Merge branch 'e1000-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[pandora-kernel.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
166
167 #include "ipw2100.h"
168
169 #define IPW2100_VERSION "git-1.2.2"
170
171 #define DRV_NAME        "ipw2100"
172 #define DRV_VERSION     IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
175
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define IPW2100_RX_DEBUG        /* Reception debugging */
179 #endif
180
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
185
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
194
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
201
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
209
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213         if (ipw2100_debug_level & (level)) { \
214                 printk(KERN_DEBUG "ipw2100: %c %s ", \
215                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
216                 printk(message); \
217         } \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif                          /* CONFIG_IPW2100_DEBUG */
222
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225         "undefined",
226         "unused",               /* HOST_ATTENTION */
227         "HOST_COMPLETE",
228         "unused",               /* SLEEP */
229         "unused",               /* HOST_POWER_DOWN */
230         "unused",
231         "SYSTEM_CONFIG",
232         "unused",               /* SET_IMR */
233         "SSID",
234         "MANDATORY_BSSID",
235         "AUTHENTICATION_TYPE",
236         "ADAPTER_ADDRESS",
237         "PORT_TYPE",
238         "INTERNATIONAL_MODE",
239         "CHANNEL",
240         "RTS_THRESHOLD",
241         "FRAG_THRESHOLD",
242         "POWER_MODE",
243         "TX_RATES",
244         "BASIC_TX_RATES",
245         "WEP_KEY_INFO",
246         "unused",
247         "unused",
248         "unused",
249         "unused",
250         "WEP_KEY_INDEX",
251         "WEP_FLAGS",
252         "ADD_MULTICAST",
253         "CLEAR_ALL_MULTICAST",
254         "BEACON_INTERVAL",
255         "ATIM_WINDOW",
256         "CLEAR_STATISTICS",
257         "undefined",
258         "undefined",
259         "undefined",
260         "undefined",
261         "TX_POWER_INDEX",
262         "undefined",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "BROADCAST_SCAN",
269         "CARD_DISABLE",
270         "PREFERRED_BSSID",
271         "SET_SCAN_OPTIONS",
272         "SCAN_DWELL_TIME",
273         "SWEEP_TABLE",
274         "AP_OR_STATION_TABLE",
275         "GROUP_ORDINALS",
276         "SHORT_RETRY_LIMIT",
277         "LONG_RETRY_LIMIT",
278         "unused",               /* SAVE_CALIBRATION */
279         "unused",               /* RESTORE_CALIBRATION */
280         "undefined",
281         "undefined",
282         "undefined",
283         "HOST_PRE_POWER_DOWN",
284         "unused",               /* HOST_INTERRUPT_COALESCING */
285         "undefined",
286         "CARD_DISABLE_PHY_OFF",
287         "MSDU_TX_RATES" "undefined",
288         "undefined",
289         "SET_STATION_STAT_BITS",
290         "CLEAR_STATIONS_STAT_BITS",
291         "LEAP_ROGUE_MODE",
292         "SET_SECURITY_INFORMATION",
293         "DISASSOCIATION_BSSID",
294         "SET_WPA_ASS_IE"
295 };
296 #endif
297
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308                                struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310                                 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312                                  size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314                                     size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316                                      struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318                                   struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
322
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 {
325         *val = readl((void __iomem *)(dev->base_addr + reg));
326         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
327 }
328
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 {
331         writel(val, (void __iomem *)(dev->base_addr + reg));
332         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
333 }
334
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336                                       u16 * val)
337 {
338         *val = readw((void __iomem *)(dev->base_addr + reg));
339         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
340 }
341
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 {
344         *val = readb((void __iomem *)(dev->base_addr + reg));
345         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
346 }
347
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 {
350         writew(val, (void __iomem *)(dev->base_addr + reg));
351         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
352 }
353
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 {
356         writeb(val, (void __iomem *)(dev->base_addr + reg));
357         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
358 }
359
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 {
362         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363                        addr & IPW_REG_INDIRECT_ADDR_MASK);
364         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
365 }
366
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 {
369         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370                        addr & IPW_REG_INDIRECT_ADDR_MASK);
371         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
372 }
373
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 {
376         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377                        addr & IPW_REG_INDIRECT_ADDR_MASK);
378         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
379 }
380
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 {
383         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384                        addr & IPW_REG_INDIRECT_ADDR_MASK);
385         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
386 }
387
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 {
390         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391                        addr & IPW_REG_INDIRECT_ADDR_MASK);
392         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
393 }
394
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 {
397         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398                        addr & IPW_REG_INDIRECT_ADDR_MASK);
399         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
400 }
401
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 {
404         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405                        addr & IPW_REG_INDIRECT_ADDR_MASK);
406 }
407
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 {
410         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
411 }
412
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414                                     const u8 * buf)
415 {
416         u32 aligned_addr;
417         u32 aligned_len;
418         u32 dif_len;
419         u32 i;
420
421         /* read first nibble byte by byte */
422         aligned_addr = addr & (~0x3);
423         dif_len = addr - aligned_addr;
424         if (dif_len) {
425                 /* Start reading at aligned_addr + dif_len */
426                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427                                aligned_addr);
428                 for (i = dif_len; i < 4; i++, buf++)
429                         write_register_byte(dev,
430                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
431                                             *buf);
432
433                 len -= dif_len;
434                 aligned_addr += 4;
435         }
436
437         /* read DWs through autoincrement registers */
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439         aligned_len = len & (~0x3);
440         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442
443         /* copy the last nibble */
444         dif_len = len - aligned_len;
445         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446         for (i = 0; i < dif_len; i++, buf++)
447                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448                                     *buf);
449 }
450
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452                                    u8 * buf)
453 {
454         u32 aligned_addr;
455         u32 aligned_len;
456         u32 dif_len;
457         u32 i;
458
459         /* read first nibble byte by byte */
460         aligned_addr = addr & (~0x3);
461         dif_len = addr - aligned_addr;
462         if (dif_len) {
463                 /* Start reading at aligned_addr + dif_len */
464                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465                                aligned_addr);
466                 for (i = dif_len; i < 4; i++, buf++)
467                         read_register_byte(dev,
468                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
469                                            buf);
470
471                 len -= dif_len;
472                 aligned_addr += 4;
473         }
474
475         /* read DWs through autoincrement registers */
476         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477         aligned_len = len & (~0x3);
478         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480
481         /* copy the last nibble */
482         dif_len = len - aligned_len;
483         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484         for (i = 0; i < dif_len; i++, buf++)
485                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
486 }
487
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 {
490         return (dev->base_addr &&
491                 (readl
492                  ((void __iomem *)(dev->base_addr +
493                                    IPW_REG_DOA_DEBUG_AREA_START))
494                  == IPW_DATA_DOA_DEBUG_VALUE));
495 }
496
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498                                void *val, u32 * len)
499 {
500         struct ipw2100_ordinals *ordinals = &priv->ordinals;
501         u32 addr;
502         u32 field_info;
503         u16 field_len;
504         u16 field_count;
505         u32 total_length;
506
507         if (ordinals->table1_addr == 0) {
508                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509                        "before they have been loaded.\n");
510                 return -EINVAL;
511         }
512
513         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516
517                         printk(KERN_WARNING DRV_NAME
518                                ": ordinal buffer length too small, need %zd\n",
519                                IPW_ORD_TAB_1_ENTRY_SIZE);
520
521                         return -EINVAL;
522                 }
523
524                 read_nic_dword(priv->net_dev,
525                                ordinals->table1_addr + (ord << 2), &addr);
526                 read_nic_dword(priv->net_dev, addr, val);
527
528                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529
530                 return 0;
531         }
532
533         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534
535                 ord -= IPW_START_ORD_TAB_2;
536
537                 /* get the address of statistic */
538                 read_nic_dword(priv->net_dev,
539                                ordinals->table2_addr + (ord << 3), &addr);
540
541                 /* get the second DW of statistics ;
542                  * two 16-bit words - first is length, second is count */
543                 read_nic_dword(priv->net_dev,
544                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
545                                &field_info);
546
547                 /* get each entry length */
548                 field_len = *((u16 *) & field_info);
549
550                 /* get number of entries */
551                 field_count = *(((u16 *) & field_info) + 1);
552
553                 /* abort if no enought memory */
554                 total_length = field_len * field_count;
555                 if (total_length > *len) {
556                         *len = total_length;
557                         return -EINVAL;
558                 }
559
560                 *len = total_length;
561                 if (!total_length)
562                         return 0;
563
564                 /* read the ordinal data from the SRAM */
565                 read_nic_memory(priv->net_dev, addr, total_length, val);
566
567                 return 0;
568         }
569
570         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571                "in table 2\n", ord);
572
573         return -EINVAL;
574 }
575
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577                                u32 * len)
578 {
579         struct ipw2100_ordinals *ordinals = &priv->ordinals;
580         u32 addr;
581
582         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585                         IPW_DEBUG_INFO("wrong size\n");
586                         return -EINVAL;
587                 }
588
589                 read_nic_dword(priv->net_dev,
590                                ordinals->table1_addr + (ord << 2), &addr);
591
592                 write_nic_dword(priv->net_dev, addr, *val);
593
594                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595
596                 return 0;
597         }
598
599         IPW_DEBUG_INFO("wrong table\n");
600         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601                 return -EINVAL;
602
603         return -EINVAL;
604 }
605
606 static char *snprint_line(char *buf, size_t count,
607                           const u8 * data, u32 len, u32 ofs)
608 {
609         int out, i, j, l;
610         char c;
611
612         out = snprintf(buf, count, "%08X", ofs);
613
614         for (l = 0, i = 0; i < 2; i++) {
615                 out += snprintf(buf + out, count - out, " ");
616                 for (j = 0; j < 8 && l < len; j++, l++)
617                         out += snprintf(buf + out, count - out, "%02X ",
618                                         data[(i * 8 + j)]);
619                 for (; j < 8; j++)
620                         out += snprintf(buf + out, count - out, "   ");
621         }
622
623         out += snprintf(buf + out, count - out, " ");
624         for (l = 0, i = 0; i < 2; i++) {
625                 out += snprintf(buf + out, count - out, " ");
626                 for (j = 0; j < 8 && l < len; j++, l++) {
627                         c = data[(i * 8 + j)];
628                         if (!isascii(c) || !isprint(c))
629                                 c = '.';
630
631                         out += snprintf(buf + out, count - out, "%c", c);
632                 }
633
634                 for (; j < 8; j++)
635                         out += snprintf(buf + out, count - out, " ");
636         }
637
638         return buf;
639 }
640
641 static void printk_buf(int level, const u8 * data, u32 len)
642 {
643         char line[81];
644         u32 ofs = 0;
645         if (!(ipw2100_debug_level & level))
646                 return;
647
648         while (len) {
649                 printk(KERN_DEBUG "%s\n",
650                        snprint_line(line, sizeof(line), &data[ofs],
651                                     min(len, 16U), ofs));
652                 ofs += 16;
653                 len -= min(len, 16U);
654         }
655 }
656
657 #define MAX_RESET_BACKOFF 10
658
659 static void schedule_reset(struct ipw2100_priv *priv)
660 {
661         unsigned long now = get_seconds();
662
663         /* If we haven't received a reset request within the backoff period,
664          * then we can reset the backoff interval so this reset occurs
665          * immediately */
666         if (priv->reset_backoff &&
667             (now - priv->last_reset > priv->reset_backoff))
668                 priv->reset_backoff = 0;
669
670         priv->last_reset = get_seconds();
671
672         if (!(priv->status & STATUS_RESET_PENDING)) {
673                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674                                priv->net_dev->name, priv->reset_backoff);
675                 netif_carrier_off(priv->net_dev);
676                 netif_stop_queue(priv->net_dev);
677                 priv->status |= STATUS_RESET_PENDING;
678                 if (priv->reset_backoff)
679                         queue_delayed_work(priv->workqueue, &priv->reset_work,
680                                            priv->reset_backoff * HZ);
681                 else
682                         queue_delayed_work(priv->workqueue, &priv->reset_work,
683                                            0);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         mutex_lock(&priv->adapter_mutex);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         mutex_unlock(&priv->adapter_mutex);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standby if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         mutex_lock(&priv->adapter_mutex);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         mutex_unlock(&priv->adapter_mutex);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static const struct ieee80211_geo ipw_geos[] = {
1676         {                       /* Restricted */
1677          "---",
1678          .bg_channels = 14,
1679          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680                 {2427, 4}, {2432, 5}, {2437, 6},
1681                 {2442, 7}, {2447, 8}, {2452, 9},
1682                 {2457, 10}, {2462, 11}, {2467, 12},
1683                 {2472, 13}, {2484, 14}},
1684          },
1685 };
1686
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 {
1689         unsigned long flags;
1690         int rc = 0;
1691         u32 lock;
1692         u32 ord_len = sizeof(lock);
1693
1694         /* Quite if manually disabled. */
1695         if (priv->status & STATUS_RF_KILL_SW) {
1696                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697                                "switch\n", priv->net_dev->name);
1698                 return 0;
1699         }
1700
1701         /* the ipw2100 hardware really doesn't want power management delays
1702          * longer than 175usec
1703          */
1704         modify_acceptable_latency("ipw2100", 175);
1705
1706         /* If the interrupt is enabled, turn it off... */
1707         spin_lock_irqsave(&priv->low_lock, flags);
1708         ipw2100_disable_interrupts(priv);
1709
1710         /* Reset any fatal_error conditions */
1711         ipw2100_reset_fatalerror(priv);
1712         spin_unlock_irqrestore(&priv->low_lock, flags);
1713
1714         if (priv->status & STATUS_POWERED ||
1715             (priv->status & STATUS_RESET_PENDING)) {
1716                 /* Power cycle the card ... */
1717                 if (ipw2100_power_cycle_adapter(priv)) {
1718                         printk(KERN_WARNING DRV_NAME
1719                                ": %s: Could not cycle adapter.\n",
1720                                priv->net_dev->name);
1721                         rc = 1;
1722                         goto exit;
1723                 }
1724         } else
1725                 priv->status |= STATUS_POWERED;
1726
1727         /* Load the firmware, start the clocks, etc. */
1728         if (ipw2100_start_adapter(priv)) {
1729                 printk(KERN_ERR DRV_NAME
1730                        ": %s: Failed to start the firmware.\n",
1731                        priv->net_dev->name);
1732                 rc = 1;
1733                 goto exit;
1734         }
1735
1736         ipw2100_initialize_ordinals(priv);
1737
1738         /* Determine capabilities of this particular HW configuration */
1739         if (ipw2100_get_hw_features(priv)) {
1740                 printk(KERN_ERR DRV_NAME
1741                        ": %s: Failed to determine HW features.\n",
1742                        priv->net_dev->name);
1743                 rc = 1;
1744                 goto exit;
1745         }
1746
1747         /* Initialize the geo */
1748         if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750                 return 0;
1751         }
1752         priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753
1754         lock = LOCK_NONE;
1755         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756                 printk(KERN_ERR DRV_NAME
1757                        ": %s: Failed to clear ordinal lock.\n",
1758                        priv->net_dev->name);
1759                 rc = 1;
1760                 goto exit;
1761         }
1762
1763         priv->status &= ~STATUS_SCANNING;
1764
1765         if (rf_kill_active(priv)) {
1766                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767                        priv->net_dev->name);
1768
1769                 if (priv->stop_rf_kill) {
1770                         priv->stop_rf_kill = 0;
1771                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1772                 }
1773
1774                 deferred = 1;
1775         }
1776
1777         /* Turn on the interrupt so that commands can be processed */
1778         ipw2100_enable_interrupts(priv);
1779
1780         /* Send all of the commands that must be sent prior to
1781          * HOST_COMPLETE */
1782         if (ipw2100_adapter_setup(priv)) {
1783                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784                        priv->net_dev->name);
1785                 rc = 1;
1786                 goto exit;
1787         }
1788
1789         if (!deferred) {
1790                 /* Enable the adapter - sends HOST_COMPLETE */
1791                 if (ipw2100_enable_adapter(priv)) {
1792                         printk(KERN_ERR DRV_NAME ": "
1793                                "%s: failed in call to enable adapter.\n",
1794                                priv->net_dev->name);
1795                         ipw2100_hw_stop_adapter(priv);
1796                         rc = 1;
1797                         goto exit;
1798                 }
1799
1800                 /* Start a scan . . . */
1801                 ipw2100_set_scan_options(priv);
1802                 ipw2100_start_scan(priv);
1803         }
1804
1805       exit:
1806         return rc;
1807 }
1808
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1811 {
1812         struct ipw2100_priv *priv = ieee80211_priv(dev);
1813         return ipw2100_up(priv, 1);
1814 }
1815
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1817 {
1818         unsigned long flags;
1819         union iwreq_data wrqu = {
1820                 .ap_addr = {
1821                             .sa_family = ARPHRD_ETHER}
1822         };
1823         int associated = priv->status & STATUS_ASSOCIATED;
1824
1825         /* Kill the RF switch timer */
1826         if (!priv->stop_rf_kill) {
1827                 priv->stop_rf_kill = 1;
1828                 cancel_delayed_work(&priv->rf_kill);
1829         }
1830
1831         /* Kill the firmare hang check timer */
1832         if (!priv->stop_hang_check) {
1833                 priv->stop_hang_check = 1;
1834                 cancel_delayed_work(&priv->hang_check);
1835         }
1836
1837         /* Kill any pending resets */
1838         if (priv->status & STATUS_RESET_PENDING)
1839                 cancel_delayed_work(&priv->reset_work);
1840
1841         /* Make sure the interrupt is on so that FW commands will be
1842          * processed correctly */
1843         spin_lock_irqsave(&priv->low_lock, flags);
1844         ipw2100_enable_interrupts(priv);
1845         spin_unlock_irqrestore(&priv->low_lock, flags);
1846
1847         if (ipw2100_hw_stop_adapter(priv))
1848                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849                        priv->net_dev->name);
1850
1851         /* Do not disable the interrupt until _after_ we disable
1852          * the adaptor.  Otherwise the CARD_DISABLE command will never
1853          * be ack'd by the firmware */
1854         spin_lock_irqsave(&priv->low_lock, flags);
1855         ipw2100_disable_interrupts(priv);
1856         spin_unlock_irqrestore(&priv->low_lock, flags);
1857
1858         modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1859
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861         if (priv->config & CFG_C3_DISABLED) {
1862                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863                 acpi_set_cstate_limit(priv->cstate_limit);
1864                 priv->config &= ~CFG_C3_DISABLED;
1865         }
1866 #endif
1867
1868         /* We have to signal any supplicant if we are disassociating */
1869         if (associated)
1870                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1871
1872         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873         netif_carrier_off(priv->net_dev);
1874         netif_stop_queue(priv->net_dev);
1875 }
1876
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1878 {
1879         struct ipw2100_priv *priv =
1880                 container_of(work, struct ipw2100_priv, reset_work.work);
1881         unsigned long flags;
1882         union iwreq_data wrqu = {
1883                 .ap_addr = {
1884                             .sa_family = ARPHRD_ETHER}
1885         };
1886         int associated = priv->status & STATUS_ASSOCIATED;
1887
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890         priv->resets++;
1891         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892         priv->status |= STATUS_SECURITY_UPDATED;
1893
1894         /* Force a power cycle even if interface hasn't been opened
1895          * yet */
1896         cancel_delayed_work(&priv->reset_work);
1897         priv->status |= STATUS_RESET_PENDING;
1898         spin_unlock_irqrestore(&priv->low_lock, flags);
1899
1900         mutex_lock(&priv->action_mutex);
1901         /* stop timed checks so that they don't interfere with reset */
1902         priv->stop_hang_check = 1;
1903         cancel_delayed_work(&priv->hang_check);
1904
1905         /* We have to signal any supplicant if we are disassociating */
1906         if (associated)
1907                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1908
1909         ipw2100_up(priv, 0);
1910         mutex_unlock(&priv->action_mutex);
1911
1912 }
1913
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1915 {
1916
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918         int ret, len, essid_len;
1919         char essid[IW_ESSID_MAX_SIZE];
1920         u32 txrate;
1921         u32 chan;
1922         char *txratename;
1923         u8 bssid[ETH_ALEN];
1924
1925         /*
1926          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927          *      an actual MAC of the AP. Seems like FW sets this
1928          *      address too late. Read it later and expose through
1929          *      /proc or schedule a later task to query and update
1930          */
1931
1932         essid_len = IW_ESSID_MAX_SIZE;
1933         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934                                   essid, &essid_len);
1935         if (ret) {
1936                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937                                __LINE__);
1938                 return;
1939         }
1940
1941         len = sizeof(u32);
1942         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943         if (ret) {
1944                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945                                __LINE__);
1946                 return;
1947         }
1948
1949         len = sizeof(u32);
1950         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951         if (ret) {
1952                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953                                __LINE__);
1954                 return;
1955         }
1956         len = ETH_ALEN;
1957         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958         if (ret) {
1959                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960                                __LINE__);
1961                 return;
1962         }
1963         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1964
1965         switch (txrate) {
1966         case TX_RATE_1_MBIT:
1967                 txratename = "1Mbps";
1968                 break;
1969         case TX_RATE_2_MBIT:
1970                 txratename = "2Mbsp";
1971                 break;
1972         case TX_RATE_5_5_MBIT:
1973                 txratename = "5.5Mbps";
1974                 break;
1975         case TX_RATE_11_MBIT:
1976                 txratename = "11Mbps";
1977                 break;
1978         default:
1979                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980                 txratename = "unknown rate";
1981                 break;
1982         }
1983
1984         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985                        MAC_FMT ")\n",
1986                        priv->net_dev->name, escape_essid(essid, essid_len),
1987                        txratename, chan, MAC_ARG(bssid));
1988
1989         /* now we copy read ssid into dev */
1990         if (!(priv->config & CFG_STATIC_ESSID)) {
1991                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992                 memcpy(priv->essid, essid, priv->essid_len);
1993         }
1994         priv->channel = chan;
1995         memcpy(priv->bssid, bssid, ETH_ALEN);
1996
1997         priv->status |= STATUS_ASSOCIATING;
1998         priv->connect_start = get_seconds();
1999
2000         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2001 }
2002
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004                              int length, int batch_mode)
2005 {
2006         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007         struct host_command cmd = {
2008                 .host_command = SSID,
2009                 .host_command_sequence = 0,
2010                 .host_command_length = ssid_len
2011         };
2012         int err;
2013
2014         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2015
2016         if (ssid_len)
2017                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2018
2019         if (!batch_mode) {
2020                 err = ipw2100_disable_adapter(priv);
2021                 if (err)
2022                         return err;
2023         }
2024
2025         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026          * disable auto association -- so we cheat by setting a bogus SSID */
2027         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028                 int i;
2029                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031                         bogus[i] = 0x18 + i;
2032                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2033         }
2034
2035         /* NOTE:  We always send the SSID command even if the provided ESSID is
2036          * the same as what we currently think is set. */
2037
2038         err = ipw2100_hw_send_command(priv, &cmd);
2039         if (!err) {
2040                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041                 memcpy(priv->essid, essid, ssid_len);
2042                 priv->essid_len = ssid_len;
2043         }
2044
2045         if (!batch_mode) {
2046                 if (ipw2100_enable_adapter(priv))
2047                         err = -EIO;
2048         }
2049
2050         return err;
2051 }
2052
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2054 {
2055         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056                   "disassociated: '%s' " MAC_FMT " \n",
2057                   escape_essid(priv->essid, priv->essid_len),
2058                   MAC_ARG(priv->bssid));
2059
2060         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2061
2062         if (priv->status & STATUS_STOPPING) {
2063                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064                 return;
2065         }
2066
2067         memset(priv->bssid, 0, ETH_ALEN);
2068         memset(priv->ieee->bssid, 0, ETH_ALEN);
2069
2070         netif_carrier_off(priv->net_dev);
2071         netif_stop_queue(priv->net_dev);
2072
2073         if (!(priv->status & STATUS_RUNNING))
2074                 return;
2075
2076         if (priv->status & STATUS_SECURITY_UPDATED)
2077                 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2078
2079         queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2080 }
2081
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2083 {
2084         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085                        priv->net_dev->name);
2086
2087         /* RF_KILL is now enabled (else we wouldn't be here) */
2088         priv->status |= STATUS_RF_KILL_HW;
2089
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091         if (priv->config & CFG_C3_DISABLED) {
2092                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093                 acpi_set_cstate_limit(priv->cstate_limit);
2094                 priv->config &= ~CFG_C3_DISABLED;
2095         }
2096 #endif
2097
2098         /* Make sure the RF Kill check timer is running */
2099         priv->stop_rf_kill = 0;
2100         cancel_delayed_work(&priv->rf_kill);
2101         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2102 }
2103
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2105 {
2106         IPW_DEBUG_SCAN("scan complete\n");
2107         /* Age the scan results... */
2108         priv->ieee->scans++;
2109         priv->status &= ~STATUS_SCANNING;
2110 }
2111
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115         int status;
2116         void (*cb) (struct ipw2100_priv * priv, u32 status);
2117         char *name;
2118 };
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122         int status;
2123         void (*cb) (struct ipw2100_priv * priv, u32 status);
2124 };
2125 #endif                          /* CONFIG_IPW2100_DEBUG */
2126
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2128 {
2129         IPW_DEBUG_SCAN("Scanning...\n");
2130         priv->status |= STATUS_SCANNING;
2131 }
2132
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146         IPW2100_HANDLER(-1, NULL)
2147 };
2148
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2150 {
2151         int i;
2152
2153         if (status == IPW_STATE_SCANNING &&
2154             priv->status & STATUS_ASSOCIATED &&
2155             !(priv->status & STATUS_SCANNING)) {
2156                 IPW_DEBUG_INFO("Scan detected while associated, with "
2157                                "no scan request.  Restarting firmware.\n");
2158
2159                 /* Wake up any sleeping jobs */
2160                 schedule_reset(priv);
2161         }
2162
2163         for (i = 0; status_handlers[i].status != -1; i++) {
2164                 if (status == status_handlers[i].status) {
2165                         IPW_DEBUG_NOTIF("Status change: %s\n",
2166                                         status_handlers[i].name);
2167                         if (status_handlers[i].cb)
2168                                 status_handlers[i].cb(priv, status);
2169                         priv->wstats.status = status;
2170                         return;
2171                 }
2172         }
2173
2174         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2175 }
2176
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178                                     struct ipw2100_cmd_header *cmd)
2179 {
2180 #ifdef CONFIG_IPW2100_DEBUG
2181         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183                              command_types[cmd->host_command_reg],
2184                              cmd->host_command_reg);
2185         }
2186 #endif
2187         if (cmd->host_command_reg == HOST_COMPLETE)
2188                 priv->status |= STATUS_ENABLED;
2189
2190         if (cmd->host_command_reg == CARD_DISABLE)
2191                 priv->status &= ~STATUS_ENABLED;
2192
2193         priv->status &= ~STATUS_CMD_ACTIVE;
2194
2195         wake_up_interruptible(&priv->wait_command_queue);
2196 }
2197
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200         "COMMAND_STATUS_VAL",
2201         "STATUS_CHANGE_VAL",
2202         "P80211_DATA_VAL",
2203         "P8023_DATA_VAL",
2204         "HOST_NOTIFICATION_VAL"
2205 };
2206 #endif
2207
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209                                     struct ipw2100_rx_packet *packet)
2210 {
2211         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212         if (!packet->skb)
2213                 return -ENOMEM;
2214
2215         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217                                           sizeof(struct ipw2100_rx),
2218                                           PCI_DMA_FROMDEVICE);
2219         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220          *       dma_addr */
2221
2222         return 0;
2223 }
2224
2225 #define SEARCH_ERROR   0xffffffff
2226 #define SEARCH_FAIL    0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2230
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2233 {
2234         int i;
2235         if (!priv->snapshot[0])
2236                 return;
2237         for (i = 0; i < 0x30; i++)
2238                 kfree(priv->snapshot[i]);
2239         priv->snapshot[0] = NULL;
2240 }
2241
2242 #ifdef IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2244 {
2245         int i;
2246         if (priv->snapshot[0])
2247                 return 1;
2248         for (i = 0; i < 0x30; i++) {
2249                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250                 if (!priv->snapshot[i]) {
2251                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252                                        "buffer %d\n", priv->net_dev->name, i);
2253                         while (i > 0)
2254                                 kfree(priv->snapshot[--i]);
2255                         priv->snapshot[0] = NULL;
2256                         return 0;
2257                 }
2258         }
2259
2260         return 1;
2261 }
2262
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264                                     size_t len, int mode)
2265 {
2266         u32 i, j;
2267         u32 tmp;
2268         u8 *s, *d;
2269         u32 ret;
2270
2271         s = in_buf;
2272         if (mode == SEARCH_SNAPSHOT) {
2273                 if (!ipw2100_snapshot_alloc(priv))
2274                         mode = SEARCH_DISCARD;
2275         }
2276
2277         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278                 read_nic_dword(priv->net_dev, i, &tmp);
2279                 if (mode == SEARCH_SNAPSHOT)
2280                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281                 if (ret == SEARCH_FAIL) {
2282                         d = (u8 *) & tmp;
2283                         for (j = 0; j < 4; j++) {
2284                                 if (*s != *d) {
2285                                         s = in_buf;
2286                                         continue;
2287                                 }
2288
2289                                 s++;
2290                                 d++;
2291
2292                                 if ((s - in_buf) == len)
2293                                         ret = (i + j) - len + 1;
2294                         }
2295                 } else if (mode == SEARCH_DISCARD)
2296                         return ret;
2297         }
2298
2299         return ret;
2300 }
2301 #endif
2302
2303 /*
2304  *
2305  * 0) Disconnect the SKB from the firmware (just unmap)
2306  * 1) Pack the ETH header into the SKB
2307  * 2) Pass the SKB to the network stack
2308  *
2309  * When packet is provided by the firmware, it contains the following:
2310  *
2311  * .  ieee80211_hdr
2312  * .  ieee80211_snap_hdr
2313  *
2314  * The size of the constructed ethernet
2315  *
2316  */
2317 #ifdef IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2320
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2322 {
2323 #ifdef IPW2100_DEBUG_C3
2324         struct ipw2100_status *status = &priv->status_queue.drv[i];
2325         u32 match, reg;
2326         int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329         int limit;
2330 #endif
2331
2332         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333                        i * sizeof(struct ipw2100_status));
2334
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337         limit = acpi_get_cstate_limit();
2338         if (limit > 2) {
2339                 priv->cstate_limit = limit;
2340                 acpi_set_cstate_limit(2);
2341                 priv->config |= CFG_C3_DISABLED;
2342         }
2343 #endif
2344
2345 #ifdef IPW2100_DEBUG_C3
2346         /* Halt the fimrware so we can get a good image */
2347         write_register(priv->net_dev, IPW_REG_RESET_REG,
2348                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349         j = 5;
2350         do {
2351                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2353
2354                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355                         break;
2356         } while (j--);
2357
2358         match = ipw2100_match_buf(priv, (u8 *) status,
2359                                   sizeof(struct ipw2100_status),
2360                                   SEARCH_SNAPSHOT);
2361         if (match < SEARCH_SUCCESS)
2362                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363                                "offset 0x%06X, length %d:\n",
2364                                priv->net_dev->name, match,
2365                                sizeof(struct ipw2100_status));
2366         else
2367                 IPW_DEBUG_INFO("%s: No DMA status match in "
2368                                "Firmware.\n", priv->net_dev->name);
2369
2370         printk_buf((u8 *) priv->status_queue.drv,
2371                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2373
2374         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375         priv->ieee->stats.rx_errors++;
2376         schedule_reset(priv);
2377 }
2378
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380                           struct ieee80211_rx_stats *stats)
2381 {
2382         struct ipw2100_status *status = &priv->status_queue.drv[i];
2383         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2384
2385         IPW_DEBUG_RX("Handler...\n");
2386
2387         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389                                "  Dropping.\n",
2390                                priv->net_dev->name,
2391                                status->frame_size, skb_tailroom(packet->skb));
2392                 priv->ieee->stats.rx_errors++;
2393                 return;
2394         }
2395
2396         if (unlikely(!netif_running(priv->net_dev))) {
2397                 priv->ieee->stats.rx_errors++;
2398                 priv->wstats.discard.misc++;
2399                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400                 return;
2401         }
2402
2403         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404                      !(priv->status & STATUS_ASSOCIATED))) {
2405                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406                 priv->wstats.discard.misc++;
2407                 return;
2408         }
2409
2410         pci_unmap_single(priv->pci_dev,
2411                          packet->dma_addr,
2412                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2413
2414         skb_put(packet->skb, status->frame_size);
2415
2416 #ifdef IPW2100_RX_DEBUG
2417         /* Make a copy of the frame so we can dump it to the logs if
2418          * ieee80211_rx fails */
2419         skb_copy_from_linear_data(packet->skb, packet_data,
2420                                   min_t(u32, status->frame_size,
2421                                              IPW_RX_NIC_BUFFER_LENGTH));
2422 #endif
2423
2424         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2425 #ifdef IPW2100_RX_DEBUG
2426                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2427                                priv->net_dev->name);
2428                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2429 #endif
2430                 priv->ieee->stats.rx_errors++;
2431
2432                 /* ieee80211_rx failed, so it didn't free the SKB */
2433                 dev_kfree_skb_any(packet->skb);
2434                 packet->skb = NULL;
2435         }
2436
2437         /* We need to allocate a new SKB and attach it to the RDB. */
2438         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2439                 printk(KERN_WARNING DRV_NAME ": "
2440                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2441                        "adapter.\n", priv->net_dev->name);
2442                 /* TODO: schedule adapter shutdown */
2443                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2444         }
2445
2446         /* Update the RDB entry */
2447         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2448 }
2449
2450 #ifdef CONFIG_IPW2100_MONITOR
2451
2452 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2453                    struct ieee80211_rx_stats *stats)
2454 {
2455         struct ipw2100_status *status = &priv->status_queue.drv[i];
2456         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457
2458         /* Magic struct that slots into the radiotap header -- no reason
2459          * to build this manually element by element, we can write it much
2460          * more efficiently than we can parse it. ORDER MATTERS HERE */
2461         struct ipw_rt_hdr {
2462                 struct ieee80211_radiotap_header rt_hdr;
2463                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2464         } *ipw_rt;
2465
2466         IPW_DEBUG_RX("Handler...\n");
2467
2468         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2469                                 sizeof(struct ipw_rt_hdr))) {
2470                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2471                                "  Dropping.\n",
2472                                priv->net_dev->name,
2473                                status->frame_size,
2474                                skb_tailroom(packet->skb));
2475                 priv->ieee->stats.rx_errors++;
2476                 return;
2477         }
2478
2479         if (unlikely(!netif_running(priv->net_dev))) {
2480                 priv->ieee->stats.rx_errors++;
2481                 priv->wstats.discard.misc++;
2482                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483                 return;
2484         }
2485
2486         if (unlikely(priv->config & CFG_CRC_CHECK &&
2487                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2488                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2489                 priv->ieee->stats.rx_errors++;
2490                 return;
2491         }
2492
2493         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2494                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2495         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2496                 packet->skb->data, status->frame_size);
2497
2498         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2499
2500         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2501         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2502         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2503
2504         ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2505
2506         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2507
2508         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2509
2510         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2511                 priv->ieee->stats.rx_errors++;
2512
2513                 /* ieee80211_rx failed, so it didn't free the SKB */
2514                 dev_kfree_skb_any(packet->skb);
2515                 packet->skb = NULL;
2516         }
2517
2518         /* We need to allocate a new SKB and attach it to the RDB. */
2519         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2520                 IPW_DEBUG_WARNING(
2521                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2522                         "adapter.\n", priv->net_dev->name);
2523                 /* TODO: schedule adapter shutdown */
2524                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2525         }
2526
2527         /* Update the RDB entry */
2528         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2529 }
2530
2531 #endif
2532
2533 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2534 {
2535         struct ipw2100_status *status = &priv->status_queue.drv[i];
2536         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2537         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2538
2539         switch (frame_type) {
2540         case COMMAND_STATUS_VAL:
2541                 return (status->frame_size != sizeof(u->rx_data.command));
2542         case STATUS_CHANGE_VAL:
2543                 return (status->frame_size != sizeof(u->rx_data.status));
2544         case HOST_NOTIFICATION_VAL:
2545                 return (status->frame_size < sizeof(u->rx_data.notification));
2546         case P80211_DATA_VAL:
2547         case P8023_DATA_VAL:
2548 #ifdef CONFIG_IPW2100_MONITOR
2549                 return 0;
2550 #else
2551                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2552                 case IEEE80211_FTYPE_MGMT:
2553                 case IEEE80211_FTYPE_CTL:
2554                         return 0;
2555                 case IEEE80211_FTYPE_DATA:
2556                         return (status->frame_size >
2557                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2558                 }
2559 #endif
2560         }
2561
2562         return 1;
2563 }
2564
2565 /*
2566  * ipw2100 interrupts are disabled at this point, and the ISR
2567  * is the only code that calls this method.  So, we do not need
2568  * to play with any locks.
2569  *
2570  * RX Queue works as follows:
2571  *
2572  * Read index - firmware places packet in entry identified by the
2573  *              Read index and advances Read index.  In this manner,
2574  *              Read index will always point to the next packet to
2575  *              be filled--but not yet valid.
2576  *
2577  * Write index - driver fills this entry with an unused RBD entry.
2578  *               This entry has not filled by the firmware yet.
2579  *
2580  * In between the W and R indexes are the RBDs that have been received
2581  * but not yet processed.
2582  *
2583  * The process of handling packets will start at WRITE + 1 and advance
2584  * until it reaches the READ index.
2585  *
2586  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2587  *
2588  */
2589 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2590 {
2591         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2592         struct ipw2100_status_queue *sq = &priv->status_queue;
2593         struct ipw2100_rx_packet *packet;
2594         u16 frame_type;
2595         u32 r, w, i, s;
2596         struct ipw2100_rx *u;
2597         struct ieee80211_rx_stats stats = {
2598                 .mac_time = jiffies,
2599         };
2600
2601         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2602         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2603
2604         if (r >= rxq->entries) {
2605                 IPW_DEBUG_RX("exit - bad read index\n");
2606                 return;
2607         }
2608
2609         i = (rxq->next + 1) % rxq->entries;
2610         s = i;
2611         while (i != r) {
2612                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2613                    r, rxq->next, i); */
2614
2615                 packet = &priv->rx_buffers[i];
2616
2617                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2618                  * the correct values */
2619                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2620                                             sq->nic +
2621                                             sizeof(struct ipw2100_status) * i,
2622                                             sizeof(struct ipw2100_status),
2623                                             PCI_DMA_FROMDEVICE);
2624
2625                 /* Sync the DMA for the RX buffer so CPU is sure to get
2626                  * the correct values */
2627                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2628                                             sizeof(struct ipw2100_rx),
2629                                             PCI_DMA_FROMDEVICE);
2630
2631                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2632                         ipw2100_corruption_detected(priv, i);
2633                         goto increment;
2634                 }
2635
2636                 u = packet->rxp;
2637                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2638                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2639                 stats.len = sq->drv[i].frame_size;
2640
2641                 stats.mask = 0;
2642                 if (stats.rssi != 0)
2643                         stats.mask |= IEEE80211_STATMASK_RSSI;
2644                 stats.freq = IEEE80211_24GHZ_BAND;
2645
2646                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2647                              priv->net_dev->name, frame_types[frame_type],
2648                              stats.len);
2649
2650                 switch (frame_type) {
2651                 case COMMAND_STATUS_VAL:
2652                         /* Reset Rx watchdog */
2653                         isr_rx_complete_command(priv, &u->rx_data.command);
2654                         break;
2655
2656                 case STATUS_CHANGE_VAL:
2657                         isr_status_change(priv, u->rx_data.status);
2658                         break;
2659
2660                 case P80211_DATA_VAL:
2661                 case P8023_DATA_VAL:
2662 #ifdef CONFIG_IPW2100_MONITOR
2663                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2664                                 isr_rx_monitor(priv, i, &stats);
2665                                 break;
2666                         }
2667 #endif
2668                         if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2669                                 break;
2670                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2671                         case IEEE80211_FTYPE_MGMT:
2672                                 ieee80211_rx_mgt(priv->ieee,
2673                                                  &u->rx_data.header, &stats);
2674                                 break;
2675
2676                         case IEEE80211_FTYPE_CTL:
2677                                 break;
2678
2679                         case IEEE80211_FTYPE_DATA:
2680                                 isr_rx(priv, i, &stats);
2681                                 break;
2682
2683                         }
2684                         break;
2685                 }
2686
2687               increment:
2688                 /* clear status field associated with this RBD */
2689                 rxq->drv[i].status.info.field = 0;
2690
2691                 i = (i + 1) % rxq->entries;
2692         }
2693
2694         if (i != s) {
2695                 /* backtrack one entry, wrapping to end if at 0 */
2696                 rxq->next = (i ? i : rxq->entries) - 1;
2697
2698                 write_register(priv->net_dev,
2699                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2700         }
2701 }
2702
2703 /*
2704  * __ipw2100_tx_process
2705  *
2706  * This routine will determine whether the next packet on
2707  * the fw_pend_list has been processed by the firmware yet.
2708  *
2709  * If not, then it does nothing and returns.
2710  *
2711  * If so, then it removes the item from the fw_pend_list, frees
2712  * any associated storage, and places the item back on the
2713  * free list of its source (either msg_free_list or tx_free_list)
2714  *
2715  * TX Queue works as follows:
2716  *
2717  * Read index - points to the next TBD that the firmware will
2718  *              process.  The firmware will read the data, and once
2719  *              done processing, it will advance the Read index.
2720  *
2721  * Write index - driver fills this entry with an constructed TBD
2722  *               entry.  The Write index is not advanced until the
2723  *               packet has been configured.
2724  *
2725  * In between the W and R indexes are the TBDs that have NOT been
2726  * processed.  Lagging behind the R index are packets that have
2727  * been processed but have not been freed by the driver.
2728  *
2729  * In order to free old storage, an internal index will be maintained
2730  * that points to the next packet to be freed.  When all used
2731  * packets have been freed, the oldest index will be the same as the
2732  * firmware's read index.
2733  *
2734  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2735  *
2736  * Because the TBD structure can not contain arbitrary data, the
2737  * driver must keep an internal queue of cached allocations such that
2738  * it can put that data back into the tx_free_list and msg_free_list
2739  * for use by future command and data packets.
2740  *
2741  */
2742 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2743 {
2744         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2745         struct ipw2100_bd *tbd;
2746         struct list_head *element;
2747         struct ipw2100_tx_packet *packet;
2748         int descriptors_used;
2749         int e, i;
2750         u32 r, w, frag_num = 0;
2751
2752         if (list_empty(&priv->fw_pend_list))
2753                 return 0;
2754
2755         element = priv->fw_pend_list.next;
2756
2757         packet = list_entry(element, struct ipw2100_tx_packet, list);
2758         tbd = &txq->drv[packet->index];
2759
2760         /* Determine how many TBD entries must be finished... */
2761         switch (packet->type) {
2762         case COMMAND:
2763                 /* COMMAND uses only one slot; don't advance */
2764                 descriptors_used = 1;
2765                 e = txq->oldest;
2766                 break;
2767
2768         case DATA:
2769                 /* DATA uses two slots; advance and loop position. */
2770                 descriptors_used = tbd->num_fragments;
2771                 frag_num = tbd->num_fragments - 1;
2772                 e = txq->oldest + frag_num;
2773                 e %= txq->entries;
2774                 break;
2775
2776         default:
2777                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2778                        priv->net_dev->name);
2779                 return 0;
2780         }
2781
2782         /* if the last TBD is not done by NIC yet, then packet is
2783          * not ready to be released.
2784          *
2785          */
2786         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2787                       &r);
2788         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2789                       &w);
2790         if (w != txq->next)
2791                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2792                        priv->net_dev->name);
2793
2794         /*
2795          * txq->next is the index of the last packet written txq->oldest is
2796          * the index of the r is the index of the next packet to be read by
2797          * firmware
2798          */
2799
2800         /*
2801          * Quick graphic to help you visualize the following
2802          * if / else statement
2803          *
2804          * ===>|                     s---->|===============
2805          *                               e>|
2806          * | a | b | c | d | e | f | g | h | i | j | k | l
2807          *       r---->|
2808          *               w
2809          *
2810          * w - updated by driver
2811          * r - updated by firmware
2812          * s - start of oldest BD entry (txq->oldest)
2813          * e - end of oldest BD entry
2814          *
2815          */
2816         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2817                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2818                 return 0;
2819         }
2820
2821         list_del(element);
2822         DEC_STAT(&priv->fw_pend_stat);
2823
2824 #ifdef CONFIG_IPW2100_DEBUG
2825         {
2826                 int i = txq->oldest;
2827                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2828                              &txq->drv[i],
2829                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2830                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2831
2832                 if (packet->type == DATA) {
2833                         i = (i + 1) % txq->entries;
2834
2835                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2836                                      &txq->drv[i],
2837                                      (u32) (txq->nic + i *
2838                                             sizeof(struct ipw2100_bd)),
2839                                      (u32) txq->drv[i].host_addr,
2840                                      txq->drv[i].buf_length);
2841                 }
2842         }
2843 #endif
2844
2845         switch (packet->type) {
2846         case DATA:
2847                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2848                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2849                                "Expecting DATA TBD but pulled "
2850                                "something else: ids %d=%d.\n",
2851                                priv->net_dev->name, txq->oldest, packet->index);
2852
2853                 /* DATA packet; we have to unmap and free the SKB */
2854                 for (i = 0; i < frag_num; i++) {
2855                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2856
2857                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2858                                      (packet->index + 1 + i) % txq->entries,
2859                                      tbd->host_addr, tbd->buf_length);
2860
2861                         pci_unmap_single(priv->pci_dev,
2862                                          tbd->host_addr,
2863                                          tbd->buf_length, PCI_DMA_TODEVICE);
2864                 }
2865
2866                 ieee80211_txb_free(packet->info.d_struct.txb);
2867                 packet->info.d_struct.txb = NULL;
2868
2869                 list_add_tail(element, &priv->tx_free_list);
2870                 INC_STAT(&priv->tx_free_stat);
2871
2872                 /* We have a free slot in the Tx queue, so wake up the
2873                  * transmit layer if it is stopped. */
2874                 if (priv->status & STATUS_ASSOCIATED)
2875                         netif_wake_queue(priv->net_dev);
2876
2877                 /* A packet was processed by the hardware, so update the
2878                  * watchdog */
2879                 priv->net_dev->trans_start = jiffies;
2880
2881                 break;
2882
2883         case COMMAND:
2884                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2885                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2886                                "Expecting COMMAND TBD but pulled "
2887                                "something else: ids %d=%d.\n",
2888                                priv->net_dev->name, txq->oldest, packet->index);
2889
2890 #ifdef CONFIG_IPW2100_DEBUG
2891                 if (packet->info.c_struct.cmd->host_command_reg <
2892                     ARRAY_SIZE(command_types))
2893                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2894                                      command_types[packet->info.c_struct.cmd->
2895                                                    host_command_reg],
2896                                      packet->info.c_struct.cmd->
2897                                      host_command_reg,
2898                                      packet->info.c_struct.cmd->cmd_status_reg);
2899 #endif
2900
2901                 list_add_tail(element, &priv->msg_free_list);
2902                 INC_STAT(&priv->msg_free_stat);
2903                 break;
2904         }
2905
2906         /* advance oldest used TBD pointer to start of next entry */
2907         txq->oldest = (e + 1) % txq->entries;
2908         /* increase available TBDs number */
2909         txq->available += descriptors_used;
2910         SET_STAT(&priv->txq_stat, txq->available);
2911
2912         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2913                      jiffies - packet->jiffy_start);
2914
2915         return (!list_empty(&priv->fw_pend_list));
2916 }
2917
2918 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2919 {
2920         int i = 0;
2921
2922         while (__ipw2100_tx_process(priv) && i < 200)
2923                 i++;
2924
2925         if (i == 200) {
2926                 printk(KERN_WARNING DRV_NAME ": "
2927                        "%s: Driver is running slow (%d iters).\n",
2928                        priv->net_dev->name, i);
2929         }
2930 }
2931
2932 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2933 {
2934         struct list_head *element;
2935         struct ipw2100_tx_packet *packet;
2936         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2937         struct ipw2100_bd *tbd;
2938         int next = txq->next;
2939
2940         while (!list_empty(&priv->msg_pend_list)) {
2941                 /* if there isn't enough space in TBD queue, then
2942                  * don't stuff a new one in.
2943                  * NOTE: 3 are needed as a command will take one,
2944                  *       and there is a minimum of 2 that must be
2945                  *       maintained between the r and w indexes
2946                  */
2947                 if (txq->available <= 3) {
2948                         IPW_DEBUG_TX("no room in tx_queue\n");
2949                         break;
2950                 }
2951
2952                 element = priv->msg_pend_list.next;
2953                 list_del(element);
2954                 DEC_STAT(&priv->msg_pend_stat);
2955
2956                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2957
2958                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2959                              &txq->drv[txq->next],
2960                              (void *)(txq->nic + txq->next *
2961                                       sizeof(struct ipw2100_bd)));
2962
2963                 packet->index = txq->next;
2964
2965                 tbd = &txq->drv[txq->next];
2966
2967                 /* initialize TBD */
2968                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2969                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2970                 /* not marking number of fragments causes problems
2971                  * with f/w debug version */
2972                 tbd->num_fragments = 1;
2973                 tbd->status.info.field =
2974                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2975                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2976
2977                 /* update TBD queue counters */
2978                 txq->next++;
2979                 txq->next %= txq->entries;
2980                 txq->available--;
2981                 DEC_STAT(&priv->txq_stat);
2982
2983                 list_add_tail(element, &priv->fw_pend_list);
2984                 INC_STAT(&priv->fw_pend_stat);
2985         }
2986
2987         if (txq->next != next) {
2988                 /* kick off the DMA by notifying firmware the
2989                  * write index has moved; make sure TBD stores are sync'd */
2990                 wmb();
2991                 write_register(priv->net_dev,
2992                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2993                                txq->next);
2994         }
2995 }
2996
2997 /*
2998  * ipw2100_tx_send_data
2999  *
3000  */
3001 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3002 {
3003         struct list_head *element;
3004         struct ipw2100_tx_packet *packet;
3005         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3006         struct ipw2100_bd *tbd;
3007         int next = txq->next;
3008         int i = 0;
3009         struct ipw2100_data_header *ipw_hdr;
3010         struct ieee80211_hdr_3addr *hdr;
3011
3012         while (!list_empty(&priv->tx_pend_list)) {
3013                 /* if there isn't enough space in TBD queue, then
3014                  * don't stuff a new one in.
3015                  * NOTE: 4 are needed as a data will take two,
3016                  *       and there is a minimum of 2 that must be
3017                  *       maintained between the r and w indexes
3018                  */
3019                 element = priv->tx_pend_list.next;
3020                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3021
3022                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3023                              IPW_MAX_BDS)) {
3024                         /* TODO: Support merging buffers if more than
3025                          * IPW_MAX_BDS are used */
3026                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
3027                                        "Increase fragmentation level.\n",
3028                                        priv->net_dev->name);
3029                 }
3030
3031                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3032                         IPW_DEBUG_TX("no room in tx_queue\n");
3033                         break;
3034                 }
3035
3036                 list_del(element);
3037                 DEC_STAT(&priv->tx_pend_stat);
3038
3039                 tbd = &txq->drv[txq->next];
3040
3041                 packet->index = txq->next;
3042
3043                 ipw_hdr = packet->info.d_struct.data;
3044                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3045                     fragments[0]->data;
3046
3047                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3048                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3049                            Addr3 = DA */
3050                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3051                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3052                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3053                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3054                            Addr3 = BSSID */
3055                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3056                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3057                 }
3058
3059                 ipw_hdr->host_command_reg = SEND;
3060                 ipw_hdr->host_command_reg1 = 0;
3061
3062                 /* For now we only support host based encryption */
3063                 ipw_hdr->needs_encryption = 0;
3064                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3065                 if (packet->info.d_struct.txb->nr_frags > 1)
3066                         ipw_hdr->fragment_size =
3067                             packet->info.d_struct.txb->frag_size -
3068                             IEEE80211_3ADDR_LEN;
3069                 else
3070                         ipw_hdr->fragment_size = 0;
3071
3072                 tbd->host_addr = packet->info.d_struct.data_phys;
3073                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3074                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3075                 tbd->status.info.field =
3076                     IPW_BD_STATUS_TX_FRAME_802_3 |
3077                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3078                 txq->next++;
3079                 txq->next %= txq->entries;
3080
3081                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3082                              packet->index, tbd->host_addr, tbd->buf_length);
3083 #ifdef CONFIG_IPW2100_DEBUG
3084                 if (packet->info.d_struct.txb->nr_frags > 1)
3085                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3086                                        packet->info.d_struct.txb->nr_frags);
3087 #endif
3088
3089                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3090                         tbd = &txq->drv[txq->next];
3091                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3092                                 tbd->status.info.field =
3093                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3094                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3095                         else
3096                                 tbd->status.info.field =
3097                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3098                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099
3100                         tbd->buf_length = packet->info.d_struct.txb->
3101                             fragments[i]->len - IEEE80211_3ADDR_LEN;
3102
3103                         tbd->host_addr = pci_map_single(priv->pci_dev,
3104                                                         packet->info.d_struct.
3105                                                         txb->fragments[i]->
3106                                                         data +
3107                                                         IEEE80211_3ADDR_LEN,
3108                                                         tbd->buf_length,
3109                                                         PCI_DMA_TODEVICE);
3110
3111                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3112                                      txq->next, tbd->host_addr,
3113                                      tbd->buf_length);
3114
3115                         pci_dma_sync_single_for_device(priv->pci_dev,
3116                                                        tbd->host_addr,
3117                                                        tbd->buf_length,
3118                                                        PCI_DMA_TODEVICE);
3119
3120                         txq->next++;
3121                         txq->next %= txq->entries;
3122                 }
3123
3124                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3125                 SET_STAT(&priv->txq_stat, txq->available);
3126
3127                 list_add_tail(element, &priv->fw_pend_list);
3128                 INC_STAT(&priv->fw_pend_stat);
3129         }
3130
3131         if (txq->next != next) {
3132                 /* kick off the DMA by notifying firmware the
3133                  * write index has moved; make sure TBD stores are sync'd */
3134                 write_register(priv->net_dev,
3135                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3136                                txq->next);
3137         }
3138         return;
3139 }
3140
3141 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3142 {
3143         struct net_device *dev = priv->net_dev;
3144         unsigned long flags;
3145         u32 inta, tmp;
3146
3147         spin_lock_irqsave(&priv->low_lock, flags);
3148         ipw2100_disable_interrupts(priv);
3149
3150         read_register(dev, IPW_REG_INTA, &inta);
3151
3152         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3153                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3154
3155         priv->in_isr++;
3156         priv->interrupts++;
3157
3158         /* We do not loop and keep polling for more interrupts as this
3159          * is frowned upon and doesn't play nicely with other potentially
3160          * chained IRQs */
3161         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3162                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3163
3164         if (inta & IPW2100_INTA_FATAL_ERROR) {
3165                 printk(KERN_WARNING DRV_NAME
3166                        ": Fatal interrupt. Scheduling firmware restart.\n");
3167                 priv->inta_other++;
3168                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3169
3170                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3171                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3172                                priv->net_dev->name, priv->fatal_error);
3173
3174                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3175                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3176                                priv->net_dev->name, tmp);
3177
3178                 /* Wake up any sleeping jobs */
3179                 schedule_reset(priv);
3180         }
3181
3182         if (inta & IPW2100_INTA_PARITY_ERROR) {
3183                 printk(KERN_ERR DRV_NAME
3184                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3185                 priv->inta_other++;
3186                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3187         }
3188
3189         if (inta & IPW2100_INTA_RX_TRANSFER) {
3190                 IPW_DEBUG_ISR("RX interrupt\n");
3191
3192                 priv->rx_interrupts++;
3193
3194                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3195
3196                 __ipw2100_rx_process(priv);
3197                 __ipw2100_tx_complete(priv);
3198         }
3199
3200         if (inta & IPW2100_INTA_TX_TRANSFER) {
3201                 IPW_DEBUG_ISR("TX interrupt\n");
3202
3203                 priv->tx_interrupts++;
3204
3205                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3206
3207                 __ipw2100_tx_complete(priv);
3208                 ipw2100_tx_send_commands(priv);
3209                 ipw2100_tx_send_data(priv);
3210         }
3211
3212         if (inta & IPW2100_INTA_TX_COMPLETE) {
3213                 IPW_DEBUG_ISR("TX complete\n");
3214                 priv->inta_other++;
3215                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3216
3217                 __ipw2100_tx_complete(priv);
3218         }
3219
3220         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3221                 /* ipw2100_handle_event(dev); */
3222                 priv->inta_other++;
3223                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3224         }
3225
3226         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3227                 IPW_DEBUG_ISR("FW init done interrupt\n");
3228                 priv->inta_other++;
3229
3230                 read_register(dev, IPW_REG_INTA, &tmp);
3231                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3232                            IPW2100_INTA_PARITY_ERROR)) {
3233                         write_register(dev, IPW_REG_INTA,
3234                                        IPW2100_INTA_FATAL_ERROR |
3235                                        IPW2100_INTA_PARITY_ERROR);
3236                 }
3237
3238                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3239         }
3240
3241         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3242                 IPW_DEBUG_ISR("Status change interrupt\n");
3243                 priv->inta_other++;
3244                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3245         }
3246
3247         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3248                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3249                 priv->inta_other++;
3250                 write_register(dev, IPW_REG_INTA,
3251                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3252         }
3253
3254         priv->in_isr--;
3255         ipw2100_enable_interrupts(priv);
3256
3257         spin_unlock_irqrestore(&priv->low_lock, flags);
3258
3259         IPW_DEBUG_ISR("exit\n");
3260 }
3261
3262 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3263 {
3264         struct ipw2100_priv *priv = data;
3265         u32 inta, inta_mask;
3266
3267         if (!data)
3268                 return IRQ_NONE;
3269
3270         spin_lock(&priv->low_lock);
3271
3272         /* We check to see if we should be ignoring interrupts before
3273          * we touch the hardware.  During ucode load if we try and handle
3274          * an interrupt we can cause keyboard problems as well as cause
3275          * the ucode to fail to initialize */
3276         if (!(priv->status & STATUS_INT_ENABLED)) {
3277                 /* Shared IRQ */
3278                 goto none;
3279         }
3280
3281         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3282         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3283
3284         if (inta == 0xFFFFFFFF) {
3285                 /* Hardware disappeared */
3286                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3287                 goto none;
3288         }
3289
3290         inta &= IPW_INTERRUPT_MASK;
3291
3292         if (!(inta & inta_mask)) {
3293                 /* Shared interrupt */
3294                 goto none;
3295         }
3296
3297         /* We disable the hardware interrupt here just to prevent unneeded
3298          * calls to be made.  We disable this again within the actual
3299          * work tasklet, so if another part of the code re-enables the
3300          * interrupt, that is fine */
3301         ipw2100_disable_interrupts(priv);
3302
3303         tasklet_schedule(&priv->irq_tasklet);
3304         spin_unlock(&priv->low_lock);
3305
3306         return IRQ_HANDLED;
3307       none:
3308         spin_unlock(&priv->low_lock);
3309         return IRQ_NONE;
3310 }
3311
3312 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3313                       int pri)
3314 {
3315         struct ipw2100_priv *priv = ieee80211_priv(dev);
3316         struct list_head *element;
3317         struct ipw2100_tx_packet *packet;
3318         unsigned long flags;
3319
3320         spin_lock_irqsave(&priv->low_lock, flags);
3321
3322         if (!(priv->status & STATUS_ASSOCIATED)) {
3323                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3324                 priv->ieee->stats.tx_carrier_errors++;
3325                 netif_stop_queue(dev);
3326                 goto fail_unlock;
3327         }
3328
3329         if (list_empty(&priv->tx_free_list))
3330                 goto fail_unlock;
3331
3332         element = priv->tx_free_list.next;
3333         packet = list_entry(element, struct ipw2100_tx_packet, list);
3334
3335         packet->info.d_struct.txb = txb;
3336
3337         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3338         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3339
3340         packet->jiffy_start = jiffies;
3341
3342         list_del(element);
3343         DEC_STAT(&priv->tx_free_stat);
3344
3345         list_add_tail(element, &priv->tx_pend_list);
3346         INC_STAT(&priv->tx_pend_stat);
3347
3348         ipw2100_tx_send_data(priv);
3349
3350         spin_unlock_irqrestore(&priv->low_lock, flags);
3351         return 0;
3352
3353       fail_unlock:
3354         netif_stop_queue(dev);
3355         spin_unlock_irqrestore(&priv->low_lock, flags);
3356         return 1;
3357 }
3358
3359 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3360 {
3361         int i, j, err = -EINVAL;
3362         void *v;
3363         dma_addr_t p;
3364
3365         priv->msg_buffers =
3366             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3367                                                 sizeof(struct
3368                                                        ipw2100_tx_packet),
3369                                                 GFP_KERNEL);
3370         if (!priv->msg_buffers) {
3371                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3372                        "buffers.\n", priv->net_dev->name);
3373                 return -ENOMEM;
3374         }
3375
3376         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3377                 v = pci_alloc_consistent(priv->pci_dev,
3378                                          sizeof(struct ipw2100_cmd_header), &p);
3379                 if (!v) {
3380                         printk(KERN_ERR DRV_NAME ": "
3381                                "%s: PCI alloc failed for msg "
3382                                "buffers.\n", priv->net_dev->name);
3383                         err = -ENOMEM;
3384                         break;
3385                 }
3386
3387                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3388
3389                 priv->msg_buffers[i].type = COMMAND;
3390                 priv->msg_buffers[i].info.c_struct.cmd =
3391                     (struct ipw2100_cmd_header *)v;
3392                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3393         }
3394
3395         if (i == IPW_COMMAND_POOL_SIZE)
3396                 return 0;
3397
3398         for (j = 0; j < i; j++) {
3399                 pci_free_consistent(priv->pci_dev,
3400                                     sizeof(struct ipw2100_cmd_header),
3401                                     priv->msg_buffers[j].info.c_struct.cmd,
3402                                     priv->msg_buffers[j].info.c_struct.
3403                                     cmd_phys);
3404         }
3405
3406         kfree(priv->msg_buffers);
3407         priv->msg_buffers = NULL;
3408
3409         return err;
3410 }
3411
3412 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3413 {
3414         int i;
3415
3416         INIT_LIST_HEAD(&priv->msg_free_list);
3417         INIT_LIST_HEAD(&priv->msg_pend_list);
3418
3419         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3420                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3421         SET_STAT(&priv->msg_free_stat, i);
3422
3423         return 0;
3424 }
3425
3426 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3427 {
3428         int i;
3429
3430         if (!priv->msg_buffers)
3431                 return;
3432
3433         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3434                 pci_free_consistent(priv->pci_dev,
3435                                     sizeof(struct ipw2100_cmd_header),
3436                                     priv->msg_buffers[i].info.c_struct.cmd,
3437                                     priv->msg_buffers[i].info.c_struct.
3438                                     cmd_phys);
3439         }
3440
3441         kfree(priv->msg_buffers);
3442         priv->msg_buffers = NULL;
3443 }
3444
3445 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3446                         char *buf)
3447 {
3448         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3449         char *out = buf;
3450         int i, j;
3451         u32 val;
3452
3453         for (i = 0; i < 16; i++) {
3454                 out += sprintf(out, "[%08X] ", i * 16);
3455                 for (j = 0; j < 16; j += 4) {
3456                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3457                         out += sprintf(out, "%08X ", val);
3458                 }
3459                 out += sprintf(out, "\n");
3460         }
3461
3462         return out - buf;
3463 }
3464
3465 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3466
3467 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3468                         char *buf)
3469 {
3470         struct ipw2100_priv *p = d->driver_data;
3471         return sprintf(buf, "0x%08x\n", (int)p->config);
3472 }
3473
3474 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3475
3476 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3477                            char *buf)
3478 {
3479         struct ipw2100_priv *p = d->driver_data;
3480         return sprintf(buf, "0x%08x\n", (int)p->status);
3481 }
3482
3483 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3484
3485 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3486                                char *buf)
3487 {
3488         struct ipw2100_priv *p = d->driver_data;
3489         return sprintf(buf, "0x%08x\n", (int)p->capability);
3490 }
3491
3492 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3493
3494 #define IPW2100_REG(x) { IPW_ ##x, #x }
3495 static const struct {
3496         u32 addr;
3497         const char *name;
3498 } hw_data[] = {
3499 IPW2100_REG(REG_GP_CNTRL),
3500             IPW2100_REG(REG_GPIO),
3501             IPW2100_REG(REG_INTA),
3502             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3503 #define IPW2100_NIC(x, s) { x, #x, s }
3504 static const struct {
3505         u32 addr;
3506         const char *name;
3507         size_t size;
3508 } nic_data[] = {
3509 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3510             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3511 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3512 static const struct {
3513         u8 index;
3514         const char *name;
3515         const char *desc;
3516 } ord_data[] = {
3517 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3518             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3519                                 "successful Host Tx's (MSDU)"),
3520             IPW2100_ORD(STAT_TX_DIR_DATA,
3521                                 "successful Directed Tx's (MSDU)"),
3522             IPW2100_ORD(STAT_TX_DIR_DATA1,
3523                                 "successful Directed Tx's (MSDU) @ 1MB"),
3524             IPW2100_ORD(STAT_TX_DIR_DATA2,
3525                                 "successful Directed Tx's (MSDU) @ 2MB"),
3526             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3527                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3528             IPW2100_ORD(STAT_TX_DIR_DATA11,
3529                                 "successful Directed Tx's (MSDU) @ 11MB"),
3530             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3531                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3532             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3533                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3534             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3535                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3536             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3537                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3538             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3539             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3540             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3541             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3542             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3543             IPW2100_ORD(STAT_TX_ASSN_RESP,
3544                                 "successful Association response Tx's"),
3545             IPW2100_ORD(STAT_TX_REASSN,
3546                                 "successful Reassociation Tx's"),
3547             IPW2100_ORD(STAT_TX_REASSN_RESP,
3548                                 "successful Reassociation response Tx's"),
3549             IPW2100_ORD(STAT_TX_PROBE,
3550                                 "probes successfully transmitted"),
3551             IPW2100_ORD(STAT_TX_PROBE_RESP,
3552                                 "probe responses successfully transmitted"),
3553             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3554             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3555             IPW2100_ORD(STAT_TX_DISASSN,
3556                                 "successful Disassociation TX"),
3557             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3558             IPW2100_ORD(STAT_TX_DEAUTH,
3559                                 "successful Deauthentication TX"),
3560             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3561                                 "Total successful Tx data bytes"),
3562             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3563             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3564             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3565             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3566             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3567             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3568             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3569                                 "times max tries in a hop failed"),
3570             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3571                                 "times disassociation failed"),
3572             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3573             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3574             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3575             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3576             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3577             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3578             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3579                                 "directed packets at 5.5MB"),
3580             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3581             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3582             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3583                                 "nondirected packets at 1MB"),
3584             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3585                                 "nondirected packets at 2MB"),
3586             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3587                                 "nondirected packets at 5.5MB"),
3588             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3589                                 "nondirected packets at 11MB"),
3590             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3591             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3592                                                                     "Rx CTS"),
3593             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3594             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3595             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3596             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3597             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3598             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3599             IPW2100_ORD(STAT_RX_REASSN_RESP,
3600                                 "Reassociation response Rx's"),
3601             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3602             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3603             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3604             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3605             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3606             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3607             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3608             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3609                                 "Total rx data bytes received"),
3610             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3611             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3612             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3613             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3614             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3615             IPW2100_ORD(STAT_RX_DUPLICATE1,
3616                                 "duplicate rx packets at 1MB"),
3617             IPW2100_ORD(STAT_RX_DUPLICATE2,
3618                                 "duplicate rx packets at 2MB"),
3619             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3620                                 "duplicate rx packets at 5.5MB"),
3621             IPW2100_ORD(STAT_RX_DUPLICATE11,
3622                                 "duplicate rx packets at 11MB"),
3623             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3624             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3625             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3626             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3627             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3628                                 "rx frames with invalid protocol"),
3629             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3630             IPW2100_ORD(STAT_RX_NO_BUFFER,
3631                                 "rx frames rejected due to no buffer"),
3632             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3633                                 "rx frames dropped due to missing fragment"),
3634             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3635                                 "rx frames dropped due to non-sequential fragment"),
3636             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3637                                 "rx frames dropped due to unmatched 1st frame"),
3638             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3639                                 "rx frames dropped due to uncompleted frame"),
3640             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3641                                 "ICV errors during decryption"),
3642             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3643             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3644             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3645                                 "poll response timeouts"),
3646             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3647                                 "timeouts waiting for last {broad,multi}cast pkt"),
3648             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3649             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3650             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3651             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3652             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3653                                 "current calculation of % missed beacons"),
3654             IPW2100_ORD(STAT_PERCENT_RETRIES,
3655                                 "current calculation of % missed tx retries"),
3656             IPW2100_ORD(ASSOCIATED_AP_PTR,
3657                                 "0 if not associated, else pointer to AP table entry"),
3658             IPW2100_ORD(AVAILABLE_AP_CNT,
3659                                 "AP's decsribed in the AP table"),
3660             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3661             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3662             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3663             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3664                                 "failures due to response fail"),
3665             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3666             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3667             IPW2100_ORD(STAT_ROAM_INHIBIT,
3668                                 "times roaming was inhibited due to activity"),
3669             IPW2100_ORD(RSSI_AT_ASSN,
3670                                 "RSSI of associated AP at time of association"),
3671             IPW2100_ORD(STAT_ASSN_CAUSE1,
3672                                 "reassociation: no probe response or TX on hop"),
3673             IPW2100_ORD(STAT_ASSN_CAUSE2,
3674                                 "reassociation: poor tx/rx quality"),
3675             IPW2100_ORD(STAT_ASSN_CAUSE3,
3676                                 "reassociation: tx/rx quality (excessive AP load"),
3677             IPW2100_ORD(STAT_ASSN_CAUSE4,
3678                                 "reassociation: AP RSSI level"),
3679             IPW2100_ORD(STAT_ASSN_CAUSE5,
3680                                 "reassociations due to load leveling"),
3681             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3682             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3683                                 "times authentication response failed"),
3684             IPW2100_ORD(STATION_TABLE_CNT,
3685                                 "entries in association table"),
3686             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3687             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3688             IPW2100_ORD(COUNTRY_CODE,
3689                                 "IEEE country code as recv'd from beacon"),
3690             IPW2100_ORD(COUNTRY_CHANNELS,
3691                                 "channels suported by country"),
3692             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3693             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3694             IPW2100_ORD(ANTENNA_DIVERSITY,
3695                                 "TRUE if antenna diversity is disabled"),
3696             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3697             IPW2100_ORD(OUR_FREQ,
3698                                 "current radio freq lower digits - channel ID"),
3699             IPW2100_ORD(RTC_TIME, "current RTC time"),
3700             IPW2100_ORD(PORT_TYPE, "operating mode"),
3701             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3702             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3703             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3704             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3705             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3706             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3707             IPW2100_ORD(CAPABILITIES,
3708                                 "Management frame capability field"),
3709             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3710             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3711             IPW2100_ORD(RTS_THRESHOLD,
3712                                 "Min packet length for RTS handshaking"),
3713             IPW2100_ORD(INT_MODE, "International mode"),
3714             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3715                                 "protocol frag threshold"),
3716             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3717                                 "EEPROM offset in SRAM"),
3718             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3719                                 "EEPROM size in SRAM"),
3720             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3721             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3722                                 "EEPROM IBSS 11b channel set"),
3723             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3724             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3725             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3726             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3727             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3728
3729 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3730                               char *buf)
3731 {
3732         int i;
3733         struct ipw2100_priv *priv = dev_get_drvdata(d);
3734         struct net_device *dev = priv->net_dev;
3735         char *out = buf;
3736         u32 val = 0;
3737
3738         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3739
3740         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3741                 read_register(dev, hw_data[i].addr, &val);
3742                 out += sprintf(out, "%30s [%08X] : %08X\n",
3743                                hw_data[i].name, hw_data[i].addr, val);
3744         }
3745
3746         return out - buf;
3747 }
3748
3749 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3750
3751 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3752                              char *buf)
3753 {
3754         struct ipw2100_priv *priv = dev_get_drvdata(d);
3755         struct net_device *dev = priv->net_dev;
3756         char *out = buf;
3757         int i;
3758
3759         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3760
3761         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3762                 u8 tmp8;
3763                 u16 tmp16;
3764                 u32 tmp32;
3765
3766                 switch (nic_data[i].size) {
3767                 case 1:
3768                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3769                         out += sprintf(out, "%30s [%08X] : %02X\n",
3770                                        nic_data[i].name, nic_data[i].addr,
3771                                        tmp8);
3772                         break;
3773                 case 2:
3774                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3775                         out += sprintf(out, "%30s [%08X] : %04X\n",
3776                                        nic_data[i].name, nic_data[i].addr,
3777                                        tmp16);
3778                         break;
3779                 case 4:
3780                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3781                         out += sprintf(out, "%30s [%08X] : %08X\n",
3782                                        nic_data[i].name, nic_data[i].addr,
3783                                        tmp32);
3784                         break;
3785                 }
3786         }
3787         return out - buf;
3788 }
3789
3790 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3791
3792 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3793                            char *buf)
3794 {
3795         struct ipw2100_priv *priv = dev_get_drvdata(d);
3796         struct net_device *dev = priv->net_dev;
3797         static unsigned long loop = 0;
3798         int len = 0;
3799         u32 buffer[4];
3800         int i;
3801         char line[81];
3802
3803         if (loop >= 0x30000)
3804                 loop = 0;
3805
3806         /* sysfs provides us PAGE_SIZE buffer */
3807         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3808
3809                 if (priv->snapshot[0])
3810                         for (i = 0; i < 4; i++)
3811                                 buffer[i] =
3812                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3813                 else
3814                         for (i = 0; i < 4; i++)
3815                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3816
3817                 if (priv->dump_raw)
3818                         len += sprintf(buf + len,
3819                                        "%c%c%c%c"
3820                                        "%c%c%c%c"
3821                                        "%c%c%c%c"
3822                                        "%c%c%c%c",
3823                                        ((u8 *) buffer)[0x0],
3824                                        ((u8 *) buffer)[0x1],
3825                                        ((u8 *) buffer)[0x2],
3826                                        ((u8 *) buffer)[0x3],
3827                                        ((u8 *) buffer)[0x4],
3828                                        ((u8 *) buffer)[0x5],
3829                                        ((u8 *) buffer)[0x6],
3830                                        ((u8 *) buffer)[0x7],
3831                                        ((u8 *) buffer)[0x8],
3832                                        ((u8 *) buffer)[0x9],
3833                                        ((u8 *) buffer)[0xa],
3834                                        ((u8 *) buffer)[0xb],
3835                                        ((u8 *) buffer)[0xc],
3836                                        ((u8 *) buffer)[0xd],
3837                                        ((u8 *) buffer)[0xe],
3838                                        ((u8 *) buffer)[0xf]);
3839                 else
3840                         len += sprintf(buf + len, "%s\n",
3841                                        snprint_line(line, sizeof(line),
3842                                                     (u8 *) buffer, 16, loop));
3843                 loop += 16;
3844         }
3845
3846         return len;
3847 }
3848
3849 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3850                             const char *buf, size_t count)
3851 {
3852         struct ipw2100_priv *priv = dev_get_drvdata(d);
3853         struct net_device *dev = priv->net_dev;
3854         const char *p = buf;
3855
3856         (void)dev;              /* kill unused-var warning for debug-only code */
3857
3858         if (count < 1)
3859                 return count;
3860
3861         if (p[0] == '1' ||
3862             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3863                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3864                                dev->name);
3865                 priv->dump_raw = 1;
3866
3867         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3868                                    tolower(p[1]) == 'f')) {
3869                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3870                                dev->name);
3871                 priv->dump_raw = 0;
3872
3873         } else if (tolower(p[0]) == 'r') {
3874                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3875                 ipw2100_snapshot_free(priv);
3876
3877         } else
3878                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3879                                "reset = clear memory snapshot\n", dev->name);
3880
3881         return count;
3882 }
3883
3884 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3885
3886 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3887                              char *buf)
3888 {
3889         struct ipw2100_priv *priv = dev_get_drvdata(d);
3890         u32 val = 0;
3891         int len = 0;
3892         u32 val_len;
3893         static int loop = 0;
3894
3895         if (priv->status & STATUS_RF_KILL_MASK)
3896                 return 0;
3897
3898         if (loop >= ARRAY_SIZE(ord_data))
3899                 loop = 0;
3900
3901         /* sysfs provides us PAGE_SIZE buffer */
3902         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3903                 val_len = sizeof(u32);
3904
3905                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3906                                         &val_len))
3907                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3908                                        ord_data[loop].index,
3909                                        ord_data[loop].desc);
3910                 else
3911                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3912                                        ord_data[loop].index, val,
3913                                        ord_data[loop].desc);
3914                 loop++;
3915         }
3916
3917         return len;
3918 }
3919
3920 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3921
3922 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3923                           char *buf)
3924 {
3925         struct ipw2100_priv *priv = dev_get_drvdata(d);
3926         char *out = buf;
3927
3928         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3929                        priv->interrupts, priv->tx_interrupts,
3930                        priv->rx_interrupts, priv->inta_other);
3931         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3932         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3933 #ifdef CONFIG_IPW2100_DEBUG
3934         out += sprintf(out, "packet mismatch image: %s\n",
3935                        priv->snapshot[0] ? "YES" : "NO");
3936 #endif
3937
3938         return out - buf;
3939 }
3940
3941 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3942
3943 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3944 {
3945         int err;
3946
3947         if (mode == priv->ieee->iw_mode)
3948                 return 0;
3949
3950         err = ipw2100_disable_adapter(priv);
3951         if (err) {
3952                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3953                        priv->net_dev->name, err);
3954                 return err;
3955         }
3956
3957         switch (mode) {
3958         case IW_MODE_INFRA:
3959                 priv->net_dev->type = ARPHRD_ETHER;
3960                 break;
3961         case IW_MODE_ADHOC:
3962                 priv->net_dev->type = ARPHRD_ETHER;
3963                 break;
3964 #ifdef CONFIG_IPW2100_MONITOR
3965         case IW_MODE_MONITOR:
3966                 priv->last_mode = priv->ieee->iw_mode;
3967                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3968                 break;
3969 #endif                          /* CONFIG_IPW2100_MONITOR */
3970         }
3971
3972         priv->ieee->iw_mode = mode;
3973
3974 #ifdef CONFIG_PM
3975         /* Indicate ipw2100_download_firmware download firmware
3976          * from disk instead of memory. */
3977         ipw2100_firmware.version = 0;
3978 #endif
3979
3980         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3981         priv->reset_backoff = 0;
3982         schedule_reset(priv);
3983
3984         return 0;
3985 }
3986
3987 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3988                               char *buf)
3989 {
3990         struct ipw2100_priv *priv = dev_get_drvdata(d);
3991         int len = 0;
3992
3993 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3994
3995         if (priv->status & STATUS_ASSOCIATED)
3996                 len += sprintf(buf + len, "connected: %lu\n",
3997                                get_seconds() - priv->connect_start);
3998         else
3999                 len += sprintf(buf + len, "not connected\n");
4000
4001         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4002         DUMP_VAR(status, "08lx");
4003         DUMP_VAR(config, "08lx");
4004         DUMP_VAR(capability, "08lx");
4005
4006         len +=
4007             sprintf(buf + len, "last_rtc: %lu\n",
4008                     (unsigned long)priv->last_rtc);
4009
4010         DUMP_VAR(fatal_error, "d");
4011         DUMP_VAR(stop_hang_check, "d");
4012         DUMP_VAR(stop_rf_kill, "d");
4013         DUMP_VAR(messages_sent, "d");
4014
4015         DUMP_VAR(tx_pend_stat.value, "d");
4016         DUMP_VAR(tx_pend_stat.hi, "d");
4017
4018         DUMP_VAR(tx_free_stat.value, "d");
4019         DUMP_VAR(tx_free_stat.lo, "d");
4020
4021         DUMP_VAR(msg_free_stat.value, "d");
4022         DUMP_VAR(msg_free_stat.lo, "d");
4023
4024         DUMP_VAR(msg_pend_stat.value, "d");
4025         DUMP_VAR(msg_pend_stat.hi, "d");
4026
4027         DUMP_VAR(fw_pend_stat.value, "d");
4028         DUMP_VAR(fw_pend_stat.hi, "d");
4029
4030         DUMP_VAR(txq_stat.value, "d");
4031         DUMP_VAR(txq_stat.lo, "d");
4032
4033         DUMP_VAR(ieee->scans, "d");
4034         DUMP_VAR(reset_backoff, "d");
4035
4036         return len;
4037 }
4038
4039 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4040
4041 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4042                             char *buf)
4043 {
4044         struct ipw2100_priv *priv = dev_get_drvdata(d);
4045         char essid[IW_ESSID_MAX_SIZE + 1];
4046         u8 bssid[ETH_ALEN];
4047         u32 chan = 0;
4048         char *out = buf;
4049         int length;
4050         int ret;
4051
4052         if (priv->status & STATUS_RF_KILL_MASK)
4053                 return 0;
4054
4055         memset(essid, 0, sizeof(essid));
4056         memset(bssid, 0, sizeof(bssid));
4057
4058         length = IW_ESSID_MAX_SIZE;
4059         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4060         if (ret)
4061                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4062                                __LINE__);
4063
4064         length = sizeof(bssid);
4065         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4066                                   bssid, &length);
4067         if (ret)
4068                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4069                                __LINE__);
4070
4071         length = sizeof(u32);
4072         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4073         if (ret)
4074                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4075                                __LINE__);
4076
4077         out += sprintf(out, "ESSID: %s\n", essid);
4078         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
4079                        bssid[0], bssid[1], bssid[2],
4080                        bssid[3], bssid[4], bssid[5]);
4081         out += sprintf(out, "Channel: %d\n", chan);
4082
4083         return out - buf;
4084 }
4085
4086 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4087
4088 #ifdef CONFIG_IPW2100_DEBUG
4089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4090 {
4091         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4092 }
4093
4094 static ssize_t store_debug_level(struct device_driver *d,
4095                                  const char *buf, size_t count)
4096 {
4097         char *p = (char *)buf;
4098         u32 val;
4099
4100         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4101                 p++;
4102                 if (p[0] == 'x' || p[0] == 'X')
4103                         p++;
4104                 val = simple_strtoul(p, &p, 16);
4105         } else
4106                 val = simple_strtoul(p, &p, 10);
4107         if (p == buf)
4108                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4109         else
4110                 ipw2100_debug_level = val;
4111
4112         return strnlen(buf, count);
4113 }
4114
4115 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4116                    store_debug_level);
4117 #endif                          /* CONFIG_IPW2100_DEBUG */
4118
4119 static ssize_t show_fatal_error(struct device *d,
4120                                 struct device_attribute *attr, char *buf)
4121 {
4122         struct ipw2100_priv *priv = dev_get_drvdata(d);
4123         char *out = buf;
4124         int i;
4125
4126         if (priv->fatal_error)
4127                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4128         else
4129                 out += sprintf(out, "0\n");
4130
4131         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4132                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4133                                         IPW2100_ERROR_QUEUE])
4134                         continue;
4135
4136                 out += sprintf(out, "%d. 0x%08X\n", i,
4137                                priv->fatal_errors[(priv->fatal_index - i) %
4138                                                   IPW2100_ERROR_QUEUE]);
4139         }
4140
4141         return out - buf;
4142 }
4143
4144 static ssize_t store_fatal_error(struct device *d,
4145                                  struct device_attribute *attr, const char *buf,
4146                                  size_t count)
4147 {
4148         struct ipw2100_priv *priv = dev_get_drvdata(d);
4149         schedule_reset(priv);
4150         return count;
4151 }
4152
4153 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4154                    store_fatal_error);
4155
4156 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4157                              char *buf)
4158 {
4159         struct ipw2100_priv *priv = dev_get_drvdata(d);
4160         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4161 }
4162
4163 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4164                               const char *buf, size_t count)
4165 {
4166         struct ipw2100_priv *priv = dev_get_drvdata(d);
4167         struct net_device *dev = priv->net_dev;
4168         char buffer[] = "00000000";
4169         unsigned long len =
4170             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4171         unsigned long val;
4172         char *p = buffer;
4173
4174         (void)dev;              /* kill unused-var warning for debug-only code */
4175
4176         IPW_DEBUG_INFO("enter\n");
4177
4178         strncpy(buffer, buf, len);
4179         buffer[len] = 0;
4180
4181         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4182                 p++;
4183                 if (p[0] == 'x' || p[0] == 'X')
4184                         p++;
4185                 val = simple_strtoul(p, &p, 16);
4186         } else
4187                 val = simple_strtoul(p, &p, 10);
4188         if (p == buffer) {
4189                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4190         } else {
4191                 priv->ieee->scan_age = val;
4192                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4193         }
4194
4195         IPW_DEBUG_INFO("exit\n");
4196         return len;
4197 }
4198
4199 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4200
4201 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4202                             char *buf)
4203 {
4204         /* 0 - RF kill not enabled
4205            1 - SW based RF kill active (sysfs)
4206            2 - HW based RF kill active
4207            3 - Both HW and SW baed RF kill active */
4208         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4209         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4210             (rf_kill_active(priv) ? 0x2 : 0x0);
4211         return sprintf(buf, "%i\n", val);
4212 }
4213
4214 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4215 {
4216         if ((disable_radio ? 1 : 0) ==
4217             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4218                 return 0;
4219
4220         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4221                           disable_radio ? "OFF" : "ON");
4222
4223         mutex_lock(&priv->action_mutex);
4224
4225         if (disable_radio) {
4226                 priv->status |= STATUS_RF_KILL_SW;
4227                 ipw2100_down(priv);
4228         } else {
4229                 priv->status &= ~STATUS_RF_KILL_SW;
4230                 if (rf_kill_active(priv)) {
4231                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4232                                           "disabled by HW switch\n");
4233                         /* Make sure the RF_KILL check timer is running */
4234                         priv->stop_rf_kill = 0;
4235                         cancel_delayed_work(&priv->rf_kill);
4236                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4237                 } else
4238                         schedule_reset(priv);
4239         }
4240
4241         mutex_unlock(&priv->action_mutex);
4242         return 1;
4243 }
4244
4245 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4246                              const char *buf, size_t count)
4247 {
4248         struct ipw2100_priv *priv = dev_get_drvdata(d);
4249         ipw_radio_kill_sw(priv, buf[0] == '1');
4250         return count;
4251 }
4252
4253 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4254
4255 static struct attribute *ipw2100_sysfs_entries[] = {
4256         &dev_attr_hardware.attr,
4257         &dev_attr_registers.attr,
4258         &dev_attr_ordinals.attr,
4259         &dev_attr_pci.attr,
4260         &dev_attr_stats.attr,
4261         &dev_attr_internals.attr,
4262         &dev_attr_bssinfo.attr,
4263         &dev_attr_memory.attr,
4264         &dev_attr_scan_age.attr,
4265         &dev_attr_fatal_error.attr,
4266         &dev_attr_rf_kill.attr,
4267         &dev_attr_cfg.attr,
4268         &dev_attr_status.attr,
4269         &dev_attr_capability.attr,
4270         NULL,
4271 };
4272
4273 static struct attribute_group ipw2100_attribute_group = {
4274         .attrs = ipw2100_sysfs_entries,
4275 };
4276
4277 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4278 {
4279         struct ipw2100_status_queue *q = &priv->status_queue;
4280
4281         IPW_DEBUG_INFO("enter\n");
4282
4283         q->size = entries * sizeof(struct ipw2100_status);
4284         q->drv =
4285             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4286                                                           q->size, &q->nic);
4287         if (!q->drv) {
4288                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4289                 return -ENOMEM;
4290         }
4291
4292         memset(q->drv, 0, q->size);
4293
4294         IPW_DEBUG_INFO("exit\n");
4295
4296         return 0;
4297 }
4298
4299 static void status_queue_free(struct ipw2100_priv *priv)
4300 {
4301         IPW_DEBUG_INFO("enter\n");
4302
4303         if (priv->status_queue.drv) {
4304                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4305                                     priv->status_queue.drv,
4306                                     priv->status_queue.nic);
4307                 priv->status_queue.drv = NULL;
4308         }
4309
4310         IPW_DEBUG_INFO("exit\n");
4311 }
4312
4313 static int bd_queue_allocate(struct ipw2100_priv *priv,
4314                              struct ipw2100_bd_queue *q, int entries)
4315 {
4316         IPW_DEBUG_INFO("enter\n");
4317
4318         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4319
4320         q->entries = entries;
4321         q->size = entries * sizeof(struct ipw2100_bd);
4322         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4323         if (!q->drv) {
4324                 IPW_DEBUG_INFO
4325                     ("can't allocate shared memory for buffer descriptors\n");
4326                 return -ENOMEM;
4327         }
4328         memset(q->drv, 0, q->size);
4329
4330         IPW_DEBUG_INFO("exit\n");
4331
4332         return 0;
4333 }
4334
4335 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4336 {
4337         IPW_DEBUG_INFO("enter\n");
4338
4339         if (!q)
4340                 return;
4341
4342         if (q->drv) {
4343                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4344                 q->drv = NULL;
4345         }
4346
4347         IPW_DEBUG_INFO("exit\n");
4348 }
4349
4350 static void bd_queue_initialize(struct ipw2100_priv *priv,
4351                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4352                                 u32 r, u32 w)
4353 {
4354         IPW_DEBUG_INFO("enter\n");
4355
4356         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4357                        (u32) q->nic);
4358
4359         write_register(priv->net_dev, base, q->nic);
4360         write_register(priv->net_dev, size, q->entries);
4361         write_register(priv->net_dev, r, q->oldest);
4362         write_register(priv->net_dev, w, q->next);
4363
4364         IPW_DEBUG_INFO("exit\n");
4365 }
4366
4367 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4368 {
4369         if (priv->workqueue) {
4370                 priv->stop_rf_kill = 1;
4371                 priv->stop_hang_check = 1;
4372                 cancel_delayed_work(&priv->reset_work);
4373                 cancel_delayed_work(&priv->security_work);
4374                 cancel_delayed_work(&priv->wx_event_work);
4375                 cancel_delayed_work(&priv->hang_check);
4376                 cancel_delayed_work(&priv->rf_kill);
4377                 destroy_workqueue(priv->workqueue);
4378                 priv->workqueue = NULL;
4379         }
4380 }
4381
4382 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4383 {
4384         int i, j, err = -EINVAL;
4385         void *v;
4386         dma_addr_t p;
4387
4388         IPW_DEBUG_INFO("enter\n");
4389
4390         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4391         if (err) {
4392                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4393                                 priv->net_dev->name);
4394                 return err;
4395         }
4396
4397         priv->tx_buffers =
4398             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4399                                                 sizeof(struct
4400                                                        ipw2100_tx_packet),
4401                                                 GFP_ATOMIC);
4402         if (!priv->tx_buffers) {
4403                 printk(KERN_ERR DRV_NAME
4404                        ": %s: alloc failed form tx buffers.\n",
4405                        priv->net_dev->name);
4406                 bd_queue_free(priv, &priv->tx_queue);
4407                 return -ENOMEM;
4408         }
4409
4410         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4411                 v = pci_alloc_consistent(priv->pci_dev,
4412                                          sizeof(struct ipw2100_data_header),
4413                                          &p);
4414                 if (!v) {
4415                         printk(KERN_ERR DRV_NAME
4416                                ": %s: PCI alloc failed for tx " "buffers.\n",
4417                                priv->net_dev->name);
4418                         err = -ENOMEM;
4419                         break;
4420                 }
4421
4422                 priv->tx_buffers[i].type = DATA;
4423                 priv->tx_buffers[i].info.d_struct.data =
4424                     (struct ipw2100_data_header *)v;
4425                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4426                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4427         }
4428
4429         if (i == TX_PENDED_QUEUE_LENGTH)
4430                 return 0;
4431
4432         for (j = 0; j < i; j++) {
4433                 pci_free_consistent(priv->pci_dev,
4434                                     sizeof(struct ipw2100_data_header),
4435                                     priv->tx_buffers[j].info.d_struct.data,
4436                                     priv->tx_buffers[j].info.d_struct.
4437                                     data_phys);
4438         }
4439
4440         kfree(priv->tx_buffers);
4441         priv->tx_buffers = NULL;
4442
4443         return err;
4444 }
4445
4446 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4447 {
4448         int i;
4449
4450         IPW_DEBUG_INFO("enter\n");
4451
4452         /*
4453          * reinitialize packet info lists
4454          */
4455         INIT_LIST_HEAD(&priv->fw_pend_list);
4456         INIT_STAT(&priv->fw_pend_stat);
4457
4458         /*
4459          * reinitialize lists
4460          */
4461         INIT_LIST_HEAD(&priv->tx_pend_list);
4462         INIT_LIST_HEAD(&priv->tx_free_list);
4463         INIT_STAT(&priv->tx_pend_stat);
4464         INIT_STAT(&priv->tx_free_stat);
4465
4466         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4467                 /* We simply drop any SKBs that have been queued for
4468                  * transmit */
4469                 if (priv->tx_buffers[i].info.d_struct.txb) {
4470                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4471                                            txb);
4472                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4473                 }
4474
4475                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4476         }
4477
4478         SET_STAT(&priv->tx_free_stat, i);
4479
4480         priv->tx_queue.oldest = 0;
4481         priv->tx_queue.available = priv->tx_queue.entries;
4482         priv->tx_queue.next = 0;
4483         INIT_STAT(&priv->txq_stat);
4484         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4485
4486         bd_queue_initialize(priv, &priv->tx_queue,
4487                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4488                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4489                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4490                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4491
4492         IPW_DEBUG_INFO("exit\n");
4493
4494 }
4495
4496 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4497 {
4498         int i;
4499
4500         IPW_DEBUG_INFO("enter\n");
4501
4502         bd_queue_free(priv, &priv->tx_queue);
4503
4504         if (!priv->tx_buffers)
4505                 return;
4506
4507         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4508                 if (priv->tx_buffers[i].info.d_struct.txb) {
4509                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4510                                            txb);
4511                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4512                 }
4513                 if (priv->tx_buffers[i].info.d_struct.data)
4514                         pci_free_consistent(priv->pci_dev,
4515                                             sizeof(struct ipw2100_data_header),
4516                                             priv->tx_buffers[i].info.d_struct.
4517                                             data,
4518                                             priv->tx_buffers[i].info.d_struct.
4519                                             data_phys);
4520         }
4521
4522         kfree(priv->tx_buffers);
4523         priv->tx_buffers = NULL;
4524
4525         IPW_DEBUG_INFO("exit\n");
4526 }
4527
4528 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4529 {
4530         int i, j, err = -EINVAL;
4531
4532         IPW_DEBUG_INFO("enter\n");
4533
4534         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4535         if (err) {
4536                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4537                 return err;
4538         }
4539
4540         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4541         if (err) {
4542                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4543                 bd_queue_free(priv, &priv->rx_queue);
4544                 return err;
4545         }
4546
4547         /*
4548          * allocate packets
4549          */
4550         priv->rx_buffers = (struct ipw2100_rx_packet *)
4551             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4552                     GFP_KERNEL);
4553         if (!priv->rx_buffers) {
4554                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4555
4556                 bd_queue_free(priv, &priv->rx_queue);
4557
4558                 status_queue_free(priv);
4559
4560                 return -ENOMEM;
4561         }
4562
4563         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4564                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4565
4566                 err = ipw2100_alloc_skb(priv, packet);
4567                 if (unlikely(err)) {
4568                         err = -ENOMEM;
4569                         break;
4570                 }
4571
4572                 /* The BD holds the cache aligned address */
4573                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4574                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4575                 priv->status_queue.drv[i].status_fields = 0;
4576         }
4577
4578         if (i == RX_QUEUE_LENGTH)
4579                 return 0;
4580
4581         for (j = 0; j < i; j++) {
4582                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4583                                  sizeof(struct ipw2100_rx_packet),
4584                                  PCI_DMA_FROMDEVICE);
4585                 dev_kfree_skb(priv->rx_buffers[j].skb);
4586         }
4587
4588         kfree(priv->rx_buffers);
4589         priv->rx_buffers = NULL;
4590
4591         bd_queue_free(priv, &priv->rx_queue);
4592
4593         status_queue_free(priv);
4594
4595         return err;
4596 }
4597
4598 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4599 {
4600         IPW_DEBUG_INFO("enter\n");
4601
4602         priv->rx_queue.oldest = 0;
4603         priv->rx_queue.available = priv->rx_queue.entries - 1;
4604         priv->rx_queue.next = priv->rx_queue.entries - 1;
4605
4606         INIT_STAT(&priv->rxq_stat);
4607         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4608
4609         bd_queue_initialize(priv, &priv->rx_queue,
4610                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4611                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4612                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4613                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4614
4615         /* set up the status queue */
4616         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4617                        priv->status_queue.nic);
4618
4619         IPW_DEBUG_INFO("exit\n");
4620 }
4621
4622 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4623 {
4624         int i;
4625
4626         IPW_DEBUG_INFO("enter\n");
4627
4628         bd_queue_free(priv, &priv->rx_queue);
4629         status_queue_free(priv);
4630
4631         if (!priv->rx_buffers)
4632                 return;
4633
4634         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4635                 if (priv->rx_buffers[i].rxp) {
4636                         pci_unmap_single(priv->pci_dev,
4637                                          priv->rx_buffers[i].dma_addr,
4638                                          sizeof(struct ipw2100_rx),
4639                                          PCI_DMA_FROMDEVICE);
4640                         dev_kfree_skb(priv->rx_buffers[i].skb);
4641                 }
4642         }
4643
4644         kfree(priv->rx_buffers);
4645         priv->rx_buffers = NULL;
4646
4647         IPW_DEBUG_INFO("exit\n");
4648 }
4649
4650 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4651 {
4652         u32 length = ETH_ALEN;
4653         u8 mac[ETH_ALEN];
4654
4655         int err;
4656
4657         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4658         if (err) {
4659                 IPW_DEBUG_INFO("MAC address read failed\n");
4660                 return -EIO;
4661         }
4662         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4663                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4664
4665         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4666
4667         return 0;
4668 }
4669
4670 /********************************************************************
4671  *
4672  * Firmware Commands
4673  *
4674  ********************************************************************/
4675
4676 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4677 {
4678         struct host_command cmd = {
4679                 .host_command = ADAPTER_ADDRESS,
4680                 .host_command_sequence = 0,
4681                 .host_command_length = ETH_ALEN
4682         };
4683         int err;
4684
4685         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4686
4687         IPW_DEBUG_INFO("enter\n");
4688
4689         if (priv->config & CFG_CUSTOM_MAC) {
4690                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4691                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4692         } else
4693                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4694                        ETH_ALEN);
4695
4696         err = ipw2100_hw_send_command(priv, &cmd);
4697
4698         IPW_DEBUG_INFO("exit\n");
4699         return err;
4700 }
4701
4702 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4703                                  int batch_mode)
4704 {
4705         struct host_command cmd = {
4706                 .host_command = PORT_TYPE,
4707                 .host_command_sequence = 0,
4708                 .host_command_length = sizeof(u32)
4709         };
4710         int err;
4711
4712         switch (port_type) {
4713         case IW_MODE_INFRA:
4714                 cmd.host_command_parameters[0] = IPW_BSS;
4715                 break;
4716         case IW_MODE_ADHOC:
4717                 cmd.host_command_parameters[0] = IPW_IBSS;
4718                 break;
4719         }
4720
4721         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4722                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4723
4724         if (!batch_mode) {
4725                 err = ipw2100_disable_adapter(priv);
4726                 if (err) {
4727                         printk(KERN_ERR DRV_NAME
4728                                ": %s: Could not disable adapter %d\n",
4729                                priv->net_dev->name, err);
4730                         return err;
4731                 }
4732         }
4733
4734         /* send cmd to firmware */
4735         err = ipw2100_hw_send_command(priv, &cmd);
4736
4737         if (!batch_mode)
4738                 ipw2100_enable_adapter(priv);
4739
4740         return err;
4741 }
4742
4743 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4744                                int batch_mode)
4745 {
4746         struct host_command cmd = {
4747                 .host_command = CHANNEL,
4748                 .host_command_sequence = 0,
4749                 .host_command_length = sizeof(u32)
4750         };
4751         int err;
4752
4753         cmd.host_command_parameters[0] = channel;
4754
4755         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4756
4757         /* If BSS then we don't support channel selection */
4758         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4759                 return 0;
4760
4761         if ((channel != 0) &&
4762             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4763                 return -EINVAL;
4764
4765         if (!batch_mode) {
4766                 err = ipw2100_disable_adapter(priv);
4767                 if (err)
4768                         return err;
4769         }
4770
4771         err = ipw2100_hw_send_command(priv, &cmd);
4772         if (err) {
4773                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4774                 return err;
4775         }
4776
4777         if (channel)
4778                 priv->config |= CFG_STATIC_CHANNEL;
4779         else
4780                 priv->config &= ~CFG_STATIC_CHANNEL;
4781
4782         priv->channel = channel;
4783
4784         if (!batch_mode) {
4785                 err = ipw2100_enable_adapter(priv);
4786                 if (err)
4787                         return err;
4788         }
4789
4790         return 0;
4791 }
4792
4793 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4794 {
4795         struct host_command cmd = {
4796                 .host_command = SYSTEM_CONFIG,
4797                 .host_command_sequence = 0,
4798                 .host_command_length = 12,
4799         };
4800         u32 ibss_mask, len = sizeof(u32);
4801         int err;
4802
4803         /* Set system configuration */
4804
4805         if (!batch_mode) {
4806                 err = ipw2100_disable_adapter(priv);
4807                 if (err)
4808                         return err;
4809         }
4810
4811         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4812                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4813
4814         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4815             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4816
4817         if (!(priv->config & CFG_LONG_PREAMBLE))
4818                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4819
4820         err = ipw2100_get_ordinal(priv,
4821                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4822                                   &ibss_mask, &len);
4823         if (err)
4824                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4825
4826         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4827         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4828
4829         /* 11b only */
4830         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4831
4832         err = ipw2100_hw_send_command(priv, &cmd);
4833         if (err)
4834                 return err;
4835
4836 /* If IPv6 is configured in the kernel then we don't want to filter out all
4837  * of the multicast packets as IPv6 needs some. */
4838 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4839         cmd.host_command = ADD_MULTICAST;
4840         cmd.host_command_sequence = 0;
4841         cmd.host_command_length = 0;
4842
4843         ipw2100_hw_send_command(priv, &cmd);
4844 #endif
4845         if (!batch_mode) {
4846                 err = ipw2100_enable_adapter(priv);
4847                 if (err)
4848                         return err;
4849         }
4850
4851         return 0;
4852 }
4853
4854 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4855                                 int batch_mode)
4856 {
4857         struct host_command cmd = {
4858                 .host_command = BASIC_TX_RATES,
4859                 .host_command_sequence = 0,
4860                 .host_command_length = 4
4861         };
4862         int err;
4863
4864         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4865
4866         if (!batch_mode) {
4867                 err = ipw2100_disable_adapter(priv);
4868                 if (err)
4869                         return err;
4870         }
4871
4872         /* Set BASIC TX Rate first */
4873         ipw2100_hw_send_command(priv, &cmd);
4874
4875         /* Set TX Rate */
4876         cmd.host_command = TX_RATES;
4877         ipw2100_hw_send_command(priv, &cmd);
4878
4879         /* Set MSDU TX Rate */
4880         cmd.host_command = MSDU_TX_RATES;
4881         ipw2100_hw_send_command(priv, &cmd);
4882
4883         if (!batch_mode) {
4884                 err = ipw2100_enable_adapter(priv);
4885                 if (err)
4886                         return err;
4887         }
4888
4889         priv->tx_rates = rate;
4890
4891         return 0;
4892 }
4893
4894 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4895 {
4896         struct host_command cmd = {
4897                 .host_command = POWER_MODE,
4898                 .host_command_sequence = 0,
4899                 .host_command_length = 4
4900         };
4901         int err;
4902
4903         cmd.host_command_parameters[0] = power_level;
4904
4905         err = ipw2100_hw_send_command(priv, &cmd);
4906         if (err)
4907                 return err;
4908
4909         if (power_level == IPW_POWER_MODE_CAM)
4910                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4911         else
4912                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4913
4914 #ifdef IPW2100_TX_POWER
4915         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4916                 /* Set beacon interval */
4917                 cmd.host_command = TX_POWER_INDEX;
4918                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4919
4920                 err = ipw2100_hw_send_command(priv, &cmd);
4921                 if (err)
4922                         return err;
4923         }
4924 #endif
4925
4926         return 0;
4927 }
4928
4929 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4930 {
4931         struct host_command cmd = {
4932                 .host_command = RTS_THRESHOLD,
4933                 .host_command_sequence = 0,
4934                 .host_command_length = 4
4935         };
4936         int err;
4937
4938         if (threshold & RTS_DISABLED)
4939                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4940         else
4941                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4942
4943         err = ipw2100_hw_send_command(priv, &cmd);
4944         if (err)
4945                 return err;
4946
4947         priv->rts_threshold = threshold;
4948
4949         return 0;
4950 }
4951
4952 #if 0
4953 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4954                                         u32 threshold, int batch_mode)
4955 {
4956         struct host_command cmd = {
4957                 .host_command = FRAG_THRESHOLD,
4958                 .host_command_sequence = 0,
4959                 .host_command_length = 4,
4960                 .host_command_parameters[0] = 0,
4961         };
4962         int err;
4963
4964         if (!batch_mode) {
4965                 err = ipw2100_disable_adapter(priv);
4966                 if (err)
4967                         return err;
4968         }
4969
4970         if (threshold == 0)
4971                 threshold = DEFAULT_FRAG_THRESHOLD;
4972         else {
4973                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4974                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4975         }
4976
4977         cmd.host_command_parameters[0] = threshold;
4978
4979         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4980
4981         err = ipw2100_hw_send_command(priv, &cmd);
4982
4983         if (!batch_mode)
4984                 ipw2100_enable_adapter(priv);
4985
4986         if (!err)
4987                 priv->frag_threshold = threshold;
4988
4989         return err;
4990 }
4991 #endif
4992
4993 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4994 {
4995         struct host_command cmd = {
4996                 .host_command = SHORT_RETRY_LIMIT,
4997                 .host_command_sequence = 0,
4998                 .host_command_length = 4
4999         };
5000         int err;
5001
5002         cmd.host_command_parameters[0] = retry;
5003
5004         err = ipw2100_hw_send_command(priv, &cmd);
5005         if (err)
5006                 return err;
5007
5008         priv->short_retry_limit = retry;
5009
5010         return 0;
5011 }
5012
5013 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5014 {
5015         struct host_command cmd = {
5016                 .host_command = LONG_RETRY_LIMIT,
5017                 .host_command_sequence = 0,
5018                 .host_command_length = 4
5019         };
5020         int err;
5021
5022         cmd.host_command_parameters[0] = retry;
5023
5024         err = ipw2100_hw_send_command(priv, &cmd);
5025         if (err)
5026                 return err;
5027
5028         priv->long_retry_limit = retry;
5029
5030         return 0;
5031 }
5032
5033 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5034                                        int batch_mode)
5035 {
5036         struct host_command cmd = {
5037                 .host_command = MANDATORY_BSSID,
5038                 .host_command_sequence = 0,
5039                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5040         };
5041         int err;
5042
5043 #ifdef CONFIG_IPW2100_DEBUG
5044         if (bssid != NULL)
5045                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5046                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5047                              bssid[5]);
5048         else
5049                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5050 #endif
5051         /* if BSSID is empty then we disable mandatory bssid mode */
5052         if (bssid != NULL)
5053                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5054
5055         if (!batch_mode) {
5056                 err = ipw2100_disable_adapter(priv);
5057                 if (err)
5058                         return err;
5059         }
5060
5061         err = ipw2100_hw_send_command(priv, &cmd);
5062
5063         if (!batch_mode)
5064                 ipw2100_enable_adapter(priv);
5065
5066         return err;
5067 }
5068
5069 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5070 {
5071         struct host_command cmd = {
5072                 .host_command = DISASSOCIATION_BSSID,
5073                 .host_command_sequence = 0,
5074                 .host_command_length = ETH_ALEN
5075         };
5076         int err;
5077         int len;
5078
5079         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5080
5081         len = ETH_ALEN;
5082         /* The Firmware currently ignores the BSSID and just disassociates from
5083          * the currently associated AP -- but in the off chance that a future
5084          * firmware does use the BSSID provided here, we go ahead and try and
5085          * set it to the currently associated AP's BSSID */
5086         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089
5090         return err;
5091 }
5092
5093 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5094                               struct ipw2100_wpa_assoc_frame *, int)
5095     __attribute__ ((unused));
5096
5097 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5098                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5099                               int batch_mode)
5100 {
5101         struct host_command cmd = {
5102                 .host_command = SET_WPA_IE,
5103                 .host_command_sequence = 0,
5104                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5105         };
5106         int err;
5107
5108         IPW_DEBUG_HC("SET_WPA_IE\n");
5109
5110         if (!batch_mode) {
5111                 err = ipw2100_disable_adapter(priv);
5112                 if (err)
5113                         return err;
5114         }
5115
5116         memcpy(cmd.host_command_parameters, wpa_frame,
5117                sizeof(struct ipw2100_wpa_assoc_frame));
5118
5119         err = ipw2100_hw_send_command(priv, &cmd);
5120
5121         if (!batch_mode) {
5122                 if (ipw2100_enable_adapter(priv))
5123                         err = -EIO;
5124         }
5125
5126         return err;
5127 }
5128
5129 struct security_info_params {
5130         u32 allowed_ciphers;
5131         u16 version;
5132         u8 auth_mode;
5133         u8 replay_counters_number;
5134         u8 unicast_using_group;
5135 } __attribute__ ((packed));
5136
5137 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5138                                             int auth_mode,
5139                                             int security_level,
5140                                             int unicast_using_group,
5141                                             int batch_mode)
5142 {
5143         struct host_command cmd = {
5144                 .host_command = SET_SECURITY_INFORMATION,
5145                 .host_command_sequence = 0,
5146                 .host_command_length = sizeof(struct security_info_params)
5147         };
5148         struct security_info_params *security =
5149             (struct security_info_params *)&cmd.host_command_parameters;
5150         int err;
5151         memset(security, 0, sizeof(*security));
5152
5153         /* If shared key AP authentication is turned on, then we need to
5154          * configure the firmware to try and use it.
5155          *
5156          * Actual data encryption/decryption is handled by the host. */
5157         security->auth_mode = auth_mode;
5158         security->unicast_using_group = unicast_using_group;
5159
5160         switch (security_level) {
5161         default:
5162         case SEC_LEVEL_0:
5163                 security->allowed_ciphers = IPW_NONE_CIPHER;
5164                 break;
5165         case SEC_LEVEL_1:
5166                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5167                     IPW_WEP104_CIPHER;
5168                 break;
5169         case SEC_LEVEL_2:
5170                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5171                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5172                 break;
5173         case SEC_LEVEL_2_CKIP:
5174                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5175                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5176                 break;
5177         case SEC_LEVEL_3:
5178                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5180                 break;
5181         }
5182
5183         IPW_DEBUG_HC
5184             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5185              security->auth_mode, security->allowed_ciphers, security_level);
5186
5187         security->replay_counters_number = 0;
5188
5189         if (!batch_mode) {
5190                 err = ipw2100_disable_adapter(priv);
5191                 if (err)
5192                         return err;
5193         }
5194
5195         err = ipw2100_hw_send_command(priv, &cmd);
5196
5197         if (!batch_mode)
5198                 ipw2100_enable_adapter(priv);
5199
5200         return err;
5201 }
5202
5203 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5204 {
5205         struct host_command cmd = {
5206                 .host_command = TX_POWER_INDEX,
5207                 .host_command_sequence = 0,
5208                 .host_command_length = 4
5209         };
5210         int err = 0;
5211         u32 tmp = tx_power;
5212
5213         if (tx_power != IPW_TX_POWER_DEFAULT)
5214                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5215                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5216
5217         cmd.host_command_parameters[0] = tmp;
5218
5219         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5220                 err = ipw2100_hw_send_command(priv, &cmd);
5221         if (!err)
5222                 priv->tx_power = tx_power;
5223
5224         return 0;
5225 }
5226
5227 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5228                                             u32 interval, int batch_mode)
5229 {
5230         struct host_command cmd = {
5231                 .host_command = BEACON_INTERVAL,
5232                 .host_command_sequence = 0,
5233                 .host_command_length = 4
5234         };
5235         int err;
5236
5237         cmd.host_command_parameters[0] = interval;
5238
5239         IPW_DEBUG_INFO("enter\n");
5240
5241         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5242                 if (!batch_mode) {
5243                         err = ipw2100_disable_adapter(priv);
5244                         if (err)
5245                                 return err;
5246                 }
5247
5248                 ipw2100_hw_send_command(priv, &cmd);
5249
5250                 if (!batch_mode) {
5251                         err = ipw2100_enable_adapter(priv);
5252                         if (err)
5253                                 return err;
5254                 }
5255         }
5256
5257         IPW_DEBUG_INFO("exit\n");
5258
5259         return 0;
5260 }
5261
5262 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5263 {
5264         ipw2100_tx_initialize(priv);
5265         ipw2100_rx_initialize(priv);
5266         ipw2100_msg_initialize(priv);
5267 }
5268
5269 void ipw2100_queues_free(struct ipw2100_priv *priv)
5270 {
5271         ipw2100_tx_free(priv);
5272         ipw2100_rx_free(priv);
5273         ipw2100_msg_free(priv);
5274 }
5275
5276 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5277 {
5278         if (ipw2100_tx_allocate(priv) ||
5279             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5280                 goto fail;
5281
5282         return 0;
5283
5284       fail:
5285         ipw2100_tx_free(priv);
5286         ipw2100_rx_free(priv);
5287         ipw2100_msg_free(priv);
5288         return -ENOMEM;
5289 }
5290
5291 #define IPW_PRIVACY_CAPABLE 0x0008
5292
5293 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5294                                  int batch_mode)
5295 {
5296         struct host_command cmd = {
5297                 .host_command = WEP_FLAGS,
5298                 .host_command_sequence = 0,
5299                 .host_command_length = 4
5300         };
5301         int err;
5302
5303         cmd.host_command_parameters[0] = flags;
5304
5305         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5306
5307         if (!batch_mode) {
5308                 err = ipw2100_disable_adapter(priv);
5309                 if (err) {
5310                         printk(KERN_ERR DRV_NAME
5311                                ": %s: Could not disable adapter %d\n",
5312                                priv->net_dev->name, err);
5313                         return err;
5314                 }
5315         }
5316
5317         /* send cmd to firmware */
5318         err = ipw2100_hw_send_command(priv, &cmd);
5319
5320         if (!batch_mode)
5321                 ipw2100_enable_adapter(priv);
5322
5323         return err;
5324 }
5325
5326 struct ipw2100_wep_key {
5327         u8 idx;
5328         u8 len;
5329         u8 key[13];
5330 };
5331
5332 /* Macros to ease up priting WEP keys */
5333 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5334 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5335 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5336 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5337
5338 /**
5339  * Set a the wep key
5340  *
5341  * @priv: struct to work on
5342  * @idx: index of the key we want to set
5343  * @key: ptr to the key data to set
5344  * @len: length of the buffer at @key
5345  * @batch_mode: FIXME perform the operation in batch mode, not
5346  *              disabling the device.
5347  *
5348  * @returns 0 if OK, < 0 errno code on error.
5349  *
5350  * Fill out a command structure with the new wep key, length an
5351  * index and send it down the wire.
5352  */
5353 static int ipw2100_set_key(struct ipw2100_priv *priv,
5354                            int idx, char *key, int len, int batch_mode)
5355 {
5356         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5357         struct host_command cmd = {
5358                 .host_command = WEP_KEY_INFO,
5359                 .host_command_sequence = 0,
5360                 .host_command_length = sizeof(struct ipw2100_wep_key),
5361         };
5362         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5363         int err;
5364
5365         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5366                      idx, keylen, len);
5367
5368         /* NOTE: We don't check cached values in case the firmware was reset
5369          * or some other problem is occurring.  If the user is setting the key,
5370          * then we push the change */
5371
5372         wep_key->idx = idx;
5373         wep_key->len = keylen;
5374
5375         if (keylen) {
5376                 memcpy(wep_key->key, key, len);
5377                 memset(wep_key->key + len, 0, keylen - len);
5378         }
5379
5380         /* Will be optimized out on debug not being configured in */
5381         if (keylen == 0)
5382                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5383                               priv->net_dev->name, wep_key->idx);
5384         else if (keylen == 5)
5385                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5386                               priv->net_dev->name, wep_key->idx, wep_key->len,
5387                               WEP_STR_64(wep_key->key));
5388         else
5389                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5390                               "\n",
5391                               priv->net_dev->name, wep_key->idx, wep_key->len,
5392                               WEP_STR_128(wep_key->key));
5393
5394         if (!batch_mode) {
5395                 err = ipw2100_disable_adapter(priv);
5396                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5397                 if (err) {
5398                         printk(KERN_ERR DRV_NAME
5399                                ": %s: Could not disable adapter %d\n",
5400                                priv->net_dev->name, err);
5401                         return err;
5402                 }
5403         }
5404
5405         /* send cmd to firmware */
5406         err = ipw2100_hw_send_command(priv, &cmd);
5407
5408         if (!batch_mode) {
5409                 int err2 = ipw2100_enable_adapter(priv);
5410                 if (err == 0)
5411                         err = err2;
5412         }
5413         return err;
5414 }
5415
5416 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5417                                  int idx, int batch_mode)
5418 {
5419         struct host_command cmd = {
5420                 .host_command = WEP_KEY_INDEX,
5421                 .host_command_sequence = 0,
5422                 .host_command_length = 4,
5423                 .host_command_parameters = {idx},
5424         };
5425         int err;
5426
5427         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5428
5429         if (idx < 0 || idx > 3)
5430                 return -EINVAL;
5431
5432         if (!batch_mode) {
5433                 err = ipw2100_disable_adapter(priv);
5434                 if (err) {
5435                         printk(KERN_ERR DRV_NAME
5436                                ": %s: Could not disable adapter %d\n",
5437                                priv->net_dev->name, err);
5438                         return err;
5439                 }
5440         }
5441
5442         /* send cmd to firmware */
5443         err = ipw2100_hw_send_command(priv, &cmd);
5444
5445         if (!batch_mode)
5446                 ipw2100_enable_adapter(priv);
5447
5448         return err;
5449 }
5450
5451 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5452 {
5453         int i, err, auth_mode, sec_level, use_group;
5454
5455         if (!(priv->status & STATUS_RUNNING))
5456                 return 0;
5457
5458         if (!batch_mode) {
5459                 err = ipw2100_disable_adapter(priv);
5460                 if (err)
5461                         return err;
5462         }
5463
5464         if (!priv->ieee->sec.enabled) {
5465                 err =
5466                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5467                                                      SEC_LEVEL_0, 0, 1);
5468         } else {
5469                 auth_mode = IPW_AUTH_OPEN;
5470                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5471                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5472                                 auth_mode = IPW_AUTH_SHARED;
5473                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5474                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5475                 }
5476
5477                 sec_level = SEC_LEVEL_0;
5478                 if (priv->ieee->sec.flags & SEC_LEVEL)
5479                         sec_level = priv->ieee->sec.level;
5480
5481                 use_group = 0;
5482                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5483                         use_group = priv->ieee->sec.unicast_uses_group;
5484
5485                 err =
5486                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5487                                                      use_group, 1);
5488         }
5489
5490         if (err)
5491                 goto exit;
5492
5493         if (priv->ieee->sec.enabled) {
5494                 for (i = 0; i < 4; i++) {
5495                         if (!(priv->ieee->sec.flags & (1 << i))) {
5496                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5497                                 priv->ieee->sec.key_sizes[i] = 0;
5498                         } else {
5499                                 err = ipw2100_set_key(priv, i,
5500                                                       priv->ieee->sec.keys[i],
5501                                                       priv->ieee->sec.
5502                                                       key_sizes[i], 1);
5503                                 if (err)
5504                                         goto exit;
5505                         }
5506                 }
5507
5508                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5509         }
5510
5511         /* Always enable privacy so the Host can filter WEP packets if
5512          * encrypted data is sent up */
5513         err =
5514             ipw2100_set_wep_flags(priv,
5515                                   priv->ieee->sec.
5516                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5517         if (err)
5518                 goto exit;
5519
5520         priv->status &= ~STATUS_SECURITY_UPDATED;
5521
5522       exit:
5523         if (!batch_mode)
5524                 ipw2100_enable_adapter(priv);
5525
5526         return err;
5527 }
5528
5529 static void ipw2100_security_work(struct work_struct *work)
5530 {
5531         struct ipw2100_priv *priv =
5532                 container_of(work, struct ipw2100_priv, security_work.work);
5533
5534         /* If we happen to have reconnected before we get a chance to
5535          * process this, then update the security settings--which causes
5536          * a disassociation to occur */
5537         if (!(priv->status & STATUS_ASSOCIATED) &&
5538             priv->status & STATUS_SECURITY_UPDATED)
5539                 ipw2100_configure_security(priv, 0);
5540 }
5541
5542 static void shim__set_security(struct net_device *dev,
5543                                struct ieee80211_security *sec)
5544 {
5545         struct ipw2100_priv *priv = ieee80211_priv(dev);
5546         int i, force_update = 0;
5547
5548         mutex_lock(&priv->action_mutex);
5549         if (!(priv->status & STATUS_INITIALIZED))
5550                 goto done;
5551
5552         for (i = 0; i < 4; i++) {
5553                 if (sec->flags & (1 << i)) {
5554                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5555                         if (sec->key_sizes[i] == 0)
5556                                 priv->ieee->sec.flags &= ~(1 << i);
5557                         else
5558                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5559                                        sec->key_sizes[i]);
5560                         if (sec->level == SEC_LEVEL_1) {
5561                                 priv->ieee->sec.flags |= (1 << i);
5562                                 priv->status |= STATUS_SECURITY_UPDATED;
5563                         } else
5564                                 priv->ieee->sec.flags &= ~(1 << i);
5565                 }
5566         }
5567
5568         if ((sec->flags & SEC_ACTIVE_KEY) &&
5569             priv->ieee->sec.active_key != sec->active_key) {
5570                 if (sec->active_key <= 3) {
5571                         priv->ieee->sec.active_key = sec->active_key;
5572                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5573                 } else
5574                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5575
5576                 priv->status |= STATUS_SECURITY_UPDATED;
5577         }
5578
5579         if ((sec->flags & SEC_AUTH_MODE) &&
5580             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5581                 priv->ieee->sec.auth_mode = sec->auth_mode;
5582                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5583                 priv->status |= STATUS_SECURITY_UPDATED;
5584         }
5585
5586         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5587                 priv->ieee->sec.flags |= SEC_ENABLED;
5588                 priv->ieee->sec.enabled = sec->enabled;
5589                 priv->status |= STATUS_SECURITY_UPDATED;
5590                 force_update = 1;
5591         }
5592
5593         if (sec->flags & SEC_ENCRYPT)
5594                 priv->ieee->sec.encrypt = sec->encrypt;
5595
5596         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5597                 priv->ieee->sec.level = sec->level;
5598                 priv->ieee->sec.flags |= SEC_LEVEL;
5599                 priv->status |= STATUS_SECURITY_UPDATED;
5600         }
5601
5602         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5603                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5604                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5605                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5606                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5607                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5608                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5609                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5610                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5611                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5612
5613 /* As a temporary work around to enable WPA until we figure out why
5614  * wpa_supplicant toggles the security capability of the driver, which
5615  * forces a disassocation with force_update...
5616  *
5617  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5618         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5619                 ipw2100_configure_security(priv, 0);
5620       done:
5621         mutex_unlock(&priv->action_mutex);
5622 }
5623
5624 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5625 {
5626         int err;
5627         int batch_mode = 1;
5628         u8 *bssid;
5629
5630         IPW_DEBUG_INFO("enter\n");
5631
5632         err = ipw2100_disable_adapter(priv);
5633         if (err)
5634                 return err;
5635 #ifdef CONFIG_IPW2100_MONITOR
5636         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5637                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5638                 if (err)
5639                         return err;
5640
5641                 IPW_DEBUG_INFO("exit\n");
5642
5643                 return 0;
5644         }
5645 #endif                          /* CONFIG_IPW2100_MONITOR */
5646
5647         err = ipw2100_read_mac_address(priv);
5648         if (err)
5649                 return -EIO;
5650
5651         err = ipw2100_set_mac_address(priv, batch_mode);
5652         if (err)
5653                 return err;
5654
5655         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5656         if (err)
5657                 return err;
5658
5659         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5660                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5661                 if (err)
5662                         return err;
5663         }
5664
5665         err = ipw2100_system_config(priv, batch_mode);
5666         if (err)
5667                 return err;
5668
5669         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5670         if (err)
5671                 return err;
5672
5673         /* Default to power mode OFF */
5674         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5675         if (err)
5676                 return err;
5677
5678         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5679         if (err)
5680                 return err;
5681
5682         if (priv->config & CFG_STATIC_BSSID)
5683                 bssid = priv->bssid;
5684         else
5685                 bssid = NULL;
5686         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5687         if (err)
5688                 return err;
5689
5690         if (priv->config & CFG_STATIC_ESSID)
5691                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5692                                         batch_mode);
5693         else
5694                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5695         if (err)
5696                 return err;
5697
5698         err = ipw2100_configure_security(priv, batch_mode);
5699         if (err)
5700                 return err;
5701
5702         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5703                 err =
5704                     ipw2100_set_ibss_beacon_interval(priv,
5705                                                      priv->beacon_interval,
5706                                                      batch_mode);
5707                 if (err)
5708                         return err;
5709
5710                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5711                 if (err)
5712                         return err;
5713         }
5714
5715         /*
5716            err = ipw2100_set_fragmentation_threshold(
5717            priv, priv->frag_threshold, batch_mode);
5718            if (err)
5719            return err;
5720          */
5721
5722         IPW_DEBUG_INFO("exit\n");
5723
5724         return 0;
5725 }
5726
5727 /*************************************************************************
5728  *
5729  * EXTERNALLY CALLED METHODS
5730  *
5731  *************************************************************************/
5732
5733 /* This method is called by the network layer -- not to be confused with
5734  * ipw2100_set_mac_address() declared above called by this driver (and this
5735  * method as well) to talk to the firmware */
5736 static int ipw2100_set_address(struct net_device *dev, void *p)
5737 {
5738         struct ipw2100_priv *priv = ieee80211_priv(dev);
5739         struct sockaddr *addr = p;
5740         int err = 0;
5741
5742         if (!is_valid_ether_addr(addr->sa_data))
5743                 return -EADDRNOTAVAIL;
5744
5745         mutex_lock(&priv->action_mutex);
5746
5747         priv->config |= CFG_CUSTOM_MAC;
5748         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5749
5750         err = ipw2100_set_mac_address(priv, 0);
5751         if (err)
5752                 goto done;
5753
5754         priv->reset_backoff = 0;
5755         mutex_unlock(&priv->action_mutex);
5756         ipw2100_reset_adapter(&priv->reset_work.work);
5757         return 0;
5758
5759       done:
5760         mutex_unlock(&priv->action_mutex);
5761         return err;
5762 }
5763
5764 static int ipw2100_open(struct net_device *dev)
5765 {
5766         struct ipw2100_priv *priv = ieee80211_priv(dev);
5767         unsigned long flags;
5768         IPW_DEBUG_INFO("dev->open\n");
5769
5770         spin_lock_irqsave(&priv->low_lock, flags);
5771         if (priv->status & STATUS_ASSOCIATED) {
5772                 netif_carrier_on(dev);
5773                 netif_start_queue(dev);
5774         }
5775         spin_unlock_irqrestore(&priv->low_lock, flags);
5776
5777         return 0;
5778 }
5779
5780 static int ipw2100_close(struct net_device *dev)
5781 {
5782         struct ipw2100_priv *priv = ieee80211_priv(dev);
5783         unsigned long flags;
5784         struct list_head *element;
5785         struct ipw2100_tx_packet *packet;
5786
5787         IPW_DEBUG_INFO("enter\n");
5788
5789         spin_lock_irqsave(&priv->low_lock, flags);
5790
5791         if (priv->status & STATUS_ASSOCIATED)
5792                 netif_carrier_off(dev);
5793         netif_stop_queue(dev);
5794
5795         /* Flush the TX queue ... */
5796         while (!list_empty(&priv->tx_pend_list)) {
5797                 element = priv->tx_pend_list.next;
5798                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5799
5800                 list_del(element);
5801                 DEC_STAT(&priv->tx_pend_stat);
5802
5803                 ieee80211_txb_free(packet->info.d_struct.txb);
5804                 packet->info.d_struct.txb = NULL;
5805
5806                 list_add_tail(element, &priv->tx_free_list);
5807                 INC_STAT(&priv->tx_free_stat);
5808         }
5809         spin_unlock_irqrestore(&priv->low_lock, flags);
5810
5811         IPW_DEBUG_INFO("exit\n");
5812
5813         return 0;
5814 }
5815
5816 /*
5817  * TODO:  Fix this function... its just wrong
5818  */
5819 static void ipw2100_tx_timeout(struct net_device *dev)
5820 {
5821         struct ipw2100_priv *priv = ieee80211_priv(dev);
5822
5823         priv->ieee->stats.tx_errors++;
5824
5825 #ifdef CONFIG_IPW2100_MONITOR
5826         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5827                 return;
5828 #endif
5829
5830         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5831                        dev->name);
5832         schedule_reset(priv);
5833 }
5834
5835 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5836 {
5837         /* This is called when wpa_supplicant loads and closes the driver
5838          * interface. */
5839         priv->ieee->wpa_enabled = value;
5840         return 0;
5841 }
5842
5843 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5844 {
5845
5846         struct ieee80211_device *ieee = priv->ieee;
5847         struct ieee80211_security sec = {
5848                 .flags = SEC_AUTH_MODE,
5849         };
5850         int ret = 0;
5851
5852         if (value & IW_AUTH_ALG_SHARED_KEY) {
5853                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5854                 ieee->open_wep = 0;
5855         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5856                 sec.auth_mode = WLAN_AUTH_OPEN;
5857                 ieee->open_wep = 1;
5858         } else if (value & IW_AUTH_ALG_LEAP) {
5859                 sec.auth_mode = WLAN_AUTH_LEAP;
5860                 ieee->open_wep = 1;
5861         } else
5862                 return -EINVAL;
5863
5864         if (ieee->set_security)
5865                 ieee->set_security(ieee->dev, &sec);
5866         else
5867                 ret = -EOPNOTSUPP;
5868
5869         return ret;
5870 }
5871
5872 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5873                                     char *wpa_ie, int wpa_ie_len)
5874 {
5875
5876         struct ipw2100_wpa_assoc_frame frame;
5877
5878         frame.fixed_ie_mask = 0;
5879
5880         /* copy WPA IE */
5881         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5882         frame.var_ie_len = wpa_ie_len;
5883
5884         /* make sure WPA is enabled */
5885         ipw2100_wpa_enable(priv, 1);
5886         ipw2100_set_wpa_ie(priv, &frame, 0);
5887 }
5888
5889 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5890                                     struct ethtool_drvinfo *info)
5891 {
5892         struct ipw2100_priv *priv = ieee80211_priv(dev);
5893         char fw_ver[64], ucode_ver[64];
5894
5895         strcpy(info->driver, DRV_NAME);
5896         strcpy(info->version, DRV_VERSION);
5897
5898         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5899         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5900
5901         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5902                  fw_ver, priv->eeprom_version, ucode_ver);
5903
5904         strcpy(info->bus_info, pci_name(priv->pci_dev));
5905 }
5906
5907 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5908 {
5909         struct ipw2100_priv *priv = ieee80211_priv(dev);
5910         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5911 }
5912
5913 static const struct ethtool_ops ipw2100_ethtool_ops = {
5914         .get_link = ipw2100_ethtool_get_link,
5915         .get_drvinfo = ipw_ethtool_get_drvinfo,
5916 };
5917
5918 static void ipw2100_hang_check(struct work_struct *work)
5919 {
5920         struct ipw2100_priv *priv =
5921                 container_of(work, struct ipw2100_priv, hang_check.work);
5922         unsigned long flags;
5923         u32 rtc = 0xa5a5a5a5;
5924         u32 len = sizeof(rtc);
5925         int restart = 0;
5926
5927         spin_lock_irqsave(&priv->low_lock, flags);
5928
5929         if (priv->fatal_error != 0) {
5930                 /* If fatal_error is set then we need to restart */
5931                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5932                                priv->net_dev->name);
5933
5934                 restart = 1;
5935         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5936                    (rtc == priv->last_rtc)) {
5937                 /* Check if firmware is hung */
5938                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5939                                priv->net_dev->name);
5940
5941                 restart = 1;
5942         }
5943
5944         if (restart) {
5945                 /* Kill timer */
5946                 priv->stop_hang_check = 1;
5947                 priv->hangs++;
5948
5949                 /* Restart the NIC */
5950                 schedule_reset(priv);
5951         }
5952
5953         priv->last_rtc = rtc;
5954
5955         if (!priv->stop_hang_check)
5956                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5957
5958         spin_unlock_irqrestore(&priv->low_lock, flags);
5959 }
5960
5961 static void ipw2100_rf_kill(struct work_struct *work)
5962 {
5963         struct ipw2100_priv *priv =
5964                 container_of(work, struct ipw2100_priv, rf_kill.work);
5965         unsigned long flags;
5966
5967         spin_lock_irqsave(&priv->low_lock, flags);
5968
5969         if (rf_kill_active(priv)) {
5970                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5971                 if (!priv->stop_rf_kill)
5972                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5973                 goto exit_unlock;
5974         }
5975
5976         /* RF Kill is now disabled, so bring the device back up */
5977
5978         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5979                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5980                                   "device\n");
5981                 schedule_reset(priv);
5982         } else
5983                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5984                                   "enabled\n");
5985
5986       exit_unlock:
5987         spin_unlock_irqrestore(&priv->low_lock, flags);
5988 }
5989
5990 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5991
5992 /* Look into using netdev destructor to shutdown ieee80211? */
5993
5994 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5995                                                void __iomem * base_addr,
5996                                                unsigned long mem_start,
5997                                                unsigned long mem_len)
5998 {
5999         struct ipw2100_priv *priv;
6000         struct net_device *dev;
6001
6002         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6003         if (!dev)
6004                 return NULL;
6005         priv = ieee80211_priv(dev);
6006         priv->ieee = netdev_priv(dev);
6007         priv->pci_dev = pci_dev;
6008         priv->net_dev = dev;
6009
6010         priv->ieee->hard_start_xmit = ipw2100_tx;
6011         priv->ieee->set_security = shim__set_security;
6012
6013         priv->ieee->perfect_rssi = -20;
6014         priv->ieee->worst_rssi = -85;
6015
6016         dev->open = ipw2100_open;
6017         dev->stop = ipw2100_close;
6018         dev->init = ipw2100_net_init;
6019         dev->ethtool_ops = &ipw2100_ethtool_ops;
6020         dev->tx_timeout = ipw2100_tx_timeout;
6021         dev->wireless_handlers = &ipw2100_wx_handler_def;
6022         priv->wireless_data.ieee80211 = priv->ieee;
6023         dev->wireless_data = &priv->wireless_data;
6024         dev->set_mac_address = ipw2100_set_address;
6025         dev->watchdog_timeo = 3 * HZ;
6026         dev->irq = 0;
6027
6028         dev->base_addr = (unsigned long)base_addr;
6029         dev->mem_start = mem_start;
6030         dev->mem_end = dev->mem_start + mem_len - 1;
6031
6032         /* NOTE: We don't use the wireless_handlers hook
6033          * in dev as the system will start throwing WX requests
6034          * to us before we're actually initialized and it just
6035          * ends up causing problems.  So, we just handle
6036          * the WX extensions through the ipw2100_ioctl interface */
6037
6038         /* memset() puts everything to 0, so we only have explicitely set
6039          * those values that need to be something else */
6040
6041         /* If power management is turned on, default to AUTO mode */
6042         priv->power_mode = IPW_POWER_AUTO;
6043
6044 #ifdef CONFIG_IPW2100_MONITOR
6045         priv->config |= CFG_CRC_CHECK;
6046 #endif
6047         priv->ieee->wpa_enabled = 0;
6048         priv->ieee->drop_unencrypted = 0;
6049         priv->ieee->privacy_invoked = 0;
6050         priv->ieee->ieee802_1x = 1;
6051
6052         /* Set module parameters */
6053         switch (mode) {
6054         case 1:
6055                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6056                 break;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058         case 2:
6059                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6060                 break;
6061 #endif
6062         default:
6063         case 0:
6064                 priv->ieee->iw_mode = IW_MODE_INFRA;
6065                 break;
6066         }
6067
6068         if (disable == 1)
6069                 priv->status |= STATUS_RF_KILL_SW;
6070
6071         if (channel != 0 &&
6072             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6073                 priv->config |= CFG_STATIC_CHANNEL;
6074                 priv->channel = channel;
6075         }
6076
6077         if (associate)
6078                 priv->config |= CFG_ASSOCIATE;
6079
6080         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6081         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6082         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6083         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6084         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6085         priv->tx_power = IPW_TX_POWER_DEFAULT;
6086         priv->tx_rates = DEFAULT_TX_RATES;
6087
6088         strcpy(priv->nick, "ipw2100");
6089
6090         spin_lock_init(&priv->low_lock);
6091         mutex_init(&priv->action_mutex);
6092         mutex_init(&priv->adapter_mutex);
6093
6094         init_waitqueue_head(&priv->wait_command_queue);
6095
6096         netif_carrier_off(dev);
6097
6098         INIT_LIST_HEAD(&priv->msg_free_list);
6099         INIT_LIST_HEAD(&priv->msg_pend_list);
6100         INIT_STAT(&priv->msg_free_stat);
6101         INIT_STAT(&priv->msg_pend_stat);
6102
6103         INIT_LIST_HEAD(&priv->tx_free_list);
6104         INIT_LIST_HEAD(&priv->tx_pend_list);
6105         INIT_STAT(&priv->tx_free_stat);
6106         INIT_STAT(&priv->tx_pend_stat);
6107
6108         INIT_LIST_HEAD(&priv->fw_pend_list);
6109         INIT_STAT(&priv->fw_pend_stat);
6110
6111         priv->workqueue = create_workqueue(DRV_NAME);
6112
6113         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6114         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6115         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6116         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6117         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6118
6119         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6120                      ipw2100_irq_tasklet, (unsigned long)priv);
6121
6122         /* NOTE:  We do not start the deferred work for status checks yet */
6123         priv->stop_rf_kill = 1;
6124         priv->stop_hang_check = 1;
6125
6126         return dev;
6127 }
6128
6129 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6130                                 const struct pci_device_id *ent)
6131 {
6132         unsigned long mem_start, mem_len, mem_flags;
6133         void __iomem *base_addr = NULL;
6134         struct net_device *dev = NULL;
6135         struct ipw2100_priv *priv = NULL;
6136         int err = 0;
6137         int registered = 0;
6138         u32 val;
6139
6140         IPW_DEBUG_INFO("enter\n");
6141
6142         mem_start = pci_resource_start(pci_dev, 0);
6143         mem_len = pci_resource_len(pci_dev, 0);
6144         mem_flags = pci_resource_flags(pci_dev, 0);
6145
6146         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6147                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6148                 err = -ENODEV;
6149                 goto fail;
6150         }
6151
6152         base_addr = ioremap_nocache(mem_start, mem_len);
6153         if (!base_addr) {
6154                 printk(KERN_WARNING DRV_NAME
6155                        "Error calling ioremap_nocache.\n");
6156                 err = -EIO;
6157                 goto fail;
6158         }
6159
6160         /* allocate and initialize our net_device */
6161         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6162         if (!dev) {
6163                 printk(KERN_WARNING DRV_NAME
6164                        "Error calling ipw2100_alloc_device.\n");
6165                 err = -ENOMEM;
6166                 goto fail;
6167         }
6168
6169         /* set up PCI mappings for device */
6170         err = pci_enable_device(pci_dev);
6171         if (err) {
6172                 printk(KERN_WARNING DRV_NAME
6173                        "Error calling pci_enable_device.\n");
6174                 return err;
6175         }
6176
6177         priv = ieee80211_priv(dev);
6178
6179         pci_set_master(pci_dev);
6180         pci_set_drvdata(pci_dev, priv);
6181
6182         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6183         if (err) {
6184                 printk(KERN_WARNING DRV_NAME
6185                        "Error calling pci_set_dma_mask.\n");
6186                 pci_disable_device(pci_dev);
6187                 return err;
6188         }
6189
6190         err = pci_request_regions(pci_dev, DRV_NAME);
6191         if (err) {
6192                 printk(KERN_WARNING DRV_NAME
6193                        "Error calling pci_request_regions.\n");
6194                 pci_disable_device(pci_dev);
6195                 return err;
6196         }
6197
6198         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6199          * PCI Tx retries from interfering with C3 CPU state */
6200         pci_read_config_dword(pci_dev, 0x40, &val);
6201         if ((val & 0x0000ff00) != 0)
6202                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6203
6204         pci_set_power_state(pci_dev, PCI_D0);
6205
6206         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6207                 printk(KERN_WARNING DRV_NAME
6208                        "Device not found via register read.\n");
6209                 err = -ENODEV;
6210                 goto fail;
6211         }
6212
6213         SET_NETDEV_DEV(dev, &pci_dev->dev);
6214
6215         /* Force interrupts to be shut off on the device */
6216         priv->status |= STATUS_INT_ENABLED;
6217         ipw2100_disable_interrupts(priv);
6218
6219         /* Allocate and initialize the Tx/Rx queues and lists */
6220         if (ipw2100_queues_allocate(priv)) {
6221                 printk(KERN_WARNING DRV_NAME
6222                        "Error calling ipw2100_queues_allocate.\n");
6223                 err = -ENOMEM;
6224                 goto fail;
6225         }
6226         ipw2100_queues_initialize(priv);
6227
6228         err = request_irq(pci_dev->irq,
6229                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6230         if (err) {
6231                 printk(KERN_WARNING DRV_NAME
6232                        "Error calling request_irq: %d.\n", pci_dev->irq);
6233                 goto fail;
6234         }
6235         dev->irq = pci_dev->irq;
6236
6237         IPW_DEBUG_INFO("Attempting to register device...\n");
6238
6239         SET_MODULE_OWNER(dev);
6240
6241         printk(KERN_INFO DRV_NAME
6242                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6243
6244         /* Bring up the interface.  Pre 0.46, after we registered the
6245          * network device we would call ipw2100_up.  This introduced a race
6246          * condition with newer hotplug configurations (network was coming
6247          * up and making calls before the device was initialized).
6248          *
6249          * If we called ipw2100_up before we registered the device, then the
6250          * device name wasn't registered.  So, we instead use the net_dev->init
6251          * member to call a function that then just turns and calls ipw2100_up.
6252          * net_dev->init is called after name allocation but before the
6253          * notifier chain is called */
6254         err = register_netdev(dev);
6255         if (err) {
6256                 printk(KERN_WARNING DRV_NAME
6257                        "Error calling register_netdev.\n");
6258                 goto fail;
6259         }
6260
6261         mutex_lock(&priv->action_mutex);
6262         registered = 1;
6263
6264         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6265
6266         /* perform this after register_netdev so that dev->name is set */
6267         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6268         if (err)
6269                 goto fail_unlock;
6270
6271         /* If the RF Kill switch is disabled, go ahead and complete the
6272          * startup sequence */
6273         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6274                 /* Enable the adapter - sends HOST_COMPLETE */
6275                 if (ipw2100_enable_adapter(priv)) {
6276                         printk(KERN_WARNING DRV_NAME
6277                                ": %s: failed in call to enable adapter.\n",
6278                                priv->net_dev->name);
6279                         ipw2100_hw_stop_adapter(priv);
6280                         err = -EIO;
6281                         goto fail_unlock;
6282                 }
6283
6284                 /* Start a scan . . . */
6285                 ipw2100_set_scan_options(priv);
6286                 ipw2100_start_scan(priv);
6287         }
6288
6289         IPW_DEBUG_INFO("exit\n");
6290
6291         priv->status |= STATUS_INITIALIZED;
6292
6293         mutex_unlock(&priv->action_mutex);
6294
6295         return 0;
6296
6297       fail_unlock:
6298         mutex_unlock(&priv->action_mutex);
6299
6300       fail:
6301         if (dev) {
6302                 if (registered)
6303                         unregister_netdev(dev);
6304
6305                 ipw2100_hw_stop_adapter(priv);
6306
6307                 ipw2100_disable_interrupts(priv);
6308
6309                 if (dev->irq)
6310                         free_irq(dev->irq, priv);
6311
6312                 ipw2100_kill_workqueue(priv);
6313
6314                 /* These are safe to call even if they weren't allocated */
6315                 ipw2100_queues_free(priv);
6316                 sysfs_remove_group(&pci_dev->dev.kobj,
6317                                    &ipw2100_attribute_group);
6318
6319                 free_ieee80211(dev);
6320                 pci_set_drvdata(pci_dev, NULL);
6321         }
6322
6323         if (base_addr)
6324                 iounmap(base_addr);
6325
6326         pci_release_regions(pci_dev);
6327         pci_disable_device(pci_dev);
6328
6329         return err;
6330 }
6331
6332 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6333 {
6334         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6335         struct net_device *dev;
6336
6337         if (priv) {
6338                 mutex_lock(&priv->action_mutex);
6339
6340                 priv->status &= ~STATUS_INITIALIZED;
6341
6342                 dev = priv->net_dev;
6343                 sysfs_remove_group(&pci_dev->dev.kobj,
6344                                    &ipw2100_attribute_group);
6345
6346 #ifdef CONFIG_PM
6347                 if (ipw2100_firmware.version)
6348                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6349 #endif
6350                 /* Take down the hardware */
6351                 ipw2100_down(priv);
6352
6353                 /* Release the mutex so that the network subsystem can
6354                  * complete any needed calls into the driver... */
6355                 mutex_unlock(&priv->action_mutex);
6356
6357                 /* Unregister the device first - this results in close()
6358                  * being called if the device is open.  If we free storage
6359                  * first, then close() will crash. */
6360                 unregister_netdev(dev);
6361
6362                 /* ipw2100_down will ensure that there is no more pending work
6363                  * in the workqueue's, so we can safely remove them now. */
6364                 ipw2100_kill_workqueue(priv);
6365
6366                 ipw2100_queues_free(priv);
6367
6368                 /* Free potential debugging firmware snapshot */
6369                 ipw2100_snapshot_free(priv);
6370
6371                 if (dev->irq)
6372                         free_irq(dev->irq, priv);
6373
6374                 if (dev->base_addr)
6375                         iounmap((void __iomem *)dev->base_addr);
6376
6377                 free_ieee80211(dev);
6378         }
6379
6380         pci_release_regions(pci_dev);
6381         pci_disable_device(pci_dev);
6382
6383         IPW_DEBUG_INFO("exit\n");
6384 }
6385
6386 #ifdef CONFIG_PM
6387 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6388 {
6389         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6390         struct net_device *dev = priv->net_dev;
6391
6392         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6393
6394         mutex_lock(&priv->action_mutex);
6395         if (priv->status & STATUS_INITIALIZED) {
6396                 /* Take down the device; powers it off, etc. */
6397                 ipw2100_down(priv);
6398         }
6399
6400         /* Remove the PRESENT state of the device */
6401         netif_device_detach(dev);
6402
6403         pci_save_state(pci_dev);
6404         pci_disable_device(pci_dev);
6405         pci_set_power_state(pci_dev, PCI_D3hot);
6406
6407         mutex_unlock(&priv->action_mutex);
6408
6409         return 0;
6410 }
6411
6412 static int ipw2100_resume(struct pci_dev *pci_dev)
6413 {
6414         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6415         struct net_device *dev = priv->net_dev;
6416         int err;
6417         u32 val;
6418
6419         if (IPW2100_PM_DISABLED)
6420                 return 0;
6421
6422         mutex_lock(&priv->action_mutex);
6423
6424         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6425
6426         pci_set_power_state(pci_dev, PCI_D0);
6427         err = pci_enable_device(pci_dev);
6428         if (err) {
6429                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6430                        dev->name);
6431                 return err;
6432         }
6433         pci_restore_state(pci_dev);
6434
6435         /*
6436          * Suspend/Resume resets the PCI configuration space, so we have to
6437          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6438          * from interfering with C3 CPU state. pci_restore_state won't help
6439          * here since it only restores the first 64 bytes pci config header.
6440          */
6441         pci_read_config_dword(pci_dev, 0x40, &val);
6442         if ((val & 0x0000ff00) != 0)
6443                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6444
6445         /* Set the device back into the PRESENT state; this will also wake
6446          * the queue of needed */
6447         netif_device_attach(dev);
6448
6449         /* Bring the device back up */
6450         if (!(priv->status & STATUS_RF_KILL_SW))
6451                 ipw2100_up(priv, 0);
6452
6453         mutex_unlock(&priv->action_mutex);
6454
6455         return 0;
6456 }
6457 #endif
6458
6459 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6460
6461 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6462         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6463         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6464         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6465         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6466         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6467         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6468         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6469         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6470         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6471         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6472         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6473         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6474         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6475
6476         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6477         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6478         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6479         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6480         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6481
6482         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6483         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6484         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6485         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6486         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6487         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6488         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6489
6490         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6491
6492         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6493         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6494         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6495         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6496         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6497         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6498         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6499
6500         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6501         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6502         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6503         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6504         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6505         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6506
6507         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6508         {0,},
6509 };
6510
6511 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6512
6513 static struct pci_driver ipw2100_pci_driver = {
6514         .name = DRV_NAME,
6515         .id_table = ipw2100_pci_id_table,
6516         .probe = ipw2100_pci_init_one,
6517         .remove = __devexit_p(ipw2100_pci_remove_one),
6518 #ifdef CONFIG_PM
6519         .suspend = ipw2100_suspend,
6520         .resume = ipw2100_resume,
6521 #endif
6522 };
6523
6524 /**
6525  * Initialize the ipw2100 driver/module
6526  *
6527  * @returns 0 if ok, < 0 errno node con error.
6528  *
6529  * Note: we cannot init the /proc stuff until the PCI driver is there,
6530  * or we risk an unlikely race condition on someone accessing
6531  * uninitialized data in the PCI dev struct through /proc.
6532  */
6533 static int __init ipw2100_init(void)
6534 {
6535         int ret;
6536
6537         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6538         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6539
6540         ret = pci_register_driver(&ipw2100_pci_driver);
6541         if (ret)
6542                 goto out;
6543
6544         set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6545 #ifdef CONFIG_IPW2100_DEBUG
6546         ipw2100_debug_level = debug;
6547         ret = driver_create_file(&ipw2100_pci_driver.driver,
6548                                  &driver_attr_debug_level);
6549 #endif
6550
6551 out:
6552         return ret;
6553 }
6554
6555 /**
6556  * Cleanup ipw2100 driver registration
6557  */
6558 static void __exit ipw2100_exit(void)
6559 {
6560         /* FIXME: IPG: check that we have no instances of the devices open */
6561 #ifdef CONFIG_IPW2100_DEBUG
6562         driver_remove_file(&ipw2100_pci_driver.driver,
6563                            &driver_attr_debug_level);
6564 #endif
6565         pci_unregister_driver(&ipw2100_pci_driver);
6566         remove_acceptable_latency("ipw2100");
6567 }
6568
6569 module_init(ipw2100_init);
6570 module_exit(ipw2100_exit);
6571
6572 #define WEXT_USECHANNELS 1
6573
6574 static const long ipw2100_frequencies[] = {
6575         2412, 2417, 2422, 2427,
6576         2432, 2437, 2442, 2447,
6577         2452, 2457, 2462, 2467,
6578         2472, 2484
6579 };
6580
6581 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6582                     sizeof(ipw2100_frequencies[0]))
6583
6584 static const long ipw2100_rates_11b[] = {
6585         1000000,
6586         2000000,
6587         5500000,
6588         11000000
6589 };
6590
6591 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6592
6593 static int ipw2100_wx_get_name(struct net_device *dev,
6594                                struct iw_request_info *info,
6595                                union iwreq_data *wrqu, char *extra)
6596 {
6597         /*
6598          * This can be called at any time.  No action lock required
6599          */
6600
6601         struct ipw2100_priv *priv = ieee80211_priv(dev);
6602         if (!(priv->status & STATUS_ASSOCIATED))
6603                 strcpy(wrqu->name, "unassociated");
6604         else
6605                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6606
6607         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6608         return 0;
6609 }
6610
6611 static int ipw2100_wx_set_freq(struct net_device *dev,
6612                                struct iw_request_info *info,
6613                                union iwreq_data *wrqu, char *extra)
6614 {
6615         struct ipw2100_priv *priv = ieee80211_priv(dev);
6616         struct iw_freq *fwrq = &wrqu->freq;
6617         int err = 0;
6618
6619         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6620                 return -EOPNOTSUPP;
6621
6622         mutex_lock(&priv->action_mutex);
6623         if (!(priv->status & STATUS_INITIALIZED)) {
6624                 err = -EIO;
6625                 goto done;
6626         }
6627
6628         /* if setting by freq convert to channel */
6629         if (fwrq->e == 1) {
6630                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6631                         int f = fwrq->m / 100000;
6632                         int c = 0;
6633
6634                         while ((c < REG_MAX_CHANNEL) &&
6635                                (f != ipw2100_frequencies[c]))
6636                                 c++;
6637
6638                         /* hack to fall through */
6639                         fwrq->e = 0;
6640                         fwrq->m = c + 1;
6641                 }
6642         }
6643
6644         if (fwrq->e > 0 || fwrq->m > 1000) {
6645                 err = -EOPNOTSUPP;
6646                 goto done;
6647         } else {                /* Set the channel */
6648                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6649                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6650         }
6651
6652       done:
6653         mutex_unlock(&priv->action_mutex);
6654         return err;
6655 }
6656
6657 static int ipw2100_wx_get_freq(struct net_device *dev,
6658                                struct iw_request_info *info,
6659                                union iwreq_data *wrqu, char *extra)
6660 {
6661         /*
6662          * This can be called at any time.  No action lock required
6663          */
6664
6665         struct ipw2100_priv *priv = ieee80211_priv(dev);
6666
6667         wrqu->freq.e = 0;
6668
6669         /* If we are associated, trying to associate, or have a statically
6670          * configured CHANNEL then return that; otherwise return ANY */
6671         if (priv->config & CFG_STATIC_CHANNEL ||
6672             priv->status & STATUS_ASSOCIATED)
6673                 wrqu->freq.m = priv->channel;
6674         else
6675                 wrqu->freq.m = 0;
6676
6677         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6678         return 0;
6679
6680 }
6681
6682 static int ipw2100_wx_set_mode(struct net_device *dev,
6683                                struct iw_request_info *info,
6684                                union iwreq_data *wrqu, char *extra)
6685 {
6686         struct ipw2100_priv *priv = ieee80211_priv(dev);
6687         int err = 0;
6688
6689         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6690
6691         if (wrqu->mode == priv->ieee->iw_mode)
6692                 return 0;
6693
6694         mutex_lock(&priv->action_mutex);
6695         if (!(priv->status & STATUS_INITIALIZED)) {
6696                 err = -EIO;
6697                 goto done;
6698         }
6699
6700         switch (wrqu->mode) {
6701 #ifdef CONFIG_IPW2100_MONITOR
6702         case IW_MODE_MONITOR:
6703                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6704                 break;
6705 #endif                          /* CONFIG_IPW2100_MONITOR */
6706         case IW_MODE_ADHOC:
6707                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6708                 break;
6709         case IW_MODE_INFRA:
6710         case IW_MODE_AUTO:
6711         default:
6712                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6713                 break;
6714         }
6715
6716       done:
6717         mutex_unlock(&priv->action_mutex);
6718         return err;
6719 }
6720
6721 static int ipw2100_wx_get_mode(struct net_device *dev,
6722                                struct iw_request_info *info,
6723                                union iwreq_data *wrqu, char *extra)
6724 {
6725         /*
6726          * This can be called at any time.  No action lock required
6727          */
6728
6729         struct ipw2100_priv *priv = ieee80211_priv(dev);
6730
6731         wrqu->mode = priv->ieee->iw_mode;
6732         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6733
6734         return 0;
6735 }
6736
6737 #define POWER_MODES 5
6738
6739 /* Values are in microsecond */
6740 static const s32 timeout_duration[POWER_MODES] = {
6741         350000,
6742         250000,
6743         75000,
6744         37000,
6745         25000,
6746 };
6747
6748 static const s32 period_duration[POWER_MODES] = {
6749         400000,
6750         700000,
6751         1000000,
6752         1000000,
6753         1000000
6754 };
6755
6756 static int ipw2100_wx_get_range(struct net_device *dev,
6757                                 struct iw_request_info *info,
6758                                 union iwreq_data *wrqu, char *extra)
6759 {
6760         /*
6761          * This can be called at any time.  No action lock required
6762          */
6763
6764         struct ipw2100_priv *priv = ieee80211_priv(dev);
6765         struct iw_range *range = (struct iw_range *)extra;
6766         u16 val;
6767         int i, level;
6768
6769         wrqu->data.length = sizeof(*range);
6770         memset(range, 0, sizeof(*range));
6771
6772         /* Let's try to keep this struct in the same order as in
6773          * linux/include/wireless.h
6774          */
6775
6776         /* TODO: See what values we can set, and remove the ones we can't
6777          * set, or fill them with some default data.
6778          */
6779
6780         /* ~5 Mb/s real (802.11b) */
6781         range->throughput = 5 * 1000 * 1000;
6782
6783 //      range->sensitivity;     /* signal level threshold range */
6784
6785         range->max_qual.qual = 100;
6786         /* TODO: Find real max RSSI and stick here */
6787         range->max_qual.level = 0;
6788         range->max_qual.noise = 0;
6789         range->max_qual.updated = 7;    /* Updated all three */
6790
6791         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6792         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6793         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6794         range->avg_qual.noise = 0;
6795         range->avg_qual.updated = 7;    /* Updated all three */
6796
6797         range->num_bitrates = RATE_COUNT;
6798
6799         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6800                 range->bitrate[i] = ipw2100_rates_11b[i];
6801         }
6802
6803         range->min_rts = MIN_RTS_THRESHOLD;
6804         range->max_rts = MAX_RTS_THRESHOLD;
6805         range->min_frag = MIN_FRAG_THRESHOLD;
6806         range->max_frag = MAX_FRAG_THRESHOLD;
6807
6808         range->min_pmp = period_duration[0];    /* Minimal PM period */
6809         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6810         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6811         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6812
6813         /* How to decode max/min PM period */
6814         range->pmp_flags = IW_POWER_PERIOD;
6815         /* How to decode max/min PM period */
6816         range->pmt_flags = IW_POWER_TIMEOUT;
6817         /* What PM options are supported */
6818         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6819
6820         range->encoding_size[0] = 5;
6821         range->encoding_size[1] = 13;   /* Different token sizes */
6822         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6823         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6824 //      range->encoding_login_index;            /* token index for login token */
6825
6826         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6827                 range->txpower_capa = IW_TXPOW_DBM;
6828                 range->num_txpower = IW_MAX_TXPOWER;
6829                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6830                      i < IW_MAX_TXPOWER;
6831                      i++, level -=
6832                      ((IPW_TX_POWER_MAX_DBM -
6833                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6834                         range->txpower[i] = level / 16;
6835         } else {
6836                 range->txpower_capa = 0;
6837                 range->num_txpower = 0;
6838         }
6839
6840         /* Set the Wireless Extension versions */
6841         range->we_version_compiled = WIRELESS_EXT;
6842         range->we_version_source = 18;
6843
6844 //      range->retry_capa;      /* What retry options are supported */
6845 //      range->retry_flags;     /* How to decode max/min retry limit */
6846 //      range->r_time_flags;    /* How to decode max/min retry life */
6847 //      range->min_retry;       /* Minimal number of retries */
6848 //      range->max_retry;       /* Maximal number of retries */
6849 //      range->min_r_time;      /* Minimal retry lifetime */
6850 //      range->max_r_time;      /* Maximal retry lifetime */
6851
6852         range->num_channels = FREQ_COUNT;
6853
6854         val = 0;
6855         for (i = 0; i < FREQ_COUNT; i++) {
6856                 // TODO: Include only legal frequencies for some countries
6857 //              if (local->channel_mask & (1 << i)) {
6858                 range->freq[val].i = i + 1;
6859                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6860                 range->freq[val].e = 1;
6861                 val++;
6862 //              }
6863                 if (val == IW_MAX_FREQUENCIES)
6864                         break;
6865         }
6866         range->num_frequency = val;
6867
6868         /* Event capability (kernel + driver) */
6869         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6870                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6871         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6872
6873         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6874                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6875
6876         IPW_DEBUG_WX("GET Range\n");
6877
6878         return 0;
6879 }
6880
6881 static int ipw2100_wx_set_wap(struct net_device *dev,
6882                               struct iw_request_info *info,
6883                               union iwreq_data *wrqu, char *extra)
6884 {
6885         struct ipw2100_priv *priv = ieee80211_priv(dev);
6886         int err = 0;
6887
6888         static const unsigned char any[] = {
6889                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6890         };
6891         static const unsigned char off[] = {
6892                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6893         };
6894
6895         // sanity checks
6896         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6897                 return -EINVAL;
6898
6899         mutex_lock(&priv->action_mutex);
6900         if (!(priv->status & STATUS_INITIALIZED)) {
6901                 err = -EIO;
6902                 goto done;
6903         }
6904
6905         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6906             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6907                 /* we disable mandatory BSSID association */
6908                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6909                 priv->config &= ~CFG_STATIC_BSSID;
6910                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6911                 goto done;
6912         }
6913
6914         priv->config |= CFG_STATIC_BSSID;
6915         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6916
6917         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6918
6919         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6920                      wrqu->ap_addr.sa_data[0] & 0xff,
6921                      wrqu->ap_addr.sa_data[1] & 0xff,
6922                      wrqu->ap_addr.sa_data[2] & 0xff,
6923                      wrqu->ap_addr.sa_data[3] & 0xff,
6924                      wrqu->ap_addr.sa_data[4] & 0xff,
6925                      wrqu->ap_addr.sa_data[5] & 0xff);
6926
6927       done:
6928         mutex_unlock(&priv->action_mutex);
6929         return err;
6930 }
6931
6932 static int ipw2100_wx_get_wap(struct net_device *dev,
6933                               struct iw_request_info *info,
6934                               union iwreq_data *wrqu, char *extra)
6935 {
6936         /*
6937          * This can be called at any time.  No action lock required
6938          */
6939
6940         struct ipw2100_priv *priv = ieee80211_priv(dev);
6941
6942         /* If we are associated, trying to associate, or have a statically
6943          * configured BSSID then return that; otherwise return ANY */
6944         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6945                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6946                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6947         } else
6948                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6949
6950         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6951                      MAC_ARG(wrqu->ap_addr.sa_data));
6952         return 0;
6953 }
6954
6955 static int ipw2100_wx_set_essid(struct net_device *dev,
6956                                 struct iw_request_info *info,
6957                                 union iwreq_data *wrqu, char *extra)
6958 {
6959         struct ipw2100_priv *priv = ieee80211_priv(dev);
6960         char *essid = "";       /* ANY */
6961         int length = 0;
6962         int err = 0;
6963
6964         mutex_lock(&priv->action_mutex);
6965         if (!(priv->status & STATUS_INITIALIZED)) {
6966                 err = -EIO;
6967                 goto done;
6968         }
6969
6970         if (wrqu->essid.flags && wrqu->essid.length) {
6971                 length = wrqu->essid.length;
6972                 essid = extra;
6973         }
6974
6975         if (length == 0) {
6976                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6977                 priv->config &= ~CFG_STATIC_ESSID;
6978                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6979                 goto done;
6980         }
6981
6982         length = min(length, IW_ESSID_MAX_SIZE);
6983
6984         priv->config |= CFG_STATIC_ESSID;
6985
6986         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6987                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6988                 err = 0;
6989                 goto done;
6990         }
6991
6992         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6993                      length);
6994
6995         priv->essid_len = length;
6996         memcpy(priv->essid, essid, priv->essid_len);
6997
6998         err = ipw2100_set_essid(priv, essid, length, 0);
6999
7000       done:
7001         mutex_unlock(&priv->action_mutex);
7002         return err;
7003 }
7004
7005 static int ipw2100_wx_get_essid(struct net_device *dev,
7006                                 struct iw_request_info *info,
7007                                 union iwreq_data *wrqu, char *extra)
7008 {
7009         /*
7010          * This can be called at any time.  No action lock required
7011          */
7012
7013         struct ipw2100_priv *priv = ieee80211_priv(dev);
7014
7015         /* If we are associated, trying to associate, or have a statically
7016          * configured ESSID then return that; otherwise return ANY */
7017         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7018                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7019                              escape_essid(priv->essid, priv->essid_len));
7020                 memcpy(extra, priv->essid, priv->essid_len);
7021                 wrqu->essid.length = priv->essid_len;
7022                 wrqu->essid.flags = 1;  /* active */
7023         } else {
7024                 IPW_DEBUG_WX("Getting essid: ANY\n");
7025                 wrqu->essid.length = 0;
7026                 wrqu->essid.flags = 0;  /* active */
7027         }
7028
7029         return 0;
7030 }
7031
7032 static int ipw2100_wx_set_nick(struct net_device *dev,
7033                                struct iw_request_info *info,
7034                                union iwreq_data *wrqu, char *extra)
7035 {
7036         /*
7037          * This can be called at any time.  No action lock required
7038          */
7039
7040         struct ipw2100_priv *priv = ieee80211_priv(dev);
7041
7042         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7043                 return -E2BIG;
7044
7045         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7046         memset(priv->nick, 0, sizeof(priv->nick));
7047         memcpy(priv->nick, extra, wrqu->data.length);
7048
7049         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7050
7051         return 0;
7052 }
7053
7054 static int ipw2100_wx_get_nick(struct net_device *dev,
7055                                struct iw_request_info *info,
7056                                union iwreq_data *wrqu, char *extra)
7057 {
7058         /*
7059          * This can be called at any time.  No action lock required
7060          */
7061
7062         struct ipw2100_priv *priv = ieee80211_priv(dev);
7063
7064         wrqu->data.length = strlen(priv->nick);
7065         memcpy(extra, priv->nick, wrqu->data.length);
7066         wrqu->data.flags = 1;   /* active */
7067
7068         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7069
7070         return 0;
7071 }
7072
7073 static int ipw2100_wx_set_rate(struct net_device *dev,
7074                                struct iw_request_info *info,
7075                                union iwreq_data *wrqu, char *extra)
7076 {
7077         struct ipw2100_priv *priv = ieee80211_priv(dev);
7078         u32 target_rate = wrqu->bitrate.value;
7079         u32 rate;
7080         int err = 0;
7081
7082         mutex_lock(&priv->action_mutex);
7083         if (!(priv->status & STATUS_INITIALIZED)) {
7084                 err = -EIO;
7085                 goto done;
7086         }
7087
7088         rate = 0;
7089
7090         if (target_rate == 1000000 ||
7091             (!wrqu->bitrate.fixed && target_rate > 1000000))
7092                 rate |= TX_RATE_1_MBIT;
7093         if (target_rate == 2000000 ||
7094             (!wrqu->bitrate.fixed && target_rate > 2000000))
7095                 rate |= TX_RATE_2_MBIT;
7096         if (target_rate == 5500000 ||
7097             (!wrqu->bitrate.fixed && target_rate > 5500000))
7098                 rate |= TX_RATE_5_5_MBIT;
7099         if (target_rate == 11000000 ||
7100             (!wrqu->bitrate.fixed && target_rate > 11000000))
7101                 rate |= TX_RATE_11_MBIT;
7102         if (rate == 0)
7103                 rate = DEFAULT_TX_RATES;
7104
7105         err = ipw2100_set_tx_rates(priv, rate, 0);
7106
7107         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7108       done:
7109         mutex_unlock(&priv->action_mutex);
7110         return err;
7111 }
7112
7113 static int ipw2100_wx_get_rate(struct net_device *dev,
7114                                struct iw_request_info *info,
7115                                union iwreq_data *wrqu, char *extra)
7116 {
7117         struct ipw2100_priv *priv = ieee80211_priv(dev);
7118         int val;
7119         int len = sizeof(val);
7120         int err = 0;
7121
7122         if (!(priv->status & STATUS_ENABLED) ||
7123             priv->status & STATUS_RF_KILL_MASK ||
7124             !(priv->status & STATUS_ASSOCIATED)) {
7125                 wrqu->bitrate.value = 0;
7126                 return 0;
7127         }
7128
7129         mutex_lock(&priv->action_mutex);
7130         if (!(priv->status & STATUS_INITIALIZED)) {
7131                 err = -EIO;
7132                 goto done;
7133         }
7134
7135         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7136         if (err) {
7137                 IPW_DEBUG_WX("failed querying ordinals.\n");
7138                 return err;
7139         }
7140
7141         switch (val & TX_RATE_MASK) {
7142         case TX_RATE_1_MBIT:
7143                 wrqu->bitrate.value = 1000000;
7144                 break;
7145         case TX_RATE_2_MBIT:
7146                 wrqu->bitrate.value = 2000000;
7147                 break;
7148         case TX_RATE_5_5_MBIT:
7149                 wrqu->bitrate.value = 5500000;
7150                 break;
7151         case TX_RATE_11_MBIT:
7152                 wrqu->bitrate.value = 11000000;
7153                 break;
7154         default:
7155                 wrqu->bitrate.value = 0;
7156         }
7157
7158         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7159
7160       done:
7161         mutex_unlock(&priv->action_mutex);
7162         return err;
7163 }
7164
7165 static int ipw2100_wx_set_rts(struct net_device *dev,
7166                               struct iw_request_info *info,
7167                               union iwreq_data *wrqu, char *extra)
7168 {
7169         struct ipw2100_priv *priv = ieee80211_priv(dev);
7170         int value, err;
7171
7172         /* Auto RTS not yet supported */
7173         if (wrqu->rts.fixed == 0)
7174                 return -EINVAL;
7175
7176         mutex_lock(&priv->action_mutex);
7177         if (!(priv->status & STATUS_INITIALIZED)) {
7178                 err = -EIO;
7179                 goto done;
7180         }
7181
7182         if (wrqu->rts.disabled)
7183                 value = priv->rts_threshold | RTS_DISABLED;
7184         else {
7185                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7186                         err = -EINVAL;
7187                         goto done;
7188                 }
7189                 value = wrqu->rts.value;
7190         }
7191
7192         err = ipw2100_set_rts_threshold(priv, value);
7193
7194         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7195       done:
7196         mutex_unlock(&priv->action_mutex);
7197         return err;
7198 }
7199
7200 static int ipw2100_wx_get_rts(struct net_device *dev,
7201                               struct iw_request_info *info,
7202                               union iwreq_data *wrqu, char *extra)
7203 {
7204         /*
7205          * This can be called at any time.  No action lock required
7206          */
7207
7208         struct ipw2100_priv *priv = ieee80211_priv(dev);
7209
7210         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7211         wrqu->rts.fixed = 1;    /* no auto select */
7212
7213         /* If RTS is set to the default value, then it is disabled */
7214         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7215
7216         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7217
7218         return 0;
7219 }
7220
7221 static int ipw2100_wx_set_txpow(struct net_device *dev,
7222                                 struct iw_request_info *info,
7223                                 union iwreq_data *wrqu, char *extra)
7224 {
7225         struct ipw2100_priv *priv = ieee80211_priv(dev);
7226         int err = 0, value;
7227         
7228         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7229                 return -EINPROGRESS;
7230
7231         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7232                 return 0;
7233
7234         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7235                 return -EINVAL;
7236
7237         if (wrqu->txpower.fixed == 0)
7238                 value = IPW_TX_POWER_DEFAULT;
7239         else {
7240                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7241                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7242                         return -EINVAL;
7243
7244                 value = wrqu->txpower.value;
7245         }
7246
7247         mutex_lock(&priv->action_mutex);
7248         if (!(priv->status & STATUS_INITIALIZED)) {
7249                 err = -EIO;
7250                 goto done;
7251         }
7252
7253         err = ipw2100_set_tx_power(priv, value);
7254
7255         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7256
7257       done:
7258         mutex_unlock(&priv->action_mutex);
7259         return err;
7260 }
7261
7262 static int ipw2100_wx_get_txpow(struct net_device *dev,
7263                                 struct iw_request_info *info,
7264                                 union iwreq_data *wrqu, char *extra)
7265 {
7266         /*
7267          * This can be called at any time.  No action lock required
7268          */
7269
7270         struct ipw2100_priv *priv = ieee80211_priv(dev);
7271
7272         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7273
7274         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7275                 wrqu->txpower.fixed = 0;
7276                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7277         } else {
7278                 wrqu->txpower.fixed = 1;
7279                 wrqu->txpower.value = priv->tx_power;
7280         }
7281
7282         wrqu->txpower.flags = IW_TXPOW_DBM;
7283
7284         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7285
7286         return 0;
7287 }
7288
7289 static int ipw2100_wx_set_frag(struct net_device *dev,
7290                                struct iw_request_info *info,
7291                                union iwreq_data *wrqu, char *extra)
7292 {
7293         /*
7294          * This can be called at any time.  No action lock required
7295          */
7296
7297         struct ipw2100_priv *priv = ieee80211_priv(dev);
7298
7299         if (!wrqu->frag.fixed)
7300                 return -EINVAL;
7301
7302         if (wrqu->frag.disabled) {
7303                 priv->frag_threshold |= FRAG_DISABLED;
7304                 priv->ieee->fts = DEFAULT_FTS;
7305         } else {
7306                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7307                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7308                         return -EINVAL;
7309
7310                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7311                 priv->frag_threshold = priv->ieee->fts;
7312         }
7313
7314         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7315
7316         return 0;
7317 }
7318
7319 static int ipw2100_wx_get_frag(struct net_device *dev,
7320                                struct iw_request_info *info,
7321                                union iwreq_data *wrqu, char *extra)
7322 {
7323         /*
7324          * This can be called at any time.  No action lock required
7325          */
7326
7327         struct ipw2100_priv *priv = ieee80211_priv(dev);
7328         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7329         wrqu->frag.fixed = 0;   /* no auto select */
7330         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7331
7332         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7333
7334         return 0;
7335 }
7336
7337 static int ipw2100_wx_set_retry(struct net_device *dev,
7338                                 struct iw_request_info *info,
7339                                 union iwreq_data *wrqu, char *extra)
7340 {
7341         struct ipw2100_priv *priv = ieee80211_priv(dev);
7342         int err = 0;
7343
7344         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7345                 return -EINVAL;
7346
7347         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7348                 return 0;
7349
7350         mutex_lock(&priv->action_mutex);
7351         if (!(priv->status & STATUS_INITIALIZED)) {
7352                 err = -EIO;
7353                 goto done;
7354         }
7355
7356         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7357                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7358                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7359                              wrqu->retry.value);
7360                 goto done;
7361         }
7362
7363         if (wrqu->retry.flags & IW_RETRY_LONG) {
7364                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7365                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7366                              wrqu->retry.value);
7367                 goto done;
7368         }
7369
7370         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7371         if (!err)
7372                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7373
7374         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7375
7376       done:
7377         mutex_unlock(&priv->action_mutex);
7378         return err;
7379 }
7380
7381 static int ipw2100_wx_get_retry(struct net_device *dev,
7382                                 struct iw_request_info *info,
7383                                 union iwreq_data *wrqu, char *extra)
7384 {
7385         /*
7386          * This can be called at any time.  No action lock required
7387          */
7388
7389         struct ipw2100_priv *priv = ieee80211_priv(dev);
7390
7391         wrqu->retry.disabled = 0;       /* can't be disabled */
7392
7393         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7394                 return -EINVAL;
7395
7396         if (wrqu->retry.flags & IW_RETRY_LONG) {
7397                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7398                 wrqu->retry.value = priv->long_retry_limit;
7399         } else {
7400                 wrqu->retry.flags =
7401                     (priv->short_retry_limit !=
7402                      priv->long_retry_limit) ?
7403                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7404
7405                 wrqu->retry.value = priv->short_retry_limit;
7406         }
7407
7408         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7409
7410         return 0;
7411 }
7412
7413 static int ipw2100_wx_set_scan(struct net_device *dev,
7414                                struct iw_request_info *info,
7415                                union iwreq_data *wrqu, char *extra)
7416 {
7417         struct ipw2100_priv *priv = ieee80211_priv(dev);
7418         int err = 0;
7419
7420         mutex_lock(&priv->action_mutex);
7421         if (!(priv->status & STATUS_INITIALIZED)) {
7422                 err = -EIO;
7423                 goto done;
7424         }
7425
7426         IPW_DEBUG_WX("Initiating scan...\n");
7427         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7428                 IPW_DEBUG_WX("Start scan failed.\n");
7429
7430                 /* TODO: Mark a scan as pending so when hardware initialized
7431                  *       a scan starts */
7432         }
7433
7434       done:
7435         mutex_unlock(&priv->action_mutex);
7436         return err;
7437 }
7438
7439 static int ipw2100_wx_get_scan(struct net_device *dev,
7440                                struct iw_request_info *info,
7441                                union iwreq_data *wrqu, char *extra)
7442 {
7443         /*
7444          * This can be called at any time.  No action lock required
7445          */
7446
7447         struct ipw2100_priv *priv = ieee80211_priv(dev);
7448         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7449 }
7450
7451 /*
7452  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7453  */
7454 static int ipw2100_wx_set_encode(struct net_device *dev,
7455                                  struct iw_request_info *info,
7456                                  union iwreq_data *wrqu, char *key)
7457 {
7458         /*
7459          * No check of STATUS_INITIALIZED required
7460          */
7461
7462         struct ipw2100_priv *priv = ieee80211_priv(dev);
7463         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7464 }
7465
7466 static int ipw2100_wx_get_encode(struct net_device *dev,
7467                                  struct iw_request_info *info,
7468                                  union iwreq_data *wrqu, char *key)
7469 {
7470         /*
7471          * This can be called at any time.  No action lock required
7472          */
7473
7474         struct ipw2100_priv *priv = ieee80211_priv(dev);
7475         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7476 }
7477
7478 static int ipw2100_wx_set_power(struct net_device *dev,
7479                                 struct iw_request_info *info,
7480                                 union iwreq_data *wrqu, char *extra)
7481 {
7482         struct ipw2100_priv *priv = ieee80211_priv(dev);
7483         int err = 0;
7484
7485         mutex_lock(&priv->action_mutex);
7486         if (!(priv->status & STATUS_INITIALIZED)) {
7487                 err = -EIO;
7488                 goto done;
7489         }
7490
7491         if (wrqu->power.disabled) {
7492                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7493                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7494                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7495                 goto done;
7496         }
7497
7498         switch (wrqu->power.flags & IW_POWER_MODE) {
7499         case IW_POWER_ON:       /* If not specified */
7500         case IW_POWER_MODE:     /* If set all mask */
7501         case IW_POWER_ALL_R:    /* If explicitely state all */
7502                 break;
7503         default:                /* Otherwise we don't support it */
7504                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7505                              wrqu->power.flags);
7506                 err = -EOPNOTSUPP;
7507                 goto done;
7508         }
7509
7510         /* If the user hasn't specified a power management mode yet, default
7511          * to BATTERY */
7512         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7513         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7514
7515         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7516
7517       done:
7518         mutex_unlock(&priv->action_mutex);
7519         return err;
7520
7521 }
7522
7523 static int ipw2100_wx_get_power(struct net_device *dev,
7524                                 struct iw_request_info *info,
7525                                 union iwreq_data *wrqu, char *extra)
7526 {
7527         /*
7528          * This can be called at any time.  No action lock required
7529          */
7530
7531         struct ipw2100_priv *priv = ieee80211_priv(dev);
7532
7533         if (!(priv->power_mode & IPW_POWER_ENABLED))
7534                 wrqu->power.disabled = 1;
7535         else {
7536                 wrqu->power.disabled = 0;
7537                 wrqu->power.flags = 0;
7538         }
7539
7540         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7541
7542         return 0;
7543 }
7544
7545 /*
7546  * WE-18 WPA support
7547  */
7548
7549 /* SIOCSIWGENIE */
7550 static int ipw2100_wx_set_genie(struct net_device *dev,
7551                                 struct iw_request_info *info,
7552                                 union iwreq_data *wrqu, char *extra)
7553 {
7554
7555         struct ipw2100_priv *priv = ieee80211_priv(dev);
7556         struct ieee80211_device *ieee = priv->ieee;
7557         u8 *buf;
7558
7559         if (!ieee->wpa_enabled)
7560                 return -EOPNOTSUPP;
7561
7562         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7563             (wrqu->data.length && extra == NULL))
7564                 return -EINVAL;
7565
7566         if (wrqu->data.length) {
7567                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7568                 if (buf == NULL)
7569                         return -ENOMEM;
7570
7571                 kfree(ieee->wpa_ie);
7572                 ieee->wpa_ie = buf;
7573                 ieee->wpa_ie_len = wrqu->data.length;
7574         } else {
7575                 kfree(ieee->wpa_ie);
7576                 ieee->wpa_ie = NULL;
7577                 ieee->wpa_ie_len = 0;
7578         }
7579
7580         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7581
7582         return 0;
7583 }
7584
7585 /* SIOCGIWGENIE */
7586 static int ipw2100_wx_get_genie(struct net_device *dev,
7587                                 struct iw_request_info *info,
7588                                 union iwreq_data *wrqu, char *extra)
7589 {
7590         struct ipw2100_priv *priv = ieee80211_priv(dev);
7591         struct ieee80211_device *ieee = priv->ieee;
7592
7593         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7594                 wrqu->data.length = 0;
7595                 return 0;
7596         }
7597
7598         if (wrqu->data.length < ieee->wpa_ie_len)
7599                 return -E2BIG;
7600
7601         wrqu->data.length = ieee->wpa_ie_len;
7602         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7603
7604         return 0;
7605 }
7606
7607 /* SIOCSIWAUTH */
7608 static int ipw2100_wx_set_auth(struct net_device *dev,
7609                                struct iw_request_info *info,
7610                                union iwreq_data *wrqu, char *extra)
7611 {
7612         struct ipw2100_priv *priv = ieee80211_priv(dev);
7613         struct ieee80211_device *ieee = priv->ieee;
7614         struct iw_param *param = &wrqu->param;
7615         struct ieee80211_crypt_data *crypt;
7616         unsigned long flags;
7617         int ret = 0;
7618
7619         switch (param->flags & IW_AUTH_INDEX) {
7620         case IW_AUTH_WPA_VERSION:
7621         case IW_AUTH_CIPHER_PAIRWISE:
7622         case IW_AUTH_CIPHER_GROUP:
7623         case IW_AUTH_KEY_MGMT:
7624                 /*
7625                  * ipw2200 does not use these parameters
7626                  */
7627                 break;
7628
7629         case IW_AUTH_TKIP_COUNTERMEASURES:
7630                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7631                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7632                         break;
7633
7634                 flags = crypt->ops->get_flags(crypt->priv);
7635
7636                 if (param->value)
7637                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7638                 else
7639                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7640
7641                 crypt->ops->set_flags(flags, crypt->priv);
7642
7643                 break;
7644
7645         case IW_AUTH_DROP_UNENCRYPTED:{
7646                         /* HACK:
7647                          *
7648                          * wpa_supplicant calls set_wpa_enabled when the driver
7649                          * is loaded and unloaded, regardless of if WPA is being
7650                          * used.  No other calls are made which can be used to
7651                          * determine if encryption will be used or not prior to
7652                          * association being expected.  If encryption is not being
7653                          * used, drop_unencrypted is set to false, else true -- we
7654                          * can use this to determine if the CAP_PRIVACY_ON bit should
7655                          * be set.
7656                          */
7657                         struct ieee80211_security sec = {
7658                                 .flags = SEC_ENABLED,
7659                                 .enabled = param->value,
7660                         };
7661                         priv->ieee->drop_unencrypted = param->value;
7662                         /* We only change SEC_LEVEL for open mode. Others
7663                          * are set by ipw_wpa_set_encryption.
7664                          */
7665                         if (!param->value) {
7666                                 sec.flags |= SEC_LEVEL;
7667                                 sec.level = SEC_LEVEL_0;
7668                         } else {
7669                                 sec.flags |= SEC_LEVEL;
7670                                 sec.level = SEC_LEVEL_1;
7671                         }
7672                         if (priv->ieee->set_security)
7673                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7674                         break;
7675                 }
7676
7677         case IW_AUTH_80211_AUTH_ALG:
7678                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7679                 break;
7680
7681         case IW_AUTH_WPA_ENABLED:
7682                 ret = ipw2100_wpa_enable(priv, param->value);
7683                 break;
7684
7685         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7686                 ieee->ieee802_1x = param->value;
7687                 break;
7688
7689                 //case IW_AUTH_ROAMING_CONTROL:
7690         case IW_AUTH_PRIVACY_INVOKED:
7691                 ieee->privacy_invoked = param->value;
7692                 break;
7693
7694         default:
7695                 return -EOPNOTSUPP;
7696         }
7697         return ret;
7698 }
7699
7700 /* SIOCGIWAUTH */
7701 static int ipw2100_wx_get_auth(struct net_device *dev,
7702                                struct iw_request_info *info,
7703                                union iwreq_data *wrqu, char *extra)
7704 {
7705         struct ipw2100_priv *priv = ieee80211_priv(dev);
7706         struct ieee80211_device *ieee = priv->ieee;
7707         struct ieee80211_crypt_data *crypt;
7708         struct iw_param *param = &wrqu->param;
7709         int ret = 0;
7710
7711         switch (param->flags & IW_AUTH_INDEX) {
7712         case IW_AUTH_WPA_VERSION:
7713         case IW_AUTH_CIPHER_PAIRWISE:
7714         case IW_AUTH_CIPHER_GROUP:
7715         case IW_AUTH_KEY_MGMT:
7716                 /*
7717                  * wpa_supplicant will control these internally
7718                  */
7719                 ret = -EOPNOTSUPP;
7720                 break;
7721
7722         case IW_AUTH_TKIP_COUNTERMEASURES:
7723                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7724                 if (!crypt || !crypt->ops->get_flags) {
7725                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7726                                           "crypt not set!\n");
7727                         break;
7728                 }
7729
7730                 param->value = (crypt->ops->get_flags(crypt->priv) &
7731                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7732
7733                 break;
7734
7735         case IW_AUTH_DROP_UNENCRYPTED:
7736                 param->value = ieee->drop_unencrypted;
7737                 break;
7738
7739         case IW_AUTH_80211_AUTH_ALG:
7740                 param->value = priv->ieee->sec.auth_mode;
7741                 break;
7742
7743         case IW_AUTH_WPA_ENABLED:
7744                 param->value = ieee->wpa_enabled;
7745                 break;
7746
7747         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7748                 param->value = ieee->ieee802_1x;
7749                 break;
7750
7751         case IW_AUTH_ROAMING_CONTROL:
7752         case IW_AUTH_PRIVACY_INVOKED:
7753                 param->value = ieee->privacy_invoked;
7754                 break;
7755
7756         default:
7757                 return -EOPNOTSUPP;
7758         }
7759         return 0;
7760 }
7761
7762 /* SIOCSIWENCODEEXT */
7763 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7764                                     struct iw_request_info *info,
7765                                     union iwreq_data *wrqu, char *extra)
7766 {
7767         struct ipw2100_priv *priv = ieee80211_priv(dev);
7768         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7769 }
7770
7771 /* SIOCGIWENCODEEXT */
7772 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7773                                     struct iw_request_info *info,
7774                                     union iwreq_data *wrqu, char *extra)
7775 {
7776         struct ipw2100_priv *priv = ieee80211_priv(dev);
7777         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7778 }
7779
7780 /* SIOCSIWMLME */
7781 static int ipw2100_wx_set_mlme(struct net_device *dev,
7782                                struct iw_request_info *info,
7783                                union iwreq_data *wrqu, char *extra)
7784 {
7785         struct ipw2100_priv *priv = ieee80211_priv(dev);
7786         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7787         u16 reason;
7788
7789         reason = cpu_to_le16(mlme->reason_code);
7790
7791         switch (mlme->cmd) {
7792         case IW_MLME_DEAUTH:
7793                 // silently ignore
7794                 break;
7795
7796         case IW_MLME_DISASSOC:
7797                 ipw2100_disassociate_bssid(priv);
7798                 break;
7799
7800         default:
7801                 return -EOPNOTSUPP;
7802         }
7803         return 0;
7804 }
7805
7806 /*
7807  *
7808  * IWPRIV handlers
7809  *
7810  */
7811 #ifdef CONFIG_IPW2100_MONITOR
7812 static int ipw2100_wx_set_promisc(struct net_device *dev,
7813                                   struct iw_request_info *info,
7814                                   union iwreq_data *wrqu, char *extra)
7815 {
7816         struct ipw2100_priv *priv = ieee80211_priv(dev);
7817         int *parms = (int *)extra;
7818         int enable = (parms[0] > 0);
7819         int err = 0;
7820
7821         mutex_lock(&priv->action_mutex);
7822         if (!(priv->status & STATUS_INITIALIZED)) {
7823                 err = -EIO;
7824                 goto done;
7825         }
7826
7827         if (enable) {
7828                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7829                         err = ipw2100_set_channel(priv, parms[1], 0);
7830                         goto done;
7831                 }
7832                 priv->channel = parms[1];
7833                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7834         } else {
7835                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7836                         err = ipw2100_switch_mode(priv, priv->last_mode);
7837         }
7838       done:
7839         mutex_unlock(&priv->action_mutex);
7840         return err;
7841 }
7842
7843 static int ipw2100_wx_reset(struct net_device *dev,
7844                             struct iw_request_info *info,
7845                             union iwreq_data *wrqu, char *extra)
7846 {
7847         struct ipw2100_priv *priv = ieee80211_priv(dev);
7848         if (priv->status & STATUS_INITIALIZED)
7849                 schedule_reset(priv);
7850         return 0;
7851 }
7852
7853 #endif
7854
7855 static int ipw2100_wx_set_powermode(struct net_device *dev,
7856                                     struct iw_request_info *info,
7857                                     union iwreq_data *wrqu, char *extra)
7858 {
7859         struct ipw2100_priv *priv = ieee80211_priv(dev);
7860         int err = 0, mode = *(int *)extra;
7861
7862         mutex_lock(&priv->action_mutex);
7863         if (!(priv->status & STATUS_INITIALIZED)) {
7864                 err = -EIO;
7865                 goto done;
7866         }
7867
7868         if ((mode < 1) || (mode > POWER_MODES))
7869                 mode = IPW_POWER_AUTO;
7870
7871         if (priv->power_mode != mode)
7872                 err = ipw2100_set_power_mode(priv, mode);
7873       done:
7874         mutex_unlock(&priv->action_mutex);
7875         return err;
7876 }
7877
7878 #define MAX_POWER_STRING 80
7879 static int ipw2100_wx_get_powermode(struct net_device *dev,
7880                                     struct iw_request_info *info,
7881                                     union iwreq_data *wrqu, char *extra)
7882 {
7883         /*
7884          * This can be called at any time.  No action lock required
7885          */
7886
7887         struct ipw2100_priv *priv = ieee80211_priv(dev);
7888         int level = IPW_POWER_LEVEL(priv->power_mode);
7889         s32 timeout, period;
7890
7891         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7892                 snprintf(extra, MAX_POWER_STRING,
7893                          "Power save level: %d (Off)", level);
7894         } else {
7895                 switch (level) {
7896                 case IPW_POWER_MODE_CAM:
7897                         snprintf(extra, MAX_POWER_STRING,
7898                                  "Power save level: %d (None)", level);
7899                         break;
7900                 case IPW_POWER_AUTO:
7901                         snprintf(extra, MAX_POWER_STRING,
7902                                  "Power save level: %d (Auto)", 0);
7903                         break;
7904                 default:
7905                         timeout = timeout_duration[level - 1] / 1000;
7906                         period = period_duration[level - 1] / 1000;
7907                         snprintf(extra, MAX_POWER_STRING,
7908                                  "Power save level: %d "
7909                                  "(Timeout %dms, Period %dms)",
7910                                  level, timeout, period);
7911                 }
7912         }
7913
7914         wrqu->data.length = strlen(extra) + 1;
7915
7916         return 0;
7917 }
7918
7919 static int ipw2100_wx_set_preamble(struct net_device *dev,
7920                                    struct iw_request_info *info,
7921                                    union iwreq_data *wrqu, char *extra)
7922 {
7923         struct ipw2100_priv *priv = ieee80211_priv(dev);
7924         int err, mode = *(int *)extra;
7925
7926         mutex_lock(&priv->action_mutex);
7927         if (!(priv->status & STATUS_INITIALIZED)) {
7928                 err = -EIO;
7929                 goto done;
7930         }
7931
7932         if (mode == 1)
7933                 priv->config |= CFG_LONG_PREAMBLE;
7934         else if (mode == 0)
7935                 priv->config &= ~CFG_LONG_PREAMBLE;
7936         else {
7937                 err = -EINVAL;
7938                 goto done;
7939         }
7940
7941         err = ipw2100_system_config(priv, 0);
7942
7943       done:
7944         mutex_unlock(&priv->action_mutex);
7945         return err;
7946 }
7947
7948 static int ipw2100_wx_get_preamble(struct net_device *dev,
7949                                    struct iw_request_info *info,
7950                                    union iwreq_data *wrqu, char *extra)
7951 {
7952         /*
7953          * This can be called at any time.  No action lock required
7954          */
7955
7956         struct ipw2100_priv *priv = ieee80211_priv(dev);
7957
7958         if (priv->config & CFG_LONG_PREAMBLE)
7959                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7960         else
7961                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7962
7963         return 0;
7964 }
7965
7966 #ifdef CONFIG_IPW2100_MONITOR
7967 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7968                                     struct iw_request_info *info,
7969                                     union iwreq_data *wrqu, char *extra)
7970 {
7971         struct ipw2100_priv *priv = ieee80211_priv(dev);
7972         int err, mode = *(int *)extra;
7973
7974         mutex_lock(&priv->action_mutex);
7975         if (!(priv->status & STATUS_INITIALIZED)) {
7976                 err = -EIO;
7977                 goto done;
7978         }
7979
7980         if (mode == 1)
7981                 priv->config |= CFG_CRC_CHECK;
7982         else if (mode == 0)
7983                 priv->config &= ~CFG_CRC_CHECK;
7984         else {
7985                 err = -EINVAL;
7986                 goto done;
7987         }
7988         err = 0;
7989
7990       done:
7991         mutex_unlock(&priv->action_mutex);
7992         return err;
7993 }
7994
7995 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7996                                     struct iw_request_info *info,
7997                                     union iwreq_data *wrqu, char *extra)
7998 {
7999         /*
8000          * This can be called at any time.  No action lock required
8001          */
8002
8003         struct ipw2100_priv *priv = ieee80211_priv(dev);
8004
8005         if (priv->config & CFG_CRC_CHECK)
8006                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8007         else
8008                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8009
8010         return 0;
8011 }
8012 #endif                          /* CONFIG_IPW2100_MONITOR */
8013
8014 static iw_handler ipw2100_wx_handlers[] = {
8015         NULL,                   /* SIOCSIWCOMMIT */
8016         ipw2100_wx_get_name,    /* SIOCGIWNAME */
8017         NULL,                   /* SIOCSIWNWID */
8018         NULL,                   /* SIOCGIWNWID */
8019         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
8020         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
8021         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
8022         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
8023         NULL,                   /* SIOCSIWSENS */
8024         NULL,                   /* SIOCGIWSENS */
8025         NULL,                   /* SIOCSIWRANGE */
8026         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
8027         NULL,                   /* SIOCSIWPRIV */
8028         NULL,                   /* SIOCGIWPRIV */
8029         NULL,                   /* SIOCSIWSTATS */
8030         NULL,                   /* SIOCGIWSTATS */
8031         NULL,                   /* SIOCSIWSPY */
8032         NULL,                   /* SIOCGIWSPY */
8033         NULL,                   /* SIOCGIWTHRSPY */
8034         NULL,                   /* SIOCWIWTHRSPY */
8035         ipw2100_wx_set_wap,     /* SIOCSIWAP */
8036         ipw2100_wx_get_wap,     /* SIOCGIWAP */
8037         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
8038         NULL,                   /* SIOCGIWAPLIST -- deprecated */
8039         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
8040         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
8041         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
8042         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
8043         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
8044         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
8045         NULL,                   /* -- hole -- */
8046         NULL,                   /* -- hole -- */
8047         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
8048         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
8049         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
8050         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
8051         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
8052         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
8053         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
8054         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
8055         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
8056         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
8057         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
8058         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
8059         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
8060         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
8061         NULL,                   /* -- hole -- */
8062         NULL,                   /* -- hole -- */
8063         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
8064         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
8065         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
8066         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
8067         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
8068         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
8069         NULL,                   /* SIOCSIWPMKSA */
8070 };
8071
8072 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8073 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8074 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8075 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8076 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8077 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8078 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8079 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8080
8081 static const struct iw_priv_args ipw2100_private_args[] = {
8082
8083 #ifdef CONFIG_IPW2100_MONITOR
8084         {
8085          IPW2100_PRIV_SET_MONITOR,
8086          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8087         {
8088          IPW2100_PRIV_RESET,
8089          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8090 #endif                          /* CONFIG_IPW2100_MONITOR */
8091
8092         {
8093          IPW2100_PRIV_SET_POWER,
8094          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8095         {
8096          IPW2100_PRIV_GET_POWER,
8097          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8098          "get_power"},
8099         {
8100          IPW2100_PRIV_SET_LONGPREAMBLE,
8101          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8102         {
8103          IPW2100_PRIV_GET_LONGPREAMBLE,
8104          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8105 #ifdef CONFIG_IPW2100_MONITOR
8106         {
8107          IPW2100_PRIV_SET_CRC_CHECK,
8108          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8109         {
8110          IPW2100_PRIV_GET_CRC_CHECK,
8111          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8112 #endif                          /* CONFIG_IPW2100_MONITOR */
8113 };
8114
8115 static iw_handler ipw2100_private_handler[] = {
8116 #ifdef CONFIG_IPW2100_MONITOR
8117         ipw2100_wx_set_promisc,
8118         ipw2100_wx_reset,
8119 #else                           /* CONFIG_IPW2100_MONITOR */
8120         NULL,
8121         NULL,
8122 #endif                          /* CONFIG_IPW2100_MONITOR */
8123         ipw2100_wx_set_powermode,
8124         ipw2100_wx_get_powermode,
8125         ipw2100_wx_set_preamble,
8126         ipw2100_wx_get_preamble,
8127 #ifdef CONFIG_IPW2100_MONITOR
8128         ipw2100_wx_set_crc_check,
8129         ipw2100_wx_get_crc_check,
8130 #else                           /* CONFIG_IPW2100_MONITOR */
8131         NULL,
8132         NULL,
8133 #endif                          /* CONFIG_IPW2100_MONITOR */
8134 };
8135
8136 /*
8137  * Get wireless statistics.
8138  * Called by /proc/net/wireless
8139  * Also called by SIOCGIWSTATS
8140  */
8141 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8142 {
8143         enum {
8144                 POOR = 30,
8145                 FAIR = 60,
8146                 GOOD = 80,
8147                 VERY_GOOD = 90,
8148                 EXCELLENT = 95,
8149                 PERFECT = 100
8150         };
8151         int rssi_qual;
8152         int tx_qual;
8153         int beacon_qual;
8154
8155         struct ipw2100_priv *priv = ieee80211_priv(dev);
8156         struct iw_statistics *wstats;
8157         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8158         u32 ord_len = sizeof(u32);
8159
8160         if (!priv)
8161                 return (struct iw_statistics *)NULL;
8162
8163         wstats = &priv->wstats;
8164
8165         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8166          * ipw2100_wx_wireless_stats seems to be called before fw is
8167          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8168          * and associated; if not associcated, the values are all meaningless
8169          * anyway, so set them all to NULL and INVALID */
8170         if (!(priv->status & STATUS_ASSOCIATED)) {
8171                 wstats->miss.beacon = 0;
8172                 wstats->discard.retries = 0;
8173                 wstats->qual.qual = 0;
8174                 wstats->qual.level = 0;
8175                 wstats->qual.noise = 0;
8176                 wstats->qual.updated = 7;
8177                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8178                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8179                 return wstats;
8180         }
8181
8182         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8183                                 &missed_beacons, &ord_len))
8184                 goto fail_get_ordinal;
8185
8186         /* If we don't have a connection the quality and level is 0 */
8187         if (!(priv->status & STATUS_ASSOCIATED)) {
8188                 wstats->qual.qual = 0;
8189                 wstats->qual.level = 0;
8190         } else {
8191                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8192                                         &rssi, &ord_len))
8193                         goto fail_get_ordinal;
8194                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8195                 if (rssi < 10)
8196                         rssi_qual = rssi * POOR / 10;
8197                 else if (rssi < 15)
8198                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8199                 else if (rssi < 20)
8200                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8201                 else if (rssi < 30)
8202                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8203                             10 + GOOD;
8204                 else
8205                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8206                             10 + VERY_GOOD;
8207
8208                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8209                                         &tx_retries, &ord_len))
8210                         goto fail_get_ordinal;
8211
8212                 if (tx_retries > 75)
8213                         tx_qual = (90 - tx_retries) * POOR / 15;
8214                 else if (tx_retries > 70)
8215                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8216                 else if (tx_retries > 65)
8217                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8218                 else if (tx_retries > 50)
8219                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8220                             15 + GOOD;
8221                 else
8222                         tx_qual = (50 - tx_retries) *
8223                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8224
8225                 if (missed_beacons > 50)
8226                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8227                 else if (missed_beacons > 40)
8228                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8229                             10 + POOR;
8230                 else if (missed_beacons > 32)
8231                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8232                             18 + FAIR;
8233                 else if (missed_beacons > 20)
8234                         beacon_qual = (32 - missed_beacons) *
8235                             (VERY_GOOD - GOOD) / 20 + GOOD;
8236                 else
8237                         beacon_qual = (20 - missed_beacons) *
8238                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8239
8240                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243                 if (beacon_qual == quality)
8244                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245                 else if (tx_qual == quality)
8246                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247                 else if (quality != 100)
8248                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249                 else
8250                         IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253                 wstats->qual.qual = quality;
8254                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255         }
8256
8257         wstats->qual.noise = 0;
8258         wstats->qual.updated = 7;
8259         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261         /* FIXME: this is percent and not a # */
8262         wstats->miss.beacon = missed_beacons;
8263
8264         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265                                 &tx_failures, &ord_len))
8266                 goto fail_get_ordinal;
8267         wstats->discard.retries = tx_failures;
8268
8269         return wstats;
8270
8271       fail_get_ordinal:
8272         IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274         return (struct iw_statistics *)NULL;
8275 }
8276
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278         .standard = ipw2100_wx_handlers,
8279         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8280         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8281         .num_private_args = sizeof(ipw2100_private_args) /
8282             sizeof(struct iw_priv_args),
8283         .private = (iw_handler *) ipw2100_private_handler,
8284         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8285         .get_wireless_stats = ipw2100_wx_wireless_stats,
8286 };
8287
8288 static void ipw2100_wx_event_work(struct work_struct *work)
8289 {
8290         struct ipw2100_priv *priv =
8291                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8292         union iwreq_data wrqu;
8293         int len = ETH_ALEN;
8294
8295         if (priv->status & STATUS_STOPPING)
8296                 return;
8297
8298         mutex_lock(&priv->action_mutex);
8299
8300         IPW_DEBUG_WX("enter\n");
8301
8302         mutex_unlock(&priv->action_mutex);
8303
8304         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8305
8306         /* Fetch BSSID from the hardware */
8307         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8308             priv->status & STATUS_RF_KILL_MASK ||
8309             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8310                                 &priv->bssid, &len)) {
8311                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8312         } else {
8313                 /* We now have the BSSID, so can finish setting to the full
8314                  * associated state */
8315                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8316                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8317                 priv->status &= ~STATUS_ASSOCIATING;
8318                 priv->status |= STATUS_ASSOCIATED;
8319                 netif_carrier_on(priv->net_dev);
8320                 netif_wake_queue(priv->net_dev);
8321         }
8322
8323         if (!(priv->status & STATUS_ASSOCIATED)) {
8324                 IPW_DEBUG_WX("Configuring ESSID\n");
8325                 mutex_lock(&priv->action_mutex);
8326                 /* This is a disassociation event, so kick the firmware to
8327                  * look for another AP */
8328                 if (priv->config & CFG_STATIC_ESSID)
8329                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8330                                           0);
8331                 else
8332                         ipw2100_set_essid(priv, NULL, 0, 0);
8333                 mutex_unlock(&priv->action_mutex);
8334         }
8335
8336         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8337 }
8338
8339 #define IPW2100_FW_MAJOR_VERSION 1
8340 #define IPW2100_FW_MINOR_VERSION 3
8341
8342 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8343 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8344
8345 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8346                              IPW2100_FW_MAJOR_VERSION)
8347
8348 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8349 "." __stringify(IPW2100_FW_MINOR_VERSION)
8350
8351 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8352
8353 /*
8354
8355 BINARY FIRMWARE HEADER FORMAT
8356
8357 offset      length   desc
8358 0           2        version
8359 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8360 4           4        fw_len
8361 8           4        uc_len
8362 C           fw_len   firmware data
8363 12 + fw_len uc_len   microcode data
8364
8365 */
8366
8367 struct ipw2100_fw_header {
8368         short version;
8369         short mode;
8370         unsigned int fw_size;
8371         unsigned int uc_size;
8372 } __attribute__ ((packed));
8373
8374 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8375 {
8376         struct ipw2100_fw_header *h =
8377             (struct ipw2100_fw_header *)fw->fw_entry->data;
8378
8379         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8380                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8381                        "(detected version id of %u). "
8382                        "See Documentation/networking/README.ipw2100\n",
8383                        h->version);
8384                 return 1;
8385         }
8386
8387         fw->version = h->version;
8388         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8389         fw->fw.size = h->fw_size;
8390         fw->uc.data = fw->fw.data + h->fw_size;
8391         fw->uc.size = h->uc_size;
8392
8393         return 0;
8394 }
8395
8396 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8397                                 struct ipw2100_fw *fw)
8398 {
8399         char *fw_name;
8400         int rc;
8401
8402         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8403                        priv->net_dev->name);
8404
8405         switch (priv->ieee->iw_mode) {
8406         case IW_MODE_ADHOC:
8407                 fw_name = IPW2100_FW_NAME("-i");
8408                 break;
8409 #ifdef CONFIG_IPW2100_MONITOR
8410         case IW_MODE_MONITOR:
8411                 fw_name = IPW2100_FW_NAME("-p");
8412                 break;
8413 #endif
8414         case IW_MODE_INFRA:
8415         default:
8416                 fw_name = IPW2100_FW_NAME("");
8417                 break;
8418         }
8419
8420         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8421
8422         if (rc < 0) {
8423                 printk(KERN_ERR DRV_NAME ": "
8424                        "%s: Firmware '%s' not available or load failed.\n",
8425                        priv->net_dev->name, fw_name);
8426                 return rc;
8427         }
8428         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8429                        fw->fw_entry->size);
8430
8431         ipw2100_mod_firmware_load(fw);
8432
8433         return 0;
8434 }
8435
8436 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8437                                      struct ipw2100_fw *fw)
8438 {
8439         fw->version = 0;
8440         if (fw->fw_entry)
8441                 release_firmware(fw->fw_entry);
8442         fw->fw_entry = NULL;
8443 }
8444
8445 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8446                                  size_t max)
8447 {
8448         char ver[MAX_FW_VERSION_LEN];
8449         u32 len = MAX_FW_VERSION_LEN;
8450         u32 tmp;
8451         int i;
8452         /* firmware version is an ascii string (max len of 14) */
8453         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8454                 return -EIO;
8455         tmp = max;
8456         if (len >= max)
8457                 len = max - 1;
8458         for (i = 0; i < len; i++)
8459                 buf[i] = ver[i];
8460         buf[i] = '\0';
8461         return tmp;
8462 }
8463
8464 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8465                                     size_t max)
8466 {
8467         u32 ver;
8468         u32 len = sizeof(ver);
8469         /* microcode version is a 32 bit integer */
8470         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8471                 return -EIO;
8472         return snprintf(buf, max, "%08X", ver);
8473 }
8474
8475 /*
8476  * On exit, the firmware will have been freed from the fw list
8477  */
8478 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8479 {
8480         /* firmware is constructed of N contiguous entries, each entry is
8481          * structured as:
8482          *
8483          * offset    sie         desc
8484          * 0         4           address to write to
8485          * 4         2           length of data run
8486          * 6         length      data
8487          */
8488         unsigned int addr;
8489         unsigned short len;
8490
8491         const unsigned char *firmware_data = fw->fw.data;
8492         unsigned int firmware_data_left = fw->fw.size;
8493
8494         while (firmware_data_left > 0) {
8495                 addr = *(u32 *) (firmware_data);
8496                 firmware_data += 4;
8497                 firmware_data_left -= 4;
8498
8499                 len = *(u16 *) (firmware_data);
8500                 firmware_data += 2;
8501                 firmware_data_left -= 2;
8502
8503                 if (len > 32) {
8504                         printk(KERN_ERR DRV_NAME ": "
8505                                "Invalid firmware run-length of %d bytes\n",
8506                                len);
8507                         return -EINVAL;
8508                 }
8509
8510                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8511                 firmware_data += len;
8512                 firmware_data_left -= len;
8513         }
8514
8515         return 0;
8516 }
8517
8518 struct symbol_alive_response {
8519         u8 cmd_id;
8520         u8 seq_num;
8521         u8 ucode_rev;
8522         u8 eeprom_valid;
8523         u16 valid_flags;
8524         u8 IEEE_addr[6];
8525         u16 flags;
8526         u16 pcb_rev;
8527         u16 clock_settle_time;  // 1us LSB
8528         u16 powerup_settle_time;        // 1us LSB
8529         u16 hop_settle_time;    // 1us LSB
8530         u8 date[3];             // month, day, year
8531         u8 time[2];             // hours, minutes
8532         u8 ucode_valid;
8533 };
8534
8535 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8536                                   struct ipw2100_fw *fw)
8537 {
8538         struct net_device *dev = priv->net_dev;
8539         const unsigned char *microcode_data = fw->uc.data;
8540         unsigned int microcode_data_left = fw->uc.size;
8541         void __iomem *reg = (void __iomem *)dev->base_addr;
8542
8543         struct symbol_alive_response response;
8544         int i, j;
8545         u8 data;
8546
8547         /* Symbol control */
8548         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8549         readl(reg);
8550         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8551         readl(reg);
8552
8553         /* HW config */
8554         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8555         readl(reg);
8556         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8557         readl(reg);
8558
8559         /* EN_CS_ACCESS bit to reset control store pointer */
8560         write_nic_byte(dev, 0x210000, 0x40);
8561         readl(reg);
8562         write_nic_byte(dev, 0x210000, 0x0);
8563         readl(reg);
8564         write_nic_byte(dev, 0x210000, 0x40);
8565         readl(reg);
8566
8567         /* copy microcode from buffer into Symbol */
8568
8569         while (microcode_data_left > 0) {
8570                 write_nic_byte(dev, 0x210010, *microcode_data++);
8571                 write_nic_byte(dev, 0x210010, *microcode_data++);
8572                 microcode_data_left -= 2;
8573         }
8574
8575         /* EN_CS_ACCESS bit to reset the control store pointer */
8576         write_nic_byte(dev, 0x210000, 0x0);
8577         readl(reg);
8578
8579         /* Enable System (Reg 0)
8580          * first enable causes garbage in RX FIFO */
8581         write_nic_byte(dev, 0x210000, 0x0);
8582         readl(reg);
8583         write_nic_byte(dev, 0x210000, 0x80);
8584         readl(reg);
8585
8586         /* Reset External Baseband Reg */
8587         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8588         readl(reg);
8589         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8590         readl(reg);
8591
8592         /* HW Config (Reg 5) */
8593         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8594         readl(reg);
8595         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8596         readl(reg);
8597
8598         /* Enable System (Reg 0)
8599          * second enable should be OK */
8600         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8601         readl(reg);
8602         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8603
8604         /* check Symbol is enabled - upped this from 5 as it wasn't always
8605          * catching the update */
8606         for (i = 0; i < 10; i++) {
8607                 udelay(10);
8608
8609                 /* check Dino is enabled bit */
8610                 read_nic_byte(dev, 0x210000, &data);
8611                 if (data & 0x1)
8612                         break;
8613         }
8614
8615         if (i == 10) {
8616                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8617                        dev->name);
8618                 return -EIO;
8619         }
8620
8621         /* Get Symbol alive response */
8622         for (i = 0; i < 30; i++) {
8623                 /* Read alive response structure */
8624                 for (j = 0;
8625                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8626                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8627
8628                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8629                         break;
8630                 udelay(10);
8631         }
8632
8633         if (i == 30) {
8634                 printk(KERN_ERR DRV_NAME
8635                        ": %s: No response from Symbol - hw not alive\n",
8636                        dev->name);
8637                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8638                 return -EIO;
8639         }
8640
8641         return 0;
8642 }