Merge branch 'agp-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[pandora-kernel.git] / drivers / net / wireless / ath9k / hw.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "core.h"
21 #include "hw.h"
22 #include "reg.h"
23 #include "phy.h"
24 #include "initvals.h"
25
26 static void ath9k_hw_iqcal_collect(struct ath_hal *ah);
27 static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains);
28 static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah);
29 static void ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah,
30                                            u8 numChains);
31 static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah);
32 static void ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah,
33                                          u8 numChains);
34
35 static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
36 static const int16_t NOISE_FLOOR[] = { -96, -93, -98, -96, -93, -96 };
37
38 static const struct hal_percal_data iq_cal_multi_sample = {
39         IQ_MISMATCH_CAL,
40         MAX_CAL_SAMPLES,
41         PER_MIN_LOG_COUNT,
42         ath9k_hw_iqcal_collect,
43         ath9k_hw_iqcalibrate
44 };
45 static const struct hal_percal_data iq_cal_single_sample = {
46         IQ_MISMATCH_CAL,
47         MIN_CAL_SAMPLES,
48         PER_MAX_LOG_COUNT,
49         ath9k_hw_iqcal_collect,
50         ath9k_hw_iqcalibrate
51 };
52 static const struct hal_percal_data adc_gain_cal_multi_sample = {
53         ADC_GAIN_CAL,
54         MAX_CAL_SAMPLES,
55         PER_MIN_LOG_COUNT,
56         ath9k_hw_adc_gaincal_collect,
57         ath9k_hw_adc_gaincal_calibrate
58 };
59 static const struct hal_percal_data adc_gain_cal_single_sample = {
60         ADC_GAIN_CAL,
61         MIN_CAL_SAMPLES,
62         PER_MAX_LOG_COUNT,
63         ath9k_hw_adc_gaincal_collect,
64         ath9k_hw_adc_gaincal_calibrate
65 };
66 static const struct hal_percal_data adc_dc_cal_multi_sample = {
67         ADC_DC_CAL,
68         MAX_CAL_SAMPLES,
69         PER_MIN_LOG_COUNT,
70         ath9k_hw_adc_dccal_collect,
71         ath9k_hw_adc_dccal_calibrate
72 };
73 static const struct hal_percal_data adc_dc_cal_single_sample = {
74         ADC_DC_CAL,
75         MIN_CAL_SAMPLES,
76         PER_MAX_LOG_COUNT,
77         ath9k_hw_adc_dccal_collect,
78         ath9k_hw_adc_dccal_calibrate
79 };
80 static const struct hal_percal_data adc_init_dc_cal = {
81         ADC_DC_INIT_CAL,
82         MIN_CAL_SAMPLES,
83         INIT_LOG_COUNT,
84         ath9k_hw_adc_dccal_collect,
85         ath9k_hw_adc_dccal_calibrate
86 };
87
88 static struct ath9k_rate_table ar5416_11a_table = {
89         8,
90         {0},
91         {
92                 {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
93                 {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
94                 {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
95                 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
96                 {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
97                 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
98                 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
99                 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}
100         },
101 };
102
103 static struct ath9k_rate_table ar5416_11b_table = {
104         4,
105         {0},
106         {
107                 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
108                 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
109                 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1},
110                 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1}
111         },
112 };
113
114 static struct ath9k_rate_table ar5416_11g_table = {
115         12,
116         {0},
117         {
118                 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
119                 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
120                 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
121                 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
122
123                 {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
124                 {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
125                 {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
126                 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
127                 {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
128                 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
129                 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
130                 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}
131         },
132 };
133
134 static struct ath9k_rate_table ar5416_11ng_table = {
135         28,
136         {0},
137         {
138                 {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0},
139                 {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1},
140                 {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2},
141                 {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3},
142
143                 {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4},
144                 {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4},
145                 {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6},
146                 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6},
147                 {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8},
148                 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8},
149                 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8},
150                 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8},
151                 {true, PHY_HT, 6500, 0x80, 0x00, 0, 4},
152                 {true, PHY_HT, 13000, 0x81, 0x00, 1, 6},
153                 {true, PHY_HT, 19500, 0x82, 0x00, 2, 6},
154                 {true, PHY_HT, 26000, 0x83, 0x00, 3, 8},
155                 {true, PHY_HT, 39000, 0x84, 0x00, 4, 8},
156                 {true, PHY_HT, 52000, 0x85, 0x00, 5, 8},
157                 {true, PHY_HT, 58500, 0x86, 0x00, 6, 8},
158                 {true, PHY_HT, 65000, 0x87, 0x00, 7, 8},
159                 {true, PHY_HT, 13000, 0x88, 0x00, 8, 4},
160                 {true, PHY_HT, 26000, 0x89, 0x00, 9, 6},
161                 {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6},
162                 {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8},
163                 {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8},
164                 {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8},
165                 {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8},
166                 {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8},
167         },
168 };
169
170 static struct ath9k_rate_table ar5416_11na_table = {
171         24,
172         {0},
173         {
174                 {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0},
175                 {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0},
176                 {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2},
177                 {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2},
178                 {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4},
179                 {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4},
180                 {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4},
181                 {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4},
182                 {true, PHY_HT, 6500, 0x80, 0x00, 0, 0},
183                 {true, PHY_HT, 13000, 0x81, 0x00, 1, 2},
184                 {true, PHY_HT, 19500, 0x82, 0x00, 2, 2},
185                 {true, PHY_HT, 26000, 0x83, 0x00, 3, 4},
186                 {true, PHY_HT, 39000, 0x84, 0x00, 4, 4},
187                 {true, PHY_HT, 52000, 0x85, 0x00, 5, 4},
188                 {true, PHY_HT, 58500, 0x86, 0x00, 6, 4},
189                 {true, PHY_HT, 65000, 0x87, 0x00, 7, 4},
190                 {true, PHY_HT, 13000, 0x88, 0x00, 8, 0},
191                 {true, PHY_HT, 26000, 0x89, 0x00, 9, 2},
192                 {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2},
193                 {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4},
194                 {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4},
195                 {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4},
196                 {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4},
197                 {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4},
198         },
199 };
200
201 static enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
202                                        const struct ath9k_channel *chan)
203 {
204         if (IS_CHAN_CCK(chan))
205                 return ATH9K_MODE_11A;
206         if (IS_CHAN_G(chan))
207                 return ATH9K_MODE_11G;
208         return ATH9K_MODE_11A;
209 }
210
211 static bool ath9k_hw_wait(struct ath_hal *ah,
212                           u32 reg,
213                           u32 mask,
214                           u32 val)
215 {
216         int i;
217
218         for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
219                 if ((REG_READ(ah, reg) & mask) == val)
220                         return true;
221
222                 udelay(AH_TIME_QUANTUM);
223         }
224         DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
225                  "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
226                  __func__, reg, REG_READ(ah, reg), mask, val);
227         return false;
228 }
229
230 static bool ath9k_hw_eeprom_read(struct ath_hal *ah, u32 off,
231                                  u16 *data)
232 {
233         (void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));
234
235         if (!ath9k_hw_wait(ah,
236                            AR_EEPROM_STATUS_DATA,
237                            AR_EEPROM_STATUS_DATA_BUSY |
238                            AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
239                 return false;
240         }
241
242         *data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
243                    AR_EEPROM_STATUS_DATA_VAL);
244
245         return true;
246 }
247
248 static int ath9k_hw_flash_map(struct ath_hal *ah)
249 {
250         struct ath_hal_5416 *ahp = AH5416(ah);
251
252         ahp->ah_cal_mem = ioremap(AR5416_EEPROM_START_ADDR, AR5416_EEPROM_MAX);
253
254         if (!ahp->ah_cal_mem) {
255                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
256                          "%s: cannot remap eeprom region \n", __func__);
257                 return -EIO;
258         }
259
260         return 0;
261 }
262
263 static bool ath9k_hw_flash_read(struct ath_hal *ah, u32 off,
264                                 u16 *data)
265 {
266         struct ath_hal_5416 *ahp = AH5416(ah);
267
268         *data = ioread16(ahp->ah_cal_mem + off);
269         return true;
270 }
271
272 static void ath9k_hw_read_revisions(struct ath_hal *ah)
273 {
274         u32 val;
275
276         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
277
278         if (val == 0xFF) {
279                 val = REG_READ(ah, AR_SREV);
280
281                 ah->ah_macVersion =
282                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
283
284                 ah->ah_macRev = MS(val, AR_SREV_REVISION2);
285                 ah->ah_isPciExpress =
286                         (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
287
288         } else {
289                 if (!AR_SREV_9100(ah))
290                         ah->ah_macVersion = MS(val, AR_SREV_VERSION);
291
292                 ah->ah_macRev = val & AR_SREV_REVISION;
293
294                 if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
295                         ah->ah_isPciExpress = true;
296         }
297 }
298
299 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
300 {
301         u32 retval;
302         int i;
303
304         for (i = 0, retval = 0; i < n; i++) {
305                 retval = (retval << 1) | (val & 1);
306                 val >>= 1;
307         }
308         return retval;
309 }
310
311 static void ath9k_hw_set_defaults(struct ath_hal *ah)
312 {
313         int i;
314
315         ah->ah_config.dma_beacon_response_time = 2;
316         ah->ah_config.sw_beacon_response_time = 10;
317         ah->ah_config.additional_swba_backoff = 0;
318         ah->ah_config.ack_6mb = 0x0;
319         ah->ah_config.cwm_ignore_extcca = 0;
320         ah->ah_config.pcie_powersave_enable = 0;
321         ah->ah_config.pcie_l1skp_enable = 0;
322         ah->ah_config.pcie_clock_req = 0;
323         ah->ah_config.pcie_power_reset = 0x100;
324         ah->ah_config.pcie_restore = 0;
325         ah->ah_config.pcie_waen = 0;
326         ah->ah_config.analog_shiftreg = 1;
327         ah->ah_config.ht_enable = 1;
328         ah->ah_config.ofdm_trig_low = 200;
329         ah->ah_config.ofdm_trig_high = 500;
330         ah->ah_config.cck_trig_high = 200;
331         ah->ah_config.cck_trig_low = 100;
332         ah->ah_config.enable_ani = 1;
333         ah->ah_config.noise_immunity_level = 4;
334         ah->ah_config.ofdm_weaksignal_det = 1;
335         ah->ah_config.cck_weaksignal_thr = 0;
336         ah->ah_config.spur_immunity_level = 2;
337         ah->ah_config.firstep_level = 0;
338         ah->ah_config.rssi_thr_high = 40;
339         ah->ah_config.rssi_thr_low = 7;
340         ah->ah_config.diversity_control = 0;
341         ah->ah_config.antenna_switch_swap = 0;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         ah->ah_config.intr_mitigation = 0;
349 }
350
351 static void ath9k_hw_override_ini(struct ath_hal *ah,
352                                          struct ath9k_channel *chan)
353 {
354         if (!AR_SREV_5416_V20_OR_LATER(ah)
355             || AR_SREV_9280_10_OR_LATER(ah))
356                 return;
357
358         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
359 }
360
361 static void ath9k_hw_init_bb(struct ath_hal *ah,
362                              struct ath9k_channel *chan)
363 {
364         u32 synthDelay;
365
366         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
367         if (IS_CHAN_CCK(chan))
368                 synthDelay = (4 * synthDelay) / 22;
369         else
370                 synthDelay /= 10;
371
372         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
373
374         udelay(synthDelay + BASE_ACTIVATE_DELAY);
375 }
376
377 static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
378                                           enum ath9k_opmode opmode)
379 {
380         struct ath_hal_5416 *ahp = AH5416(ah);
381
382         ahp->ah_maskReg = AR_IMR_TXERR |
383                 AR_IMR_TXURN |
384                 AR_IMR_RXERR |
385                 AR_IMR_RXORN |
386                 AR_IMR_BCNMISC;
387
388         if (ahp->ah_intrMitigation)
389                 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
390         else
391                 ahp->ah_maskReg |= AR_IMR_RXOK;
392
393         ahp->ah_maskReg |= AR_IMR_TXOK;
394
395         if (opmode == ATH9K_M_HOSTAP)
396                 ahp->ah_maskReg |= AR_IMR_MIB;
397
398         REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
399         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
400
401         if (!AR_SREV_9100(ah)) {
402                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
403                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
404                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
405         }
406 }
407
408 static void ath9k_hw_init_qos(struct ath_hal *ah)
409 {
410         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
411         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
412
413         REG_WRITE(ah, AR_QOS_NO_ACK,
414                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
415                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
416                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
417
418         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
419         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
420         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
421         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
422         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
423 }
424
425 static void ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
426                                       u32 reg,
427                                       u32 mask,
428                                       u32 shift,
429                                       u32 val)
430 {
431         u32 regVal;
432
433         regVal = REG_READ(ah, reg) & ~mask;
434         regVal |= (val << shift) & mask;
435
436         REG_WRITE(ah, reg, regVal);
437
438         if (ah->ah_config.analog_shiftreg)
439                 udelay(100);
440
441         return;
442 }
443
444 static u8 ath9k_hw_get_num_ant_config(struct ath_hal_5416 *ahp,
445                                       enum ieee80211_band freq_band)
446 {
447         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
448         struct modal_eep_header *pModal =
449                 &(eep->modalHeader[IEEE80211_BAND_5GHZ == freq_band]);
450         struct base_eep_header *pBase = &eep->baseEepHeader;
451         u8 num_ant_config;
452
453         num_ant_config = 1;
454
455         if (pBase->version >= 0x0E0D)
456                 if (pModal->useAnt1)
457                         num_ant_config += 1;
458
459         return num_ant_config;
460 }
461
462 static int
463 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal_5416 *ahp,
464                                 struct ath9k_channel *chan,
465                                 u8 index,
466                                 u16 *config)
467 {
468         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
469         struct modal_eep_header *pModal =
470                 &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
471         struct base_eep_header *pBase = &eep->baseEepHeader;
472
473         switch (index) {
474         case 0:
475                 *config = pModal->antCtrlCommon & 0xFFFF;
476                 return 0;
477         case 1:
478                 if (pBase->version >= 0x0E0D) {
479                         if (pModal->useAnt1) {
480                                 *config =
481                                 ((pModal->antCtrlCommon & 0xFFFF0000) >> 16);
482                                 return 0;
483                         }
484                 }
485                 break;
486         default:
487                 break;
488         }
489
490         return -EINVAL;
491 }
492
493 static inline bool ath9k_hw_nvram_read(struct ath_hal *ah,
494                                        u32 off,
495                                        u16 *data)
496 {
497         if (ath9k_hw_use_flash(ah))
498                 return ath9k_hw_flash_read(ah, off, data);
499         else
500                 return ath9k_hw_eeprom_read(ah, off, data);
501 }
502
503 static bool ath9k_hw_fill_eeprom(struct ath_hal *ah)
504 {
505         struct ath_hal_5416 *ahp = AH5416(ah);
506         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
507         u16 *eep_data;
508         int addr, ar5416_eep_start_loc = 0;
509
510         if (!ath9k_hw_use_flash(ah)) {
511                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
512                          "%s: Reading from EEPROM, not flash\n", __func__);
513                 ar5416_eep_start_loc = 256;
514         }
515         if (AR_SREV_9100(ah))
516                 ar5416_eep_start_loc = 256;
517
518         eep_data = (u16 *) eep;
519         for (addr = 0;
520              addr < sizeof(struct ar5416_eeprom) / sizeof(u16);
521              addr++) {
522                 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
523                                          eep_data)) {
524                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
525                                  "%s: Unable to read eeprom region \n",
526                                  __func__);
527                         return false;
528                 }
529                 eep_data++;
530         }
531         return true;
532 }
533
534 /* XXX: Clean me up, make me more legible */
535 static bool
536 ath9k_hw_eeprom_set_board_values(struct ath_hal *ah,
537                                  struct ath9k_channel *chan)
538 {
539         struct modal_eep_header *pModal;
540         int i, regChainOffset;
541         struct ath_hal_5416 *ahp = AH5416(ah);
542         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
543         u8 txRxAttenLocal;
544         u16 ant_config;
545
546         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
547
548         txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
549
550         ath9k_hw_get_eeprom_antenna_cfg(ahp, chan, 1, &ant_config);
551         REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
552
553         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
554                 if (AR_SREV_9280(ah)) {
555                         if (i >= 2)
556                                 break;
557                 }
558
559                 if (AR_SREV_5416_V20_OR_LATER(ah) &&
560                     (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
561                     && (i != 0))
562                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
563                 else
564                         regChainOffset = i * 0x1000;
565
566                 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
567                           pModal->antCtrlChain[i]);
568
569                 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
570                           (REG_READ(ah,
571                                     AR_PHY_TIMING_CTRL4(0) +
572                                     regChainOffset) &
573                            ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
574                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
575                           SM(pModal->iqCalICh[i],
576                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
577                           SM(pModal->iqCalQCh[i],
578                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
579
580                 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
581                         if ((eep->baseEepHeader.version &
582                              AR5416_EEP_VER_MINOR_MASK) >=
583                             AR5416_EEP_MINOR_VER_3) {
584                                 txRxAttenLocal = pModal->txRxAttenCh[i];
585                                 if (AR_SREV_9280_10_OR_LATER(ah)) {
586                                         REG_RMW_FIELD(ah,
587                                                 AR_PHY_GAIN_2GHZ +
588                                                 regChainOffset,
589                                                 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
590                                                 pModal->
591                                                 bswMargin[i]);
592                                         REG_RMW_FIELD(ah,
593                                                 AR_PHY_GAIN_2GHZ +
594                                                 regChainOffset,
595                                                 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
596                                                 pModal->
597                                                 bswAtten[i]);
598                                         REG_RMW_FIELD(ah,
599                                                 AR_PHY_GAIN_2GHZ +
600                                                 regChainOffset,
601                                                 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
602                                                 pModal->
603                                                 xatten2Margin[i]);
604                                         REG_RMW_FIELD(ah,
605                                                 AR_PHY_GAIN_2GHZ +
606                                                 regChainOffset,
607                                                 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
608                                                 pModal->
609                                                 xatten2Db[i]);
610                                 } else {
611                                         REG_WRITE(ah,
612                                                   AR_PHY_GAIN_2GHZ +
613                                                   regChainOffset,
614                                                   (REG_READ(ah,
615                                                             AR_PHY_GAIN_2GHZ +
616                                                             regChainOffset) &
617                                                    ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
618                                                   | SM(pModal->
619                                                   bswMargin[i],
620                                                   AR_PHY_GAIN_2GHZ_BSW_MARGIN));
621                                         REG_WRITE(ah,
622                                                   AR_PHY_GAIN_2GHZ +
623                                                   regChainOffset,
624                                                   (REG_READ(ah,
625                                                             AR_PHY_GAIN_2GHZ +
626                                                             regChainOffset) &
627                                                    ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
628                                                   | SM(pModal->bswAtten[i],
629                                                   AR_PHY_GAIN_2GHZ_BSW_ATTEN));
630                                 }
631                         }
632                         if (AR_SREV_9280_10_OR_LATER(ah)) {
633                                 REG_RMW_FIELD(ah,
634                                               AR_PHY_RXGAIN +
635                                               regChainOffset,
636                                               AR9280_PHY_RXGAIN_TXRX_ATTEN,
637                                               txRxAttenLocal);
638                                 REG_RMW_FIELD(ah,
639                                               AR_PHY_RXGAIN +
640                                               regChainOffset,
641                                               AR9280_PHY_RXGAIN_TXRX_MARGIN,
642                                               pModal->rxTxMarginCh[i]);
643                         } else {
644                                 REG_WRITE(ah,
645                                           AR_PHY_RXGAIN + regChainOffset,
646                                           (REG_READ(ah,
647                                                     AR_PHY_RXGAIN +
648                                                     regChainOffset) &
649                                            ~AR_PHY_RXGAIN_TXRX_ATTEN) |
650                                           SM(txRxAttenLocal,
651                                              AR_PHY_RXGAIN_TXRX_ATTEN));
652                                 REG_WRITE(ah,
653                                           AR_PHY_GAIN_2GHZ +
654                                           regChainOffset,
655                                           (REG_READ(ah,
656                                                     AR_PHY_GAIN_2GHZ +
657                                                     regChainOffset) &
658                                            ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
659                                           SM(pModal->rxTxMarginCh[i],
660                                              AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
661                         }
662                 }
663         }
664
665         if (AR_SREV_9280_10_OR_LATER(ah)) {
666                 if (IS_CHAN_2GHZ(chan)) {
667                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
668                                                   AR_AN_RF2G1_CH0_OB,
669                                                   AR_AN_RF2G1_CH0_OB_S,
670                                                   pModal->ob);
671                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
672                                                   AR_AN_RF2G1_CH0_DB,
673                                                   AR_AN_RF2G1_CH0_DB_S,
674                                                   pModal->db);
675                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
676                                                   AR_AN_RF2G1_CH1_OB,
677                                                   AR_AN_RF2G1_CH1_OB_S,
678                                                   pModal->ob_ch1);
679                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
680                                                   AR_AN_RF2G1_CH1_DB,
681                                                   AR_AN_RF2G1_CH1_DB_S,
682                                                   pModal->db_ch1);
683                 } else {
684                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
685                                                   AR_AN_RF5G1_CH0_OB5,
686                                                   AR_AN_RF5G1_CH0_OB5_S,
687                                                   pModal->ob);
688                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
689                                                   AR_AN_RF5G1_CH0_DB5,
690                                                   AR_AN_RF5G1_CH0_DB5_S,
691                                                   pModal->db);
692                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
693                                                   AR_AN_RF5G1_CH1_OB5,
694                                                   AR_AN_RF5G1_CH1_OB5_S,
695                                                   pModal->ob_ch1);
696                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
697                                                   AR_AN_RF5G1_CH1_DB5,
698                                                   AR_AN_RF5G1_CH1_DB5_S,
699                                                   pModal->db_ch1);
700                 }
701                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
702                                           AR_AN_TOP2_XPABIAS_LVL,
703                                           AR_AN_TOP2_XPABIAS_LVL_S,
704                                           pModal->xpaBiasLvl);
705                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
706                                           AR_AN_TOP2_LOCALBIAS,
707                                           AR_AN_TOP2_LOCALBIAS_S,
708                                           pModal->local_bias);
709                 DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ForceXPAon: %d\n",
710                         pModal->force_xpaon);
711                 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
712                               pModal->force_xpaon);
713         }
714
715         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
716                       pModal->switchSettling);
717         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
718                       pModal->adcDesiredSize);
719
720         if (!AR_SREV_9280_10_OR_LATER(ah))
721                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
722                               AR_PHY_DESIRED_SZ_PGA,
723                               pModal->pgaDesiredSize);
724
725         REG_WRITE(ah, AR_PHY_RF_CTL4,
726                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
727                   | SM(pModal->txEndToXpaOff,
728                        AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
729                   | SM(pModal->txFrameToXpaOn,
730                        AR_PHY_RF_CTL4_FRAME_XPAA_ON)
731                   | SM(pModal->txFrameToXpaOn,
732                        AR_PHY_RF_CTL4_FRAME_XPAB_ON));
733
734         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
735                       pModal->txEndToRxOn);
736         if (AR_SREV_9280_10_OR_LATER(ah)) {
737                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
738                               pModal->thresh62);
739                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
740                               AR_PHY_EXT_CCA0_THRESH62,
741                               pModal->thresh62);
742         } else {
743                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
744                               pModal->thresh62);
745                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
746                               AR_PHY_EXT_CCA_THRESH62,
747                               pModal->thresh62);
748         }
749
750         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
751             AR5416_EEP_MINOR_VER_2) {
752                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
753                               AR_PHY_TX_END_DATA_START,
754                               pModal->txFrameToDataStart);
755                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
756                               pModal->txFrameToPaOn);
757         }
758
759         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
760             AR5416_EEP_MINOR_VER_3) {
761                 if (IS_CHAN_HT40(chan))
762                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
763                                       AR_PHY_SETTLING_SWITCH,
764                                       pModal->swSettleHt40);
765         }
766
767         return true;
768 }
769
770 static int ath9k_hw_check_eeprom(struct ath_hal *ah)
771 {
772         u32 sum = 0, el;
773         u16 *eepdata;
774         int i;
775         struct ath_hal_5416 *ahp = AH5416(ah);
776         bool need_swap = false;
777         struct ar5416_eeprom *eep =
778                 (struct ar5416_eeprom *) &ahp->ah_eeprom;
779
780         if (!ath9k_hw_use_flash(ah)) {
781                 u16 magic, magic2;
782                 int addr;
783
784                 if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
785                                         &magic)) {
786                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
787                                  "%s: Reading Magic # failed\n", __func__);
788                         return false;
789                 }
790                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: Read Magic = 0x%04X\n",
791                          __func__, magic);
792
793                 if (magic != AR5416_EEPROM_MAGIC) {
794                         magic2 = swab16(magic);
795
796                         if (magic2 == AR5416_EEPROM_MAGIC) {
797                                 need_swap = true;
798                                 eepdata = (u16 *) (&ahp->ah_eeprom);
799
800                                 for (addr = 0;
801                                      addr <
802                                              sizeof(struct ar5416_eeprom) /
803                                              sizeof(u16); addr++) {
804                                         u16 temp;
805
806                                         temp = swab16(*eepdata);
807                                         *eepdata = temp;
808                                         eepdata++;
809
810                                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
811                                                  "0x%04X  ", *eepdata);
812                                         if (((addr + 1) % 6) == 0)
813                                                 DPRINTF(ah->ah_sc,
814                                                          ATH_DBG_EEPROM,
815                                                          "\n");
816                                 }
817                         } else {
818                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
819                                          "Invalid EEPROM Magic. "
820                                         "endianness missmatch.\n");
821                                 return -EINVAL;
822                         }
823                 }
824         }
825         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
826                  need_swap ? "True" : "False");
827
828         if (need_swap)
829                 el = swab16(ahp->ah_eeprom.baseEepHeader.length);
830         else
831                 el = ahp->ah_eeprom.baseEepHeader.length;
832
833         if (el > sizeof(struct ar5416_eeprom))
834                 el = sizeof(struct ar5416_eeprom) / sizeof(u16);
835         else
836                 el = el / sizeof(u16);
837
838         eepdata = (u16 *) (&ahp->ah_eeprom);
839
840         for (i = 0; i < el; i++)
841                 sum ^= *eepdata++;
842
843         if (need_swap) {
844                 u32 integer, j;
845                 u16 word;
846
847                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
848                          "EEPROM Endianness is not native.. Changing \n");
849
850                 word = swab16(eep->baseEepHeader.length);
851                 eep->baseEepHeader.length = word;
852
853                 word = swab16(eep->baseEepHeader.checksum);
854                 eep->baseEepHeader.checksum = word;
855
856                 word = swab16(eep->baseEepHeader.version);
857                 eep->baseEepHeader.version = word;
858
859                 word = swab16(eep->baseEepHeader.regDmn[0]);
860                 eep->baseEepHeader.regDmn[0] = word;
861
862                 word = swab16(eep->baseEepHeader.regDmn[1]);
863                 eep->baseEepHeader.regDmn[1] = word;
864
865                 word = swab16(eep->baseEepHeader.rfSilent);
866                 eep->baseEepHeader.rfSilent = word;
867
868                 word = swab16(eep->baseEepHeader.blueToothOptions);
869                 eep->baseEepHeader.blueToothOptions = word;
870
871                 word = swab16(eep->baseEepHeader.deviceCap);
872                 eep->baseEepHeader.deviceCap = word;
873
874                 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
875                         struct modal_eep_header *pModal =
876                                 &eep->modalHeader[j];
877                         integer = swab32(pModal->antCtrlCommon);
878                         pModal->antCtrlCommon = integer;
879
880                         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
881                                 integer = swab32(pModal->antCtrlChain[i]);
882                                 pModal->antCtrlChain[i] = integer;
883                         }
884
885                         for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
886                                 word = swab16(pModal->spurChans[i].spurChan);
887                                 pModal->spurChans[i].spurChan = word;
888                         }
889                 }
890         }
891
892         if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
893             ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
894                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
895                          "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
896                          sum, ar5416_get_eep_ver(ahp));
897                 return -EINVAL;
898         }
899
900         return 0;
901 }
902
903 static bool ath9k_hw_chip_test(struct ath_hal *ah)
904 {
905         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
906         u32 regHold[2];
907         u32 patternData[4] = { 0x55555555,
908                                      0xaaaaaaaa,
909                                      0x66666666,
910                                      0x99999999 };
911         int i, j;
912
913         for (i = 0; i < 2; i++) {
914                 u32 addr = regAddr[i];
915                 u32 wrData, rdData;
916
917                 regHold[i] = REG_READ(ah, addr);
918                 for (j = 0; j < 0x100; j++) {
919                         wrData = (j << 16) | j;
920                         REG_WRITE(ah, addr, wrData);
921                         rdData = REG_READ(ah, addr);
922                         if (rdData != wrData) {
923                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
924                                  "%s: address test failed "
925                                 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
926                                  __func__, addr, wrData, rdData);
927                                 return false;
928                         }
929                 }
930                 for (j = 0; j < 4; j++) {
931                         wrData = patternData[j];
932                         REG_WRITE(ah, addr, wrData);
933                         rdData = REG_READ(ah, addr);
934                         if (wrData != rdData) {
935                                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
936                                  "%s: address test failed "
937                                 "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
938                                  __func__, addr, wrData, rdData);
939                                 return false;
940                         }
941                 }
942                 REG_WRITE(ah, regAddr[i], regHold[i]);
943         }
944         udelay(100);
945         return true;
946 }
947
948 u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
949 {
950         u32 bits = REG_READ(ah, AR_RX_FILTER);
951         u32 phybits = REG_READ(ah, AR_PHY_ERR);
952
953         if (phybits & AR_PHY_ERR_RADAR)
954                 bits |= ATH9K_RX_FILTER_PHYRADAR;
955         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
956                 bits |= ATH9K_RX_FILTER_PHYERR;
957         return bits;
958 }
959
960 void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
961 {
962         u32 phybits;
963
964         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
965         phybits = 0;
966         if (bits & ATH9K_RX_FILTER_PHYRADAR)
967                 phybits |= AR_PHY_ERR_RADAR;
968         if (bits & ATH9K_RX_FILTER_PHYERR)
969                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
970         REG_WRITE(ah, AR_PHY_ERR, phybits);
971
972         if (phybits)
973                 REG_WRITE(ah, AR_RXCFG,
974                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
975         else
976                 REG_WRITE(ah, AR_RXCFG,
977                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
978 }
979
980 bool ath9k_hw_setcapability(struct ath_hal *ah,
981                             enum ath9k_capability_type type,
982                             u32 capability,
983                             u32 setting,
984                             int *status)
985 {
986         struct ath_hal_5416 *ahp = AH5416(ah);
987         u32 v;
988
989         switch (type) {
990         case ATH9K_CAP_TKIP_MIC:
991                 if (setting)
992                         ahp->ah_staId1Defaults |=
993                                 AR_STA_ID1_CRPT_MIC_ENABLE;
994                 else
995                         ahp->ah_staId1Defaults &=
996                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
997                 return true;
998         case ATH9K_CAP_DIVERSITY:
999                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
1000                 if (setting)
1001                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1002                 else
1003                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1004                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1005                 return true;
1006         case ATH9K_CAP_MCAST_KEYSRCH:
1007                 if (setting)
1008                         ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
1009                 else
1010                         ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1011                 return true;
1012         case ATH9K_CAP_TSF_ADJUST:
1013                 if (setting)
1014                         ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
1015                 else
1016                         ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
1017                 return true;
1018         default:
1019                 return false;
1020         }
1021 }
1022
1023 void ath9k_hw_dmaRegDump(struct ath_hal *ah)
1024 {
1025         u32 val[ATH9K_NUM_DMA_DEBUG_REGS];
1026         int qcuOffset = 0, dcuOffset = 0;
1027         u32 *qcuBase = &val[0], *dcuBase = &val[4];
1028         int i;
1029
1030         REG_WRITE(ah, AR_MACMISC,
1031                   ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1032                    (AR_MACMISC_MISC_OBS_BUS_1 <<
1033                     AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1034
1035         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "Raw DMA Debug values:\n");
1036         for (i = 0; i < ATH9K_NUM_DMA_DEBUG_REGS; i++) {
1037                 if (i % 4 == 0)
1038                         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
1039
1040                 val[i] = REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u32)));
1041                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%d: %08x ", i, val[i]);
1042         }
1043
1044         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n\n");
1045         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1046                  "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1047
1048         for (i = 0; i < ATH9K_NUM_QUEUES;
1049              i++, qcuOffset += 4, dcuOffset += 5) {
1050                 if (i == 8) {
1051                         qcuOffset = 0;
1052                         qcuBase++;
1053                 }
1054
1055                 if (i == 6) {
1056                         dcuOffset = 0;
1057                         dcuBase++;
1058                 }
1059
1060                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1061                          "%2d          %2x      %1x     %2x           %2x\n",
1062                          i, (*qcuBase & (0x7 << qcuOffset)) >> qcuOffset,
1063                          (*qcuBase & (0x8 << qcuOffset)) >> (qcuOffset +
1064                                                              3),
1065                          val[2] & (0x7 << (i * 3)) >> (i * 3),
1066                          (*dcuBase & (0x1f << dcuOffset)) >> dcuOffset);
1067         }
1068
1069         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "\n");
1070         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1071                  "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1072                  (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1073         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1074                  "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1075                  (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1076         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1077                  "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1078                  (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1079         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1080                  "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1081                  (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1082         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1083                  "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1084                  (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1085         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1086                  "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1087                  (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1088
1089         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "pcu observe 0x%x \n",
1090                 REG_READ(ah, AR_OBS_BUS_1));
1091         DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
1092                 "AR_CR 0x%x \n", REG_READ(ah, AR_CR));
1093 }
1094
1095 u32 ath9k_hw_GetMibCycleCountsPct(struct ath_hal *ah,
1096                                         u32 *rxc_pcnt,
1097                                         u32 *rxf_pcnt,
1098                                         u32 *txf_pcnt)
1099 {
1100         static u32 cycles, rx_clear, rx_frame, tx_frame;
1101         u32 good = 1;
1102
1103         u32 rc = REG_READ(ah, AR_RCCNT);
1104         u32 rf = REG_READ(ah, AR_RFCNT);
1105         u32 tf = REG_READ(ah, AR_TFCNT);
1106         u32 cc = REG_READ(ah, AR_CCCNT);
1107
1108         if (cycles == 0 || cycles > cc) {
1109                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1110                          "%s: cycle counter wrap. ExtBusy = 0\n",
1111                          __func__);
1112                 good = 0;
1113         } else {
1114                 u32 cc_d = cc - cycles;
1115                 u32 rc_d = rc - rx_clear;
1116                 u32 rf_d = rf - rx_frame;
1117                 u32 tf_d = tf - tx_frame;
1118
1119                 if (cc_d != 0) {
1120                         *rxc_pcnt = rc_d * 100 / cc_d;
1121                         *rxf_pcnt = rf_d * 100 / cc_d;
1122                         *txf_pcnt = tf_d * 100 / cc_d;
1123                 } else {
1124                         good = 0;
1125                 }
1126         }
1127
1128         cycles = cc;
1129         rx_frame = rf;
1130         rx_clear = rc;
1131         tx_frame = tf;
1132
1133         return good;
1134 }
1135
1136 void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
1137 {
1138         u32 macmode;
1139
1140         if (mode == ATH9K_HT_MACMODE_2040 &&
1141             !ah->ah_config.cwm_ignore_extcca)
1142                 macmode = AR_2040_JOINED_RX_CLEAR;
1143         else
1144                 macmode = 0;
1145
1146         REG_WRITE(ah, AR_2040_MODE, macmode);
1147 }
1148
1149 static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
1150 {
1151         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1152 }
1153
1154
1155 static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
1156                                               struct ath_softc *sc,
1157                                               void __iomem *mem,
1158                                               int *status)
1159 {
1160         static const u8 defbssidmask[ETH_ALEN] =
1161                 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1162         struct ath_hal_5416 *ahp;
1163         struct ath_hal *ah;
1164
1165         ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
1166         if (ahp == NULL) {
1167                 DPRINTF(sc, ATH_DBG_FATAL,
1168                          "%s: cannot allocate memory for state block\n",
1169                          __func__);
1170                 *status = -ENOMEM;
1171                 return NULL;
1172         }
1173
1174         ah = &ahp->ah;
1175
1176         ah->ah_sc = sc;
1177         ah->ah_sh = mem;
1178
1179         ah->ah_magic = AR5416_MAGIC;
1180         ah->ah_countryCode = CTRY_DEFAULT;
1181
1182         ah->ah_devid = devid;
1183         ah->ah_subvendorid = 0;
1184
1185         ah->ah_flags = 0;
1186         if ((devid == AR5416_AR9100_DEVID))
1187                 ah->ah_macVersion = AR_SREV_VERSION_9100;
1188         if (!AR_SREV_9100(ah))
1189                 ah->ah_flags = AH_USE_EEPROM;
1190
1191         ah->ah_powerLimit = MAX_RATE_POWER;
1192         ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
1193
1194         ahp->ah_atimWindow = 0;
1195         ahp->ah_diversityControl = ah->ah_config.diversity_control;
1196         ahp->ah_antennaSwitchSwap =
1197                 ah->ah_config.antenna_switch_swap;
1198
1199         ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
1200         ahp->ah_beaconInterval = 100;
1201         ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
1202         ahp->ah_slottime = (u32) -1;
1203         ahp->ah_acktimeout = (u32) -1;
1204         ahp->ah_ctstimeout = (u32) -1;
1205         ahp->ah_globaltxtimeout = (u32) -1;
1206         memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
1207
1208         ahp->ah_gBeaconRate = 0;
1209
1210         return ahp;
1211 }
1212
1213 static int ath9k_hw_eeprom_attach(struct ath_hal *ah)
1214 {
1215         int status;
1216
1217         if (ath9k_hw_use_flash(ah))
1218                 ath9k_hw_flash_map(ah);
1219
1220         if (!ath9k_hw_fill_eeprom(ah))
1221                 return -EIO;
1222
1223         status = ath9k_hw_check_eeprom(ah);
1224
1225         return status;
1226 }
1227
1228 u32 ath9k_hw_get_eeprom(struct ath_hal_5416 *ahp,
1229                               enum eeprom_param param)
1230 {
1231         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
1232         struct modal_eep_header *pModal = eep->modalHeader;
1233         struct base_eep_header *pBase = &eep->baseEepHeader;
1234
1235         switch (param) {
1236         case EEP_NFTHRESH_5:
1237                 return -pModal[0].noiseFloorThreshCh[0];
1238         case EEP_NFTHRESH_2:
1239                 return -pModal[1].noiseFloorThreshCh[0];
1240         case AR_EEPROM_MAC(0):
1241                 return pBase->macAddr[0] << 8 | pBase->macAddr[1];
1242         case AR_EEPROM_MAC(1):
1243                 return pBase->macAddr[2] << 8 | pBase->macAddr[3];
1244         case AR_EEPROM_MAC(2):
1245                 return pBase->macAddr[4] << 8 | pBase->macAddr[5];
1246         case EEP_REG_0:
1247                 return pBase->regDmn[0];
1248         case EEP_REG_1:
1249                 return pBase->regDmn[1];
1250         case EEP_OP_CAP:
1251                 return pBase->deviceCap;
1252         case EEP_OP_MODE:
1253                 return pBase->opCapFlags;
1254         case EEP_RF_SILENT:
1255                 return pBase->rfSilent;
1256         case EEP_OB_5:
1257                 return pModal[0].ob;
1258         case EEP_DB_5:
1259                 return pModal[0].db;
1260         case EEP_OB_2:
1261                 return pModal[1].ob;
1262         case EEP_DB_2:
1263                 return pModal[1].db;
1264         case EEP_MINOR_REV:
1265                 return pBase->version & AR5416_EEP_VER_MINOR_MASK;
1266         case EEP_TX_MASK:
1267                 return pBase->txMask;
1268         case EEP_RX_MASK:
1269                 return pBase->rxMask;
1270         default:
1271                 return 0;
1272         }
1273 }
1274
1275 static int ath9k_hw_get_radiorev(struct ath_hal *ah)
1276 {
1277         u32 val;
1278         int i;
1279
1280         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
1281         for (i = 0; i < 8; i++)
1282                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
1283         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
1284         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
1285         return ath9k_hw_reverse_bits(val, 8);
1286 }
1287
1288 static int ath9k_hw_init_macaddr(struct ath_hal *ah)
1289 {
1290         u32 sum;
1291         int i;
1292         u16 eeval;
1293         struct ath_hal_5416 *ahp = AH5416(ah);
1294         DECLARE_MAC_BUF(mac);
1295
1296         sum = 0;
1297         for (i = 0; i < 3; i++) {
1298                 eeval = ath9k_hw_get_eeprom(ahp, AR_EEPROM_MAC(i));
1299                 sum += eeval;
1300                 ahp->ah_macaddr[2 * i] = eeval >> 8;
1301                 ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
1302         }
1303         if (sum == 0 || sum == 0xffff * 3) {
1304                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1305                          "%s: mac address read failed: %s\n", __func__,
1306                          print_mac(mac, ahp->ah_macaddr));
1307                 return -EADDRNOTAVAIL;
1308         }
1309
1310         return 0;
1311 }
1312
1313 static inline int16_t ath9k_hw_interpolate(u16 target,
1314                                            u16 srcLeft,
1315                                            u16 srcRight,
1316                                            int16_t targetLeft,
1317                                            int16_t targetRight)
1318 {
1319         int16_t rv;
1320
1321         if (srcRight == srcLeft) {
1322                 rv = targetLeft;
1323         } else {
1324                 rv = (int16_t) (((target - srcLeft) * targetRight +
1325                                  (srcRight - target) * targetLeft) /
1326                                 (srcRight - srcLeft));
1327         }
1328         return rv;
1329 }
1330
1331 static inline u16 ath9k_hw_fbin2freq(u8 fbin,
1332                                            bool is2GHz)
1333 {
1334
1335         if (fbin == AR5416_BCHAN_UNUSED)
1336                 return fbin;
1337
1338         return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
1339 }
1340
1341 static u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah,
1342                                                u16 i,
1343                                                bool is2GHz)
1344 {
1345         struct ath_hal_5416 *ahp = AH5416(ah);
1346         struct ar5416_eeprom *eep =
1347                 (struct ar5416_eeprom *) &ahp->ah_eeprom;
1348         u16 spur_val = AR_NO_SPUR;
1349
1350         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1351                  "Getting spur idx %d is2Ghz. %d val %x\n",
1352                  i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
1353
1354         switch (ah->ah_config.spurmode) {
1355         case SPUR_DISABLE:
1356                 break;
1357         case SPUR_ENABLE_IOCTL:
1358                 spur_val = ah->ah_config.spurchans[i][is2GHz];
1359                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1360                          "Getting spur val from new loc. %d\n", spur_val);
1361                 break;
1362         case SPUR_ENABLE_EEPROM:
1363                 spur_val = eep->modalHeader[is2GHz].spurChans[i].spurChan;
1364                 break;
1365
1366         }
1367         return spur_val;
1368 }
1369
1370 static int ath9k_hw_rfattach(struct ath_hal *ah)
1371 {
1372         bool rfStatus = false;
1373         int ecode = 0;
1374
1375         rfStatus = ath9k_hw_init_rf(ah, &ecode);
1376         if (!rfStatus) {
1377                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1378                          "%s: RF setup failed, status %u\n", __func__,
1379                          ecode);
1380                 return ecode;
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int ath9k_hw_rf_claim(struct ath_hal *ah)
1387 {
1388         u32 val;
1389
1390         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1391
1392         val = ath9k_hw_get_radiorev(ah);
1393         switch (val & AR_RADIO_SREV_MAJOR) {
1394         case 0:
1395                 val = AR_RAD5133_SREV_MAJOR;
1396                 break;
1397         case AR_RAD5133_SREV_MAJOR:
1398         case AR_RAD5122_SREV_MAJOR:
1399         case AR_RAD2133_SREV_MAJOR:
1400         case AR_RAD2122_SREV_MAJOR:
1401                 break;
1402         default:
1403                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1404                          "%s: 5G Radio Chip Rev 0x%02X is not "
1405                         "supported by this driver\n",
1406                          __func__, ah->ah_analog5GhzRev);
1407                 return -EOPNOTSUPP;
1408         }
1409
1410         ah->ah_analog5GhzRev = val;
1411
1412         return 0;
1413 }
1414
1415 static void ath9k_hw_init_pll(struct ath_hal *ah,
1416                               struct ath9k_channel *chan)
1417 {
1418         u32 pll;
1419
1420         if (AR_SREV_9100(ah)) {
1421                 if (chan && IS_CHAN_5GHZ(chan))
1422                         pll = 0x1450;
1423                 else
1424                         pll = 0x1458;
1425         } else {
1426                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1427                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1428
1429                         if (chan && IS_CHAN_HALF_RATE(chan))
1430                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1431                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1432                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1433
1434                         if (chan && IS_CHAN_5GHZ(chan)) {
1435                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1436
1437
1438                                 if (AR_SREV_9280_20(ah)) {
1439                                         if (((chan->channel % 20) == 0)
1440                                             || ((chan->channel % 10) == 0))
1441                                                 pll = 0x2850;
1442                                         else
1443                                                 pll = 0x142c;
1444                                 }
1445                         } else {
1446                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1447                         }
1448
1449                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1450
1451                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1452
1453                         if (chan && IS_CHAN_HALF_RATE(chan))
1454                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1455                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1456                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1457
1458                         if (chan && IS_CHAN_5GHZ(chan))
1459                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1460                         else
1461                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1462                 } else {
1463                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1464
1465                         if (chan && IS_CHAN_HALF_RATE(chan))
1466                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1467                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1468                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1469
1470                         if (chan && IS_CHAN_5GHZ(chan))
1471                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1472                         else
1473                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1474                 }
1475         }
1476         REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
1477
1478         udelay(RTC_PLL_SETTLE_DELAY);
1479
1480         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1481 }
1482
1483 static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
1484                               enum ath9k_ht_macmode macmode)
1485 {
1486         u32 phymode;
1487         struct ath_hal_5416 *ahp = AH5416(ah);
1488
1489         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1490                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
1491
1492         if (IS_CHAN_HT40(chan)) {
1493                 phymode |= AR_PHY_FC_DYN2040_EN;
1494
1495                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1496                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1497                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1498
1499                 if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1500                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1501         }
1502         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1503
1504         ath9k_hw_set11nmac2040(ah, macmode);
1505
1506         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1507         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1508 }
1509
1510 static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
1511 {
1512         u32 val;
1513
1514         val = REG_READ(ah, AR_STA_ID1);
1515         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1516         switch (opmode) {
1517         case ATH9K_M_HOSTAP:
1518                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1519                           | AR_STA_ID1_KSRCH_MODE);
1520                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1521                 break;
1522         case ATH9K_M_IBSS:
1523                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1524                           | AR_STA_ID1_KSRCH_MODE);
1525                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1526                 break;
1527         case ATH9K_M_STA:
1528         case ATH9K_M_MONITOR:
1529                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1530                 break;
1531         }
1532 }
1533
1534 static void
1535 ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
1536 {
1537         u32 rfMode = 0;
1538
1539         if (chan == NULL)
1540                 return;
1541
1542         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1543                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1544
1545         if (!AR_SREV_9280_10_OR_LATER(ah))
1546                 rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ :
1547                         AR_PHY_MODE_RF2GHZ;
1548
1549         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1550                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1551
1552         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1553 }
1554
1555 static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
1556 {
1557         u32 rst_flags;
1558         u32 tmpReg;
1559
1560         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1561                   AR_RTC_FORCE_WAKE_ON_INT);
1562
1563         if (AR_SREV_9100(ah)) {
1564                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1565                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1566         } else {
1567                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1568                 if (tmpReg &
1569                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1570                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1571                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1572                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1573                 } else {
1574                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1575                 }
1576
1577                 rst_flags = AR_RTC_RC_MAC_WARM;
1578                 if (type == ATH9K_RESET_COLD)
1579                         rst_flags |= AR_RTC_RC_MAC_COLD;
1580         }
1581
1582         REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
1583         udelay(50);
1584
1585         REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
1586         if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
1587                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1588                         "%s: RTC stuck in MAC reset\n",
1589                         __func__);
1590                 return false;
1591         }
1592
1593         if (!AR_SREV_9100(ah))
1594                 REG_WRITE(ah, AR_RC, 0);
1595
1596         ath9k_hw_init_pll(ah, NULL);
1597
1598         if (AR_SREV_9100(ah))
1599                 udelay(50);
1600
1601         return true;
1602 }
1603
1604 static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
1605 {
1606         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1607                   AR_RTC_FORCE_WAKE_ON_INT);
1608
1609         REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
1610         REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
1611
1612         if (!ath9k_hw_wait(ah,
1613                            AR_RTC_STATUS,
1614                            AR_RTC_STATUS_M,
1615                            AR_RTC_STATUS_ON)) {
1616                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n",
1617                          __func__);
1618                 return false;
1619         }
1620
1621         ath9k_hw_read_revisions(ah);
1622
1623         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1624 }
1625
1626 static bool ath9k_hw_set_reset_reg(struct ath_hal *ah,
1627                                    u32 type)
1628 {
1629         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1630                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1631
1632         switch (type) {
1633         case ATH9K_RESET_POWER_ON:
1634                 return ath9k_hw_set_reset_power_on(ah);
1635                 break;
1636         case ATH9K_RESET_WARM:
1637         case ATH9K_RESET_COLD:
1638                 return ath9k_hw_set_reset(ah, type);
1639                 break;
1640         default:
1641                 return false;
1642         }
1643 }
1644
1645 static
1646 struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
1647                                           struct ath9k_channel *chan)
1648 {
1649         if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
1650                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1651                          "%s: invalid channel %u/0x%x; not marked as "
1652                          "2GHz or 5GHz\n", __func__, chan->channel,
1653                          chan->channelFlags);
1654                 return NULL;
1655         }
1656
1657         if (!IS_CHAN_OFDM(chan) &&
1658               !IS_CHAN_CCK(chan) &&
1659               !IS_CHAN_HT20(chan) &&
1660               !IS_CHAN_HT40(chan)) {
1661                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1662                         "%s: invalid channel %u/0x%x; not marked as "
1663                         "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
1664                         __func__, chan->channel, chan->channelFlags);
1665                 return NULL;
1666         }
1667
1668         return ath9k_regd_check_channel(ah, chan);
1669 }
1670
1671 static inline bool
1672 ath9k_hw_get_lower_upper_index(u8 target,
1673                                u8 *pList,
1674                                u16 listSize,
1675                                u16 *indexL,
1676                                u16 *indexR)
1677 {
1678         u16 i;
1679
1680         if (target <= pList[0]) {
1681                 *indexL = *indexR = 0;
1682                 return true;
1683         }
1684         if (target >= pList[listSize - 1]) {
1685                 *indexL = *indexR = (u16) (listSize - 1);
1686                 return true;
1687         }
1688
1689         for (i = 0; i < listSize - 1; i++) {
1690                 if (pList[i] == target) {
1691                         *indexL = *indexR = i;
1692                         return true;
1693                 }
1694                 if (target < pList[i + 1]) {
1695                         *indexL = i;
1696                         *indexR = (u16) (i + 1);
1697                         return false;
1698                 }
1699         }
1700         return false;
1701 }
1702
1703 static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
1704 {
1705         int16_t nfval;
1706         int16_t sort[ATH9K_NF_CAL_HIST_MAX];
1707         int i, j;
1708
1709         for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
1710                 sort[i] = nfCalBuffer[i];
1711
1712         for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
1713                 for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
1714                         if (sort[j] > sort[j - 1]) {
1715                                 nfval = sort[j];
1716                                 sort[j] = sort[j - 1];
1717                                 sort[j - 1] = nfval;
1718                         }
1719                 }
1720         }
1721         nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
1722
1723         return nfval;
1724 }
1725
1726 static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
1727                                               int16_t *nfarray)
1728 {
1729         int i;
1730
1731         for (i = 0; i < NUM_NF_READINGS; i++) {
1732                 h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
1733
1734                 if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
1735                         h[i].currIndex = 0;
1736
1737                 if (h[i].invalidNFcount > 0) {
1738                         if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE
1739                             || nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) {
1740                                 h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX;
1741                         } else {
1742                                 h[i].invalidNFcount--;
1743                                 h[i].privNF = nfarray[i];
1744                         }
1745                 } else {
1746                         h[i].privNF =
1747                                 ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
1748                 }
1749         }
1750         return;
1751 }
1752
1753 static void ar5416GetNoiseFloor(struct ath_hal *ah,
1754                                 int16_t nfarray[NUM_NF_READINGS])
1755 {
1756         int16_t nf;
1757
1758         if (AR_SREV_9280_10_OR_LATER(ah))
1759                 nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
1760         else
1761                 nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1762
1763         if (nf & 0x100)
1764                 nf = 0 - ((nf ^ 0x1ff) + 1);
1765         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1766                  "NF calibrated [ctl] [chain 0] is %d\n", nf);
1767         nfarray[0] = nf;
1768
1769         if (AR_SREV_9280_10_OR_LATER(ah))
1770                 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
1771                         AR9280_PHY_CH1_MINCCA_PWR);
1772         else
1773                 nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
1774                         AR_PHY_CH1_MINCCA_PWR);
1775
1776         if (nf & 0x100)
1777                 nf = 0 - ((nf ^ 0x1ff) + 1);
1778         DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1779                  "NF calibrated [ctl] [chain 1] is %d\n", nf);
1780         nfarray[1] = nf;
1781
1782         if (!AR_SREV_9280(ah)) {
1783                 nf = MS(REG_READ(ah, AR_PHY_CH2_CCA),
1784                         AR_PHY_CH2_MINCCA_PWR);
1785                 if (nf & 0x100)
1786                         nf = 0 - ((nf ^ 0x1ff) + 1);
1787                 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1788                          "NF calibrated [ctl] [chain 2] is %d\n", nf);
1789                 nfarray[2] = nf;
1790         }
1791
1792         if (AR_SREV_9280_10_OR_LATER(ah))
1793                 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
1794                         AR9280_PHY_EXT_MINCCA_PWR);
1795         else
1796                 nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
1797                         AR_PHY_EXT_MINCCA_PWR);
1798
1799         if (nf & 0x100)
1800                 nf = 0 - ((nf ^ 0x1ff) + 1);
1801         DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1802                  "NF calibrated [ext] [chain 0] is %d\n", nf);
1803         nfarray[3] = nf;
1804
1805         if (AR_SREV_9280_10_OR_LATER(ah))
1806                 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
1807                         AR9280_PHY_CH1_EXT_MINCCA_PWR);
1808         else
1809                 nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
1810                         AR_PHY_CH1_EXT_MINCCA_PWR);
1811
1812         if (nf & 0x100)
1813                 nf = 0 - ((nf ^ 0x1ff) + 1);
1814         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1815                  "NF calibrated [ext] [chain 1] is %d\n", nf);
1816         nfarray[4] = nf;
1817
1818         if (!AR_SREV_9280(ah)) {
1819                 nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA),
1820                         AR_PHY_CH2_EXT_MINCCA_PWR);
1821                 if (nf & 0x100)
1822                         nf = 0 - ((nf ^ 0x1ff) + 1);
1823                 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
1824                          "NF calibrated [ext] [chain 2] is %d\n", nf);
1825                 nfarray[5] = nf;
1826         }
1827 }
1828
1829 static bool
1830 getNoiseFloorThresh(struct ath_hal *ah,
1831                     const struct ath9k_channel *chan,
1832                     int16_t *nft)
1833 {
1834         struct ath_hal_5416 *ahp = AH5416(ah);
1835
1836         switch (chan->chanmode) {
1837         case CHANNEL_A:
1838         case CHANNEL_A_HT20:
1839         case CHANNEL_A_HT40PLUS:
1840         case CHANNEL_A_HT40MINUS:
1841                 *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_5);
1842                 break;
1843         case CHANNEL_B:
1844         case CHANNEL_G:
1845         case CHANNEL_G_HT20:
1846         case CHANNEL_G_HT40PLUS:
1847         case CHANNEL_G_HT40MINUS:
1848                 *nft = (int16_t) ath9k_hw_get_eeprom(ahp, EEP_NFTHRESH_2);
1849                 break;
1850         default:
1851                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
1852                          "%s: invalid channel flags 0x%x\n", __func__,
1853                          chan->channelFlags);
1854                 return false;
1855         }
1856         return true;
1857 }
1858
1859 static void ath9k_hw_start_nfcal(struct ath_hal *ah)
1860 {
1861         REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
1862                     AR_PHY_AGC_CONTROL_ENABLE_NF);
1863         REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
1864                     AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1865         REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1866 }
1867
1868 static void
1869 ath9k_hw_loadnf(struct ath_hal *ah, struct ath9k_channel *chan)
1870 {
1871         struct ath9k_nfcal_hist *h;
1872         int i, j;
1873         int32_t val;
1874         const u32 ar5416_cca_regs[6] = {
1875                 AR_PHY_CCA,
1876                 AR_PHY_CH1_CCA,
1877                 AR_PHY_CH2_CCA,
1878                 AR_PHY_EXT_CCA,
1879                 AR_PHY_CH1_EXT_CCA,
1880                 AR_PHY_CH2_EXT_CCA
1881         };
1882         u8 chainmask;
1883
1884         if (AR_SREV_9280(ah))
1885                 chainmask = 0x1B;
1886         else
1887                 chainmask = 0x3F;
1888
1889 #ifdef ATH_NF_PER_CHAN
1890         h = chan->nfCalHist;
1891 #else
1892         h = ah->nfCalHist;
1893 #endif
1894
1895         for (i = 0; i < NUM_NF_READINGS; i++) {
1896                 if (chainmask & (1 << i)) {
1897                         val = REG_READ(ah, ar5416_cca_regs[i]);
1898                         val &= 0xFFFFFE00;
1899                         val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
1900                         REG_WRITE(ah, ar5416_cca_regs[i], val);
1901                 }
1902         }
1903
1904         REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
1905                     AR_PHY_AGC_CONTROL_ENABLE_NF);
1906         REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
1907                     AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1908         REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1909
1910         for (j = 0; j < 1000; j++) {
1911                 if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
1912                      AR_PHY_AGC_CONTROL_NF) == 0)
1913                         break;
1914                 udelay(10);
1915         }
1916
1917         for (i = 0; i < NUM_NF_READINGS; i++) {
1918                 if (chainmask & (1 << i)) {
1919                         val = REG_READ(ah, ar5416_cca_regs[i]);
1920                         val &= 0xFFFFFE00;
1921                         val |= (((u32) (-50) << 1) & 0x1ff);
1922                         REG_WRITE(ah, ar5416_cca_regs[i], val);
1923                 }
1924         }
1925 }
1926
1927 static int16_t ath9k_hw_getnf(struct ath_hal *ah,
1928                               struct ath9k_channel *chan)
1929 {
1930         int16_t nf, nfThresh;
1931         int16_t nfarray[NUM_NF_READINGS] = { 0 };
1932         struct ath9k_nfcal_hist *h;
1933         u8 chainmask;
1934
1935         if (AR_SREV_9280(ah))
1936                 chainmask = 0x1B;
1937         else
1938                 chainmask = 0x3F;
1939
1940         chan->channelFlags &= (~CHANNEL_CW_INT);
1941         if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1942                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1943                          "%s: NF did not complete in calibration window\n",
1944                          __func__);
1945                 nf = 0;
1946                 chan->rawNoiseFloor = nf;
1947                 return chan->rawNoiseFloor;
1948         } else {
1949                 ar5416GetNoiseFloor(ah, nfarray);
1950                 nf = nfarray[0];
1951                 if (getNoiseFloorThresh(ah, chan, &nfThresh)
1952                     && nf > nfThresh) {
1953                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
1954                                  "%s: noise floor failed detected; "
1955                                  "detected %d, threshold %d\n", __func__,
1956                                  nf, nfThresh);
1957                         chan->channelFlags |= CHANNEL_CW_INT;
1958                 }
1959         }
1960
1961 #ifdef ATH_NF_PER_CHAN
1962         h = chan->nfCalHist;
1963 #else
1964         h = ah->nfCalHist;
1965 #endif
1966
1967         ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
1968         chan->rawNoiseFloor = h[0].privNF;
1969
1970         return chan->rawNoiseFloor;
1971 }
1972
1973 static void ath9k_hw_update_mibstats(struct ath_hal *ah,
1974                               struct ath9k_mib_stats *stats)
1975 {
1976         stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL);
1977         stats->rts_bad += REG_READ(ah, AR_RTS_FAIL);
1978         stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL);
1979         stats->rts_good += REG_READ(ah, AR_RTS_OK);
1980         stats->beacons += REG_READ(ah, AR_BEACON_CNT);
1981 }
1982
1983 static void ath9k_enable_mib_counters(struct ath_hal *ah)
1984 {
1985         struct ath_hal_5416 *ahp = AH5416(ah);
1986
1987         DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Enable mib counters\n");
1988
1989         ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
1990
1991         REG_WRITE(ah, AR_FILT_OFDM, 0);
1992         REG_WRITE(ah, AR_FILT_CCK, 0);
1993         REG_WRITE(ah, AR_MIBC,
1994                   ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS)
1995                   & 0x0f);
1996         REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1997         REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1998 }
1999
2000 static void ath9k_hw_disable_mib_counters(struct ath_hal *ah)
2001 {
2002         struct ath_hal_5416 *ahp = AH5416(ah);
2003
2004         DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Disabling MIB counters\n");
2005
2006         REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC | AR_MIBC_CMC);
2007
2008         ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2009
2010         REG_WRITE(ah, AR_FILT_OFDM, 0);
2011         REG_WRITE(ah, AR_FILT_CCK, 0);
2012 }
2013
2014 static int ath9k_hw_get_ani_channel_idx(struct ath_hal *ah,
2015                                         struct ath9k_channel *chan)
2016 {
2017         struct ath_hal_5416 *ahp = AH5416(ah);
2018         int i;
2019
2020         for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
2021                 if (ahp->ah_ani[i].c.channel == chan->channel)
2022                         return i;
2023                 if (ahp->ah_ani[i].c.channel == 0) {
2024                         ahp->ah_ani[i].c.channel = chan->channel;
2025                         ahp->ah_ani[i].c.channelFlags = chan->channelFlags;
2026                         return i;
2027                 }
2028         }
2029
2030         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2031                  "No more channel states left. Using channel 0\n");
2032         return 0;
2033 }
2034
2035 static void ath9k_hw_ani_attach(struct ath_hal *ah)
2036 {
2037         struct ath_hal_5416 *ahp = AH5416(ah);
2038         int i;
2039
2040         ahp->ah_hasHwPhyCounters = 1;
2041
2042         memset(ahp->ah_ani, 0, sizeof(ahp->ah_ani));
2043         for (i = 0; i < ARRAY_SIZE(ahp->ah_ani); i++) {
2044                 ahp->ah_ani[i].ofdmTrigHigh = ATH9K_ANI_OFDM_TRIG_HIGH;
2045                 ahp->ah_ani[i].ofdmTrigLow = ATH9K_ANI_OFDM_TRIG_LOW;
2046                 ahp->ah_ani[i].cckTrigHigh = ATH9K_ANI_CCK_TRIG_HIGH;
2047                 ahp->ah_ani[i].cckTrigLow = ATH9K_ANI_CCK_TRIG_LOW;
2048                 ahp->ah_ani[i].rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH;
2049                 ahp->ah_ani[i].rssiThrLow = ATH9K_ANI_RSSI_THR_LOW;
2050                 ahp->ah_ani[i].ofdmWeakSigDetectOff =
2051                         !ATH9K_ANI_USE_OFDM_WEAK_SIG;
2052                 ahp->ah_ani[i].cckWeakSigThreshold =
2053                         ATH9K_ANI_CCK_WEAK_SIG_THR;
2054                 ahp->ah_ani[i].spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
2055                 ahp->ah_ani[i].firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
2056                 if (ahp->ah_hasHwPhyCounters) {
2057                         ahp->ah_ani[i].ofdmPhyErrBase =
2058                                 AR_PHY_COUNTMAX - ATH9K_ANI_OFDM_TRIG_HIGH;
2059                         ahp->ah_ani[i].cckPhyErrBase =
2060                                 AR_PHY_COUNTMAX - ATH9K_ANI_CCK_TRIG_HIGH;
2061                 }
2062         }
2063         if (ahp->ah_hasHwPhyCounters) {
2064                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2065                         "Setting OfdmErrBase = 0x%08x\n",
2066                         ahp->ah_ani[0].ofdmPhyErrBase);
2067                 DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Setting cckErrBase = 0x%08x\n",
2068                         ahp->ah_ani[0].cckPhyErrBase);
2069
2070                 REG_WRITE(ah, AR_PHY_ERR_1, ahp->ah_ani[0].ofdmPhyErrBase);
2071                 REG_WRITE(ah, AR_PHY_ERR_2, ahp->ah_ani[0].cckPhyErrBase);
2072                 ath9k_enable_mib_counters(ah);
2073         }
2074         ahp->ah_aniPeriod = ATH9K_ANI_PERIOD;
2075         if (ah->ah_config.enable_ani)
2076                 ahp->ah_procPhyErr |= HAL_PROCESS_ANI;
2077 }
2078
2079 static void ath9k_hw_ani_setup(struct ath_hal *ah)
2080 {
2081         struct ath_hal_5416 *ahp = AH5416(ah);
2082         int i;
2083
2084         const int totalSizeDesired[] = { -55, -55, -55, -55, -62 };
2085         const int coarseHigh[] = { -14, -14, -14, -14, -12 };
2086         const int coarseLow[] = { -64, -64, -64, -64, -70 };
2087         const int firpwr[] = { -78, -78, -78, -78, -80 };
2088
2089         for (i = 0; i < 5; i++) {
2090                 ahp->ah_totalSizeDesired[i] = totalSizeDesired[i];
2091                 ahp->ah_coarseHigh[i] = coarseHigh[i];
2092                 ahp->ah_coarseLow[i] = coarseLow[i];
2093                 ahp->ah_firpwr[i] = firpwr[i];
2094         }
2095 }
2096
2097 static void ath9k_hw_ani_detach(struct ath_hal *ah)
2098 {
2099         struct ath_hal_5416 *ahp = AH5416(ah);
2100
2101         DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Detaching Ani\n");
2102         if (ahp->ah_hasHwPhyCounters) {
2103                 ath9k_hw_disable_mib_counters(ah);
2104                 REG_WRITE(ah, AR_PHY_ERR_1, 0);
2105                 REG_WRITE(ah, AR_PHY_ERR_2, 0);
2106         }
2107 }
2108
2109
2110 static bool ath9k_hw_ani_control(struct ath_hal *ah,
2111                                  enum ath9k_ani_cmd cmd, int param)
2112 {
2113         struct ath_hal_5416 *ahp = AH5416(ah);
2114         struct ar5416AniState *aniState = ahp->ah_curani;
2115
2116         switch (cmd & ahp->ah_ani_function) {
2117         case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
2118                 u32 level = param;
2119
2120                 if (level >= ARRAY_SIZE(ahp->ah_totalSizeDesired)) {
2121                         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2122                                  "%s: level out of range (%u > %u)\n",
2123                                  __func__, level,
2124                                  (unsigned) ARRAY_SIZE(ahp->
2125                                                        ah_totalSizeDesired));
2126                         return false;
2127                 }
2128
2129                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
2130                               AR_PHY_DESIRED_SZ_TOT_DES,
2131                               ahp->ah_totalSizeDesired[level]);
2132                 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
2133                               AR_PHY_AGC_CTL1_COARSE_LOW,
2134                               ahp->ah_coarseLow[level]);
2135                 REG_RMW_FIELD(ah, AR_PHY_AGC_CTL1,
2136                               AR_PHY_AGC_CTL1_COARSE_HIGH,
2137                               ahp->ah_coarseHigh[level]);
2138                 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
2139                               AR_PHY_FIND_SIG_FIRPWR,
2140                               ahp->ah_firpwr[level]);
2141
2142                 if (level > aniState->noiseImmunityLevel)
2143                         ahp->ah_stats.ast_ani_niup++;
2144                 else if (level < aniState->noiseImmunityLevel)
2145                         ahp->ah_stats.ast_ani_nidown++;
2146                 aniState->noiseImmunityLevel = level;
2147                 break;
2148         }
2149         case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
2150                 const int m1ThreshLow[] = { 127, 50 };
2151                 const int m2ThreshLow[] = { 127, 40 };
2152                 const int m1Thresh[] = { 127, 0x4d };
2153                 const int m2Thresh[] = { 127, 0x40 };
2154                 const int m2CountThr[] = { 31, 16 };
2155                 const int m2CountThrLow[] = { 63, 48 };
2156                 u32 on = param ? 1 : 0;
2157
2158                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2159                               AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
2160                               m1ThreshLow[on]);
2161                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2162                               AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
2163                               m2ThreshLow[on]);
2164                 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2165                               AR_PHY_SFCORR_M1_THRESH,
2166                               m1Thresh[on]);
2167                 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2168                               AR_PHY_SFCORR_M2_THRESH,
2169                               m2Thresh[on]);
2170                 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
2171                               AR_PHY_SFCORR_M2COUNT_THR,
2172                               m2CountThr[on]);
2173                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
2174                               AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
2175                               m2CountThrLow[on]);
2176
2177                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2178                               AR_PHY_SFCORR_EXT_M1_THRESH_LOW,
2179                               m1ThreshLow[on]);
2180                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2181                               AR_PHY_SFCORR_EXT_M2_THRESH_LOW,
2182                               m2ThreshLow[on]);
2183                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2184                               AR_PHY_SFCORR_EXT_M1_THRESH,
2185                               m1Thresh[on]);
2186                 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
2187                               AR_PHY_SFCORR_EXT_M2_THRESH,
2188                               m2Thresh[on]);
2189
2190                 if (on)
2191                         REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
2192                                     AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2193                 else
2194                         REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
2195                                     AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
2196
2197                 if (!on != aniState->ofdmWeakSigDetectOff) {
2198                         if (on)
2199                                 ahp->ah_stats.ast_ani_ofdmon++;
2200                         else
2201                                 ahp->ah_stats.ast_ani_ofdmoff++;
2202                         aniState->ofdmWeakSigDetectOff = !on;
2203                 }
2204                 break;
2205         }
2206         case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
2207                 const int weakSigThrCck[] = { 8, 6 };
2208                 u32 high = param ? 1 : 0;
2209
2210                 REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
2211                               AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
2212                               weakSigThrCck[high]);
2213                 if (high != aniState->cckWeakSigThreshold) {
2214                         if (high)
2215                                 ahp->ah_stats.ast_ani_cckhigh++;
2216                         else
2217                                 ahp->ah_stats.ast_ani_ccklow++;
2218                         aniState->cckWeakSigThreshold = high;
2219                 }
2220                 break;
2221         }
2222         case ATH9K_ANI_FIRSTEP_LEVEL:{
2223                 const int firstep[] = { 0, 4, 8 };
2224                 u32 level = param;
2225
2226                 if (level >= ARRAY_SIZE(firstep)) {
2227                         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2228                                  "%s: level out of range (%u > %u)\n",
2229                                  __func__, level,
2230                                 (unsigned) ARRAY_SIZE(firstep));
2231                         return false;
2232                 }
2233                 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
2234                               AR_PHY_FIND_SIG_FIRSTEP,
2235                               firstep[level]);
2236                 if (level > aniState->firstepLevel)
2237                         ahp->ah_stats.ast_ani_stepup++;
2238                 else if (level < aniState->firstepLevel)
2239                         ahp->ah_stats.ast_ani_stepdown++;
2240                 aniState->firstepLevel = level;
2241                 break;
2242         }
2243         case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
2244                 const int cycpwrThr1[] =
2245                         { 2, 4, 6, 8, 10, 12, 14, 16 };
2246                 u32 level = param;
2247
2248                 if (level >= ARRAY_SIZE(cycpwrThr1)) {
2249                         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2250                                  "%s: level out of range (%u > %u)\n",
2251                                  __func__, level,
2252                                  (unsigned)
2253                                 ARRAY_SIZE(cycpwrThr1));
2254                         return false;
2255                 }
2256                 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
2257                               AR_PHY_TIMING5_CYCPWR_THR1,
2258                               cycpwrThr1[level]);
2259                 if (level > aniState->spurImmunityLevel)
2260                         ahp->ah_stats.ast_ani_spurup++;
2261                 else if (level < aniState->spurImmunityLevel)
2262                         ahp->ah_stats.ast_ani_spurdown++;
2263                 aniState->spurImmunityLevel = level;
2264                 break;
2265         }
2266         case ATH9K_ANI_PRESENT:
2267                 break;
2268         default:
2269                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2270                         "%s: invalid cmd %u\n", __func__, cmd);
2271                 return false;
2272         }
2273
2274         DPRINTF(ah->ah_sc, ATH_DBG_ANI, "%s: ANI parameters:\n", __func__);
2275         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2276                 "noiseImmunityLevel=%d, spurImmunityLevel=%d, "
2277                 "ofdmWeakSigDetectOff=%d\n",
2278                  aniState->noiseImmunityLevel, aniState->spurImmunityLevel,
2279                  !aniState->ofdmWeakSigDetectOff);
2280         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2281                 "cckWeakSigThreshold=%d, "
2282                 "firstepLevel=%d, listenTime=%d\n",
2283                  aniState->cckWeakSigThreshold, aniState->firstepLevel,
2284                  aniState->listenTime);
2285         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2286                  "cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
2287                  aniState->cycleCount, aniState->ofdmPhyErrCount,
2288                  aniState->cckPhyErrCount);
2289         return true;
2290 }
2291
2292 static void ath9k_ani_restart(struct ath_hal *ah)
2293 {
2294         struct ath_hal_5416 *ahp = AH5416(ah);
2295         struct ar5416AniState *aniState;
2296
2297         if (!DO_ANI(ah))
2298                 return;
2299
2300         aniState = ahp->ah_curani;
2301
2302         aniState->listenTime = 0;
2303         if (ahp->ah_hasHwPhyCounters) {
2304                 if (aniState->ofdmTrigHigh > AR_PHY_COUNTMAX) {
2305                         aniState->ofdmPhyErrBase = 0;
2306                         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2307                                  "OFDM Trigger is too high for hw counters\n");
2308                 } else {
2309                         aniState->ofdmPhyErrBase =
2310                                 AR_PHY_COUNTMAX - aniState->ofdmTrigHigh;
2311                 }
2312                 if (aniState->cckTrigHigh > AR_PHY_COUNTMAX) {
2313                         aniState->cckPhyErrBase = 0;
2314                         DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2315                                  "CCK Trigger is too high for hw counters\n");
2316                 } else {
2317                         aniState->cckPhyErrBase =
2318                                 AR_PHY_COUNTMAX - aniState->cckTrigHigh;
2319                 }
2320                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2321                          "%s: Writing ofdmbase=%u   cckbase=%u\n",
2322                          __func__, aniState->ofdmPhyErrBase,
2323                          aniState->cckPhyErrBase);
2324                 REG_WRITE(ah, AR_PHY_ERR_1, aniState->ofdmPhyErrBase);
2325                 REG_WRITE(ah, AR_PHY_ERR_2, aniState->cckPhyErrBase);
2326                 REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
2327                 REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
2328
2329                 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2330         }
2331         aniState->ofdmPhyErrCount = 0;
2332         aniState->cckPhyErrCount = 0;
2333 }
2334
2335 static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hal *ah)
2336 {
2337         struct ath_hal_5416 *ahp = AH5416(ah);
2338         struct ath9k_channel *chan = ah->ah_curchan;
2339         struct ar5416AniState *aniState;
2340         enum wireless_mode mode;
2341         int32_t rssi;
2342
2343         if (!DO_ANI(ah))
2344                 return;
2345
2346         aniState = ahp->ah_curani;
2347
2348         if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
2349                 if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2350                                          aniState->noiseImmunityLevel + 1)) {
2351                         return;
2352                 }
2353         }
2354
2355         if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) {
2356                 if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2357                                          aniState->spurImmunityLevel + 1)) {
2358                         return;
2359                 }
2360         }
2361
2362         if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2363                 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2364                         ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2365                                              aniState->firstepLevel + 1);
2366                 }
2367                 return;
2368         }
2369         rssi = BEACON_RSSI(ahp);
2370         if (rssi > aniState->rssiThrHigh) {
2371                 if (!aniState->ofdmWeakSigDetectOff) {
2372                         if (ath9k_hw_ani_control(ah,
2373                                          ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2374                                          false)) {
2375                                 ath9k_hw_ani_control(ah,
2376                                         ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2377                                         0);
2378                                 return;
2379                         }
2380                 }
2381                 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2382                         ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2383                                              aniState->firstepLevel + 1);
2384                         return;
2385                 }
2386         } else if (rssi > aniState->rssiThrLow) {
2387                 if (aniState->ofdmWeakSigDetectOff)
2388                         ath9k_hw_ani_control(ah,
2389                                      ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2390                                      true);
2391                 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
2392                         ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2393                                              aniState->firstepLevel + 1);
2394                 return;
2395         } else {
2396                 mode = ath9k_hw_chan2wmode(ah, chan);
2397                 if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
2398                         if (!aniState->ofdmWeakSigDetectOff)
2399                                 ath9k_hw_ani_control(ah,
2400                                      ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2401                                      false);
2402                         if (aniState->firstepLevel > 0)
2403                                 ath9k_hw_ani_control(ah,
2404                                                      ATH9K_ANI_FIRSTEP_LEVEL,
2405                                                      0);
2406                         return;
2407                 }
2408         }
2409 }
2410
2411 static void ath9k_hw_ani_cck_err_trigger(struct ath_hal *ah)
2412 {
2413         struct ath_hal_5416 *ahp = AH5416(ah);
2414         struct ath9k_channel *chan = ah->ah_curchan;
2415         struct ar5416AniState *aniState;
2416         enum wireless_mode mode;
2417         int32_t rssi;
2418
2419         if (!DO_ANI(ah))
2420                 return;
2421
2422         aniState = ahp->ah_curani;
2423         if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) {
2424                 if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2425                                          aniState->noiseImmunityLevel + 1)) {
2426                         return;
2427                 }
2428         }
2429         if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2430                 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) {
2431                         ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2432                                              aniState->firstepLevel + 1);
2433                 }
2434                 return;
2435         }
2436         rssi = BEACON_RSSI(ahp);
2437         if (rssi > aniState->rssiThrLow) {
2438                 if (aniState->firstepLevel < HAL_FIRST_STEP_MAX)
2439                         ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2440                                              aniState->firstepLevel + 1);
2441         } else {
2442                 mode = ath9k_hw_chan2wmode(ah, chan);
2443                 if (mode == ATH9K_MODE_11G || mode == ATH9K_MODE_11B) {
2444                         if (aniState->firstepLevel > 0)
2445                                 ath9k_hw_ani_control(ah,
2446                                                      ATH9K_ANI_FIRSTEP_LEVEL,
2447                                                      0);
2448                 }
2449         }
2450 }
2451
2452 static void ath9k_ani_reset(struct ath_hal *ah)
2453 {
2454         struct ath_hal_5416 *ahp = AH5416(ah);
2455         struct ar5416AniState *aniState;
2456         struct ath9k_channel *chan = ah->ah_curchan;
2457         int index;
2458
2459         if (!DO_ANI(ah))
2460                 return;
2461
2462         index = ath9k_hw_get_ani_channel_idx(ah, chan);
2463         aniState = &ahp->ah_ani[index];
2464         ahp->ah_curani = aniState;
2465
2466         if (DO_ANI(ah) && ah->ah_opmode != ATH9K_M_STA
2467             && ah->ah_opmode != ATH9K_M_IBSS) {
2468                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2469                          "%s: Reset ANI state opmode %u\n", __func__,
2470                          ah->ah_opmode);
2471                 ahp->ah_stats.ast_ani_reset++;
2472                 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0);
2473                 ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0);
2474                 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0);
2475                 ath9k_hw_ani_control(ah,
2476                                      ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2477                                      !ATH9K_ANI_USE_OFDM_WEAK_SIG);
2478                 ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
2479                                      ATH9K_ANI_CCK_WEAK_SIG_THR);
2480                 ath9k_hw_setrxfilter(ah,
2481                                      ath9k_hw_getrxfilter(ah) |
2482                                      ATH9K_RX_FILTER_PHYERR);
2483                 if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2484                         ahp->ah_curani->ofdmTrigHigh =
2485                                 ah->ah_config.ofdm_trig_high;
2486                         ahp->ah_curani->ofdmTrigLow =
2487                                 ah->ah_config.ofdm_trig_low;
2488                         ahp->ah_curani->cckTrigHigh =
2489                                 ah->ah_config.cck_trig_high;
2490                         ahp->ah_curani->cckTrigLow =
2491                                 ah->ah_config.cck_trig_low;
2492                 }
2493                 ath9k_ani_restart(ah);
2494                 return;
2495         }
2496
2497         if (aniState->noiseImmunityLevel != 0)
2498                 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2499                                      aniState->noiseImmunityLevel);
2500         if (aniState->spurImmunityLevel != 0)
2501                 ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2502                                      aniState->spurImmunityLevel);
2503         if (aniState->ofdmWeakSigDetectOff)
2504                 ath9k_hw_ani_control(ah,
2505                                      ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2506                                      !aniState->ofdmWeakSigDetectOff);
2507         if (aniState->cckWeakSigThreshold)
2508                 ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR,
2509                                      aniState->cckWeakSigThreshold);
2510         if (aniState->firstepLevel != 0)
2511                 ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2512                                      aniState->firstepLevel);
2513         if (ahp->ah_hasHwPhyCounters) {
2514                 ath9k_hw_setrxfilter(ah,
2515                                      ath9k_hw_getrxfilter(ah) &
2516                                      ~ATH9K_RX_FILTER_PHYERR);
2517                 ath9k_ani_restart(ah);
2518                 REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
2519                 REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
2520
2521         } else {
2522                 ath9k_ani_restart(ah);
2523                 ath9k_hw_setrxfilter(ah,
2524                                      ath9k_hw_getrxfilter(ah) |
2525                                      ATH9K_RX_FILTER_PHYERR);
2526         }
2527 }
2528
2529 /*
2530  * Process a MIB interrupt.  We may potentially be invoked because
2531  * any of the MIB counters overflow/trigger so don't assume we're
2532  * here because a PHY error counter triggered.
2533  */
2534 void ath9k_hw_procmibevent(struct ath_hal *ah,
2535                            const struct ath9k_node_stats *stats)
2536 {
2537         struct ath_hal_5416 *ahp = AH5416(ah);
2538         u32 phyCnt1, phyCnt2;
2539
2540         DPRINTF(ah->ah_sc, ATH_DBG_ANI, "Processing Mib Intr\n");
2541         /* Reset these counters regardless */
2542         REG_WRITE(ah, AR_FILT_OFDM, 0);
2543         REG_WRITE(ah, AR_FILT_CCK, 0);
2544         if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING))
2545                 REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR);
2546
2547         /* Clear the mib counters and save them in the stats */
2548         ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2549         ahp->ah_stats.ast_nodestats = *stats;
2550
2551         if (!DO_ANI(ah))
2552                 return;
2553
2554         /* NB: these are not reset-on-read */
2555         phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
2556         phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
2557         if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) ||
2558             ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) {
2559                 struct ar5416AniState *aniState = ahp->ah_curani;
2560                 u32 ofdmPhyErrCnt, cckPhyErrCnt;
2561
2562                 /* NB: only use ast_ani_*errs with AH_PRIVATE_DIAG */
2563                 ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
2564                 ahp->ah_stats.ast_ani_ofdmerrs +=
2565                         ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
2566                 aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
2567
2568                 cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
2569                 ahp->ah_stats.ast_ani_cckerrs +=
2570                         cckPhyErrCnt - aniState->cckPhyErrCount;
2571                 aniState->cckPhyErrCount = cckPhyErrCnt;
2572
2573                 /*
2574                  * NB: figure out which counter triggered.  If both
2575                  * trigger we'll only deal with one as the processing
2576                  * clobbers the error counter so the trigger threshold
2577                  * check will never be true.
2578                  */
2579                 if (aniState->ofdmPhyErrCount > aniState->ofdmTrigHigh)
2580                         ath9k_hw_ani_ofdm_err_trigger(ah);
2581                 if (aniState->cckPhyErrCount > aniState->cckTrigHigh)
2582                         ath9k_hw_ani_cck_err_trigger(ah);
2583                 /* NB: always restart to insure the h/w counters are reset */
2584                 ath9k_ani_restart(ah);
2585         }
2586 }
2587
2588 static void ath9k_hw_ani_lower_immunity(struct ath_hal *ah)
2589 {
2590         struct ath_hal_5416 *ahp = AH5416(ah);
2591         struct ar5416AniState *aniState;
2592         int32_t rssi;
2593
2594         aniState = ahp->ah_curani;
2595
2596         if (ah->ah_opmode == ATH9K_M_HOSTAP) {
2597                 if (aniState->firstepLevel > 0) {
2598                         if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL,
2599                                                  aniState->firstepLevel - 1)) {
2600                                 return;
2601                         }
2602                 }
2603         } else {
2604                 rssi = BEACON_RSSI(ahp);
2605                 if (rssi > aniState->rssiThrHigh) {
2606                         /* XXX: Handle me */
2607                 } else if (rssi > aniState->rssiThrLow) {
2608                         if (aniState->ofdmWeakSigDetectOff) {
2609                                 if (ath9k_hw_ani_control(ah,
2610                                          ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION,
2611                                          true) ==
2612                                     true) {
2613                                         return;
2614                                 }
2615                         }
2616                         if (aniState->firstepLevel > 0) {
2617                                 if (ath9k_hw_ani_control
2618                                     (ah, ATH9K_ANI_FIRSTEP_LEVEL,
2619                                      aniState->firstepLevel - 1) ==
2620                                     true) {
2621                                         return;
2622                                 }
2623                         }
2624                 } else {
2625                         if (aniState->firstepLevel > 0) {
2626                                 if (ath9k_hw_ani_control
2627                                     (ah, ATH9K_ANI_FIRSTEP_LEVEL,
2628                                      aniState->firstepLevel - 1) ==
2629                                     true) {
2630                                         return;
2631                                 }
2632                         }
2633                 }
2634         }
2635
2636         if (aniState->spurImmunityLevel > 0) {
2637                 if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL,
2638                                          aniState->spurImmunityLevel - 1)) {
2639                         return;
2640                 }
2641         }
2642
2643         if (aniState->noiseImmunityLevel > 0) {
2644                 ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL,
2645                                      aniState->noiseImmunityLevel - 1);
2646                 return;
2647         }
2648 }
2649
2650 static int32_t ath9k_hw_ani_get_listen_time(struct ath_hal *ah)
2651 {
2652         struct ath_hal_5416 *ahp = AH5416(ah);
2653         struct ar5416AniState *aniState;
2654         u32 txFrameCount, rxFrameCount, cycleCount;
2655         int32_t listenTime;
2656
2657         txFrameCount = REG_READ(ah, AR_TFCNT);
2658         rxFrameCount = REG_READ(ah, AR_RFCNT);
2659         cycleCount = REG_READ(ah, AR_CCCNT);
2660
2661         aniState = ahp->ah_curani;
2662         if (aniState->cycleCount == 0 || aniState->cycleCount > cycleCount) {
2663
2664                 listenTime = 0;
2665                 ahp->ah_stats.ast_ani_lzero++;
2666         } else {
2667                 int32_t ccdelta = cycleCount - aniState->cycleCount;
2668                 int32_t rfdelta = rxFrameCount - aniState->rxFrameCount;
2669                 int32_t tfdelta = txFrameCount - aniState->txFrameCount;
2670                 listenTime = (ccdelta - rfdelta - tfdelta) / 44000;
2671         }
2672         aniState->cycleCount = cycleCount;
2673         aniState->txFrameCount = txFrameCount;
2674         aniState->rxFrameCount = rxFrameCount;
2675
2676         return listenTime;
2677 }
2678
2679 void ath9k_hw_ani_monitor(struct ath_hal *ah,
2680                           const struct ath9k_node_stats *stats,
2681                           struct ath9k_channel *chan)
2682 {
2683         struct ath_hal_5416 *ahp = AH5416(ah);
2684         struct ar5416AniState *aniState;
2685         int32_t listenTime;
2686
2687         aniState = ahp->ah_curani;
2688         ahp->ah_stats.ast_nodestats = *stats;
2689
2690         listenTime = ath9k_hw_ani_get_listen_time(ah);
2691         if (listenTime < 0) {
2692                 ahp->ah_stats.ast_ani_lneg++;
2693                 ath9k_ani_restart(ah);
2694                 return;
2695         }
2696
2697         aniState->listenTime += listenTime;
2698
2699         if (ahp->ah_hasHwPhyCounters) {
2700                 u32 phyCnt1, phyCnt2;
2701                 u32 ofdmPhyErrCnt, cckPhyErrCnt;
2702
2703                 ath9k_hw_update_mibstats(ah, &ahp->ah_mibStats);
2704
2705                 phyCnt1 = REG_READ(ah, AR_PHY_ERR_1);
2706                 phyCnt2 = REG_READ(ah, AR_PHY_ERR_2);
2707
2708                 if (phyCnt1 < aniState->ofdmPhyErrBase ||
2709                     phyCnt2 < aniState->cckPhyErrBase) {
2710                         if (phyCnt1 < aniState->ofdmPhyErrBase) {
2711                                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2712                                          "%s: phyCnt1 0x%x, resetting "
2713                                          "counter value to 0x%x\n",
2714                                          __func__, phyCnt1,
2715                                          aniState->ofdmPhyErrBase);
2716                                 REG_WRITE(ah, AR_PHY_ERR_1,
2717                                           aniState->ofdmPhyErrBase);
2718                                 REG_WRITE(ah, AR_PHY_ERR_MASK_1,
2719                                           AR_PHY_ERR_OFDM_TIMING);
2720                         }
2721                         if (phyCnt2 < aniState->cckPhyErrBase) {
2722                                 DPRINTF(ah->ah_sc, ATH_DBG_ANI,
2723                                          "%s: phyCnt2 0x%x, resetting "
2724                                          "counter value to 0x%x\n",
2725                                          __func__, phyCnt2,
2726                                          aniState->cckPhyErrBase);
2727                                 REG_WRITE(ah, AR_PHY_ERR_2,
2728                                           aniState->cckPhyErrBase);
2729                                 REG_WRITE(ah, AR_PHY_ERR_MASK_2,
2730                                           AR_PHY_ERR_CCK_TIMING);
2731                         }
2732                         return;
2733                 }
2734
2735                 ofdmPhyErrCnt = phyCnt1 - aniState->ofdmPhyErrBase;
2736                 ahp->ah_stats.ast_ani_ofdmerrs +=
2737                         ofdmPhyErrCnt - aniState->ofdmPhyErrCount;
2738                 aniState->ofdmPhyErrCount = ofdmPhyErrCnt;
2739
2740                 cckPhyErrCnt = phyCnt2 - aniState->cckPhyErrBase;
2741                 ahp->ah_stats.ast_ani_cckerrs +=
2742                         cckPhyErrCnt - aniState->cckPhyErrCount;
2743                 aniState->cckPhyErrCount = cckPhyErrCnt;
2744         }
2745
2746         if (!DO_ANI(ah))
2747                 return;
2748
2749         if (aniState->listenTime > 5 * ahp->ah_aniPeriod) {
2750                 if (aniState->ofdmPhyErrCount <= aniState->listenTime *
2751                     aniState->ofdmTrigLow / 1000 &&
2752                     aniState->cckPhyErrCount <= aniState->listenTime *
2753                     aniState->cckTrigLow / 1000)
2754                         ath9k_hw_ani_lower_immunity(ah);
2755                 ath9k_ani_restart(ah);
2756         } else if (aniState->listenTime > ahp->ah_aniPeriod) {
2757                 if (aniState->ofdmPhyErrCount > aniState->listenTime *
2758                     aniState->ofdmTrigHigh / 1000) {
2759                         ath9k_hw_ani_ofdm_err_trigger(ah);
2760                         ath9k_ani_restart(ah);
2761                 } else if (aniState->cckPhyErrCount >
2762                            aniState->listenTime * aniState->cckTrigHigh /
2763                            1000) {
2764                         ath9k_hw_ani_cck_err_trigger(ah);
2765                         ath9k_ani_restart(ah);
2766                 }
2767         }
2768 }
2769
2770 #ifndef ATH_NF_PER_CHAN
2771 static void ath9k_init_nfcal_hist_buffer(struct ath_hal *ah)
2772 {
2773         int i, j;
2774
2775         for (i = 0; i < NUM_NF_READINGS; i++) {
2776                 ah->nfCalHist[i].currIndex = 0;
2777                 ah->nfCalHist[i].privNF = AR_PHY_CCA_MAX_GOOD_VALUE;
2778                 ah->nfCalHist[i].invalidNFcount =
2779                         AR_PHY_CCA_FILTERWINDOW_LENGTH;
2780                 for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
2781                         ah->nfCalHist[i].nfCalBuffer[j] =
2782                                 AR_PHY_CCA_MAX_GOOD_VALUE;
2783                 }
2784         }
2785         return;
2786 }
2787 #endif
2788
2789 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
2790                                          u32 gpio, u32 type)
2791 {
2792         int addr;
2793         u32 gpio_shift, tmp;
2794
2795         if (gpio > 11)
2796                 addr = AR_GPIO_OUTPUT_MUX3;
2797         else if (gpio > 5)
2798                 addr = AR_GPIO_OUTPUT_MUX2;
2799         else
2800                 addr = AR_GPIO_OUTPUT_MUX1;
2801
2802         gpio_shift = (gpio % 6) * 5;
2803
2804         if (AR_SREV_9280_20_OR_LATER(ah)
2805             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2806                 REG_RMW(ah, addr, (type << gpio_shift),
2807                         (0x1f << gpio_shift));
2808         } else {
2809                 tmp = REG_READ(ah, addr);
2810                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2811                 tmp &= ~(0x1f << gpio_shift);
2812                 tmp |= (type << gpio_shift);
2813                 REG_WRITE(ah, addr, tmp);
2814         }
2815 }
2816
2817 void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
2818                          u32 ah_signal_type)
2819 {
2820         u32 gpio_shift;
2821
2822         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2823
2824         gpio_shift = 2 * gpio;
2825
2826         REG_RMW(ah,
2827                 AR_GPIO_OE_OUT,
2828                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2829                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2830 }
2831
2832 void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
2833 {
2834         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2835                 AR_GPIO_BIT(gpio));
2836 }
2837
2838 /*
2839  * Configure GPIO Input lines
2840  */
2841 void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
2842 {
2843         u32 gpio_shift;
2844
2845         ASSERT(gpio < ah->ah_caps.num_gpio_pins);
2846
2847         gpio_shift = gpio << 1;
2848
2849         REG_RMW(ah,
2850                 AR_GPIO_OE_OUT,
2851                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2852                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2853 }
2854
2855 #ifdef CONFIG_RFKILL
2856 static void ath9k_enable_rfkill(struct ath_hal *ah)
2857 {
2858         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2859                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2860
2861         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2862                     AR_GPIO_INPUT_MUX2_RFSILENT);
2863
2864         ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
2865         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2866 }
2867 #endif
2868
2869 u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
2870 {
2871         if (gpio >= ah->ah_caps.num_gpio_pins)
2872                 return 0xffffffff;
2873
2874         if (AR_SREV_9280_10_OR_LATER(ah)) {
2875                 return (MS
2876                         (REG_READ(ah, AR_GPIO_IN_OUT),
2877                          AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
2878         } else {
2879                 return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
2880                         AR_GPIO_BIT(gpio)) != 0;
2881         }
2882 }
2883
2884 static int ath9k_hw_post_attach(struct ath_hal *ah)
2885 {
2886         int ecode;
2887
2888         if (!ath9k_hw_chip_test(ah)) {
2889                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
2890                          "%s: hardware self-test failed\n", __func__);
2891                 return -ENODEV;
2892         }
2893
2894         ecode = ath9k_hw_rf_claim(ah);
2895         if (ecode != 0)
2896                 return ecode;
2897
2898         ecode = ath9k_hw_eeprom_attach(ah);
2899         if (ecode != 0)
2900                 return ecode;
2901         ecode = ath9k_hw_rfattach(ah);
2902         if (ecode != 0)
2903                 return ecode;
2904
2905         if (!AR_SREV_9100(ah)) {
2906                 ath9k_hw_ani_setup(ah);
2907                 ath9k_hw_ani_attach(ah);
2908         }
2909         return 0;
2910 }
2911
2912 static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
2913                                     struct ar5416_eeprom *pEepData,
2914                                     u32 reg, u32 value)
2915 {
2916         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
2917
2918         switch (ah->ah_devid) {
2919         case AR9280_DEVID_PCI:
2920                 if (reg == 0x7894) {
2921                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2922                                  "ini VAL: %x  EEPROM: %x\n", value,
2923                                  (pBase->version & 0xff));
2924
2925                         if ((pBase->version & 0xff) > 0x0a) {
2926                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2927                                          "PWDCLKIND: %d\n",
2928                                          pBase->pwdclkind);
2929                                 value &= ~AR_AN_TOP2_PWDCLKIND;
2930                                 value |= AR_AN_TOP2_PWDCLKIND & (pBase->
2931                                          pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
2932                         } else {
2933                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2934                                          "PWDCLKIND Earlier Rev\n");
2935                         }
2936
2937                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2938                                  "final ini VAL: %x\n", value);
2939                 }
2940                 break;
2941         }
2942         return value;
2943 }
2944
2945 static bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
2946 {
2947         struct ath_hal_5416 *ahp = AH5416(ah);
2948         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
2949         u16 capField = 0, eeval;
2950
2951         eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_0);
2952
2953         ah->ah_currentRD = eeval;
2954
2955         eeval = ath9k_hw_get_eeprom(ahp, EEP_REG_1);
2956         ah->ah_currentRDExt = eeval;
2957
2958         capField = ath9k_hw_get_eeprom(ahp, EEP_OP_CAP);
2959
2960         if (ah->ah_opmode != ATH9K_M_HOSTAP &&
2961             ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2962                 if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
2963                         ah->ah_currentRD += 5;
2964                 else if (ah->ah_currentRD == 0x41)
2965                         ah->ah_currentRD = 0x43;
2966                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
2967                          "%s: regdomain mapped to 0x%x\n", __func__,
2968                          ah->ah_currentRD);
2969         }
2970
2971         eeval = ath9k_hw_get_eeprom(ahp, EEP_OP_MODE);
2972         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2973
2974         if (eeval & AR5416_OPFLAGS_11A) {
2975                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2976                 if (ah->ah_config.ht_enable) {
2977                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2978                                 set_bit(ATH9K_MODE_11NA_HT20,
2979                                         pCap->wireless_modes);
2980                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2981                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2982                                         pCap->wireless_modes);
2983                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2984                                         pCap->wireless_modes);
2985                         }
2986                 }
2987         }
2988
2989         if (eeval & AR5416_OPFLAGS_11G) {
2990                 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
2991                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2992                 if (ah->ah_config.ht_enable) {
2993                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2994                                 set_bit(ATH9K_MODE_11NG_HT20,
2995                                         pCap->wireless_modes);
2996                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2997                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2998                                         pCap->wireless_modes);
2999                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3000                                         pCap->wireless_modes);
3001                         }
3002                 }
3003         }
3004
3005         pCap->tx_chainmask = ath9k_hw_get_eeprom(ahp, EEP_TX_MASK);
3006         if ((ah->ah_isPciExpress)
3007             || (eeval & AR5416_OPFLAGS_11A)) {
3008                 pCap->rx_chainmask =
3009                         ath9k_hw_get_eeprom(ahp, EEP_RX_MASK);
3010         } else {
3011                 pCap->rx_chainmask =
3012                         (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
3013         }
3014
3015         if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
3016                 ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
3017
3018         pCap->low_2ghz_chan = 2312;
3019         pCap->high_2ghz_chan = 2732;
3020
3021         pCap->low_5ghz_chan = 4920;
3022         pCap->high_5ghz_chan = 6100;
3023
3024         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3025         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3026         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3027
3028         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3029         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3030         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3031
3032         pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3033
3034         if (ah->ah_config.ht_enable)
3035                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3036         else
3037                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3038
3039         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3040         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3041         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3042         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3043
3044         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3045                 pCap->total_queues =
3046                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3047         else
3048                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3049
3050         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3051                 pCap->keycache_size =
3052                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3053         else
3054                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3055
3056         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3057         pCap->num_mr_retries = 4;
3058         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3059
3060         if (AR_SREV_9280_10_OR_LATER(ah))
3061                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3062         else
3063                 pCap->num_gpio_pins = AR_NUM_GPIO;
3064
3065         if (AR_SREV_9280_10_OR_LATER(ah)) {
3066                 pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3067                 pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3068         } else {
3069                 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3070                 pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3071         }
3072
3073         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3074                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3075                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3076         } else {
3077                 pCap->rts_aggr_limit = (8 * 1024);
3078         }
3079
3080         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3081
3082 #ifdef CONFIG_RFKILL
3083         ah->ah_rfsilent = ath9k_hw_get_eeprom(ahp, EEP_RF_SILENT);
3084         if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
3085                 ah->ah_rfkill_gpio =
3086                         MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
3087                 ah->ah_rfkill_polarity =
3088                         MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
3089
3090                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3091         }
3092 #endif
3093
3094         if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
3095             (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
3096             (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
3097             (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
3098             (ah->ah_macVersion == AR_SREV_VERSION_9280))
3099                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3100         else
3101                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3102
3103         if (AR_SREV_9280(ah))
3104                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3105         else
3106                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3107
3108         if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
3109                 pCap->reg_cap =
3110                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3111                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3112                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3113                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3114         } else {
3115                 pCap->reg_cap =
3116                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3117                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3118         }
3119
3120         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3121
3122         pCap->num_antcfg_5ghz =
3123                 ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_5GHZ);
3124         pCap->num_antcfg_2ghz =
3125                 ath9k_hw_get_num_ant_config(ahp, IEEE80211_BAND_2GHZ);
3126
3127         return true;
3128 }
3129
3130 static void ar5416DisablePciePhy(struct ath_hal *ah)
3131 {
3132         if (!AR_SREV_9100(ah))
3133                 return;
3134
3135         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3136         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3137         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
3138         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
3139         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
3140         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
3141         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3142         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3143         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
3144
3145         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3146 }
3147
3148 static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
3149 {
3150         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3151         if (setChip) {
3152                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
3153                             AR_RTC_FORCE_WAKE_EN);
3154                 if (!AR_SREV_9100(ah))
3155                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
3156
3157                 REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
3158                             AR_RTC_RESET_EN);
3159         }
3160 }
3161
3162 static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
3163 {
3164         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3165         if (setChip) {
3166                 struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3167
3168                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3169                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
3170                                   AR_RTC_FORCE_WAKE_ON_INT);
3171                 } else {
3172                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
3173                                     AR_RTC_FORCE_WAKE_EN);
3174                 }
3175         }
3176 }
3177
3178 static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
3179                                      int setChip)
3180 {
3181         u32 val;
3182         int i;
3183
3184         if (setChip) {
3185                 if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
3186                     AR_RTC_STATUS_SHUTDOWN) {
3187                         if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)
3188                             != true) {
3189                                 return false;
3190                         }
3191                 }
3192                 if (AR_SREV_9100(ah))
3193                         REG_SET_BIT(ah, AR_RTC_RESET,
3194                                        AR_RTC_RESET_EN);
3195
3196                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
3197                             AR_RTC_FORCE_WAKE_EN);
3198                 udelay(50);
3199
3200                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
3201                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
3202                         if (val == AR_RTC_STATUS_ON)
3203                                 break;
3204                         udelay(50);
3205                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
3206                                        AR_RTC_FORCE_WAKE_EN);
3207                 }
3208                 if (i == 0) {
3209                         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
3210                                  "%s: Failed to wakeup in %uus\n",
3211                                  __func__, POWER_UP_TIME / 20);
3212                         return false;
3213                 }
3214         }
3215
3216         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
3217         return true;
3218 }
3219
3220 bool ath9k_hw_setpower(struct ath_hal *ah,
3221                        enum ath9k_power_mode mode)
3222 {
3223         struct ath_hal_5416 *ahp = AH5416(ah);
3224         static const char *modes[] = {
3225                 "AWAKE",
3226                 "FULL-SLEEP",
3227                 "NETWORK SLEEP",
3228                 "UNDEFINED"
3229         };
3230         int status = true, setChip = true;
3231
3232         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__,
3233                  modes[ahp->ah_powerMode], modes[mode],
3234                  setChip ? "set chip " : "");
3235
3236         switch (mode) {
3237         case ATH9K_PM_AWAKE:
3238                 status = ath9k_hw_set_power_awake(ah, setChip);
3239                 break;
3240         case ATH9K_PM_FULL_SLEEP:
3241                 ath9k_set_power_sleep(ah, setChip);
3242                 ahp->ah_chipFullSleep = true;
3243                 break;
3244         case ATH9K_PM_NETWORK_SLEEP:
3245                 ath9k_set_power_network_sleep(ah, setChip);
3246                 break;
3247         default:
3248                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
3249                          "%s: unknown power mode %u\n", __func__, mode);
3250                 return false;
3251         }
3252         ahp->ah_powerMode = mode;
3253         return status;
3254 }
3255
3256 static struct ath_hal *ath9k_hw_do_attach(u16 devid,
3257                                           struct ath_softc *sc,
3258                                           void __iomem *mem,
3259                                           int *status)
3260 {
3261         struct ath_hal_5416 *ahp;
3262         struct ath_hal *ah;
3263         int ecode;
3264 #ifndef CONFIG_SLOW_ANT_DIV
3265         u32 i;
3266         u32 j;
3267 #endif
3268
3269         ahp = ath9k_hw_newstate(devid, sc, mem, status);
3270         if (ahp == NULL)
3271                 return NULL;
3272
3273         ah = &ahp->ah;
3274
3275         ath9k_hw_set_defaults(ah);
3276
3277         if (ah->ah_config.intr_mitigation != 0)
3278                 ahp->ah_intrMitigation = true;
3279
3280         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
3281                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n",
3282                          __func__);
3283                 ecode = -EIO;
3284                 goto bad;
3285         }
3286
3287         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
3288                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n",
3289                          __func__);
3290                 ecode = -EIO;
3291                 goto bad;
3292         }
3293
3294         if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
3295                 if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
3296                         ah->ah_config.serialize_regmode =
3297                                 SER_REG_MODE_ON;
3298                 } else {
3299                         ah->ah_config.serialize_regmode =
3300                                 SER_REG_MODE_OFF;
3301                 }
3302         }
3303         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3304                 "%s: serialize_regmode is %d\n",
3305                 __func__, ah->ah_config.serialize_regmode);
3306
3307         if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
3308             (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
3309             (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
3310             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
3311                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3312                          "%s: Mac Chip Rev 0x%02x.%x is not supported by "
3313                          "this driver\n", __func__,
3314                          ah->ah_macVersion, ah->ah_macRev);
3315                 ecode = -EOPNOTSUPP;
3316                 goto bad;
3317         }
3318
3319         if (AR_SREV_9100(ah)) {
3320                 ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
3321                 ahp->ah_suppCals = IQ_MISMATCH_CAL;
3322                 ah->ah_isPciExpress = false;
3323         }
3324         ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
3325
3326         if (AR_SREV_9160_10_OR_LATER(ah)) {
3327                 if (AR_SREV_9280_10_OR_LATER(ah)) {
3328                         ahp->ah_iqCalData.calData = &iq_cal_single_sample;
3329                         ahp->ah_adcGainCalData.calData =
3330                                 &adc_gain_cal_single_sample;
3331                         ahp->ah_adcDcCalData.calData =
3332                                 &adc_dc_cal_single_sample;
3333                         ahp->ah_adcDcCalInitData.calData =
3334                                 &adc_init_dc_cal;
3335                 } else {
3336                         ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
3337                         ahp->ah_adcGainCalData.calData =
3338                                 &adc_gain_cal_multi_sample;
3339                         ahp->ah_adcDcCalData.calData =
3340                                 &adc_dc_cal_multi_sample;
3341                         ahp->ah_adcDcCalInitData.calData =
3342                                 &adc_init_dc_cal;
3343                 }
3344                 ahp->ah_suppCals =
3345                         ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
3346         }
3347
3348         if (AR_SREV_9160(ah)) {
3349                 ah->ah_config.enable_ani = 1;
3350                 ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
3351                                         ATH9K_ANI_FIRSTEP_LEVEL);
3352         } else {
3353                 ahp->ah_ani_function = ATH9K_ANI_ALL;
3354                 if (AR_SREV_9280_10_OR_LATER(ah)) {
3355                         ahp->ah_ani_function &=
3356                                 ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
3357                 }
3358         }
3359
3360         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3361                  "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__,
3362                  ah->ah_macVersion, ah->ah_macRev);
3363
3364         if (AR_SREV_9280_20_OR_LATER(ah)) {
3365                 INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
3366                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
3367                 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
3368                                ARRAY_SIZE(ar9280Common_9280_2), 2);
3369
3370                 if (ah->ah_config.pcie_clock_req) {
3371                         INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
3372                                        ar9280PciePhy_clkreq_off_L1_9280,
3373                                        ARRAY_SIZE
3374                                        (ar9280PciePhy_clkreq_off_L1_9280),
3375                                        2);
3376                 } else {
3377                         INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
3378                                        ar9280PciePhy_clkreq_always_on_L1_9280,
3379                                        ARRAY_SIZE
3380                                        (ar9280PciePhy_clkreq_always_on_L1_9280),
3381                                        2);
3382                 }
3383                 INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
3384                                ar9280Modes_fast_clock_9280_2,
3385                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2),
3386                                3);
3387         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
3388                 INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
3389                                ARRAY_SIZE(ar9280Modes_9280), 6);
3390                 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
3391                                ARRAY_SIZE(ar9280Common_9280), 2);
3392         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
3393                 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
3394                                ARRAY_SIZE(ar5416Modes_9160), 6);
3395                 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
3396                                ARRAY_SIZE(ar5416Common_9160), 2);
3397                 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
3398                                ARRAY_SIZE(ar5416Bank0_9160), 2);
3399                 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
3400                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
3401                 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
3402                                ARRAY_SIZE(ar5416Bank1_9160), 2);
3403                 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
3404                                ARRAY_SIZE(ar5416Bank2_9160), 2);
3405                 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
3406                                ARRAY_SIZE(ar5416Bank3_9160), 3);
3407                 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
3408                                ARRAY_SIZE(ar5416Bank6_9160), 3);
3409                 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
3410                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
3411                 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
3412                                ARRAY_SIZE(ar5416Bank7_9160), 2);
3413                 if (AR_SREV_9160_11(ah)) {
3414                         INIT_INI_ARRAY(&ahp->ah_iniAddac,
3415                                        ar5416Addac_91601_1,
3416                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
3417                 } else {
3418                         INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
3419                                        ARRAY_SIZE(ar5416Addac_9160), 2);
3420                 }
3421         } else if (AR_SREV_9100_OR_LATER(ah)) {
3422                 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
3423                                ARRAY_SIZE(ar5416Modes_9100), 6);
3424                 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
3425                                ARRAY_SIZE(ar5416Common_9100), 2);
3426                 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
3427                                ARRAY_SIZE(ar5416Bank0_9100), 2);
3428                 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
3429                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
3430                 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
3431                                ARRAY_SIZE(ar5416Bank1_9100), 2);
3432                 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
3433                                ARRAY_SIZE(ar5416Bank2_9100), 2);
3434                 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
3435                                ARRAY_SIZE(ar5416Bank3_9100), 3);
3436                 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
3437                                ARRAY_SIZE(ar5416Bank6_9100), 3);
3438                 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
3439                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
3440                 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
3441                                ARRAY_SIZE(ar5416Bank7_9100), 2);
3442                 INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
3443                                ARRAY_SIZE(ar5416Addac_9100), 2);
3444         } else {
3445                 INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
3446                                ARRAY_SIZE(ar5416Modes), 6);
3447                 INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
3448                                ARRAY_SIZE(ar5416Common), 2);
3449                 INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
3450                                ARRAY_SIZE(ar5416Bank0), 2);
3451                 INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
3452                                ARRAY_SIZE(ar5416BB_RfGain), 3);
3453                 INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
3454                                ARRAY_SIZE(ar5416Bank1), 2);
3455                 INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
3456                                ARRAY_SIZE(ar5416Bank2), 2);
3457                 INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
3458                                ARRAY_SIZE(ar5416Bank3), 3);
3459                 INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
3460                                ARRAY_SIZE(ar5416Bank6), 3);
3461                 INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
3462                                ARRAY_SIZE(ar5416Bank6TPC), 3);
3463                 INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
3464                                ARRAY_SIZE(ar5416Bank7), 2);
3465                 INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
3466                                ARRAY_SIZE(ar5416Addac), 2);
3467         }
3468
3469         if (ah->ah_isPciExpress)
3470                 ath9k_hw_configpcipowersave(ah, 0);
3471         else
3472                 ar5416DisablePciePhy(ah);
3473
3474         ecode = ath9k_hw_post_attach(ah);
3475         if (ecode != 0)
3476                 goto bad;
3477
3478 #ifndef CONFIG_SLOW_ANT_DIV
3479         if (ah->ah_devid == AR9280_DEVID_PCI) {
3480                 for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
3481                         u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
3482
3483                         for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
3484                                 u32 val = INI_RA(&ahp->ah_iniModes, i, j);
3485
3486                                 INI_RA(&ahp->ah_iniModes, i, j) =
3487                                         ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
3488                                                            reg, val);
3489                         }
3490                 }
3491         }
3492 #endif
3493
3494         if (!ath9k_hw_fill_cap_info(ah)) {
3495                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3496                          "%s:failed ath9k_hw_fill_cap_info\n", __func__);
3497                 ecode = -EINVAL;
3498                 goto bad;
3499         }
3500
3501         ecode = ath9k_hw_init_macaddr(ah);
3502         if (ecode != 0) {
3503                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3504                          "%s: failed initializing mac address\n",
3505                          __func__);
3506                 goto bad;
3507         }
3508
3509         if (AR_SREV_9285(ah))
3510                 ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
3511         else
3512                 ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
3513
3514 #ifndef ATH_NF_PER_CHAN
3515
3516         ath9k_init_nfcal_hist_buffer(ah);
3517 #endif
3518
3519         return ah;
3520
3521 bad:
3522         if (ahp)
3523                 ath9k_hw_detach((struct ath_hal *) ahp);
3524         if (status)
3525                 *status = ecode;
3526         return NULL;
3527 }
3528
3529 void ath9k_hw_detach(struct ath_hal *ah)
3530 {
3531         if (!AR_SREV_9100(ah))
3532                 ath9k_hw_ani_detach(ah);
3533         ath9k_hw_rfdetach(ah);
3534
3535         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
3536         kfree(ah);
3537 }
3538
3539 bool ath9k_get_channel_edges(struct ath_hal *ah,
3540                              u16 flags, u16 *low,
3541                              u16 *high)
3542 {
3543         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3544
3545         if (flags & CHANNEL_5GHZ) {
3546                 *low = pCap->low_5ghz_chan;
3547                 *high = pCap->high_5ghz_chan;
3548                 return true;
3549         }
3550         if ((flags & CHANNEL_2GHZ)) {
3551                 *low = pCap->low_2ghz_chan;
3552                 *high = pCap->high_2ghz_chan;
3553
3554                 return true;
3555         }
3556         return false;
3557 }
3558
3559 static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin,
3560                                            u8 pwrMax,
3561                                            u8 *pPwrList,
3562                                            u8 *pVpdList,
3563                                            u16
3564                                            numIntercepts,
3565                                            u8 *pRetVpdList)
3566 {
3567         u16 i, k;
3568         u8 currPwr = pwrMin;
3569         u16 idxL = 0, idxR = 0;
3570
3571         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
3572                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
3573                                                numIntercepts, &(idxL),
3574                                                &(idxR));
3575                 if (idxR < 1)
3576                         idxR = 1;
3577                 if (idxL == numIntercepts - 1)
3578                         idxL = (u16) (numIntercepts - 2);
3579                 if (pPwrList[idxL] == pPwrList[idxR])
3580                         k = pVpdList[idxL];
3581                 else
3582                         k = (u16) (((currPwr -
3583                                            pPwrList[idxL]) *
3584                                           pVpdList[idxR] +
3585                                           (pPwrList[idxR] -
3586                                            currPwr) * pVpdList[idxL]) /
3587                                          (pPwrList[idxR] -
3588                                           pPwrList[idxL]));
3589                 pRetVpdList[i] = (u8) k;
3590                 currPwr += 2;
3591         }
3592
3593         return true;
3594 }
3595
3596 static void
3597 ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hal *ah,
3598                                     struct ath9k_channel *chan,
3599                                     struct cal_data_per_freq *pRawDataSet,
3600                                     u8 *bChans,
3601                                     u16 availPiers,
3602                                     u16 tPdGainOverlap,
3603                                     int16_t *pMinCalPower,
3604                                     u16 *pPdGainBoundaries,
3605                                     u8 *pPDADCValues,
3606                                     u16 numXpdGains)
3607 {
3608         int i, j, k;
3609         int16_t ss;
3610         u16 idxL = 0, idxR = 0, numPiers;
3611         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
3612                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3613         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
3614                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3615         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
3616                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
3617
3618         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
3619         u8 minPwrT4[AR5416_NUM_PD_GAINS];
3620         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
3621         int16_t vpdStep;
3622         int16_t tmpVal;
3623         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
3624         bool match;
3625         int16_t minDelta = 0;
3626         struct chan_centers centers;
3627
3628         ath9k_hw_get_channel_centers(ah, chan, &centers);
3629
3630         for (numPiers = 0; numPiers < availPiers; numPiers++) {
3631                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
3632                         break;
3633         }
3634
3635         match = ath9k_hw_get_lower_upper_index((u8)
3636                                                FREQ2FBIN(centers.
3637                                                          synth_center,
3638                                                          IS_CHAN_2GHZ
3639                                                          (chan)), bChans,
3640                                                numPiers, &idxL, &idxR);
3641
3642         if (match) {
3643                 for (i = 0; i < numXpdGains; i++) {
3644                         minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
3645                         maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
3646                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3647                                                 pRawDataSet[idxL].
3648                                                 pwrPdg[i],
3649                                                 pRawDataSet[idxL].
3650                                                 vpdPdg[i],
3651                                                 AR5416_PD_GAIN_ICEPTS,
3652                                                 vpdTableI[i]);
3653                 }
3654         } else {
3655                 for (i = 0; i < numXpdGains; i++) {
3656                         pVpdL = pRawDataSet[idxL].vpdPdg[i];
3657                         pPwrL = pRawDataSet[idxL].pwrPdg[i];
3658                         pVpdR = pRawDataSet[idxR].vpdPdg[i];
3659                         pPwrR = pRawDataSet[idxR].pwrPdg[i];
3660
3661                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
3662
3663                         maxPwrT4[i] =
3664                                 min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
3665                                     pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
3666
3667
3668                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3669                                                 pPwrL, pVpdL,
3670                                                 AR5416_PD_GAIN_ICEPTS,
3671                                                 vpdTableL[i]);
3672                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
3673                                                 pPwrR, pVpdR,
3674                                                 AR5416_PD_GAIN_ICEPTS,
3675                                                 vpdTableR[i]);
3676
3677                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
3678                                 vpdTableI[i][j] =
3679                                         (u8) (ath9k_hw_interpolate
3680                                                     ((u16)
3681                                                      FREQ2FBIN(centers.
3682                                                                synth_center,
3683                                                                IS_CHAN_2GHZ
3684                                                                (chan)),
3685                                                      bChans[idxL],
3686                                                      bChans[idxR], vpdTableL[i]
3687                                                      [j], vpdTableR[i]
3688                                                      [j]));
3689                         }
3690                 }
3691         }
3692
3693         *pMinCalPower = (int16_t) (minPwrT4[0] / 2);
3694
3695         k = 0;
3696         for (i = 0; i < numXpdGains; i++) {
3697                 if (i == (numXpdGains - 1))
3698                         pPdGainBoundaries[i] =
3699                                 (u16) (maxPwrT4[i] / 2);
3700                 else
3701                         pPdGainBoundaries[i] =
3702                                 (u16) ((maxPwrT4[i] +
3703                                               minPwrT4[i + 1]) / 4);
3704
3705                 pPdGainBoundaries[i] =
3706                         min((u16) AR5416_MAX_RATE_POWER,
3707                             pPdGainBoundaries[i]);
3708
3709                 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
3710                         minDelta = pPdGainBoundaries[0] - 23;
3711                         pPdGainBoundaries[0] = 23;
3712                 } else {
3713                         minDelta = 0;
3714                 }
3715
3716                 if (i == 0) {
3717                         if (AR_SREV_9280_10_OR_LATER(ah))
3718                                 ss = (int16_t) (0 - (minPwrT4[i] / 2));
3719                         else
3720                                 ss = 0;
3721                 } else {
3722                         ss = (int16_t) ((pPdGainBoundaries[i - 1] -
3723                                          (minPwrT4[i] / 2)) -
3724                                         tPdGainOverlap + 1 + minDelta);
3725                 }
3726                 vpdStep = (int16_t) (vpdTableI[i][1] - vpdTableI[i][0]);
3727                 vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
3728
3729                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3730                         tmpVal = (int16_t) (vpdTableI[i][0] + ss * vpdStep);
3731                         pPDADCValues[k++] =
3732                                 (u8) ((tmpVal < 0) ? 0 : tmpVal);
3733                         ss++;
3734                 }
3735
3736                 sizeCurrVpdTable =
3737                         (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
3738                 tgtIndex = (u8) (pPdGainBoundaries[i] + tPdGainOverlap -
3739                                        (minPwrT4[i] / 2));
3740                 maxIndex = (tgtIndex <
3741                             sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
3742
3743                 while ((ss < maxIndex)
3744                        && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3745                         pPDADCValues[k++] = vpdTableI[i][ss++];
3746                 }
3747
3748                 vpdStep = (int16_t) (vpdTableI[i][sizeCurrVpdTable - 1] -
3749                                      vpdTableI[i][sizeCurrVpdTable - 2]);
3750                 vpdStep = (int16_t) ((vpdStep < 1) ? 1 : vpdStep);
3751
3752                 if (tgtIndex > maxIndex) {
3753                         while ((ss <= tgtIndex)
3754                                && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
3755                                 tmpVal = (int16_t) ((vpdTableI[i]
3756                                                      [sizeCurrVpdTable -
3757                                                       1] + (ss - maxIndex +
3758                                                             1) * vpdStep));
3759                                 pPDADCValues[k++] = (u8) ((tmpVal >
3760                                                  255) ? 255 : tmpVal);
3761                                 ss++;
3762                         }
3763                 }
3764         }
3765
3766         while (i < AR5416_PD_GAINS_IN_MASK) {
3767                 pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
3768                 i++;
3769         }
3770
3771         while (k < AR5416_NUM_PDADC_VALUES) {
3772                 pPDADCValues[k] = pPDADCValues[k - 1];
3773                 k++;
3774         }
3775         return;
3776 }
3777
3778 static bool
3779 ath9k_hw_set_power_cal_table(struct ath_hal *ah,
3780                              struct ar5416_eeprom *pEepData,
3781                              struct ath9k_channel *chan,
3782                              int16_t *pTxPowerIndexOffset)
3783 {
3784         struct cal_data_per_freq *pRawDataset;
3785         u8 *pCalBChans = NULL;
3786         u16 pdGainOverlap_t2;
3787         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
3788         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
3789         u16 numPiers, i, j;
3790         int16_t tMinCalPower;
3791         u16 numXpdGain, xpdMask;
3792         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
3793         u32 reg32, regOffset, regChainOffset;
3794         int16_t modalIdx;
3795         struct ath_hal_5416 *ahp = AH5416(ah);
3796
3797         modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
3798         xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
3799
3800         if ((pEepData->baseEepHeader.
3801              version & AR5416_EEP_VER_MINOR_MASK) >=
3802             AR5416_EEP_MINOR_VER_2) {
3803                 pdGainOverlap_t2 =
3804                         pEepData->modalHeader[modalIdx].pdGainOverlap;
3805         } else {
3806                 pdGainOverlap_t2 =
3807                         (u16) (MS
3808                                      (REG_READ(ah, AR_PHY_TPCRG5),
3809                                       AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
3810         }
3811
3812         if (IS_CHAN_2GHZ(chan)) {
3813                 pCalBChans = pEepData->calFreqPier2G;
3814                 numPiers = AR5416_NUM_2G_CAL_PIERS;
3815         } else {
3816                 pCalBChans = pEepData->calFreqPier5G;
3817                 numPiers = AR5416_NUM_5G_CAL_PIERS;
3818         }
3819
3820         numXpdGain = 0;
3821
3822         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
3823                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
3824                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
3825                                 break;
3826                         xpdGainValues[numXpdGain] =
3827                                 (u16) (AR5416_PD_GAINS_IN_MASK - i);
3828                         numXpdGain++;
3829                 }
3830         }
3831
3832         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
3833                       (numXpdGain - 1) & 0x3);
3834         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
3835                       xpdGainValues[0]);
3836         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
3837                       xpdGainValues[1]);
3838         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
3839                       xpdGainValues[2]);
3840
3841         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
3842                 if (AR_SREV_5416_V20_OR_LATER(ah) &&
3843                     (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5)
3844                     && (i != 0)) {
3845                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
3846                 } else
3847                         regChainOffset = i * 0x1000;
3848                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
3849                         if (IS_CHAN_2GHZ(chan))
3850                                 pRawDataset = pEepData->calPierData2G[i];
3851                         else
3852                                 pRawDataset = pEepData->calPierData5G[i];
3853
3854                         ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
3855                                                             pRawDataset,
3856                                                             pCalBChans,
3857                                                             numPiers,
3858                                                             pdGainOverlap_t2,
3859                                                             &tMinCalPower,
3860                                                             gainBoundaries,
3861                                                             pdadcValues,
3862                                                             numXpdGain);
3863
3864                         if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
3865
3866                                 REG_WRITE(ah,
3867                                           AR_PHY_TPCRG5 + regChainOffset,
3868                                           SM(pdGainOverlap_t2,
3869                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
3870                                           | SM(gainBoundaries[0],
3871                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
3872                                           | SM(gainBoundaries[1],
3873                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
3874                                           | SM(gainBoundaries[2],
3875                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
3876                                           | SM(gainBoundaries[3],
3877                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
3878                         }
3879
3880                         regOffset =
3881                                 AR_PHY_BASE + (672 << 2) + regChainOffset;
3882                         for (j = 0; j < 32; j++) {
3883                                 reg32 =
3884                                         ((pdadcValues[4 * j + 0] & 0xFF) << 0)
3885                                         | ((pdadcValues[4 * j + 1] & 0xFF) <<
3886                                            8) | ((pdadcValues[4 * j + 2] &
3887                                                   0xFF) << 16) |
3888                                         ((pdadcValues[4 * j + 3] & 0xFF) <<
3889                                          24);
3890                                 REG_WRITE(ah, regOffset, reg32);
3891
3892                                 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
3893                                          "PDADC (%d,%4x): %4.4x %8.8x\n",
3894                                          i, regChainOffset, regOffset,
3895                                          reg32);
3896                                 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
3897                                 "PDADC: Chain %d | PDADC %3d Value %3d | "
3898                                 "PDADC %3d Value %3d | PDADC %3d Value %3d | "
3899                                 "PDADC %3d Value %3d |\n",
3900                                          i, 4 * j, pdadcValues[4 * j],
3901                                          4 * j + 1, pdadcValues[4 * j + 1],
3902                                          4 * j + 2, pdadcValues[4 * j + 2],
3903                                          4 * j + 3,
3904                                          pdadcValues[4 * j + 3]);
3905
3906                                 regOffset += 4;
3907                         }
3908                 }
3909         }
3910         *pTxPowerIndexOffset = 0;
3911
3912         return true;
3913 }
3914
3915 void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
3916 {
3917         struct ath_hal_5416 *ahp = AH5416(ah);
3918         u8 i;
3919
3920         if (ah->ah_isPciExpress != true)
3921                 return;
3922
3923         if (ah->ah_config.pcie_powersave_enable == 2)
3924                 return;
3925
3926         if (restore)
3927                 return;
3928
3929         if (AR_SREV_9280_20_OR_LATER(ah)) {
3930                 for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
3931                         REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
3932                                   INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
3933                 }
3934                 udelay(1000);
3935         } else if (AR_SREV_9280(ah)
3936                    && (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
3937                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3938                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3939
3940                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3941                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3942                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3943
3944                 if (ah->ah_config.pcie_clock_req)
3945                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3946                 else
3947                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3948
3949                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3950                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3951                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3952
3953                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3954
3955                 udelay(1000);
3956         } else {
3957                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3958                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3959                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3960                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3961                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3962                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3963                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3964                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3965                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3966                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3967         }
3968
3969         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3970
3971         if (ah->ah_config.pcie_waen) {
3972                 REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
3973         } else {
3974                 if (AR_SREV_9280(ah))
3975                         REG_WRITE(ah, AR_WA, 0x0040073f);
3976                 else
3977                         REG_WRITE(ah, AR_WA, 0x0000073f);
3978         }
3979 }
3980
3981 static void
3982 ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
3983                                   struct ath9k_channel *chan,
3984                                   struct cal_target_power_leg *powInfo,
3985                                   u16 numChannels,
3986                                   struct cal_target_power_leg *pNewPower,
3987                                   u16 numRates,
3988                                   bool isExtTarget)
3989 {
3990         u16 clo, chi;
3991         int i;
3992         int matchIndex = -1, lowIndex = -1;
3993         u16 freq;
3994         struct chan_centers centers;
3995
3996         ath9k_hw_get_channel_centers(ah, chan, &centers);
3997         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
3998
3999         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
4000                 IS_CHAN_2GHZ(chan))) {
4001                 matchIndex = 0;
4002         } else {
4003                 for (i = 0; (i < numChannels)
4004                      && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
4005                         if (freq ==
4006                             ath9k_hw_fbin2freq(powInfo[i].bChannel,
4007                                                IS_CHAN_2GHZ(chan))) {
4008                                 matchIndex = i;
4009                                 break;
4010                         } else if ((freq <
4011                                     ath9k_hw_fbin2freq(powInfo[i].bChannel,
4012                                                        IS_CHAN_2GHZ(chan)))
4013                                    && (freq >
4014                                        ath9k_hw_fbin2freq(powInfo[i - 1].
4015                                                           bChannel,
4016                                                           IS_CHAN_2GHZ
4017                                                           (chan)))) {
4018                                 lowIndex = i - 1;
4019                                 break;
4020                         }
4021                 }
4022                 if ((matchIndex == -1) && (lowIndex == -1))
4023                         matchIndex = i - 1;
4024         }
4025
4026         if (matchIndex != -1) {
4027                 *pNewPower = powInfo[matchIndex];
4028         } else {
4029                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
4030                                          IS_CHAN_2GHZ(chan));
4031                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
4032                                          IS_CHAN_2GHZ(chan));
4033
4034                 for (i = 0; i < numRates; i++) {
4035                         pNewPower->tPow2x[i] =
4036                                 (u8) ath9k_hw_interpolate(freq, clo, chi,
4037                                                                 powInfo
4038                                                                 [lowIndex].
4039                                                                 tPow2x[i],
4040                                                                 powInfo
4041                                                                 [lowIndex +
4042                                                                  1].tPow2x[i]);
4043                 }
4044         }
4045 }
4046
4047 static void
4048 ath9k_hw_get_target_powers(struct ath_hal *ah,
4049                            struct ath9k_channel *chan,
4050                            struct cal_target_power_ht *powInfo,
4051                            u16 numChannels,
4052                            struct cal_target_power_ht *pNewPower,
4053                            u16 numRates,
4054                            bool isHt40Target)
4055 {
4056         u16 clo, chi;
4057         int i;
4058         int matchIndex = -1, lowIndex = -1;
4059         u16 freq;
4060         struct chan_centers centers;
4061
4062         ath9k_hw_get_channel_centers(ah, chan, &centers);
4063         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
4064
4065         if (freq <=
4066                 ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
4067                 matchIndex = 0;
4068         } else {
4069                 for (i = 0; (i < numChannels)
4070                      && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
4071                         if (freq ==
4072                             ath9k_hw_fbin2freq(powInfo[i].bChannel,
4073                                                IS_CHAN_2GHZ(chan))) {
4074                                 matchIndex = i;
4075                                 break;
4076                         } else
4077                                 if ((freq <
4078                                      ath9k_hw_fbin2freq(powInfo[i].bChannel,
4079                                                         IS_CHAN_2GHZ(chan)))
4080                                     && (freq >
4081                                         ath9k_hw_fbin2freq(powInfo[i - 1].
4082                                                            bChannel,
4083                                                            IS_CHAN_2GHZ
4084                                                            (chan)))) {
4085                                         lowIndex = i - 1;
4086                                         break;
4087                                 }
4088                 }
4089                 if ((matchIndex == -1) && (lowIndex == -1))
4090                         matchIndex = i - 1;
4091         }
4092
4093         if (matchIndex != -1) {
4094                 *pNewPower = powInfo[matchIndex];
4095         } else {
4096                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
4097                                          IS_CHAN_2GHZ(chan));
4098                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
4099                                          IS_CHAN_2GHZ(chan));
4100
4101                 for (i = 0; i < numRates; i++) {
4102                         pNewPower->tPow2x[i] =
4103                                 (u8) ath9k_hw_interpolate(freq, clo, chi,
4104                                                                 powInfo
4105                                                                 [lowIndex].
4106                                                                 tPow2x[i],
4107                                                                 powInfo
4108                                                                 [lowIndex +
4109                                                                  1].tPow2x[i]);
4110                 }
4111         }
4112 }
4113
4114 static u16
4115 ath9k_hw_get_max_edge_power(u16 freq,
4116                             struct cal_ctl_edges *pRdEdgesPower,
4117                             bool is2GHz)
4118 {
4119         u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4120         int i;
4121
4122         for (i = 0; (i < AR5416_NUM_BAND_EDGES)
4123              && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
4124                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
4125                                                is2GHz)) {
4126                         twiceMaxEdgePower = pRdEdgesPower[i].tPower;
4127                         break;
4128                 } else if ((i > 0)
4129                            && (freq <
4130                                ath9k_hw_fbin2freq(pRdEdgesPower[i].
4131                                                   bChannel, is2GHz))) {
4132                         if (ath9k_hw_fbin2freq
4133                             (pRdEdgesPower[i - 1].bChannel, is2GHz) < freq
4134                             && pRdEdgesPower[i - 1].flag) {
4135                                 twiceMaxEdgePower =
4136                                         pRdEdgesPower[i - 1].tPower;
4137                         }
4138                         break;
4139                 }
4140         }
4141         return twiceMaxEdgePower;
4142 }
4143
4144 static bool
4145 ath9k_hw_set_power_per_rate_table(struct ath_hal *ah,
4146                                   struct ar5416_eeprom *pEepData,
4147                                   struct ath9k_channel *chan,
4148                                   int16_t *ratesArray,
4149                                   u16 cfgCtl,
4150                                   u8 AntennaReduction,
4151                                   u8 twiceMaxRegulatoryPower,
4152                                   u8 powerLimit)
4153 {
4154         u8 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4155         static const u16 tpScaleReductionTable[5] =
4156                 { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
4157
4158         int i;
4159         int8_t twiceLargestAntenna;
4160         struct cal_ctl_data *rep;
4161         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
4162                 0, { 0, 0, 0, 0}
4163         };
4164         struct cal_target_power_leg targetPowerOfdmExt = {
4165                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
4166                 0, { 0, 0, 0, 0 }
4167         };
4168         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
4169                 0, {0, 0, 0, 0}
4170         };
4171         u8 scaledPower = 0, minCtlPower, maxRegAllowedPower;
4172         u16 ctlModesFor11a[] =
4173                 { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
4174         u16 ctlModesFor11g[] =
4175                 { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
4176                   CTL_2GHT40
4177                 };
4178         u16 numCtlModes, *pCtlMode, ctlMode, freq;
4179         struct chan_centers centers;
4180         int tx_chainmask;
4181         u8 twiceMinEdgePower;
4182         struct ath_hal_5416 *ahp = AH5416(ah);
4183
4184         tx_chainmask = ahp->ah_txchainmask;
4185
4186         ath9k_hw_get_channel_centers(ah, chan, &centers);
4187
4188         twiceLargestAntenna = max(
4189                 pEepData->modalHeader
4190                         [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
4191                 pEepData->modalHeader
4192                         [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
4193
4194         twiceLargestAntenna = max((u8) twiceLargestAntenna,
4195                 pEepData->modalHeader
4196                         [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
4197
4198         twiceLargestAntenna =
4199                 (int8_t) min(AntennaReduction - twiceLargestAntenna, 0);
4200
4201         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
4202
4203         if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
4204                 maxRegAllowedPower -=
4205                         (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
4206         }
4207
4208         scaledPower = min(powerLimit, maxRegAllowedPower);
4209
4210         switch (ar5416_get_ntxchains(tx_chainmask)) {
4211         case 1:
4212                 break;
4213         case 2:
4214                 scaledPower -=
4215                         pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
4216                         pwrDecreaseFor2Chain;
4217                 break;
4218         case 3:
4219                 scaledPower -=
4220                         pEepData->modalHeader[IS_CHAN_2GHZ(chan)].
4221                         pwrDecreaseFor3Chain;
4222                 break;
4223         }
4224
4225         scaledPower = max(0, (int32_t) scaledPower);
4226
4227         if (IS_CHAN_2GHZ(chan)) {
4228                 numCtlModes =
4229                         ARRAY_SIZE(ctlModesFor11g) -
4230                         SUB_NUM_CTL_MODES_AT_2G_40;
4231                 pCtlMode = ctlModesFor11g;
4232
4233                 ath9k_hw_get_legacy_target_powers(ah, chan,
4234                         pEepData->
4235                         calTargetPowerCck,
4236                         AR5416_NUM_2G_CCK_TARGET_POWERS,
4237                         &targetPowerCck, 4,
4238                         false);
4239                 ath9k_hw_get_legacy_target_powers(ah, chan,
4240                         pEepData->
4241                         calTargetPower2G,
4242                         AR5416_NUM_2G_20_TARGET_POWERS,
4243                         &targetPowerOfdm, 4,
4244                         false);
4245                 ath9k_hw_get_target_powers(ah, chan,
4246                         pEepData->calTargetPower2GHT20,
4247                         AR5416_NUM_2G_20_TARGET_POWERS,
4248                         &targetPowerHt20, 8, false);
4249
4250                 if (IS_CHAN_HT40(chan)) {
4251                         numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4252                         ath9k_hw_get_target_powers(ah, chan,
4253                                 pEepData->
4254                                 calTargetPower2GHT40,
4255                                 AR5416_NUM_2G_40_TARGET_POWERS,
4256                                 &targetPowerHt40, 8,
4257                                 true);
4258                         ath9k_hw_get_legacy_target_powers(ah, chan,
4259                                 pEepData->
4260                                 calTargetPowerCck,
4261                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
4262                                 &targetPowerCckExt,
4263                                 4, true);
4264                         ath9k_hw_get_legacy_target_powers(ah, chan,
4265                                 pEepData->
4266                                 calTargetPower2G,
4267                                 AR5416_NUM_2G_20_TARGET_POWERS,
4268                                 &targetPowerOfdmExt,
4269                                 4, true);
4270                 }
4271         } else {
4272
4273                 numCtlModes =
4274                         ARRAY_SIZE(ctlModesFor11a) -
4275                         SUB_NUM_CTL_MODES_AT_5G_40;
4276                 pCtlMode = ctlModesFor11a;
4277
4278                 ath9k_hw_get_legacy_target_powers(ah, chan,
4279                         pEepData->
4280                         calTargetPower5G,
4281                         AR5416_NUM_5G_20_TARGET_POWERS,
4282                         &targetPowerOfdm, 4,
4283                         false);
4284                 ath9k_hw_get_target_powers(ah, chan,
4285                         pEepData->calTargetPower5GHT20,
4286                         AR5416_NUM_5G_20_TARGET_POWERS,
4287                         &targetPowerHt20, 8, false);
4288
4289                 if (IS_CHAN_HT40(chan)) {
4290                         numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4291                         ath9k_hw_get_target_powers(ah, chan,
4292                                 pEepData->
4293                                 calTargetPower5GHT40,
4294                                 AR5416_NUM_5G_40_TARGET_POWERS,
4295                                 &targetPowerHt40, 8,
4296                                 true);
4297                         ath9k_hw_get_legacy_target_powers(ah, chan,
4298                                 pEepData->
4299                                 calTargetPower5G,
4300                                 AR5416_NUM_5G_20_TARGET_POWERS,
4301                                 &targetPowerOfdmExt,
4302                                 4, true);
4303                 }
4304         }
4305
4306         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4307                 bool isHt40CtlMode =
4308                         (pCtlMode[ctlMode] == CTL_5GHT40)
4309                         || (pCtlMode[ctlMode] == CTL_2GHT40);
4310                 if (isHt40CtlMode)
4311                         freq = centers.synth_center;
4312                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4313                         freq = centers.ext_center;
4314                 else
4315                         freq = centers.ctl_center;
4316
4317                 if (ar5416_get_eep_ver(ahp) == 14
4318                     && ar5416_get_eep_rev(ahp) <= 2)
4319                         twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
4320
4321                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4322                         "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
4323                         "EXT_ADDITIVE %d\n",
4324                          ctlMode, numCtlModes, isHt40CtlMode,
4325                          (pCtlMode[ctlMode] & EXT_ADDITIVE));
4326
4327                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i];
4328                      i++) {
4329                         DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4330                                 "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
4331                                 "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
4332                                 "chan %d\n",
4333                                 i, cfgCtl, pCtlMode[ctlMode],
4334                                 pEepData->ctlIndex[i], chan->channel);
4335
4336                         if ((((cfgCtl & ~CTL_MODE_M) |
4337                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4338                              pEepData->ctlIndex[i])
4339                             ||
4340                             (((cfgCtl & ~CTL_MODE_M) |
4341                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4342                              ((pEepData->
4343                                ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
4344                                 rep = &(pEepData->ctlData[i]);
4345
4346                                 twiceMinEdgePower =
4347                                         ath9k_hw_get_max_edge_power(freq,
4348                                                 rep->
4349                                                 ctlEdges
4350                                                 [ar5416_get_ntxchains
4351                                                 (tx_chainmask)
4352                                                 - 1],
4353                                                 IS_CHAN_2GHZ
4354                                                 (chan));
4355
4356                                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4357                                         "    MATCH-EE_IDX %d: ch %d is2 %d "
4358                                         "2xMinEdge %d chainmask %d chains %d\n",
4359                                          i, freq, IS_CHAN_2GHZ(chan),
4360                                          twiceMinEdgePower, tx_chainmask,
4361                                          ar5416_get_ntxchains
4362                                          (tx_chainmask));
4363                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
4364                                         twiceMaxEdgePower =
4365                                                 min(twiceMaxEdgePower,
4366                                                     twiceMinEdgePower);
4367                                 } else {
4368                                         twiceMaxEdgePower =
4369                                                 twiceMinEdgePower;
4370                                         break;
4371                                 }
4372                         }
4373                 }
4374
4375                 minCtlPower = min(twiceMaxEdgePower, scaledPower);
4376
4377                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
4378                                 "    SEL-Min ctlMode %d pCtlMode %d "
4379                                 "2xMaxEdge %d sP %d minCtlPwr %d\n",
4380                          ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4381                          scaledPower, minCtlPower);
4382
4383                 switch (pCtlMode[ctlMode]) {
4384                 case CTL_11B:
4385                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
4386                              i++) {
4387                                 targetPowerCck.tPow2x[i] =
4388                                         min(targetPowerCck.tPow2x[i],
4389                                             minCtlPower);
4390                         }
4391                         break;
4392                 case CTL_11A:
4393                 case CTL_11G:
4394                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
4395                              i++) {
4396                                 targetPowerOfdm.tPow2x[i] =
4397                                         min(targetPowerOfdm.tPow2x[i],
4398                                             minCtlPower);
4399                         }
4400                         break;
4401                 case CTL_5GHT20:
4402                 case CTL_2GHT20:
4403                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
4404                              i++) {
4405                                 targetPowerHt20.tPow2x[i] =
4406                                         min(targetPowerHt20.tPow2x[i],
4407                                             minCtlPower);
4408                         }
4409                         break;
4410                 case CTL_11B_EXT:
4411                         targetPowerCckExt.tPow2x[0] =
4412                                 min(targetPowerCckExt.tPow2x[0], minCtlPower);
4413                         break;
4414                 case CTL_11A_EXT:
4415                 case CTL_11G_EXT:
4416                         targetPowerOfdmExt.tPow2x[0] =
4417                                 min(targetPowerOfdmExt.tPow2x[0], minCtlPower);
4418                         break;
4419                 case CTL_5GHT40:
4420                 case CTL_2GHT40:
4421                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
4422                              i++) {
4423                                 targetPowerHt40.tPow2x[i] =
4424                                         min(targetPowerHt40.tPow2x[i],
4425                                             minCtlPower);
4426                         }
4427                         break;
4428                 default:
4429                         break;
4430                 }
4431         }
4432
4433         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
4434                 ratesArray[rate18mb] = ratesArray[rate24mb] =
4435                 targetPowerOfdm.tPow2x[0];
4436         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
4437         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
4438         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
4439         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
4440
4441         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
4442                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
4443
4444         if (IS_CHAN_2GHZ(chan)) {
4445                 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
4446                 ratesArray[rate2s] = ratesArray[rate2l] =
4447                         targetPowerCck.tPow2x[1];
4448                 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
4449                         targetPowerCck.tPow2x[2];
4450                 ;
4451                 ratesArray[rate11s] = ratesArray[rate11l] =
4452                         targetPowerCck.tPow2x[3];
4453                 ;
4454         }
4455         if (IS_CHAN_HT40(chan)) {
4456                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
4457                         ratesArray[rateHt40_0 + i] =
4458                                 targetPowerHt40.tPow2x[i];
4459                 }
4460                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
4461                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
4462                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
4463                 if (IS_CHAN_2GHZ(chan)) {
4464                         ratesArray[rateExtCck] =
4465                                 targetPowerCckExt.tPow2x[0];
4466                 }
4467         }
4468         return true;
4469 }
4470
4471 static int
4472 ath9k_hw_set_txpower(struct ath_hal *ah,
4473                      struct ar5416_eeprom *pEepData,
4474                      struct ath9k_channel *chan,
4475                      u16 cfgCtl,
4476                      u8 twiceAntennaReduction,
4477                      u8 twiceMaxRegulatoryPower,
4478                      u8 powerLimit)
4479 {
4480         struct modal_eep_header *pModal =
4481                 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
4482         int16_t ratesArray[Ar5416RateSize];
4483         int16_t txPowerIndexOffset = 0;
4484         u8 ht40PowerIncForPdadc = 2;
4485         int i;
4486
4487         memset(ratesArray, 0, sizeof(ratesArray));
4488
4489         if ((pEepData->baseEepHeader.
4490              version & AR5416_EEP_VER_MINOR_MASK) >=
4491             AR5416_EEP_MINOR_VER_2) {
4492                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
4493         }
4494
4495         if (!ath9k_hw_set_power_per_rate_table(ah, pEepData, chan,
4496                                                &ratesArray[0], cfgCtl,
4497                                                twiceAntennaReduction,
4498                                                twiceMaxRegulatoryPower,
4499                                                powerLimit)) {
4500                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
4501                         "ath9k_hw_set_txpower: unable to set "
4502                         "tx power per rate table\n");
4503                 return -EIO;
4504         }
4505
4506         if (!ath9k_hw_set_power_cal_table
4507             (ah, pEepData, chan, &txPowerIndexOffset)) {
4508                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
4509                          "ath9k_hw_set_txpower: unable to set power table\n");
4510                 return -EIO;
4511         }
4512
4513         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
4514                 ratesArray[i] =
4515                         (int16_t) (txPowerIndexOffset + ratesArray[i]);
4516                 if (ratesArray[i] > AR5416_MAX_RATE_POWER)
4517                         ratesArray[i] = AR5416_MAX_RATE_POWER;
4518         }
4519
4520         if (AR_SREV_9280_10_OR_LATER(ah)) {
4521                 for (i = 0; i < Ar5416RateSize; i++)
4522                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
4523         }
4524
4525         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
4526                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
4527                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
4528                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
4529                   | ATH9K_POW_SM(ratesArray[rate6mb], 0)
4530                 );
4531         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
4532                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
4533                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
4534                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
4535                   | ATH9K_POW_SM(ratesArray[rate24mb], 0)
4536                 );
4537
4538         if (IS_CHAN_2GHZ(chan)) {
4539                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
4540                           ATH9K_POW_SM(ratesArray[rate2s], 24)
4541                           | ATH9K_POW_SM(ratesArray[rate2l], 16)
4542                           | ATH9K_POW_SM(ratesArray[rateXr], 8)
4543                           | ATH9K_POW_SM(ratesArray[rate1l], 0)
4544                         );
4545                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
4546                           ATH9K_POW_SM(ratesArray[rate11s], 24)
4547                           | ATH9K_POW_SM(ratesArray[rate11l], 16)
4548                           | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
4549                           | ATH9K_POW_SM(ratesArray[rate5_5l], 0)
4550                         );
4551         }
4552
4553         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
4554                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
4555                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
4556                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
4557                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)
4558                 );
4559         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
4560                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
4561                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
4562                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
4563                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)
4564                 );
4565
4566         if (IS_CHAN_HT40(chan)) {
4567                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
4568                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
4569                                        ht40PowerIncForPdadc, 24)
4570                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
4571                                          ht40PowerIncForPdadc, 16)
4572                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
4573                                          ht40PowerIncForPdadc, 8)
4574                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
4575                                          ht40PowerIncForPdadc, 0)
4576                         );
4577                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
4578                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
4579                                        ht40PowerIncForPdadc, 24)
4580                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
4581                                          ht40PowerIncForPdadc, 16)
4582                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
4583                                          ht40PowerIncForPdadc, 8)
4584                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
4585                                          ht40PowerIncForPdadc, 0)
4586                         );
4587
4588                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
4589                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
4590                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
4591                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
4592                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0)
4593                         );
4594         }
4595
4596         REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
4597                   ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
4598                   | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0)
4599                 );
4600
4601         i = rate6mb;
4602         if (IS_CHAN_HT40(chan))
4603                 i = rateHt40_0;
4604         else if (IS_CHAN_HT20(chan))
4605                 i = rateHt20_0;
4606
4607         if (AR_SREV_9280_10_OR_LATER(ah))
4608                 ah->ah_maxPowerLevel =
4609                         ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
4610         else
4611                 ah->ah_maxPowerLevel = ratesArray[i];
4612
4613         return 0;
4614 }
4615
4616 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
4617                                                  u32 coef_scaled,
4618                                                  u32 *coef_mantissa,
4619                                                  u32 *coef_exponent)
4620 {
4621         u32 coef_exp, coef_man;
4622
4623         for (coef_exp = 31; coef_exp > 0; coef_exp--)
4624                 if ((coef_scaled >> coef_exp) & 0x1)
4625                         break;
4626
4627         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
4628
4629         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
4630
4631         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
4632         *coef_exponent = coef_exp - 16;
4633 }
4634
4635 static void
4636 ath9k_hw_set_delta_slope(struct ath_hal *ah,
4637                          struct ath9k_channel *chan)
4638 {
4639         u32 coef_scaled, ds_coef_exp, ds_coef_man;
4640         u32 clockMhzScaled = 0x64000000;
4641         struct chan_centers centers;
4642
4643         if (IS_CHAN_HALF_RATE(chan))
4644                 clockMhzScaled = clockMhzScaled >> 1;
4645         else if (IS_CHAN_QUARTER_RATE(chan))
4646                 clockMhzScaled = clockMhzScaled >> 2;
4647
4648         ath9k_hw_get_channel_centers(ah, chan, &centers);
4649         coef_scaled = clockMhzScaled / centers.synth_center;
4650
4651         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
4652                                       &ds_coef_exp);
4653
4654         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
4655                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
4656         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
4657                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
4658
4659         coef_scaled = (9 * coef_scaled) / 10;
4660
4661         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
4662                                       &ds_coef_exp);
4663
4664         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
4665                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
4666         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
4667                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
4668 }
4669
4670 static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah,
4671                                         struct ath9k_channel *chan)
4672 {
4673         int bb_spur = AR_NO_SPUR;
4674         int freq;
4675         int bin, cur_bin;
4676         int bb_spur_off, spur_subchannel_sd;
4677         int spur_freq_sd;
4678         int spur_delta_phase;
4679         int denominator;
4680         int upper, lower, cur_vit_mask;
4681         int tmp, newVal;
4682         int i;
4683         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
4684                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
4685         };
4686         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
4687                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
4688         };
4689         int inc[4] = { 0, 100, 0, 0 };
4690         struct chan_centers centers;
4691
4692         int8_t mask_m[123];
4693         int8_t mask_p[123];
4694         int8_t mask_amt;
4695         int tmp_mask;
4696         int cur_bb_spur;
4697         bool is2GHz = IS_CHAN_2GHZ(chan);
4698
4699         memset(&mask_m, 0, sizeof(int8_t) * 123);
4700         memset(&mask_p, 0, sizeof(int8_t) * 123);
4701
4702         ath9k_hw_get_channel_centers(ah, chan, &centers);
4703         freq = centers.synth_center;
4704
4705         ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
4706         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4707                 cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
4708
4709                 if (is2GHz)
4710                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
4711                 else
4712                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
4713
4714                 if (AR_NO_SPUR == cur_bb_spur)
4715                         break;
4716                 cur_bb_spur = cur_bb_spur - freq;
4717
4718                 if (IS_CHAN_HT40(chan)) {
4719                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
4720                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
4721                                 bb_spur = cur_bb_spur;
4722                                 break;
4723                         }
4724                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
4725                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
4726                         bb_spur = cur_bb_spur;
4727                         break;
4728                 }
4729         }
4730
4731         if (AR_NO_SPUR == bb_spur) {
4732                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
4733                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
4734                 return;
4735         } else {
4736                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
4737                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
4738         }
4739
4740         bin = bb_spur * 320;
4741
4742         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
4743
4744         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
4745                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
4746                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
4747                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
4748         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
4749
4750         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
4751                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
4752                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
4753                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
4754                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
4755         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
4756
4757         if (IS_CHAN_HT40(chan)) {
4758                 if (bb_spur < 0) {
4759                         spur_subchannel_sd = 1;
4760                         bb_spur_off = bb_spur + 10;
4761                 } else {
4762                         spur_subchannel_sd = 0;
4763                         bb_spur_off = bb_spur - 10;
4764                 }
4765         } else {
4766                 spur_subchannel_sd = 0;
4767                 bb_spur_off = bb_spur;
4768         }
4769
4770         if (IS_CHAN_HT40(chan))
4771                 spur_delta_phase =
4772                         ((bb_spur * 262144) /
4773                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4774         else
4775                 spur_delta_phase =
4776                         ((bb_spur * 524288) /
4777                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4778
4779         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
4780         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
4781
4782         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
4783                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
4784                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
4785         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
4786
4787         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
4788         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
4789
4790         cur_bin = -6000;
4791         upper = bin + 100;
4792         lower = bin - 100;
4793
4794         for (i = 0; i < 4; i++) {
4795                 int pilot_mask = 0;
4796                 int chan_mask = 0;
4797                 int bp = 0;
4798                 for (bp = 0; bp < 30; bp++) {
4799                         if ((cur_bin > lower) && (cur_bin < upper)) {
4800                                 pilot_mask = pilot_mask | 0x1 << bp;
4801                                 chan_mask = chan_mask | 0x1 << bp;
4802                         }
4803                         cur_bin += 100;
4804                 }
4805                 cur_bin += inc[i];
4806                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
4807                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
4808         }
4809
4810         cur_vit_mask = 6100;
4811         upper = bin + 120;
4812         lower = bin - 120;
4813
4814         for (i = 0; i < 123; i++) {
4815                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
4816
4817                         /* workaround for gcc bug #37014 */
4818                         volatile int tmp = abs(cur_vit_mask - bin);
4819
4820                         if (tmp < 75)
4821                                 mask_amt = 1;
4822                         else
4823                                 mask_amt = 0;
4824                         if (cur_vit_mask < 0)
4825                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
4826                         else
4827                                 mask_p[cur_vit_mask / 100] = mask_amt;
4828                 }
4829                 cur_vit_mask -= 100;
4830         }
4831
4832         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
4833                 | (mask_m[48] << 26) | (mask_m[49] << 24)
4834                 | (mask_m[50] << 22) | (mask_m[51] << 20)
4835                 | (mask_m[52] << 18) | (mask_m[53] << 16)
4836                 | (mask_m[54] << 14) | (mask_m[55] << 12)
4837                 | (mask_m[56] << 10) | (mask_m[57] << 8)
4838                 | (mask_m[58] << 6) | (mask_m[59] << 4)
4839                 | (mask_m[60] << 2) | (mask_m[61] << 0);
4840         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
4841         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
4842
4843         tmp_mask = (mask_m[31] << 28)
4844                 | (mask_m[32] << 26) | (mask_m[33] << 24)
4845                 | (mask_m[34] << 22) | (mask_m[35] << 20)
4846                 | (mask_m[36] << 18) | (mask_m[37] << 16)
4847                 | (mask_m[48] << 14) | (mask_m[39] << 12)
4848                 | (mask_m[40] << 10) | (mask_m[41] << 8)
4849                 | (mask_m[42] << 6) | (mask_m[43] << 4)
4850                 | (mask_m[44] << 2) | (mask_m[45] << 0);
4851         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
4852         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
4853
4854         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
4855                 | (mask_m[18] << 26) | (mask_m[18] << 24)
4856                 | (mask_m[20] << 22) | (mask_m[20] << 20)
4857                 | (mask_m[22] << 18) | (mask_m[22] << 16)
4858                 | (mask_m[24] << 14) | (mask_m[24] << 12)
4859                 | (mask_m[25] << 10) | (mask_m[26] << 8)
4860                 | (mask_m[27] << 6) | (mask_m[28] << 4)
4861                 | (mask_m[29] << 2) | (mask_m[30] << 0);
4862         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
4863         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
4864
4865         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
4866                 | (mask_m[2] << 26) | (mask_m[3] << 24)
4867                 | (mask_m[4] << 22) | (mask_m[5] << 20)
4868                 | (mask_m[6] << 18) | (mask_m[7] << 16)
4869                 | (mask_m[8] << 14) | (mask_m[9] << 12)
4870                 | (mask_m[10] << 10) | (mask_m[11] << 8)
4871                 | (mask_m[12] << 6) | (mask_m[13] << 4)
4872                 | (mask_m[14] << 2) | (mask_m[15] << 0);
4873         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
4874         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
4875
4876         tmp_mask = (mask_p[15] << 28)
4877                 | (mask_p[14] << 26) | (mask_p[13] << 24)
4878                 | (mask_p[12] << 22) | (mask_p[11] << 20)
4879                 | (mask_p[10] << 18) | (mask_p[9] << 16)
4880                 | (mask_p[8] << 14) | (mask_p[7] << 12)
4881                 | (mask_p[6] << 10) | (mask_p[5] << 8)
4882                 | (mask_p[4] << 6) | (mask_p[3] << 4)
4883                 | (mask_p[2] << 2) | (mask_p[1] << 0);
4884         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
4885         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
4886
4887         tmp_mask = (mask_p[30] << 28)
4888                 | (mask_p[29] << 26) | (mask_p[28] << 24)
4889                 | (mask_p[27] << 22) | (mask_p[26] << 20)
4890                 | (mask_p[25] << 18) | (mask_p[24] << 16)
4891                 | (mask_p[23] << 14) | (mask_p[22] << 12)
4892                 | (mask_p[21] << 10) | (mask_p[20] << 8)
4893                 | (mask_p[19] << 6) | (mask_p[18] << 4)
4894                 | (mask_p[17] << 2) | (mask_p[16] << 0);
4895         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
4896         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
4897
4898         tmp_mask = (mask_p[45] << 28)
4899                 | (mask_p[44] << 26) | (mask_p[43] << 24)
4900                 | (mask_p[42] << 22) | (mask_p[41] << 20)
4901                 | (mask_p[40] << 18) | (mask_p[39] << 16)
4902                 | (mask_p[38] << 14) | (mask_p[37] << 12)
4903                 | (mask_p[36] << 10) | (mask_p[35] << 8)
4904                 | (mask_p[34] << 6) | (mask_p[33] << 4)
4905                 | (mask_p[32] << 2) | (mask_p[31] << 0);
4906         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
4907         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
4908
4909         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
4910                 | (mask_p[59] << 26) | (mask_p[58] << 24)
4911                 | (mask_p[57] << 22) | (mask_p[56] << 20)
4912                 | (mask_p[55] << 18) | (mask_p[54] << 16)
4913                 | (mask_p[53] << 14) | (mask_p[52] << 12)
4914                 | (mask_p[51] << 10) | (mask_p[50] << 8)
4915                 | (mask_p[49] << 6) | (mask_p[48] << 4)
4916                 | (mask_p[47] << 2) | (mask_p[46] << 0);
4917         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
4918         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
4919 }
4920
4921 static void ath9k_hw_spur_mitigate(struct ath_hal *ah,
4922                                    struct ath9k_channel *chan)
4923 {
4924         int bb_spur = AR_NO_SPUR;
4925         int bin, cur_bin;
4926         int spur_freq_sd;
4927         int spur_delta_phase;
4928         int denominator;
4929         int upper, lower, cur_vit_mask;
4930         int tmp, new;
4931         int i;
4932         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
4933                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
4934         };
4935         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
4936                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
4937         };
4938         int inc[4] = { 0, 100, 0, 0 };
4939
4940         int8_t mask_m[123];
4941         int8_t mask_p[123];
4942         int8_t mask_amt;
4943         int tmp_mask;
4944         int cur_bb_spur;
4945         bool is2GHz = IS_CHAN_2GHZ(chan);
4946
4947         memset(&mask_m, 0, sizeof(int8_t) * 123);
4948         memset(&mask_p, 0, sizeof(int8_t) * 123);
4949
4950         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
4951                 cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
4952                 if (AR_NO_SPUR == cur_bb_spur)
4953                         break;
4954                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
4955                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
4956                         bb_spur = cur_bb_spur;
4957                         break;
4958                 }
4959         }
4960
4961         if (AR_NO_SPUR == bb_spur)
4962                 return;
4963
4964         bin = bb_spur * 32;
4965
4966         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
4967         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
4968                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
4969                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
4970                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
4971
4972         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
4973
4974         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
4975                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
4976                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
4977                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
4978                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
4979         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
4980
4981         spur_delta_phase = ((bb_spur * 524288) / 100) &
4982                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
4983
4984         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
4985         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
4986
4987         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
4988                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
4989                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
4990         REG_WRITE(ah, AR_PHY_TIMING11, new);
4991
4992         cur_bin = -6000;
4993         upper = bin + 100;
4994         lower = bin - 100;
4995
4996         for (i = 0; i < 4; i++) {
4997                 int pilot_mask = 0;
4998                 int chan_mask = 0;
4999                 int bp = 0;
5000                 for (bp = 0; bp < 30; bp++) {
5001                         if ((cur_bin > lower) && (cur_bin < upper)) {
5002                                 pilot_mask = pilot_mask | 0x1 << bp;
5003                                 chan_mask = chan_mask | 0x1 << bp;
5004                         }
5005                         cur_bin += 100;
5006                 }
5007                 cur_bin += inc[i];
5008                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
5009                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
5010         }
5011
5012         cur_vit_mask = 6100;
5013         upper = bin + 120;
5014         lower = bin - 120;
5015
5016         for (i = 0; i < 123; i++) {
5017                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
5018
5019                         /* workaround for gcc bug #37014 */
5020                         volatile int tmp = abs(cur_vit_mask - bin);
5021
5022                         if (tmp < 75)
5023                                 mask_amt = 1;
5024                         else
5025                                 mask_amt = 0;
5026                         if (cur_vit_mask < 0)
5027                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
5028                         else
5029                                 mask_p[cur_vit_mask / 100] = mask_amt;
5030                 }
5031                 cur_vit_mask -= 100;
5032         }
5033
5034         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
5035                 | (mask_m[48] << 26) | (mask_m[49] << 24)
5036                 | (mask_m[50] << 22) | (mask_m[51] << 20)
5037                 | (mask_m[52] << 18) | (mask_m[53] << 16)
5038                 | (mask_m[54] << 14) | (mask_m[55] << 12)
5039                 | (mask_m[56] << 10) | (mask_m[57] << 8)
5040                 | (mask_m[58] << 6) | (mask_m[59] << 4)
5041                 | (mask_m[60] << 2) | (mask_m[61] << 0);
5042         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
5043         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
5044
5045         tmp_mask = (mask_m[31] << 28)
5046                 | (mask_m[32] << 26) | (mask_m[33] << 24)
5047                 | (mask_m[34] << 22) | (mask_m[35] << 20)
5048                 | (mask_m[36] << 18) | (mask_m[37] << 16)
5049                 | (mask_m[48] << 14) | (mask_m[39] << 12)
5050                 | (mask_m[40] << 10) | (mask_m[41] << 8)
5051                 | (mask_m[42] << 6) | (mask_m[43] << 4)
5052                 | (mask_m[44] << 2) | (mask_m[45] << 0);
5053         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
5054         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
5055
5056         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
5057                 | (mask_m[18] << 26) | (mask_m[18] << 24)
5058                 | (mask_m[20] << 22) | (mask_m[20] << 20)
5059                 | (mask_m[22] << 18) | (mask_m[22] << 16)
5060                 | (mask_m[24] << 14) | (mask_m[24] << 12)
5061                 | (mask_m[25] << 10) | (mask_m[26] << 8)
5062                 | (mask_m[27] << 6) | (mask_m[28] << 4)
5063                 | (mask_m[29] << 2) | (mask_m[30] << 0);
5064         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
5065         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
5066
5067         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
5068                 | (mask_m[2] << 26) | (mask_m[3] << 24)
5069                 | (mask_m[4] << 22) | (mask_m[5] << 20)
5070                 | (mask_m[6] << 18) | (mask_m[7] << 16)
5071                 | (mask_m[8] << 14) | (mask_m[9] << 12)
5072                 | (mask_m[10] << 10) | (mask_m[11] << 8)
5073                 | (mask_m[12] << 6) | (mask_m[13] << 4)
5074                 | (mask_m[14] << 2) | (mask_m[15] << 0);
5075         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
5076         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
5077
5078         tmp_mask = (mask_p[15] << 28)
5079                 | (mask_p[14] << 26) | (mask_p[13] << 24)
5080                 | (mask_p[12] << 22) | (mask_p[11] << 20)
5081                 | (mask_p[10] << 18) | (mask_p[9] << 16)
5082                 | (mask_p[8] << 14) | (mask_p[7] << 12)
5083                 | (mask_p[6] << 10) | (mask_p[5] << 8)
5084                 | (mask_p[4] << 6) | (mask_p[3] << 4)
5085                 | (mask_p[2] << 2) | (mask_p[1] << 0);
5086         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
5087         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
5088
5089         tmp_mask = (mask_p[30] << 28)
5090                 | (mask_p[29] << 26) | (mask_p[28] << 24)
5091                 | (mask_p[27] << 22) | (mask_p[26] << 20)
5092                 | (mask_p[25] << 18) | (mask_p[24] << 16)
5093                 | (mask_p[23] << 14) | (mask_p[22] << 12)
5094                 | (mask_p[21] << 10) | (mask_p[20] << 8)
5095                 | (mask_p[19] << 6) | (mask_p[18] << 4)
5096                 | (mask_p[17] << 2) | (mask_p[16] << 0);
5097         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
5098         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
5099
5100         tmp_mask = (mask_p[45] << 28)
5101                 | (mask_p[44] << 26) | (mask_p[43] << 24)
5102                 | (mask_p[42] << 22) | (mask_p[41] << 20)
5103                 | (mask_p[40] << 18) | (mask_p[39] << 16)
5104                 | (mask_p[38] << 14) | (mask_p[37] << 12)
5105                 | (mask_p[36] << 10) | (mask_p[35] << 8)
5106                 | (mask_p[34] << 6) | (mask_p[33] << 4)
5107                 | (mask_p[32] << 2) | (mask_p[31] << 0);
5108         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
5109         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
5110
5111         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
5112                 | (mask_p[59] << 26) | (mask_p[58] << 24)
5113                 | (mask_p[57] << 22) | (mask_p[56] << 20)
5114                 | (mask_p[55] << 18) | (mask_p[54] << 16)
5115                 | (mask_p[53] << 14) | (mask_p[52] << 12)
5116                 | (mask_p[51] << 10) | (mask_p[50] << 8)
5117                 | (mask_p[49] << 6) | (mask_p[48] << 4)
5118                 | (mask_p[47] << 2) | (mask_p[46] << 0);
5119         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
5120         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
5121 }
5122
5123 static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
5124 {
5125         struct ath_hal_5416 *ahp = AH5416(ah);
5126         int rx_chainmask, tx_chainmask;
5127
5128         rx_chainmask = ahp->ah_rxchainmask;
5129         tx_chainmask = ahp->ah_txchainmask;
5130
5131         switch (rx_chainmask) {
5132         case 0x5:
5133                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
5134                             AR_PHY_SWAP_ALT_CHAIN);
5135         case 0x3:
5136                 if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
5137                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
5138                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
5139                         break;
5140                 }
5141         case 0x1:
5142         case 0x2:
5143                 if (!AR_SREV_9280(ah))
5144                         break;
5145         case 0x7:
5146                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
5147                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
5148                 break;
5149         default:
5150                 break;
5151         }
5152
5153         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
5154         if (tx_chainmask == 0x5) {
5155                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
5156                             AR_PHY_SWAP_ALT_CHAIN);
5157         }
5158         if (AR_SREV_9100(ah))
5159                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
5160                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
5161 }
5162
5163 static void ath9k_hw_set_addac(struct ath_hal *ah,
5164                                struct ath9k_channel *chan)
5165 {
5166         struct modal_eep_header *pModal;
5167         struct ath_hal_5416 *ahp = AH5416(ah);
5168         struct ar5416_eeprom *eep = &ahp->ah_eeprom;
5169         u8 biaslevel;
5170
5171         if (ah->ah_macVersion != AR_SREV_VERSION_9160)
5172                 return;
5173
5174         if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
5175                 return;
5176
5177         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
5178
5179         if (pModal->xpaBiasLvl != 0xff) {
5180                 biaslevel = pModal->xpaBiasLvl;
5181         } else {
5182
5183                 u16 resetFreqBin, freqBin, freqCount = 0;
5184                 struct chan_centers centers;
5185
5186                 ath9k_hw_get_channel_centers(ah, chan, &centers);
5187
5188                 resetFreqBin =
5189                         FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
5190                 freqBin = pModal->xpaBiasLvlFreq[0] & 0xff;
5191                 biaslevel = (u8) (pModal->xpaBiasLvlFreq[0] >> 14);
5192
5193                 freqCount++;
5194
5195                 while (freqCount < 3) {
5196                         if (pModal->xpaBiasLvlFreq[freqCount] == 0x0)
5197                                 break;
5198
5199                         freqBin = pModal->xpaBiasLvlFreq[freqCount] & 0xff;
5200                         if (resetFreqBin >= freqBin) {
5201                                 biaslevel =
5202                                         (u8) (pModal->
5203                                                     xpaBiasLvlFreq[freqCount]
5204                                                     >> 14);
5205                         } else {
5206                                 break;
5207                         }
5208                         freqCount++;
5209                 }
5210         }
5211
5212         if (IS_CHAN_2GHZ(chan)) {
5213                 INI_RA(&ahp->ah_iniAddac, 7, 1) =
5214                         (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel
5215                         << 3;
5216         } else {
5217                 INI_RA(&ahp->ah_iniAddac, 6, 1) =
5218                         (INI_RA(&ahp->ah_iniAddac, 6, 1) & (~0xc0)) | biaslevel
5219                         << 6;
5220         }
5221 }
5222
5223 static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
5224 {
5225         if (ah->ah_curchan != NULL)
5226                 return clks /
5227                 CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
5228         else
5229                 return clks / CLOCK_RATE[ATH9K_MODE_11B];
5230 }
5231
5232 static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
5233 {
5234         struct ath9k_channel *chan = ah->ah_curchan;
5235
5236         if (chan && IS_CHAN_HT40(chan))
5237                 return ath9k_hw_mac_usec(ah, clks) / 2;
5238         else
5239                 return ath9k_hw_mac_usec(ah, clks);
5240 }
5241
5242 static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
5243 {
5244         if (ah->ah_curchan != NULL)
5245                 return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
5246                         ah->ah_curchan)];
5247         else
5248                 return usecs * CLOCK_RATE[ATH9K_MODE_11B];
5249 }
5250
5251 static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
5252 {
5253         struct ath9k_channel *chan = ah->ah_curchan;
5254
5255         if (chan && IS_CHAN_HT40(chan))
5256                 return ath9k_hw_mac_clks(ah, usecs) * 2;
5257         else
5258                 return ath9k_hw_mac_clks(ah, usecs);
5259 }
5260
5261 static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
5262 {
5263         struct ath_hal_5416 *ahp = AH5416(ah);
5264
5265         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
5266                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n",
5267                          __func__, us);
5268                 ahp->ah_acktimeout = (u32) -1;
5269                 return false;
5270         } else {
5271                 REG_RMW_FIELD(ah, AR_TIME_OUT,
5272                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
5273                 ahp->ah_acktimeout = us;
5274                 return true;
5275         }
5276 }
5277
5278 static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
5279 {
5280         struct ath_hal_5416 *ahp = AH5416(ah);
5281
5282         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
5283                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n",
5284                          __func__, us);
5285                 ahp->ah_ctstimeout = (u32) -1;
5286                 return false;
5287         } else {
5288                 REG_RMW_FIELD(ah, AR_TIME_OUT,
5289                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
5290                 ahp->ah_ctstimeout = us;
5291                 return true;
5292         }
5293 }
5294 static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah,
5295                                           u32 tu)
5296 {
5297         struct ath_hal_5416 *ahp = AH5416(ah);
5298
5299         if (tu > 0xFFFF) {
5300                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
5301                         "%s: bad global tx timeout %u\n", __func__, tu);
5302                 ahp->ah_globaltxtimeout = (u32) -1;
5303                 return false;
5304         } else {
5305                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
5306                 ahp->ah_globaltxtimeout = tu;
5307                 return true;
5308         }
5309 }
5310
5311 bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
5312 {
5313         struct ath_hal_5416 *ahp = AH5416(ah);
5314
5315         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
5316                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n",
5317                          __func__, us);
5318                 ahp->ah_slottime = (u32) -1;
5319                 return false;
5320         } else {
5321                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
5322                 ahp->ah_slottime = us;
5323                 return true;
5324         }
5325 }
5326
5327 static void ath9k_hw_init_user_settings(struct ath_hal *ah)
5328 {
5329         struct ath_hal_5416 *ahp = AH5416(ah);
5330
5331         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n",
5332                  __func__, ahp->ah_miscMode);
5333         if (ahp->ah_miscMode != 0)
5334                 REG_WRITE(ah, AR_PCU_MISC,
5335                           REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
5336         if (ahp->ah_slottime != (u32) -1)
5337                 ath9k_hw_setslottime(ah, ahp->ah_slottime);
5338         if (ahp->ah_acktimeout != (u32) -1)
5339                 ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
5340         if (ahp->ah_ctstimeout != (u32) -1)
5341                 ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
5342         if (ahp->ah_globaltxtimeout != (u32) -1)
5343                 ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
5344 }
5345
5346 static int
5347 ath9k_hw_process_ini(struct ath_hal *ah,
5348                      struct ath9k_channel *chan,
5349                      enum ath9k_ht_macmode macmode)
5350 {
5351         int i, regWrites = 0;
5352         struct ath_hal_5416 *ahp = AH5416(ah);
5353         u32 modesIndex, freqIndex;
5354         int status;
5355
5356         switch (chan->chanmode) {
5357         case CHANNEL_A:
5358         case CHANNEL_A_HT20:
5359                 modesIndex = 1;
5360                 freqIndex = 1;
5361                 break;
5362         case CHANNEL_A_HT40PLUS:
5363         case CHANNEL_A_HT40MINUS:
5364                 modesIndex = 2;
5365                 freqIndex = 1;
5366                 break;
5367         case CHANNEL_G:
5368         case CHANNEL_G_HT20:
5369         case CHANNEL_B:
5370                 modesIndex = 4;
5371                 freqIndex = 2;
5372                 break;
5373         case CHANNEL_G_HT40PLUS:
5374         case CHANNEL_G_HT40MINUS:
5375                 modesIndex = 3;
5376                 freqIndex = 2;
5377                 break;
5378
5379         default:
5380                 return -EINVAL;
5381         }
5382
5383         REG_WRITE(ah, AR_PHY(0), 0x00000007);
5384
5385         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
5386
5387         ath9k_hw_set_addac(ah, chan);
5388
5389         if (AR_SREV_5416_V22_OR_LATER(ah)) {
5390                 REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
5391         } else {
5392                 struct ar5416IniArray temp;
5393                 u32 addacSize =
5394                         sizeof(u32) * ahp->ah_iniAddac.ia_rows *
5395                         ahp->ah_iniAddac.ia_columns;
5396
5397                 memcpy(ahp->ah_addac5416_21,
5398                        ahp->ah_iniAddac.ia_array, addacSize);
5399
5400                 (ahp->ah_addac5416_21)[31 *
5401                                        ahp->ah_iniAddac.ia_columns + 1] = 0;
5402
5403                 temp.ia_array = ahp->ah_addac5416_21;
5404                 temp.ia_columns = ahp->ah_iniAddac.ia_columns;
5405                 temp.ia_rows = ahp->ah_iniAddac.ia_rows;
5406                 REG_WRITE_ARRAY(&temp, 1, regWrites);
5407         }
5408         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
5409
5410         for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
5411                 u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
5412                 u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
5413
5414 #ifdef CONFIG_SLOW_ANT_DIV
5415                 if (ah->ah_devid == AR9280_DEVID_PCI)
5416                         val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg,
5417                                                  val);
5418 #endif
5419
5420                 REG_WRITE(ah, reg, val);
5421
5422                 if (reg >= 0x7800 && reg < 0x78a0
5423                     && ah->ah_config.analog_shiftreg) {
5424                         udelay(100);
5425                 }
5426
5427                 DO_DELAY(regWrites);
5428         }
5429
5430         for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
5431                 u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
5432                 u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
5433
5434                 REG_WRITE(ah, reg, val);
5435
5436                 if (reg >= 0x7800 && reg < 0x78a0
5437                     && ah->ah_config.analog_shiftreg) {
5438                         udelay(100);
5439                 }
5440
5441                 DO_DELAY(regWrites);
5442         }
5443
5444         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
5445
5446         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
5447                 REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
5448                                 regWrites);
5449         }
5450
5451         ath9k_hw_override_ini(ah, chan);
5452         ath9k_hw_set_regs(ah, chan, macmode);
5453         ath9k_hw_init_chain_masks(ah);
5454
5455         status = ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
5456                                       ath9k_regd_get_ctl(ah, chan),
5457                                       ath9k_regd_get_antenna_allowed(ah,
5458                                                                      chan),
5459                                       chan->maxRegTxPower * 2,
5460                                       min((u32) MAX_RATE_POWER,
5461                                           (u32) ah->ah_powerLimit));
5462         if (status != 0) {
5463                 DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
5464                          "%s: error init'ing transmit power\n", __func__);
5465                 return -EIO;
5466         }
5467
5468         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
5469                 DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
5470                          "%s: ar5416SetRfRegs failed\n", __func__);
5471                 return -EIO;
5472         }
5473
5474         return 0;
5475 }
5476
5477 static void ath9k_hw_setup_calibration(struct ath_hal *ah,
5478                                               struct hal_cal_list *currCal)
5479 {
5480         REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
5481                       AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
5482                       currCal->calData->calCountMax);
5483
5484         switch (currCal->calData->calType) {
5485         case IQ_MISMATCH_CAL:
5486                 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
5487                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5488                          "%s: starting IQ Mismatch Calibration\n",
5489                          __func__);
5490                 break;
5491         case ADC_GAIN_CAL:
5492                 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
5493                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5494                          "%s: starting ADC Gain Calibration\n", __func__);
5495                 break;
5496         case ADC_DC_CAL:
5497                 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
5498                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5499                          "%s: starting ADC DC Calibration\n", __func__);
5500                 break;
5501         case ADC_DC_INIT_CAL:
5502                 REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
5503                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5504                          "%s: starting Init ADC DC Calibration\n",
5505                          __func__);
5506                 break;
5507         }
5508
5509         REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
5510                     AR_PHY_TIMING_CTRL4_DO_CAL);
5511 }
5512
5513 static void ath9k_hw_reset_calibration(struct ath_hal *ah,
5514                                        struct hal_cal_list *currCal)
5515 {
5516         struct ath_hal_5416 *ahp = AH5416(ah);
5517         int i;
5518
5519         ath9k_hw_setup_calibration(ah, currCal);
5520
5521         currCal->calState = CAL_RUNNING;
5522
5523         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
5524                 ahp->ah_Meas0.sign[i] = 0;
5525                 ahp->ah_Meas1.sign[i] = 0;
5526                 ahp->ah_Meas2.sign[i] = 0;
5527                 ahp->ah_Meas3.sign[i] = 0;
5528         }
5529
5530         ahp->ah_CalSamples = 0;
5531 }
5532
5533 static void
5534 ath9k_hw_per_calibration(struct ath_hal *ah,
5535                          struct ath9k_channel *ichan,
5536                          u8 rxchainmask,
5537                          struct hal_cal_list *currCal,
5538                          bool *isCalDone)
5539 {
5540         struct ath_hal_5416 *ahp = AH5416(ah);
5541
5542         *isCalDone = false;
5543
5544         if (currCal->calState == CAL_RUNNING) {
5545                 if (!(REG_READ(ah,
5546                                AR_PHY_TIMING_CTRL4(0)) &
5547                       AR_PHY_TIMING_CTRL4_DO_CAL)) {
5548
5549                         currCal->calData->calCollect(ah);
5550
5551                         ahp->ah_CalSamples++;
5552
5553                         if (ahp->ah_CalSamples >=
5554                             currCal->calData->calNumSamples) {
5555                                 int i, numChains = 0;
5556                                 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
5557                                         if (rxchainmask & (1 << i))
5558                                                 numChains++;
5559                                 }
5560
5561                                 currCal->calData->calPostProc(ah,
5562                                                               numChains);
5563
5564                                 ichan->CalValid |=
5565                                         currCal->calData->calType;
5566                                 currCal->calState = CAL_DONE;
5567                                 *isCalDone = true;
5568                         } else {
5569                                 ath9k_hw_setup_calibration(ah, currCal);
5570                         }
5571                 }
5572         } else if (!(ichan->CalValid & currCal->calData->calType)) {
5573                 ath9k_hw_reset_calibration(ah, currCal);
5574         }
5575 }
5576
5577 static inline bool ath9k_hw_run_init_cals(struct ath_hal *ah,
5578                                           int init_cal_count)
5579 {
5580         struct ath_hal_5416 *ahp = AH5416(ah);
5581         struct ath9k_channel ichan;
5582         bool isCalDone;
5583         struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
5584         const struct hal_percal_data *calData = currCal->calData;
5585         int i;
5586
5587         if (currCal == NULL)
5588                 return false;
5589
5590         ichan.CalValid = 0;
5591
5592         for (i = 0; i < init_cal_count; i++) {
5593                 ath9k_hw_reset_calibration(ah, currCal);
5594
5595                 if (!ath9k_hw_wait(ah, AR_PHY_TIMING_CTRL4(0),
5596                                    AR_PHY_TIMING_CTRL4_DO_CAL, 0)) {
5597                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5598                                  "%s: Cal %d failed to complete in 100ms.\n",
5599                                  __func__, calData->calType);
5600
5601                         ahp->ah_cal_list = ahp->ah_cal_list_last =
5602                                 ahp->ah_cal_list_curr = NULL;
5603                         return false;
5604                 }
5605
5606                 ath9k_hw_per_calibration(ah, &ichan, ahp->ah_rxchainmask,
5607                                          currCal, &isCalDone);
5608                 if (!isCalDone) {
5609                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5610                                  "%s: Not able to run Init Cal %d.\n",
5611                                  __func__, calData->calType);
5612                 }
5613                 if (currCal->calNext) {
5614                         currCal = currCal->calNext;
5615                         calData = currCal->calData;
5616                 }
5617         }
5618
5619         ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = NULL;
5620         return true;
5621 }
5622
5623 static bool
5624 ath9k_hw_channel_change(struct ath_hal *ah,
5625                         struct ath9k_channel *chan,
5626                         enum ath9k_ht_macmode macmode)
5627 {
5628         u32 synthDelay, qnum;
5629         struct ath_hal_5416 *ahp = AH5416(ah);
5630
5631         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
5632                 if (ath9k_hw_numtxpending(ah, qnum)) {
5633                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
5634                                  "%s: Transmit frames pending on queue %d\n",
5635                                  __func__, qnum);
5636                         return false;
5637                 }
5638         }
5639
5640         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
5641         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
5642                            AR_PHY_RFBUS_GRANT_EN)) {
5643                 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
5644                          "%s: Could not kill baseband RX\n", __func__);
5645                 return false;
5646         }
5647
5648         ath9k_hw_set_regs(ah, chan, macmode);
5649
5650         if (AR_SREV_9280_10_OR_LATER(ah)) {
5651                 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
5652                         DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5653                                  "%s: failed to set channel\n", __func__);
5654                         return false;
5655                 }
5656         } else {
5657                 if (!(ath9k_hw_set_channel(ah, chan))) {
5658                         DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5659                                  "%s: failed to set channel\n", __func__);
5660                         return false;
5661                 }
5662         }
5663
5664         if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
5665                                  ath9k_regd_get_ctl(ah, chan),
5666                                  ath9k_regd_get_antenna_allowed(ah, chan),
5667                                  chan->maxRegTxPower * 2,
5668                                  min((u32) MAX_RATE_POWER,
5669                                      (u32) ah->ah_powerLimit)) != 0) {
5670                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
5671                          "%s: error init'ing transmit power\n", __func__);
5672                 return false;
5673         }
5674
5675         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
5676         if (IS_CHAN_CCK(chan))
5677                 synthDelay = (4 * synthDelay) / 22;
5678         else
5679                 synthDelay /= 10;
5680
5681         udelay(synthDelay + BASE_ACTIVATE_DELAY);
5682
5683         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
5684
5685         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
5686                 ath9k_hw_set_delta_slope(ah, chan);
5687
5688         if (AR_SREV_9280_10_OR_LATER(ah))
5689                 ath9k_hw_9280_spur_mitigate(ah, chan);
5690         else
5691                 ath9k_hw_spur_mitigate(ah, chan);
5692
5693         if (!chan->oneTimeCalsDone)
5694                 chan->oneTimeCalsDone = true;
5695
5696         return true;
5697 }
5698
5699 static bool ath9k_hw_chip_reset(struct ath_hal *ah,
5700                                 struct ath9k_channel *chan)
5701 {
5702         struct ath_hal_5416 *ahp = AH5416(ah);
5703
5704         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
5705                 return false;
5706
5707         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
5708                 return false;
5709
5710         ahp->ah_chipFullSleep = false;
5711
5712         ath9k_hw_init_pll(ah, chan);
5713
5714         ath9k_hw_set_rfmode(ah, chan);
5715
5716         return true;
5717 }
5718
5719 static inline void ath9k_hw_set_dma(struct ath_hal *ah)
5720 {
5721         u32 regval;
5722
5723         regval = REG_READ(ah, AR_AHB_MODE);
5724         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
5725
5726         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
5727         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
5728
5729         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
5730
5731         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
5732         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
5733
5734         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
5735
5736         if (AR_SREV_9285(ah)) {
5737                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
5738                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
5739         } else {
5740                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
5741                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
5742         }
5743 }
5744
5745 bool ath9k_hw_stopdmarecv(struct ath_hal *ah)
5746 {
5747         REG_WRITE(ah, AR_CR, AR_CR_RXD);
5748         if (!ath9k_hw_wait(ah, AR_CR, AR_CR_RXE, 0)) {
5749                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
5750                         "%s: dma failed to stop in 10ms\n"
5751                         "AR_CR=0x%08x\nAR_DIAG_SW=0x%08x\n",
5752                         __func__,
5753                         REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW));
5754                 return false;
5755         } else {
5756                 return true;
5757         }
5758 }
5759
5760 void ath9k_hw_startpcureceive(struct ath_hal *ah)
5761 {
5762         REG_CLR_BIT(ah, AR_DIAG_SW,
5763                     (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
5764
5765         ath9k_enable_mib_counters(ah);
5766
5767         ath9k_ani_reset(ah);
5768 }
5769
5770 void ath9k_hw_stoppcurecv(struct ath_hal *ah)
5771 {
5772         REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_DIS);
5773
5774         ath9k_hw_disable_mib_counters(ah);
5775 }
5776
5777 static bool ath9k_hw_iscal_supported(struct ath_hal *ah,
5778                                      struct ath9k_channel *chan,
5779                                      enum hal_cal_types calType)
5780 {
5781         struct ath_hal_5416 *ahp = AH5416(ah);
5782         bool retval = false;
5783
5784         switch (calType & ahp->ah_suppCals) {
5785         case IQ_MISMATCH_CAL:
5786                 if (!IS_CHAN_B(chan))
5787                         retval = true;
5788                 break;
5789         case ADC_GAIN_CAL:
5790         case ADC_DC_CAL:
5791                 if (!IS_CHAN_B(chan)
5792                     && !(IS_CHAN_2GHZ(chan) && IS_CHAN_HT20(chan)))
5793                         retval = true;
5794                 break;
5795         }
5796
5797         return retval;
5798 }
5799
5800 static bool ath9k_hw_init_cal(struct ath_hal *ah,
5801                               struct ath9k_channel *chan)
5802 {
5803         struct ath_hal_5416 *ahp = AH5416(ah);
5804         struct ath9k_channel *ichan =
5805                 ath9k_regd_check_channel(ah, chan);
5806
5807         REG_WRITE(ah, AR_PHY_AGC_CONTROL,
5808                   REG_READ(ah, AR_PHY_AGC_CONTROL) |
5809                   AR_PHY_AGC_CONTROL_CAL);
5810
5811         if (!ath9k_hw_wait
5812             (ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
5813                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5814                          "%s: offset calibration failed to complete in 1ms; "
5815                          "noisy environment?\n", __func__);
5816                 return false;
5817         }
5818
5819         REG_WRITE(ah, AR_PHY_AGC_CONTROL,
5820                   REG_READ(ah, AR_PHY_AGC_CONTROL) |
5821                   AR_PHY_AGC_CONTROL_NF);
5822
5823         ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr =
5824                 NULL;
5825
5826         if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
5827                 if (ath9k_hw_iscal_supported(ah, chan, ADC_GAIN_CAL)) {
5828                         INIT_CAL(&ahp->ah_adcGainCalData);
5829                         INSERT_CAL(ahp, &ahp->ah_adcGainCalData);
5830                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5831                                  "%s: enabling ADC Gain Calibration.\n",
5832                                  __func__);
5833                 }
5834                 if (ath9k_hw_iscal_supported(ah, chan, ADC_DC_CAL)) {
5835                         INIT_CAL(&ahp->ah_adcDcCalData);
5836                         INSERT_CAL(ahp, &ahp->ah_adcDcCalData);
5837                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5838                                  "%s: enabling ADC DC Calibration.\n",
5839                                  __func__);
5840                 }
5841                 if (ath9k_hw_iscal_supported(ah, chan, IQ_MISMATCH_CAL)) {
5842                         INIT_CAL(&ahp->ah_iqCalData);
5843                         INSERT_CAL(ahp, &ahp->ah_iqCalData);
5844                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
5845                                  "%s: enabling IQ Calibration.\n",
5846                                  __func__);
5847                 }
5848
5849                 ahp->ah_cal_list_curr = ahp->ah_cal_list;
5850
5851                 if (ahp->ah_cal_list_curr)
5852                         ath9k_hw_reset_calibration(ah,
5853                                                    ahp->ah_cal_list_curr);
5854         }
5855
5856         ichan->CalValid = 0;
5857
5858         return true;
5859 }
5860
5861
5862 bool ath9k_hw_reset(struct ath_hal *ah,
5863                     struct ath9k_channel *chan,
5864                     enum ath9k_ht_macmode macmode,
5865                     u8 txchainmask, u8 rxchainmask,
5866                     enum ath9k_ht_extprotspacing extprotspacing,
5867                     bool bChannelChange,
5868                     int *status)
5869 {
5870         u32 saveLedState;
5871         struct ath_hal_5416 *ahp = AH5416(ah);
5872         struct ath9k_channel *curchan = ah->ah_curchan;
5873         u32 saveDefAntenna;
5874         u32 macStaId1;
5875         int ecode;
5876         int i, rx_chainmask;
5877
5878         ahp->ah_extprotspacing = extprotspacing;
5879         ahp->ah_txchainmask = txchainmask;
5880         ahp->ah_rxchainmask = rxchainmask;
5881
5882         if (AR_SREV_9280(ah)) {
5883                 ahp->ah_txchainmask &= 0x3;
5884                 ahp->ah_rxchainmask &= 0x3;
5885         }
5886
5887         if (ath9k_hw_check_chan(ah, chan) == NULL) {
5888                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
5889                          "%s: invalid channel %u/0x%x; no mapping\n",
5890                          __func__, chan->channel, chan->channelFlags);
5891                 ecode = -EINVAL;
5892                 goto bad;
5893         }
5894
5895         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
5896                 ecode = -EIO;
5897                 goto bad;
5898         }
5899
5900         if (curchan)
5901                 ath9k_hw_getnf(ah, curchan);
5902
5903         if (bChannelChange &&
5904             (ahp->ah_chipFullSleep != true) &&
5905             (ah->ah_curchan != NULL) &&
5906             (chan->channel != ah->ah_curchan->channel) &&
5907             ((chan->channelFlags & CHANNEL_ALL) ==
5908              (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
5909             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
5910                                    !IS_CHAN_A_5MHZ_SPACED(ah->
5911                                                           ah_curchan)))) {
5912
5913                 if (ath9k_hw_channel_change(ah, chan, macmode)) {
5914                         ath9k_hw_loadnf(ah, ah->ah_curchan);
5915                         ath9k_hw_start_nfcal(ah);
5916                         return true;
5917                 }
5918         }
5919
5920         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
5921         if (saveDefAntenna == 0)
5922                 saveDefAntenna = 1;
5923
5924         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
5925
5926         saveLedState = REG_READ(ah, AR_CFG_LED) &
5927                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
5928                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
5929
5930         ath9k_hw_mark_phy_inactive(ah);
5931
5932         if (!ath9k_hw_chip_reset(ah, chan)) {
5933                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n",
5934                          __func__);
5935                 ecode = -EINVAL;
5936                 goto bad;
5937         }
5938
5939         if (AR_SREV_9280(ah)) {
5940                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
5941                             AR_GPIO_JTAG_DISABLE);
5942
5943                 if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
5944                         if (IS_CHAN_5GHZ(chan))
5945                                 ath9k_hw_set_gpio(ah, 9, 0);
5946                         else
5947                                 ath9k_hw_set_gpio(ah, 9, 1);
5948                 }
5949                 ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
5950         }
5951
5952         ecode = ath9k_hw_process_ini(ah, chan, macmode);
5953         if (ecode != 0) {
5954                 ecode = -EINVAL;
5955                 goto bad;
5956         }
5957
5958         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
5959                 ath9k_hw_set_delta_slope(ah, chan);
5960
5961         if (AR_SREV_9280_10_OR_LATER(ah))
5962                 ath9k_hw_9280_spur_mitigate(ah, chan);
5963         else
5964                 ath9k_hw_spur_mitigate(ah, chan);
5965
5966         if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
5967                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
5968                          "%s: error setting board options\n", __func__);
5969                 ecode = -EIO;
5970                 goto bad;
5971         }
5972
5973         ath9k_hw_decrease_chain_power(ah, chan);
5974
5975         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
5976         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
5977                   | macStaId1
5978                   | AR_STA_ID1_RTS_USE_DEF
5979                   | (ah->ah_config.
5980                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
5981                   | ahp->ah_staId1Defaults);
5982         ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
5983
5984         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
5985         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
5986
5987         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
5988
5989         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
5990         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
5991                   ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
5992
5993         REG_WRITE(ah, AR_ISR, ~0);
5994
5995         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
5996
5997         if (AR_SREV_9280_10_OR_LATER(ah)) {
5998                 if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
5999                         ecode = -EIO;
6000                         goto bad;
6001                 }
6002         } else {
6003                 if (!(ath9k_hw_set_channel(ah, chan))) {
6004                         ecode = -EIO;
6005                         goto bad;
6006                 }
6007         }
6008
6009         for (i = 0; i < AR_NUM_DCU; i++)
6010                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
6011
6012         ahp->ah_intrTxqs = 0;
6013         for (i = 0; i < ah->ah_caps.total_queues; i++)
6014                 ath9k_hw_resettxqueue(ah, i);
6015
6016         ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
6017         ath9k_hw_init_qos(ah);
6018
6019 #ifdef CONFIG_RFKILL
6020         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
6021                 ath9k_enable_rfkill(ah);
6022 #endif
6023         ath9k_hw_init_user_settings(ah);
6024
6025         REG_WRITE(ah, AR_STA_ID1,
6026                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
6027
6028         ath9k_hw_set_dma(ah);
6029
6030         REG_WRITE(ah, AR_OBS, 8);
6031
6032         if (ahp->ah_intrMitigation) {
6033
6034                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
6035                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
6036         }
6037
6038         ath9k_hw_init_bb(ah, chan);
6039
6040         if (!ath9k_hw_init_cal(ah, chan)){
6041                 ecode = -EIO;;
6042                 goto bad;
6043         }
6044
6045         rx_chainmask = ahp->ah_rxchainmask;
6046         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
6047                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
6048                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
6049         }
6050
6051         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
6052
6053         if (AR_SREV_9100(ah)) {
6054                 u32 mask;
6055                 mask = REG_READ(ah, AR_CFG);
6056                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
6057                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6058                                  "%s CFG Byte Swap Set 0x%x\n", __func__,
6059                                  mask);
6060                 } else {
6061                         mask =
6062                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
6063                         REG_WRITE(ah, AR_CFG, mask);
6064                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6065                                  "%s Setting CFG 0x%x\n", __func__,
6066                                  REG_READ(ah, AR_CFG));
6067                 }
6068         } else {
6069 #ifdef __BIG_ENDIAN
6070                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
6071 #endif
6072         }
6073
6074         return true;
6075 bad:
6076         if (status)
6077                 *status = ecode;
6078         return false;
6079 }
6080
6081 bool ath9k_hw_phy_disable(struct ath_hal *ah)
6082 {
6083         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
6084 }
6085
6086 bool ath9k_hw_disable(struct ath_hal *ah)
6087 {
6088         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
6089                 return false;
6090
6091         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
6092 }
6093
6094 bool
6095 ath9k_hw_calibrate(struct ath_hal *ah, struct ath9k_channel *chan,
6096                    u8 rxchainmask, bool longcal,
6097                    bool *isCalDone)
6098 {
6099         struct ath_hal_5416 *ahp = AH5416(ah);
6100         struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
6101         struct ath9k_channel *ichan =
6102                 ath9k_regd_check_channel(ah, chan);
6103
6104         *isCalDone = true;
6105
6106         if (ichan == NULL) {
6107                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
6108                          "%s: invalid channel %u/0x%x; no mapping\n",
6109                          __func__, chan->channel, chan->channelFlags);
6110                 return false;
6111         }
6112
6113         if (currCal &&
6114             (currCal->calState == CAL_RUNNING ||
6115              currCal->calState == CAL_WAITING)) {
6116                 ath9k_hw_per_calibration(ah, ichan, rxchainmask, currCal,
6117                                          isCalDone);
6118                 if (*isCalDone) {
6119                         ahp->ah_cal_list_curr = currCal = currCal->calNext;
6120
6121                         if (currCal->calState == CAL_WAITING) {
6122                                 *isCalDone = false;
6123                                 ath9k_hw_reset_calibration(ah, currCal);
6124                         }
6125                 }
6126         }
6127
6128         if (longcal) {
6129                 ath9k_hw_getnf(ah, ichan);
6130                 ath9k_hw_loadnf(ah, ah->ah_curchan);
6131                 ath9k_hw_start_nfcal(ah);
6132
6133                 if ((ichan->channelFlags & CHANNEL_CW_INT) != 0) {
6134
6135                         chan->channelFlags |= CHANNEL_CW_INT;
6136                         ichan->channelFlags &= ~CHANNEL_CW_INT;
6137                 }
6138         }
6139
6140         return true;
6141 }
6142
6143 static void ath9k_hw_iqcal_collect(struct ath_hal *ah)
6144 {
6145         struct ath_hal_5416 *ahp = AH5416(ah);
6146         int i;
6147
6148         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6149                 ahp->ah_totalPowerMeasI[i] +=
6150                         REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6151                 ahp->ah_totalPowerMeasQ[i] +=
6152                         REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6153                 ahp->ah_totalIqCorrMeas[i] +=
6154                         (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6155                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6156                          "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
6157                          ahp->ah_CalSamples, i, ahp->ah_totalPowerMeasI[i],
6158                          ahp->ah_totalPowerMeasQ[i],
6159                          ahp->ah_totalIqCorrMeas[i]);
6160         }
6161 }
6162
6163 static void ath9k_hw_adc_gaincal_collect(struct ath_hal *ah)
6164 {
6165         struct ath_hal_5416 *ahp = AH5416(ah);
6166         int i;
6167
6168         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6169                 ahp->ah_totalAdcIOddPhase[i] +=
6170                         REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6171                 ahp->ah_totalAdcIEvenPhase[i] +=
6172                         REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6173                 ahp->ah_totalAdcQOddPhase[i] +=
6174                         REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6175                 ahp->ah_totalAdcQEvenPhase[i] +=
6176                         REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
6177
6178                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6179                         "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
6180                         "oddq=0x%08x; evenq=0x%08x;\n",
6181                          ahp->ah_CalSamples, i,
6182                          ahp->ah_totalAdcIOddPhase[i],
6183                          ahp->ah_totalAdcIEvenPhase[i],
6184                          ahp->ah_totalAdcQOddPhase[i],
6185                          ahp->ah_totalAdcQEvenPhase[i]);
6186         }
6187 }
6188
6189 static void ath9k_hw_adc_dccal_collect(struct ath_hal *ah)
6190 {
6191         struct ath_hal_5416 *ahp = AH5416(ah);
6192         int i;
6193
6194         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
6195                 ahp->ah_totalAdcDcOffsetIOddPhase[i] +=
6196                         (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
6197                 ahp->ah_totalAdcDcOffsetIEvenPhase[i] +=
6198                         (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
6199                 ahp->ah_totalAdcDcOffsetQOddPhase[i] +=
6200                         (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
6201                 ahp->ah_totalAdcDcOffsetQEvenPhase[i] +=
6202                         (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
6203
6204                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6205                         "%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
6206                         "oddq=0x%08x; evenq=0x%08x;\n",
6207                          ahp->ah_CalSamples, i,
6208                          ahp->ah_totalAdcDcOffsetIOddPhase[i],
6209                          ahp->ah_totalAdcDcOffsetIEvenPhase[i],
6210                          ahp->ah_totalAdcDcOffsetQOddPhase[i],
6211                          ahp->ah_totalAdcDcOffsetQEvenPhase[i]);
6212         }
6213 }
6214
6215 static void ath9k_hw_iqcalibrate(struct ath_hal *ah, u8 numChains)
6216 {
6217         struct ath_hal_5416 *ahp = AH5416(ah);
6218         u32 powerMeasQ, powerMeasI, iqCorrMeas;
6219         u32 qCoffDenom, iCoffDenom;
6220         int32_t qCoff, iCoff;
6221         int iqCorrNeg, i;
6222
6223         for (i = 0; i < numChains; i++) {
6224                 powerMeasI = ahp->ah_totalPowerMeasI[i];
6225                 powerMeasQ = ahp->ah_totalPowerMeasQ[i];
6226                 iqCorrMeas = ahp->ah_totalIqCorrMeas[i];
6227
6228                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6229                          "Starting IQ Cal and Correction for Chain %d\n",
6230                          i);
6231
6232                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6233                          "Orignal: Chn %diq_corr_meas = 0x%08x\n",
6234                          i, ahp->ah_totalIqCorrMeas[i]);
6235
6236                 iqCorrNeg = 0;
6237
6238
6239                 if (iqCorrMeas > 0x80000000) {
6240                         iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
6241                         iqCorrNeg = 1;
6242                 }
6243
6244                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6245                          "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
6246                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6247                          "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
6248                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
6249                          iqCorrNeg);
6250
6251                 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
6252                 qCoffDenom = powerMeasQ / 64;
6253
6254                 if (powerMeasQ != 0) {
6255
6256                         iCoff = iqCorrMeas / iCoffDenom;
6257                         qCoff = powerMeasI / qCoffDenom - 64;
6258                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6259                                  "Chn %d iCoff = 0x%08x\n", i, iCoff);
6260                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6261                                  "Chn %d qCoff = 0x%08x\n", i, qCoff);
6262
6263
6264                         iCoff = iCoff & 0x3f;
6265                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6266                                  "New: Chn %d iCoff = 0x%08x\n", i, iCoff);
6267                         if (iqCorrNeg == 0x0)
6268                                 iCoff = 0x40 - iCoff;
6269
6270                         if (qCoff > 15)
6271                                 qCoff = 15;
6272                         else if (qCoff <= -16)
6273                                 qCoff = 16;
6274
6275                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6276                                  "Chn %d : iCoff = 0x%x  qCoff = 0x%x\n",
6277                                 i, iCoff, qCoff);
6278
6279                         REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
6280                                       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
6281                                       iCoff);
6282                         REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
6283                                       AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
6284                                       qCoff);
6285                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6286                                 "IQ Cal and Correction done for Chain %d\n",
6287                                 i);
6288                 }
6289         }
6290
6291         REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
6292                     AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
6293 }
6294
6295 static void
6296 ath9k_hw_adc_gaincal_calibrate(struct ath_hal *ah, u8 numChains)
6297 {
6298         struct ath_hal_5416 *ahp = AH5416(ah);
6299         u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset,
6300                 qEvenMeasOffset;
6301         u32 qGainMismatch, iGainMismatch, val, i;
6302
6303         for (i = 0; i < numChains; i++) {
6304                 iOddMeasOffset = ahp->ah_totalAdcIOddPhase[i];
6305                 iEvenMeasOffset = ahp->ah_totalAdcIEvenPhase[i];
6306                 qOddMeasOffset = ahp->ah_totalAdcQOddPhase[i];
6307                 qEvenMeasOffset = ahp->ah_totalAdcQEvenPhase[i];
6308
6309                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6310                          "Starting ADC Gain Cal for Chain %d\n", i);
6311
6312                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6313                          "Chn %d pwr_meas_odd_i = 0x%08x\n", i,
6314                          iOddMeasOffset);
6315                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6316                          "Chn %d pwr_meas_even_i = 0x%08x\n", i,
6317                          iEvenMeasOffset);
6318                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6319                          "Chn %d pwr_meas_odd_q = 0x%08x\n", i,
6320                          qOddMeasOffset);
6321                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6322                          "Chn %d pwr_meas_even_q = 0x%08x\n", i,
6323                          qEvenMeasOffset);
6324
6325                 if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
6326                         iGainMismatch =
6327                                 ((iEvenMeasOffset * 32) /
6328                                  iOddMeasOffset) & 0x3f;
6329                         qGainMismatch =
6330                                 ((qOddMeasOffset * 32) /
6331                                  qEvenMeasOffset) & 0x3f;
6332
6333                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6334                                  "Chn %d gain_mismatch_i = 0x%08x\n", i,
6335                                  iGainMismatch);
6336                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6337                                  "Chn %d gain_mismatch_q = 0x%08x\n", i,
6338                                  qGainMismatch);
6339
6340                         val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
6341                         val &= 0xfffff000;
6342                         val |= (qGainMismatch) | (iGainMismatch << 6);
6343                         REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
6344
6345                         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6346                                  "ADC Gain Cal done for Chain %d\n", i);
6347                 }
6348         }
6349
6350         REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
6351                   REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
6352                   AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
6353 }
6354
6355 static void
6356 ath9k_hw_adc_dccal_calibrate(struct ath_hal *ah, u8 numChains)
6357 {
6358         struct ath_hal_5416 *ahp = AH5416(ah);
6359         u32 iOddMeasOffset, iEvenMeasOffset, val, i;
6360         int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
6361         const struct hal_percal_data *calData =
6362                 ahp->ah_cal_list_curr->calData;
6363         u32 numSamples =
6364                 (1 << (calData->calCountMax + 5)) * calData->calNumSamples;
6365
6366         for (i = 0; i < numChains; i++) {
6367                 iOddMeasOffset = ahp->ah_totalAdcDcOffsetIOddPhase[i];
6368                 iEvenMeasOffset = ahp->ah_totalAdcDcOffsetIEvenPhase[i];
6369                 qOddMeasOffset = ahp->ah_totalAdcDcOffsetQOddPhase[i];
6370                 qEvenMeasOffset = ahp->ah_totalAdcDcOffsetQEvenPhase[i];
6371
6372                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6373                          "Starting ADC DC Offset Cal for Chain %d\n", i);
6374
6375                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6376                          "Chn %d pwr_meas_odd_i = %d\n", i,
6377                          iOddMeasOffset);
6378                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6379                          "Chn %d pwr_meas_even_i = %d\n", i,
6380                          iEvenMeasOffset);
6381                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6382                          "Chn %d pwr_meas_odd_q = %d\n", i,
6383                          qOddMeasOffset);
6384                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6385                          "Chn %d pwr_meas_even_q = %d\n", i,
6386                          qEvenMeasOffset);
6387
6388                 iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
6389                                numSamples) & 0x1ff;
6390                 qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
6391                                numSamples) & 0x1ff;
6392
6393                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6394                          "Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
6395                          iDcMismatch);
6396                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6397                          "Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
6398                          qDcMismatch);
6399
6400                 val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
6401                 val &= 0xc0000fff;
6402                 val |= (qDcMismatch << 12) | (iDcMismatch << 21);
6403                 REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
6404
6405                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6406                          "ADC DC Offset Cal done for Chain %d\n", i);
6407         }
6408
6409         REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
6410                   REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
6411                   AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
6412 }
6413
6414 bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
6415 {
6416         struct ath_hal_5416 *ahp = AH5416(ah);
6417         struct ath9k_channel *chan = ah->ah_curchan;
6418
6419         ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
6420
6421         if (ath9k_hw_set_txpower(ah, &ahp->ah_eeprom, chan,
6422                                  ath9k_regd_get_ctl(ah, chan),
6423                                  ath9k_regd_get_antenna_allowed(ah,
6424                                                                 chan),
6425                                  chan->maxRegTxPower * 2,
6426                                  min((u32) MAX_RATE_POWER,
6427                                      (u32) ah->ah_powerLimit)) != 0)
6428                 return false;
6429
6430         return true;
6431 }
6432
6433 void
6434 ath9k_hw_get_channel_centers(struct ath_hal *ah,
6435                              struct ath9k_channel *chan,
6436                              struct chan_centers *centers)
6437 {
6438         int8_t extoff;
6439         struct ath_hal_5416 *ahp = AH5416(ah);
6440
6441         if (!IS_CHAN_HT40(chan)) {
6442                 centers->ctl_center = centers->ext_center =
6443                         centers->synth_center = chan->channel;
6444                 return;
6445         }
6446
6447         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
6448             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
6449                 centers->synth_center =
6450                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
6451                 extoff = 1;
6452         } else {
6453                 centers->synth_center =
6454                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
6455                 extoff = -1;
6456         }
6457
6458         centers->ctl_center = centers->synth_center - (extoff *
6459                 HT40_CHANNEL_CENTER_SHIFT);
6460         centers->ext_center = centers->synth_center + (extoff *
6461                 ((ahp->
6462                 ah_extprotspacing
6463                 ==
6464                 ATH9K_HT_EXTPROTSPACING_20)
6465                 ?
6466                 HT40_CHANNEL_CENTER_SHIFT
6467                 : 15));
6468
6469 }
6470
6471 void
6472 ath9k_hw_reset_calvalid(struct ath_hal *ah, struct ath9k_channel *chan,
6473                         bool *isCalDone)
6474 {
6475         struct ath_hal_5416 *ahp = AH5416(ah);
6476         struct ath9k_channel *ichan =
6477                 ath9k_regd_check_channel(ah, chan);
6478         struct hal_cal_list *currCal = ahp->ah_cal_list_curr;
6479
6480         *isCalDone = true;
6481
6482         if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
6483                 return;
6484
6485         if (currCal == NULL)
6486                 return;
6487
6488         if (ichan == NULL) {
6489                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6490                          "%s: invalid channel %u/0x%x; no mapping\n",
6491                          __func__, chan->channel, chan->channelFlags);
6492                 return;
6493         }
6494
6495
6496         if (currCal->calState != CAL_DONE) {
6497                 DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6498                          "%s: Calibration state incorrect, %d\n",
6499                          __func__, currCal->calState);
6500                 return;
6501         }
6502
6503
6504         if (!ath9k_hw_iscal_supported(ah, chan, currCal->calData->calType))
6505                 return;
6506
6507         DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
6508                  "%s: Resetting Cal %d state for channel %u/0x%x\n",
6509                  __func__, currCal->calData->calType, chan->channel,
6510                  chan->channelFlags);
6511
6512         ichan->CalValid &= ~currCal->calData->calType;
6513         currCal->calState = CAL_WAITING;
6514
6515         *isCalDone = false;
6516 }
6517
6518 void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
6519 {
6520         struct ath_hal_5416 *ahp = AH5416(ah);
6521
6522         memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
6523 }
6524
6525 bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
6526 {
6527         struct ath_hal_5416 *ahp = AH5416(ah);
6528
6529         memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
6530         return true;
6531 }
6532
6533 void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
6534 {
6535         struct ath_hal_5416 *ahp = AH5416(ah);
6536
6537         memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
6538 }
6539
6540 bool
6541 ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
6542 {
6543         struct ath_hal_5416 *ahp = AH5416(ah);
6544
6545         memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
6546
6547         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
6548         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
6549
6550         return true;
6551 }
6552
6553 void
6554 ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid,
6555                        u16 assocId)
6556 {
6557         struct ath_hal_5416 *ahp = AH5416(ah);
6558
6559         memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
6560         ahp->ah_assocId = assocId;
6561
6562         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
6563         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
6564                   ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
6565 }
6566
6567 u64 ath9k_hw_gettsf64(struct ath_hal *ah)
6568 {
6569         u64 tsf;
6570
6571         tsf = REG_READ(ah, AR_TSF_U32);
6572         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
6573         return tsf;
6574 }
6575
6576 void ath9k_hw_reset_tsf(struct ath_hal *ah)
6577 {
6578         int count;
6579
6580         count = 0;
6581         while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
6582                 count++;
6583                 if (count > 10) {
6584                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
6585                          "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
6586                                  __func__);
6587                         break;
6588                 }
6589                 udelay(10);
6590         }
6591         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
6592 }
6593
6594 u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
6595 {
6596         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
6597 }
6598
6599 void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
6600 {
6601         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
6602 }
6603
6604 bool
6605 ath9k_hw_setantennaswitch(struct ath_hal *ah,
6606                           enum ath9k_ant_setting settings,
6607                           struct ath9k_channel *chan,
6608                           u8 *tx_chainmask,
6609                           u8 *rx_chainmask,
6610                           u8 *antenna_cfgd)
6611 {
6612         struct ath_hal_5416 *ahp = AH5416(ah);
6613         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
6614
6615         if (AR_SREV_9280(ah)) {
6616                 if (!tx_chainmask_cfg) {
6617
6618                         tx_chainmask_cfg = *tx_chainmask;
6619                         rx_chainmask_cfg = *rx_chainmask;
6620                 }
6621
6622                 switch (settings) {
6623                 case ATH9K_ANT_FIXED_A:
6624                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
6625                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
6626                         *antenna_cfgd = true;
6627                         break;
6628                 case ATH9K_ANT_FIXED_B:
6629                         if (ah->ah_caps.tx_chainmask >
6630                             ATH9K_ANTENNA1_CHAINMASK) {
6631                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
6632                         }
6633                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
6634                         *antenna_cfgd = true;
6635                         break;
6636                 case ATH9K_ANT_VARIABLE:
6637                         *tx_chainmask = tx_chainmask_cfg;
6638                         *rx_chainmask = rx_chainmask_cfg;
6639                         *antenna_cfgd = true;
6640                         break;
6641                 default:
6642                         break;
6643                 }
6644         } else {
6645                 ahp->ah_diversityControl = settings;
6646         }
6647
6648         return true;
6649 }
6650
6651 void ath9k_hw_setopmode(struct ath_hal *ah)
6652 {
6653         ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
6654 }
6655
6656 bool
6657 ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
6658                        u32 capability, u32 *result)
6659 {
6660         struct ath_hal_5416 *ahp = AH5416(ah);
6661         const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6662
6663         switch (type) {
6664         case ATH9K_CAP_CIPHER:
6665                 switch (capability) {
6666                 case ATH9K_CIPHER_AES_CCM:
6667                 case ATH9K_CIPHER_AES_OCB:
6668                 case ATH9K_CIPHER_TKIP:
6669                 case ATH9K_CIPHER_WEP:
6670                 case ATH9K_CIPHER_MIC:
6671                 case ATH9K_CIPHER_CLR:
6672                         return true;
6673                 default:
6674                         return false;
6675                 }
6676         case ATH9K_CAP_TKIP_MIC:
6677                 switch (capability) {
6678                 case 0:
6679                         return true;
6680                 case 1:
6681                         return (ahp->ah_staId1Defaults &
6682                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
6683                         false;
6684                 }
6685         case ATH9K_CAP_TKIP_SPLIT:
6686                 return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
6687                         false : true;
6688         case ATH9K_CAP_WME_TKIPMIC:
6689                 return 0;
6690         case ATH9K_CAP_PHYCOUNTERS:
6691                 return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
6692         case ATH9K_CAP_DIVERSITY:
6693                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
6694                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
6695                         true : false;
6696         case ATH9K_CAP_PHYDIAG:
6697                 return true;
6698         case ATH9K_CAP_MCAST_KEYSRCH:
6699                 switch (capability) {
6700                 case 0:
6701                         return true;
6702                 case 1:
6703                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
6704                                 return false;
6705                         } else {
6706                                 return (ahp->ah_staId1Defaults &
6707                                         AR_STA_ID1_MCAST_KSRCH) ? true :
6708                                         false;
6709                         }
6710                 }
6711                 return false;
6712         case ATH9K_CAP_TSF_ADJUST:
6713                 return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
6714                         true : false;
6715         case ATH9K_CAP_RFSILENT:
6716                 if (capability == 3)
6717                         return false;
6718         case ATH9K_CAP_ANT_CFG_2GHZ:
6719                 *result = pCap->num_antcfg_2ghz;
6720                 return true;
6721         case ATH9K_CAP_ANT_CFG_5GHZ:
6722                 *result = pCap->num_antcfg_5ghz;
6723                 return true;
6724         case ATH9K_CAP_TXPOW:
6725                 switch (capability) {
6726                 case 0:
6727                         return 0;
6728                 case 1:
6729                         *result = ah->ah_powerLimit;
6730                         return 0;
6731                 case 2:
6732                         *result = ah->ah_maxPowerLevel;
6733                         return 0;
6734                 case 3:
6735                         *result = ah->ah_tpScale;
6736                         return 0;
6737                 }
6738                 return false;
6739         default:
6740                 return false;
6741         }
6742 }
6743
6744 int
6745 ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
6746 {
6747         struct ath_hal_5416 *ahp = AH5416(ah);
6748         struct ath9k_channel *chan = ah->ah_curchan;
6749         const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6750         u16 ant_config;
6751         u32 halNumAntConfig;
6752
6753         halNumAntConfig =
6754                 IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap->
6755                 num_antcfg_5ghz;
6756
6757         if (cfg < halNumAntConfig) {
6758                 if (!ath9k_hw_get_eeprom_antenna_cfg(ahp, chan,
6759                                                      cfg, &ant_config)) {
6760                         REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
6761                         return 0;
6762                 }
6763         }
6764
6765         return -EINVAL;
6766 }
6767
6768 bool ath9k_hw_intrpend(struct ath_hal *ah)
6769 {
6770         u32 host_isr;
6771
6772         if (AR_SREV_9100(ah))
6773                 return true;
6774
6775         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
6776         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
6777                 return true;
6778
6779         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
6780         if ((host_isr & AR_INTR_SYNC_DEFAULT)
6781             && (host_isr != AR_INTR_SPURIOUS))
6782                 return true;
6783
6784         return false;
6785 }
6786
6787 bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
6788 {
6789         u32 isr = 0;
6790         u32 mask2 = 0;
6791         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6792         u32 sync_cause = 0;
6793         bool fatal_int = false;
6794
6795         if (!AR_SREV_9100(ah)) {
6796                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
6797                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
6798                             == AR_RTC_STATUS_ON) {
6799                                 isr = REG_READ(ah, AR_ISR);
6800                         }
6801                 }
6802
6803                 sync_cause =
6804                         REG_READ(ah,
6805                                  AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT;
6806
6807                 *masked = 0;
6808
6809                 if (!isr && !sync_cause)
6810                         return false;
6811         } else {
6812                 *masked = 0;
6813                 isr = REG_READ(ah, AR_ISR);
6814         }
6815
6816         if (isr) {
6817                 struct ath_hal_5416 *ahp = AH5416(ah);
6818
6819                 if (isr & AR_ISR_BCNMISC) {
6820                         u32 isr2;
6821                         isr2 = REG_READ(ah, AR_ISR_S2);
6822                         if (isr2 & AR_ISR_S2_TIM)
6823                                 mask2 |= ATH9K_INT_TIM;
6824                         if (isr2 & AR_ISR_S2_DTIM)
6825                                 mask2 |= ATH9K_INT_DTIM;
6826                         if (isr2 & AR_ISR_S2_DTIMSYNC)
6827                                 mask2 |= ATH9K_INT_DTIMSYNC;
6828                         if (isr2 & (AR_ISR_S2_CABEND))
6829                                 mask2 |= ATH9K_INT_CABEND;
6830                         if (isr2 & AR_ISR_S2_GTT)
6831                                 mask2 |= ATH9K_INT_GTT;
6832                         if (isr2 & AR_ISR_S2_CST)
6833                                 mask2 |= ATH9K_INT_CST;
6834                 }
6835
6836                 isr = REG_READ(ah, AR_ISR_RAC);
6837                 if (isr == 0xffffffff) {
6838                         *masked = 0;
6839                         return false;
6840                 }
6841
6842                 *masked = isr & ATH9K_INT_COMMON;
6843
6844                 if (ahp->ah_intrMitigation) {
6845
6846                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
6847                                 *masked |= ATH9K_INT_RX;
6848                 }
6849
6850                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
6851                         *masked |= ATH9K_INT_RX;
6852                 if (isr &
6853                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
6854                      AR_ISR_TXEOL)) {
6855                         u32 s0_s, s1_s;
6856
6857                         *masked |= ATH9K_INT_TX;
6858
6859                         s0_s = REG_READ(ah, AR_ISR_S0_S);
6860                         ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
6861                         ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
6862
6863                         s1_s = REG_READ(ah, AR_ISR_S1_S);
6864                         ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
6865                         ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
6866                 }
6867
6868                 if (isr & AR_ISR_RXORN) {
6869                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6870                                  "%s: receive FIFO overrun interrupt\n",
6871                                  __func__);
6872                 }
6873
6874                 if (!AR_SREV_9100(ah)) {
6875                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
6876                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
6877                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
6878                                         *masked |= ATH9K_INT_TIM_TIMER;
6879                         }
6880                 }
6881
6882                 *masked |= mask2;
6883         }
6884         if (AR_SREV_9100(ah))
6885                 return true;
6886         if (sync_cause) {
6887                 fatal_int =
6888                         (sync_cause &
6889                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
6890                         ? true : false;
6891
6892                 if (fatal_int) {
6893                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
6894                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
6895                                          "%s: received PCI FATAL interrupt\n",
6896                                          __func__);
6897                         }
6898                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
6899                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
6900                                          "%s: received PCI PERR interrupt\n",
6901                                          __func__);
6902                         }
6903                 }
6904                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
6905                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6906                                  "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
6907                                  __func__);
6908                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
6909                         REG_WRITE(ah, AR_RC, 0);
6910                         *masked |= ATH9K_INT_FATAL;
6911                 }
6912                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
6913                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
6914                                  "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
6915                                  __func__);
6916                 }
6917
6918                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
6919                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
6920         }
6921         return true;
6922 }
6923
6924 enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
6925 {
6926         return AH5416(ah)->ah_maskReg;
6927 }
6928
6929 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
6930 {
6931         struct ath_hal_5416 *ahp = AH5416(ah);
6932         u32 omask = ahp->ah_maskReg;
6933         u32 mask, mask2;
6934         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
6935
6936         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__,
6937                  omask, ints);
6938
6939         if (omask & ATH9K_INT_GLOBAL) {
6940                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n",
6941                          __func__);
6942                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
6943                 (void) REG_READ(ah, AR_IER);
6944                 if (!AR_SREV_9100(ah)) {
6945                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
6946                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
6947
6948                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
6949                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
6950                 }
6951         }
6952
6953         mask = ints & ATH9K_INT_COMMON;
6954         mask2 = 0;
6955
6956         if (ints & ATH9K_INT_TX) {
6957                 if (ahp->ah_txOkInterruptMask)
6958                         mask |= AR_IMR_TXOK;
6959                 if (ahp->ah_txDescInterruptMask)
6960                         mask |= AR_IMR_TXDESC;
6961                 if (ahp->ah_txErrInterruptMask)
6962                         mask |= AR_IMR_TXERR;
6963                 if (ahp->ah_txEolInterruptMask)
6964                         mask |= AR_IMR_TXEOL;
6965         }
6966         if (ints & ATH9K_INT_RX) {
6967                 mask |= AR_IMR_RXERR;
6968                 if (ahp->ah_intrMitigation)
6969                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
6970                 else
6971                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
6972                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
6973                         mask |= AR_IMR_GENTMR;
6974         }
6975
6976         if (ints & (ATH9K_INT_BMISC)) {
6977                 mask |= AR_IMR_BCNMISC;
6978                 if (ints & ATH9K_INT_TIM)
6979                         mask2 |= AR_IMR_S2_TIM;
6980                 if (ints & ATH9K_INT_DTIM)
6981                         mask2 |= AR_IMR_S2_DTIM;
6982                 if (ints & ATH9K_INT_DTIMSYNC)
6983                         mask2 |= AR_IMR_S2_DTIMSYNC;
6984                 if (ints & ATH9K_INT_CABEND)
6985                         mask2 |= (AR_IMR_S2_CABEND);
6986         }
6987
6988         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
6989                 mask |= AR_IMR_BCNMISC;
6990                 if (ints & ATH9K_INT_GTT)
6991                         mask2 |= AR_IMR_S2_GTT;
6992                 if (ints & ATH9K_INT_CST)
6993                         mask2 |= AR_IMR_S2_CST;
6994         }
6995
6996         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__,
6997                  mask);
6998         REG_WRITE(ah, AR_IMR, mask);
6999         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
7000                                            AR_IMR_S2_DTIM |
7001                                            AR_IMR_S2_DTIMSYNC |
7002                                            AR_IMR_S2_CABEND |
7003                                            AR_IMR_S2_CABTO |
7004                                            AR_IMR_S2_TSFOOR |
7005                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
7006         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
7007         ahp->ah_maskReg = ints;
7008
7009         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
7010                 if (ints & ATH9K_INT_TIM_TIMER)
7011                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
7012                 else
7013                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
7014         }
7015
7016         if (ints & ATH9K_INT_GLOBAL) {
7017                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n",
7018                          __func__);
7019                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
7020                 if (!AR_SREV_9100(ah)) {
7021                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
7022                                   AR_INTR_MAC_IRQ);
7023                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
7024
7025
7026                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
7027                                   AR_INTR_SYNC_DEFAULT);
7028                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
7029                                   AR_INTR_SYNC_DEFAULT);
7030                 }
7031                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
7032                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
7033         }
7034
7035         return omask;
7036 }
7037
7038 void
7039 ath9k_hw_beaconinit(struct ath_hal *ah,
7040                     u32 next_beacon, u32 beacon_period)
7041 {
7042         struct ath_hal_5416 *ahp = AH5416(ah);
7043         int flags = 0;
7044
7045         ahp->ah_beaconInterval = beacon_period;
7046
7047         switch (ah->ah_opmode) {
7048         case ATH9K_M_STA:
7049         case ATH9K_M_MONITOR:
7050                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
7051                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
7052                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
7053                 flags |= AR_TBTT_TIMER_EN;
7054                 break;
7055         case ATH9K_M_IBSS:
7056                 REG_SET_BIT(ah, AR_TXCFG,
7057                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
7058                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
7059                           TU_TO_USEC(next_beacon +
7060                                      (ahp->ah_atimWindow ? ahp->
7061                                       ah_atimWindow : 1)));
7062                 flags |= AR_NDP_TIMER_EN;
7063         case ATH9K_M_HOSTAP:
7064                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
7065                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
7066                           TU_TO_USEC(next_beacon -
7067                                      ah->ah_config.
7068                                      dma_beacon_response_time));
7069                 REG_WRITE(ah, AR_NEXT_SWBA,
7070                           TU_TO_USEC(next_beacon -
7071                                      ah->ah_config.
7072                                      sw_beacon_response_time));
7073                 flags |=
7074                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
7075                 break;
7076         }
7077
7078         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
7079         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
7080         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
7081         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
7082
7083         beacon_period &= ~ATH9K_BEACON_ENA;
7084         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
7085                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
7086                 ath9k_hw_reset_tsf(ah);
7087         }
7088
7089         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
7090 }
7091
7092 void
7093 ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
7094                                const struct ath9k_beacon_state *bs)
7095 {
7096         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
7097         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7098
7099         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
7100
7101         REG_WRITE(ah, AR_BEACON_PERIOD,
7102                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
7103         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
7104                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
7105
7106         REG_RMW_FIELD(ah, AR_RSSI_THR,
7107                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
7108
7109         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
7110
7111         if (bs->bs_sleepduration > beaconintval)
7112                 beaconintval = bs->bs_sleepduration;
7113
7114         dtimperiod = bs->bs_dtimperiod;
7115         if (bs->bs_sleepduration > dtimperiod)
7116                 dtimperiod = bs->bs_sleepduration;
7117
7118         if (beaconintval == dtimperiod)
7119                 nextTbtt = bs->bs_nextdtim;
7120         else
7121                 nextTbtt = bs->bs_nexttbtt;
7122
7123         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__,
7124                  bs->bs_nextdtim);
7125         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__,
7126                  nextTbtt);
7127         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__,
7128                  beaconintval);
7129         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__,
7130                  dtimperiod);
7131
7132         REG_WRITE(ah, AR_NEXT_DTIM,
7133                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
7134         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
7135
7136         REG_WRITE(ah, AR_SLEEP1,
7137                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
7138                   | AR_SLEEP1_ASSUME_DTIM);
7139
7140         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
7141                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
7142         else
7143                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
7144
7145         REG_WRITE(ah, AR_SLEEP2,
7146                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
7147
7148         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
7149         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
7150
7151         REG_SET_BIT(ah, AR_TIMER_MODE,
7152                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
7153                     AR_DTIM_TIMER_EN);
7154
7155 }
7156
7157 bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
7158 {
7159         if (entry < ah->ah_caps.keycache_size) {
7160                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
7161                 if (val & AR_KEYTABLE_VALID)
7162                         return true;
7163         }
7164         return false;
7165 }
7166
7167 bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
7168 {
7169         u32 keyType;
7170
7171         if (entry >= ah->ah_caps.keycache_size) {
7172                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7173                          "%s: entry %u out of range\n", __func__, entry);
7174                 return false;
7175         }
7176         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
7177
7178         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
7179         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
7180         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
7181         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
7182         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
7183         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
7184         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
7185         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
7186
7187         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
7188                 u16 micentry = entry + 64;
7189
7190                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
7191                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
7192                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
7193                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
7194
7195         }
7196
7197         if (ah->ah_curchan == NULL)
7198                 return true;
7199
7200         return true;
7201 }
7202
7203 bool
7204 ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry,
7205                    const u8 *mac)
7206 {
7207         u32 macHi, macLo;
7208
7209         if (entry >= ah->ah_caps.keycache_size) {
7210                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7211                          "%s: entry %u out of range\n", __func__, entry);
7212                 return false;
7213         }
7214
7215         if (mac != NULL) {
7216                 macHi = (mac[5] << 8) | mac[4];
7217                 macLo = (mac[3] << 24) | (mac[2] << 16)
7218                         | (mac[1] << 8) | mac[0];
7219                 macLo >>= 1;
7220                 macLo |= (macHi & 1) << 31;
7221                 macHi >>= 1;
7222         } else {
7223                 macLo = macHi = 0;
7224         }
7225         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
7226         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
7227
7228         return true;
7229 }
7230
7231 bool
7232 ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
7233                             const struct ath9k_keyval *k,
7234                             const u8 *mac, int xorKey)
7235 {
7236         const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7237         u32 key0, key1, key2, key3, key4;
7238         u32 keyType;
7239         u32 xorMask = xorKey ?
7240                 (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
7241                  | ATH9K_KEY_XOR) : 0;
7242         struct ath_hal_5416 *ahp = AH5416(ah);
7243
7244         if (entry >= pCap->keycache_size) {
7245                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7246                          "%s: entry %u out of range\n", __func__, entry);
7247                 return false;
7248         }
7249         switch (k->kv_type) {
7250         case ATH9K_CIPHER_AES_OCB:
7251                 keyType = AR_KEYTABLE_TYPE_AES;
7252                 break;
7253         case ATH9K_CIPHER_AES_CCM:
7254                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
7255                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7256                                  "%s: AES-CCM not supported by "
7257                                  "mac rev 0x%x\n", __func__,
7258                                  ah->ah_macRev);
7259                         return false;
7260                 }
7261                 keyType = AR_KEYTABLE_TYPE_CCM;
7262                 break;
7263         case ATH9K_CIPHER_TKIP:
7264                 keyType = AR_KEYTABLE_TYPE_TKIP;
7265                 if (ATH9K_IS_MIC_ENABLED(ah)
7266                     && entry + 64 >= pCap->keycache_size) {
7267                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7268                                  "%s: entry %u inappropriate for TKIP\n",
7269                                  __func__, entry);
7270                         return false;
7271                 }
7272                 break;
7273         case ATH9K_CIPHER_WEP:
7274                 if (k->kv_len < LEN_WEP40) {
7275                         DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7276                                  "%s: WEP key length %u too small\n",
7277                                  __func__, k->kv_len);
7278                         return false;
7279                 }
7280                 if (k->kv_len <= LEN_WEP40)
7281                         keyType = AR_KEYTABLE_TYPE_40;
7282                 else if (k->kv_len <= LEN_WEP104)
7283                         keyType = AR_KEYTABLE_TYPE_104;
7284                 else
7285                         keyType = AR_KEYTABLE_TYPE_128;
7286                 break;
7287         case ATH9K_CIPHER_CLR:
7288                 keyType = AR_KEYTABLE_TYPE_CLR;
7289                 break;
7290         default:
7291                 DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
7292                          "%s: cipher %u not supported\n", __func__,
7293                          k->kv_type);
7294                 return false;
7295         }
7296
7297         key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
7298         key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
7299         key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
7300         key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
7301         key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
7302         if (k->kv_len <= LEN_WEP104)
7303                 key4 &= 0xff;
7304
7305         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
7306                 u16 micentry = entry + 64;
7307
7308                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
7309                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
7310                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
7311                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
7312                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
7313                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
7314                 (void) ath9k_hw_keysetmac(ah, entry, mac);
7315
7316                 if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
7317                         u32 mic0, mic1, mic2, mic3, mic4;
7318
7319                         mic0 = get_unaligned_le32(k->kv_mic + 0);
7320                         mic2 = get_unaligned_le32(k->kv_mic + 4);
7321                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
7322                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
7323                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
7324                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
7325                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
7326                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
7327                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
7328                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
7329                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
7330                                   AR_KEYTABLE_TYPE_CLR);
7331
7332                 } else {
7333                         u32 mic0, mic2;
7334
7335                         mic0 = get_unaligned_le32(k->kv_mic + 0);
7336                         mic2 = get_unaligned_le32(k->kv_mic + 4);
7337                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
7338                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
7339                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
7340                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
7341                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
7342                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
7343                                   AR_KEYTABLE_TYPE_CLR);
7344                 }
7345                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
7346                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
7347                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
7348                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
7349         } else {
7350                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
7351                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
7352                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
7353                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
7354                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
7355                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
7356
7357                 (void) ath9k_hw_keysetmac(ah, entry, mac);
7358         }
7359
7360         if (ah->ah_curchan == NULL)
7361                 return true;
7362
7363         return true;
7364 }
7365
7366 bool
7367 ath9k_hw_updatetxtriglevel(struct ath_hal *ah, bool bIncTrigLevel)
7368 {
7369         struct ath_hal_5416 *ahp = AH5416(ah);
7370         u32 txcfg, curLevel, newLevel;
7371         enum ath9k_int omask;
7372
7373         if (ah->ah_txTrigLevel >= MAX_TX_FIFO_THRESHOLD)
7374                 return false;
7375
7376         omask = ath9k_hw_set_interrupts(ah,
7377                                         ahp->ah_maskReg & ~ATH9K_INT_GLOBAL);
7378
7379         txcfg = REG_READ(ah, AR_TXCFG);
7380         curLevel = MS(txcfg, AR_FTRIG);
7381         newLevel = curLevel;
7382         if (bIncTrigLevel) {
7383                 if (curLevel < MAX_TX_FIFO_THRESHOLD)
7384                         newLevel++;
7385         } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
7386                 newLevel--;
7387         if (newLevel != curLevel)
7388                 REG_WRITE(ah, AR_TXCFG,
7389                           (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
7390
7391         ath9k_hw_set_interrupts(ah, omask);
7392
7393         ah->ah_txTrigLevel = newLevel;
7394
7395         return newLevel != curLevel;
7396 }
7397
7398 bool ath9k_hw_set_txq_props(struct ath_hal *ah, int q,
7399                             const struct ath9k_tx_queue_info *qinfo)
7400 {
7401         u32 cw;
7402         struct ath_hal_5416 *ahp = AH5416(ah);
7403         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7404         struct ath9k_tx_queue_info *qi;
7405
7406         if (q >= pCap->total_queues) {
7407                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7408                          __func__, q);
7409                 return false;
7410         }
7411
7412         qi = &ahp->ah_txq[q];
7413         if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7414                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
7415                          __func__);
7416                 return false;
7417         }
7418
7419         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %p\n", __func__, qi);
7420
7421         qi->tqi_ver = qinfo->tqi_ver;
7422         qi->tqi_subtype = qinfo->tqi_subtype;
7423         qi->tqi_qflags = qinfo->tqi_qflags;
7424         qi->tqi_priority = qinfo->tqi_priority;
7425         if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
7426                 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
7427         else
7428                 qi->tqi_aifs = INIT_AIFS;
7429         if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
7430                 cw = min(qinfo->tqi_cwmin, 1024U);
7431                 qi->tqi_cwmin = 1;
7432                 while (qi->tqi_cwmin < cw)
7433                         qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
7434         } else
7435                 qi->tqi_cwmin = qinfo->tqi_cwmin;
7436         if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
7437                 cw = min(qinfo->tqi_cwmax, 1024U);
7438                 qi->tqi_cwmax = 1;
7439                 while (qi->tqi_cwmax < cw)
7440                         qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
7441         } else
7442                 qi->tqi_cwmax = INIT_CWMAX;
7443
7444         if (qinfo->tqi_shretry != 0)
7445                 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
7446         else
7447                 qi->tqi_shretry = INIT_SH_RETRY;
7448         if (qinfo->tqi_lgretry != 0)
7449                 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
7450         else
7451                 qi->tqi_lgretry = INIT_LG_RETRY;
7452         qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
7453         qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
7454         qi->tqi_burstTime = qinfo->tqi_burstTime;
7455         qi->tqi_readyTime = qinfo->tqi_readyTime;
7456
7457         switch (qinfo->tqi_subtype) {
7458         case ATH9K_WME_UPSD:
7459                 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
7460                         qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
7461                 break;
7462         default:
7463                 break;
7464         }
7465         return true;
7466 }
7467
7468 bool ath9k_hw_get_txq_props(struct ath_hal *ah, int q,
7469                             struct ath9k_tx_queue_info *qinfo)
7470 {
7471         struct ath_hal_5416 *ahp = AH5416(ah);
7472         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7473         struct ath9k_tx_queue_info *qi;
7474
7475         if (q >= pCap->total_queues) {
7476                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7477                          __func__, q);
7478                 return false;
7479         }
7480
7481         qi = &ahp->ah_txq[q];
7482         if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7483                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue\n",
7484                          __func__);
7485                 return false;
7486         }
7487
7488         qinfo->tqi_qflags = qi->tqi_qflags;
7489         qinfo->tqi_ver = qi->tqi_ver;
7490         qinfo->tqi_subtype = qi->tqi_subtype;
7491         qinfo->tqi_qflags = qi->tqi_qflags;
7492         qinfo->tqi_priority = qi->tqi_priority;
7493         qinfo->tqi_aifs = qi->tqi_aifs;
7494         qinfo->tqi_cwmin = qi->tqi_cwmin;
7495         qinfo->tqi_cwmax = qi->tqi_cwmax;
7496         qinfo->tqi_shretry = qi->tqi_shretry;
7497         qinfo->tqi_lgretry = qi->tqi_lgretry;
7498         qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
7499         qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
7500         qinfo->tqi_burstTime = qi->tqi_burstTime;
7501         qinfo->tqi_readyTime = qi->tqi_readyTime;
7502
7503         return true;
7504 }
7505
7506 int
7507 ath9k_hw_setuptxqueue(struct ath_hal *ah, enum ath9k_tx_queue type,
7508                       const struct ath9k_tx_queue_info *qinfo)
7509 {
7510         struct ath_hal_5416 *ahp = AH5416(ah);
7511         struct ath9k_tx_queue_info *qi;
7512         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7513         int q;
7514
7515         switch (type) {
7516         case ATH9K_TX_QUEUE_BEACON:
7517                 q = pCap->total_queues - 1;
7518                 break;
7519         case ATH9K_TX_QUEUE_CAB:
7520                 q = pCap->total_queues - 2;
7521                 break;
7522         case ATH9K_TX_QUEUE_PSPOLL:
7523                 q = 1;
7524                 break;
7525         case ATH9K_TX_QUEUE_UAPSD:
7526                 q = pCap->total_queues - 3;
7527                 break;
7528         case ATH9K_TX_QUEUE_DATA:
7529                 for (q = 0; q < pCap->total_queues; q++)
7530                         if (ahp->ah_txq[q].tqi_type ==
7531                             ATH9K_TX_QUEUE_INACTIVE)
7532                                 break;
7533                 if (q == pCap->total_queues) {
7534                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
7535                                  "%s: no available tx queue\n", __func__);
7536                         return -1;
7537                 }
7538                 break;
7539         default:
7540                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: bad tx queue type %u\n",
7541                          __func__, type);
7542                 return -1;
7543         }
7544
7545         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
7546
7547         qi = &ahp->ah_txq[q];
7548         if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
7549                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
7550                          "%s: tx queue %u already active\n", __func__, q);
7551                 return -1;
7552         }
7553         memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
7554         qi->tqi_type = type;
7555         if (qinfo == NULL) {
7556                 qi->tqi_qflags =
7557                         TXQ_FLAG_TXOKINT_ENABLE
7558                         | TXQ_FLAG_TXERRINT_ENABLE
7559                         | TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
7560                 qi->tqi_aifs = INIT_AIFS;
7561                 qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
7562                 qi->tqi_cwmax = INIT_CWMAX;
7563                 qi->tqi_shretry = INIT_SH_RETRY;
7564                 qi->tqi_lgretry = INIT_LG_RETRY;
7565                 qi->tqi_physCompBuf = 0;
7566         } else {
7567                 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
7568                 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
7569         }
7570
7571         return q;
7572 }
7573
7574 static void
7575 ath9k_hw_set_txq_interrupts(struct ath_hal *ah,
7576                             struct ath9k_tx_queue_info *qi)
7577 {
7578         struct ath_hal_5416 *ahp = AH5416(ah);
7579
7580         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
7581                  "%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
7582                  __func__, ahp->ah_txOkInterruptMask,
7583                  ahp->ah_txErrInterruptMask, ahp->ah_txDescInterruptMask,
7584                  ahp->ah_txEolInterruptMask, ahp->ah_txUrnInterruptMask);
7585
7586         REG_WRITE(ah, AR_IMR_S0,
7587                   SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
7588                   | SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC));
7589         REG_WRITE(ah, AR_IMR_S1,
7590                   SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
7591                   | SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL));
7592         REG_RMW_FIELD(ah, AR_IMR_S2,
7593                       AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
7594 }
7595
7596 bool ath9k_hw_releasetxqueue(struct ath_hal *ah, u32 q)
7597 {
7598         struct ath_hal_5416 *ahp = AH5416(ah);
7599         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7600         struct ath9k_tx_queue_info *qi;
7601
7602         if (q >= pCap->total_queues) {
7603                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7604                          __func__, q);
7605                 return false;
7606         }
7607         qi = &ahp->ah_txq[q];
7608         if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7609                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
7610                          __func__, q);
7611                 return false;
7612         }
7613
7614         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: release queue %u\n",
7615                 __func__, q);
7616
7617         qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
7618         ahp->ah_txOkInterruptMask &= ~(1 << q);
7619         ahp->ah_txErrInterruptMask &= ~(1 << q);
7620         ahp->ah_txDescInterruptMask &= ~(1 << q);
7621         ahp->ah_txEolInterruptMask &= ~(1 << q);
7622         ahp->ah_txUrnInterruptMask &= ~(1 << q);
7623         ath9k_hw_set_txq_interrupts(ah, qi);
7624
7625         return true;
7626 }
7627
7628 bool ath9k_hw_resettxqueue(struct ath_hal *ah, u32 q)
7629 {
7630         struct ath_hal_5416 *ahp = AH5416(ah);
7631         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
7632         struct ath9k_channel *chan = ah->ah_curchan;
7633         struct ath9k_tx_queue_info *qi;
7634         u32 cwMin, chanCwMin, value;
7635
7636         if (q >= pCap->total_queues) {
7637                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: invalid queue num %u\n",
7638                          __func__, q);
7639                 return false;
7640         }
7641         qi = &ahp->ah_txq[q];
7642         if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
7643                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: inactive queue %u\n",
7644                          __func__, q);
7645                 return true;
7646         }
7647
7648         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: reset queue %u\n", __func__, q);
7649
7650         if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
7651                 if (chan && IS_CHAN_B(chan))
7652                         chanCwMin = INIT_CWMIN_11B;
7653                 else
7654                         chanCwMin = INIT_CWMIN;
7655
7656                 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
7657         } else
7658                 cwMin = qi->tqi_cwmin;
7659
7660         REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN)
7661                   | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
7662                   | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
7663
7664         REG_WRITE(ah, AR_DRETRY_LIMIT(q),
7665                   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
7666                   | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
7667                   | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
7668
7669         REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
7670         REG_WRITE(ah, AR_DMISC(q),
7671                   AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
7672
7673         if (qi->tqi_cbrPeriod) {
7674                 REG_WRITE(ah, AR_QCBRCFG(q),
7675                           SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL)
7676                           | SM(qi->tqi_cbrOverflowLimit,
7677                                AR_Q_CBRCFG_OVF_THRESH));
7678                 REG_WRITE(ah, AR_QMISC(q),
7679                           REG_READ(ah,
7680                                    AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->
7681                                         tqi_cbrOverflowLimit
7682                                         ?
7683                                         AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
7684                                         :
7685                                         0));
7686         }
7687         if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
7688                 REG_WRITE(ah, AR_QRDYTIMECFG(q),
7689                           SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
7690                           AR_Q_RDYTIMECFG_EN);
7691         }
7692
7693         REG_WRITE(ah, AR_DCHNTIME(q),
7694                   SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
7695                   (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
7696
7697         if (qi->tqi_burstTime
7698             && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) {
7699                 REG_WRITE(ah, AR_QMISC(q),
7700                           REG_READ(ah,
7701                                    AR_QMISC(q)) |
7702                           AR_Q_MISC_RDYTIME_EXP_POLICY);
7703
7704         }
7705
7706         if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) {
7707                 REG_WRITE(ah, AR_DMISC(q),
7708                           REG_READ(ah, AR_DMISC(q)) |
7709                           AR_D_MISC_POST_FR_BKOFF_DIS);
7710         }
7711         if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) {
7712                 REG_WRITE(ah, AR_DMISC(q),
7713                           REG_READ(ah, AR_DMISC(q)) |
7714                           AR_D_MISC_FRAG_BKOFF_EN);
7715         }
7716         switch (qi->tqi_type) {
7717         case ATH9K_TX_QUEUE_BEACON:
7718                 REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
7719                           | AR_Q_MISC_FSP_DBA_GATED
7720                           | AR_Q_MISC_BEACON_USE
7721                           | AR_Q_MISC_CBR_INCR_DIS1);
7722
7723                 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7724                           | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
7725                              AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
7726                           | AR_D_MISC_BEACON_USE
7727                           | AR_D_MISC_POST_FR_BKOFF_DIS);
7728                 break;
7729         case ATH9K_TX_QUEUE_CAB:
7730                 REG_WRITE(ah, AR_QMISC(q), REG_READ(ah, AR_QMISC(q))
7731                           | AR_Q_MISC_FSP_DBA_GATED
7732                           | AR_Q_MISC_CBR_INCR_DIS1
7733                           | AR_Q_MISC_CBR_INCR_DIS0);
7734                 value = (qi->tqi_readyTime
7735                          - (ah->ah_config.sw_beacon_response_time -
7736                             ah->ah_config.dma_beacon_response_time)
7737                          -
7738                          ah->ah_config.additional_swba_backoff) *
7739                         1024;
7740                 REG_WRITE(ah, AR_QRDYTIMECFG(q),
7741                           value | AR_Q_RDYTIMECFG_EN);
7742                 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7743                           | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
7744                              AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
7745                 break;
7746         case ATH9K_TX_QUEUE_PSPOLL:
7747                 REG_WRITE(ah, AR_QMISC(q),
7748                           REG_READ(ah,
7749                                    AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1);
7750                 break;
7751         case ATH9K_TX_QUEUE_UAPSD:
7752                 REG_WRITE(ah, AR_DMISC(q), REG_READ(ah, AR_DMISC(q))
7753                           | AR_D_MISC_POST_FR_BKOFF_DIS);
7754                 break;
7755         default:
7756                 break;
7757         }
7758
7759         if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
7760                 REG_WRITE(ah, AR_DMISC(q),
7761                           REG_READ(ah, AR_DMISC(q)) |
7762                           SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
7763                              AR_D_MISC_ARB_LOCKOUT_CNTRL) |
7764                           AR_D_MISC_POST_FR_BKOFF_DIS);
7765         }
7766
7767         if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
7768                 ahp->ah_txOkInterruptMask |= 1 << q;
7769         else
7770                 ahp->ah_txOkInterruptMask &= ~(1 << q);
7771         if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
7772                 ahp->ah_txErrInterruptMask |= 1 << q;
7773         else
7774                 ahp->ah_txErrInterruptMask &= ~(1 << q);
7775         if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
7776                 ahp->ah_txDescInterruptMask |= 1 << q;
7777         else
7778                 ahp->ah_txDescInterruptMask &= ~(1 << q);
7779         if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
7780                 ahp->ah_txEolInterruptMask |= 1 << q;
7781         else
7782                 ahp->ah_txEolInterruptMask &= ~(1 << q);
7783         if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
7784                 ahp->ah_txUrnInterruptMask |= 1 << q;
7785         else
7786                 ahp->ah_txUrnInterruptMask &= ~(1 << q);
7787         ath9k_hw_set_txq_interrupts(ah, qi);
7788
7789         return true;
7790 }
7791
7792 void ath9k_hw_gettxintrtxqs(struct ath_hal *ah, u32 *txqs)
7793 {
7794         struct ath_hal_5416 *ahp = AH5416(ah);
7795         *txqs &= ahp->ah_intrTxqs;
7796         ahp->ah_intrTxqs &= ~(*txqs);
7797 }
7798
7799 bool
7800 ath9k_hw_filltxdesc(struct ath_hal *ah, struct ath_desc *ds,
7801                     u32 segLen, bool firstSeg,
7802                     bool lastSeg, const struct ath_desc *ds0)
7803 {
7804         struct ar5416_desc *ads = AR5416DESC(ds);
7805
7806         if (firstSeg) {
7807                 ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_TxMore);
7808         } else if (lastSeg) {
7809                 ads->ds_ctl0 = 0;
7810                 ads->ds_ctl1 = segLen;
7811                 ads->ds_ctl2 = AR5416DESC_CONST(ds0)->ds_ctl2;
7812                 ads->ds_ctl3 = AR5416DESC_CONST(ds0)->ds_ctl3;
7813         } else {
7814                 ads->ds_ctl0 = 0;
7815                 ads->ds_ctl1 = segLen | AR_TxMore;
7816                 ads->ds_ctl2 = 0;
7817                 ads->ds_ctl3 = 0;
7818         }
7819         ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
7820         ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
7821         ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
7822         ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
7823         ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
7824         return true;
7825 }
7826
7827 void ath9k_hw_cleartxdesc(struct ath_hal *ah, struct ath_desc *ds)
7828 {
7829         struct ar5416_desc *ads = AR5416DESC(ds);
7830
7831         ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
7832         ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
7833         ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
7834         ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
7835         ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
7836 }
7837
7838 int
7839 ath9k_hw_txprocdesc(struct ath_hal *ah, struct ath_desc *ds)
7840 {
7841         struct ar5416_desc *ads = AR5416DESC(ds);
7842
7843         if ((ads->ds_txstatus9 & AR_TxDone) == 0)
7844                 return -EINPROGRESS;
7845
7846         ds->ds_txstat.ts_seqnum = MS(ads->ds_txstatus9, AR_SeqNum);
7847         ds->ds_txstat.ts_tstamp = ads->AR_SendTimestamp;
7848         ds->ds_txstat.ts_status = 0;
7849         ds->ds_txstat.ts_flags = 0;
7850
7851         if (ads->ds_txstatus1 & AR_ExcessiveRetries)
7852                 ds->ds_txstat.ts_status |= ATH9K_TXERR_XRETRY;
7853         if (ads->ds_txstatus1 & AR_Filtered)
7854                 ds->ds_txstat.ts_status |= ATH9K_TXERR_FILT;
7855         if (ads->ds_txstatus1 & AR_FIFOUnderrun)
7856                 ds->ds_txstat.ts_status |= ATH9K_TXERR_FIFO;
7857         if (ads->ds_txstatus9 & AR_TxOpExceeded)
7858                 ds->ds_txstat.ts_status |= ATH9K_TXERR_XTXOP;
7859         if (ads->ds_txstatus1 & AR_TxTimerExpired)
7860                 ds->ds_txstat.ts_status |= ATH9K_TXERR_TIMER_EXPIRED;
7861
7862         if (ads->ds_txstatus1 & AR_DescCfgErr)
7863                 ds->ds_txstat.ts_flags |= ATH9K_TX_DESC_CFG_ERR;
7864         if (ads->ds_txstatus1 & AR_TxDataUnderrun) {
7865                 ds->ds_txstat.ts_flags |= ATH9K_TX_DATA_UNDERRUN;
7866                 ath9k_hw_updatetxtriglevel(ah, true);
7867         }
7868         if (ads->ds_txstatus1 & AR_TxDelimUnderrun) {
7869                 ds->ds_txstat.ts_flags |= ATH9K_TX_DELIM_UNDERRUN;
7870                 ath9k_hw_updatetxtriglevel(ah, true);
7871         }
7872         if (ads->ds_txstatus0 & AR_TxBaStatus) {
7873                 ds->ds_txstat.ts_flags |= ATH9K_TX_BA;
7874                 ds->ds_txstat.ba_low = ads->AR_BaBitmapLow;
7875                 ds->ds_txstat.ba_high = ads->AR_BaBitmapHigh;
7876         }
7877
7878         ds->ds_txstat.ts_rateindex = MS(ads->ds_txstatus9, AR_FinalTxIdx);
7879         switch (ds->ds_txstat.ts_rateindex) {
7880         case 0:
7881                 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate0);
7882                 break;
7883         case 1:
7884                 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate1);
7885                 break;
7886         case 2:
7887                 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate2);
7888                 break;
7889         case 3:
7890                 ds->ds_txstat.ts_ratecode = MS(ads->ds_ctl3, AR_XmitRate3);
7891                 break;
7892         }
7893
7894         ds->ds_txstat.ts_rssi = MS(ads->ds_txstatus5, AR_TxRSSICombined);
7895         ds->ds_txstat.ts_rssi_ctl0 = MS(ads->ds_txstatus0, AR_TxRSSIAnt00);
7896         ds->ds_txstat.ts_rssi_ctl1 = MS(ads->ds_txstatus0, AR_TxRSSIAnt01);
7897         ds->ds_txstat.ts_rssi_ctl2 = MS(ads->ds_txstatus0, AR_TxRSSIAnt02);
7898         ds->ds_txstat.ts_rssi_ext0 = MS(ads->ds_txstatus5, AR_TxRSSIAnt10);
7899         ds->ds_txstat.ts_rssi_ext1 = MS(ads->ds_txstatus5, AR_TxRSSIAnt11);
7900         ds->ds_txstat.ts_rssi_ext2 = MS(ads->ds_txstatus5, AR_TxRSSIAnt12);
7901         ds->ds_txstat.evm0 = ads->AR_TxEVM0;
7902         ds->ds_txstat.evm1 = ads->AR_TxEVM1;
7903         ds->ds_txstat.evm2 = ads->AR_TxEVM2;
7904         ds->ds_txstat.ts_shortretry = MS(ads->ds_txstatus1, AR_RTSFailCnt);
7905         ds->ds_txstat.ts_longretry = MS(ads->ds_txstatus1, AR_DataFailCnt);
7906         ds->ds_txstat.ts_virtcol = MS(ads->ds_txstatus1, AR_VirtRetryCnt);
7907         ds->ds_txstat.ts_antenna = 1;
7908
7909         return 0;
7910 }
7911
7912 void
7913 ath9k_hw_set11n_txdesc(struct ath_hal *ah, struct ath_desc *ds,
7914                        u32 pktLen, enum ath9k_pkt_type type, u32 txPower,
7915                        u32 keyIx, enum ath9k_key_type keyType, u32 flags)
7916 {
7917         struct ar5416_desc *ads = AR5416DESC(ds);
7918         struct ath_hal_5416 *ahp = AH5416(ah);
7919
7920         txPower += ahp->ah_txPowerIndexOffset;
7921         if (txPower > 63)
7922                 txPower = 63;
7923
7924         ads->ds_ctl0 = (pktLen & AR_FrameLen)
7925                 | (flags & ATH9K_TXDESC_VMF ? AR_VirtMoreFrag : 0)
7926                 | SM(txPower, AR_XmitPower)
7927                 | (flags & ATH9K_TXDESC_VEOL ? AR_VEOL : 0)
7928                 | (flags & ATH9K_TXDESC_CLRDMASK ? AR_ClrDestMask : 0)
7929                 | (flags & ATH9K_TXDESC_INTREQ ? AR_TxIntrReq : 0)
7930                 | (keyIx != ATH9K_TXKEYIX_INVALID ? AR_DestIdxValid : 0);
7931
7932         ads->ds_ctl1 =
7933                 (keyIx != ATH9K_TXKEYIX_INVALID ? SM(keyIx, AR_DestIdx) : 0)
7934                 | SM(type, AR_FrameType)
7935                 | (flags & ATH9K_TXDESC_NOACK ? AR_NoAck : 0)
7936                 | (flags & ATH9K_TXDESC_EXT_ONLY ? AR_ExtOnly : 0)
7937                 | (flags & ATH9K_TXDESC_EXT_AND_CTL ? AR_ExtAndCtl : 0);
7938
7939         ads->ds_ctl6 = SM(keyType, AR_EncrType);
7940
7941         if (AR_SREV_9285(ah)) {
7942
7943                 ads->ds_ctl8 = 0;
7944                 ads->ds_ctl9 = 0;
7945                 ads->ds_ctl10 = 0;
7946                 ads->ds_ctl11 = 0;
7947         }
7948 }
7949
7950 void
7951 ath9k_hw_set11n_ratescenario(struct ath_hal *ah, struct ath_desc *ds,
7952                              struct ath_desc *lastds,
7953                              u32 durUpdateEn, u32 rtsctsRate,
7954                              u32 rtsctsDuration,
7955                              struct ath9k_11n_rate_series series[],
7956                              u32 nseries, u32 flags)
7957 {
7958         struct ar5416_desc *ads = AR5416DESC(ds);
7959         struct ar5416_desc *last_ads = AR5416DESC(lastds);
7960         u32 ds_ctl0;
7961
7962         (void) nseries;
7963         (void) rtsctsDuration;
7964
7965         if (flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)) {
7966                 ds_ctl0 = ads->ds_ctl0;
7967
7968                 if (flags & ATH9K_TXDESC_RTSENA) {
7969                         ds_ctl0 &= ~AR_CTSEnable;
7970                         ds_ctl0 |= AR_RTSEnable;
7971                 } else {
7972                         ds_ctl0 &= ~AR_RTSEnable;
7973                         ds_ctl0 |= AR_CTSEnable;
7974                 }
7975
7976                 ads->ds_ctl0 = ds_ctl0;
7977         } else {
7978                 ads->ds_ctl0 =
7979                         (ads->ds_ctl0 & ~(AR_RTSEnable | AR_CTSEnable));
7980         }
7981
7982         ads->ds_ctl2 = set11nTries(series, 0)
7983                 | set11nTries(series, 1)
7984                 | set11nTries(series, 2)
7985                 | set11nTries(series, 3)
7986                 | (durUpdateEn ? AR_DurUpdateEna : 0)
7987                 | SM(0, AR_BurstDur);
7988
7989         ads->ds_ctl3 = set11nRate(series, 0)
7990                 | set11nRate(series, 1)
7991                 | set11nRate(series, 2)
7992                 | set11nRate(series, 3);
7993
7994         ads->ds_ctl4 = set11nPktDurRTSCTS(series, 0)
7995                 | set11nPktDurRTSCTS(series, 1);
7996
7997         ads->ds_ctl5 = set11nPktDurRTSCTS(series, 2)
7998                 | set11nPktDurRTSCTS(series, 3);
7999
8000         ads->ds_ctl7 = set11nRateFlags(series, 0)
8001                 | set11nRateFlags(series, 1)
8002                 | set11nRateFlags(series, 2)
8003                 | set11nRateFlags(series, 3)
8004                 | SM(rtsctsRate, AR_RTSCTSRate);
8005         last_ads->ds_ctl2 = ads->ds_ctl2;
8006         last_ads->ds_ctl3 = ads->ds_ctl3;
8007 }
8008
8009 void
8010 ath9k_hw_set11n_aggr_first(struct ath_hal *ah, struct ath_desc *ds,
8011                            u32 aggrLen)
8012 {
8013         struct ar5416_desc *ads = AR5416DESC(ds);
8014
8015         ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
8016
8017         ads->ds_ctl6 &= ~AR_AggrLen;
8018         ads->ds_ctl6 |= SM(aggrLen, AR_AggrLen);
8019 }
8020
8021 void
8022 ath9k_hw_set11n_aggr_middle(struct ath_hal *ah, struct ath_desc *ds,
8023                             u32 numDelims)
8024 {
8025         struct ar5416_desc *ads = AR5416DESC(ds);
8026         unsigned int ctl6;
8027
8028         ads->ds_ctl1 |= (AR_IsAggr | AR_MoreAggr);
8029
8030         ctl6 = ads->ds_ctl6;
8031         ctl6 &= ~AR_PadDelim;
8032         ctl6 |= SM(numDelims, AR_PadDelim);
8033         ads->ds_ctl6 = ctl6;
8034 }
8035
8036 void ath9k_hw_set11n_aggr_last(struct ath_hal *ah, struct ath_desc *ds)
8037 {
8038         struct ar5416_desc *ads = AR5416DESC(ds);
8039
8040         ads->ds_ctl1 |= AR_IsAggr;
8041         ads->ds_ctl1 &= ~AR_MoreAggr;
8042         ads->ds_ctl6 &= ~AR_PadDelim;
8043 }
8044
8045 void ath9k_hw_clr11n_aggr(struct ath_hal *ah, struct ath_desc *ds)
8046 {
8047         struct ar5416_desc *ads = AR5416DESC(ds);
8048
8049         ads->ds_ctl1 &= (~AR_IsAggr & ~AR_MoreAggr);
8050 }
8051
8052 void
8053 ath9k_hw_set11n_burstduration(struct ath_hal *ah, struct ath_desc *ds,
8054                               u32 burstDuration)
8055 {
8056         struct ar5416_desc *ads = AR5416DESC(ds);
8057
8058         ads->ds_ctl2 &= ~AR_BurstDur;
8059         ads->ds_ctl2 |= SM(burstDuration, AR_BurstDur);
8060 }
8061
8062 void
8063 ath9k_hw_set11n_virtualmorefrag(struct ath_hal *ah, struct ath_desc *ds,
8064                                 u32 vmf)
8065 {
8066         struct ar5416_desc *ads = AR5416DESC(ds);
8067
8068         if (vmf)
8069                 ads->ds_ctl0 |= AR_VirtMoreFrag;
8070         else
8071                 ads->ds_ctl0 &= ~AR_VirtMoreFrag;
8072 }
8073
8074 void ath9k_hw_putrxbuf(struct ath_hal *ah, u32 rxdp)
8075 {
8076         REG_WRITE(ah, AR_RXDP, rxdp);
8077 }
8078
8079 void ath9k_hw_rxena(struct ath_hal *ah)
8080 {
8081         REG_WRITE(ah, AR_CR, AR_CR_RXE);
8082 }
8083
8084 bool ath9k_hw_setrxabort(struct ath_hal *ah, bool set)
8085 {
8086         if (set) {
8087
8088                 REG_SET_BIT(ah, AR_DIAG_SW,
8089                             (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
8090
8091                 if (!ath9k_hw_wait
8092                     (ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0)) {
8093                         u32 reg;
8094
8095                         REG_CLR_BIT(ah, AR_DIAG_SW,
8096                                     (AR_DIAG_RX_DIS |
8097                                      AR_DIAG_RX_ABORT));
8098
8099                         reg = REG_READ(ah, AR_OBS_BUS_1);
8100                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
8101                                 "%s: rx failed to go idle in 10 ms RXSM=0x%x\n",
8102                                 __func__, reg);
8103
8104                         return false;
8105                 }
8106         } else {
8107                 REG_CLR_BIT(ah, AR_DIAG_SW,
8108                             (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
8109         }
8110
8111         return true;
8112 }
8113
8114 void
8115 ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0,
8116                         u32 filter1)
8117 {
8118         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
8119         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
8120 }
8121
8122 bool
8123 ath9k_hw_setuprxdesc(struct ath_hal *ah, struct ath_desc *ds,
8124                      u32 size, u32 flags)
8125 {
8126         struct ar5416_desc *ads = AR5416DESC(ds);
8127         struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
8128
8129         ads->ds_ctl1 = size & AR_BufLen;
8130         if (flags & ATH9K_RXDESC_INTREQ)
8131                 ads->ds_ctl1 |= AR_RxIntrReq;
8132
8133         ads->ds_rxstatus8 &= ~AR_RxDone;
8134         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
8135                 memset(&(ads->u), 0, sizeof(ads->u));
8136         return true;
8137 }
8138
8139 int
8140 ath9k_hw_rxprocdesc(struct ath_hal *ah, struct ath_desc *ds,
8141                     u32 pa, struct ath_desc *nds, u64 tsf)
8142 {
8143         struct ar5416_desc ads;
8144         struct ar5416_desc *adsp = AR5416DESC(ds);
8145
8146         if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
8147                 return -EINPROGRESS;
8148
8149         ads.u.rx = adsp->u.rx;
8150
8151         ds->ds_rxstat.rs_status = 0;
8152         ds->ds_rxstat.rs_flags = 0;
8153
8154         ds->ds_rxstat.rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
8155         ds->ds_rxstat.rs_tstamp = ads.AR_RcvTimestamp;
8156
8157         ds->ds_rxstat.rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
8158         ds->ds_rxstat.rs_rssi_ctl0 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00);
8159         ds->ds_rxstat.rs_rssi_ctl1 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01);
8160         ds->ds_rxstat.rs_rssi_ctl2 = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02);
8161         ds->ds_rxstat.rs_rssi_ext0 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10);
8162         ds->ds_rxstat.rs_rssi_ext1 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11);
8163         ds->ds_rxstat.rs_rssi_ext2 = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12);
8164         if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
8165                 ds->ds_rxstat.rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
8166         else
8167                 ds->ds_rxstat.rs_keyix = ATH9K_RXKEYIX_INVALID;
8168
8169         ds->ds_rxstat.rs_rate = RXSTATUS_RATE(ah, (&ads));
8170         ds->ds_rxstat.rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
8171
8172         ds->ds_rxstat.rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
8173         ds->ds_rxstat.rs_moreaggr =
8174                 (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
8175         ds->ds_rxstat.rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
8176         ds->ds_rxstat.rs_flags =
8177                 (ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
8178         ds->ds_rxstat.rs_flags |=
8179                 (ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
8180
8181         if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
8182                 ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
8183         if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
8184                 ds->ds_rxstat.rs_flags |= ATH9K_RX_DELIM_CRC_POST;
8185         if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
8186                 ds->ds_rxstat.rs_flags |= ATH9K_RX_DECRYPT_BUSY;
8187
8188         if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
8189
8190                 if (ads.ds_rxstatus8 & AR_CRCErr)
8191                         ds->ds_rxstat.rs_status |= ATH9K_RXERR_CRC;
8192                 else if (ads.ds_rxstatus8 & AR_PHYErr) {
8193                         u32 phyerr;
8194
8195                         ds->ds_rxstat.rs_status |= ATH9K_RXERR_PHY;
8196                         phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
8197                         ds->ds_rxstat.rs_phyerr = phyerr;
8198                 } else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
8199                         ds->ds_rxstat.rs_status |= ATH9K_RXERR_DECRYPT;
8200                 else if (ads.ds_rxstatus8 & AR_MichaelErr)
8201                         ds->ds_rxstat.rs_status |= ATH9K_RXERR_MIC;
8202         }
8203
8204         return 0;
8205 }
8206
8207 static void ath9k_hw_setup_rate_table(struct ath_hal *ah,
8208                                       struct ath9k_rate_table *rt)
8209 {
8210         int i;
8211
8212         if (rt->rateCodeToIndex[0] != 0)
8213                 return;
8214         for (i = 0; i < 256; i++)
8215                 rt->rateCodeToIndex[i] = (u8) -1;
8216         for (i = 0; i < rt->rateCount; i++) {
8217                 u8 code = rt->info[i].rateCode;
8218                 u8 cix = rt->info[i].controlRate;
8219
8220                 rt->rateCodeToIndex[code] = i;
8221                 rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
8222
8223                 rt->info[i].lpAckDuration =
8224                         ath9k_hw_computetxtime(ah, rt,
8225                                                WLAN_CTRL_FRAME_SIZE,
8226                                                cix,
8227                                                false);
8228                 rt->info[i].spAckDuration =
8229                         ath9k_hw_computetxtime(ah, rt,
8230                                                WLAN_CTRL_FRAME_SIZE,
8231                                                cix,
8232                                                true);
8233         }
8234 }
8235
8236 const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah,
8237                                                    u32 mode)
8238 {
8239         struct ath9k_rate_table *rt;
8240         switch (mode) {
8241         case ATH9K_MODE_11A:
8242                 rt = &ar5416_11a_table;
8243                 break;
8244         case ATH9K_MODE_11B:
8245                 rt = &ar5416_11b_table;
8246                 break;
8247         case ATH9K_MODE_11G:
8248                 rt = &ar5416_11g_table;
8249                 break;
8250         case ATH9K_MODE_11NG_HT20:
8251         case ATH9K_MODE_11NG_HT40PLUS:
8252         case ATH9K_MODE_11NG_HT40MINUS:
8253                 rt = &ar5416_11ng_table;
8254                 break;
8255         case ATH9K_MODE_11NA_HT20:
8256         case ATH9K_MODE_11NA_HT40PLUS:
8257         case ATH9K_MODE_11NA_HT40MINUS:
8258                 rt = &ar5416_11na_table;
8259                 break;
8260         default:
8261                 DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n",
8262                          __func__, mode);
8263                 return NULL;
8264         }
8265         ath9k_hw_setup_rate_table(ah, rt);
8266         return rt;
8267 }
8268
8269 static const char *ath9k_hw_devname(u16 devid)
8270 {
8271         switch (devid) {
8272         case AR5416_DEVID_PCI:
8273         case AR5416_DEVID_PCIE:
8274                 return "Atheros 5416";
8275         case AR9160_DEVID_PCI:
8276                 return "Atheros 9160";
8277         case AR9280_DEVID_PCI:
8278         case AR9280_DEVID_PCIE:
8279                 return "Atheros 9280";
8280         }
8281         return NULL;
8282 }
8283
8284 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
8285 {
8286         return vendorid == ATHEROS_VENDOR_ID ?
8287                 ath9k_hw_devname(devid) : NULL;
8288 }
8289
8290 struct ath_hal *ath9k_hw_attach(u16 devid,
8291                                 struct ath_softc *sc,
8292                                 void __iomem *mem,
8293                                 int *error)
8294 {
8295         struct ath_hal *ah = NULL;
8296
8297         switch (devid) {
8298         case AR5416_DEVID_PCI:
8299         case AR5416_DEVID_PCIE:
8300         case AR9160_DEVID_PCI:
8301         case AR9280_DEVID_PCI:
8302         case AR9280_DEVID_PCIE:
8303                 ah = ath9k_hw_do_attach(devid, sc, mem, error);
8304                 break;
8305         default:
8306                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
8307                          "devid=0x%x not supported.\n", devid);
8308                 ah = NULL;
8309                 *error = -ENXIO;
8310                 break;
8311         }
8312
8313         return ah;
8314 }
8315
8316 u16
8317 ath9k_hw_computetxtime(struct ath_hal *ah,
8318                        const struct ath9k_rate_table *rates,
8319                        u32 frameLen, u16 rateix,
8320                        bool shortPreamble)
8321 {
8322         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
8323         u32 kbps;
8324
8325         kbps = rates->info[rateix].rateKbps;
8326
8327         if (kbps == 0)
8328                 return 0;
8329         switch (rates->info[rateix].phy) {
8330
8331         case PHY_CCK:
8332                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
8333                 if (shortPreamble && rates->info[rateix].shortPreamble)
8334                         phyTime >>= 1;
8335                 numBits = frameLen << 3;
8336                 txTime = CCK_SIFS_TIME + phyTime
8337                         + ((numBits * 1000) / kbps);
8338                 break;
8339         case PHY_OFDM:
8340                 if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
8341                         bitsPerSymbol =
8342                                 (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
8343
8344                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
8345                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8346                         txTime = OFDM_SIFS_TIME_QUARTER
8347                                 + OFDM_PREAMBLE_TIME_QUARTER
8348                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
8349                 } else if (ah->ah_curchan &&
8350                            IS_CHAN_HALF_RATE(ah->ah_curchan)) {
8351                         bitsPerSymbol =
8352                                 (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
8353
8354                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
8355                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8356                         txTime = OFDM_SIFS_TIME_HALF +
8357                                 OFDM_PREAMBLE_TIME_HALF
8358                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
8359                 } else {
8360                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
8361
8362                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
8363                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
8364                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
8365                                 + (numSymbols * OFDM_SYMBOL_TIME);
8366                 }
8367                 break;
8368
8369         default:
8370                 DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO,
8371                          "%s: unknown phy %u (rate ix %u)\n", __func__,
8372                          rates->info[rateix].phy, rateix);
8373                 txTime = 0;
8374                 break;
8375         }
8376         return txTime;
8377 }
8378
8379 u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
8380 {
8381         if (flags & CHANNEL_2GHZ) {
8382                 if (freq == 2484)
8383                         return 14;
8384                 if (freq < 2484)
8385                         return (freq - 2407) / 5;
8386                 else
8387                         return 15 + ((freq - 2512) / 20);
8388         } else if (flags & CHANNEL_5GHZ) {
8389                 if (ath9k_regd_is_public_safety_sku(ah) &&
8390                     IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
8391                         return ((freq * 10) +
8392                                 (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
8393                 } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
8394                         return (freq - 4000) / 5;
8395                 } else {
8396                         return (freq - 5000) / 5;
8397                 }
8398         } else {
8399                 if (freq == 2484)
8400                         return 14;
8401                 if (freq < 2484)
8402                         return (freq - 2407) / 5;
8403                 if (freq < 5000) {
8404                         if (ath9k_regd_is_public_safety_sku(ah)
8405                             && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
8406                                 return ((freq * 10) +
8407                                         (((freq % 5) ==
8408                                           2) ? 5 : 0) - 49400) / 5;
8409                         } else if (freq > 4900) {
8410                                 return (freq - 4000) / 5;
8411                         } else {
8412                                 return 15 + ((freq - 2512) / 20);
8413                         }
8414                 }
8415                 return (freq - 5000) / 5;
8416         }
8417 }
8418
8419 /* We can tune this as we go by monitoring really low values */
8420 #define ATH9K_NF_TOO_LOW        -60
8421
8422 /* AR5416 may return very high value (like -31 dBm), in those cases the nf
8423  * is incorrect and we should use the static NF value. Later we can try to
8424  * find out why they are reporting these values */
8425 static bool ath9k_hw_nf_in_range(struct ath_hal *ah, s16 nf)
8426 {
8427         if (nf > ATH9K_NF_TOO_LOW) {
8428                 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
8429                          "%s: noise floor value detected (%d) is "
8430                         "lower than what we think is a "
8431                         "reasonable value (%d)\n",
8432                          __func__, nf, ATH9K_NF_TOO_LOW);
8433                 return false;
8434         }
8435         return true;
8436 }
8437
8438 s16
8439 ath9k_hw_getchan_noise(struct ath_hal *ah, struct ath9k_channel *chan)
8440 {
8441         struct ath9k_channel *ichan;
8442         s16 nf;
8443
8444         ichan = ath9k_regd_check_channel(ah, chan);
8445         if (ichan == NULL) {
8446                 DPRINTF(ah->ah_sc, ATH_DBG_NF_CAL,
8447                          "%s: invalid channel %u/0x%x; no mapping\n",
8448                          __func__, chan->channel, chan->channelFlags);
8449                 return ATH_DEFAULT_NOISE_FLOOR;
8450         }
8451         if (ichan->rawNoiseFloor == 0) {
8452                 enum wireless_mode mode = ath9k_hw_chan2wmode(ah, chan);
8453                 nf = NOISE_FLOOR[mode];
8454         } else
8455                 nf = ichan->rawNoiseFloor;
8456
8457         if (!ath9k_hw_nf_in_range(ah, nf))
8458                 nf = ATH_DEFAULT_NOISE_FLOOR;
8459
8460         return nf;
8461 }
8462
8463 bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
8464 {
8465         struct ath_hal_5416 *ahp = AH5416(ah);
8466
8467         if (setting)
8468                 ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
8469         else
8470                 ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
8471         return true;
8472 }
8473
8474 bool ath9k_hw_phycounters(struct ath_hal *ah)
8475 {
8476         struct ath_hal_5416 *ahp = AH5416(ah);
8477
8478         return ahp->ah_hasHwPhyCounters ? true : false;
8479 }
8480
8481 u32 ath9k_hw_gettxbuf(struct ath_hal *ah, u32 q)
8482 {
8483         return REG_READ(ah, AR_QTXDP(q));
8484 }
8485
8486 bool ath9k_hw_puttxbuf(struct ath_hal *ah, u32 q,
8487                        u32 txdp)
8488 {
8489         REG_WRITE(ah, AR_QTXDP(q), txdp);
8490
8491         return true;
8492 }
8493
8494 bool ath9k_hw_txstart(struct ath_hal *ah, u32 q)
8495 {
8496         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: queue %u\n", __func__, q);
8497
8498         REG_WRITE(ah, AR_Q_TXE, 1 << q);
8499
8500         return true;
8501 }
8502
8503 u32 ath9k_hw_numtxpending(struct ath_hal *ah, u32 q)
8504 {
8505         u32 npend;
8506
8507         npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
8508         if (npend == 0) {
8509
8510                 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
8511                         npend = 1;
8512         }
8513         return npend;
8514 }
8515
8516 bool ath9k_hw_stoptxdma(struct ath_hal *ah, u32 q)
8517 {
8518         u32 wait;
8519
8520         REG_WRITE(ah, AR_Q_TXD, 1 << q);
8521
8522         for (wait = 1000; wait != 0; wait--) {
8523                 if (ath9k_hw_numtxpending(ah, q) == 0)
8524                         break;
8525                 udelay(100);
8526         }
8527
8528         if (ath9k_hw_numtxpending(ah, q)) {
8529                 u32 tsfLow, j;
8530
8531                 DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
8532                          "%s: Num of pending TX Frames %d on Q %d\n",
8533                          __func__, ath9k_hw_numtxpending(ah, q), q);
8534
8535                 for (j = 0; j < 2; j++) {
8536                         tsfLow = REG_READ(ah, AR_TSF_L32);
8537                         REG_WRITE(ah, AR_QUIET2,
8538                                   SM(10, AR_QUIET2_QUIET_DUR));
8539                         REG_WRITE(ah, AR_QUIET_PERIOD, 100);
8540                         REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsfLow >> 10);
8541                         REG_SET_BIT(ah, AR_TIMER_MODE,
8542                                        AR_QUIET_TIMER_EN);
8543
8544                         if ((REG_READ(ah, AR_TSF_L32) >> 10) ==
8545                             (tsfLow >> 10)) {
8546                                 break;
8547                         }
8548                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
8549                                 "%s: TSF have moved while trying to set "
8550                                 "quiet time TSF: 0x%08x\n",
8551                                 __func__, tsfLow);
8552                 }
8553
8554                 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
8555
8556                 udelay(200);
8557                 REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
8558
8559                 wait = 1000;
8560
8561                 while (ath9k_hw_numtxpending(ah, q)) {
8562                         if ((--wait) == 0) {
8563                                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
8564                                         "%s: Failed to stop Tx DMA in 100 "
8565                                         "msec after killing last frame\n",
8566                                         __func__);
8567                                 break;
8568                         }
8569                         udelay(100);
8570                 }
8571
8572                 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
8573         }
8574
8575         REG_WRITE(ah, AR_Q_TXD, 0);
8576         return wait != 0;
8577 }