct ipw_network_match match = {
7554                 .network = NULL
7555         };
7556         struct ipw_supported_rates *rates;
7557         struct list_head *element;
7558         unsigned long flags;
7559
7560         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7561                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7562                 return 0;
7563         }
7564
7565         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7566                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7567                                 "progress)\n");
7568                 return 0;
7569         }
7570
7571         if (priv->status & STATUS_DISASSOCIATING) {
7572                 IPW_DEBUG_ASSOC("Not attempting association (in "
7573                                 "disassociating)\n ");
7574                 queue_work(priv->workqueue, &priv->associate);
7575                 return 0;
7576         }
7577
7578         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7579                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7580                                 "initialized)\n");
7581                 return 0;
7582         }
7583
7584         if (!(priv->config & CFG_ASSOCIATE) &&
7585             !(priv->config & (CFG_STATIC_ESSID |
7586                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7587                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7588                 return 0;
7589         }
7590
7591         /* Protect our use of the network_list */
7592         spin_lock_irqsave(&priv->ieee->lock, flags);
7593         list_for_each_entry(network, &priv->ieee->network_list, list)
7594             ipw_best_network(priv, &match, network, 0);
7595
7596         network = match.network;
7597         rates = &match.rates;
7598
7599         if (network == NULL &&
7600             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7601             priv->config & CFG_ADHOC_CREATE &&
7602             priv->config & CFG_STATIC_ESSID &&
7603             priv->config & CFG_STATIC_CHANNEL) {
7604                 /* Use oldest network if the free list is empty */
7605                 if (list_empty(&priv->ieee->network_free_list)) {
7606                         struct ieee80211_network *oldest = NULL;
7607                         struct ieee80211_network *target;
7608                         DECLARE_MAC_BUF(mac);
7609
7610                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7611                                 if ((oldest == NULL) ||
7612                                     (target->last_scanned < oldest->last_scanned))
7613                                         oldest = target;
7614                         }
7615
7616                         /* If there are no more slots, expire the oldest */
7617                         list_del(&oldest->list);
7618                         target = oldest;
7619                         IPW_DEBUG_ASSOC("Expired '%s' (%s) from "
7620                                         "network list.\n",
7621                                         escape_essid(target->ssid,
7622                                                      target->ssid_len),
7623                                         print_mac(mac, target->bssid));
7624                         list_add_tail(&target->list,
7625                                       &priv->ieee->network_free_list);
7626                 }
7627
7628                 element = priv->ieee->network_free_list.next;
7629                 network = list_entry(element, struct ieee80211_network, list);
7630                 ipw_adhoc_create(priv, network);
7631                 rates = &priv->rates;
7632                 list_del(element);
7633                 list_add_tail(&network->list, &priv->ieee->network_list);
7634         }
7635         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7636
7637         /* If we reached the end of the list, then we don't have any valid
7638          * matching APs */
7639         if (!network) {
7640                 ipw_debug_config(priv);
7641
7642                 if (!(priv->status & STATUS_SCANNING)) {
7643                         if (!(priv->config & CFG_SPEED_SCAN))
7644                                 queue_delayed_work(priv->workqueue,
7645                                                    &priv->request_scan,
7646                                                    SCAN_INTERVAL);
7647                         else
7648                                 queue_delayed_work(priv->workqueue,
7649                                                    &priv->request_scan, 0);
7650                 }
7651
7652                 return 0;
7653         }
7654
7655         ipw_associate_network(priv, network, rates, 0);
7656
7657         return 1;
7658 }
7659
7660 static void ipw_bg_associate(struct work_struct *work)
7661 {
7662         struct ipw_priv *priv =
7663                 container_of(work, struct ipw_priv, associate);
7664         mutex_lock(&priv->mutex);
7665         ipw_associate(priv);
7666         mutex_unlock(&priv->mutex);
7667 }
7668
7669 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7670                                       struct sk_buff *skb)
7671 {
7672         struct ieee80211_hdr *hdr;
7673         u16 fc;
7674
7675         hdr = (struct ieee80211_hdr *)skb->data;
7676         fc = le16_to_cpu(hdr->frame_ctl);
7677         if (!(fc & IEEE80211_FCTL_PROTECTED))
7678                 return;
7679
7680         fc &= ~IEEE80211_FCTL_PROTECTED;
7681         hdr->frame_ctl = cpu_to_le16(fc);
7682         switch (priv->ieee->sec.level) {
7683         case SEC_LEVEL_3:
7684                 /* Remove CCMP HDR */
7685                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7686                         skb->data + IEEE80211_3ADDR_LEN + 8,
7687                         skb->len - IEEE80211_3ADDR_LEN - 8);
7688                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7689                 break;
7690         case SEC_LEVEL_2:
7691                 break;
7692         case SEC_LEVEL_1:
7693                 /* Remove IV */
7694                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7695                         skb->data + IEEE80211_3ADDR_LEN + 4,
7696                         skb->len - IEEE80211_3ADDR_LEN - 4);
7697                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7698                 break;
7699         case SEC_LEVEL_0:
7700                 break;
7701         default:
7702                 printk(KERN_ERR "Unknow security level %d\n",
7703                        priv->ieee->sec.level);
7704                 break;
7705         }
7706 }
7707
7708 static void ipw_handle_data_packet(struct ipw_priv *priv,
7709                                    struct ipw_rx_mem_buffer *rxb,
7710                                    struct ieee80211_rx_stats *stats)
7711 {
7712         struct ieee80211_hdr_4addr *hdr;
7713         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7714
7715         /* We received data from the HW, so stop the watchdog */
7716         priv->net_dev->trans_start = jiffies;
7717
7718         /* We only process data packets if the
7719          * interface is open */
7720         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7721                      skb_tailroom(rxb->skb))) {
7722                 priv->ieee->stats.rx_errors++;
7723                 priv->wstats.discard.misc++;
7724                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7725                 return;
7726         } else if (unlikely(!netif_running(priv->net_dev))) {
7727                 priv->ieee->stats.rx_dropped++;
7728                 priv->wstats.discard.misc++;
7729                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7730                 return;
7731         }
7732
7733         /* Advance skb->data to the start of the actual payload */
7734         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7735
7736         /* Set the size of the skb to the size of the frame */
7737         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7738
7739         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7740
7741         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7742         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7743         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7744             (is_multicast_ether_addr(hdr->addr1) ?
7745              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7746                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7747
7748         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7749                 priv->ieee->stats.rx_errors++;
7750         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7751                 rxb->skb = NULL;
7752                 __ipw_led_activity_on(priv);
7753         }
7754 }
7755
7756 #ifdef CONFIG_IPW2200_RADIOTAP
7757 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7758                                            struct ipw_rx_mem_buffer *rxb,
7759                                            struct ieee80211_rx_stats *stats)
7760 {
7761         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7762         struct ipw_rx_frame *frame = &pkt->u.frame;
7763
7764         /* initial pull of some data */
7765         u16 received_channel = frame->received_channel;
7766         u8 antennaAndPhy = frame->antennaAndPhy;
7767         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7768         u16 pktrate = frame->rate;
7769
7770         /* Magic struct that slots into the radiotap header -- no reason
7771          * to build this manually element by element, we can write it much
7772          * more efficiently than we can parse it. ORDER MATTERS HERE */
7773         struct ipw_rt_hdr *ipw_rt;
7774
7775         short len = le16_to_cpu(pkt->u.frame.length);
7776
7777         /* We received data from the HW, so stop the watchdog */
7778         priv->net_dev->trans_start = jiffies;
7779
7780         /* We only process data packets if the
7781          * interface is open */
7782         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7783                      skb_tailroom(rxb->skb))) {
7784                 priv->ieee->stats.rx_errors++;
7785                 priv->wstats.discard.misc++;
7786                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7787                 return;
7788         } else if (unlikely(!netif_running(priv->net_dev))) {
7789                 priv->ieee->stats.rx_dropped++;
7790                 priv->wstats.discard.misc++;
7791                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7792                 return;
7793         }
7794
7795         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7796          * that now */
7797         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7798                 /* FIXME: Should alloc bigger skb instead */
7799                 priv->ieee->stats.rx_dropped++;
7800                 priv->wstats.discard.misc++;
7801                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7802                 return;
7803         }
7804
7805         /* copy the frame itself */
7806         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7807                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7808
7809         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7810          * part of our real header, saves a little time.
7811          *
7812          * No longer necessary since we fill in all our data.  Purge before merging
7813          * patch officially.
7814          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7815          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7816          */
7817
7818         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7819
7820         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7821         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7822         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7823
7824         /* Big bitfield of all the fields we provide in radiotap */
7825         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7826              (1 << IEEE80211_RADIOTAP_TSFT) |
7827              (1 << IEEE80211_RADIOTAP_FLAGS) |
7828              (1 << IEEE80211_RADIOTAP_RATE) |
7829              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7830              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7831              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7832              (1 << IEEE80211_RADIOTAP_ANTENNA));
7833
7834         /* Zero the flags, we'll add to them as we go */
7835         ipw_rt->rt_flags = 0;
7836         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7837                                frame->parent_tsf[2] << 16 |
7838                                frame->parent_tsf[1] << 8  |
7839                                frame->parent_tsf[0]);
7840
7841         /* Convert signal to DBM */
7842         ipw_rt->rt_dbmsignal = antsignal;
7843         ipw_rt->rt_dbmnoise = frame->noise;
7844
7845         /* Convert the channel data and set the flags */
7846         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7847         if (received_channel > 14) {    /* 802.11a */
7848                 ipw_rt->rt_chbitmask =
7849                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7850         } else if (antennaAndPhy & 32) {        /* 802.11b */
7851                 ipw_rt->rt_chbitmask =
7852                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7853         } else {                /* 802.11g */
7854                 ipw_rt->rt_chbitmask =
7855                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7856         }
7857
7858         /* set the rate in multiples of 500k/s */
7859         switch (pktrate) {
7860         case IPW_TX_RATE_1MB:
7861                 ipw_rt->rt_rate = 2;
7862                 break;
7863         case IPW_TX_RATE_2MB:
7864                 ipw_rt->rt_rate = 4;
7865                 break;
7866         case IPW_TX_RATE_5MB:
7867                 ipw_rt->rt_rate = 10;
7868                 break;
7869         case IPW_TX_RATE_6MB:
7870                 ipw_rt->rt_rate = 12;
7871                 break;
7872         case IPW_TX_RATE_9MB:
7873                 ipw_rt->rt_rate = 18;
7874                 break;
7875         case IPW_TX_RATE_11MB:
7876                 ipw_rt->rt_rate = 22;
7877                 break;
7878         case IPW_TX_RATE_12MB:
7879                 ipw_rt->rt_rate = 24;
7880                 break;
7881         case IPW_TX_RATE_18MB:
7882                 ipw_rt->rt_rate = 36;
7883                 break;
7884         case IPW_TX_RATE_24MB:
7885                 ipw_rt->rt_rate = 48;
7886                 break;
7887         case IPW_TX_RATE_36MB:
7888                 ipw_rt->rt_rate = 72;
7889                 break;
7890         case IPW_TX_RATE_48MB:
7891                 ipw_rt->rt_rate = 96;
7892                 break;
7893         case IPW_TX_RATE_54MB:
7894                 ipw_rt->rt_rate = 108;
7895                 break;
7896         default:
7897                 ipw_rt->rt_rate = 0;
7898                 break;
7899         }
7900
7901         /* antenna number */
7902         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7903
7904         /* set the preamble flag if we have it */
7905         if ((antennaAndPhy & 64))
7906                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7907
7908         /* Set the size of the skb to the size of the frame */
7909         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7910
7911         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7912
7913         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7914                 priv->ieee->stats.rx_errors++;
7915         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7916                 rxb->skb = NULL;
7917                 /* no LED during capture */
7918         }
7919 }
7920 #endif
7921
7922 #ifdef CONFIG_IPW2200_PROMISCUOUS
7923 #define ieee80211_is_probe_response(fc) \
7924    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7925     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7926
7927 #define ieee80211_is_management(fc) \
7928    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7929
7930 #define ieee80211_is_control(fc) \
7931    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7932
7933 #define ieee80211_is_data(fc) \
7934    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7935
7936 #define ieee80211_is_assoc_request(fc) \
7937    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7938
7939 #define ieee80211_is_reassoc_request(fc) \
7940    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7941
7942 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7943                                       struct ipw_rx_mem_buffer *rxb,
7944                                       struct ieee80211_rx_stats *stats)
7945 {
7946         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7947         struct ipw_rx_frame *frame = &pkt->u.frame;
7948         struct ipw_rt_hdr *ipw_rt;
7949
7950         /* First cache any information we need before we overwrite
7951          * the information provided in the skb from the hardware */
7952         struct ieee80211_hdr *hdr;
7953         u16 channel = frame->received_channel;
7954         u8 phy_flags = frame->antennaAndPhy;
7955         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7956         s8 noise = frame->noise;
7957         u8 rate = frame->rate;
7958         short len = le16_to_cpu(pkt->u.frame.length);
7959         struct sk_buff *skb;
7960         int hdr_only = 0;
7961         u16 filter = priv->prom_priv->filter;
7962
7963         /* If the filter is set to not include Rx frames then return */
7964         if (filter & IPW_PROM_NO_RX)
7965                 return;
7966
7967         /* We received data from the HW, so stop the watchdog */
7968         priv->prom_net_dev->trans_start = jiffies;
7969
7970         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7971                 priv->prom_priv->ieee->stats.rx_errors++;
7972                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7973                 return;
7974         }
7975
7976         /* We only process data packets if the interface is open */
7977         if (unlikely(!netif_running(priv->prom_net_dev))) {
7978                 priv->prom_priv->ieee->stats.rx_dropped++;
7979                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7980                 return;
7981         }
7982
7983         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7984          * that now */
7985         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7986                 /* FIXME: Should alloc bigger skb instead */
7987                 priv->prom_priv->ieee->stats.rx_dropped++;
7988                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7989                 return;
7990         }
7991
7992         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7993         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7994                 if (filter & IPW_PROM_NO_MGMT)
7995                         return;
7996                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7997                         hdr_only = 1;
7998         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7999                 if (filter & IPW_PROM_NO_CTL)
8000                         return;
8001                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8002                         hdr_only = 1;
8003         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
8004                 if (filter & IPW_PROM_NO_DATA)
8005                         return;
8006                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8007                         hdr_only = 1;
8008         }
8009
8010         /* Copy the SKB since this is for the promiscuous side */
8011         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8012         if (skb == NULL) {
8013                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8014                 return;
8015         }
8016
8017         /* copy the frame data to write after where the radiotap header goes */
8018         ipw_rt = (void *)skb->data;
8019
8020         if (hdr_only)
8021                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8022
8023         memcpy(ipw_rt->payload, hdr, len);
8024
8025         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
8026          * NOT part of our real header, saves a little time.
8027          *
8028          * No longer necessary since we fill in all our data.  Purge before
8029          * merging patch officially.
8030          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8031          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8032          */
8033
8034         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8035         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8036         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8037
8038         /* Set the size of the skb to the size of the frame */
8039         skb_put(skb, sizeof(*ipw_rt) + len);
8040
8041         /* Big bitfield of all the fields we provide in radiotap */
8042         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8043              (1 << IEEE80211_RADIOTAP_TSFT) |
8044              (1 << IEEE80211_RADIOTAP_FLAGS) |
8045              (1 << IEEE80211_RADIOTAP_RATE) |
8046              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8047              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8048              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8049              (1 << IEEE80211_RADIOTAP_ANTENNA));
8050
8051         /* Zero the flags, we'll add to them as we go */
8052         ipw_rt->rt_flags = 0;
8053         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8054                                frame->parent_tsf[2] << 16 |
8055                                frame->parent_tsf[1] << 8  |
8056                                frame->parent_tsf[0]);
8057
8058         /* Convert to DBM */
8059         ipw_rt->rt_dbmsignal = signal;
8060         ipw_rt->rt_dbmnoise = noise;
8061
8062         /* Convert the channel data and set the flags */
8063         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8064         if (channel > 14) {     /* 802.11a */
8065                 ipw_rt->rt_chbitmask =
8066                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8067         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8068                 ipw_rt->rt_chbitmask =
8069                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8070         } else {                /* 802.11g */
8071                 ipw_rt->rt_chbitmask =
8072                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8073         }
8074
8075         /* set the rate in multiples of 500k/s */
8076         switch (rate) {
8077         case IPW_TX_RATE_1MB:
8078                 ipw_rt->rt_rate = 2;
8079                 break;
8080         case IPW_TX_RATE_2MB:
8081                 ipw_rt->rt_rate = 4;
8082                 break;
8083         case IPW_TX_RATE_5MB:
8084                 ipw_rt->rt_rate = 10;
8085                 break;
8086         case IPW_TX_RATE_6MB:
8087                 ipw_rt->rt_rate = 12;
8088                 break;
8089         case IPW_TX_RATE_9MB:
8090                 ipw_rt->rt_rate = 18;
8091                 break;
8092         case IPW_TX_RATE_11MB:
8093                 ipw_rt->rt_rate = 22;
8094                 break;
8095         case IPW_TX_RATE_12MB:
8096                 ipw_rt->rt_rate = 24;
8097                 break;
8098         case IPW_TX_RATE_18MB:
8099                 ipw_rt->rt_rate = 36;
8100                 break;
8101         case IPW_TX_RATE_24MB:
8102                 ipw_rt->rt_rate = 48;
8103                 break;
8104         case IPW_TX_RATE_36MB:
8105                 ipw_rt->rt_rate = 72;
8106                 break;
8107         case IPW_TX_RATE_48MB:
8108                 ipw_rt->rt_rate = 96;
8109                 break;
8110         case IPW_TX_RATE_54MB:
8111                 ipw_rt->rt_rate = 108;
8112                 break;
8113         default:
8114                 ipw_rt->rt_rate = 0;
8115                 break;
8116         }
8117
8118         /* antenna number */
8119         ipw_rt->rt_antenna = (phy_flags & 3);
8120
8121         /* set the preamble flag if we have it */
8122         if (phy_flags & (1 << 6))
8123                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8124
8125         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8126
8127         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8128                 priv->prom_priv->ieee->stats.rx_errors++;
8129                 dev_kfree_skb_any(skb);
8130         }
8131 }
8132 #endif
8133
8134 static int is_network_packet(struct ipw_priv *priv,
8135                                     struct ieee80211_hdr_4addr *header)
8136 {
8137         /* Filter incoming packets to determine if they are targetted toward
8138          * this network, discarding packets coming from ourselves */
8139         switch (priv->ieee->iw_mode) {
8140         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8141                 /* packets from our adapter are dropped (echo) */
8142                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8143                         return 0;
8144
8145                 /* {broad,multi}cast packets to our BSSID go through */
8146                 if (is_multicast_ether_addr(header->addr1))
8147                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8148
8149                 /* packets to our adapter go through */
8150                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8151                                ETH_ALEN);
8152
8153         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8154                 /* packets from our adapter are dropped (echo) */
8155                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8156                         return 0;
8157
8158                 /* {broad,multi}cast packets to our BSS go through */
8159                 if (is_multicast_ether_addr(header->addr1))
8160                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8161
8162                 /* packets to our adapter go through */
8163                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8164                                ETH_ALEN);
8165         }
8166
8167         return 1;
8168 }
8169
8170 #define IPW_PACKET_RETRY_TIME HZ
8171
8172 static  int is_duplicate_packet(struct ipw_priv *priv,
8173                                       struct ieee80211_hdr_4addr *header)
8174 {
8175         u16 sc = le16_to_cpu(header->seq_ctl);
8176         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8177         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8178         u16 *last_seq, *last_frag;
8179         unsigned long *last_time;
8180
8181         switch (priv->ieee->iw_mode) {
8182         case IW_MODE_ADHOC:
8183                 {
8184                         struct list_head *p;
8185                         struct ipw_ibss_seq *entry = NULL;
8186                         u8 *mac = header->addr2;
8187                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8188
8189                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8190                                 entry =
8191                                     list_entry(p, struct ipw_ibss_seq, list);
8192                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8193                                         break;
8194                         }
8195                         if (p == &priv->ibss_mac_hash[index]) {
8196                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8197                                 if (!entry) {
8198                                         IPW_ERROR
8199                                             ("Cannot malloc new mac entry\n");
8200                                         return 0;
8201                                 }
8202                                 memcpy(entry->mac, mac, ETH_ALEN);
8203                                 entry->seq_num = seq;
8204                                 entry->frag_num = frag;
8205                                 entry->packet_time = jiffies;
8206                                 list_add(&entry->list,
8207                                          &priv->ibss_mac_hash[index]);
8208                                 return 0;
8209                         }
8210                         last_seq = &entry->seq_num;
8211                         last_frag = &entry->frag_num;
8212                         last_time = &entry->packet_time;
8213                         break;
8214                 }
8215         case IW_MODE_INFRA:
8216                 last_seq = &priv->last_seq_num;
8217                 last_frag = &priv->last_frag_num;
8218                 last_time = &priv->last_packet_time;
8219                 break;
8220         default:
8221                 return 0;
8222         }
8223         if ((*last_seq == seq) &&
8224             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8225                 if (*last_frag == frag)
8226                         goto drop;
8227                 if (*last_frag + 1 != frag)
8228                         /* out-of-order fragment */
8229                         goto drop;
8230         } else
8231                 *last_seq = seq;
8232
8233         *last_frag = frag;
8234         *last_time = jiffies;
8235         return 0;
8236
8237       drop:
8238         /* Comment this line now since we observed the card receives
8239          * duplicate packets but the FCTL_RETRY bit is not set in the
8240          * IBSS mode with fragmentation enabled.
8241          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8242         return 1;
8243 }
8244
8245 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8246                                    struct ipw_rx_mem_buffer *rxb,
8247                                    struct ieee80211_rx_stats *stats)
8248 {
8249         struct sk_buff *skb = rxb->skb;
8250         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8251         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8252             (skb->data + IPW_RX_FRAME_SIZE);
8253
8254         ieee80211_rx_mgt(priv->ieee, header, stats);
8255
8256         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8257             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8258               IEEE80211_STYPE_PROBE_RESP) ||
8259              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8260               IEEE80211_STYPE_BEACON))) {
8261                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8262                         ipw_add_station(priv, header->addr2);
8263         }
8264
8265         if (priv->config & CFG_NET_STATS) {
8266                 IPW_DEBUG_HC("sending stat packet\n");
8267
8268                 /* Set the size of the skb to the size of the full
8269                  * ipw header and 802.11 frame */
8270                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8271                         IPW_RX_FRAME_SIZE);
8272
8273                 /* Advance past the ipw packet header to the 802.11 frame */
8274                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8275
8276                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8277                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8278
8279                 skb->dev = priv->ieee->dev;
8280
8281                 /* Point raw at the ieee80211_stats */
8282                 skb_reset_mac_header(skb);
8283
8284                 skb->pkt_type = PACKET_OTHERHOST;
8285                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8286                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8287                 netif_rx(skb);
8288                 rxb->skb = NULL;
8289         }
8290 }
8291
8292 /*
8293  * Main entry function for recieving a packet with 80211 headers.  This
8294  * should be called when ever the FW has notified us that there is a new
8295  * skb in the recieve queue.
8296  */
8297 static void ipw_rx(struct ipw_priv *priv)
8298 {
8299         struct ipw_rx_mem_buffer *rxb;
8300         struct ipw_rx_packet *pkt;
8301         struct ieee80211_hdr_4addr *header;
8302         u32 r, w, i;
8303         u8 network_packet;
8304         u8 fill_rx = 0;
8305         DECLARE_MAC_BUF(mac);
8306         DECLARE_MAC_BUF(mac2);
8307         DECLARE_MAC_BUF(mac3);
8308
8309         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8310         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8311         i = priv->rxq->read;
8312
8313         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8314                 fill_rx = 1;
8315
8316         while (i != r) {
8317                 rxb = priv->rxq->queue[i];
8318                 if (unlikely(rxb == NULL)) {
8319                         printk(KERN_CRIT "Queue not allocated!\n");
8320                         break;
8321                 }
8322                 priv->rxq->queue[i] = NULL;
8323
8324                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8325                                             IPW_RX_BUF_SIZE,
8326                                             PCI_DMA_FROMDEVICE);
8327
8328                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8329                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8330                              pkt->header.message_type,
8331                              pkt->header.rx_seq_num, pkt->header.control_bits);
8332
8333                 switch (pkt->header.message_type) {
8334                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8335                                 struct ieee80211_rx_stats stats = {
8336                                         .rssi = pkt->u.frame.rssi_dbm -
8337                                             IPW_RSSI_TO_DBM,
8338                                         .signal =
8339                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8340                                             IPW_RSSI_TO_DBM + 0x100,
8341                                         .noise =
8342                                             le16_to_cpu(pkt->u.frame.noise),
8343                                         .rate = pkt->u.frame.rate,
8344                                         .mac_time = jiffies,
8345                                         .received_channel =
8346                                             pkt->u.frame.received_channel,
8347                                         .freq =
8348                                             (pkt->u.frame.
8349                                              control & (1 << 0)) ?
8350                                             IEEE80211_24GHZ_BAND :
8351                                             IEEE80211_52GHZ_BAND,
8352                                         .len = le16_to_cpu(pkt->u.frame.length),
8353                                 };
8354
8355                                 if (stats.rssi != 0)
8356                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8357                                 if (stats.signal != 0)
8358                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8359                                 if (stats.noise != 0)
8360                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8361                                 if (stats.rate != 0)
8362                                         stats.mask |= IEEE80211_STATMASK_RATE;
8363
8364                                 priv->rx_packets++;
8365
8366 #ifdef CONFIG_IPW2200_PROMISCUOUS
8367         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8368                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8369 #endif
8370
8371 #ifdef CONFIG_IPW2200_MONITOR
8372                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8373 #ifdef CONFIG_IPW2200_RADIOTAP
8374
8375                 ipw_handle_data_packet_monitor(priv,
8376                                                rxb,
8377                                                &stats);
8378 #else
8379                 ipw_handle_data_packet(priv, rxb,
8380                                        &stats);
8381 #endif
8382                                         break;
8383                                 }
8384 #endif
8385
8386                                 header =
8387                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8388                                                                    data +
8389                                                                    IPW_RX_FRAME_SIZE);
8390                                 /* TODO: Check Ad-Hoc dest/source and make sure
8391                                  * that we are actually parsing these packets
8392                                  * correctly -- we should probably use the
8393                                  * frame control of the packet and disregard
8394                                  * the current iw_mode */
8395
8396                                 network_packet =
8397                                     is_network_packet(priv, header);
8398                                 if (network_packet && priv->assoc_network) {
8399                                         priv->assoc_network->stats.rssi =
8400                                             stats.rssi;
8401                                         priv->exp_avg_rssi =
8402                                             exponential_average(priv->exp_avg_rssi,
8403                                             stats.rssi, DEPTH_RSSI);
8404                                 }
8405
8406                                 IPW_DEBUG_RX("Frame: len=%u\n",
8407                                              le16_to_cpu(pkt->u.frame.length));
8408
8409                                 if (le16_to_cpu(pkt->u.frame.length) <
8410                                     ieee80211_get_hdrlen(le16_to_cpu(
8411                                                     header->frame_ctl))) {
8412                                         IPW_DEBUG_DROP
8413                                             ("Received packet is too small. "
8414                                              "Dropping.\n");
8415                                         priv->ieee->stats.rx_errors++;
8416                                         priv->wstats.discard.misc++;
8417                                         break;
8418                                 }
8419
8420                                 switch (WLAN_FC_GET_TYPE
8421                                         (le16_to_cpu(header->frame_ctl))) {
8422
8423                                 case IEEE80211_FTYPE_MGMT:
8424                                         ipw_handle_mgmt_packet(priv, rxb,
8425                                                                &stats);
8426                                         break;
8427
8428                                 case IEEE80211_FTYPE_CTL:
8429                                         break;
8430
8431                                 case IEEE80211_FTYPE_DATA:
8432                                         if (unlikely(!network_packet ||
8433                                                      is_duplicate_packet(priv,
8434                                                                          header)))
8435                                         {
8436                                                 IPW_DEBUG_DROP("Dropping: "
8437                                                                "%s, "
8438                                                                "%s, "
8439                                                                "%s\n",
8440                                                                print_mac(mac,
8441                                                                          header->
8442                                                                        addr1),
8443                                                                print_mac(mac2,
8444                                                                          header->
8445                                                                        addr2),
8446                                                                print_mac(mac3,
8447                                                                          header->
8448                                                                        addr3));
8449                                                 break;
8450                                         }
8451
8452                                         ipw_handle_data_packet(priv, rxb,
8453                                                                &stats);
8454
8455                                         break;
8456                                 }
8457                                 break;
8458                         }
8459
8460                 case RX_HOST_NOTIFICATION_TYPE:{
8461                                 IPW_DEBUG_RX
8462                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8463                                      pkt->u.notification.subtype,
8464                                      pkt->u.notification.flags,
8465                                      le16_to_cpu(pkt->u.notification.size));
8466                                 ipw_rx_notification(priv, &pkt->u.notification);
8467                                 break;
8468                         }
8469
8470                 default:
8471                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8472                                      pkt->header.message_type);
8473                         break;
8474                 }
8475
8476                 /* For now we just don't re-use anything.  We can tweak this
8477                  * later to try and re-use notification packets and SKBs that
8478                  * fail to Rx correctly */
8479                 if (rxb->skb != NULL) {
8480                         dev_kfree_skb_any(rxb->skb);
8481                         rxb->skb = NULL;
8482                 }
8483
8484                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8485                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8486                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8487
8488                 i = (i + 1) % RX_QUEUE_SIZE;
8489
8490                 /* If there are a lot of unsued frames, restock the Rx queue
8491                  * so the ucode won't assert */
8492                 if (fill_rx) {
8493                         priv->rxq->read = i;
8494                         ipw_rx_queue_replenish(priv);
8495                 }
8496         }
8497
8498         /* Backtrack one entry */
8499         priv->rxq->read = i;
8500         ipw_rx_queue_restock(priv);
8501 }
8502
8503 #define DEFAULT_RTS_THRESHOLD     2304U
8504 #define MIN_RTS_THRESHOLD         1U
8505 #define MAX_RTS_THRESHOLD         2304U
8506 #define DEFAULT_BEACON_INTERVAL   100U
8507 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8508 #define DEFAULT_LONG_RETRY_LIMIT  4U
8509
8510 /**
8511  * ipw_sw_reset
8512  * @option: options to control different reset behaviour
8513  *          0 = reset everything except the 'disable' module_param
8514  *          1 = reset everything and print out driver info (for probe only)
8515  *          2 = reset everything
8516  */
8517 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8518 {
8519         int band, modulation;
8520         int old_mode = priv->ieee->iw_mode;
8521
8522         /* Initialize module parameter values here */
8523         priv->config = 0;
8524
8525         /* We default to disabling the LED code as right now it causes
8526          * too many systems to lock up... */
8527         if (!led)
8528                 priv->config |= CFG_NO_LED;
8529
8530         if (associate)
8531                 priv->config |= CFG_ASSOCIATE;
8532         else
8533                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8534
8535         if (auto_create)
8536                 priv->config |= CFG_ADHOC_CREATE;
8537         else
8538                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8539
8540         priv->config &= ~CFG_STATIC_ESSID;
8541         priv->essid_len = 0;
8542         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8543
8544         if (disable && option) {
8545                 priv->status |= STATUS_RF_KILL_SW;
8546                 IPW_DEBUG_INFO("Radio disabled.\n");
8547         }
8548
8549         if (channel != 0) {
8550                 priv->config |= CFG_STATIC_CHANNEL;
8551                 priv->channel = channel;
8552                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8553                 /* TODO: Validate that provided channel is in range */
8554         }
8555 #ifdef CONFIG_IPW2200_QOS
8556         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8557                      burst_duration_CCK, burst_duration_OFDM);
8558 #endif                          /* CONFIG_IPW2200_QOS */
8559
8560         switch (mode) {
8561         case 1:
8562                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8563                 priv->net_dev->type = ARPHRD_ETHER;
8564
8565                 break;
8566 #ifdef CONFIG_IPW2200_MONITOR
8567         case 2:
8568                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8569 #ifdef CONFIG_IPW2200_RADIOTAP
8570                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8571 #else
8572                 priv->net_dev->type = ARPHRD_IEEE80211;
8573 #endif
8574                 break;
8575 #endif
8576         default:
8577         case 0:
8578                 priv->net_dev->type = ARPHRD_ETHER;
8579                 priv->ieee->iw_mode = IW_MODE_INFRA;
8580                 break;
8581         }
8582
8583         if (hwcrypto) {
8584                 priv->ieee->host_encrypt = 0;
8585                 priv->ieee->host_encrypt_msdu = 0;
8586                 priv->ieee->host_decrypt = 0;
8587                 priv->ieee->host_mc_decrypt = 0;
8588         }
8589         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8590
8591         /* IPW2200/2915 is abled to do hardware fragmentation. */
8592         priv->ieee->host_open_frag = 0;
8593
8594         if ((priv->pci_dev->device == 0x4223) ||
8595             (priv->pci_dev->device == 0x4224)) {
8596                 if (option == 1)
8597                         printk(KERN_INFO DRV_NAME
8598                                ": Detected Intel PRO/Wireless 2915ABG Network "
8599                                "Connection\n");
8600                 priv->ieee->abg_true = 1;
8601                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8602                 modulation = IEEE80211_OFDM_MODULATION |
8603                     IEEE80211_CCK_MODULATION;
8604                 priv->adapter = IPW_2915ABG;
8605                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8606         } else {
8607                 if (option == 1)
8608                         printk(KERN_INFO DRV_NAME
8609                                ": Detected Intel PRO/Wireless 2200BG Network "
8610                                "Connection\n");
8611
8612                 priv->ieee->abg_true = 0;
8613                 band = IEEE80211_24GHZ_BAND;
8614                 modulation = IEEE80211_OFDM_MODULATION |
8615                     IEEE80211_CCK_MODULATION;
8616                 priv->adapter = IPW_2200BG;
8617                 priv->ieee->mode = IEEE_G | IEEE_B;
8618         }
8619
8620         priv->ieee->freq_band = band;
8621         priv->ieee->modulation = modulation;
8622
8623         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8624
8625         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8626         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8627
8628         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8629         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8630         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8631
8632         /* If power management is turned on, default to AC mode */
8633         priv->power_mode = IPW_POWER_AC;
8634         priv->tx_power = IPW_TX_POWER_DEFAULT;
8635
8636         return old_mode == priv->ieee->iw_mode;
8637 }
8638
8639 /*
8640  * This file defines the Wireless Extension handlers.  It does not
8641  * define any methods of hardware manipulation and relies on the
8642  * functions defined in ipw_main to provide the HW interaction.
8643  *
8644  * The exception to this is the use of the ipw_get_ordinal()
8645  * function used to poll the hardware vs. making unecessary calls.
8646  *
8647  */
8648
8649 static int ipw_wx_get_name(struct net_device *dev,
8650                            struct iw_request_info *info,
8651                            union iwreq_data *wrqu, char *extra)
8652 {
8653         struct ipw_priv *priv = ieee80211_priv(dev);
8654         mutex_lock(&priv->mutex);
8655         if (priv->status & STATUS_RF_KILL_MASK)
8656                 strcpy(wrqu->name, "radio off");
8657         else if (!(priv->status & STATUS_ASSOCIATED))
8658                 strcpy(wrqu->name, "unassociated");
8659         else
8660                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8661                          ipw_modes[priv->assoc_request.ieee_mode]);
8662         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8663         mutex_unlock(&priv->mutex);
8664         return 0;
8665 }
8666
8667 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8668 {
8669         if (channel == 0) {
8670                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8671                 priv->config &= ~CFG_STATIC_CHANNEL;
8672                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8673                                 "parameters.\n");
8674                 ipw_associate(priv);
8675                 return 0;
8676         }
8677
8678         priv->config |= CFG_STATIC_CHANNEL;
8679
8680         if (priv->channel == channel) {
8681                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8682                                channel);
8683                 return 0;
8684         }
8685
8686         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8687         priv->channel = channel;
8688
8689 #ifdef CONFIG_IPW2200_MONITOR
8690         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8691                 int i;
8692                 if (priv->status & STATUS_SCANNING) {
8693                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8694                                        "channel change.\n");
8695                         ipw_abort_scan(priv);
8696                 }
8697
8698                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8699                         udelay(10);
8700
8701                 if (priv->status & STATUS_SCANNING)
8702                         IPW_DEBUG_SCAN("Still scanning...\n");
8703                 else
8704                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8705                                        1000 - i);
8706
8707                 return 0;
8708         }
8709 #endif                          /* CONFIG_IPW2200_MONITOR */
8710
8711         /* Network configuration changed -- force [re]association */
8712         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8713         if (!ipw_disassociate(priv))
8714                 ipw_associate(priv);
8715
8716         return 0;
8717 }
8718
8719 static int ipw_wx_set_freq(struct net_device *dev,
8720                            struct iw_request_info *info,
8721                            union iwreq_data *wrqu, char *extra)
8722 {
8723         struct ipw_priv *priv = ieee80211_priv(dev);
8724         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8725         struct iw_freq *fwrq = &wrqu->freq;
8726         int ret = 0, i;
8727         u8 channel, flags;
8728         int band;
8729
8730         if (fwrq->m == 0) {
8731                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8732                 mutex_lock(&priv->mutex);
8733                 ret = ipw_set_channel(priv, 0);
8734                 mutex_unlock(&priv->mutex);
8735                 return ret;
8736         }
8737         /* if setting by freq convert to channel */
8738         if (fwrq->e == 1) {
8739                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8740                 if (channel == 0)
8741                         return -EINVAL;
8742         } else
8743                 channel = fwrq->m;
8744
8745         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8746                 return -EINVAL;
8747
8748         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8749                 i = ieee80211_channel_to_index(priv->ieee, channel);
8750                 if (i == -1)
8751                         return -EINVAL;
8752
8753                 flags = (band == IEEE80211_24GHZ_BAND) ?
8754                     geo->bg[i].flags : geo->a[i].flags;
8755                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8756                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8757                         return -EINVAL;
8758                 }
8759         }
8760
8761         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8762         mutex_lock(&priv->mutex);
8763         ret = ipw_set_channel(priv, channel);
8764         mutex_unlock(&priv->mutex);
8765         return ret;
8766 }
8767
8768 static int ipw_wx_get_freq(struct net_device *dev,
8769                            struct iw_request_info *info,
8770                            union iwreq_data *wrqu, char *extra)
8771 {
8772         struct ipw_priv *priv = ieee80211_priv(dev);
8773
8774         wrqu->freq.e = 0;
8775
8776         /* If we are associated, trying to associate, or have a statically
8777          * configured CHANNEL then return that; otherwise return ANY */
8778         mutex_lock(&priv->mutex);
8779         if (priv->config & CFG_STATIC_CHANNEL ||
8780             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8781                 int i;
8782
8783                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8784                 BUG_ON(i == -1);
8785                 wrqu->freq.e = 1;
8786
8787                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8788                 case IEEE80211_52GHZ_BAND:
8789                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8790                         break;
8791
8792                 case IEEE80211_24GHZ_BAND:
8793                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8794                         break;
8795
8796                 default:
8797                         BUG();
8798                 }
8799         } else
8800                 wrqu->freq.m = 0;
8801
8802         mutex_unlock(&priv->mutex);
8803         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8804         return 0;
8805 }
8806
8807 static int ipw_wx_set_mode(struct net_device *dev,
8808                            struct iw_request_info *info,
8809                            union iwreq_data *wrqu, char *extra)
8810 {
8811         struct ipw_priv *priv = ieee80211_priv(dev);
8812         int err = 0;
8813
8814         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8815
8816         switch (wrqu->mode) {
8817 #ifdef CONFIG_IPW2200_MONITOR
8818         case IW_MODE_MONITOR:
8819 #endif
8820         case IW_MODE_ADHOC:
8821         case IW_MODE_INFRA:
8822                 break;
8823         case IW_MODE_AUTO:
8824                 wrqu->mode = IW_MODE_INFRA;
8825                 break;
8826         default:
8827                 return -EINVAL;
8828         }
8829         if (wrqu->mode == priv->ieee->iw_mode)
8830                 return 0;
8831
8832         mutex_lock(&priv->mutex);
8833
8834         ipw_sw_reset(priv, 0);
8835
8836 #ifdef CONFIG_IPW2200_MONITOR
8837         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8838                 priv->net_dev->type = ARPHRD_ETHER;
8839
8840         if (wrqu->mode == IW_MODE_MONITOR)
8841 #ifdef CONFIG_IPW2200_RADIOTAP
8842                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8843 #else
8844                 priv->net_dev->type = ARPHRD_IEEE80211;
8845 #endif
8846 #endif                          /* CONFIG_IPW2200_MONITOR */
8847
8848         /* Free the existing firmware and reset the fw_loaded
8849          * flag so ipw_load() will bring in the new firmawre */
8850         free_firmware();
8851
8852         priv->ieee->iw_mode = wrqu->mode;
8853
8854         queue_work(priv->workqueue, &priv->adapter_restart);
8855         mutex_unlock(&priv->mutex);
8856         return err;
8857 }
8858
8859 static int ipw_wx_get_mode(struct net_device *dev,
8860                            struct iw_request_info *info,
8861                            union iwreq_data *wrqu, char *extra)
8862 {
8863         struct ipw_priv *priv = ieee80211_priv(dev);
8864         mutex_lock(&priv->mutex);
8865         wrqu->mode = priv->ieee->iw_mode;
8866         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8867         mutex_unlock(&priv->mutex);
8868         return 0;
8869 }
8870
8871 /* Values are in microsecond */
8872 static const s32 timeout_duration[] = {
8873         350000,
8874         250000,
8875         75000,
8876         37000,
8877         25000,
8878 };
8879
8880 static const s32 period_duration[] = {
8881         400000,
8882         700000,
8883         1000000,
8884         1000000,
8885         1000000
8886 };
8887
8888 static int ipw_wx_get_range(struct net_device *dev,
8889                             struct iw_request_info *info,
8890                             union iwreq_data *wrqu, char *extra)
8891 {
8892         struct ipw_priv *priv = ieee80211_priv(dev);
8893         struct iw_range *range = (struct iw_range *)extra;
8894         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8895         int i = 0, j;
8896
8897         wrqu->data.length = sizeof(*range);
8898         memset(range, 0, sizeof(*range));
8899
8900         /* 54Mbs == ~27 Mb/s real (802.11g) */
8901         range->throughput = 27 * 1000 * 1000;
8902
8903         range->max_qual.qual = 100;
8904         /* TODO: Find real max RSSI and stick here */
8905         range->max_qual.level = 0;
8906         range->max_qual.noise = 0;
8907         range->max_qual.updated = 7;    /* Updated all three */
8908
8909         range->avg_qual.qual = 70;
8910         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8911         range->avg_qual.level = 0;      /* FIXME to real average level */
8912         range->avg_qual.noise = 0;
8913         range->avg_qual.updated = 7;    /* Updated all three */
8914         mutex_lock(&priv->mutex);
8915         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8916
8917         for (i = 0; i < range->num_bitrates; i++)
8918                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8919                     500000;
8920
8921         range->max_rts = DEFAULT_RTS_THRESHOLD;
8922         range->min_frag = MIN_FRAG_THRESHOLD;
8923         range->max_frag = MAX_FRAG_THRESHOLD;
8924
8925         range->encoding_size[0] = 5;
8926         range->encoding_size[1] = 13;
8927         range->num_encoding_sizes = 2;
8928         range->max_encoding_tokens = WEP_KEYS;
8929
8930         /* Set the Wireless Extension versions */
8931         range->we_version_compiled = WIRELESS_EXT;
8932         range->we_version_source = 18;
8933
8934         i = 0;
8935         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8936                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8937                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8938                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8939                                 continue;
8940
8941                         range->freq[i].i = geo->bg[j].channel;
8942                         range->freq[i].m = geo->bg[j].freq * 100000;
8943                         range->freq[i].e = 1;
8944                         i++;
8945                 }
8946         }
8947
8948         if (priv->ieee->mode & IEEE_A) {
8949                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8950                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8951                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8952                                 continue;
8953
8954                         range->freq[i].i = geo->a[j].channel;
8955                         range->freq[i].m = geo->a[j].freq * 100000;
8956                         range->freq[i].e = 1;
8957                         i++;
8958                 }
8959         }
8960
8961         range->num_channels = i;
8962         range->num_frequency = i;
8963
8964         mutex_unlock(&priv->mutex);
8965
8966         /* Event capability (kernel + driver) */
8967         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8968                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8969                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8970                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8971         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8972
8973         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8974                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8975
8976         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8977
8978         IPW_DEBUG_WX("GET Range\n");
8979         return 0;
8980 }
8981
8982 static int ipw_wx_set_wap(struct net_device *dev,
8983                           struct iw_request_info *info,
8984                           union iwreq_data *wrqu, char *extra)
8985 {
8986         struct ipw_priv *priv = ieee80211_priv(dev);
8987         DECLARE_MAC_BUF(mac);
8988
8989         static const unsigned char any[] = {
8990                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8991         };
8992         static const unsigned char off[] = {
8993                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8994         };
8995
8996         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8997                 return -EINVAL;
8998         mutex_lock(&priv->mutex);
8999         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9000             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9001                 /* we disable mandatory BSSID association */
9002                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9003                 priv->config &= ~CFG_STATIC_BSSID;
9004                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9005                                 "parameters.\n");
9006                 ipw_associate(priv);
9007                 mutex_unlock(&priv->mutex);
9008                 return 0;
9009         }
9010
9011         priv->config |= CFG_STATIC_BSSID;
9012         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9013                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9014                 mutex_unlock(&priv->mutex);
9015                 return 0;
9016         }
9017
9018         IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
9019                      print_mac(mac, wrqu->ap_addr.sa_data));
9020
9021         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9022
9023         /* Network configuration changed -- force [re]association */
9024         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9025         if (!ipw_disassociate(priv))
9026                 ipw_associate(priv);
9027
9028         mutex_unlock(&priv->mutex);
9029         return 0;
9030 }
9031
9032 static int ipw_wx_get_wap(struct net_device *dev,
9033                           struct iw_request_info *info,
9034                           union iwreq_data *wrqu, char *extra)
9035 {
9036         struct ipw_priv *priv = ieee80211_priv(dev);
9037         DECLARE_MAC_BUF(mac);
9038
9039         /* If we are associated, trying to associate, or have a statically
9040          * configured BSSID then return that; otherwise return ANY */
9041         mutex_lock(&priv->mutex);
9042         if (priv->config & CFG_STATIC_BSSID ||
9043             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9044                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9045                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9046         } else
9047                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9048
9049         IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
9050                      print_mac(mac, wrqu->ap_addr.sa_data));
9051         mutex_unlock(&priv->mutex);
9052         return 0;
9053 }
9054
9055 static int ipw_wx_set_essid(struct net_device *dev,
9056                             struct iw_request_info *info,
9057                             union iwreq_data *wrqu, char *extra)
9058 {
9059         struct ipw_priv *priv = ieee80211_priv(dev);
9060         int length;
9061
9062         mutex_lock(&priv->mutex);
9063
9064         if (!wrqu->essid.flags)
9065         {
9066                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9067                 ipw_disassociate(priv);
9068                 priv->config &= ~CFG_STATIC_ESSID;
9069                 ipw_associate(priv);
9070                 mutex_unlock(&priv->mutex);
9071                 return 0;
9072         }
9073
9074         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9075
9076         priv->config |= CFG_STATIC_ESSID;
9077
9078         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9079             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9080                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9081                 mutex_unlock(&priv->mutex);
9082                 return 0;
9083         }
9084
9085         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9086                      length);
9087
9088         priv->essid_len = length;
9089         memcpy(priv->essid, extra, priv->essid_len);
9090
9091         /* Network configuration changed -- force [re]association */
9092         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9093         if (!ipw_disassociate(priv))
9094                 ipw_associate(priv);
9095
9096         mutex_unlock(&priv->mutex);
9097         return 0;
9098 }
9099
9100 static int ipw_wx_get_essid(struct net_device *dev,
9101                             struct iw_request_info *info,
9102                             union iwreq_data *wrqu, char *extra)
9103 {
9104         struct ipw_priv *priv = ieee80211_priv(dev);
9105
9106         /* If we are associated, trying to associate, or have a statically
9107          * configured ESSID then return that; otherwise return ANY */
9108         mutex_lock(&priv->mutex);
9109         if (priv->config & CFG_STATIC_ESSID ||
9110             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9111                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9112                              escape_essid(priv->essid, priv->essid_len));
9113                 memcpy(extra, priv->essid, priv->essid_len);
9114                 wrqu->essid.length = priv->essid_len;
9115                 wrqu->essid.flags = 1;  /* active */
9116         } else {
9117                 IPW_DEBUG_WX("Getting essid: ANY\n");
9118                 wrqu->essid.length = 0;
9119                 wrqu->essid.flags = 0;  /* active */
9120         }
9121         mutex_unlock(&priv->mutex);
9122         return 0;
9123 }
9124
9125 static int ipw_wx_set_nick(struct net_device *dev,
9126                            struct iw_request_info *info,
9127                            union iwreq_data *wrqu, char *extra)
9128 {
9129         struct ipw_priv *priv = ieee80211_priv(dev);
9130
9131         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9132         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9133                 return -E2BIG;
9134         mutex_lock(&priv->mutex);
9135         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9136         memset(priv->nick, 0, sizeof(priv->nick));
9137         memcpy(priv->nick, extra, wrqu->data.length);
9138         IPW_DEBUG_TRACE("<<\n");
9139         mutex_unlock(&priv->mutex);
9140         return 0;
9141
9142 }
9143
9144 static int ipw_wx_get_nick(struct net_device *dev,
9145                            struct iw_request_info *info,
9146                            union iwreq_data *wrqu, char *extra)
9147 {
9148         struct ipw_priv *priv = ieee80211_priv(dev);
9149         IPW_DEBUG_WX("Getting nick\n");
9150         mutex_lock(&priv->mutex);
9151         wrqu->data.length = strlen(priv->nick);
9152         memcpy(extra, priv->nick, wrqu->data.length);
9153         wrqu->data.flags = 1;   /* active */
9154         mutex_unlock(&priv->mutex);
9155         return 0;
9156 }
9157
9158 static int ipw_wx_set_sens(struct net_device *dev,
9159                             struct iw_request_info *info,
9160                             union iwreq_data *wrqu, char *extra)
9161 {
9162         struct ipw_priv *priv = ieee80211_priv(dev);
9163         int err = 0;
9164
9165         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9166         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9167         mutex_lock(&priv->mutex);
9168
9169         if (wrqu->sens.fixed == 0)
9170         {
9171                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9172                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9173                 goto out;
9174         }
9175         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9176             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9177                 err = -EINVAL;
9178                 goto out;
9179         }
9180
9181         priv->roaming_threshold = wrqu->sens.value;
9182         priv->disassociate_threshold = 3*wrqu->sens.value;
9183       out:
9184         mutex_unlock(&priv->mutex);
9185         return err;
9186 }
9187
9188 static int ipw_wx_get_sens(struct net_device *dev,
9189                             struct iw_request_info *info,
9190                             union iwreq_data *wrqu, char *extra)
9191 {
9192         struct ipw_priv *priv = ieee80211_priv(dev);
9193         mutex_lock(&priv->mutex);
9194         wrqu->sens.fixed = 1;
9195         wrqu->sens.value = priv->roaming_threshold;
9196         mutex_unlock(&priv->mutex);
9197
9198         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9199                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9200
9201         return 0;
9202 }
9203
9204 static int ipw_wx_set_rate(struct net_device *dev,
9205                            struct iw_request_info *info,
9206                            union iwreq_data *wrqu, char *extra)
9207 {
9208         /* TODO: We should use semaphores or locks for access to priv */
9209         struct ipw_priv *priv = ieee80211_priv(dev);
9210         u32 target_rate = wrqu->bitrate.value;
9211         u32 fixed, mask;
9212
9213         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9214         /* value = X, fixed = 1 means only rate X */
9215         /* value = X, fixed = 0 means all rates lower equal X */
9216
9217         if (target_rate == -1) {
9218                 fixed = 0;
9219                 mask = IEEE80211_DEFAULT_RATES_MASK;
9220                 /* Now we should reassociate */
9221                 goto apply;
9222         }
9223
9224         mask = 0;
9225         fixed = wrqu->bitrate.fixed;
9226
9227         if (target_rate == 1000000 || !fixed)
9228                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9229         if (target_rate == 1000000)
9230                 goto apply;
9231
9232         if (target_rate == 2000000 || !fixed)
9233                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9234         if (target_rate == 2000000)
9235                 goto apply;
9236
9237         if (target_rate == 5500000 || !fixed)
9238                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9239         if (target_rate == 5500000)
9240                 goto apply;
9241
9242         if (target_rate == 6000000 || !fixed)
9243                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9244         if (target_rate == 6000000)
9245                 goto apply;
9246
9247         if (target_rate == 9000000 || !fixed)
9248                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9249         if (target_rate == 9000000)
9250                 goto apply;
9251
9252         if (target_rate == 11000000 || !fixed)
9253                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9254         if (target_rate == 11000000)
9255                 goto apply;
9256
9257         if (target_rate == 12000000 || !fixed)
9258                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9259         if (target_rate == 12000000)
9260                 goto apply;
9261
9262         if (target_rate == 18000000 || !fixed)
9263                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9264         if (target_rate == 18000000)
9265                 goto apply;
9266
9267         if (target_rate == 24000000 || !fixed)
9268                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9269         if (target_rate == 24000000)
9270                 goto apply;
9271
9272         if (target_rate == 36000000 || !fixed)
9273                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9274         if (target_rate == 36000000)
9275                 goto apply;
9276
9277         if (target_rate == 48000000 || !fixed)
9278                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9279         if (target_rate == 48000000)
9280                 goto apply;
9281
9282         if (target_rate == 54000000 || !fixed)
9283                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9284         if (target_rate == 54000000)
9285                 goto apply;
9286
9287         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9288         return -EINVAL;
9289
9290       apply:
9291         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9292                      mask, fixed ? "fixed" : "sub-rates");
9293         mutex_lock(&priv->mutex);
9294         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9295                 priv->config &= ~CFG_FIXED_RATE;
9296                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9297         } else
9298                 priv->config |= CFG_FIXED_RATE;
9299
9300         if (priv->rates_mask == mask) {
9301                 IPW_DEBUG_WX("Mask set to current mask.\n");
9302                 mutex_unlock(&priv->mutex);
9303                 return 0;
9304         }
9305
9306         priv->rates_mask = mask;
9307
9308         /* Network configuration changed -- force [re]association */
9309         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9310         if (!ipw_disassociate(priv))
9311                 ipw_associate(priv);
9312
9313         mutex_unlock(&priv->mutex);
9314         return 0;
9315 }
9316
9317 static int ipw_wx_get_rate(struct net_device *dev,
9318                            struct iw_request_info *info,
9319                            union iwreq_data *wrqu, char *extra)
9320 {
9321         struct ipw_priv *priv = ieee80211_priv(dev);
9322         mutex_lock(&priv->mutex);
9323         wrqu->bitrate.value = priv->last_rate;
9324         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9325         mutex_unlock(&priv->mutex);
9326         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9327         return 0;
9328 }
9329
9330 static int ipw_wx_set_rts(struct net_device *dev,
9331                           struct iw_request_info *info,
9332                           union iwreq_data *wrqu, char *extra)
9333 {
9334         struct ipw_priv *priv = ieee80211_priv(dev);
9335         mutex_lock(&priv->mutex);
9336         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9337                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9338         else {
9339                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9340                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9341                         mutex_unlock(&priv->mutex);
9342                         return -EINVAL;
9343                 }
9344                 priv->rts_threshold = wrqu->rts.value;
9345         }
9346
9347         ipw_send_rts_threshold(priv, priv->rts_threshold);
9348         mutex_unlock(&priv->mutex);
9349         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9350         return 0;
9351 }
9352
9353 static int ipw_wx_get_rts(struct net_device *dev,
9354                           struct iw_request_info *info,
9355                           union iwreq_data *wrqu, char *extra)
9356 {
9357         struct ipw_priv *priv = ieee80211_priv(dev);
9358         mutex_lock(&priv->mutex);
9359         wrqu->rts.value = priv->rts_threshold;
9360         wrqu->rts.fixed = 0;    /* no auto select */
9361         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9362         mutex_unlock(&priv->mutex);
9363         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9364         return 0;
9365 }
9366
9367 static int ipw_wx_set_txpow(struct net_device *dev,
9368                             struct iw_request_info *info,
9369                             union iwreq_data *wrqu, char *extra)
9370 {
9371         struct ipw_priv *priv = ieee80211_priv(dev);
9372         int err = 0;
9373
9374         mutex_lock(&priv->mutex);
9375         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9376                 err = -EINPROGRESS;
9377                 goto out;
9378         }
9379
9380         if (!wrqu->power.fixed)
9381                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9382
9383         if (wrqu->power.flags != IW_TXPOW_DBM) {
9384                 err = -EINVAL;
9385                 goto out;
9386         }
9387
9388         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9389             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9390                 err = -EINVAL;
9391                 goto out;
9392         }
9393
9394         priv->tx_power = wrqu->power.value;
9395         err = ipw_set_tx_power(priv);
9396       out:
9397         mutex_unlock(&priv->mutex);
9398         return err;
9399 }
9400
9401 static int ipw_wx_get_txpow(struct net_device *dev,
9402                             struct iw_request_info *info,
9403                             union iwreq_data *wrqu, char *extra)
9404 {
9405         struct ipw_priv *priv = ieee80211_priv(dev);
9406         mutex_lock(&priv->mutex);
9407         wrqu->power.value = priv->tx_power;
9408         wrqu->power.fixed = 1;
9409         wrqu->power.flags = IW_TXPOW_DBM;
9410         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9411         mutex_unlock(&priv->mutex);
9412
9413         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9414                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9415
9416         return 0;
9417 }
9418
9419 static int ipw_wx_set_frag(struct net_device *dev,
9420                            struct iw_request_info *info,
9421                            union iwreq_data *wrqu, char *extra)
9422 {
9423         struct ipw_priv *priv = ieee80211_priv(dev);
9424         mutex_lock(&priv->mutex);
9425         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9426                 priv->ieee->fts = DEFAULT_FTS;
9427         else {
9428                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9429                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9430                         mutex_unlock(&priv->mutex);
9431                         return -EINVAL;
9432                 }
9433
9434                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9435         }
9436
9437         ipw_send_frag_threshold(priv, wrqu->frag.value);
9438         mutex_unlock(&priv->mutex);
9439         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9440         return 0;
9441 }
9442
9443 static int ipw_wx_get_frag(struct net_device *dev,
9444                            struct iw_request_info *info,
9445                            union iwreq_data *wrqu, char *extra)
9446 {
9447         struct ipw_priv *priv = ieee80211_priv(dev);
9448         mutex_lock(&priv->mutex);
9449         wrqu->frag.value = priv->ieee->fts;
9450         wrqu->frag.fixed = 0;   /* no auto select */
9451         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9452         mutex_unlock(&priv->mutex);
9453         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9454
9455         return 0;
9456 }
9457
9458 static int ipw_wx_set_retry(struct net_device *dev,
9459                             struct iw_request_info *info,
9460                             union iwreq_data *wrqu, char *extra)
9461 {
9462         struct ipw_priv *priv = ieee80211_priv(dev);
9463
9464         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9465                 return -EINVAL;
9466
9467         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9468                 return 0;
9469
9470         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9471                 return -EINVAL;
9472
9473         mutex_lock(&priv->mutex);
9474         if (wrqu->retry.flags & IW_RETRY_SHORT)
9475                 priv->short_retry_limit = (u8) wrqu->retry.value;
9476         else if (wrqu->retry.flags & IW_RETRY_LONG)
9477                 priv->long_retry_limit = (u8) wrqu->retry.value;
9478         else {
9479                 priv->short_retry_limit = (u8) wrqu->retry.value;
9480                 priv->long_retry_limit = (u8) wrqu->retry.value;
9481         }
9482
9483         ipw_send_retry_limit(priv, priv->short_retry_limit,
9484                              priv->long_retry_limit);
9485         mutex_unlock(&priv->mutex);
9486         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9487                      priv->short_retry_limit, priv->long_retry_limit);
9488         return 0;
9489 }
9490
9491 static int ipw_wx_get_retry(struct net_device *dev,
9492                             struct iw_request_info *info,
9493                             union iwreq_data *wrqu, char *extra)
9494 {
9495         struct ipw_priv *priv = ieee80211_priv(dev);
9496
9497         mutex_lock(&priv->mutex);
9498         wrqu->retry.disabled = 0;
9499
9500         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9501                 mutex_unlock(&priv->mutex);
9502                 return -EINVAL;
9503         }
9504
9505         if (wrqu->retry.flags & IW_RETRY_LONG) {
9506                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9507                 wrqu->retry.value = priv->long_retry_limit;
9508         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9509                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9510                 wrqu->retry.value = priv->short_retry_limit;
9511         } else {
9512                 wrqu->retry.flags = IW_RETRY_LIMIT;
9513                 wrqu->retry.value = priv->short_retry_limit;
9514         }
9515         mutex_unlock(&priv->mutex);
9516
9517         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9518
9519         return 0;
9520 }
9521
9522 static int ipw_wx_set_scan(struct net_device *dev,
9523                            struct iw_request_info *info,
9524                            union iwreq_data *wrqu, char *extra)
9525 {
9526         struct ipw_priv *priv = ieee80211_priv(dev);
9527         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9528         struct delayed_work *work = NULL;
9529
9530         mutex_lock(&priv->mutex);
9531
9532         priv->user_requested_scan = 1;
9533
9534         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9535                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9536                         int len = min((int)req->essid_len,
9537                                       (int)sizeof(priv->direct_scan_ssid));
9538                         memcpy(priv->direct_scan_ssid, req->essid, len);
9539                         priv->direct_scan_ssid_len = len;
9540                         work = &priv->request_direct_scan;
9541                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9542                         work = &priv->request_passive_scan;
9543                 }
9544         } else {
9545                 /* Normal active broadcast scan */
9546                 work = &priv->request_scan;
9547         }
9548
9549         mutex_unlock(&priv->mutex);
9550
9551         IPW_DEBUG_WX("Start scan\n");
9552
9553         queue_delayed_work(priv->workqueue, work, 0);
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_get_scan(struct net_device *dev,
9559                            struct iw_request_info *info,
9560                            union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9564 }
9565
9566 static int ipw_wx_set_encode(struct net_device *dev,
9567                              struct iw_request_info *info,
9568                              union iwreq_data *wrqu, char *key)
9569 {
9570         struct ipw_priv *priv = ieee80211_priv(dev);
9571         int ret;
9572         u32 cap = priv->capability;
9573
9574         mutex_lock(&priv->mutex);
9575         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9576
9577         /* In IBSS mode, we need to notify the firmware to update
9578          * the beacon info after we changed the capability. */
9579         if (cap != priv->capability &&
9580             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9581             priv->status & STATUS_ASSOCIATED)
9582                 ipw_disassociate(priv);
9583
9584         mutex_unlock(&priv->mutex);
9585         return ret;
9586 }
9587
9588 static int ipw_wx_get_encode(struct net_device *dev,
9589                              struct iw_request_info *info,
9590                              union iwreq_data *wrqu, char *key)
9591 {
9592         struct ipw_priv *priv = ieee80211_priv(dev);
9593         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9594 }
9595
9596 static int ipw_wx_set_power(struct net_device *dev,
9597                             struct iw_request_info *info,
9598                             union iwreq_data *wrqu, char *extra)
9599 {
9600         struct ipw_priv *priv = ieee80211_priv(dev);
9601         int err;
9602         mutex_lock(&priv->mutex);
9603         if (wrqu->power.disabled) {
9604                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9605                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606                 if (err) {
9607                         IPW_DEBUG_WX("failed setting power mode.\n");
9608                         mutex_unlock(&priv->mutex);
9609                         return err;
9610                 }
9611                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9612                 mutex_unlock(&priv->mutex);
9613                 return 0;
9614         }
9615
9616         switch (wrqu->power.flags & IW_POWER_MODE) {
9617         case IW_POWER_ON:       /* If not specified */
9618         case IW_POWER_MODE:     /* If set all mask */
9619         case IW_POWER_ALL_R:    /* If explicitly state all */
9620                 break;
9621         default:                /* Otherwise we don't support it */
9622                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623                              wrqu->power.flags);
9624                 mutex_unlock(&priv->mutex);
9625                 return -EOPNOTSUPP;
9626         }
9627
9628         /* If the user hasn't specified a power management mode yet, default
9629          * to BATTERY */
9630         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9631                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632         else
9633                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9634
9635         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636         if (err) {
9637                 IPW_DEBUG_WX("failed setting power mode.\n");
9638                 mutex_unlock(&priv->mutex);
9639                 return err;
9640         }
9641
9642         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9643         mutex_unlock(&priv->mutex);
9644         return 0;
9645 }
9646
9647 static int ipw_wx_get_power(struct net_device *dev,
9648                             struct iw_request_info *info,
9649                             union iwreq_data *wrqu, char *extra)
9650 {
9651         struct ipw_priv *priv = ieee80211_priv(dev);
9652         mutex_lock(&priv->mutex);
9653         if (!(priv->power_mode & IPW_POWER_ENABLED))
9654                 wrqu->power.disabled = 1;
9655         else
9656                 wrqu->power.disabled = 0;
9657
9658         mutex_unlock(&priv->mutex);
9659         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9660
9661         return 0;
9662 }
9663
9664 static int ipw_wx_set_powermode(struct net_device *dev,
9665                                 struct iw_request_info *info,
9666                                 union iwreq_data *wrqu, char *extra)
9667 {
9668         struct ipw_priv *priv = ieee80211_priv(dev);
9669         int mode = *(int *)extra;
9670         int err;
9671
9672         mutex_lock(&priv->mutex);
9673         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9674                 mode = IPW_POWER_AC;
9675
9676         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9677                 err = ipw_send_power_mode(priv, mode);
9678                 if (err) {
9679                         IPW_DEBUG_WX("failed setting power mode.\n");
9680                         mutex_unlock(&priv->mutex);
9681                         return err;
9682                 }
9683                 priv->power_mode = IPW_POWER_ENABLED | mode;
9684         }
9685         mutex_unlock(&priv->mutex);
9686         return 0;
9687 }
9688
9689 #define MAX_WX_STRING 80
9690 static int ipw_wx_get_powermode(struct net_device *dev,
9691                                 struct iw_request_info *info,
9692                                 union iwreq_data *wrqu, char *extra)
9693 {
9694         struct ipw_priv *priv = ieee80211_priv(dev);
9695         int level = IPW_POWER_LEVEL(priv->power_mode);
9696         char *p = extra;
9697
9698         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9699
9700         switch (level) {
9701         case IPW_POWER_AC:
9702                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703                 break;
9704         case IPW_POWER_BATTERY:
9705                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706                 break;
9707         default:
9708                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9709                               "(Timeout %dms, Period %dms)",
9710                               timeout_duration[level - 1] / 1000,
9711                               period_duration[level - 1] / 1000);
9712         }
9713
9714         if (!(priv->power_mode & IPW_POWER_ENABLED))
9715                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9716
9717         wrqu->data.length = p - extra + 1;
9718
9719         return 0;
9720 }
9721
9722 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9723                                     struct iw_request_info *info,
9724                                     union iwreq_data *wrqu, char *extra)
9725 {
9726         struct ipw_priv *priv = ieee80211_priv(dev);
9727         int mode = *(int *)extra;
9728         u8 band = 0, modulation = 0;
9729
9730         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9731                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732                 return -EINVAL;
9733         }
9734         mutex_lock(&priv->mutex);
9735         if (priv->adapter == IPW_2915ABG) {
9736                 priv->ieee->abg_true = 1;
9737                 if (mode & IEEE_A) {
9738                         band |= IEEE80211_52GHZ_BAND;
9739                         modulation |= IEEE80211_OFDM_MODULATION;
9740                 } else
9741                         priv->ieee->abg_true = 0;
9742         } else {
9743                 if (mode & IEEE_A) {
9744                         IPW_WARNING("Attempt to set 2200BG into "
9745                                     "802.11a mode\n");
9746                         mutex_unlock(&priv->mutex);
9747                         return -EINVAL;
9748                 }
9749
9750                 priv->ieee->abg_true = 0;
9751         }
9752
9753         if (mode & IEEE_B) {
9754                 band |= IEEE80211_24GHZ_BAND;
9755                 modulation |= IEEE80211_CCK_MODULATION;
9756         } else
9757                 priv->ieee->abg_true = 0;
9758
9759         if (mode & IEEE_G) {
9760                 band |= IEEE80211_24GHZ_BAND;
9761                 modulation |= IEEE80211_OFDM_MODULATION;
9762         } else
9763                 priv->ieee->abg_true = 0;
9764
9765         priv->ieee->mode = mode;
9766         priv->ieee->freq_band = band;
9767         priv->ieee->modulation = modulation;
9768         init_supported_rates(priv, &priv->rates);
9769
9770         /* Network configuration changed -- force [re]association */
9771         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9772         if (!ipw_disassociate(priv)) {
9773                 ipw_send_supported_rates(priv, &priv->rates);
9774                 ipw_associate(priv);
9775         }
9776
9777         /* Update the band LEDs */
9778         ipw_led_band_on(priv);
9779
9780         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9781                      mode & IEEE_A ? 'a' : '.',
9782                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9783         mutex_unlock(&priv->mutex);
9784         return 0;
9785 }
9786
9787 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9788                                     struct iw_request_info *info,
9789                                     union iwreq_data *wrqu, char *extra)
9790 {
9791         struct ipw_priv *priv = ieee80211_priv(dev);
9792         mutex_lock(&priv->mutex);
9793         switch (priv->ieee->mode) {
9794         case IEEE_A:
9795                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796                 break;
9797         case IEEE_B:
9798                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799                 break;
9800         case IEEE_A | IEEE_B:
9801                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802                 break;
9803         case IEEE_G:
9804                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805                 break;
9806         case IEEE_A | IEEE_G:
9807                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808                 break;
9809         case IEEE_B | IEEE_G:
9810                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811                 break;
9812         case IEEE_A | IEEE_B | IEEE_G:
9813                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814                 break;
9815         default:
9816                 strncpy(extra, "unknown", MAX_WX_STRING);
9817                 break;
9818         }
9819
9820         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9821
9822         wrqu->data.length = strlen(extra) + 1;
9823         mutex_unlock(&priv->mutex);
9824
9825         return 0;
9826 }
9827
9828 static int ipw_wx_set_preamble(struct net_device *dev,
9829                                struct iw_request_info *info,
9830                                union iwreq_data *wrqu, char *extra)
9831 {
9832         struct ipw_priv *priv = ieee80211_priv(dev);
9833         int mode = *(int *)extra;
9834         mutex_lock(&priv->mutex);
9835         /* Switching from SHORT -> LONG requires a disassociation */
9836         if (mode == 1) {
9837                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9838                         priv->config |= CFG_PREAMBLE_LONG;
9839
9840                         /* Network configuration changed -- force [re]association */
9841                         IPW_DEBUG_ASSOC
9842                             ("[re]association triggered due to preamble change.\n");
9843                         if (!ipw_disassociate(priv))
9844                                 ipw_associate(priv);
9845                 }
9846                 goto done;
9847         }
9848
9849         if (mode == 0) {
9850                 priv->config &= ~CFG_PREAMBLE_LONG;
9851                 goto done;
9852         }
9853         mutex_unlock(&priv->mutex);
9854         return -EINVAL;
9855
9856       done:
9857         mutex_unlock(&priv->mutex);
9858         return 0;
9859 }
9860
9861 static int ipw_wx_get_preamble(struct net_device *dev,
9862                                struct iw_request_info *info,
9863                                union iwreq_data *wrqu, char *extra)
9864 {
9865         struct ipw_priv *priv = ieee80211_priv(dev);
9866         mutex_lock(&priv->mutex);
9867         if (priv->config & CFG_PREAMBLE_LONG)
9868                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869         else
9870                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9871         mutex_unlock(&priv->mutex);
9872         return 0;
9873 }
9874
9875 #ifdef CONFIG_IPW2200_MONITOR
9876 static int ipw_wx_set_monitor(struct net_device *dev,
9877                               struct iw_request_info *info,
9878                               union iwreq_data *wrqu, char *extra)
9879 {
9880         struct ipw_priv *priv = ieee80211_priv(dev);
9881         int *parms = (int *)extra;
9882         int enable = (parms[0] > 0);
9883         mutex_lock(&priv->mutex);
9884         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885         if (enable) {
9886                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9887 #ifdef CONFIG_IPW2200_RADIOTAP
9888                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 #else
9890                         priv->net_dev->type = ARPHRD_IEEE80211;
9891 #endif
9892                         queue_work(priv->workqueue, &priv->adapter_restart);
9893                 }
9894
9895                 ipw_set_channel(priv, parms[1]);
9896         } else {
9897                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9898                         mutex_unlock(&priv->mutex);
9899                         return 0;
9900                 }
9901                 priv->net_dev->type = ARPHRD_ETHER;
9902                 queue_work(priv->workqueue, &priv->adapter_restart);
9903         }
9904         mutex_unlock(&priv->mutex);
9905         return 0;
9906 }
9907
9908 #endif                          /* CONFIG_IPW2200_MONITOR */
9909
9910 static int ipw_wx_reset(struct net_device *dev,
9911                         struct iw_request_info *info,
9912                         union iwreq_data *wrqu, char *extra)
9913 {
9914         struct ipw_priv *priv = ieee80211_priv(dev);
9915         IPW_DEBUG_WX("RESET\n");
9916         queue_work(priv->workqueue, &priv->adapter_restart);
9917         return 0;
9918 }
9919
9920 static int ipw_wx_sw_reset(struct net_device *dev,
9921                            struct iw_request_info *info,
9922                            union iwreq_data *wrqu, char *extra)
9923 {
9924         struct ipw_priv *priv = ieee80211_priv(dev);
9925         union iwreq_data wrqu_sec = {
9926                 .encoding = {
9927                              .flags = IW_ENCODE_DISABLED,
9928                              },
9929         };
9930         int ret;
9931
9932         IPW_DEBUG_WX("SW_RESET\n");
9933
9934         mutex_lock(&priv->mutex);
9935
9936         ret = ipw_sw_reset(priv, 2);
9937         if (!ret) {
9938                 free_firmware();
9939                 ipw_adapter_restart(priv);
9940         }
9941
9942         /* The SW reset bit might have been toggled on by the 'disable'
9943          * module parameter, so take appropriate action */
9944         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9945
9946         mutex_unlock(&priv->mutex);
9947         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9948         mutex_lock(&priv->mutex);
9949
9950         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9951                 /* Configuration likely changed -- force [re]association */
9952                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953                                 "reset.\n");
9954                 if (!ipw_disassociate(priv))
9955                         ipw_associate(priv);
9956         }
9957
9958         mutex_unlock(&priv->mutex);
9959
9960         return 0;
9961 }
9962
9963 /* Rebase the WE IOCTLs to zero for the handler array */
9964 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9965 static iw_handler ipw_wx_handlers[] = {
9966         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9967         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9968         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9969         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9970         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9971         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9972         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9973         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9974         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9975         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9976         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9977         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9978         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9979         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9980         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9981         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9982         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9983         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9984         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9985         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9986         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9987         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9988         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9989         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9990         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9991         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9992         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9993         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9994         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9995         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9996         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9997         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9998         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9999         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10000         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10001         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10002         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10003         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10004         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10005         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10006         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10007 };
10008
10009 enum {
10010         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10011         IPW_PRIV_GET_POWER,
10012         IPW_PRIV_SET_MODE,
10013         IPW_PRIV_GET_MODE,
10014         IPW_PRIV_SET_PREAMBLE,
10015         IPW_PRIV_GET_PREAMBLE,
10016         IPW_PRIV_RESET,
10017         IPW_PRIV_SW_RESET,
10018 #ifdef CONFIG_IPW2200_MONITOR
10019         IPW_PRIV_SET_MONITOR,
10020 #endif
10021 };
10022
10023 static struct iw_priv_args ipw_priv_args[] = {
10024         {
10025          .cmd = IPW_PRIV_SET_POWER,
10026          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10027          .name = "set_power"},
10028         {
10029          .cmd = IPW_PRIV_GET_POWER,
10030          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10031          .name = "get_power"},
10032         {
10033          .cmd = IPW_PRIV_SET_MODE,
10034          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10035          .name = "set_mode"},
10036         {
10037          .cmd = IPW_PRIV_GET_MODE,
10038          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10039          .name = "get_mode"},
10040         {
10041          .cmd = IPW_PRIV_SET_PREAMBLE,
10042          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10043          .name = "set_preamble"},
10044         {
10045          .cmd = IPW_PRIV_GET_PREAMBLE,
10046          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10047          .name = "get_preamble"},
10048         {
10049          IPW_PRIV_RESET,
10050          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10051         {
10052          IPW_PRIV_SW_RESET,
10053          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10054 #ifdef CONFIG_IPW2200_MONITOR
10055         {
10056          IPW_PRIV_SET_MONITOR,
10057          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10058 #endif                          /* CONFIG_IPW2200_MONITOR */
10059 };
10060
10061 static iw_handler ipw_priv_handler[] = {
10062         ipw_wx_set_powermode,
10063         ipw_wx_get_powermode,
10064         ipw_wx_set_wireless_mode,
10065         ipw_wx_get_wireless_mode,
10066         ipw_wx_set_preamble,
10067         ipw_wx_get_preamble,
10068         ipw_wx_reset,
10069         ipw_wx_sw_reset,
10070 #ifdef CONFIG_IPW2200_MONITOR
10071         ipw_wx_set_monitor,
10072 #endif
10073 };
10074
10075 static struct iw_handler_def ipw_wx_handler_def = {
10076         .standard = ipw_wx_handlers,
10077         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10078         .num_private = ARRAY_SIZE(ipw_priv_handler),
10079         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10080         .private = ipw_priv_handler,
10081         .private_args = ipw_priv_args,
10082         .get_wireless_stats = ipw_get_wireless_stats,
10083 };
10084
10085 /*
10086  * Get wireless statistics.
10087  * Called by /proc/net/wireless
10088  * Also called by SIOCGIWSTATS
10089  */
10090 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10091 {
10092         struct ipw_priv *priv = ieee80211_priv(dev);
10093         struct iw_statistics *wstats;
10094
10095         wstats = &priv->wstats;
10096
10097         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10098          * netdev->get_wireless_stats seems to be called before fw is
10099          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10100          * and associated; if not associcated, the values are all meaningless
10101          * anyway, so set them all to NULL and INVALID */
10102         if (!(priv->status & STATUS_ASSOCIATED)) {
10103                 wstats->miss.beacon = 0;
10104                 wstats->discard.retries = 0;
10105                 wstats->qual.qual = 0;
10106                 wstats->qual.level = 0;
10107                 wstats->qual.noise = 0;
10108                 wstats->qual.updated = 7;
10109                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10110                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10111                 return wstats;
10112         }
10113
10114         wstats->qual.qual = priv->quality;
10115         wstats->qual.level = priv->exp_avg_rssi;
10116         wstats->qual.noise = priv->exp_avg_noise;
10117         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10118             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10119
10120         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10121         wstats->discard.retries = priv->last_tx_failures;
10122         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10123
10124 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10125         goto fail_get_ordinal;
10126         wstats->discard.retries += tx_retry; */
10127
10128         return wstats;
10129 }
10130
10131 /* net device stuff */
10132
10133 static  void init_sys_config(struct ipw_sys_config *sys_config)
10134 {
10135         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10136         sys_config->bt_coexistence = 0;
10137         sys_config->answer_broadcast_ssid_probe = 0;
10138         sys_config->accept_all_data_frames = 0;
10139         sys_config->accept_non_directed_frames = 1;
10140         sys_config->exclude_unicast_unencrypted = 0;
10141         sys_config->disable_unicast_decryption = 1;
10142         sys_config->exclude_multicast_unencrypted = 0;
10143         sys_config->disable_multicast_decryption = 1;
10144         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10145                 antenna = CFG_SYS_ANTENNA_BOTH;
10146         sys_config->antenna_diversity = antenna;
10147         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10148         sys_config->dot11g_auto_detection = 0;
10149         sys_config->enable_cts_to_self = 0;
10150         sys_config->bt_coexist_collision_thr = 0;
10151         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10152         sys_config->silence_threshold = 0x1e;
10153 }
10154
10155 static int ipw_net_open(struct net_device *dev)
10156 {
10157         IPW_DEBUG_INFO("dev->open\n");
10158         netif_start_queue(dev);
10159         return 0;
10160 }
10161
10162 static int ipw_net_stop(struct net_device *dev)
10163 {
10164         IPW_DEBUG_INFO("dev->close\n");
10165         netif_stop_queue(dev);
10166         return 0;
10167 }
10168
10169 /*
10170 todo:
10171
10172 modify to send one tfd per fragment instead of using chunking.  otherwise
10173 we need to heavily modify the ieee80211_skb_to_txb.
10174 */
10175
10176 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10177                              int pri)
10178 {
10179         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10180             txb->fragments[0]->data;
10181         int i = 0;
10182         struct tfd_frame *tfd;
10183 #ifdef CONFIG_IPW2200_QOS
10184         int tx_id = ipw_get_tx_queue_number(priv, pri);
10185         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10186 #else
10187         struct clx2_tx_queue *txq = &priv->txq[0];
10188 #endif
10189         struct clx2_queue *q = &txq->q;
10190         u8 id, hdr_len, unicast;
10191         u16 remaining_bytes;
10192         int fc;
10193
10194         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10195         switch (priv->ieee->iw_mode) {
10196         case IW_MODE_ADHOC:
10197                 unicast = !is_multicast_ether_addr(hdr->addr1);
10198                 id = ipw_find_station(priv, hdr->addr1);
10199                 if (id == IPW_INVALID_STATION) {
10200                         id = ipw_add_station(priv, hdr->addr1);
10201                         if (id == IPW_INVALID_STATION) {
10202                                 IPW_WARNING("Attempt to send data to "
10203                                             "invalid cell: " MAC_FMT "\n",
10204                                             hdr->addr1[0], hdr->addr1[1],
10205                                             hdr->addr1[2], hdr->addr1[3],
10206                                             hdr->addr1[4], hdr->addr1[5]);
10207                                 goto drop;
10208                         }
10209                 }
10210                 break;
10211
10212         case IW_MODE_INFRA:
10213         default:
10214                 unicast = !is_multicast_ether_addr(hdr->addr3);
10215                 id = 0;
10216                 break;
10217         }
10218
10219         tfd = &txq->bd[q->first_empty];
10220         txq->txb[q->first_empty] = txb;
10221         memset(tfd, 0, sizeof(*tfd));
10222         tfd->u.data.station_number = id;
10223
10224         tfd->control_flags.message_type = TX_FRAME_TYPE;
10225         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10226
10227         tfd->u.data.cmd_id = DINO_CMD_TX;
10228         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10229         remaining_bytes = txb->payload_size;
10230
10231         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10232                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10233         else
10234                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10235
10236         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10237                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10238
10239         fc = le16_to_cpu(hdr->frame_ctl);
10240         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10241
10242         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10243
10244         if (likely(unicast))
10245                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10246
10247         if (txb->encrypted && !priv->ieee->host_encrypt) {
10248                 switch (priv->ieee->sec.level) {
10249                 case SEC_LEVEL_3:
10250                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10251                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10252                         /* XXX: ACK flag must be set for CCMP even if it
10253                          * is a multicast/broadcast packet, because CCMP
10254                          * group communication encrypted by GTK is
10255                          * actually done by the AP. */
10256                         if (!unicast)
10257                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10258
10259                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10260                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10261                         tfd->u.data.key_index = 0;
10262                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10263                         break;
10264                 case SEC_LEVEL_2:
10265                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10266                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10267                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10268                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10269                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10270                         break;
10271                 case SEC_LEVEL_1:
10272                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10273                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10274                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10275                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10276                             40)
10277                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10278                         else
10279                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10280                         break;
10281                 case SEC_LEVEL_0:
10282                         break;
10283                 default:
10284                         printk(KERN_ERR "Unknow security level %d\n",
10285                                priv->ieee->sec.level);
10286                         break;
10287                 }
10288         } else
10289                 /* No hardware encryption */
10290                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10291
10292 #ifdef CONFIG_IPW2200_QOS
10293         if (fc & IEEE80211_STYPE_QOS_DATA)
10294                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10295 #endif                          /* CONFIG_IPW2200_QOS */
10296
10297         /* payload */
10298         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10299                                                  txb->nr_frags));
10300         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10301                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10302         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10303                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10304                                i, le32_to_cpu(tfd->u.data.num_chunks),
10305                                txb->fragments[i]->len - hdr_len);
10306                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10307                              i, tfd->u.data.num_chunks,
10308                              txb->fragments[i]->len - hdr_len);
10309                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10310                            txb->fragments[i]->len - hdr_len);
10311
10312                 tfd->u.data.chunk_ptr[i] =
10313                     cpu_to_le32(pci_map_single
10314                                 (priv->pci_dev,
10315                                  txb->fragments[i]->data + hdr_len,
10316                                  txb->fragments[i]->len - hdr_len,
10317                                  PCI_DMA_TODEVICE));
10318                 tfd->u.data.chunk_len[i] =
10319                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10320         }
10321
10322         if (i != txb->nr_frags) {
10323                 struct sk_buff *skb;
10324                 u16 remaining_bytes = 0;
10325                 int j;
10326
10327                 for (j = i; j < txb->nr_frags; j++)
10328                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10329
10330                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10331                        remaining_bytes);
10332                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10333                 if (skb != NULL) {
10334                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10335                         for (j = i; j < txb->nr_frags; j++) {
10336                                 int size = txb->fragments[j]->len - hdr_len;
10337
10338                                 printk(KERN_INFO "Adding frag %d %d...\n",
10339                                        j, size);
10340                                 memcpy(skb_put(skb, size),
10341                                        txb->fragments[j]->data + hdr_len, size);
10342                         }
10343                         dev_kfree_skb_any(txb->fragments[i]);
10344                         txb->fragments[i] = skb;
10345                         tfd->u.data.chunk_ptr[i] =
10346                             cpu_to_le32(pci_map_single
10347                                         (priv->pci_dev, skb->data,
10348                                          remaining_bytes,
10349                                          PCI_DMA_TODEVICE));
10350
10351                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10352                 }
10353         }
10354
10355         /* kick DMA */
10356         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10357         ipw_write32(priv, q->reg_w, q->first_empty);
10358
10359         if (ipw_tx_queue_space(q) < q->high_mark)
10360                 netif_stop_queue(priv->net_dev);
10361
10362         return NETDEV_TX_OK;
10363
10364       drop:
10365         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10366         ieee80211_txb_free(txb);
10367         return NETDEV_TX_OK;
10368 }
10369
10370 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10371 {
10372         struct ipw_priv *priv = ieee80211_priv(dev);
10373 #ifdef CONFIG_IPW2200_QOS
10374         int tx_id = ipw_get_tx_queue_number(priv, pri);
10375         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10376 #else
10377         struct clx2_tx_queue *txq = &priv->txq[0];
10378 #endif                          /* CONFIG_IPW2200_QOS */
10379
10380         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10381                 return 1;
10382
10383         return 0;
10384 }
10385
10386 #ifdef CONFIG_IPW2200_PROMISCUOUS
10387 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10388                                       struct ieee80211_txb *txb)
10389 {
10390         struct ieee80211_rx_stats dummystats;
10391         struct ieee80211_hdr *hdr;
10392         u8 n;
10393         u16 filter = priv->prom_priv->filter;
10394         int hdr_only = 0;
10395
10396         if (filter & IPW_PROM_NO_TX)
10397                 return;
10398
10399         memset(&dummystats, 0, sizeof(dummystats));
10400
10401         /* Filtering of fragment chains is done agains the first fragment */
10402         hdr = (void *)txb->fragments[0]->data;
10403         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10404                 if (filter & IPW_PROM_NO_MGMT)
10405                         return;
10406                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10407                         hdr_only = 1;
10408         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10409                 if (filter & IPW_PROM_NO_CTL)
10410                         return;
10411                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10412                         hdr_only = 1;
10413         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10414                 if (filter & IPW_PROM_NO_DATA)
10415                         return;
10416                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10417                         hdr_only = 1;
10418         }
10419
10420         for(n=0; n<txb->nr_frags; ++n) {
10421                 struct sk_buff *src = txb->fragments[n];
10422                 struct sk_buff *dst;
10423                 struct ieee80211_radiotap_header *rt_hdr;
10424                 int len;
10425
10426                 if (hdr_only) {
10427                         hdr = (void *)src->data;
10428                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10429                 } else
10430                         len = src->len;
10431
10432                 dst = alloc_skb(
10433                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10434                 if (!dst) continue;
10435
10436                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10437
10438                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10439                 rt_hdr->it_pad = 0;
10440                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10441                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10442
10443                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10444                         ieee80211chan2mhz(priv->channel));
10445                 if (priv->channel > 14)         /* 802.11a */
10446                         *(__le16*)skb_put(dst, sizeof(u16)) =
10447                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10448                                              IEEE80211_CHAN_5GHZ);
10449                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10450                         *(__le16*)skb_put(dst, sizeof(u16)) =
10451                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10452                                              IEEE80211_CHAN_2GHZ);
10453                 else            /* 802.11g */
10454                         *(__le16*)skb_put(dst, sizeof(u16)) =
10455                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10456                                  IEEE80211_CHAN_2GHZ);
10457
10458                 rt_hdr->it_len = cpu_to_le16(dst->len);
10459
10460                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10461
10462                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10463                         dev_kfree_skb_any(dst);
10464         }
10465 }
10466 #endif
10467
10468 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10469                                    struct net_device *dev, int pri)
10470 {
10471         struct ipw_priv *priv = ieee80211_priv(dev);
10472         unsigned long flags;
10473         int ret;
10474
10475         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10476         spin_lock_irqsave(&priv->lock, flags);
10477
10478 #ifdef CONFIG_IPW2200_PROMISCUOUS
10479         if (rtap_iface && netif_running(priv->prom_net_dev))
10480                 ipw_handle_promiscuous_tx(priv, txb);
10481 #endif
10482
10483         ret = ipw_tx_skb(priv, txb, pri);
10484         if (ret == NETDEV_TX_OK)
10485                 __ipw_led_activity_on(priv);
10486         spin_unlock_irqrestore(&priv->lock, flags);
10487
10488         return ret;
10489 }
10490
10491 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10492 {
10493         struct ipw_priv *priv = ieee80211_priv(dev);
10494
10495         priv->ieee->stats.tx_packets = priv->tx_packets;
10496         priv->ieee->stats.rx_packets = priv->rx_packets;
10497         return &priv->ieee->stats;
10498 }
10499
10500 static void ipw_net_set_multicast_list(struct net_device *dev)
10501 {
10502
10503 }
10504
10505 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10506 {
10507         struct ipw_priv *priv = ieee80211_priv(dev);
10508         struct sockaddr *addr = p;
10509         DECLARE_MAC_BUF(mac);
10510
10511         if (!is_valid_ether_addr(addr->sa_data))
10512                 return -EADDRNOTAVAIL;
10513         mutex_lock(&priv->mutex);
10514         priv->config |= CFG_CUSTOM_MAC;
10515         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10516         printk(KERN_INFO "%s: Setting MAC to %s\n",
10517                priv->net_dev->name, print_mac(mac, priv->mac_addr));
10518         queue_work(priv->workqueue, &priv->adapter_restart);
10519         mutex_unlock(&priv->mutex);
10520         return 0;
10521 }
10522
10523 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10524                                     struct ethtool_drvinfo *info)
10525 {
10526         struct ipw_priv *p = ieee80211_priv(dev);
10527         char vers[64];
10528         char date[32];
10529         u32 len;
10530
10531         strcpy(info->driver, DRV_NAME);
10532         strcpy(info->version, DRV_VERSION);
10533
10534         len = sizeof(vers);
10535         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10536         len = sizeof(date);
10537         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10538
10539         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10540                  vers, date);
10541         strcpy(info->bus_info, pci_name(p->pci_dev));
10542         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10543 }
10544
10545 static u32 ipw_ethtool_get_link(struct net_device *dev)
10546 {
10547         struct ipw_priv *priv = ieee80211_priv(dev);
10548         return (priv->status & STATUS_ASSOCIATED) != 0;
10549 }
10550
10551 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10552 {
10553         return IPW_EEPROM_IMAGE_SIZE;
10554 }
10555
10556 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10557                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10558 {
10559         struct ipw_priv *p = ieee80211_priv(dev);
10560
10561         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10562                 return -EINVAL;
10563         mutex_lock(&p->mutex);
10564         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10565         mutex_unlock(&p->mutex);
10566         return 0;
10567 }
10568
10569 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10570                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10571 {
10572         struct ipw_priv *p = ieee80211_priv(dev);
10573         int i;
10574
10575         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10576                 return -EINVAL;
10577         mutex_lock(&p->mutex);
10578         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10579         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10580                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10581         mutex_unlock(&p->mutex);
10582         return 0;
10583 }
10584
10585 static const struct ethtool_ops ipw_ethtool_ops = {
10586         .get_link = ipw_ethtool_get_link,
10587         .get_drvinfo = ipw_ethtool_get_drvinfo,
10588         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10589         .get_eeprom = ipw_ethtool_get_eeprom,
10590         .set_eeprom = ipw_ethtool_set_eeprom,
10591 };
10592
10593 static irqreturn_t ipw_isr(int irq, void *data)
10594 {
10595         struct ipw_priv *priv = data;
10596         u32 inta, inta_mask;
10597
10598         if (!priv)
10599                 return IRQ_NONE;
10600
10601         spin_lock(&priv->irq_lock);
10602
10603         if (!(priv->status & STATUS_INT_ENABLED)) {
10604                 /* IRQ is disabled */
10605                 goto none;
10606         }
10607
10608         inta = ipw_read32(priv, IPW_INTA_RW);
10609         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10610
10611         if (inta == 0xFFFFFFFF) {
10612                 /* Hardware disappeared */
10613                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10614                 goto none;
10615         }
10616
10617         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10618                 /* Shared interrupt */
10619                 goto none;
10620         }
10621
10622         /* tell the device to stop sending interrupts */
10623         __ipw_disable_interrupts(priv);
10624
10625         /* ack current interrupts */
10626         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10627         ipw_write32(priv, IPW_INTA_RW, inta);
10628
10629         /* Cache INTA value for our tasklet */
10630         priv->isr_inta = inta;
10631
10632         tasklet_schedule(&priv->irq_tasklet);
10633
10634         spin_unlock(&priv->irq_lock);
10635
10636         return IRQ_HANDLED;
10637       none:
10638         spin_unlock(&priv->irq_lock);
10639         return IRQ_NONE;
10640 }
10641
10642 static void ipw_rf_kill(void *adapter)
10643 {
10644         struct ipw_priv *priv = adapter;
10645         unsigned long flags;
10646
10647         spin_lock_irqsave(&priv->lock, flags);
10648
10649         if (rf_kill_active(priv)) {
10650                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10651                 if (priv->workqueue)
10652                         queue_delayed_work(priv->workqueue,
10653                                            &priv->rf_kill, 2 * HZ);
10654                 goto exit_unlock;
10655         }
10656
10657         /* RF Kill is now disabled, so bring the device back up */
10658
10659         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10660                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10661                                   "device\n");
10662
10663                 /* we can not do an adapter restart while inside an irq lock */
10664                 queue_work(priv->workqueue, &priv->adapter_restart);
10665         } else
10666                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10667                                   "enabled\n");
10668
10669       exit_unlock:
10670         spin_unlock_irqrestore(&priv->lock, flags);
10671 }
10672
10673 static void ipw_bg_rf_kill(struct work_struct *work)
10674 {
10675         struct ipw_priv *priv =
10676                 container_of(work, struct ipw_priv, rf_kill.work);
10677         mutex_lock(&priv->mutex);
10678         ipw_rf_kill(priv);
10679         mutex_unlock(&priv->mutex);
10680 }
10681
10682 static void ipw_link_up(struct ipw_priv *priv)
10683 {
10684         priv->last_seq_num = -1;
10685         priv->last_frag_num = -1;
10686         priv->last_packet_time = 0;
10687
10688         netif_carrier_on(priv->net_dev);
10689
10690         cancel_delayed_work(&priv->request_scan);
10691         cancel_delayed_work(&priv->request_direct_scan);
10692         cancel_delayed_work(&priv->request_passive_scan);
10693         cancel_delayed_work(&priv->scan_event);
10694         ipw_reset_stats(priv);
10695         /* Ensure the rate is updated immediately */
10696         priv->last_rate = ipw_get_current_rate(priv);
10697         ipw_gather_stats(priv);
10698         ipw_led_link_up(priv);
10699         notify_wx_assoc_event(priv);
10700
10701         if (priv->config & CFG_BACKGROUND_SCAN)
10702                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10703 }
10704
10705 static void ipw_bg_link_up(struct work_struct *work)
10706 {
10707         struct ipw_priv *priv =
10708                 container_of(work, struct ipw_priv, link_up);
10709         mutex_lock(&priv->mutex);
10710         ipw_link_up(priv);
10711         mutex_unlock(&priv->mutex);
10712 }
10713
10714 static void ipw_link_down(struct ipw_priv *priv)
10715 {
10716         ipw_led_link_down(priv);
10717         netif_carrier_off(priv->net_dev);
10718         notify_wx_assoc_event(priv);
10719
10720         /* Cancel any queued work ... */
10721         cancel_delayed_work(&priv->request_scan);
10722         cancel_delayed_work(&priv->request_direct_scan);
10723         cancel_delayed_work(&priv->request_passive_scan);
10724         cancel_delayed_work(&priv->adhoc_check);
10725         cancel_delayed_work(&priv->gather_stats);
10726
10727         ipw_reset_stats(priv);
10728
10729         if (!(priv->status & STATUS_EXIT_PENDING)) {
10730                 /* Queue up another scan... */
10731                 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10732         } else
10733                 cancel_delayed_work(&priv->scan_event);
10734 }
10735
10736 static void ipw_bg_link_down(struct work_struct *work)
10737 {
10738         struct ipw_priv *priv =
10739                 container_of(work, struct ipw_priv, link_down);
10740         mutex_lock(&priv->mutex);
10741         ipw_link_down(priv);
10742         mutex_unlock(&priv->mutex);
10743 }
10744
10745 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10746 {
10747         int ret = 0;
10748
10749         priv->workqueue = create_workqueue(DRV_NAME);
10750         init_waitqueue_head(&priv->wait_command_queue);
10751         init_waitqueue_head(&priv->wait_state);
10752
10753         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10754         INIT_WORK(&priv->associate, ipw_bg_associate);
10755         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10756         INIT_WORK(&priv->system_config, ipw_system_config);
10757         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10758         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10759         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10760         INIT_WORK(&priv->up, ipw_bg_up);
10761         INIT_WORK(&priv->down, ipw_bg_down);
10762         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10763         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10764         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10765         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10766         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10767         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10768         INIT_WORK(&priv->roam, ipw_bg_roam);
10769         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10770         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10771         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10772         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10773         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10774         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10775         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10776
10777 #ifdef CONFIG_IPW2200_QOS
10778         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10779 #endif                          /* CONFIG_IPW2200_QOS */
10780
10781         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10782                      ipw_irq_tasklet, (unsigned long)priv);
10783
10784         return ret;
10785 }
10786
10787 static void shim__set_security(struct net_device *dev,
10788                                struct ieee80211_security *sec)
10789 {
10790         struct ipw_priv *priv = ieee80211_priv(dev);
10791         int i;
10792         for (i = 0; i < 4; i++) {
10793                 if (sec->flags & (1 << i)) {
10794                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10795                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10796                         if (sec->key_sizes[i] == 0)
10797                                 priv->ieee->sec.flags &= ~(1 << i);
10798                         else {
10799                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10800                                        sec->key_sizes[i]);
10801                                 priv->ieee->sec.flags |= (1 << i);
10802                         }
10803                         priv->status |= STATUS_SECURITY_UPDATED;
10804                 } else if (sec->level != SEC_LEVEL_1)
10805                         priv->ieee->sec.flags &= ~(1 << i);
10806         }
10807
10808         if (sec->flags & SEC_ACTIVE_KEY) {
10809                 if (sec->active_key <= 3) {
10810                         priv->ieee->sec.active_key = sec->active_key;
10811                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10812                 } else
10813                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10814                 priv->status |= STATUS_SECURITY_UPDATED;
10815         } else
10816                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10817
10818         if ((sec->flags & SEC_AUTH_MODE) &&
10819             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10820                 priv->ieee->sec.auth_mode = sec->auth_mode;
10821                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10822                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10823                         priv->capability |= CAP_SHARED_KEY;
10824                 else
10825                         priv->capability &= ~CAP_SHARED_KEY;
10826                 priv->status |= STATUS_SECURITY_UPDATED;
10827         }
10828
10829         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10830                 priv->ieee->sec.flags |= SEC_ENABLED;
10831                 priv->ieee->sec.enabled = sec->enabled;
10832                 priv->status |= STATUS_SECURITY_UPDATED;
10833                 if (sec->enabled)
10834                         priv->capability |= CAP_PRIVACY_ON;
10835                 else
10836                         priv->capability &= ~CAP_PRIVACY_ON;
10837         }
10838
10839         if (sec->flags & SEC_ENCRYPT)
10840                 priv->ieee->sec.encrypt = sec->encrypt;
10841
10842         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10843                 priv->ieee->sec.level = sec->level;
10844                 priv->ieee->sec.flags |= SEC_LEVEL;
10845                 priv->status |= STATUS_SECURITY_UPDATED;
10846         }
10847
10848         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10849                 ipw_set_hwcrypto_keys(priv);
10850
10851         /* To match current functionality of ipw2100 (which works well w/
10852          * various supplicants, we don't force a disassociate if the
10853          * privacy capability changes ... */
10854 #if 0
10855         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10856             (((priv->assoc_request.capability &
10857                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10858              (!(priv->assoc_request.capability &
10859                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10860                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10861                                 "change.\n");
10862                 ipw_disassociate(priv);
10863         }
10864 #endif
10865 }
10866
10867 static int init_supported_rates(struct ipw_priv *priv,
10868                                 struct ipw_supported_rates *rates)
10869 {
10870         /* TODO: Mask out rates based on priv->rates_mask */
10871
10872         memset(rates, 0, sizeof(*rates));
10873         /* configure supported rates */
10874         switch (priv->ieee->freq_band) {
10875         case IEEE80211_52GHZ_BAND:
10876                 rates->ieee_mode = IPW_A_MODE;
10877                 rates->purpose = IPW_RATE_CAPABILITIES;
10878                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10879                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10880                 break;
10881
10882         default:                /* Mixed or 2.4Ghz */
10883                 rates->ieee_mode = IPW_G_MODE;
10884                 rates->purpose = IPW_RATE_CAPABILITIES;
10885                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10886                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10887                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10888                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10889                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10890                 }
10891                 break;
10892         }
10893
10894         return 0;
10895 }
10896
10897 static int ipw_config(struct ipw_priv *priv)
10898 {
10899         /* This is only called from ipw_up, which resets/reloads the firmware
10900            so, we don't need to first disable the card before we configure
10901            it */
10902         if (ipw_set_tx_power(priv))
10903                 goto error;
10904
10905         /* initialize adapter address */
10906         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10907                 goto error;
10908
10909         /* set basic system config settings */
10910         init_sys_config(&priv->sys_config);
10911
10912         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10913          * Does not support BT priority yet (don't abort or defer our Tx) */
10914         if (bt_coexist) {
10915                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10916
10917                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10918                         priv->sys_config.bt_coexistence
10919                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10920                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10921                         priv->sys_config.bt_coexistence
10922                             |= CFG_BT_COEXISTENCE_OOB;
10923         }
10924
10925 #ifdef CONFIG_IPW2200_PROMISCUOUS
10926         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10927                 priv->sys_config.accept_all_data_frames = 1;
10928                 priv->sys_config.accept_non_directed_frames = 1;
10929                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10930                 priv->sys_config.accept_all_mgmt_frames = 1;
10931         }
10932 #endif
10933
10934         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10935                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10936         else
10937                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10938
10939         if (ipw_send_system_config(priv))
10940                 goto error;
10941
10942         init_supported_rates(priv, &priv->rates);
10943         if (ipw_send_supported_rates(priv, &priv->rates))
10944                 goto error;
10945
10946         /* Set request-to-send threshold */
10947         if (priv->rts_threshold) {
10948                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10949                         goto error;
10950         }
10951 #ifdef CONFIG_IPW2200_QOS
10952         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10953         ipw_qos_activate(priv, NULL);
10954 #endif                          /* CONFIG_IPW2200_QOS */
10955
10956         if (ipw_set_random_seed(priv))
10957                 goto error;
10958
10959         /* final state transition to the RUN state */
10960         if (ipw_send_host_complete(priv))
10961                 goto error;
10962
10963         priv->status |= STATUS_INIT;
10964
10965         ipw_led_init(priv);
10966         ipw_led_radio_on(priv);
10967         priv->notif_missed_beacons = 0;
10968
10969         /* Set hardware WEP key if it is configured. */
10970         if ((priv->capability & CAP_PRIVACY_ON) &&
10971             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10972             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10973                 ipw_set_hwcrypto_keys(priv);
10974
10975         return 0;
10976
10977       error:
10978         return -EIO;
10979 }
10980
10981 /*
10982  * NOTE:
10983  *
10984  * These tables have been tested in conjunction with the
10985  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10986  *
10987  * Altering this values, using it on other hardware, or in geographies
10988  * not intended for resale of the above mentioned Intel adapters has
10989  * not been tested.
10990  *
10991  * Remember to update the table in README.ipw2200 when changing this
10992  * table.
10993  *
10994  */
10995 static const struct ieee80211_geo ipw_geos[] = {
10996         {                       /* Restricted */
10997          "---",
10998          .bg_channels = 11,
10999          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000                 {2427, 4}, {2432, 5}, {2437, 6},
11001                 {2442, 7}, {2447, 8}, {2452, 9},
11002                 {2457, 10}, {2462, 11}},
11003          },
11004
11005         {                       /* Custom US/Canada */
11006          "ZZF",
11007          .bg_channels = 11,
11008          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11009                 {2427, 4}, {2432, 5}, {2437, 6},
11010                 {2442, 7}, {2447, 8}, {2452, 9},
11011                 {2457, 10}, {2462, 11}},
11012          .a_channels = 8,
11013          .a = {{5180, 36},
11014                {5200, 40},
11015                {5220, 44},
11016                {5240, 48},
11017                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11018                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11019                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11020                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11021          },
11022
11023         {                       /* Rest of World */
11024          "ZZD",
11025          .bg_channels = 13,
11026          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11027                 {2427, 4}, {2432, 5}, {2437, 6},
11028                 {2442, 7}, {2447, 8}, {2452, 9},
11029                 {2457, 10}, {2462, 11}, {2467, 12},
11030                 {2472, 13}},
11031          },
11032
11033         {                       /* Custom USA & Europe & High */
11034          "ZZA",
11035          .bg_channels = 11,
11036          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11037                 {2427, 4}, {2432, 5}, {2437, 6},
11038                 {2442, 7}, {2447, 8}, {2452, 9},
11039                 {2457, 10}, {2462, 11}},
11040          .a_channels = 13,
11041          .a = {{5180, 36},
11042                {5200, 40},
11043                {5220, 44},
11044                {5240, 48},
11045                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11046                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11047                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11048                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11049                {5745, 149},
11050                {5765, 153},
11051                {5785, 157},
11052                {5805, 161},
11053                {5825, 165}},
11054          },
11055
11056         {                       /* Custom NA & Europe */
11057          "ZZB",
11058          .bg_channels = 11,
11059          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060                 {2427, 4}, {2432, 5}, {2437, 6},
11061                 {2442, 7}, {2447, 8}, {2452, 9},
11062                 {2457, 10}, {2462, 11}},
11063          .a_channels = 13,
11064          .a = {{5180, 36},
11065                {5200, 40},
11066                {5220, 44},
11067                {5240, 48},
11068                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11069                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11070                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11071                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11072                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11073                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11074                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11075                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11076                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11077          },
11078
11079         {                       /* Custom Japan */
11080          "ZZC",
11081          .bg_channels = 11,
11082          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083                 {2427, 4}, {2432, 5}, {2437, 6},
11084                 {2442, 7}, {2447, 8}, {2452, 9},
11085                 {2457, 10}, {2462, 11}},
11086          .a_channels = 4,
11087          .a = {{5170, 34}, {5190, 38},
11088                {5210, 42}, {5230, 46}},
11089          },
11090
11091         {                       /* Custom */
11092          "ZZM",
11093          .bg_channels = 11,
11094          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11095                 {2427, 4}, {2432, 5}, {2437, 6},
11096                 {2442, 7}, {2447, 8}, {2452, 9},
11097                 {2457, 10}, {2462, 11}},
11098          },
11099
11100         {                       /* Europe */
11101          "ZZE",
11102          .bg_channels = 13,
11103          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11104                 {2427, 4}, {2432, 5}, {2437, 6},
11105                 {2442, 7}, {2447, 8}, {2452, 9},
11106                 {2457, 10}, {2462, 11}, {2467, 12},
11107                 {2472, 13}},
11108          .a_channels = 19,
11109          .a = {{5180, 36},
11110                {5200, 40},
11111                {5220, 44},
11112                {5240, 48},
11113                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11114                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11115                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11116                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11117                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11118                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11119                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11120                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11121                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11122                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11123                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11124                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11125                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11126                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11127                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11128          },
11129
11130         {                       /* Custom Japan */
11131          "ZZJ",
11132          .bg_channels = 14,
11133          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134                 {2427, 4}, {2432, 5}, {2437, 6},
11135                 {2442, 7}, {2447, 8}, {2452, 9},
11136                 {2457, 10}, {2462, 11}, {2467, 12},
11137                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11138          .a_channels = 4,
11139          .a = {{5170, 34}, {5190, 38},
11140                {5210, 42}, {5230, 46}},
11141          },
11142
11143         {                       /* Rest of World */
11144          "ZZR",
11145          .bg_channels = 14,
11146          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11147                 {2427, 4}, {2432, 5}, {2437, 6},
11148                 {2442, 7}, {2447, 8}, {2452, 9},
11149                 {2457, 10}, {2462, 11}, {2467, 12},
11150                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11151                              IEEE80211_CH_PASSIVE_ONLY}},
11152          },
11153
11154         {                       /* High Band */
11155          "ZZH",
11156          .bg_channels = 13,
11157          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158                 {2427, 4}, {2432, 5}, {2437, 6},
11159                 {2442, 7}, {2447, 8}, {2452, 9},
11160                 {2457, 10}, {2462, 11},
11161                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11162                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11163          .a_channels = 4,
11164          .a = {{5745, 149}, {5765, 153},
11165                {5785, 157}, {5805, 161}},
11166          },
11167
11168         {                       /* Custom Europe */
11169          "ZZG",
11170          .bg_channels = 13,
11171          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172                 {2427, 4}, {2432, 5}, {2437, 6},
11173                 {2442, 7}, {2447, 8}, {2452, 9},
11174                 {2457, 10}, {2462, 11},
11175                 {2467, 12}, {2472, 13}},
11176          .a_channels = 4,
11177          .a = {{5180, 36}, {5200, 40},
11178                {5220, 44}, {5240, 48}},
11179          },
11180
11181         {                       /* Europe */
11182          "ZZK",
11183          .bg_channels = 13,
11184          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11185                 {2427, 4}, {2432, 5}, {2437, 6},
11186                 {2442, 7}, {2447, 8}, {2452, 9},
11187                 {2457, 10}, {2462, 11},
11188                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11189                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11190          .a_channels = 24,
11191          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11192                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11193                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11194                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11195                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11196                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11197                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11198                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11199                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11200                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11201                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11202                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11203                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11204                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11205                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11206                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11207                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11208                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11209                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11210                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11211                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11212                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11213                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11214                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11215          },
11216
11217         {                       /* Europe */
11218          "ZZL",
11219          .bg_channels = 11,
11220          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11221                 {2427, 4}, {2432, 5}, {2437, 6},
11222                 {2442, 7}, {2447, 8}, {2452, 9},
11223                 {2457, 10}, {2462, 11}},
11224          .a_channels = 13,
11225          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11226                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11227                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11228                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11229                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11230                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11231                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11232                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11233                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11234                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11235                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11236                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11237                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11238          }
11239 };
11240
11241 #define MAX_HW_RESTARTS 5
11242 static int ipw_up(struct ipw_priv *priv)
11243 {
11244         int rc, i, j;
11245
11246         if (priv->status & STATUS_EXIT_PENDING)
11247                 return -EIO;
11248
11249         if (cmdlog && !priv->cmdlog) {
11250                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11251                                        GFP_KERNEL);
11252                 if (priv->cmdlog == NULL) {
11253                         IPW_ERROR("Error allocating %d command log entries.\n",
11254                                   cmdlog);
11255                         return -ENOMEM;
11256                 } else {
11257                         priv->cmdlog_len = cmdlog;
11258                 }
11259         }
11260
11261         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11262                 /* Load the microcode, firmware, and eeprom.
11263                  * Also start the clocks. */
11264                 rc = ipw_load(priv);
11265                 if (rc) {
11266                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11267                         return rc;
11268                 }
11269
11270                 ipw_init_ordinals(priv);
11271                 if (!(priv->config & CFG_CUSTOM_MAC))
11272                         eeprom_parse_mac(priv, priv->mac_addr);
11273                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11274
11275                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11276                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11277                                     ipw_geos[j].name, 3))
11278                                 break;
11279                 }
11280                 if (j == ARRAY_SIZE(ipw_geos)) {
11281                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11282                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11283                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11284                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11285                         j = 0;
11286                 }
11287                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11288                         IPW_WARNING("Could not set geography.");
11289                         return 0;
11290                 }
11291
11292                 if (priv->status & STATUS_RF_KILL_SW) {
11293                         IPW_WARNING("Radio disabled by module parameter.\n");
11294                         return 0;
11295                 } else if (rf_kill_active(priv)) {
11296                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11297                                     "Kill switch must be turned off for "
11298                                     "wireless networking to work.\n");
11299                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11300                                            2 * HZ);
11301                         return 0;
11302                 }
11303
11304                 rc = ipw_config(priv);
11305                 if (!rc) {
11306                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11307
11308                         /* If configure to try and auto-associate, kick
11309                          * off a scan. */
11310                         queue_delayed_work(priv->workqueue,
11311                                            &priv->request_scan, 0);
11312
11313                         return 0;
11314                 }
11315
11316                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11317                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11318                                i, MAX_HW_RESTARTS);
11319
11320                 /* We had an error bringing up the hardware, so take it
11321                  * all the way back down so we can try again */
11322                 ipw_down(priv);
11323         }
11324
11325         /* tried to restart and config the device for as long as our
11326          * patience could withstand */
11327         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11328
11329         return -EIO;
11330 }
11331
11332 static void ipw_bg_up(struct work_struct *work)
11333 {
11334         struct ipw_priv *priv =
11335                 container_of(work, struct ipw_priv, up);
11336         mutex_lock(&priv->mutex);
11337         ipw_up(priv);
11338         mutex_unlock(&priv->mutex);
11339 }
11340
11341 static void ipw_deinit(struct ipw_priv *priv)
11342 {
11343         int i;
11344
11345         if (priv->status & STATUS_SCANNING) {
11346                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11347                 ipw_abort_scan(priv);
11348         }
11349
11350         if (priv->status & STATUS_ASSOCIATED) {
11351                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11352                 ipw_disassociate(priv);
11353         }
11354
11355         ipw_led_shutdown(priv);
11356
11357         /* Wait up to 1s for status to change to not scanning and not
11358          * associated (disassociation can take a while for a ful 802.11
11359          * exchange */
11360         for (i = 1000; i && (priv->status &
11361                              (STATUS_DISASSOCIATING |
11362                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11363                 udelay(10);
11364
11365         if (priv->status & (STATUS_DISASSOCIATING |
11366                             STATUS_ASSOCIATED | STATUS_SCANNING))
11367                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11368         else
11369                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11370
11371         /* Attempt to disable the card */
11372         ipw_send_card_disable(priv, 0);
11373
11374         priv->status &= ~STATUS_INIT;
11375 }
11376
11377 static void ipw_down(struct ipw_priv *priv)
11378 {
11379         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11380
11381         priv->status |= STATUS_EXIT_PENDING;
11382
11383         if (ipw_is_init(priv))
11384                 ipw_deinit(priv);
11385
11386         /* Wipe out the EXIT_PENDING status bit if we are not actually
11387          * exiting the module */
11388         if (!exit_pending)
11389                 priv->status &= ~STATUS_EXIT_PENDING;
11390
11391         /* tell the device to stop sending interrupts */
11392         ipw_disable_interrupts(priv);
11393
11394         /* Clear all bits but the RF Kill */
11395         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11396         netif_carrier_off(priv->net_dev);
11397
11398         ipw_stop_nic(priv);
11399
11400         ipw_led_radio_off(priv);
11401 }
11402
11403 static void ipw_bg_down(struct work_struct *work)
11404 {
11405         struct ipw_priv *priv =
11406                 container_of(work, struct ipw_priv, down);
11407         mutex_lock(&priv->mutex);
11408         ipw_down(priv);
11409         mutex_unlock(&priv->mutex);
11410 }
11411
11412 /* Called by register_netdev() */
11413 static int ipw_net_init(struct net_device *dev)
11414 {
11415         struct ipw_priv *priv = ieee80211_priv(dev);
11416         mutex_lock(&priv->mutex);
11417
11418         if (ipw_up(priv)) {
11419                 mutex_unlock(&priv->mutex);
11420                 return -EIO;
11421         }
11422
11423         mutex_unlock(&priv->mutex);
11424         return 0;
11425 }
11426
11427 /* PCI driver stuff */
11428 static struct pci_device_id card_ids[] = {
11429         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11430         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11431         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11432         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11433         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11434         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11435         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11436         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11437         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11438         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11439         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11443         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11444         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11445         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11446         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11447         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11448         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11449         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11450         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11451
11452         /* required last entry */
11453         {0,}
11454 };
11455
11456 MODULE_DEVICE_TABLE(pci, card_ids);
11457
11458 static struct attribute *ipw_sysfs_entries[] = {
11459         &dev_attr_rf_kill.attr,
11460         &dev_attr_direct_dword.attr,
11461         &dev_attr_indirect_byte.attr,
11462         &dev_attr_indirect_dword.attr,
11463         &dev_attr_mem_gpio_reg.attr,
11464         &dev_attr_command_event_reg.attr,
11465         &dev_attr_nic_type.attr,
11466         &dev_attr_status.attr,
11467         &dev_attr_cfg.attr,
11468         &dev_attr_error.attr,
11469         &dev_attr_event_log.attr,
11470         &dev_attr_cmd_log.attr,
11471         &dev_attr_eeprom_delay.attr,
11472         &dev_attr_ucode_version.attr,
11473         &dev_attr_rtc.attr,
11474         &dev_attr_scan_age.attr,
11475         &dev_attr_led.attr,
11476         &dev_attr_speed_scan.attr,
11477         &dev_attr_net_stats.attr,
11478         &dev_attr_channels.attr,
11479 #ifdef CONFIG_IPW2200_PROMISCUOUS
11480         &dev_attr_rtap_iface.attr,
11481         &dev_attr_rtap_filter.attr,
11482 #endif
11483         NULL
11484 };
11485
11486 static struct attribute_group ipw_attribute_group = {
11487         .name = NULL,           /* put in device directory */
11488         .attrs = ipw_sysfs_entries,
11489 };
11490
11491 #ifdef CONFIG_IPW2200_PROMISCUOUS
11492 static int ipw_prom_open(struct net_device *dev)
11493 {
11494         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11495         struct ipw_priv *priv = prom_priv->priv;
11496
11497         IPW_DEBUG_INFO("prom dev->open\n");
11498         netif_carrier_off(dev);
11499
11500         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11501                 priv->sys_config.accept_all_data_frames = 1;
11502                 priv->sys_config.accept_non_directed_frames = 1;
11503                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11504                 priv->sys_config.accept_all_mgmt_frames = 1;
11505
11506                 ipw_send_system_config(priv);
11507         }
11508
11509         return 0;
11510 }
11511
11512 static int ipw_prom_stop(struct net_device *dev)
11513 {
11514         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11515         struct ipw_priv *priv = prom_priv->priv;
11516
11517         IPW_DEBUG_INFO("prom dev->stop\n");
11518
11519         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11520                 priv->sys_config.accept_all_data_frames = 0;
11521                 priv->sys_config.accept_non_directed_frames = 0;
11522                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11523                 priv->sys_config.accept_all_mgmt_frames = 0;
11524
11525                 ipw_send_system_config(priv);
11526         }
11527
11528         return 0;
11529 }
11530
11531 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11532 {
11533         IPW_DEBUG_INFO("prom dev->xmit\n");
11534         return -EOPNOTSUPP;
11535 }
11536
11537 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11538 {
11539         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11540         return &prom_priv->ieee->stats;
11541 }
11542
11543 static int ipw_prom_alloc(struct ipw_priv *priv)
11544 {
11545         int rc = 0;
11546
11547         if (priv->prom_net_dev)
11548                 return -EPERM;
11549
11550         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11551         if (priv->prom_net_dev == NULL)
11552                 return -ENOMEM;
11553
11554         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11555         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11556         priv->prom_priv->priv = priv;
11557
11558         strcpy(priv->prom_net_dev->name, "rtap%d");
11559         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11560
11561         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11562         priv->prom_net_dev->open = ipw_prom_open;
11563         priv->prom_net_dev->stop = ipw_prom_stop;
11564         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11565         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11566
11567         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11568         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11569
11570         rc = register_netdev(priv->prom_net_dev);
11571         if (rc) {
11572                 free_ieee80211(priv->prom_net_dev);
11573                 priv->prom_net_dev = NULL;
11574                 return rc;
11575         }
11576
11577         return 0;
11578 }
11579
11580 static void ipw_prom_free(struct ipw_priv *priv)
11581 {
11582         if (!priv->prom_net_dev)
11583                 return;
11584
11585         unregister_netdev(priv->prom_net_dev);
11586         free_ieee80211(priv->prom_net_dev);
11587
11588         priv->prom_net_dev = NULL;
11589 }
11590
11591 #endif
11592
11593
11594 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11595                                    const struct pci_device_id *ent)
11596 {
11597         int err = 0;
11598         struct net_device *net_dev;
11599         void __iomem *base;
11600         u32 length, val;
11601         struct ipw_priv *priv;
11602         int i;
11603
11604         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11605         if (net_dev == NULL) {
11606                 err = -ENOMEM;
11607                 goto out;
11608         }
11609
11610         priv = ieee80211_priv(net_dev);
11611         priv->ieee = netdev_priv(net_dev);
11612
11613         priv->net_dev = net_dev;
11614         priv->pci_dev = pdev;
11615         ipw_debug_level = debug;
11616         spin_lock_init(&priv->irq_lock);
11617         spin_lock_init(&priv->lock);
11618         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11619                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11620
11621         mutex_init(&priv->mutex);
11622         if (pci_enable_device(pdev)) {
11623                 err = -ENODEV;
11624                 goto out_free_ieee80211;
11625         }
11626
11627         pci_set_master(pdev);
11628
11629         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11630         if (!err)
11631                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11632         if (err) {
11633                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11634                 goto out_pci_disable_device;
11635         }
11636
11637         pci_set_drvdata(pdev, priv);
11638
11639         err = pci_request_regions(pdev, DRV_NAME);
11640         if (err)
11641                 goto out_pci_disable_device;
11642
11643         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11644          * PCI Tx retries from interfering with C3 CPU state */
11645         pci_read_config_dword(pdev, 0x40, &val);
11646         if ((val & 0x0000ff00) != 0)
11647                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11648
11649         length = pci_resource_len(pdev, 0);
11650         priv->hw_len = length;
11651
11652         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11653         if (!base) {
11654                 err = -ENODEV;
11655                 goto out_pci_release_regions;
11656         }
11657
11658         priv->hw_base = base;
11659         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11660         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11661
11662         err = ipw_setup_deferred_work(priv);
11663         if (err) {
11664                 IPW_ERROR("Unable to setup deferred work\n");
11665                 goto out_iounmap;
11666         }
11667
11668         ipw_sw_reset(priv, 1);
11669
11670         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11671         if (err) {
11672                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11673                 goto out_destroy_workqueue;
11674         }
11675
11676         SET_NETDEV_DEV(net_dev, &pdev->dev);
11677
11678         mutex_lock(&priv->mutex);
11679
11680         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11681         priv->ieee->set_security = shim__set_security;
11682         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11683
11684 #ifdef CONFIG_IPW2200_QOS
11685         priv->ieee->is_qos_active = ipw_is_qos_active;
11686         priv->ieee->handle_probe_response = ipw_handle_beacon;
11687         priv->ieee->handle_beacon = ipw_handle_probe_response;
11688         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11689 #endif                          /* CONFIG_IPW2200_QOS */
11690
11691         priv->ieee->perfect_rssi = -20;
11692         priv->ieee->worst_rssi = -85;
11693
11694         net_dev->open = ipw_net_open;
11695         net_dev->stop = ipw_net_stop;
11696         net_dev->init = ipw_net_init;
11697         net_dev->get_stats = ipw_net_get_stats;
11698         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11699         net_dev->set_mac_address = ipw_net_set_mac_address;
11700         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701         net_dev->wireless_data = &priv->wireless_data;
11702         net_dev->wireless_handlers = &ipw_wx_handler_def;
11703         net_dev->ethtool_ops = &ipw_ethtool_ops;
11704         net_dev->irq = pdev->irq;
11705         net_dev->base_addr = (unsigned long)priv->hw_base;
11706         net_dev->mem_start = pci_resource_start(pdev, 0);
11707         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11708
11709         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710         if (err) {
11711                 IPW_ERROR("failed to create sysfs device attributes\n");
11712                 mutex_unlock(&priv->mutex);
11713                 goto out_release_irq;
11714         }
11715
11716         mutex_unlock(&priv->mutex);
11717         err = register_netdev(net_dev);
11718         if (err) {
11719                 IPW_ERROR("failed to register network device\n");
11720                 goto out_remove_sysfs;
11721         }
11722
11723 #ifdef CONFIG_IPW2200_PROMISCUOUS
11724         if (rtap_iface) {
11725                 err = ipw_prom_alloc(priv);
11726                 if (err) {
11727                         IPW_ERROR("Failed to register promiscuous network "
11728                                   "device (error %d).\n", err);
11729                         unregister_netdev(priv->net_dev);
11730                         goto out_remove_sysfs;
11731                 }
11732         }
11733 #endif
11734
11735         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11736                "channels, %d 802.11a channels)\n",
11737                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11738                priv->ieee->geo.a_channels);
11739
11740         return 0;
11741
11742       out_remove_sysfs:
11743         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11744       out_release_irq:
11745         free_irq(pdev->irq, priv);
11746       out_destroy_workqueue:
11747         destroy_workqueue(priv->workqueue);
11748         priv->workqueue = NULL;
11749       out_iounmap:
11750         iounmap(priv->hw_base);
11751       out_pci_release_regions:
11752         pci_release_regions(pdev);
11753       out_pci_disable_device:
11754         pci_disable_device(pdev);
11755         pci_set_drvdata(pdev, NULL);
11756       out_free_ieee80211:
11757         free_ieee80211(priv->net_dev);
11758       out:
11759         return err;
11760 }
11761
11762 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11763 {
11764         struct ipw_priv *priv = pci_get_drvdata(pdev);
11765         struct list_head *p, *q;
11766         int i;
11767
11768         if (!priv)
11769                 return;
11770
11771         mutex_lock(&priv->mutex);
11772
11773         priv->status |= STATUS_EXIT_PENDING;
11774         ipw_down(priv);
11775         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11776
11777         mutex_unlock(&priv->mutex);
11778
11779         unregister_netdev(priv->net_dev);
11780
11781         if (priv->rxq) {
11782                 ipw_rx_queue_free(priv, priv->rxq);
11783                 priv->rxq = NULL;
11784         }
11785         ipw_tx_queue_free(priv);
11786
11787         if (priv->cmdlog) {
11788                 kfree(priv->cmdlog);
11789                 priv->cmdlog = NULL;
11790         }
11791         /* ipw_down will ensure that there is no more pending work
11792          * in the workqueue's, so we can safely remove them now. */
11793         cancel_delayed_work(&priv->adhoc_check);
11794         cancel_delayed_work(&priv->gather_stats);
11795         cancel_delayed_work(&priv->request_scan);
11796         cancel_delayed_work(&priv->request_direct_scan);
11797         cancel_delayed_work(&priv->request_passive_scan);
11798         cancel_delayed_work(&priv->scan_event);
11799         cancel_delayed_work(&priv->rf_kill);
11800         cancel_delayed_work(&priv->scan_check);
11801         destroy_workqueue(priv->workqueue);
11802         priv->workqueue = NULL;
11803
11804         /* Free MAC hash list for ADHOC */
11805         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11806                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11807                         list_del(p);
11808                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11809                 }
11810         }
11811
11812         kfree(priv->error);
11813         priv->error = NULL;
11814
11815 #ifdef CONFIG_IPW2200_PROMISCUOUS
11816         ipw_prom_free(priv);
11817 #endif
11818
11819         free_irq(pdev->irq, priv);
11820         iounmap(priv->hw_base);
11821         pci_release_regions(pdev);
11822         pci_disable_device(pdev);
11823         pci_set_drvdata(pdev, NULL);
11824         free_ieee80211(priv->net_dev);
11825         free_firmware();
11826 }
11827
11828 #ifdef CONFIG_PM
11829 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11830 {
11831         struct ipw_priv *priv = pci_get_drvdata(pdev);
11832         struct net_device *dev = priv->net_dev;
11833
11834         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11835
11836         /* Take down the device; powers it off, etc. */
11837         ipw_down(priv);
11838
11839         /* Remove the PRESENT state of the device */
11840         netif_device_detach(dev);
11841
11842         pci_save_state(pdev);
11843         pci_disable_device(pdev);
11844         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11845
11846         return 0;
11847 }
11848
11849 static int ipw_pci_resume(struct pci_dev *pdev)
11850 {
11851         struct ipw_priv *priv = pci_get_drvdata(pdev);
11852         struct net_device *dev = priv->net_dev;
11853         int err;
11854         u32 val;
11855
11856         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11857
11858         pci_set_power_state(pdev, PCI_D0);
11859         err = pci_enable_device(pdev);
11860         if (err) {
11861                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11862                        dev->name);
11863                 return err;
11864         }
11865         pci_restore_state(pdev);
11866
11867         /*
11868          * Suspend/Resume resets the PCI configuration space, so we have to
11869          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11870          * from interfering with C3 CPU state. pci_restore_state won't help
11871          * here since it only restores the first 64 bytes pci config header.
11872          */
11873         pci_read_config_dword(pdev, 0x40, &val);
11874         if ((val & 0x0000ff00) != 0)
11875                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11876
11877         /* Set the device back into the PRESENT state; this will also wake
11878          * the queue of needed */
11879         netif_device_attach(dev);
11880
11881         /* Bring the device back up */
11882         queue_work(priv->workqueue, &priv->up);
11883
11884         return 0;
11885 }
11886 #endif
11887
11888 static void ipw_pci_shutdown(struct pci_dev *pdev)
11889 {
11890         struct ipw_priv *priv = pci_get_drvdata(pdev);
11891
11892         /* Take down the device; powers it off, etc. */
11893         ipw_down(priv);
11894
11895         pci_disable_device(pdev);
11896 }
11897
11898 /* driver initialization stuff */
11899 static struct pci_driver ipw_driver = {
11900         .name = DRV_NAME,
11901         .id_table = card_ids,
11902         .probe = ipw_pci_probe,
11903         .remove = __devexit_p(ipw_pci_remove),
11904 #ifdef CONFIG_PM
11905         .suspend = ipw_pci_suspend,
11906         .resume = ipw_pci_resume,
11907 #endif
11908         .shutdown = ipw_pci_shutdown,
11909 };
11910
11911 static int __init ipw_init(void)
11912 {
11913         int ret;
11914
11915         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11916         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11917
11918         ret = pci_register_driver(&ipw_driver);
11919         if (ret) {
11920                 IPW_ERROR("Unable to initialize PCI module\n");
11921                 return ret;
11922         }
11923
11924         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11925         if (ret) {
11926                 IPW_ERROR("Unable to create driver sysfs file\n");
11927                 pci_unregister_driver(&ipw_driver);
11928                 return ret;
11929         }
11930
11931         return ret;
11932 }
11933
11934 static void __exit ipw_exit(void)
11935 {
11936         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11937         pci_unregister_driver(&ipw_driver);
11938 }
11939
11940 module_param(disable, int, 0444);
11941 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11942
11943 module_param(associate, int, 0444);
11944 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11945
11946 module_param(auto_create, int, 0444);
11947 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11948
11949 module_param(led, int, 0444);
11950 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11951
11952 module_param(debug, int, 0444);
11953 MODULE_PARM_DESC(debug, "debug output mask");
11954
11955 module_param(channel, int, 0444);
11956 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11957
11958 #ifdef CONFIG_IPW2200_PROMISCUOUS
11959 module_param(rtap_iface, int, 0444);
11960 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11961 #endif
11962
11963 #ifdef CONFIG_IPW2200_QOS
11964 module_param(qos_enable, int, 0444);
11965 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11966
11967 module_param(qos_burst_enable, int, 0444);
11968 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11969
11970 module_param(qos_no_ack_mask, int, 0444);
11971 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11972
11973 module_param(burst_duration_CCK, int, 0444);
11974 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11975
11976 module_param(burst_duration_OFDM, int, 0444);
11977 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11978 #endif                          /* CONFIG_IPW2200_QOS */
11979
11980 #ifdef CONFIG_IPW2200_MONITOR
11981 module_param(mode, int, 0444);
11982 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11983 #else
11984 module_param(mode, int, 0444);
11985 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11986 #endif
11987
11988 module_param(bt_coexist, int, 0444);
11989 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11990
11991 module_param(hwcrypto, int, 0444);
11992 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11993
11994 module_param(cmdlog, int, 0444);
11995 MODULE_PARM_DESC(cmdlog,
11996                  "allocate a ring buffer for logging firmware commands");
11997
11998 module_param(roaming, int, 0444);
11999 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12000
12001 module_param(antenna, int, 0444);
12002 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12003
12004 module_exit(ipw_exit);
12005 module_init(ipw_init);