Merge branch 'topic/hda-gateway' into topic/hda
[pandora-kernel.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32         { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33         { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34         { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35         { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36         { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37         { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38         { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47         u8 u8tmp;
48
49         pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50         *csz = (int)u8tmp;
51
52         /*
53          * This check was put in to avoid "unplesant" consequences if
54          * the bootrom has not fully initialized all PCI devices.
55          * Sometimes the cache line size register is not set
56          */
57
58         if (*csz == 0)
59                 *csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61
62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
63 {
64         sc->cur_rate_table = sc->hw_rate_table[mode];
65         /*
66          * All protection frames are transmited at 2Mb/s for
67          * 11g, otherwise at 1Mb/s.
68          * XXX select protection rate index from rate table.
69          */
70         sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
71 }
72
73 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
74 {
75         if (chan->chanmode == CHANNEL_A)
76                 return ATH9K_MODE_11A;
77         else if (chan->chanmode == CHANNEL_G)
78                 return ATH9K_MODE_11G;
79         else if (chan->chanmode == CHANNEL_B)
80                 return ATH9K_MODE_11B;
81         else if (chan->chanmode == CHANNEL_A_HT20)
82                 return ATH9K_MODE_11NA_HT20;
83         else if (chan->chanmode == CHANNEL_G_HT20)
84                 return ATH9K_MODE_11NG_HT20;
85         else if (chan->chanmode == CHANNEL_A_HT40PLUS)
86                 return ATH9K_MODE_11NA_HT40PLUS;
87         else if (chan->chanmode == CHANNEL_A_HT40MINUS)
88                 return ATH9K_MODE_11NA_HT40MINUS;
89         else if (chan->chanmode == CHANNEL_G_HT40PLUS)
90                 return ATH9K_MODE_11NG_HT40PLUS;
91         else if (chan->chanmode == CHANNEL_G_HT40MINUS)
92                 return ATH9K_MODE_11NG_HT40MINUS;
93
94         WARN_ON(1); /* should not get here */
95
96         return ATH9K_MODE_11B;
97 }
98
99 static void ath_update_txpow(struct ath_softc *sc)
100 {
101         struct ath_hal *ah = sc->sc_ah;
102         u32 txpow;
103
104         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
105                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
106                 /* read back in case value is clamped */
107                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
108                 sc->sc_curtxpow = txpow;
109         }
110 }
111
112 static u8 parse_mpdudensity(u8 mpdudensity)
113 {
114         /*
115          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
116          *   0 for no restriction
117          *   1 for 1/4 us
118          *   2 for 1/2 us
119          *   3 for 1 us
120          *   4 for 2 us
121          *   5 for 4 us
122          *   6 for 8 us
123          *   7 for 16 us
124          */
125         switch (mpdudensity) {
126         case 0:
127                 return 0;
128         case 1:
129         case 2:
130         case 3:
131                 /* Our lower layer calculations limit our precision to
132                    1 microsecond */
133                 return 1;
134         case 4:
135                 return 2;
136         case 5:
137                 return 4;
138         case 6:
139                 return 8;
140         case 7:
141                 return 16;
142         default:
143                 return 0;
144         }
145 }
146
147 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
148 {
149         struct ath_rate_table *rate_table = NULL;
150         struct ieee80211_supported_band *sband;
151         struct ieee80211_rate *rate;
152         int i, maxrates;
153
154         switch (band) {
155         case IEEE80211_BAND_2GHZ:
156                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
157                 break;
158         case IEEE80211_BAND_5GHZ:
159                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
160                 break;
161         default:
162                 break;
163         }
164
165         if (rate_table == NULL)
166                 return;
167
168         sband = &sc->sbands[band];
169         rate = sc->rates[band];
170
171         if (rate_table->rate_cnt > ATH_RATE_MAX)
172                 maxrates = ATH_RATE_MAX;
173         else
174                 maxrates = rate_table->rate_cnt;
175
176         for (i = 0; i < maxrates; i++) {
177                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
178                 rate[i].hw_value = rate_table->info[i].ratecode;
179                 sband->n_bitrates++;
180                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
181                         rate[i].bitrate / 10, rate[i].hw_value);
182         }
183 }
184
185 static int ath_setup_channels(struct ath_softc *sc)
186 {
187         struct ath_hal *ah = sc->sc_ah;
188         int nchan, i, a = 0, b = 0;
189         u8 regclassids[ATH_REGCLASSIDS_MAX];
190         u32 nregclass = 0;
191         struct ieee80211_supported_band *band_2ghz;
192         struct ieee80211_supported_band *band_5ghz;
193         struct ieee80211_channel *chan_2ghz;
194         struct ieee80211_channel *chan_5ghz;
195         struct ath9k_channel *c;
196
197         /* Fill in ah->ah_channels */
198         if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
199                                       regclassids, ATH_REGCLASSIDS_MAX,
200                                       &nregclass, CTRY_DEFAULT, false, 1)) {
201                 u32 rd = ah->ah_currentRD;
202                 DPRINTF(sc, ATH_DBG_FATAL,
203                         "Unable to collect channel list; "
204                         "regdomain likely %u country code %u\n",
205                         rd, CTRY_DEFAULT);
206                 return -EINVAL;
207         }
208
209         band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
210         band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
211         chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
212         chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
213
214         for (i = 0; i < nchan; i++) {
215                 c = &ah->ah_channels[i];
216                 if (IS_CHAN_2GHZ(c)) {
217                         chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
218                         chan_2ghz[a].center_freq = c->channel;
219                         chan_2ghz[a].max_power = c->maxTxPower;
220
221                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
222                                 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
223                         if (c->channelFlags & CHANNEL_PASSIVE)
224                                 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
225
226                         band_2ghz->n_channels = ++a;
227
228                         DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
229                                 "channelFlags: 0x%x\n",
230                                 c->channel, c->channelFlags);
231                 } else if (IS_CHAN_5GHZ(c)) {
232                         chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
233                         chan_5ghz[b].center_freq = c->channel;
234                         chan_5ghz[b].max_power = c->maxTxPower;
235
236                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
237                                 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
238                         if (c->channelFlags & CHANNEL_PASSIVE)
239                                 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
240
241                         band_5ghz->n_channels = ++b;
242
243                         DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
244                                 "channelFlags: 0x%x\n",
245                                 c->channel, c->channelFlags);
246                 }
247         }
248
249         return 0;
250 }
251
252 /*
253  * Set/change channels.  If the channel is really being changed, it's done
254  * by reseting the chip.  To accomplish this we must first cleanup any pending
255  * DMA, then restart stuff.
256 */
257 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
258 {
259         struct ath_hal *ah = sc->sc_ah;
260         bool fastcc = true, stopped;
261
262         if (sc->sc_flags & SC_OP_INVALID)
263                 return -EIO;
264
265         if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
266             hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
267             (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
268             (sc->sc_flags & SC_OP_FULL_RESET)) {
269                 int status;
270                 /*
271                  * This is only performed if the channel settings have
272                  * actually changed.
273                  *
274                  * To switch channels clear any pending DMA operations;
275                  * wait long enough for the RX fifo to drain, reset the
276                  * hardware at the new frequency, and then re-enable
277                  * the relevant bits of the h/w.
278                  */
279                 ath9k_hw_set_interrupts(ah, 0);
280                 ath_draintxq(sc, false);
281                 stopped = ath_stoprecv(sc);
282
283                 /* XXX: do not flush receive queue here. We don't want
284                  * to flush data frames already in queue because of
285                  * changing channel. */
286
287                 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
288                         fastcc = false;
289
290                 DPRINTF(sc, ATH_DBG_CONFIG,
291                         "(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
292                         sc->sc_ah->ah_curchan->channel,
293                         hchan->channel, hchan->channelFlags, sc->tx_chan_width);
294
295                 spin_lock_bh(&sc->sc_resetlock);
296                 if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
297                                     sc->sc_tx_chainmask, sc->sc_rx_chainmask,
298                                     sc->sc_ht_extprotspacing, fastcc, &status)) {
299                         DPRINTF(sc, ATH_DBG_FATAL,
300                                 "Unable to reset channel %u (%uMhz) "
301                                 "flags 0x%x hal status %u\n",
302                                 ath9k_hw_mhz2ieee(ah, hchan->channel,
303                                                   hchan->channelFlags),
304                                 hchan->channel, hchan->channelFlags, status);
305                         spin_unlock_bh(&sc->sc_resetlock);
306                         return -EIO;
307                 }
308                 spin_unlock_bh(&sc->sc_resetlock);
309
310                 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311                 sc->sc_flags &= ~SC_OP_FULL_RESET;
312
313                 if (ath_startrecv(sc) != 0) {
314                         DPRINTF(sc, ATH_DBG_FATAL,
315                                 "Unable to restart recv logic\n");
316                         return -EIO;
317                 }
318
319                 ath_setcurmode(sc, ath_chan2mode(hchan));
320                 ath_update_txpow(sc);
321                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
322         }
323         return 0;
324 }
325
326 /*
327  *  This routine performs the periodic noise floor calibration function
328  *  that is used to adjust and optimize the chip performance.  This
329  *  takes environmental changes (location, temperature) into account.
330  *  When the task is complete, it reschedules itself depending on the
331  *  appropriate interval that was calculated.
332  */
333 static void ath_ani_calibrate(unsigned long data)
334 {
335         struct ath_softc *sc;
336         struct ath_hal *ah;
337         bool longcal = false;
338         bool shortcal = false;
339         bool aniflag = false;
340         unsigned int timestamp = jiffies_to_msecs(jiffies);
341         u32 cal_interval;
342
343         sc = (struct ath_softc *)data;
344         ah = sc->sc_ah;
345
346         /*
347         * don't calibrate when we're scanning.
348         * we are most likely not on our home channel.
349         */
350         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
351                 return;
352
353         /* Long calibration runs independently of short calibration. */
354         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
355                 longcal = true;
356                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357                 sc->sc_ani.sc_longcal_timer = timestamp;
358         }
359
360         /* Short calibration applies only while sc_caldone is false */
361         if (!sc->sc_ani.sc_caldone) {
362                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363                     ATH_SHORT_CALINTERVAL) {
364                         shortcal = true;
365                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366                         sc->sc_ani.sc_shortcal_timer = timestamp;
367                         sc->sc_ani.sc_resetcal_timer = timestamp;
368                 }
369         } else {
370                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
371                     ATH_RESTART_CALINTERVAL) {
372                         ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
373                                                 &sc->sc_ani.sc_caldone);
374                         if (sc->sc_ani.sc_caldone)
375                                 sc->sc_ani.sc_resetcal_timer = timestamp;
376                 }
377         }
378
379         /* Verify whether we must check ANI */
380         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
381            ATH_ANI_POLLINTERVAL) {
382                 aniflag = true;
383                 sc->sc_ani.sc_checkani_timer = timestamp;
384         }
385
386         /* Skip all processing if there's nothing to do. */
387         if (longcal || shortcal || aniflag) {
388                 /* Call ANI routine if necessary */
389                 if (aniflag)
390                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
391                                              ah->ah_curchan);
392
393                 /* Perform calibration if necessary */
394                 if (longcal || shortcal) {
395                         bool iscaldone = false;
396
397                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
398                                                sc->sc_rx_chainmask, longcal,
399                                                &iscaldone)) {
400                                 if (longcal)
401                                         sc->sc_ani.sc_noise_floor =
402                                                 ath9k_hw_getchan_noise(ah,
403                                                                ah->ah_curchan);
404
405                                 DPRINTF(sc, ATH_DBG_ANI,
406                                         "calibrate chan %u/%x nf: %d\n",
407                                         ah->ah_curchan->channel,
408                                         ah->ah_curchan->channelFlags,
409                                         sc->sc_ani.sc_noise_floor);
410                         } else {
411                                 DPRINTF(sc, ATH_DBG_ANY,
412                                         "calibrate chan %u/%x failed\n",
413                                         ah->ah_curchan->channel,
414                                         ah->ah_curchan->channelFlags);
415                         }
416                         sc->sc_ani.sc_caldone = iscaldone;
417                 }
418         }
419
420         /*
421         * Set timer interval based on previous results.
422         * The interval must be the shortest necessary to satisfy ANI,
423         * short calibration and long calibration.
424         */
425         cal_interval = ATH_LONG_CALINTERVAL;
426         if (sc->sc_ah->ah_config.enable_ani)
427                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
428         if (!sc->sc_ani.sc_caldone)
429                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
430
431         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
432 }
433
434 /*
435  * Update tx/rx chainmask. For legacy association,
436  * hard code chainmask to 1x1, for 11n association, use
437  * the chainmask configuration.
438  */
439 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
440 {
441         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
442         if (is_ht) {
443                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
445         } else {
446                 sc->sc_tx_chainmask = 1;
447                 sc->sc_rx_chainmask = 1;
448         }
449
450         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
452 }
453
454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
455 {
456         struct ath_node *an;
457
458         an = (struct ath_node *)sta->drv_priv;
459
460         if (sc->sc_flags & SC_OP_TXAGGR)
461                 ath_tx_node_init(sc, an);
462
463         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464                              sta->ht_cap.ampdu_factor);
465         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 }
467
468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
469 {
470         struct ath_node *an = (struct ath_node *)sta->drv_priv;
471
472         if (sc->sc_flags & SC_OP_TXAGGR)
473                 ath_tx_node_cleanup(sc, an);
474 }
475
476 static void ath9k_tasklet(unsigned long data)
477 {
478         struct ath_softc *sc = (struct ath_softc *)data;
479         u32 status = sc->sc_intrstatus;
480
481         if (status & ATH9K_INT_FATAL) {
482                 /* need a chip reset */
483                 ath_reset(sc, false);
484                 return;
485         } else {
486
487                 if (status &
488                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489                         spin_lock_bh(&sc->rx.rxflushlock);
490                         ath_rx_tasklet(sc, 0);
491                         spin_unlock_bh(&sc->rx.rxflushlock);
492                 }
493                 /* XXX: optimize this */
494                 if (status & ATH9K_INT_TX)
495                         ath_tx_tasklet(sc);
496         }
497
498         /* re-enable hardware interrupt */
499         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
500 }
501
502 static irqreturn_t ath_isr(int irq, void *dev)
503 {
504         struct ath_softc *sc = dev;
505         struct ath_hal *ah = sc->sc_ah;
506         enum ath9k_int status;
507         bool sched = false;
508
509         do {
510                 if (sc->sc_flags & SC_OP_INVALID) {
511                         /*
512                          * The hardware is not ready/present, don't
513                          * touch anything. Note this can happen early
514                          * on if the IRQ is shared.
515                          */
516                         return IRQ_NONE;
517                 }
518                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
519                         return IRQ_NONE;
520                 }
521
522                 /*
523                  * Figure out the reason(s) for the interrupt.  Note
524                  * that the hal returns a pseudo-ISR that may include
525                  * bits we haven't explicitly enabled so we mask the
526                  * value to insure we only process bits we requested.
527                  */
528                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
529
530                 status &= sc->sc_imask; /* discard unasked-for bits */
531
532                 /*
533                  * If there are no status bits set, then this interrupt was not
534                  * for me (should have been caught above).
535                  */
536                 if (!status)
537                         return IRQ_NONE;
538
539                 sc->sc_intrstatus = status;
540
541                 if (status & ATH9K_INT_FATAL) {
542                         /* need a chip reset */
543                         sched = true;
544                 } else if (status & ATH9K_INT_RXORN) {
545                         /* need a chip reset */
546                         sched = true;
547                 } else {
548                         if (status & ATH9K_INT_SWBA) {
549                                 /* schedule a tasklet for beacon handling */
550                                 tasklet_schedule(&sc->bcon_tasklet);
551                         }
552                         if (status & ATH9K_INT_RXEOL) {
553                                 /*
554                                  * NB: the hardware should re-read the link when
555                                  *     RXE bit is written, but it doesn't work
556                                  *     at least on older hardware revs.
557                                  */
558                                 sched = true;
559                         }
560
561                         if (status & ATH9K_INT_TXURN)
562                                 /* bump tx trigger level */
563                                 ath9k_hw_updatetxtriglevel(ah, true);
564                         /* XXX: optimize this */
565                         if (status & ATH9K_INT_RX)
566                                 sched = true;
567                         if (status & ATH9K_INT_TX)
568                                 sched = true;
569                         if (status & ATH9K_INT_BMISS)
570                                 sched = true;
571                         /* carrier sense timeout */
572                         if (status & ATH9K_INT_CST)
573                                 sched = true;
574                         if (status & ATH9K_INT_MIB) {
575                                 /*
576                                  * Disable interrupts until we service the MIB
577                                  * interrupt; otherwise it will continue to
578                                  * fire.
579                                  */
580                                 ath9k_hw_set_interrupts(ah, 0);
581                                 /*
582                                  * Let the hal handle the event. We assume
583                                  * it will clear whatever condition caused
584                                  * the interrupt.
585                                  */
586                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
588                         }
589                         if (status & ATH9K_INT_TIM_TIMER) {
590                                 if (!(ah->ah_caps.hw_caps &
591                                       ATH9K_HW_CAP_AUTOSLEEP)) {
592                                         /* Clear RxAbort bit so that we can
593                                          * receive frames */
594                                         ath9k_hw_setrxabort(ah, 0);
595                                         sched = true;
596                                 }
597                         }
598                 }
599         } while (0);
600
601         ath_debug_stat_interrupt(sc, status);
602
603         if (sched) {
604                 /* turn off every interrupt except SWBA */
605                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606                 tasklet_schedule(&sc->intr_tq);
607         }
608
609         return IRQ_HANDLED;
610 }
611
612 static int ath_get_channel(struct ath_softc *sc,
613                            struct ieee80211_channel *chan)
614 {
615         int i;
616
617         for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618                 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
619                         return i;
620         }
621
622         return -1;
623 }
624
625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626                                struct ieee80211_channel *chan,
627                                enum nl80211_channel_type channel_type)
628 {
629         u32 chanmode = 0;
630
631         switch (chan->band) {
632         case IEEE80211_BAND_2GHZ:
633                 switch(channel_type) {
634                 case NL80211_CHAN_NO_HT:
635                 case NL80211_CHAN_HT20:
636                         chanmode = CHANNEL_G_HT20;
637                         break;
638                 case NL80211_CHAN_HT40PLUS:
639                         chanmode = CHANNEL_G_HT40PLUS;
640                         break;
641                 case NL80211_CHAN_HT40MINUS:
642                         chanmode = CHANNEL_G_HT40MINUS;
643                         break;
644                 }
645                 break;
646         case IEEE80211_BAND_5GHZ:
647                 switch(channel_type) {
648                 case NL80211_CHAN_NO_HT:
649                 case NL80211_CHAN_HT20:
650                         chanmode = CHANNEL_A_HT20;
651                         break;
652                 case NL80211_CHAN_HT40PLUS:
653                         chanmode = CHANNEL_A_HT40PLUS;
654                         break;
655                 case NL80211_CHAN_HT40MINUS:
656                         chanmode = CHANNEL_A_HT40MINUS;
657                         break;
658                 }
659                 break;
660         default:
661                 break;
662         }
663
664         return chanmode;
665 }
666
667 static int ath_keyset(struct ath_softc *sc, u16 keyix,
668                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
669 {
670         bool status;
671
672         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
673                 keyix, hk, mac, false);
674
675         return status != false;
676 }
677
678 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
679                            struct ath9k_keyval *hk,
680                            const u8 *addr)
681 {
682         const u8 *key_rxmic;
683         const u8 *key_txmic;
684
685         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
686         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
687
688         if (addr == NULL) {
689                 /* Group key installation */
690                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
691                 return ath_keyset(sc, keyix, hk, addr);
692         }
693         if (!sc->sc_splitmic) {
694                 /*
695                  * data key goes at first index,
696                  * the hal handles the MIC keys at index+64.
697                  */
698                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
700                 return ath_keyset(sc, keyix, hk, addr);
701         }
702         /*
703          * TX key goes at first index, RX key at +32.
704          * The hal handles the MIC keys at index+64.
705          */
706         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
707         if (!ath_keyset(sc, keyix, hk, NULL)) {
708                 /* Txmic entry failed. No need to proceed further */
709                 DPRINTF(sc, ATH_DBG_KEYCACHE,
710                         "Setting TX MIC Key Failed\n");
711                 return 0;
712         }
713
714         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
715         /* XXX delete tx key on failure? */
716         return ath_keyset(sc, keyix + 32, hk, addr);
717 }
718
719 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
720 {
721         int i;
722
723         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
724                 if (test_bit(i, sc->sc_keymap) ||
725                     test_bit(i + 64, sc->sc_keymap))
726                         continue; /* At least one part of TKIP key allocated */
727                 if (sc->sc_splitmic &&
728                     (test_bit(i + 32, sc->sc_keymap) ||
729                      test_bit(i + 64 + 32, sc->sc_keymap)))
730                         continue; /* At least one part of TKIP key allocated */
731
732                 /* Found a free slot for a TKIP key */
733                 return i;
734         }
735         return -1;
736 }
737
738 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
739 {
740         int i;
741
742         /* First, try to find slots that would not be available for TKIP. */
743         if (sc->sc_splitmic) {
744                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
745                         if (!test_bit(i, sc->sc_keymap) &&
746                             (test_bit(i + 32, sc->sc_keymap) ||
747                              test_bit(i + 64, sc->sc_keymap) ||
748                              test_bit(i + 64 + 32, sc->sc_keymap)))
749                                 return i;
750                         if (!test_bit(i + 32, sc->sc_keymap) &&
751                             (test_bit(i, sc->sc_keymap) ||
752                              test_bit(i + 64, sc->sc_keymap) ||
753                              test_bit(i + 64 + 32, sc->sc_keymap)))
754                                 return i + 32;
755                         if (!test_bit(i + 64, sc->sc_keymap) &&
756                             (test_bit(i , sc->sc_keymap) ||
757                              test_bit(i + 32, sc->sc_keymap) ||
758                              test_bit(i + 64 + 32, sc->sc_keymap)))
759                                 return i + 64;
760                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
761                             (test_bit(i, sc->sc_keymap) ||
762                              test_bit(i + 32, sc->sc_keymap) ||
763                              test_bit(i + 64, sc->sc_keymap)))
764                                 return i + 64 + 32;
765                 }
766         } else {
767                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
768                         if (!test_bit(i, sc->sc_keymap) &&
769                             test_bit(i + 64, sc->sc_keymap))
770                                 return i;
771                         if (test_bit(i, sc->sc_keymap) &&
772                             !test_bit(i + 64, sc->sc_keymap))
773                                 return i + 64;
774                 }
775         }
776
777         /* No partially used TKIP slots, pick any available slot */
778         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
779                 /* Do not allow slots that could be needed for TKIP group keys
780                  * to be used. This limitation could be removed if we know that
781                  * TKIP will not be used. */
782                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
783                         continue;
784                 if (sc->sc_splitmic) {
785                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
786                                 continue;
787                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
788                                 continue;
789                 }
790
791                 if (!test_bit(i, sc->sc_keymap))
792                         return i; /* Found a free slot for a key */
793         }
794
795         /* No free slot found */
796         return -1;
797 }
798
799 static int ath_key_config(struct ath_softc *sc,
800                           const u8 *addr,
801                           struct ieee80211_key_conf *key)
802 {
803         struct ath9k_keyval hk;
804         const u8 *mac = NULL;
805         int ret = 0;
806         int idx;
807
808         memset(&hk, 0, sizeof(hk));
809
810         switch (key->alg) {
811         case ALG_WEP:
812                 hk.kv_type = ATH9K_CIPHER_WEP;
813                 break;
814         case ALG_TKIP:
815                 hk.kv_type = ATH9K_CIPHER_TKIP;
816                 break;
817         case ALG_CCMP:
818                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
819                 break;
820         default:
821                 return -EINVAL;
822         }
823
824         hk.kv_len = key->keylen;
825         memcpy(hk.kv_val, key->key, key->keylen);
826
827         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
828                 /* For now, use the default keys for broadcast keys. This may
829                  * need to change with virtual interfaces. */
830                 idx = key->keyidx;
831         } else if (key->keyidx) {
832                 struct ieee80211_vif *vif;
833
834                 mac = addr;
835                 vif = sc->sc_vaps[0];
836                 if (vif->type != NL80211_IFTYPE_AP) {
837                         /* Only keyidx 0 should be used with unicast key, but
838                          * allow this for client mode for now. */
839                         idx = key->keyidx;
840                 } else
841                         return -EIO;
842         } else {
843                 mac = addr;
844                 if (key->alg == ALG_TKIP)
845                         idx = ath_reserve_key_cache_slot_tkip(sc);
846                 else
847                         idx = ath_reserve_key_cache_slot(sc);
848                 if (idx < 0)
849                         return -EIO; /* no free key cache entries */
850         }
851
852         if (key->alg == ALG_TKIP)
853                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
854         else
855                 ret = ath_keyset(sc, idx, &hk, mac);
856
857         if (!ret)
858                 return -EIO;
859
860         set_bit(idx, sc->sc_keymap);
861         if (key->alg == ALG_TKIP) {
862                 set_bit(idx + 64, sc->sc_keymap);
863                 if (sc->sc_splitmic) {
864                         set_bit(idx + 32, sc->sc_keymap);
865                         set_bit(idx + 64 + 32, sc->sc_keymap);
866                 }
867         }
868
869         return idx;
870 }
871
872 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
873 {
874         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
875         if (key->hw_key_idx < IEEE80211_WEP_NKID)
876                 return;
877
878         clear_bit(key->hw_key_idx, sc->sc_keymap);
879         if (key->alg != ALG_TKIP)
880                 return;
881
882         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
883         if (sc->sc_splitmic) {
884                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
885                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
886         }
887 }
888
889 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
890 {
891 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
892 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
893
894         ht_info->ht_supported = true;
895         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
896                        IEEE80211_HT_CAP_SM_PS |
897                        IEEE80211_HT_CAP_SGI_40 |
898                        IEEE80211_HT_CAP_DSSSCCK40;
899
900         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
901         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
902         /* set up supported mcs set */
903         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
904         ht_info->mcs.rx_mask[0] = 0xff;
905         ht_info->mcs.rx_mask[1] = 0xff;
906         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
907 }
908
909 static void ath9k_bss_assoc_info(struct ath_softc *sc,
910                                  struct ieee80211_vif *vif,
911                                  struct ieee80211_bss_conf *bss_conf)
912 {
913         struct ath_vap *avp = (void *)vif->drv_priv;
914
915         if (bss_conf->assoc) {
916                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
917                         bss_conf->aid, sc->sc_curbssid);
918
919                 /* New association, store aid */
920                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
921                         sc->sc_curaid = bss_conf->aid;
922                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
923                                                sc->sc_curaid);
924                 }
925
926                 /* Configure the beacon */
927                 ath_beacon_config(sc, 0);
928                 sc->sc_flags |= SC_OP_BEACONS;
929
930                 /* Reset rssi stats */
931                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
932                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
933                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
934                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
935
936                 /* Start ANI */
937                 mod_timer(&sc->sc_ani.timer,
938                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
939
940         } else {
941                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
942                 sc->sc_curaid = 0;
943         }
944 }
945
946 /********************************/
947 /*       LED functions          */
948 /********************************/
949
950 static void ath_led_brightness(struct led_classdev *led_cdev,
951                                enum led_brightness brightness)
952 {
953         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
954         struct ath_softc *sc = led->sc;
955
956         switch (brightness) {
957         case LED_OFF:
958                 if (led->led_type == ATH_LED_ASSOC ||
959                     led->led_type == ATH_LED_RADIO)
960                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
961                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
962                                 (led->led_type == ATH_LED_RADIO) ? 1 :
963                                 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
964                 break;
965         case LED_FULL:
966                 if (led->led_type == ATH_LED_ASSOC)
967                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
968                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
969                 break;
970         default:
971                 break;
972         }
973 }
974
975 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
976                             char *trigger)
977 {
978         int ret;
979
980         led->sc = sc;
981         led->led_cdev.name = led->name;
982         led->led_cdev.default_trigger = trigger;
983         led->led_cdev.brightness_set = ath_led_brightness;
984
985         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
986         if (ret)
987                 DPRINTF(sc, ATH_DBG_FATAL,
988                         "Failed to register led:%s", led->name);
989         else
990                 led->registered = 1;
991         return ret;
992 }
993
994 static void ath_unregister_led(struct ath_led *led)
995 {
996         if (led->registered) {
997                 led_classdev_unregister(&led->led_cdev);
998                 led->registered = 0;
999         }
1000 }
1001
1002 static void ath_deinit_leds(struct ath_softc *sc)
1003 {
1004         ath_unregister_led(&sc->assoc_led);
1005         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1006         ath_unregister_led(&sc->tx_led);
1007         ath_unregister_led(&sc->rx_led);
1008         ath_unregister_led(&sc->radio_led);
1009         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1010 }
1011
1012 static void ath_init_leds(struct ath_softc *sc)
1013 {
1014         char *trigger;
1015         int ret;
1016
1017         /* Configure gpio 1 for output */
1018         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1019                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1020         /* LED off, active low */
1021         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1022
1023         trigger = ieee80211_get_radio_led_name(sc->hw);
1024         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1025                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1026         ret = ath_register_led(sc, &sc->radio_led, trigger);
1027         sc->radio_led.led_type = ATH_LED_RADIO;
1028         if (ret)
1029                 goto fail;
1030
1031         trigger = ieee80211_get_assoc_led_name(sc->hw);
1032         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1033                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1034         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1035         sc->assoc_led.led_type = ATH_LED_ASSOC;
1036         if (ret)
1037                 goto fail;
1038
1039         trigger = ieee80211_get_tx_led_name(sc->hw);
1040         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1041                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1042         ret = ath_register_led(sc, &sc->tx_led, trigger);
1043         sc->tx_led.led_type = ATH_LED_TX;
1044         if (ret)
1045                 goto fail;
1046
1047         trigger = ieee80211_get_rx_led_name(sc->hw);
1048         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1049                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1050         ret = ath_register_led(sc, &sc->rx_led, trigger);
1051         sc->rx_led.led_type = ATH_LED_RX;
1052         if (ret)
1053                 goto fail;
1054
1055         return;
1056
1057 fail:
1058         ath_deinit_leds(sc);
1059 }
1060
1061 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1062
1063 /*******************/
1064 /*      Rfkill     */
1065 /*******************/
1066
1067 static void ath_radio_enable(struct ath_softc *sc)
1068 {
1069         struct ath_hal *ah = sc->sc_ah;
1070         int status;
1071
1072         spin_lock_bh(&sc->sc_resetlock);
1073         if (!ath9k_hw_reset(ah, ah->ah_curchan,
1074                             sc->tx_chan_width,
1075                             sc->sc_tx_chainmask,
1076                             sc->sc_rx_chainmask,
1077                             sc->sc_ht_extprotspacing,
1078                             false, &status)) {
1079                 DPRINTF(sc, ATH_DBG_FATAL,
1080                         "Unable to reset channel %u (%uMhz) "
1081                         "flags 0x%x hal status %u\n",
1082                         ath9k_hw_mhz2ieee(ah,
1083                                           ah->ah_curchan->channel,
1084                                           ah->ah_curchan->channelFlags),
1085                         ah->ah_curchan->channel,
1086                         ah->ah_curchan->channelFlags, status);
1087         }
1088         spin_unlock_bh(&sc->sc_resetlock);
1089
1090         ath_update_txpow(sc);
1091         if (ath_startrecv(sc) != 0) {
1092                 DPRINTF(sc, ATH_DBG_FATAL,
1093                         "Unable to restart recv logic\n");
1094                 return;
1095         }
1096
1097         if (sc->sc_flags & SC_OP_BEACONS)
1098                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1099
1100         /* Re-Enable  interrupts */
1101         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1102
1103         /* Enable LED */
1104         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1105                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1106         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1107
1108         ieee80211_wake_queues(sc->hw);
1109 }
1110
1111 static void ath_radio_disable(struct ath_softc *sc)
1112 {
1113         struct ath_hal *ah = sc->sc_ah;
1114         int status;
1115
1116
1117         ieee80211_stop_queues(sc->hw);
1118
1119         /* Disable LED */
1120         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1121         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1122
1123         /* Disable interrupts */
1124         ath9k_hw_set_interrupts(ah, 0);
1125
1126         ath_draintxq(sc, false);        /* clear pending tx frames */
1127         ath_stoprecv(sc);               /* turn off frame recv */
1128         ath_flushrecv(sc);              /* flush recv queue */
1129
1130         spin_lock_bh(&sc->sc_resetlock);
1131         if (!ath9k_hw_reset(ah, ah->ah_curchan,
1132                             sc->tx_chan_width,
1133                             sc->sc_tx_chainmask,
1134                             sc->sc_rx_chainmask,
1135                             sc->sc_ht_extprotspacing,
1136                             false, &status)) {
1137                 DPRINTF(sc, ATH_DBG_FATAL,
1138                         "Unable to reset channel %u (%uMhz) "
1139                         "flags 0x%x hal status %u\n",
1140                         ath9k_hw_mhz2ieee(ah,
1141                                 ah->ah_curchan->channel,
1142                                 ah->ah_curchan->channelFlags),
1143                         ah->ah_curchan->channel,
1144                         ah->ah_curchan->channelFlags, status);
1145         }
1146         spin_unlock_bh(&sc->sc_resetlock);
1147
1148         ath9k_hw_phy_disable(ah);
1149         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1150 }
1151
1152 static bool ath_is_rfkill_set(struct ath_softc *sc)
1153 {
1154         struct ath_hal *ah = sc->sc_ah;
1155
1156         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1157                                   ah->ah_rfkill_polarity;
1158 }
1159
1160 /* h/w rfkill poll function */
1161 static void ath_rfkill_poll(struct work_struct *work)
1162 {
1163         struct ath_softc *sc = container_of(work, struct ath_softc,
1164                                             rf_kill.rfkill_poll.work);
1165         bool radio_on;
1166
1167         if (sc->sc_flags & SC_OP_INVALID)
1168                 return;
1169
1170         radio_on = !ath_is_rfkill_set(sc);
1171
1172         /*
1173          * enable/disable radio only when there is a
1174          * state change in RF switch
1175          */
1176         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1177                 enum rfkill_state state;
1178
1179                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1180                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1181                                 : RFKILL_STATE_HARD_BLOCKED;
1182                 } else if (radio_on) {
1183                         ath_radio_enable(sc);
1184                         state = RFKILL_STATE_UNBLOCKED;
1185                 } else {
1186                         ath_radio_disable(sc);
1187                         state = RFKILL_STATE_HARD_BLOCKED;
1188                 }
1189
1190                 if (state == RFKILL_STATE_HARD_BLOCKED)
1191                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1192                 else
1193                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1194
1195                 rfkill_force_state(sc->rf_kill.rfkill, state);
1196         }
1197
1198         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1199                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1200 }
1201
1202 /* s/w rfkill handler */
1203 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1204 {
1205         struct ath_softc *sc = data;
1206
1207         switch (state) {
1208         case RFKILL_STATE_SOFT_BLOCKED:
1209                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1210                     SC_OP_RFKILL_SW_BLOCKED)))
1211                         ath_radio_disable(sc);
1212                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1213                 return 0;
1214         case RFKILL_STATE_UNBLOCKED:
1215                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1216                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1217                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1218                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1219                                         "radio as it is disabled by h/w\n");
1220                                 return -EPERM;
1221                         }
1222                         ath_radio_enable(sc);
1223                 }
1224                 return 0;
1225         default:
1226                 return -EINVAL;
1227         }
1228 }
1229
1230 /* Init s/w rfkill */
1231 static int ath_init_sw_rfkill(struct ath_softc *sc)
1232 {
1233         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1234                                              RFKILL_TYPE_WLAN);
1235         if (!sc->rf_kill.rfkill) {
1236                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1237                 return -ENOMEM;
1238         }
1239
1240         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1241                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1242         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1243         sc->rf_kill.rfkill->data = sc;
1244         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1245         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1246         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1247
1248         return 0;
1249 }
1250
1251 /* Deinitialize rfkill */
1252 static void ath_deinit_rfkill(struct ath_softc *sc)
1253 {
1254         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1255                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1256
1257         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1258                 rfkill_unregister(sc->rf_kill.rfkill);
1259                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1260                 sc->rf_kill.rfkill = NULL;
1261         }
1262 }
1263
1264 static int ath_start_rfkill_poll(struct ath_softc *sc)
1265 {
1266         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1267                 queue_delayed_work(sc->hw->workqueue,
1268                                    &sc->rf_kill.rfkill_poll, 0);
1269
1270         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1271                 if (rfkill_register(sc->rf_kill.rfkill)) {
1272                         DPRINTF(sc, ATH_DBG_FATAL,
1273                                 "Unable to register rfkill\n");
1274                         rfkill_free(sc->rf_kill.rfkill);
1275
1276                         /* Deinitialize the device */
1277                         ath_detach(sc);
1278                         if (sc->pdev->irq)
1279                                 free_irq(sc->pdev->irq, sc);
1280                         pci_iounmap(sc->pdev, sc->mem);
1281                         pci_release_region(sc->pdev, 0);
1282                         pci_disable_device(sc->pdev);
1283                         ieee80211_free_hw(sc->hw);
1284                         return -EIO;
1285                 } else {
1286                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1287                 }
1288         }
1289
1290         return 0;
1291 }
1292 #endif /* CONFIG_RFKILL */
1293
1294 static void ath_detach(struct ath_softc *sc)
1295 {
1296         struct ieee80211_hw *hw = sc->hw;
1297         int i = 0;
1298
1299         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1300
1301 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1302         ath_deinit_rfkill(sc);
1303 #endif
1304         ath_deinit_leds(sc);
1305
1306         ieee80211_unregister_hw(hw);
1307         ath_rx_cleanup(sc);
1308         ath_tx_cleanup(sc);
1309
1310         tasklet_kill(&sc->intr_tq);
1311         tasklet_kill(&sc->bcon_tasklet);
1312
1313         if (!(sc->sc_flags & SC_OP_INVALID))
1314                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1315
1316         /* cleanup tx queues */
1317         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1318                 if (ATH_TXQ_SETUP(sc, i))
1319                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1320
1321         ath9k_hw_detach(sc->sc_ah);
1322         ath9k_exit_debug(sc);
1323 }
1324
1325 static int ath_init(u16 devid, struct ath_softc *sc)
1326 {
1327         struct ath_hal *ah = NULL;
1328         int status;
1329         int error = 0, i;
1330         int csz = 0;
1331
1332         /* XXX: hardware will not be ready until ath_open() being called */
1333         sc->sc_flags |= SC_OP_INVALID;
1334
1335         if (ath9k_init_debug(sc) < 0)
1336                 printk(KERN_ERR "Unable to create debugfs files\n");
1337
1338         spin_lock_init(&sc->sc_resetlock);
1339         mutex_init(&sc->mutex);
1340         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1341         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1342                      (unsigned long)sc);
1343
1344         /*
1345          * Cache line size is used to size and align various
1346          * structures used to communicate with the hardware.
1347          */
1348         bus_read_cachesize(sc, &csz);
1349         /* XXX assert csz is non-zero */
1350         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1351
1352         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1353         if (ah == NULL) {
1354                 DPRINTF(sc, ATH_DBG_FATAL,
1355                         "Unable to attach hardware; HAL status %u\n", status);
1356                 error = -ENXIO;
1357                 goto bad;
1358         }
1359         sc->sc_ah = ah;
1360
1361         /* Get the hardware key cache size. */
1362         sc->sc_keymax = ah->ah_caps.keycache_size;
1363         if (sc->sc_keymax > ATH_KEYMAX) {
1364                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1365                         "Warning, using only %u entries in %u key cache\n",
1366                         ATH_KEYMAX, sc->sc_keymax);
1367                 sc->sc_keymax = ATH_KEYMAX;
1368         }
1369
1370         /*
1371          * Reset the key cache since some parts do not
1372          * reset the contents on initial power up.
1373          */
1374         for (i = 0; i < sc->sc_keymax; i++)
1375                 ath9k_hw_keyreset(ah, (u16) i);
1376
1377         /* Collect the channel list using the default country code */
1378
1379         error = ath_setup_channels(sc);
1380         if (error)
1381                 goto bad;
1382
1383         /* default to MONITOR mode */
1384         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1385
1386
1387         /* Setup rate tables */
1388
1389         ath_rate_attach(sc);
1390         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1391         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1392
1393         /*
1394          * Allocate hardware transmit queues: one queue for
1395          * beacon frames and one data queue for each QoS
1396          * priority.  Note that the hal handles reseting
1397          * these queues at the needed time.
1398          */
1399         sc->beacon.beaconq = ath_beaconq_setup(ah);
1400         if (sc->beacon.beaconq == -1) {
1401                 DPRINTF(sc, ATH_DBG_FATAL,
1402                         "Unable to setup a beacon xmit queue\n");
1403                 error = -EIO;
1404                 goto bad2;
1405         }
1406         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1407         if (sc->beacon.cabq == NULL) {
1408                 DPRINTF(sc, ATH_DBG_FATAL,
1409                         "Unable to setup CAB xmit queue\n");
1410                 error = -EIO;
1411                 goto bad2;
1412         }
1413
1414         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1415         ath_cabq_update(sc);
1416
1417         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1418                 sc->tx.hwq_map[i] = -1;
1419
1420         /* Setup data queues */
1421         /* NB: ensure BK queue is the lowest priority h/w queue */
1422         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1423                 DPRINTF(sc, ATH_DBG_FATAL,
1424                         "Unable to setup xmit queue for BK traffic\n");
1425                 error = -EIO;
1426                 goto bad2;
1427         }
1428
1429         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1430                 DPRINTF(sc, ATH_DBG_FATAL,
1431                         "Unable to setup xmit queue for BE traffic\n");
1432                 error = -EIO;
1433                 goto bad2;
1434         }
1435         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1436                 DPRINTF(sc, ATH_DBG_FATAL,
1437                         "Unable to setup xmit queue for VI traffic\n");
1438                 error = -EIO;
1439                 goto bad2;
1440         }
1441         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1442                 DPRINTF(sc, ATH_DBG_FATAL,
1443                         "Unable to setup xmit queue for VO traffic\n");
1444                 error = -EIO;
1445                 goto bad2;
1446         }
1447
1448         /* Initializes the noise floor to a reasonable default value.
1449          * Later on this will be updated during ANI processing. */
1450
1451         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1452         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1453
1454         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1455                                    ATH9K_CIPHER_TKIP, NULL)) {
1456                 /*
1457                  * Whether we should enable h/w TKIP MIC.
1458                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1459                  * report WMM capable, so it's always safe to turn on
1460                  * TKIP MIC in this case.
1461                  */
1462                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1463                                        0, 1, NULL);
1464         }
1465
1466         /*
1467          * Check whether the separate key cache entries
1468          * are required to handle both tx+rx MIC keys.
1469          * With split mic keys the number of stations is limited
1470          * to 27 otherwise 59.
1471          */
1472         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1473                                    ATH9K_CIPHER_TKIP, NULL)
1474             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1475                                       ATH9K_CIPHER_MIC, NULL)
1476             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1477                                       0, NULL))
1478                 sc->sc_splitmic = 1;
1479
1480         /* turn on mcast key search if possible */
1481         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1482                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1483                                              1, NULL);
1484
1485         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1486         sc->sc_config.txpowlimit_override = 0;
1487
1488         /* 11n Capabilities */
1489         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1490                 sc->sc_flags |= SC_OP_TXAGGR;
1491                 sc->sc_flags |= SC_OP_RXAGGR;
1492         }
1493
1494         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1495         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1496
1497         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1498         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1499
1500         ath9k_hw_getmac(ah, sc->sc_myaddr);
1501         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1502                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1503                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1504                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1505         }
1506
1507         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1508
1509         /* initialize beacon slots */
1510         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1511                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1512
1513         /* save MISC configurations */
1514         sc->sc_config.swBeaconProcess = 1;
1515
1516         /* setup channels and rates */
1517
1518         sc->sbands[IEEE80211_BAND_2GHZ].channels =
1519                 sc->channels[IEEE80211_BAND_2GHZ];
1520         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1521                 sc->rates[IEEE80211_BAND_2GHZ];
1522         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1523
1524         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1525                 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1526                         sc->channels[IEEE80211_BAND_5GHZ];
1527                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1528                         sc->rates[IEEE80211_BAND_5GHZ];
1529                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1530         }
1531
1532         return 0;
1533 bad2:
1534         /* cleanup tx queues */
1535         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1536                 if (ATH_TXQ_SETUP(sc, i))
1537                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1538 bad:
1539         if (ah)
1540                 ath9k_hw_detach(ah);
1541
1542         return error;
1543 }
1544
1545 static int ath_attach(u16 devid, struct ath_softc *sc)
1546 {
1547         struct ieee80211_hw *hw = sc->hw;
1548         int error = 0;
1549
1550         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1551
1552         error = ath_init(devid, sc);
1553         if (error != 0)
1554                 return error;
1555
1556         /* get mac address from hardware and set in mac80211 */
1557
1558         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1559
1560         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1561                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1562                 IEEE80211_HW_SIGNAL_DBM |
1563                 IEEE80211_HW_AMPDU_AGGREGATION;
1564
1565         hw->wiphy->interface_modes =
1566                 BIT(NL80211_IFTYPE_AP) |
1567                 BIT(NL80211_IFTYPE_STATION) |
1568                 BIT(NL80211_IFTYPE_ADHOC);
1569
1570         hw->queues = 4;
1571         hw->max_rates = 4;
1572         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1573         hw->sta_data_size = sizeof(struct ath_node);
1574         hw->vif_data_size = sizeof(struct ath_vap);
1575
1576         hw->rate_control_algorithm = "ath9k_rate_control";
1577
1578         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1579                 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1580                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1581                         setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1582         }
1583
1584         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1585         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1586                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1587                         &sc->sbands[IEEE80211_BAND_5GHZ];
1588
1589         /* initialize tx/rx engine */
1590         error = ath_tx_init(sc, ATH_TXBUF);
1591         if (error != 0)
1592                 goto detach;
1593
1594         error = ath_rx_init(sc, ATH_RXBUF);
1595         if (error != 0)
1596                 goto detach;
1597
1598 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1599         /* Initialze h/w Rfkill */
1600         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1601                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1602
1603         /* Initialize s/w rfkill */
1604         if (ath_init_sw_rfkill(sc))
1605                 goto detach;
1606 #endif
1607
1608         error = ieee80211_register_hw(hw);
1609
1610         /* Initialize LED control */
1611         ath_init_leds(sc);
1612
1613         return 0;
1614 detach:
1615         ath_detach(sc);
1616         return error;
1617 }
1618
1619 int ath_reset(struct ath_softc *sc, bool retry_tx)
1620 {
1621         struct ath_hal *ah = sc->sc_ah;
1622         int status;
1623         int error = 0;
1624
1625         ath9k_hw_set_interrupts(ah, 0);
1626         ath_draintxq(sc, retry_tx);
1627         ath_stoprecv(sc);
1628         ath_flushrecv(sc);
1629
1630         spin_lock_bh(&sc->sc_resetlock);
1631         if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1632                             sc->tx_chan_width,
1633                             sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1634                             sc->sc_ht_extprotspacing, false, &status)) {
1635                 DPRINTF(sc, ATH_DBG_FATAL,
1636                         "Unable to reset hardware; hal status %u\n", status);
1637                 error = -EIO;
1638         }
1639         spin_unlock_bh(&sc->sc_resetlock);
1640
1641         if (ath_startrecv(sc) != 0)
1642                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1643
1644         /*
1645          * We may be doing a reset in response to a request
1646          * that changes the channel so update any state that
1647          * might change as a result.
1648          */
1649         ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1650
1651         ath_update_txpow(sc);
1652
1653         if (sc->sc_flags & SC_OP_BEACONS)
1654                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1655
1656         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1657
1658         if (retry_tx) {
1659                 int i;
1660                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1661                         if (ATH_TXQ_SETUP(sc, i)) {
1662                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1663                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1664                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1665                         }
1666                 }
1667         }
1668
1669         return error;
1670 }
1671
1672 /*
1673  *  This function will allocate both the DMA descriptor structure, and the
1674  *  buffers it contains.  These are used to contain the descriptors used
1675  *  by the system.
1676 */
1677 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1678                       struct list_head *head, const char *name,
1679                       int nbuf, int ndesc)
1680 {
1681 #define DS2PHYS(_dd, _ds)                                               \
1682         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1683 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1684 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1685
1686         struct ath_desc *ds;
1687         struct ath_buf *bf;
1688         int i, bsize, error;
1689
1690         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1691                 name, nbuf, ndesc);
1692
1693         /* ath_desc must be a multiple of DWORDs */
1694         if ((sizeof(struct ath_desc) % 4) != 0) {
1695                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1696                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1697                 error = -ENOMEM;
1698                 goto fail;
1699         }
1700
1701         dd->dd_name = name;
1702         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1703
1704         /*
1705          * Need additional DMA memory because we can't use
1706          * descriptors that cross the 4K page boundary. Assume
1707          * one skipped descriptor per 4K page.
1708          */
1709         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1710                 u32 ndesc_skipped =
1711                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1712                 u32 dma_len;
1713
1714                 while (ndesc_skipped) {
1715                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1716                         dd->dd_desc_len += dma_len;
1717
1718                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1719                 };
1720         }
1721
1722         /* allocate descriptors */
1723         dd->dd_desc = pci_alloc_consistent(sc->pdev,
1724                               dd->dd_desc_len,
1725                               &dd->dd_desc_paddr);
1726         if (dd->dd_desc == NULL) {
1727                 error = -ENOMEM;
1728                 goto fail;
1729         }
1730         ds = dd->dd_desc;
1731         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1732                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1733                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1734
1735         /* allocate buffers */
1736         bsize = sizeof(struct ath_buf) * nbuf;
1737         bf = kmalloc(bsize, GFP_KERNEL);
1738         if (bf == NULL) {
1739                 error = -ENOMEM;
1740                 goto fail2;
1741         }
1742         memset(bf, 0, bsize);
1743         dd->dd_bufptr = bf;
1744
1745         INIT_LIST_HEAD(head);
1746         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1747                 bf->bf_desc = ds;
1748                 bf->bf_daddr = DS2PHYS(dd, ds);
1749
1750                 if (!(sc->sc_ah->ah_caps.hw_caps &
1751                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1752                         /*
1753                          * Skip descriptor addresses which can cause 4KB
1754                          * boundary crossing (addr + length) with a 32 dword
1755                          * descriptor fetch.
1756                          */
1757                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1758                                 ASSERT((caddr_t) bf->bf_desc <
1759                                        ((caddr_t) dd->dd_desc +
1760                                         dd->dd_desc_len));
1761
1762                                 ds += ndesc;
1763                                 bf->bf_desc = ds;
1764                                 bf->bf_daddr = DS2PHYS(dd, ds);
1765                         }
1766                 }
1767                 list_add_tail(&bf->list, head);
1768         }
1769         return 0;
1770 fail2:
1771         pci_free_consistent(sc->pdev,
1772                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1773 fail:
1774         memset(dd, 0, sizeof(*dd));
1775         return error;
1776 #undef ATH_DESC_4KB_BOUND_CHECK
1777 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1778 #undef DS2PHYS
1779 }
1780
1781 void ath_descdma_cleanup(struct ath_softc *sc,
1782                          struct ath_descdma *dd,
1783                          struct list_head *head)
1784 {
1785         pci_free_consistent(sc->pdev,
1786                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1787
1788         INIT_LIST_HEAD(head);
1789         kfree(dd->dd_bufptr);
1790         memset(dd, 0, sizeof(*dd));
1791 }
1792
1793 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1794 {
1795         int qnum;
1796
1797         switch (queue) {
1798         case 0:
1799                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1800                 break;
1801         case 1:
1802                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1803                 break;
1804         case 2:
1805                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1806                 break;
1807         case 3:
1808                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1809                 break;
1810         default:
1811                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1812                 break;
1813         }
1814
1815         return qnum;
1816 }
1817
1818 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1819 {
1820         int qnum;
1821
1822         switch (queue) {
1823         case ATH9K_WME_AC_VO:
1824                 qnum = 0;
1825                 break;
1826         case ATH9K_WME_AC_VI:
1827                 qnum = 1;
1828                 break;
1829         case ATH9K_WME_AC_BE:
1830                 qnum = 2;
1831                 break;
1832         case ATH9K_WME_AC_BK:
1833                 qnum = 3;
1834                 break;
1835         default:
1836                 qnum = -1;
1837                 break;
1838         }
1839
1840         return qnum;
1841 }
1842
1843 /**********************/
1844 /* mac80211 callbacks */
1845 /**********************/
1846
1847 static int ath9k_start(struct ieee80211_hw *hw)
1848 {
1849         struct ath_softc *sc = hw->priv;
1850         struct ieee80211_channel *curchan = hw->conf.channel;
1851         struct ath9k_channel *init_channel;
1852         int error = 0, pos, status;
1853
1854         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1855                 "initial channel: %d MHz\n", curchan->center_freq);
1856
1857         /* setup initial channel */
1858
1859         pos = ath_get_channel(sc, curchan);
1860         if (pos == -1) {
1861                 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1862                 error = -EINVAL;
1863                 goto error;
1864         }
1865
1866         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1867         sc->sc_ah->ah_channels[pos].chanmode =
1868                 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1869         init_channel = &sc->sc_ah->ah_channels[pos];
1870
1871         /* Reset SERDES registers */
1872         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1873
1874         /*
1875          * The basic interface to setting the hardware in a good
1876          * state is ``reset''.  On return the hardware is known to
1877          * be powered up and with interrupts disabled.  This must
1878          * be followed by initialization of the appropriate bits
1879          * and then setup of the interrupt mask.
1880          */
1881         spin_lock_bh(&sc->sc_resetlock);
1882         if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1883                             sc->tx_chan_width,
1884                             sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1885                             sc->sc_ht_extprotspacing, false, &status)) {
1886                 DPRINTF(sc, ATH_DBG_FATAL,
1887                         "Unable to reset hardware; hal status %u "
1888                         "(freq %u flags 0x%x)\n", status,
1889                         init_channel->channel, init_channel->channelFlags);
1890                 error = -EIO;
1891                 spin_unlock_bh(&sc->sc_resetlock);
1892                 goto error;
1893         }
1894         spin_unlock_bh(&sc->sc_resetlock);
1895
1896         /*
1897          * This is needed only to setup initial state
1898          * but it's best done after a reset.
1899          */
1900         ath_update_txpow(sc);
1901
1902         /*
1903          * Setup the hardware after reset:
1904          * The receive engine is set going.
1905          * Frame transmit is handled entirely
1906          * in the frame output path; there's nothing to do
1907          * here except setup the interrupt mask.
1908          */
1909         if (ath_startrecv(sc) != 0) {
1910                 DPRINTF(sc, ATH_DBG_FATAL,
1911                         "Unable to start recv logic\n");
1912                 error = -EIO;
1913                 goto error;
1914         }
1915
1916         /* Setup our intr mask. */
1917         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1918                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1919                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1920
1921         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1922                 sc->sc_imask |= ATH9K_INT_GTT;
1923
1924         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1925                 sc->sc_imask |= ATH9K_INT_CST;
1926
1927         /*
1928          * Enable MIB interrupts when there are hardware phy counters.
1929          * Note we only do this (at the moment) for station mode.
1930          */
1931         if (ath9k_hw_phycounters(sc->sc_ah) &&
1932             ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1933              (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1934                 sc->sc_imask |= ATH9K_INT_MIB;
1935         /*
1936          * Some hardware processes the TIM IE and fires an
1937          * interrupt when the TIM bit is set.  For hardware
1938          * that does, if not overridden by configuration,
1939          * enable the TIM interrupt when operating as station.
1940          */
1941         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1942             (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1943             !sc->sc_config.swBeaconProcess)
1944                 sc->sc_imask |= ATH9K_INT_TIM;
1945
1946         ath_setcurmode(sc, ath_chan2mode(init_channel));
1947
1948         sc->sc_flags &= ~SC_OP_INVALID;
1949
1950         /* Disable BMISS interrupt when we're not associated */
1951         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1952         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1953
1954         ieee80211_wake_queues(sc->hw);
1955
1956 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1957         error = ath_start_rfkill_poll(sc);
1958 #endif
1959
1960 error:
1961         return error;
1962 }
1963
1964 static int ath9k_tx(struct ieee80211_hw *hw,
1965                     struct sk_buff *skb)
1966 {
1967         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1968         struct ath_softc *sc = hw->priv;
1969         struct ath_tx_control txctl;
1970         int hdrlen, padsize;
1971
1972         memset(&txctl, 0, sizeof(struct ath_tx_control));
1973
1974         /*
1975          * As a temporary workaround, assign seq# here; this will likely need
1976          * to be cleaned up to work better with Beacon transmission and virtual
1977          * BSSes.
1978          */
1979         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1980                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1981                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1982                         sc->tx.seq_no += 0x10;
1983                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1984                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1985         }
1986
1987         /* Add the padding after the header if this is not already done */
1988         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1989         if (hdrlen & 3) {
1990                 padsize = hdrlen % 4;
1991                 if (skb_headroom(skb) < padsize)
1992                         return -1;
1993                 skb_push(skb, padsize);
1994                 memmove(skb->data, skb->data + padsize, hdrlen);
1995         }
1996
1997         /* Check if a tx queue is available */
1998
1999         txctl.txq = ath_test_get_txq(sc, skb);
2000         if (!txctl.txq)
2001                 goto exit;
2002
2003         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2004
2005         if (ath_tx_start(sc, skb, &txctl) != 0) {
2006                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2007                 goto exit;
2008         }
2009
2010         return 0;
2011 exit:
2012         dev_kfree_skb_any(skb);
2013         return 0;
2014 }
2015
2016 static void ath9k_stop(struct ieee80211_hw *hw)
2017 {
2018         struct ath_softc *sc = hw->priv;
2019
2020         if (sc->sc_flags & SC_OP_INVALID) {
2021                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2022                 return;
2023         }
2024
2025         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2026
2027         ieee80211_stop_queues(sc->hw);
2028
2029         /* make sure h/w will not generate any interrupt
2030          * before setting the invalid flag. */
2031         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2032
2033         if (!(sc->sc_flags & SC_OP_INVALID)) {
2034                 ath_draintxq(sc, false);
2035                 ath_stoprecv(sc);
2036                 ath9k_hw_phy_disable(sc->sc_ah);
2037         } else
2038                 sc->rx.rxlink = NULL;
2039
2040 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2041         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2042                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2043 #endif
2044         /* disable HAL and put h/w to sleep */
2045         ath9k_hw_disable(sc->sc_ah);
2046         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2047
2048         sc->sc_flags |= SC_OP_INVALID;
2049
2050         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2051 }
2052
2053 static int ath9k_add_interface(struct ieee80211_hw *hw,
2054                                struct ieee80211_if_init_conf *conf)
2055 {
2056         struct ath_softc *sc = hw->priv;
2057         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2058         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2059
2060         /* Support only vap for now */
2061
2062         if (sc->sc_nvaps)
2063                 return -ENOBUFS;
2064
2065         switch (conf->type) {
2066         case NL80211_IFTYPE_STATION:
2067                 ic_opmode = NL80211_IFTYPE_STATION;
2068                 break;
2069         case NL80211_IFTYPE_ADHOC:
2070                 ic_opmode = NL80211_IFTYPE_ADHOC;
2071                 break;
2072         case NL80211_IFTYPE_AP:
2073                 ic_opmode = NL80211_IFTYPE_AP;
2074                 break;
2075         default:
2076                 DPRINTF(sc, ATH_DBG_FATAL,
2077                         "Interface type %d not yet supported\n", conf->type);
2078                 return -EOPNOTSUPP;
2079         }
2080
2081         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2082
2083         /* Set the VAP opmode */
2084         avp->av_opmode = ic_opmode;
2085         avp->av_bslot = -1;
2086
2087         if (ic_opmode == NL80211_IFTYPE_AP)
2088                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2089
2090         sc->sc_vaps[0] = conf->vif;
2091         sc->sc_nvaps++;
2092
2093         /* Set the device opmode */
2094         sc->sc_ah->ah_opmode = ic_opmode;
2095
2096         if (conf->type == NL80211_IFTYPE_AP) {
2097                 /* TODO: is this a suitable place to start ANI for AP mode? */
2098                 /* Start ANI */
2099                 mod_timer(&sc->sc_ani.timer,
2100                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2101         }
2102
2103         return 0;
2104 }
2105
2106 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2107                                    struct ieee80211_if_init_conf *conf)
2108 {
2109         struct ath_softc *sc = hw->priv;
2110         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2111
2112         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2113
2114         /* Stop ANI */
2115         del_timer_sync(&sc->sc_ani.timer);
2116
2117         /* Reclaim beacon resources */
2118         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2119             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2120                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2121                 ath_beacon_return(sc, avp);
2122         }
2123
2124         sc->sc_flags &= ~SC_OP_BEACONS;
2125
2126         sc->sc_vaps[0] = NULL;
2127         sc->sc_nvaps--;
2128 }
2129
2130 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2131 {
2132         struct ath_softc *sc = hw->priv;
2133         struct ieee80211_conf *conf = &hw->conf;
2134
2135         mutex_lock(&sc->mutex);
2136         if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2137                        IEEE80211_CONF_CHANGE_HT)) {
2138                 struct ieee80211_channel *curchan = hw->conf.channel;
2139                 int pos;
2140
2141                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2142                         curchan->center_freq);
2143
2144                 pos = ath_get_channel(sc, curchan);
2145                 if (pos == -1) {
2146                         DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2147                                 curchan->center_freq);
2148                         mutex_unlock(&sc->mutex);
2149                         return -EINVAL;
2150                 }
2151
2152                 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2153                 sc->sc_ah->ah_channels[pos].chanmode =
2154                         (curchan->band == IEEE80211_BAND_2GHZ) ?
2155                         CHANNEL_G : CHANNEL_A;
2156
2157                 if (conf->ht.enabled) {
2158                         if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2159                             conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2160                                 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2161
2162                         sc->sc_ah->ah_channels[pos].chanmode =
2163                                 ath_get_extchanmode(sc, curchan,
2164                                                     conf->ht.channel_type);
2165                 }
2166
2167                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2168                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2169                         mutex_unlock(&sc->mutex);
2170                         return -EINVAL;
2171                 }
2172
2173                 ath_update_chainmask(sc, conf->ht.enabled);
2174         }
2175
2176         if (changed & IEEE80211_CONF_CHANGE_POWER)
2177                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2178
2179         mutex_unlock(&sc->mutex);
2180         return 0;
2181 }
2182
2183 static int ath9k_config_interface(struct ieee80211_hw *hw,
2184                                   struct ieee80211_vif *vif,
2185                                   struct ieee80211_if_conf *conf)
2186 {
2187         struct ath_softc *sc = hw->priv;
2188         struct ath_hal *ah = sc->sc_ah;
2189         struct ath_vap *avp = (void *)vif->drv_priv;
2190         u32 rfilt = 0;
2191         int error, i;
2192
2193         /* TODO: Need to decide which hw opmode to use for multi-interface
2194          * cases */
2195         if (vif->type == NL80211_IFTYPE_AP &&
2196             ah->ah_opmode != NL80211_IFTYPE_AP) {
2197                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2198                 ath9k_hw_setopmode(ah);
2199                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2200                 /* Request full reset to get hw opmode changed properly */
2201                 sc->sc_flags |= SC_OP_FULL_RESET;
2202         }
2203
2204         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2205             !is_zero_ether_addr(conf->bssid)) {
2206                 switch (vif->type) {
2207                 case NL80211_IFTYPE_STATION:
2208                 case NL80211_IFTYPE_ADHOC:
2209                         /* Set BSSID */
2210                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2211                         sc->sc_curaid = 0;
2212                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2213                                                sc->sc_curaid);
2214
2215                         /* Set aggregation protection mode parameters */
2216                         sc->sc_config.ath_aggr_prot = 0;
2217
2218                         DPRINTF(sc, ATH_DBG_CONFIG,
2219                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2220                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2221
2222                         /* need to reconfigure the beacon */
2223                         sc->sc_flags &= ~SC_OP_BEACONS ;
2224
2225                         break;
2226                 default:
2227                         break;
2228                 }
2229         }
2230
2231         if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2232             ((vif->type == NL80211_IFTYPE_ADHOC) ||
2233              (vif->type == NL80211_IFTYPE_AP))) {
2234                 /*
2235                  * Allocate and setup the beacon frame.
2236                  *
2237                  * Stop any previous beacon DMA.  This may be
2238                  * necessary, for example, when an ibss merge
2239                  * causes reconfiguration; we may be called
2240                  * with beacon transmission active.
2241                  */
2242                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2243
2244                 error = ath_beacon_alloc(sc, 0);
2245                 if (error != 0)
2246                         return error;
2247
2248                 ath_beacon_sync(sc, 0);
2249         }
2250
2251         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2252         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2253                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2254                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2255                                 ath9k_hw_keysetmac(sc->sc_ah,
2256                                                    (u16)i,
2257                                                    sc->sc_curbssid);
2258         }
2259
2260         /* Only legacy IBSS for now */
2261         if (vif->type == NL80211_IFTYPE_ADHOC)
2262                 ath_update_chainmask(sc, 0);
2263
2264         return 0;
2265 }
2266
2267 #define SUPPORTED_FILTERS                       \
2268         (FIF_PROMISC_IN_BSS |                   \
2269         FIF_ALLMULTI |                          \
2270         FIF_CONTROL |                           \
2271         FIF_OTHER_BSS |                         \
2272         FIF_BCN_PRBRESP_PROMISC |               \
2273         FIF_FCSFAIL)
2274
2275 /* FIXME: sc->sc_full_reset ? */
2276 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2277                                    unsigned int changed_flags,
2278                                    unsigned int *total_flags,
2279                                    int mc_count,
2280                                    struct dev_mc_list *mclist)
2281 {
2282         struct ath_softc *sc = hw->priv;
2283         u32 rfilt;
2284
2285         changed_flags &= SUPPORTED_FILTERS;
2286         *total_flags &= SUPPORTED_FILTERS;
2287
2288         sc->rx.rxfilter = *total_flags;
2289         rfilt = ath_calcrxfilter(sc);
2290         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2291
2292         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2293                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2294                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2295         }
2296
2297         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2298 }
2299
2300 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2301                              struct ieee80211_vif *vif,
2302                              enum sta_notify_cmd cmd,
2303                              struct ieee80211_sta *sta)
2304 {
2305         struct ath_softc *sc = hw->priv;
2306
2307         switch (cmd) {
2308         case STA_NOTIFY_ADD:
2309                 ath_node_attach(sc, sta);
2310                 break;
2311         case STA_NOTIFY_REMOVE:
2312                 ath_node_detach(sc, sta);
2313                 break;
2314         default:
2315                 break;
2316         }
2317 }
2318
2319 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2320                          u16 queue,
2321                          const struct ieee80211_tx_queue_params *params)
2322 {
2323         struct ath_softc *sc = hw->priv;
2324         struct ath9k_tx_queue_info qi;
2325         int ret = 0, qnum;
2326
2327         if (queue >= WME_NUM_AC)
2328                 return 0;
2329
2330         qi.tqi_aifs = params->aifs;
2331         qi.tqi_cwmin = params->cw_min;
2332         qi.tqi_cwmax = params->cw_max;
2333         qi.tqi_burstTime = params->txop;
2334         qnum = ath_get_hal_qnum(queue, sc);
2335
2336         DPRINTF(sc, ATH_DBG_CONFIG,
2337                 "Configure tx [queue/halq] [%d/%d],  "
2338                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2339                 queue, qnum, params->aifs, params->cw_min,
2340                 params->cw_max, params->txop);
2341
2342         ret = ath_txq_update(sc, qnum, &qi);
2343         if (ret)
2344                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2345
2346         return ret;
2347 }
2348
2349 static int ath9k_set_key(struct ieee80211_hw *hw,
2350                          enum set_key_cmd cmd,
2351                          const u8 *local_addr,
2352                          const u8 *addr,
2353                          struct ieee80211_key_conf *key)
2354 {
2355         struct ath_softc *sc = hw->priv;
2356         int ret = 0;
2357
2358         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2359
2360         switch (cmd) {
2361         case SET_KEY:
2362                 ret = ath_key_config(sc, addr, key);
2363                 if (ret >= 0) {
2364                         key->hw_key_idx = ret;
2365                         /* push IV and Michael MIC generation to stack */
2366                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2367                         if (key->alg == ALG_TKIP)
2368                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2369                         ret = 0;
2370                 }
2371                 break;
2372         case DISABLE_KEY:
2373                 ath_key_delete(sc, key);
2374                 break;
2375         default:
2376                 ret = -EINVAL;
2377         }
2378
2379         return ret;
2380 }
2381
2382 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2383                                    struct ieee80211_vif *vif,
2384                                    struct ieee80211_bss_conf *bss_conf,
2385                                    u32 changed)
2386 {
2387         struct ath_softc *sc = hw->priv;
2388
2389         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2390                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2391                         bss_conf->use_short_preamble);
2392                 if (bss_conf->use_short_preamble)
2393                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2394                 else
2395                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2396         }
2397
2398         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2399                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2400                         bss_conf->use_cts_prot);
2401                 if (bss_conf->use_cts_prot &&
2402                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2403                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2404                 else
2405                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2406         }
2407
2408         if (changed & BSS_CHANGED_ASSOC) {
2409                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2410                         bss_conf->assoc);
2411                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2412         }
2413 }
2414
2415 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2416 {
2417         u64 tsf;
2418         struct ath_softc *sc = hw->priv;
2419         struct ath_hal *ah = sc->sc_ah;
2420
2421         tsf = ath9k_hw_gettsf64(ah);
2422
2423         return tsf;
2424 }
2425
2426 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2427 {
2428         struct ath_softc *sc = hw->priv;
2429         struct ath_hal *ah = sc->sc_ah;
2430
2431         ath9k_hw_reset_tsf(ah);
2432 }
2433
2434 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2435                        enum ieee80211_ampdu_mlme_action action,
2436                        struct ieee80211_sta *sta,
2437                        u16 tid, u16 *ssn)
2438 {
2439         struct ath_softc *sc = hw->priv;
2440         int ret = 0;
2441
2442         switch (action) {
2443         case IEEE80211_AMPDU_RX_START:
2444                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2445                         ret = -ENOTSUPP;
2446                 break;
2447         case IEEE80211_AMPDU_RX_STOP:
2448                 break;
2449         case IEEE80211_AMPDU_TX_START:
2450                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2451                 if (ret < 0)
2452                         DPRINTF(sc, ATH_DBG_FATAL,
2453                                 "Unable to start TX aggregation\n");
2454                 else
2455                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2456                 break;
2457         case IEEE80211_AMPDU_TX_STOP:
2458                 ret = ath_tx_aggr_stop(sc, sta, tid);
2459                 if (ret < 0)
2460                         DPRINTF(sc, ATH_DBG_FATAL,
2461                                 "Unable to stop TX aggregation\n");
2462
2463                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2464                 break;
2465         case IEEE80211_AMPDU_TX_RESUME:
2466                 ath_tx_aggr_resume(sc, sta, tid);
2467                 break;
2468         default:
2469                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2470         }
2471
2472         return ret;
2473 }
2474
2475 static struct ieee80211_ops ath9k_ops = {
2476         .tx                 = ath9k_tx,
2477         .start              = ath9k_start,
2478         .stop               = ath9k_stop,
2479         .add_interface      = ath9k_add_interface,
2480         .remove_interface   = ath9k_remove_interface,
2481         .config             = ath9k_config,
2482         .config_interface   = ath9k_config_interface,
2483         .configure_filter   = ath9k_configure_filter,
2484         .sta_notify         = ath9k_sta_notify,
2485         .conf_tx            = ath9k_conf_tx,
2486         .bss_info_changed   = ath9k_bss_info_changed,
2487         .set_key            = ath9k_set_key,
2488         .get_tsf            = ath9k_get_tsf,
2489         .reset_tsf          = ath9k_reset_tsf,
2490         .ampdu_action       = ath9k_ampdu_action,
2491 };
2492
2493 static struct {
2494         u32 version;
2495         const char * name;
2496 } ath_mac_bb_names[] = {
2497         { AR_SREV_VERSION_5416_PCI,     "5416" },
2498         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2499         { AR_SREV_VERSION_9100,         "9100" },
2500         { AR_SREV_VERSION_9160,         "9160" },
2501         { AR_SREV_VERSION_9280,         "9280" },
2502         { AR_SREV_VERSION_9285,         "9285" }
2503 };
2504
2505 static struct {
2506         u16 version;
2507         const char * name;
2508 } ath_rf_names[] = {
2509         { 0,                            "5133" },
2510         { AR_RAD5133_SREV_MAJOR,        "5133" },
2511         { AR_RAD5122_SREV_MAJOR,        "5122" },
2512         { AR_RAD2133_SREV_MAJOR,        "2133" },
2513         { AR_RAD2122_SREV_MAJOR,        "2122" }
2514 };
2515
2516 /*
2517  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2518  */
2519 static const char *
2520 ath_mac_bb_name(u32 mac_bb_version)
2521 {
2522         int i;
2523
2524         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2525                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2526                         return ath_mac_bb_names[i].name;
2527                 }
2528         }
2529
2530         return "????";
2531 }
2532
2533 /*
2534  * Return the RF name. "????" is returned if the RF is unknown.
2535  */
2536 static const char *
2537 ath_rf_name(u16 rf_version)
2538 {
2539         int i;
2540
2541         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2542                 if (ath_rf_names[i].version == rf_version) {
2543                         return ath_rf_names[i].name;
2544                 }
2545         }
2546
2547         return "????";
2548 }
2549
2550 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2551 {
2552         void __iomem *mem;
2553         struct ath_softc *sc;
2554         struct ieee80211_hw *hw;
2555         u8 csz;
2556         u32 val;
2557         int ret = 0;
2558         struct ath_hal *ah;
2559
2560         if (pci_enable_device(pdev))
2561                 return -EIO;
2562
2563         ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2564
2565         if (ret) {
2566                 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2567                 goto bad;
2568         }
2569
2570         ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2571
2572         if (ret) {
2573                 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2574                         "DMA enable failed\n");
2575                 goto bad;
2576         }
2577
2578         /*
2579          * Cache line size is used to size and align various
2580          * structures used to communicate with the hardware.
2581          */
2582         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2583         if (csz == 0) {
2584                 /*
2585                  * Linux 2.4.18 (at least) writes the cache line size
2586                  * register as a 16-bit wide register which is wrong.
2587                  * We must have this setup properly for rx buffer
2588                  * DMA to work so force a reasonable value here if it
2589                  * comes up zero.
2590                  */
2591                 csz = L1_CACHE_BYTES / sizeof(u32);
2592                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2593         }
2594         /*
2595          * The default setting of latency timer yields poor results,
2596          * set it to the value used by other systems. It may be worth
2597          * tweaking this setting more.
2598          */
2599         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2600
2601         pci_set_master(pdev);
2602
2603         /*
2604          * Disable the RETRY_TIMEOUT register (0x41) to keep
2605          * PCI Tx retries from interfering with C3 CPU state.
2606          */
2607         pci_read_config_dword(pdev, 0x40, &val);
2608         if ((val & 0x0000ff00) != 0)
2609                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2610
2611         ret = pci_request_region(pdev, 0, "ath9k");
2612         if (ret) {
2613                 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2614                 ret = -ENODEV;
2615                 goto bad;
2616         }
2617
2618         mem = pci_iomap(pdev, 0, 0);
2619         if (!mem) {
2620                 printk(KERN_ERR "PCI memory map error\n") ;
2621                 ret = -EIO;
2622                 goto bad1;
2623         }
2624
2625         hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2626         if (hw == NULL) {
2627                 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2628                 goto bad2;
2629         }
2630
2631         SET_IEEE80211_DEV(hw, &pdev->dev);
2632         pci_set_drvdata(pdev, hw);
2633
2634         sc = hw->priv;
2635         sc->hw = hw;
2636         sc->pdev = pdev;
2637         sc->mem = mem;
2638
2639         if (ath_attach(id->device, sc) != 0) {
2640                 ret = -ENODEV;
2641                 goto bad3;
2642         }
2643
2644         /* setup interrupt service routine */
2645
2646         if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2647                 printk(KERN_ERR "%s: request_irq failed\n",
2648                         wiphy_name(hw->wiphy));
2649                 ret = -EIO;
2650                 goto bad4;
2651         }
2652
2653         ah = sc->sc_ah;
2654         printk(KERN_INFO
2655                "%s: Atheros AR%s MAC/BB Rev:%x "
2656                "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2657                wiphy_name(hw->wiphy),
2658                ath_mac_bb_name(ah->ah_macVersion),
2659                ah->ah_macRev,
2660                ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2661                ah->ah_phyRev,
2662                (unsigned long)mem, pdev->irq);
2663
2664         return 0;
2665 bad4:
2666         ath_detach(sc);
2667 bad3:
2668         ieee80211_free_hw(hw);
2669 bad2:
2670         pci_iounmap(pdev, mem);
2671 bad1:
2672         pci_release_region(pdev, 0);
2673 bad:
2674         pci_disable_device(pdev);
2675         return ret;
2676 }
2677
2678 static void ath_pci_remove(struct pci_dev *pdev)
2679 {
2680         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2681         struct ath_softc *sc = hw->priv;
2682
2683         ath_detach(sc);
2684         if (pdev->irq)
2685                 free_irq(pdev->irq, sc);
2686         pci_iounmap(pdev, sc->mem);
2687         pci_release_region(pdev, 0);
2688         pci_disable_device(pdev);
2689         ieee80211_free_hw(hw);
2690 }
2691
2692 #ifdef CONFIG_PM
2693
2694 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2695 {
2696         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2697         struct ath_softc *sc = hw->priv;
2698
2699         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2700
2701 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2702         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2703                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2704 #endif
2705
2706         pci_save_state(pdev);
2707         pci_disable_device(pdev);
2708         pci_set_power_state(pdev, 3);
2709
2710         return 0;
2711 }
2712
2713 static int ath_pci_resume(struct pci_dev *pdev)
2714 {
2715         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2716         struct ath_softc *sc = hw->priv;
2717         u32 val;
2718         int err;
2719
2720         err = pci_enable_device(pdev);
2721         if (err)
2722                 return err;
2723         pci_restore_state(pdev);
2724         /*
2725          * Suspend/Resume resets the PCI configuration space, so we have to
2726          * re-disable the RETRY_TIMEOUT register (0x41) to keep
2727          * PCI Tx retries from interfering with C3 CPU state
2728          */
2729         pci_read_config_dword(pdev, 0x40, &val);
2730         if ((val & 0x0000ff00) != 0)
2731                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2732
2733         /* Enable LED */
2734         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2735                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2736         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2737
2738 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2739         /*
2740          * check the h/w rfkill state on resume
2741          * and start the rfkill poll timer
2742          */
2743         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2744                 queue_delayed_work(sc->hw->workqueue,
2745                                    &sc->rf_kill.rfkill_poll, 0);
2746 #endif
2747
2748         return 0;
2749 }
2750
2751 #endif /* CONFIG_PM */
2752
2753 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2754
2755 static struct pci_driver ath_pci_driver = {
2756         .name       = "ath9k",
2757         .id_table   = ath_pci_id_table,
2758         .probe      = ath_pci_probe,
2759         .remove     = ath_pci_remove,
2760 #ifdef CONFIG_PM
2761         .suspend    = ath_pci_suspend,
2762         .resume     = ath_pci_resume,
2763 #endif /* CONFIG_PM */
2764 };
2765
2766 static int __init init_ath_pci(void)
2767 {
2768         int error;
2769
2770         printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2771
2772         /* Register rate control algorithm */
2773         error = ath_rate_control_register();
2774         if (error != 0) {
2775                 printk(KERN_ERR
2776                         "Unable to register rate control algorithm: %d\n",
2777                         error);
2778                 ath_rate_control_unregister();
2779                 return error;
2780         }
2781
2782         if (pci_register_driver(&ath_pci_driver) < 0) {
2783                 printk(KERN_ERR
2784                         "ath_pci: No devices found, driver not installed.\n");
2785                 ath_rate_control_unregister();
2786                 pci_unregister_driver(&ath_pci_driver);
2787                 return -ENODEV;
2788         }
2789
2790         return 0;
2791 }
2792 module_init(init_ath_pci);
2793
2794 static void __exit exit_ath_pci(void)
2795 {
2796         ath_rate_control_unregister();
2797         pci_unregister_driver(&ath_pci_driver);
2798         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2799 }
2800 module_exit(exit_ath_pci);